It’s all about the Money – Part 2

January 2, 2018

This article first appeared in the November 2017 edition of our free newsletter, to subscribe click here

 

In the last few years there has been a proliferation of unique electric vehicles and flying cars. Blue sky thinking and disruptive technology are the order of the day and I can see that there will be a number of disappointed investors ahead.

I talk to some of these projects and one I spoke to a few months ago told me something revealing. One of the principals on the project told me “It is too early in the program to start to talk to ‘aircraft’ people”.

Hmmmm – that might be a good attitude if you were not engaged in an aircraft development program. I have devised a series of assessments to judge what the likely chance of success of one of these ‘blue sky’ projects is.

  1. On the ‘About us’ part of a project’s website does the featured key team members include a CTO, a VP Engineering or a chief engineer? If a project dedicated to air vehicle engineering development does not include an engineer in the top echelons of their project they are likely not to succeed. With the best will in the world visionary leaders, CFOs and marketing experts are likely to go off the rails if left unchecked in an ivory tower at the head of a project.
  2. How many engines/rotors does the aircraft have? No civil aircraft has been certified with more than four engines (to my knowledge). No hovering civil rotorcraft has been certified with more than one lift rotor. In the wild, west of the new part 23 regulatory environment, the FAA will likely exercise more caution – as everybody generally does when faced with greater uncertainty. Trying to certify an exotic aircraft is likely to be made more difficult than it would have been in the old regulatory environment.
  3. Is the aircraft electric or liquid fuel powered? It is worth noting that no electric vehicle has been certified under part 23. I don’t think this is because electric aircraft are inherently less certifiable – there are advantages regarding reliability and maintenance. The drawback is that the energy density of batteries is just not comparable to oil derivatives.

If we do some simple math. We can rate the endurance of a powerplant and fuel system by the energy density of the fuel x the efficiency of the engine.

A gasoline powered piston engine:
The energy density of Kerosene = 42.8MJ/Kg, a good piston engine efficiency = 30% or 0.30.

The Abbott Aerospace power plant success index for a piston engine = 0.30 x 42.8 = 12.84

A gasoline powered turbine engine:
The energy density of Kerosene (as before) = 42.8MJ/Kg, a good turbine engine efficiency = 45% or 0.45.

The Abbott Aerospace power plant success index for a turbine engine = 0.45 x 42.8 = 19.26

A battery powered electric motor:
The energy density of rechargeable lithium metal batteries (in development, about twice the current Tesla battery energy density) = 1.8MJ/Kg, a good electric motor efficiency = 90% or 0.9.

The Abbott Aerospace power plant success index for an electric power system = 0.9 x 1.8 = 1.62

To summarize:

System AAPPSI
(Abbott Aerospace Power Plant Success Index)
Piston engine 12.84
Turbine engine 19.26
Electric motor 1.62

It is worth noting that as you burn liquid fuel the aircraft gets lighter and more efficient, a battery weighs the same whether it is charged or empty. This effect has not been quantified in this mini-study.

When an electric aircraft is certified will there be a market for it considering the endurance of the aircraft is likely to be an order of magnitude less than a traditional alternative?

I love electric power systems – they are safe, very cheap to maintain, quiet and efficient. Even the performance projection for the next generation of batteries still put them an order of magnitude out.

References and Sources
https://en.wikipedia.org/wiki/Energy_density
https://en.wikipedia.org/wiki/Engine_efficiency
https://www.energy.gov/sites/prod/files/2014/04/f15/10097517.pdf

To get back to the original point. One of these 3 points is enough to constitute a high program risk factor. If a single program has all of these characteristics my assessment is that the likelihood of failure is so close to certain that it can be regarded as certain.

…..and by failure, I mean failure to repay the financial investment in the project. It is not a success to get through certification and realize that you are selling every aircraft at a loss and the market is a fraction of what was projected at the start of the program.

Investors are free to make whatever assessments they make and invest in whatever they choose. My concern is that the extent of private equity investments in very high-risk programs is causing a lack of investment in credible programs which have a greater chance of commercial success. The failure of the programs that do receive investment is likely to hurt the credible aerospace startups as the entire sector will get a bad reputation.

Marketing mockups and GCI animations of people getting into exotic looking vehicles in their driveways and being whisked off to futuristic commercial complexes to make important decisions are just figments of someone’s imagination.

You still have to deal with the laws of physics and governmental statute, regulation and policy and they do not care what you or anyone else think the future should look like.

I hope that investors start to rub the pixie dust from their eyes and observe proper due diligence and risk assessment exercises.

I know of many part 23 programs that are credible and low risk but cannot get funded, in part because of the rush to take part in the next ‘revolution’. I only hope the investment community start to take a more rational view of the risks and benefits of the projects they have to choose from.

Have A Comment On This Article? Post It Here.

Comments are moderated and will not be published until approved. Your email address will be kept confidential. Please review our Comment Policy before posting your comment.

*

2 Comments on "It’s all about the Money – Part 2"

  • Hum, engineer’s perspective. Perhaps the investors know it’s pie in the sky and they do it to get on the news. They’ve made their money in something else (software) so now it’s time to show the world that they are out to develop disruptive technology in a so-called mature sector like aerospace. What helps your company’s image more, investment in an energy kite (Makani X), a personal air vehicle, a civilian spaceship or another single engine jet?

    • You are right about the ‘vanity project’ aspect to some aircraft programs. To the engineer, these can be frustrating as you approach it from a pragmatic specification and market-driven perspective. What do you do? – do you hang on and milk the program, knowing that the investor(s) may not care that it will never make a profit, or do you try and make it realistic and profitable in spite of the investor(s) or do you find another client?
      Which is more selfish – satisfying your inner engineer and finding a ‘real’ program or keeping the bank manager happy by staying where you are?

Microsoft Excel Spreadsheets

FREE ANALYSIS SPREADSHEETS 3 Over the last 10 years we have developed hundreds of spreadsheet tools to help us with our structural analysis work. We have made these available through the Abbott Aerospace web site and the XL Viking project. We have now brought them into the technical library. They have been updated, improved and the collection has been expanded to cover more analysis methods than ever before.

The XL-Viking Add-In for Excel

XL-Viking 2 We created the XL-Viking Excel add-in to satisfy our own need to make Excel a better engineering tool. XL-Viking shows your Excel Formula in a way that makes sense and brings essential new functionality to Microsoft Excel by providing an additional user interface and easy to use functions.

The Indispensable Tool For Engineers, Mathematicians, Scientists, Accountants and Teaching Professionals!

download-xl-viking

Technical Papers & Reports

This is our collection of public domain references. All of the material we make available has been placed in the public domain by the authors/owners. If you believe this is not the case and any of the library material is not in the public domain please let us know. If you have any reference material that you would like to see included in the library we would love to hear from you.

Market Analysis and Market Information

Our newest addition to the library is an on-going series of articles on the aircraft and aerospace market. These are part quantitative and part qualitative and introduce a new aspect to the competencies within Abbott Aerospace.