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A VECTOR STUDY OF LINEARIZED SUPERSONIC FLOW

APPLICATIONS TO NONPLANAR PROBLEMS

By John C. Martin
SUMMARY

A vector study of the partisl-differential equation of steady
linearized supersonic flow is presented. General expressions, which
relate the velocity potential in the stream to the conditions on the
disturbing surfaces, are derived. In connection with these general
expressions the concept of the finite part of an integral is discussed.

A discussion of problems dealing with planar bodies is given and
the conditions for the solution to be unique are investigated.

Problems concerning nonplanar systems are investigated, and methods
are derived for the solution of some simple nonplanar bodies. The sur-
face pressure distribution and the damping in roll are found for rolling
tails consisting of four, six, and eight rectangular fins for the Mach
number range where the region of interference between adjacent fins
does not affect the fin tips.

INTRODUCTION

In the presentation of the theory of the flow of an idealized
incompressible fluid, vector methods can be used to reduce greatly the
mathematical manipulations involved. The study of steady linearized
supersonic flow may also be aided by the use of vector methods. Two
types of approaches, however, can be used. Perhaps the more obvious is
to make use of common vector methods as was done in reference 1. The
other vector method, which was introduced by Robinson in reference 2
and is used in this paper, appears to be more suited to the study of
the linearized partial-differential equation of steady supersonic flow.
This method allows a derivation of a hyperbolic scalar potential and a
hyperbolic vector potential along lines analogous to the derivation
gometimes used (reference 3, ch. VIII) in dealing with common scalar
and vector potentials.
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The present paper presents a vector derivation of many general
results which have been found by various methods and are given in the
published literature on the linearized partial-differential equation
of supersonic flow and also presents some results which are not found
in the literature. The general resulte of Hadamard (reference 4,

p. 207), Puckett (reference 5), and Heaslet and Lomax (reference 6)
are found as special cases of a general expression for a scalar poten-
tial, and the results found by Robinson (reference 2) are obtained by
the use of a vector potential. The derivation of the scalar potential
doubtlessly helps to clarify the concept of the finite part of an
integral.

A discussion of problems dealing with planar bodies immersed in a
supersonic flow is given, and the conditions necessary for the solution
to be unique are Investigated.

Problems dealing with nonplanar systems are also dlscussed, and
methods are derived for the solutlon of some simple problems dealing
with nonplanar bodles. The surface pressure distribution, the span-
wise loading, and the damping in roll are found for rolling tails con-
sisting of four, six, and eight rectangular fins for the Mach number
range where the region of interference between adjacent fins does not
effect the fin tips.

SYMBOLS
A hyperbolic vector potential
A aspect ratio of talil fin
a posgitive consgtant
01,02,03 arbitrary constants
c chord
E,F arbitrary vector functions
£ scalar function defined by equation (19)
G vector function associated with vector function F
H vorticity vector

b/2 span of tail fin
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i, 3,k unit vectors in x-, y-, and z-directions, respectiveiy

M Mach number

n unit vector normel to eleﬁent of area da

ny = -152v1 + Jvp + kvg

o' = -iBavl' + vyt o+ kv3'

mr = -18%, " + vt

ACP pressure-difference coefficient

P rate of roll

Q function used in equation of surface of discontinuity

q part of velocity vector which is made up of hyperbolic
curl of vector potential

q' total perturbation velocity

R = J(x - 6)% - %y - m)® - 8%z - £)?

R!' small constant
by 4

r=\/(X-§)2+B(y-n)2+B(z-€)2
S area of tall fin

S0 surface of discontinuity
8. ,8,,9,,3

1772’ 3,'h’ surfaces of integration
85,86,T,T
A free-gtream velocity
Vs V1, V2 volumes of integration

T2 -3

1

X, ¥, 2 Cartesian coordinates (x-axls parallel to free-stream

direction)
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T.E. T.E.

spanwise circulation (%\/P G, dx = %\jp a0n dx )
L.E. L.E.

small positive quantity

Cartesian coordinates (g-axis parallel to free-gtream
direction)

polar coordinates
scalar functions
given volume

direction cosines of ocutward normal to element of area da

direction cosines of normal (directed away from point
(x,v,2)) to surface 8o

direction cosines of normal to element of area da used
in equation (45)

glope of deflected area
aresa of integration

scalar potentials

rolling-moment coefficient per fin
(ﬁolling moment per fin

1 b
30783

p—0

indicates integration over closed line or surface

denotes finite part of integral
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THEORY

This paper deals with the linearized partial-differential equation
of steady supersonic flow. This equation is given by

_32¢m + g+, =0 (1)

The potential is assumed to be continuous in the stream direction, and
the potential is assumed to be always finite. Assuming the potential

to be finite and continuous in the stream direction has the effect of

requiring the aerodynamic 1ift and moment (calculated by use of the

linearized pressure) of finite bodies to be finite since the linearized

pregsure is related to the derivative of the potential in the stream
direction. The expression "linearized pressure" refers to the pressure
obtained by neglecting all powers of the perturbation-velocity compo-
nents above the first.
Vector Operators and Identities

Certain operators, which are closely asgsociated with the linearized
hyperbolic partial-differential equation of supersonic flow (the two-
dimensional wave equation), are added to the vector operators commonly
used. The baslc operators have been used previously in references 2
end T.

The gradient operator 1s defined by

v=1i g% + g% + k g%
The analogous hyperbolic gradient operator defined by Robinson in
reference 2 may be expressed as
vh=-162£—{+j%+k§—z
The hyperbolic divergence of an arbitrary vector E is given by
Vh - E
Similarly, the hyperbolic curl of the wvector E is given by

vh X E
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The divergence of the gradient operator is sometimes denoted by

; 52 2 2
V‘?EV'V=a 9 +a

+
8}:2 By2 Bza
The analogous divergence of the hyperbolic gradient operator is denoted
by . N
2 2 2
V2hEV'Vh=-3232+a2+62
ox Jy oz

The following identities are needed. Let E %be a vector and Vv and A
be scalar functions of x, y, and z. Then, :

VY - VA =VA - V¥ (2a)

V- E=yv -E+E W (2pb)
Vx @ xE) =vy - E) -vE (2c)
v-wxE)=0 (24)

Vhy « VA = VhA - V¥ (2e)

vh - yE=wWh - E+E - vhy (2%)
vV X (vh x E) =vh(V - E) - VOHE (2g)
Vh X V X E) =Vv@h - E) - VLB (2h)
vh - WhxE) =0 (21)

These identities can be proved by direct expansion.

The divergence theorem may be expressed as

9§§-ﬁda=fv-fdv (3)

where T 1is the normel unit vector to the element of area da. The
vector T 1is expressed mathematically as

'ﬁ'=1v1+,jv2+kv3
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where V;, YV, and v3 are the direction cosines of the outward drawn
normal to the element of area da.

A theorem more general than the dlvergence theorem is given by
(this theorem follows from the results of reference 8, p. 87)

9§ (Cllex + CEVQEy + 0303Ez)da =f(cl g%ﬁ + Cy ?éy_ + C3 gEE-Z-)dv

where the subscripts x, y, and 2z refer to components of the vec-

tor ¥, and C;, Cp, and C3 are arbitrary constants. Note that if

C; =Cy = C3 = 1 +the preceding equation reduces to equation (3). If

Ul
1
™
N

Cy

02 = C3 =1

the preceding equation reduces to

55 (—Belex + szy + v3Ez)da = f (-62 gExx + iy + Ziz)dv

ﬁi‘:‘-ﬁhda=fv:h-ﬁdv; o (h)

where
Eh = -iBZVl + JV2 + kV3

If the divergence theorem as expressed by equation (3) is applied
to a volume throughout which

v-E=0

then the surface integrasl over the bounding surface is

Szgi-ﬁda=o
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provided that no surfaces exist inside the volume of integration across
which the normal component of E 1s discontinuocus. Similarly, if
equation (4) is applied to a volume throughout which

Vh - E=0

then the surface integral over the bounding surface is

fé\E . ﬁh da =0

provided that there are no surfaces inside the volume of integration
across which E : T, is discontinuous.. It is interesting to note,
however, that surfaces exist inside the volume of integration across
which E - ® can be discontinuous while at the same time E - By
remains continuous. It follows that for such a surface T and Ty,

must satisfy the relation

T-%, =0 (5)
Let Q(x,y,z) = O be the equation of such a surface.
Then,
T = L vQ
2 2 2
Vot + o7 + o
and
1 Vhe

"h =\/Qx2 . de . Qze

where the subscripts indicate differentation. Substituting the
preceding expressions for T and 0, dinto equation (5) yields

S @ @ o @

Any solution of equation (6) set equal to zero is the equation_of a
surface across which V¥V - E may be discontinuous while Vh * E remains

continuous. The fact that the Mach cone from any arbitrary point satis-
fies equation (6) can be easily verified. The equation of the envelope
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of the Mach cones from an arbitrary line also satisfies equation (6)
(reference 9, p. 106).

Finite Part of Integrels Which Arise
in Steady Supersonic Flow

In the following sections use is made of the concept of the finite
part of an infinite integral. This concept was introduced by Hadamard
(reference 4) and has been used by a number of other investigators.

The finite part is, however, sometimes confusing. This section was
therefore included in an attempt to glve a realistic plcture of the
finite-part concept.and also to present the first steps of the derivae-
tion of the scalar and vector potentials.

The concept of the finite part of double integrals as defined by
Hadamard and used in this paper 1s different from the concept of the
finite part of double integrals as defined in reference 10. The essen-
tial difference between these two definitions lies in the manner in
which the singular points along the Mach cone are treated.

In reference 3, page 183, a vector function 1s used in the deriva-

tion of the common scalar and vector potentials. The analogous vector
function based on equation (1) is

where

R = ka - 6)% -y - 12 - 8%(z - ¢)?

The hyperbolic divergence of vector W with respect to variables
£, m, and ¢ 1is glven by

W.W=£V2h¢=£(_32fg+§fg+ﬁ)
R R B§2 Bn2 8§2

The precedlng equation indicates that the hyperbolic divergence of the
vector W set equal to zero yields the partial-differential equation
of linearized supersonic flow. A mathematical derivation of W can be
obtained; however, for the purposes of this paper such a derivation is

not needed.
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The result of applying equation (4) to the vector W is

f(%v;zf-sév%) . Ty da=f%v2h¢ av (7)

When ¢ satisfies equation (1) throughout the volume of integration,
the right side of equation (7) is zero; thus,

f(%v;é-gﬂv%).ﬁhda=o (8)

when
v2h¢ =0

Equation (7) is applied to a volume (denoted by Vo) enclosed in
the forward Mach cone from the point (x,y,2). This volume is bounded
by the surface glven by R = R', where R' 1is a small constant, and an
arbitrary surface Sq enclosed in the forward Mach cone from the point
(x,y,z). A cross section of the region of integration is shown in fig-
ure 1. Note that this region is analogous to the region that is some-
times used in calculating the potential function satisfying Laplace's
equation (reference 3, pp. 151-153). For regions such as the one shown
in figure 1, equation (7) may be written as

L[T<1%v¢-¢v%) .ﬁhda+f81<%v¢-¢v§).ﬁhda=j;ol%veh¢dv

(9)
where T represents the area of integration when R = R'.

The integral over the area T may be reduced to

2
~/t; 1%(vszf . Ty + Ef’f)da | (10)

where r 1is given by

=\ - 9%+ 8y - )2 ¢ 8= - O (11)
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Since R' 1is a comstant, equation (10) can be written as

&/ <v¢ Ty + e (11)

Equation (9) can now be written as
L vg . & +52¢aa+ Log - gvd) . 5 s - L v2ng av
R\ R L ARV "FPYR) -t T R
1 Yo
(12)

If ¢ is required to satisfy the linesrized partial-differential
equation of steady supersonic flow, then

Vehg = 0
and equation (12) reduces to
1 - 8% ) 1 1) =
ﬁTTst‘nh.’-Tda-l-s §V¢-¢Vﬁ- .y da =0 (13)
1

If R' 18 made smaller and smaller the integrand of the integral over
the area T in equation (13) remains finite except on the small area
close to the point (x,y,z). In anticipation of taking the limit of
equation (13) as R' approaches zero, the small area close to the
point (x,y,z) is removed from the area T. The area T is divided
into two parts. One part is the area of T which 1s downstream of the
surface given by

where € 1s small but larger than R'. This area is denoted by T.
The remaining part of . T (denoted by T') is the .area of T which 1is
upstream of the surface

A cross section of the region of integration with T divided into T
and T' is shown in figure 2. Equation (13) can now be expressed as

e e e ———— e e
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= (w.ﬁhﬁgﬂ)a“ﬁi,fw (%v;ﬁ-gﬁv%—).'ﬁhda+

-}

fs(%-w-giv%).ﬁhda=o (14)

1
where R' is smaller than e.

Since ¢ is continuous and therefore its values over T are
approximately constant for small velues of ¢, the integral over the
area T can be written as

>
I%Tj;v¢.ihda+—¢—L'——B (;{.yz)fr %5 (15)

When the second integral of expression (15) is integrated, equation (1k4)
becomes

2
Ri'v/jr V8 . T da + 2160(x,3,2) _ pag(x,y,z) + %fT' <V¢ . Tp + P;g)da +

Rl
J;

If R' 4is made to approach zero, equation (16) applies even to the
limit where R' 1is zero.

(%Wf-{ﬁv%).ﬁhda:O (16)
1

The 1limit of equation (16) as R' approaches zero may be written
as

ll — onef(x,y,2) S ¢
lim —,fv¢. da + —LI7202 ._-2n¢(xyz)+—,f da +
R' —>0 R T Dh R 29 R ot r

fs (%vgzs - ¢v%) . &\, d;‘l -0 (17)

The integrands of the integrals over the areas T and T' are always
finite and it can be shown that their first derivatives with respect
to R' approach zero as R' approaches zero; therefore, the product

1
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of 1/R' and these integrals either approaches zero in at least the
order of R' or approaches infinity as R' approaches zero. Thus it
follows that the integrals over the areas T and T' have no finite
terms remaining after the limit (R' —> 0) has been taken. The sum of
the terms of equation (17) must be zero; thus the singularities
resulting from the integrals over the areas T and T' must cancel
the singularities which arise from the integral over the area 8.

From the preceding considerations 1t follows that one method of
evaluating the finite part of infinite integrals of the type appearing
in equation (17) is to evaluate the integral when R' is small but not
zero and neglect the terms multiplied by powers of l/R'. Other infinite
integrals sometlimes arise, however, for which the finite part cannot be
obtained by neglecting powers of l/R'. For example, if equation (17)
is differentiated with respect to one of the variables (x, y, or z)
an equation containing the velocity component is obtained. In some
cases, when the point (x,y,z) lies on the surface S; the infinite
terms are of the order (1n R')/R' and of the orders (1/R')®. In these
cases, the finite part of the infinite integrals can be obtained by
evaluating the integrals when R' 1is small and neglecting the terms
multiplied by powers of 1/R' and (1n R')/R'.

The process of removing the infinite parts of an integral, however,
bhas been derived by Hadamard (reference 4, book III, ch. I). Hadamard
used his methods of evaluating the finite part of integrals in finding
solutions to certain hyperbolic equations including the linearized equa-
tion of steady supersonic flow. Perhaps a fact worth noting is that
the integrals of equation (17) are double integrals and when the methods
given by Hadamard are used the methods given for multiple integrals
should be used. In the past, the singular points (points on the Mach
cone where the derivative of (x - )¢ - p2(y - )< - B2(z - t)2 with
respect to the varisble of integration is zero) have caused some con-
fusion; as Hadamard points out (reference 4, p. 147), these singular
points must be removed from the area of integration before the finite
part is taken. Particular attentlon should be given to paragraph 92
of reference 4 since the specisl type of integrals discussed therein
sometimes arises in dealing with plapar problems.

Robinson (reference 2) has shown that when using Hadamard's methods
the order of integration may be changed without affecting the finite
part and that it is permissible to differentiate under the integral
sign of a multiple integral without considering the variable limits
which lie along the boundary where the integrand is singular, provided
that only the finite part is taken. Both Hadamard and Robinson have
shown that in differentiating an improper integral which has an integrand
that has a one-half power singularity along variable limits the variable
limits may be neglected provided the finite part of the resulting
integral is taken.
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The term "finite part" is somewhat misleading since the finite
part of an integral can be infinite. In certain cases the integral
1s infinite even after the terms which approach infinity as R’
approaches zero have been neglected.

Scalar Potential

The preceding arguments show that the finite parts of equation (17)
can be equated to zero; thus,

-21f(x,y,2) + ff

51

(%vgi -4¢v%{-) . T, da =0

where the symbol £ before the integral depotes that only the finite
part is to be taken. The preceding equation may be solved for the value
of the potential at the point (x,y,z); the result of this operation is

given by
%wm—yj“(w §5) . B d (18)

It should be remembered that surfaces can exist inside the forward Mach
cone from the point (x,y,z) across which V¢ ¢V’ can be discon-

tinuous and across which ( Vg - ¢V = ) b0y remains continuous.

Equation (18) is an expression for the scalar potential at the
point (xX,y,z) in terms of the potential and its derivatives with respect
to T, on the surface S;. A more general expression for the scalar
potential than that given by equation (18) can be obtained. If within
the volume enclosed by the forward Mach cone from the point (x,¥,z) and
the surface Sj equation (1) is not satisfied and V2h operating
upon @ ylelds

Vrd(Em, ) = £(&,7,8) (19)

then equation (10) becomes

w L me B [ G owd) man [ LD

1 Yo

(20)
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Provided that f£(&,n,{) is always finite, the right side of equation (20)
is finite; furthermore, the right side of equation (20) remains finite

as R' approaches zero. If in equation (20) R' is made to approach
zero and only the finite parts of the lntegrals are retained, then the
resulting expression is

£
¢(x,y,Z)=§;L (%V¢‘¢V%>-Eh®-§l;£r f—(—gz%’—gldv (21)
1 1

where v) represents the volume vy when R' 1is equal to zero. Equa-
tion (21) is equation (58) of reference 4 where B2 has been set equal
to one. Note that the volume integral in equation (21) has the appear-
ance of the integral for the potential resulting from a volume distribu-
tlon of sources in an incompressible flow.

The assumption has been made that ¢ is continuous throughout the
volume vi. It is also assumed that no surfaces exist inside v
across which Bﬁ/anh is discontinuous. If equation (21) is applied to
a volume v., which has surfaces across which ¢ and/or the derivative
of ¢ 1n the direction of By 1is discontinuous, these surfaces of dis-
continuity can be removed from the volume of integration by allowing the
arbitrary surface $S7 to envelop them (see fig. 3). For volumes of
integration where the surfaces of discontinuity have been removed in
this manner, the scalar potential can be written as

1 £(&,q,6) 1ff\1 3 d 1
¢(X,Y,Z)—-§;h/;l——LR*’——dv+2—ﬁ SO ﬁA%_agfng_ﬁ)da_k

:

= J; o

1

(%v;é-gﬁv%).ﬁhda (22)
0

vhere Sp denotes the surface of discontinuity, and Np 1is the poten-
tial difference across the surface Spy. The notation B/Bnh' is used
to denote the operator

2 ) oD Cd
-8 vy Vo o f v3 4

For the cases where no surface of discontinulty exists inside the
volume v, and @ and V¥ are zero on the surface S, - 8, equa-

tion (22) reduces to
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Blx,y,2) = - | HEMal) g (23)
1
From equation (19)
V2h¢(x,y,z) = f(x:YJZ) (2k)

Note that equation (23) is a solution of the partial-differential
equation (24).

For most problems in linearized supersonic flow, f(g,n,g) is zero
and ¢ is zero upstream of the disturbing body. For such problems, the
surface 53 - 89 can be taken to be located upstream of the disturbing
body where @ and V@ are zero. In this case, equation (22) reduces
to

£ 3 d
B(x,5,2) = 5= L (%Aan—hrsﬁ-mW%)da (25)
0]

If the surface Sy 1is confined to the § = 0 plane, equation (25)
reduces to equation (10) of reference 6. In this reference the boundary
conditions for airfoils are discussed.
Components of Vector Field
Let F be a vector which is finite and integrable in a given

volume (denoted by A) and is zero outside the volume A. To each
point in the volume associate the vector

3(x,y,2) = L Fe:0) gy (26)
2

where v, denotes the part of the volume X\ enclosed in the forward
Mach cone from the point (x,y,z). s

From equations (24) and (26), it follows that each component of G
satisfies the relation
VPhe; (x,7,2) = -2nF (x,5,72) (27)

where the subscript 1 refers to any component of the vector field.
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Let V¥o(x,¥y,z) be a scalar and A(x,y,z) be a vector defined by
the equations

£
- -~ 1
enyy =Vh . G = f F(E,n,t) » vh g av (28)
Vo
and
_ _ T _ 1
2TA =V X G = F(&,n,¢t) XV gav (29)
V2

Equation (2h) indicates that

th(vxé'):V(Vh-E)-vehE (30)
Substituting the expressions for Vx G, Vh * G, and VPHG as given
by equations (27), (28), and (29), respectively, into equation (30) and
solving for F yields

F(x,y,2) = "Wo(x:}’:z) + Vh x A(x,y,2z) (31)

Since F is an arbitrary vector, equation (31) indicates that any
finite integrable vector field can be expressed in terms of the gradient
of a scalar and the hyperbolic curl of a vector. Equation (31) has the
appearance of the Helmholtz theorem (reference 3, p. 187); however,
since wb and A are found by integration only in the forward Mach
cone from the point (x,y,z), equation (31) hardly seems to be a state-
ment of the Helmholtz theorem as 1s commonly given. The result given
by equation (31) was obtailned by Robinson in reference 2.

Hyperbolic Vector Potential

Equation (31) indicates that the perturbation velocity vector can
be divided into two parts. One part is the gradlient of a scalar func-
tion, and the other 1s the hyperbolic curl of a vector function. The
vector function is analogous to the common vector potential (reference 3,
pp. 1Ok and 188); therefore, the vector function is referred to as the
hyperbolic vector potential. Thus, if q' 1is the total perturbation
velocity vector, then

Q' =Vf +Vh XA (32)
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where ¢ is the scalar potential and A is the hyperbolic vector
potential. The part of the velocity vector which is made up of the
hyperbolic curl of the vector potential is denoted by q.

By direct expansion it can be shown that

Vh-Q =Vh -Vf +Vh + (Vhx E) =V2hg +Vh - (Vh x &) = 0 (33)

Equation (33) indicates that the hyperbolic divergence of the perturba-
tion velocity vector is zero.

The vortlcity vector is given by
E=vxq (34)
Therefore, from equation (32),
H =V x (Vh x 8)
or
H = Vh(V - E) - V°HK

From equations (2d) and (29), the divergence of the hyperbolic
vector potential is zero; thus,

T = -V°HA (35)

Each component of equation (35) is a partial-differential equation
of the form of equation (24); thus, from equation (23) each component
of equation (35) has a solution given by

Hi(§ sM,58)
MGy =5 [ e (36)
V1

where the subscript 1 refers to any component of the vector H. Since
each component of A 1s given by equation (36), then

A(x,y,z) = §l§f ﬁ—_-g-s-’%-’-g—)- av (37)
v

The velocity vector resulting from the hyperbolic vector potential is
therefore given by
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£ —
E=Vh><K=-2—l,rf th%dv (38)
V1
or
2fpr (y -n)HE, - (z - ¢)E
B Y - )iy y
u = '2—:“ j;l R3 (398')
g2 f (z - £)Hy - (x - E)E,
= — 39b
V= 5% L/;l R3 v ( )
21r -t - -
ool [ PR, (39¢)
V1 R

where the subscripits refer to the components of the vector H. The
results given by equations (39) were obtained by Robinson in reference 2.
Vortex Sheets

If the vorticity is confined to a surface Sp, equation (37)
becomes

Royye) = gy [ Tl e (10)

2
Equation (40) is an expression for the hyperbolic vector potential

resulting from a surface of vorticity. Note that 1f the vorticity is
zero except on the surface So, then equation (35) reduces to

VehE = 0

By removing the surface So from the volume of integration each com-
ponent of A can be expressed as (from equation (25))

£ Y. \
1 1 i o 1
Ai(x,y,2) = 5% ‘—/Sv (‘ﬁ A an_h, - AA3 6?1;'— ﬁ)da (k1)
2
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where the subscript i refers to any component of the vector A,
Since each component of A 1is given by equation (41), then

£ -
— 1 1 aA = a 1
Note that if AA is zero, equation (L42) reduces to
A(x,¥,2) = = 1AB—BA aa (43)
IJd o o
So
By comparing equations (L40) and (43) it follows that, on the surface Sp,

- Aﬁi— (k)

Equation (44) indicates that across a surface of vorticity the
derivative of the hyperbolic vector potential in the dlrection of Eh'
is discontinuous. Thus, a lifting surface can be represented by a
continuous hyperbolic vector potential, while it can be shown that a
thickness effect can be represented by a discontinuous hyperbolic
vector potential. Wote the contrast with the scalar potential, which
uses a continuous potential to represent a thickness effect and a dis-
continuous potential to represent a 1lifting surface.

Further Development of Scalar Potential

The scalar potential can be expressed in forms other than those
already presented. Equation (8) is applied to the region bounded by
the arbitrary surface S, the forward Mach cone from the point (x,y,z),
and a second arbitrary surface 53 enclosed in the forward Mach cone
from the point (x,y,z) and upstream of the surface: Sj. A cross section
of such a region is shown in figure 4. The result of applying equa-
tion (8) to this region is

hif f
1 gg' o 1
= - 0 S5F R da
u/;l <R ny* ¢ np* R) ¥ '_/;3

provided that @' is a solution of equation (1). Note that the scalar
potential as given by equation (18) is independent of @' so that @'
is arbitrary so long as it satisfies equation (1) throughout the proper
volume.

(é ggh g Bn * R) da =0 (15)
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If for a finite distance upstream @' 1is zero and remains zero
for greater distances upstream, the surface S3 may be chosen in thils
region so that the integral over S3 in equation (45) is zero; thus,

i
1 1 ¢! - T A T
“% fsl (ﬁ nx -V mx ﬁ)da =0 (46)
Equations (18) and (46) can be combined to yield

f '
¢(X;Y:Z) = ‘2%{ L/; [%(gg}; - g%g\) - (¢ - ¢‘)¥ah¥ %:Ida (47)
1

The only restrictions placed on ¢' at this point are that it satisfy
equation (1) and be zero at a finite distance upstream. In many cases

1
@' may be chosen so that S%E - g§£¥ or ¢ - @' is zero; therefore,

in these cases, §§ can be expressed as

lx,3,2) = e—ifsl K& - AR (48)

or
1 T 0 1
B(x,y,2z) = e ‘jgl (¢ -¢ )ngrﬁ'd& (48b)

Equations (48) are quite useful; however, remember that they apply only
when @' can be chosen so that @' does not violate any of its
restrictions.

Note that equations (48) can be applied to problems where either ¢
or 8¢/6nh is given on the surface 8Sj. The application of these
equations to most nonplanar problems of either type, however, lead to
quite unwieldy integral equations.
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APPLICATIONS

Planar Problems

Meny problems in linearized supersonic flow deal with the surface
of discontinuity confined to a plane surface parallel to the x-axis.
In this section & general discussion of this type of problem is given.
The coordinstes are located so that the surface of discontinuity is in
the € =0 plane.

The scalar potential at an arbitrary point (x,y,z) gbove the
t =0 plene is (from equation (4T))

1 t . l‘ ' 2z
. ¢(X,}',Z) =-5% ‘/Sﬂl [(¢Z - ¢Z)§ + (¢ - ¢ )1-2_3](15 dn (49)

In this case, the surface Sq 1is the £ =0 plane.

1f ¢'(x,y,0) is chosen equal to @(x,y,0) the potential becomes
symmetric with respect to the § =0 plane. Thus, for z = a

¢(X:Y:a) g (x,y,-2)

and

¢z(x:y:a) _¢Zl (x,y,-a)

For this case, equation (49) reduces to

€,1,0
#(x,7,z) = -%_/; gz,—(—R—n—) dé an (50)
1

Equation (50) was given by Puckett in reference 5.

1f ¢'(x,y,0) is chosen equal to -§(x,y,0) the potential
becomes antisymmetric with respect to the t =0 plane. In this case,

"¢' (x,7,-2)

il

¢(X:Y:a)
and

¢Z(X:y:a) = ¢Z'(x’y’ -a)
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Thus, equation (L49) is reduced to

2 f
¢(X)Y,~Z) = "E}E \/; (§;3 0) at dn (51)
1

Note that for surface S; not confined to & plane parallel to the
x-axis, a choice of ¢'(x,y,z) at the surface 831 to equal ¢(x,y,z)
at .Sl does not cause _gg_(x,y,z) at the surface S; to equal

h

’ -
_%g£¥(x,y,z) at S1. Similarly, choosing @'(x,y,z) at the surface
Sy equal to -§(x,y,2) at S1 does not cause .%ng(x,y,z) at S7 to
n
equal .%g(x,y,z) at Sq. h

Provided the discontinuities are restricted to the { = O plane,

the scalar potential can also be expressed as follows (from equation (18)):

. f ' E,1,0 2
¢(X:Y:z) ='21_,[ ‘/;1 l:%—%_?‘ + ¢( ém,o)f—{?)—z-:ldﬁ dn (52)

for positive z. A comparison of equations (50) and (51) with equa-
tion (52) shows that the two terms of the integrand of equation (52).
contribute equal amounts to the potential at any point (x,y,z).

Since the terms of the integrand of equation (52) contribute equal
emounts to the potential at the point (x,y,z) as 2z approaches zero,
equation (52) must reduce to

¢z(§ﬂbo) ) (x,¥,0)
B(x,7,0) = -ne 277 ak A+ ¥
an ];l R 2

The preceding equation can also be obtained by examining the 1limit of
equation (52) as z sapproaches zero. If this procedure is done the
entire contribution of the second term of the integrand of equation (52)
is found to come from the point at the apex of the hyperbola formed by
the intersection of the Mach cone from the point (x,y,z) and the

E =0 plane. Note that 1f the integration is performed first with
respect to v then, when the methods of Hadumard are used, the point
at the apex of the hyperbola is a singular point and must be removed
from the area of integration by a process such as is given in refer-
ence b4, page 1k7.
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It ¢z is prescribed over the §{ = O plane, then the potential
is given uniquely by equation (50). Similarly, if the potential is
prescribed over the § = O plane, then the derivative of ¢ with
respect to 2z 1s determined over the 2z = 0 ©plane. This result fol-
lows from equation (51) since prescribing ¢ over the z = 0 plane
determines the potentials in the space above the 2z = O plane; there-
fore, .it also determines ¢z in the space above the 2z = 0 plane and
the limit of ¢z as 2z approaches zero from the positive direction.

The question that arises 1s whether ¢(x,y,z) is uniquely deter-
mined in the space above the z =0 plane if ¢ is prescribed over
certain areas of the z = 0 plane and ¢z is prescribed over the
remaining areas. If the assumption is made that ¢ i8 not determined
uniquely, then at least two potential functions satisfy the condition
that either ¢ or @, 1is prescribed in all regions on the 2z = O plane
and that @ 1is identically zero upstream of a given point. Let @;
end @, denote two potential functions which satisfy the same boundary
conditions, and let ¢0 denote the potential function formed by taking
the difference between ¢l end ¢2. Mathematically, the potential
function ¢0 is given by

¢O(x,y,z) = ¢l(x)y’z) - ¢2(X:Y:Z) (53)

Since ¢1 and ¢2 have the same values in certain regions in the

2z = 0 plane then ¢O 1s zero in these regions. Similarly, since
B¢L/Bz and O@,/dz have the seme values in the remaining regions of
the z =0 plane, then B¢o z 1is zero in these remaining regions.

The potential function ¢O 8 the boundary conditions that elther ¢O
or B¢Q/Bz is zero in all regions of the 2z = O plane and that ¢y is
identically zero upstream of a given point.

Consider the case where all the boundaries between the reglons are
supersonic. (The slope of the boundaries are such that the component
of the free stream perpendicular to the boundary is always supersonic.)
The potential function ¢O can be evaluated by use of equations (50)
and (51) for points in areas which are far enough upstream to be affected
only by a region where ¢ or @, is prescribed. For all points in
these areas @ 1s zero as indicated by equations (50) or (51). It
follows from equations (50) and (51) that ¢0 is also zero inside the
volume above the 2z = 0 plane, which is affected by these areas alone.
Thus, the volume where ¢0 is identically zero has been moved downstream.
The same argument can be repeated until the complete 2z = 0O plane has
been covered. The preceding arguments cannot be applied to cases where
the regions have subsonic boundarles; however, if it is permissible %o
distort the boundaries within a strip of infinitesimsal width these sub-
sonic edges can be converted into supersonic edges by replacing every
element of the subsonic boundaries by a broken line made up of supersonic
segments. Such a procedure is illustrated in figure 5. If the
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assumption is made that the subsonic boundaries may be distorted an
infinitesimal amount, then @y is zero over the z = 0 plane and also
in the space above the z = 0 plane. Equation (53) now reduces to

¢l(x’y’ z) = ¢2(XJY; z)

Since ¢l and ¢2 are any two potentisl .functions with the same values
in certaln regions of the z = 0 plane and with the same partial deriva-
tives with respect to 2z in the remaining regions, proof has been given
that only one potential function exists for which the potential is
prescribed over certain areas in the 2 = O plane and the partial
derivative with respect to 2z 1is prescribed over the remaining areas.

The boundary conditions for a zero-thickness lifting airfoill with
a- glven local angle-of-attack distribution are not of the type discussed
in the preceding paragraph. The conditions prescribed in the z = 0 plane
for this type of problem are: The potential function ¢ is identically
zero upstream of the airfoil; ¢(x,y,0) 18 zero except on the plan form
or in the wake; the partial derivative of the potential with respect
to z, @,, is given on the plan form; and @,(x,y,0) is zero in the
wake. The preceding boundary conditions do not specify that ¢ or ¢z
be prescribed in all regions on the 2z = 0 plane since not ¢ but ¢x
is given in the wake. For airfoils which have tralling edges which are
always supersonic, the requirement that ¢ be continuous in the stream
direction necessitates the potential in the wake to have the value of
the potential at the tralling edge of the airfoil. In this case, the
potential function is uniquely determined. For alrfoils which have sub-
sonic trailing edges the Kutta-Joukowskil condition 1s generally applied
to the tralling edges to determine ¢ uniquely. If the assumption is
made that the trailing edge can be distorted within a strip of infini-
tesimal width, then the requirement that ¢ be continuous in the stream
direction can be used to determine @ uniquely. If the assumption is
made that the subsonic trailing edge is distorted within the infini-
tesimal strip so that each segment of each line element of the trailing
edge is always supersonic (see fig. (6)), then ¢ 1is determined
uniquely. It is well-known that for airfoils with subsonic trailing
edges there are an infinite number of solutions which satisfy the
boundary conditions as stated at the beginning of this paragraph. The
preceding srguments however prove that there is but one solution for an
airfoil which has had its subsonic edges replaced by broken lines which
are always supersonic. Note that it has not been proved that the solu-
tion obtained by distorting the subsonic tralling edges corresponds to
the solution satisfying the Kutta-Joukowski condition, nor has it been
proved that the solution of the distorted trailing edge is independent
of the manner of distortion.
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Nonplanar Problems

The scalar potential resulting from the disturbances caused by a

nonplanar body can be found from equation (18) provided that both ¢
and Of/dn, are known on some surface S1. Unfortunately, ¢ and

/%nh_ are not geherally known on a surface which fills the requirement
of the surface Sj; therefore, equation (18) appears to have little
value in the calculation of the potential functions for nonplanar systems
in general. Certain properties of equation (18) are, however, worth
investigating.

The problem of evaluating the potential on the upper surfaces of a
long rectangulsr body is discussed. The assumption is made that the
body extends upstream to infinity and that the sides are parallel to the
free-stream direction except for small local variations which cause
small disturbances in the stream. TFigure 7(a) shows the forward Mach.cone
from a point on the upper surface of such a rectangular body. This fig-
ure also shows that there i1s a certain part of the surface of the rec-
tangular body in the forward Mach cone from the point (x,y,z) that can-
not possibly affect the potential at the point (x,y,z). If the surface
S1 in equation (18) is taken to be the surface of the rectangular body,
then equation (18) indicates that the values of @ and Bg/anh in the
reglion which cannot possibly affect the potential at the point (x,y,z)
should be used in evaluating the potential at the point (x,¥,2). The
only possible explanation of this consideration is that the integral
of ¢ and Bg/anh caused by the disturbances in the "blind spot" add
to zero. This consideration can be shown mathematically as follows.

Let WO denote the potential function resulting from the disturbances
inside the blind spot. From equation (46), it follows that

t ov
1770 o 1
J, (ﬁﬁﬁ'*@%ﬁﬁ)“ﬂ oY
1

Equation (54) indicates that the potential at the point (x,¥y,z) can be
evaluated by epplying equation (18) to the surface of the rectangular
body regerdless of the blind spots. The seme argument holds for other
bodies with blind spots.

The preceding arguments can be clarified by a simple illustration
of the affect of a blind spot. Consider an infinite rectangular body
such as shown in figure 7 where the only disturbances are caused by a
small deflected area with a constant slope ¢ with respect to the free-
stream direction located on the lower surface of the body. The leading
edge of the deflected area is chosen perpendicular to the free-stream
direction so that the potential in the region not affected by the
vertical sides is of a two-dimensional nature. Figure 7(b) illustrates
such a disturbing surface.
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The disturbance potential in the two-dimensional region is given
by

UV[% - % + B(z - zgil
B

¢(X,Z) =

where the lower surface of the body lies in the 2z = z, plane and the
leading edge of the deflected area 18 in the x = Xo plane.

A point on the upper surface which has only the two-dimensional
flow in its forward Mach cone is illustrated in figure 7(c). The dis-
turbance potential for this point is (from equation (18)) given by

1 fpley  B2OV(E - x)(z - zp)
#(x,v,2) = 5% f T+ =3 de dn

Upon performing the indicated integrations the preceding expression
becomes

oV|x - xo - Bz - z2i] dv[% - x - Blz - z2)]
¢(x,y,z) == 23 + EB

which reduces to

‘ ¢(X;y)z) =0

This result is a demonstration that the disturbances in blind spots do
not contribute to the potential.

The scalar potential resulting from the disturbance produced by a
nonplanar body can also be obtained by use of equations (47) and (148)
provided that the necessary values of @, O@/dn,, @', and 3¢'/dny
are known. In dealing with planar bodies ¢' could be chosen so that

g-¢=0

and thus equation (47) is reduced to equation (50). Similarly, @'
could also be chosen so that
of !
np © Onp¥

and thus equation (47) is reduced to equation (51). Unfortunately, for
nonplanar bodies, choosing @' equal to § does not make 6¢)/Bnh*
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known as was the case for planar problems and, similarly, choosing
dp!/dny* equal to -3P/dn, does not meke @' known. Certain problems
exist in which @' can be chosen so that @ can be written as a simple
integral.

Intersecting Planes

Many problems concerning nonplanar bodies deal with disturbances
produced by two intersecting planes parallel to the free-stream direc-
tion. In this section, metheds of solutions for two planes intersecting
at various angles are given. The component of velocity normal to the
surface is assumed to be known.

Perhaps the simplest case of two intersecting planes occurs when
the planes intersect at right angles. It is desired to find the poten-
tial in space resulting from the disturbances produced by the two inter-
secting planes. This type of problem could represent an isolated cruci-
form tail with supersonic leading edges undergoing various motions.
Problems of this type have been solved in references 1l and 12. The
axes are chosen so that y =0 &and 2z =0 are the disturbing planes
(see fig. 8). When y and 2z are positive, equation (18) becomes

JLL [ 1365000, (85 TP Be,0%,0)
B(x,y,2) -"Eﬂh/;3 3 —EL—E;TJ—-da - 5 h/;3 Q-LE§L__ da -

1 [ 13(8,0,00. 8%z TP g(k,q,0%)
ﬁf R Ag 3t da - 53 R3 da (55)
Sl|. Sy

The surface Sj; has been taken to be the disturbing surface; thus, S3

is the part of the ¥y = O plane (z positive) bounded by the z =0 " line
in the y = O plane and the forward Mach cone from the point (x,y,z).
Similarly, S) is the part of the z = O plane (y positive) bounded by

the y =0 1line in the z = O plane and the trace of the forward Mach
cone from the point (x,y,z) (see fig. 9).

+ +
The assumption is made that (£,0 ) and .égiéggzg_) are known

and that ¢(&,0%,0) and  @#(&,q,0¥) are unknown. fThe integrals con-
taining @¢(£,0%,f) and @(£,1,07) can be eliminated by several appli-
cations of equation (46). Equation (46) is applied to the volume on
the left-hend side of the y = O plane enclosed by the forward Mach
cone from the point (x,y,z), the y =0 plene, the z =0 plane, and
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an arbitrary surface upstream of the disturbance (see fig. 10). The
result of applying equation (46) to this volume is

_1 [ 138k 0", 8% b/‘ '(e o+ ) 4 .

o J, R 3t
85 .

1 1 3d'(¢,0" 8%y I/ gr(t,07,8) ‘
.Q_ﬁf%ﬁ_ié_%( 0 >da+27./33 2322 da - 0 (56)

The surface S7 has been taken to be the y = O plane (z positive) and
the z = 0 plane (y negative); thus, S is the part of the

z = O plane in the forward Mach cone. from the point (x,y,z) (see fig. 10).

Adding equations (55) and (56) yields

B(x,¥,2) =~ [?éiéggiig) égliéﬁQ:L-l da -

o@(E,n,0")

B2y 1 ¥ RSN 1 3t
é-ﬂ—"/; 5@(&,0,@)-¢(§,0,_)da-2—ﬂ"/; —T_da"

3 4

. dg1(E,n,0F
if (¢ 0*>da-if 98 g -
21 Sh R3 21 S5 R
2 F
Bz '(g,0%,¢)
o1 .jF 3 da (57)
85 R

The potential function ¢'(§,n,§) is chosen so that

¢'(§;‘a;§) = ¢(§:a;§)
where a 1is positive. 1In this case,

og(&,07,8)  dg(E,0%,8)
on T o
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and equation (57) reduces to
+ +
gxy,2) =-% [ §BETa & [ 30N
33 S)_l_

EivﬁﬂmﬁQ@_LfJﬁWEOﬁ
o7 Jg, 3 g K

2x ot
R 5
Bezk/h ¢'(§Ln10+) da (
58)
2% g R3

5

Since @$'(E,m,t) is related to @(&,n,t) the only unknown in the
preceding equetion is @(&,n,07). The region of integration 55

becomes the part of the z = O plene (z negative) in the forward Mach
cone from the point (x,y,z) obtained by reflecting the disturbing surface
in the z = O plane (z positive) through the z =0 plane (see

fig. 10).

The problem being considered is one in which the normal derivatives
of the potential function are known on two planes parallel to the x-axis
and are intersecting at right angles. The point (x,y,z) has been
restricted to positive values of y and z. For the present, consilder
the problem of finding the potential above the z = O plane when the
derivative of the potential function with respect to 2z 1s known on
the 2z = O plane, the derivative of the potential function with respect
to y is discontinuous across the Yy = 0 plane, and the potential is
zero a finite distance upstream of a given point. From equation (22),
the potential for this problem is given by

__ L [ 1, 096(¢,0,0) 1]‘1a(amw)
¢(X;y,Z) =-5% SO R A—Td& - 5% Sl R ag da -
o f +
Bz (£,1,07)
ox L/;l 23 da (59)

where Sg 1is the part of the y = O plane sbove the z = 0 1line
inside the forward Mach cone from the point (x,y,z), and S; is the
part of the z =0 plane inside the forward Mach cone from the

point (x,y,z). For positive values of y and z equation (59) reduces
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to equation (58) if @'(&,n,0") is assumed to be the true value

of ¢(&,n,0Y) when 1 1is negative. Since in the original problem
@(&,n,) was not defined when 1 was negative, nothing is violated if
it is now defined as being ¢‘(§,n,§) in the region where 17 18 nega-
tive and € 1is positive. The problem in which the normal derivative
of the potential function is known on two planes parallel to the x-axis
and intersecting at right angles has, therefore, been changed to the
problem in which the derivative of the potential has a known discon-
tinuity.across the y = O plane (z positive) and the normal derivative
of the potential is known on the 2z = 0 plane. Note that the poten-
tial function still remsins undefined below the 2z = 0 plane.

Since the potential function is undefined below the z = 0 plane,
it can now be defined so that the resulting potential function is sym-
metric with respect to the z = 0 plane. Defining the potential below
the 2z = 0 plane so that

¢( E,n,8) = ¢( E,n,-a)

yields the desired symmetry. The result of applying equation (46) to
the region below the z = 0 plane inside the forward Mach cone from
the point (x,y,z) is

L[ 2200, @) g0 4 L [ L0,
27 Jg,, ) o Jg, 23 o SSR 3t

B2z T g(¢,n,0%) 1 [ 13g(,0%,t),
o7 \jg 23 da + ﬁ\/g R n da = 0 (60)

5
where Sg 1is the part of the y = O plane (z negative) inside the
forward Mach cone from the point (X,y,z). In applying equation (46) to
the region below the 2z = 0 plane, the surface Sj; had to be folded
over the part of the y = O plane (z negative) across which 3/dn
was discontinuous in order to be able to apply equation (46) to this
region. Equations (58) and (60) can be combined to yield

#(x,¥,2) = -= /‘ 1 3¢(§,O+,C)da _ %\jg %'BQ(EEQ’O+)da )
i I

6

b1s R
kS3
if 1 3g(,n,01) _;f 1 38(£,0%,8)4, (61)
" Ss 8 o " S¢ . on
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Equation (61) contains only integrals of known expressions, and it
is, therefore, the solution to the problem of two planes intersecting
at right angles parallel to the x-axis where the normal derivative of
the potential function is kmown on both planes. Figure 11 shows the
cross section of the distribution of velocity normal to the surfaces
for a problem as represented by equation (55) and its solution as gilven

+
by equation (61). Note that o (géz’o ) (n mnegative) in S5 is the
reflection of 9 (géz’o+) in 8y (n positive) across the n = O plane

+ -
and that o (géo 19) in 8¢ (¢ negative) is the reflection of
T
+
op(¢,0%,8) in S5 (t positive) across the §{ =0 plane. This condi-

tion suggests that the result given by equation (61) could also be
obtained by utilizing the concept of reflecting surfaces.

The mathematical derivation required for finding solutions to
problems consisting of two planes parallel to the x-axis intersecting
at various angles can be reduced by making use of the concept of the
reflecting surfaces. For this reason, the result given by equation (61)
is obtained by use of reflecting surfaces. The potential function can
be separated into two parts, ¢1 and ¢2, satisfying the following
boundary conditions on the disturbing surfaces:

3¢1(£,M,07)  ag(t,q,0™)
e —9——55———

3¢, (&,0%,8) 6
T -
3¢2(§,ﬂ:0+) =0
S -
3Fo(£,07,8) _ ag(t,0t,¢)
3 on

A cross section of these boundary conditions is shown in figure 12.
Only the potentisl function ¢l is treated in detail since the boundary
conditions for ¢1 and ¢2 are of the same type. The normal deriva-
tive of @ is zero on the 1 = O plane; thus, the 7 = O plane cen
be considered as a reflecting plane. The potentlal function ¢1 is,

+
therefore, the potential resulting from a distribution of 0 (Eén,o )

which is symmetric with respect to the 7 = O 1line and has the value
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a¢l(§)ﬂ10+)

of '—_‘?ﬁf'__" when 1 is positive. Figure 13 illustrates such a

distribution. The problem of finding ¢1 has been reduced to a planar
problem which can be solved by use of equation (50).

Equation (50) was obtained by defining the potential below the
Zz = 0 plane so that the total potential function was symmetric with
respect to the 2z = 0 plane., This result caused the derivative of the -
potential function with respect to 2z +to be antisymmetric with respect
to the z = 0 plane. Figure 14 illustrates the distribution of the
normal derivative of the function across the 2z = O plane. The problem
of evaluating the potential function ¢l has been. reduced to a planar
problem. Similarly, the problem of evaluating the potential function ¢2
can be reduced to a planar problem. Figure 15 illustrates such a pro-
cedure. The original potential function is the sum of ¢l and ¢2.
Equation (6l) follows from the preceding results for @, and @,. The
sddition of @ and @, is illustrated by figure 16.

The concept of reflecting surfaces 1s now utilized to find the
potential resulting from two disturbing surfaces parallel to the x-axis
and intersecting at an angle of 450. The axis 1s chosen so that the
x-axis lies along the intersection of the disturbing surfaces and one
of the disturbing surfaces lies in the 2z = 0 plane (see fig. 17).

The potential function ¢ is divided into two parts, ¢l and ¢2. The
boundary conditions on ¢l and ¢2 are similar to the corresponding
potential functions used for the disturbing surfaces intersecting at 90°.
Figure 18 illustrates the boundary conditions for @#; and @. The
surfaces on which the normal derivative of @ 1s zero can be con-
sidered as a reflecting surface. This consideration leads to the same
distribution of the normal derivative of ¢1 on the n =0 plane as
is given on the &§ =0 plane. Figure 19 illustrates such a distribu-
tion. The problem of finding ¢1 for two disturbing surfaces inter-
secting at h5° has been reduced to a problem of two surfaces inter-
secting at 90°. The solution of @7 can be obtained from equation (61).
Figure 20 shows the surfaces across which the normal derivative of ¢l
is discontinuous. Since ¢; and @, have the same type of boundary
conditions, then @» has a solution as illustrated in figure 21. The
original potential function ¢ is the sum of @; and @,; therefore,
can be found by considering surfaces of discontinuity as illustrated
in figure 22. The potential function ¢ can be evaluated by use of
equation (22), because no surfaces across which @ is discontinuous
exist and the values of A Of/dnp are known across all surfaces of
discontinuity. ‘ :

Another simple case of two disturbing surfaces parallel to the
x-axis occurs when the surfaces intersect at an angle of 60°. The
potential function ¢ is .divided into two parts, ¢l and ¢2. The .
boundary conditions on ¢l and ¢2 are similar to the corresponding

/
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functions used previously. Figure 23 shows a cross section of these
boundary conditions. By use of a reflecting surface, the function ¢l
can be represented by the boundary conditions as shown in figure 2k.

The function @7 is undefined for 240° of the total angle around the
x-axis. The function @] is defined as shown in figure 25. Since no
surfaces exist across which ¢l is discontinuous, the function ¢l

can be evaluated by using equation (22). Similaerly, ¢2 can be defined
as shown in figure 26. The sum of ¢1 and ¢2 is illustrated by fig-
ure 27. The potential function ¢ can be found by using equation (22).

In the preceding paragraphs, methods have been found for deter-
mining the potential resulting from two plane disturbing surfaces
parallel to the stream direction intersecting at certain angles. The
same method can be used to find methods for determining the potential
resulting from two plane disturbing surfaces intersecting at various
other angles.

ROLLING TATIS WITH MULTIPLE RECTANGULAR FINS

The methods derived in the preceding section are used to find the
surface veloclty potential, the pressure distribution, and the damping
in roll of rolling tails consisting of'four, six, and eight rectangular
fins. For comparison, these same quantities are also presented for the
plenar tail configurations consisting of one and two rectangular fins.

An illustration of the tails treated is shown in figure 28. The analysis
is limited to tall configurations having surfaces of vanishingly small
thickness and of zero camber. The investigation is also limited to the
range of Mach numbers for which the region of interference between the
adjacent fins does not affect the fin tips.

Tail Consisting of One Fin

The pressure distribution and the velocity potential on the surface
of rolling tails made up of one and two rectangular fins can be obtained
from the results of reference 13. The pressure and potential for the
tall consisting of only one fin can be found by transforming the axis
of roll of the tail consisting of two rectangular fins.

The tail consisting of one fin is divided into regions as shown in
figure 29(a). The velocity potential on the surface facing the negative
y-direction’ls given by:
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For region I, ) 7
TR PR LD I o e

For region II,

DPX2Z

B(x,z) = =5 (62b)

For region III,

B(x,z) = 2p T si ’l\/B_Z = + z — - z] (62c)

For region IV (note that the potential in region IV is the potential in

region I plus the potential in region IIT minus the potential in
region II),

b
@(x,z) = Q?PBE sin'l@+ % gin~1 E-(E;—Z-+%(%+ z) Z % - z) -
G EIE e

The pressure-difference coefficient is given by:

Esin‘l\fﬁ(b \/—- - z - g + g) (63a)

_ lpz
Ay = o (63Db)

For region I,

For region II,

T e e A e o S = e T T T TR T b A o . g - i o, et ot i< e e A g e
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For region IIT,

Lp = %E gin~t \f%z— + \’Z(g - z):l (63c)
For regiomn IV,

ACP = %Esin’l\’g(—%—;—z-— + z sin’]'\/—-B-xz+
FE-- B398 oo

Tail Coneisting of Two Fins .

The tail consisting of two fins (fig. 29(b)) has the same potential
" and pressure distribution as a rectangular rolling wing and can, there-
fore, be obtained from the results of reference 13. For each tall con-
sisting of two fins divided into regions as shown in figure 29(b) the
pressure and potential in regions I and II are the seme as the pressure
and potentials in the corresponding regions for tails consisting of one
fin.

Tail Consisting of Four Fins

Fach fin of the taill consisting of four fins is divided into
regions as shown in figure 29(c). The pressure and potentisls in
regions I and II are the same as the pressure and potentials in the
corresponding regions for tails consisting of elther one or two fins.
The regions III and IV are.affected by the interaction between adjacent
fins. The potential in region IV is made up of & combination of the
potentials of regions I, II, and IIT. Thus, the only real problem is

the determination of the potential in region IIT.

The potential in region IIT is not affected by the tip and is,
therefore, the same potential as would be obtained if the fins were '
infinitely long. With the coordinate axes chosen as shown in figure 28(c)
the point (x,y,z) is restricted to values of ¥y whlich are negative
while the values of 2z are restricted to positive values. Note that
for a tail with finitely long fins, the potential at a point (x,y,z)
in the region of interaction is independent of the disturbances produced
at points located so that their projection on the yz-plane does' not lie
in the second quadrant. The generel method previously derived for
finding the potential resulting from two plaene surfaces intersecting at
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right angles can thus be used to find the potential in the part of the
region of interaction which is not affected by the tip.

The velocity component normsl to the fin in the 2 = 0 plane is
given by . . -

¢z (X)YJO+) = -by

and the velocity component normal to the fin in the y = O plane is
glven by

¢y(x,0’,z) = pz

Figure 30 illustrates this type of normal-velocity distribution, and
figure 31 illustrates a cross section of the surfaces of normal-velocity
discontinuity, which previous results show can be used to obtain the

potential in the part of the region of interaction which is not
affected by the tips.

Note that in flgure 32 the discontinuity in the normel velocity
across the z = 0 plane is the same type as the discontinuity in the
¥y =0 plane. Thus, if the potential resulting from this type of dis-
continuity (see fig. 32) is known, then the potential resulting from
any combination of discontinuities of this type can-be found. The
potential for this type of distribution is denoted by ¢O- By the use
of cylindrical coordinates, as shown in figure 32, the potential at the
point (x,0,0) can be expressed in terms of @y by,

#(x,0,0) = ¢O(x,p’,9) - ¢o(x,p,9 - g’) / (64)

7

Equation (64) follows from figures 31 and 32.

The potential function fo was evaluated by use of equation (50)
and is given by:

For 06 < ‘“é”

Fo(x,p,6) =-;§§ X\/xe - B%p2 + B%p2(1 - 2 cos29)ln’ Be ¥

2 22
2xBp cos 6 sin'1 Pp cos 6 -
) v;e - 6202 sin“g

X +\Jx= - B p
x cot 6 :
262p2 cos 6 sin @ tan~t (-*—EL'————> (65a)

A2 - p22

et e e o i 7 T — - e e 2w S ————
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For g__<__9 <,

Bo(x,0,0) =-—25 x‘f; - B2 + 822(1 - 2 cos®6)1n Be +
B . x + (22 - p2o2

Bp cos @ ) +

(\,L? - B2p? 51n%

x cot 6 ) (65b)

2[:'3202 sin 6 cos 6 tan'l
‘[;;2 B BEDE

From equetions (64) and (65), the potential function in the region
of interaction, which is not affected by the tips, is given by the

following equation for g— <86 L

2xBp cos @ sin‘l

Bp +

x + %2 B2p2

2xfp \Eos e sin‘l Bp cos 9 -
\/x2 - 82p2 sin26

Bp sin 6 - + ,
29 ,

-1
\/;2 - 32p2 cos
-1 x|ecot 8| tan-1 x|tan 6] (66)

Esze cos 6 8in 8f{tan” —///m— - tan T ———
‘A 2 _ 5292 WXE - sze

The potential in region III of the fin surface is a special case

(6 = E) of the preceding equation. Thus, the potential in region III

2
is given (in Cartesian coordinates) by

B(x,0,0) =-L506%2(1 - 2 cos®)1n
B

8in 6 sin

-1 Bz Bz (67)

@(x,0",2) = 202 (¢ sin-1 B2 _ gz 1n
B {‘"‘—'
* X + x2 - [32z2
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From equaetion (67) the pressure-difference coefficient is found
to be

ac, = 8~P§ sin-1 BZ (68)

X

As previously stated, the potential in region IV (see fig. 29) is
a combination of the potentials in regiomns I, II, and III. Assume that
the fins are infinitely long. In this case only two regions (II and III)
exist since regions I and IV are affected by the tip. The effect of the
tip can be taken into account by adding a potential which has zero
normal velocity on the fin and the negative of the pressure of the
infinite fin in the plane of the fin outboard of the tip. The value of
such a potential on the fin is given by the difference between the
potential of region I and the potential of region II. (This potential
is only the effect of the tip on a semi-infinite rolling wing). Thus,
the potential in region IV is the potential in region III plus the dif-
ference between the potential of region I and the potential of region II.
Mathematically, the potential in region IV is given by

'b .
/B!“ = z!
¢(X;O-,Z) = '—'[ -l BZ }—CBE- sin'l 2}[ -

v

I RPN CRRI R B

(69)

From equation (69) the pressure-difference coefficient is given by

Tail Consisting of Six Fins

The pressure and potentials on the surface of the tail consisting
of 8ix f£ins can be obtained in & manner similar to that used for the
tall consisting of four fins. The presgsure and potentials in regions I
and IT are the same as the pressure- and potentials in the corresponding
regions for tails consisting of one, two, or four fins. Regions IIT
and IV are affected by the interaction between adjacent fins. The
potential in region IV is made up of a combination of the potential in
regions I, IT, and IIT; therefore, the main problem, as for the case of
four fins, is the determination of the potential in region ITI.

e e o A~ a A — s
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The potential in region III is the same as the potential for a
tail consisting of six infinitely long fins. The induced velocities
normal to two of the planes of the fins are illustrated in figure 33.
For two plane surfaces parallel to the stream direction and inter-
secting at an angle of 600, the potential in region IIT can be obtained
by a distribution of discontinulties in velocity as illustrated in fig-
ure 34. Note that the potential in region III can be made up of a com-
bination of the potentials from a velocity discontinuity as shown in
figure 35. The potential from this type of discontinuity 1s denoted
by @o. By use of cylindrical coordinates as shown in figure 35, the
potential at the point (x,0,0) can be expressed in terms of @y by

b14

Blx,0,9) = Go(x:650 - F) - o(sps0 - ) < fo(ms0 + 5) (T

' Eqpation‘(?l) follows from figures 34 and 35.

The potential function @, was evaluated by use of equation (50)
and is given by the following equation for 0 <6 < =

fo(x,0,0) = -22S222(x _ gp sin 6) (12

From equations (71) and (72) the potential function in the reglon
of interaction, which is not affected by the tips, is given by the

b1 5%
following equation for é-;;e =%
po? [T 2
B(x,p,0) = -5—[\13(1 - 2 cog<@) + 2 cos 6 sin e:l (73)

The potential in region ITI of the fin surface is a speclal case
\ T ,
(6 = §) of equation (73). The potential in this region is given (in
Cartesian coordinates) by .

L
#(x,0-,2) - 28 (74

From equation (74) the pressure-difference coefficient in region III
is found to be zero.

The potential in region IV is a combination of the potentials in
regions I, IT, and ITT; this can.be shown in the same way as the poten-
tial in region IV of the tall consisting of four fins was shown to be a
combination of potentials from other regions. Specifically, the
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potential in region IV for the tall consisting of six fins is “the
potential in region ITI plus the difference between the potentials of
region I and of region II. Mathematically, the potential in region IV
is given by

b
2 Bls - 2
§(x,07,2) ?BE%,ETl 2.
1/2x

P YY/ CT A (75

From equation (75) the pressure-difference coefficient is given by

5+ %) (76)

Tall Consisting of Eight Fins

The pressure and potential on the surface of the tall consisting
of eight fins can be found by utilizing the potential functions
used in finding the pressure and potentials on the surface of the tail
consisting of four and six fins. The pressure and potentials in
regions I and IT are the same as the pressure and potentials for the

corresponding regions of the other tails. The potentials in regions IIT,

IV, V, and VI (see fig. 29(e)) are affected by the interaction between

adjacent fins. Since the potentials in regions V and VI are combinations

of the potentials in the remaining reglons, the main problem is to find
the potentials in regions IIT and IV.

The potentials in reglons III and IV are the same as the potential
for a tail of eight infinitely long fins. The induced velocity normal
to two of the planes of the fins is illustrated in figure 36. From the
results for two plane surfaces intersecting at an angle of 450, the
potentials in regions IITI and IV can be obtained by a distribution of
discontinuities in velocity as illustrated in figure 37. The potential
resulting from the distribution of discontinuities in veloclity as
illustrated in figure 37 can be obtained from a distribution of dis-
continuities as possessed by the potential function ¢O used in con-
nection with the four-fimned tail. The potential function ¢O used in
connection with the four-finned tail was evaluated only in the region
affected by the root sections of the fins. For the case of the eight-
finned teail, interaction occurs between adjacent fins 1n regions which
are not affected by the root sections of the fins. The potential func-
tion ¢O of the four-finned tail in the region not affected by the root
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section must be known. In this region, the potential functions ¢0
for the four- and six-finned tails are the same.

From figures 32 and 37 the potential function in the region of fin
interaction which is affected by the root sections of the fins is,

bl 3n
— <
for 5 ) S—E-,

b1 k14

B(x,p,0) = ~Po(x,0,6) + ¢0(x,p,6 - E) - ¢O(ic,p,9 - -2-) + ¢0(x,p,e + H)

(77)
where @, 1is given by equations (65).

The potential in the part of the region of interaction which is
affected by the root section is (from equations (65) anmd (77)),

t1d 3
for -2- ée é-h—,

-1 Bp cos 6 .
\® - %02 sin
Bp cos(e - -E)
2 _ a2,2 2fg . %
\A{ B<ps sin (6 h)

B(x,0,0) = -% _x cos 6 sin

X cos (9 - %)sin’l

X s8in 6 sin'l Bo sin 9 +

VXE - Bepe C0829

Bp cos (6 + -E)
X cos (9 + E)E;:Ln']' -

\/x2 - B2 sine(e +

£13

™
kel
0
oy
=]
@
Q
o
W
()
d-
a5}
tjI
!
o]
(0]
o
c’.
()
+
E
(
=
"

x2 _ 5292 x2 _ BEQEJ
7 7
X cot(e - )l xico 6 + )
B?p(l - 2 cos0)| tan~t L + tan~1 L
2 - 22 (2 _ g22
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The potential in region III is a special case (9 = g) of equa-

tion (78). Setting 6 =g in equation (78) yields (in Cartesian
coordinates)
#(x,07,2) = 2_ﬂg_z<x sin”t B_XZ_ - X\fé_sin—l Pz + Bz tan™t X
ox° - pez2 \&2 - B°z
(79)

From equation (79) the pressure-difference coefficient is found to
be given by

8pz n-L BZ Bz
Ap = v | - B ein™ ——— (80)
2x- - BTz
By inspection of figures (35) and (37) the potential function in
the region of fin interaction, which 1s not affected by the root sections

7
of the fins, is, for §< 6 < %1-,

B(x,p,0) = Bo(x,p,0) + & (x,p,e - E) ¢o(x,p,9 - —) ¢O<x,p,e - T)

(81)

vwhere ¢O is given by ‘equation (72). Substituting equation (72) into
equation (81) yields (remember that @g is zero upstream of the Mach

3
cone from the y-axis), for §‘<‘ 6= )

_ PoX o1 ., cos 6
B(x,0,6) = 22 [_(1 v.é.)sin 6 + =
2

2
pp~ cos 6 sin 6 - gg—(l -2 sin29) -

0; if x< Bolsin 6 - cos 6)

2
PP _(cos 6 + sin 6) 2 : -
B\r Bo Bo
Xx -=(8in 6 - cos 6); if x> ~=(sin 6 - cos 8)
V2 V2
P 0; if x< Bp 8in 6
B cos 6 (82)

X - Bp sin 8; if x >Bp sin 6
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The potential in region IV is a special case (9 = g) of equa-
tion (82). Setting 6 = g in equation (82) yields (in Cartesian
coordinates)

#(x,07,2) = B[ - y2)x + g2 (83)

From equation (83) the pressure-difference coefficient is found to
be given by

AC. = —=—(1 - \2) (84)

The potentiel in region V is the potential in region IV plus the
difference between the potential in region I and the potential in
region II; thus, from equations (62a), (62b), and (83), the potential
in region V is found to be given by

b
B(§ - 2)
-x_.z_ 'n-l

¢(x,0',z)’= % I;—Z(z - %‘2‘) + 5 sl =

OO 1 CREICEERE] (#)

From equation (85) the pressure-difference coefficient is found to
be glven by /

The potential in region VI is the potentiasl in region III plus the
difference between the potential in region I and the potential in
region II; thus, from equations (62a), (62b), and (79), the potential
in region VI is found to be given by

#(x,07,2) = apz | o cos~L BZ _ x\l2_sin‘l Pz __
18 X 2 _ poge
b
< -1 1 B(é‘ -2z

G---DE-)6 -3 o

w|®
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.

From equation (87), the pressure-difference coefficient in
region VI 1s found to be given by

AC I cos~l B2 4 o5 gin-l B2 _

p eV x \bxg _ Bgzg

z sin'l\’ﬁ.—‘g;—z)— + s/(—g- - z) (z - 12—) + %) (88)

Discussion of Results for Rolling Tails

Illustrative plots of the chordwise and spanwise pressure distribu-
tions across one fin for tails with varilous numbers of fins are shown

in figure 38. Figure 39 shows illustrative plots of the spanwise loadings

on one fin for tails made up of various numbers of fins.

The potential function ¢0 uged in finding the pressures and
potentials for the tails consisting of four, six, and eight fins could
be used in finding pressures and potentials for tails consisting of any
even number of fins provided that the region of interaction between
adjacent fins does not affect the tip. The restriction on the region
of interaction causes the range of validity to decrease as the number
of fins is increased. The range of validity could be extended, however,
by use of a pressure or potential cancellation method such as given in
references 14 and 15.

From the potential, the demping in roll per fin was calculated.
Table I presents the results of these calculations. Figure 40 presents
the variation of the demping in roll per fin with AB for talls made
up of various numbers of fins. For a given Mach number (B .constant),
figure 40 shows the variation of the damping with aspect ratio. Fig-
ure 41 presents the variation of the demping in roll per fin with Mach

number for tails consisting of verious numbers of fins with a fin aspect
ratio of 1.5.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., October 25, 1951
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TABIE I
DAMPING-IN-ROLL COEFFICIENT FER FIN
Number of BCy per fin Valid
fins b for
252 3g3
1 _ 1+ bap - 24ABS 4+ 32458 AB 21
oup3p3
- 242 3p3
» 1+ 8ap - 48A°B~ + 6la’p Ap > L
)-l-8A3B3 £2
I N I S _ 18p252 3a3
i 235 [9+192(1+8AB L8a=g +61LAB) A >1
L 2 1 22 3 3:] 2
6 - |- =+ —[1 + 8AB - L8A + 6UA AB > =
2383 [9\]'3 192( B B ) P2
IO R S _ 488252 3 3] 5
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Figure 1.- Cross section of the region of integration used in connection
with equation (9).
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Figure 2.- Cross section of the region of integration used in connection
with equation (1l).
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Figure 3.- A cross section of the region in the forward Mach cone from

the point (x,y,z) showing the surface S] enveloping a surface of
discontinuity S.
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Figure 4.- Cross section of the region of integration used in connection
with the potential function @!.
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(a) Subsonic element within ' (b) Broken line replacing
infinitesimal strip. line element.

Figure 5.- An illustration of a method of replacing a subsonic line ele-
ment with a broken line made up of supersonic segments.

Boundaries of
wifinifesmal strip

Subsonic  tratling
edge

(a) Wing with subsonic edge. (b) Line element at a break in a
subsonic trailing edge.

Distorted frarling
edge

~REA

(c) Possible distortion of a subsonic trailing edge at a break in a sub-
sonic trailing edge.

Figure 6.- Methods of distorting a subsonic trailing edge to determine the
potential function uniquely.
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7.
Intersection of the
forward Mach cone
with the rectangular
body
A
(a) The forward Mach cone from a point on the upper surface of a rectangular
body.

Figure 7.— Rectangular body parallel to free-stream direction,
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_/DEFLECTED AREA
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(b) Bottom view of rectangular body with deflected area on the lower
surface,

——FORWARD MACH GONE
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1
\__DEFLECTED AREA
- X INTERSEGTION OF THE FORWARD
MACH GONE WITH THE SIDE OF
THE BODY

(c) Side view of rectangular body and the forward Mach cone from the
point (x,y,2).

Figure 7.- Concluded. l.&
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Figure 8.- Two disturbing surfaces intersecting at right angles.
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Figure 9.- Regions of integration for equation (55).



http://www.abbottaerospace.com/technical-library

58

Reflection of the
disturbing surface
in the Z=0 planes
through the y=0 planes

NACA TN 2641

Disturbing
surface

(y=0 plane)

*Macﬁ cone
from the
point(X,Y,Z2)

:

Figure 10.- Regions of integration for equation (56). W%
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(a) Original problem (equation (55)).

2 2

(b) Solution to problem as given by equation (61).

Figure 11.- A cross section of the distribution of the velocity component
norm?l ?o the 2z = 0. and the y = 0 planes represented by equations (55)
and (61).
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Figure 12.- A cross section of the distribution of velocity normal to
the disturbing surfaces for the potential functions ¢, ¢l, and ¢2.
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Figure 13.- The reduction of @ to a planar problem.
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Figure 1l;.—~ The normal derivative of the potential function across the
z = 0 plane obtained by applying equation (50) to a planar problem,
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Figure 15.- An illustration of the reduction of ﬁg to a planmar problem.
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Disturbing surfaces

y

Velocity distribution normal to surface

A

Figure 17.- Position of coordinate axesofor disturbing surfaces
intersecting at L5°.

g=g+g g o
1 2 _ +

v y y M y

Figure 18.- A cross section of the velocity distribution on the disturbing
surfaces for the functions @] and @» for the disturbing surfaces
intersecting at L45°.
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Figure 19.- Reflection of the normal derivative of @] on the
¥y = 0 plane.

Tty
IR WEN R

L

Tl axsaikansanssaiiil
JJ_[EE.JLLT

TIYey
JAlill

Figure 20.- A cross section of the surfaces of discontinuity which can
be used to evaluate the potential function ¢1 for two ‘surfaces
intersecting at 45°.
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Figure 21,- A crosa section of the surfaces of discontinuity which can
be used to evaluate the potential function @, for two planes
intersecting at 45°.
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Figure 22.- The addition of @ and @, to obtain the potential func—
tion @ for two surfaces intersecting at 45°.
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Figure 23,~ A cross section of the boundary conditions of the functions ﬁl
and @ for two disturbing surfaces intersecting at 60°,

I§

Figure 2.~ The reflection of @ through one surface.
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Figure 25.- A method of defining ¢1 so as to eliminate discontinuities

in the potential function.
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Figure 26.- A method of defining ¢2 so as to eliminate discontinuities

in the potential function.
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Figure 27.— The addition of #; and fo.
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(A) ONE FIN. (B) TWO FINS.
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N[ y

3 &

(G) FOUR FINS. (D) SIX FINS.

&
e,

(E) EIGHT FINS.

Figure 28.- Types of tails treated.
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(c) Four fins.

(d) Six fins.

A

s Mach hnée from
fe—odjacent fin

7 Mach line from
root sectiron
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————— Mach /lnes

(e) Eight fins.

Figure 29.- Regions of similar disturbances for tails consisting of

rectangular fins.
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Figure 30.- A cross section of the
normal-velocity distribution on
two plane surfaces representing
the region of interaction for a
rolling tail with four fins.

4
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Figure 3l.- A cross section of the
velocity discontinuity distribu-
tion used to find the potential
in part of the region of inter-
action for a tail of four fins.

Figure 32.~ A cross section of the velocity discontinuity distribution
associated with the function ¢O for a tail with four fins.
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Figure 33.— 4 cross section of the Figure 3li.~ A cross section of the
velocity distribution normal to velocity discontimuity distribu-
. the planes of two fins of a tion used to find the potential
r9lling tail consisting of six in part of the region of inter-
fins. action for a tail of six fins.
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Figure 35.— A cross section of the velocity discontinuity distribution
associated with the function @y for a tail of six fins.
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Figure 36.- A cross section of the normal velocity induced on the planes
of two fins of a rolling tail consisting of eight fins.
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Figure 37.- A cross section of the velocity discontinuities which can be

used to obtain the potential in the region of interaction between
adjacent fins for a tail consisting of eight fins.
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Figure 38.- Chordwise and spanwise pressure distributions on a fin of
aspect ratio 1.5 at a ¥ach number of 2 for tails consisting of
rectangular fins,
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(b) Tail of two fins.

Figure 38.- Continued.
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Figure 38.~ Continued.
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Figure 39.- Spanwlse loading on a fin of aspect ratio 1.5 at a Mach number
of /2 for tails consisting of rectangular fins.
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Figure LO.- The damping in roll per fin for tails consisting of rectangular
fins,
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Figure L1.- An 1llustrative variation of Czp per fin with Mach number
for tails consisting of rectangular fins with a fin aspect ratio of 1.5.

ATlL

THOS BL VOVN


http://www.abbottaerospace.com/technical-library

