## UNCLASSIFIED

## Defense Technical Information Center Compilation Part Notice ADP010735

TITLE: Generic Wing, Pylon, and Moving Finned Store

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:
TITLE: Verification and Validation Data for Computational Unsteady Aerodynamics [Donnees de verification et de valadation pour I'aerodynamique instationnaire numerique]

To order the complete compilation report, use: ADA390566

The component part is provided here to allow users access to individually authored sections of proceedings, annals, symposia, ect. However, the component should be considered within the context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP010704 thru ADP010735

# 23. GENERIC WING, PYLON, AND MOVING FINNED STORE 

John H. Fox, PhD<br>Sverdrup Technology, Inc./AEDC Group<br>Arnold Engineering Development Center (AEDC)<br>Arnold AFB, TN 37389-6001, USA

## INTRODUCTION

## Background

A Computational Fluid Dynamics (CFD) Program of the U. S. Air Force Research Laboratory (AFRL), formerly (AFATL), funded and supported this wind tunnel test. The data support the ongoing validation efforts for CFD codes. A review at AEDC, completed Junc 12, 1996, determined the data were unrestricted.
The test met the objectives of providing pressure data from geometrically simple wing and store shapes under mutual interference conditions with the store both at its carriage position and at selected points along a realistic store separation trajectory. AFRL chose AEDC's 4-Foot Transonic Aerodynamic Wind Tunnel (4T) for the test. AEDC's Captive Trajectory Support (CTS) system, a moving store-support mechanism, simulated the motion of the store. Dr. L. Liejewski, AFRL, Eglin AFB, FL 32542, designed and executed the test. E. Rolland Heim, Sverdrup Technology, MS 6001, Arnold AFB TN, 37388, an AEDC project engineer, conducted the experiment.
A generic finned-store shape and a clipped delta wing with a 45 -degree leading edge sweep were the primary test articles. Store pressure data were acquired with a pressure model with orifices at radial locations in 36,10 -degree intervals around the store and at 8 span-wise locations from 10 to 80 percent span on both surfaces of each fin. Wing upper and lower surface orifices at locations inboard, outboard, and in the plane of the pylon also provided pressure data. The pylon had orifices as well. These data requirements in combination with store size constraints required testing at locations on both the left and right sides of the wing model. However, the resultant data are from a virtual, single store released from the pilot's right wing. Thus, the virtual configuration is asymmetric. A force model of the store provided force and moment data at carriage for comparison with the pressure model. The rig was positioned such that the store model at carriage nearly touched the left or right pylons, as required to initiate a trajectory, Fig 1, Appendix. The store fins were positioned at carriage in a rotated cruciform style and were numbered such that Fin 1 is positioned 45 degrees $c c w$ of the pylon looking upstream. Fin 2 is 90 degrees $c c w$ of Fin 1, and so on.

## Summary of Data

The data set contains wind tunnel data for a generic wing/pylon/finned store configuration. Although the store and wing represent no full-scale system, AEDC uses full-scale and subscale terminology and references. In this case, the subscale test article is $5 \%$ of an imaginary full-scale wing/pylon/store. All files contain ASCII numeric data that were written out with the FORTRAN FORMAT statement ( 6 (1PE12.5)). The dimensions in the data are full-scale feet. They are left unconverted, for it is a simple matter to perform the conversion to International Units while reading the files. The set contains the following files:

| M12BODY.DAT | Store body surface pressures, Mach $=1.2$, Alpha $=0.0$ |
| :---: | :---: |
| M12FIN.DAT | Store fin surface pressures, Mach $=1.2$, Alpha $=0.0$ |
| M12WING.DAT | Wing/pylon surface pressures, Mach=1.2, Alpha=0.0 |
| M12TRAJ.DAT | Entire trajectory data set (store position, forces, moments, velocities, and accelerations), Mach $=1.2$, Alpha $=0.0$ |
| M12CAPLOAD.DAT | Store captive loads data, Mach=1.2, Alpha $=0.0$ |
| M12FREESTR.DAT | Store free-stream data, Mach=1.2, Alpha=0.0 |
| M95BODY.DAT | Store body surface pressures, Mach $=0.95$, Alpha $=0.0$ |
| M95FIN.DAT | Store fin surface pressures, Mach $=0.95$, Alpha $=0.0$ |
| M95WING.DAT | Wing/pylon surface pressures, Mach $=0.95$, Alpha $=0.0$ |
| M95TRAJ.DAT | Entire trajectory data set (store position, forces, moments, velocities, and accelerations), Mach $=0.95$, Alpha $=0.0$ |
| M95CAPLOAD.DAT | Store captive loads data, Mach $=0.95$, Alpha $=0.0$ |
| M95FREESTR.DAT | Store free-stream data, Mach $=0.95$, Alpha $=0.0$ |

## Surface pressure files (General)

The surface pressure files (M12BODY.DAT, M12FIN.DAT, M12WING.DAT, M95BODY.DAT, M95FIN.DAT, and M95WING.DAT) each contain five sets of pressure data corresponding to the store in its carriage position and at four selected points along a trajectory. An ID number indexes the information within the file. The correlation of ID number with store position is as follows:

| ID | Mach | Store Position |
| ---: | :---: | :--- |
| 1 | .95 | Carriage |
| 7 | .95 | First point selected from the trajectory |
| 8 | .95 | Second point selected from the trajectory |
| 9 | .95 | Third point selected from the trajectory |
| 10 | .95 | Fourth point selected from the trajectory |
|  |  |  |
| 4 | 1.20 | Carriage |
| 11 | 1.20 | First point selected from the trajectory |
| 12 | 1.20 | Second point selected from the trajectory |
| 13 | 1.20 | Third point selected from the trajectory |
| 14 | 1.20 | Fourth point selected from the trajectory |

For each ID number, a Point Number, as described below, sequences the pressure data.

## Wing/Pylon Pressure Data (M12WING.DAT and M95WING.DAT)

Obtaining store body pressure data in 10 -degree increments around the body, and store fin pressure data on both sides of each fin, required a total of eight wind tunnel runs for a given $\mathbb{D}$ number. Four runs were required with the store mounted on the left side of the wing and four more were needed with the store mounted on the right side of the wing. To position the body and fin taps at the appropriate locations, the store had to be rotated 90 degrees after cach run. Data for the wing/pylon are ordered from Point Number 1 through Point Number 4 for each ID number, corresponding to the four runs made with the store mounted on the instrumented, or right, side of the wing.

## Store Body Pressure Data (M12BODY.DAT and M95BODY.DAT)

For the store body, pressure data were collected in 10-degree increments around the store, beginning at an angular location of 5 degrees and ending at 355 degrees. The pylon is the roll reference or zero degree line. Therefore, for each ID number the data are ordered from Point Number 1 (corresponding to measurements at 5 degrees) through Point Number 36 (corresponding to measurements at 355 degrees). The angular position of any store body pressure measurement is denoted by the parameter PHIR.

## Store Fin Pressure Data (M12FIN.DAT and M95FIN.DAT)

Similarly, the fin surface pressures are ordered from Point Number 1 through Point Number 32 corresponding to the eight pressure measurements taken at the four fin orientations for a given ID number. Point Numbers 1 through 8,9 through 16, 17 through 24, and 25 through 32 corrcspond to fin orientations of $45,135,225$, and 315 degrees, respectively. Fin orientation is specified in the parameter PHIF.

## Trajectory data (M12TRAJ.DAT and M95TRAJ.DAT)

The files M12TRAJ.DAT and M95TRAJ.DAT contain the trajectory data for wind tunnel runs at Mach=1.2 and Mach=0.95, respectively. There is only one set of trajectory data at each Mach number so there is no D number indexing, as was the case with the pressure data. These files contain the store position and its forces, moments, velocities, and accelerations as a function of time throughout the trajectory. Data were recorded every .01 seconds. In these files, the Point Number corresponds to a specific time during the trajectory. The store pressure information in files M12BODY.DAT and M95BODY.DAT corresponds directly to five selected times during the trajectory. For the trajectory at Mach 0.95, the store pressures in M95WING.DAT, M95FIN.DAT, and M95BODY.DAT correspond to trajectory points denoted by Point Numbers 4, 16, 23, 31, and 38 in the M95TRAJ.DAT file. Similarly, for the trajectory at Mach 1.2, the store pressures in M12WING.DAT, M12FIN.DAT, and M12BODY.DAT correspond to trajectory points denoted by Point Numbers 4, 16, 22, 33, and 43 in the M12TRAJ.DAT file.

## At-carriage store force and moment data (M12CAPLOAD.DAT and M95CAPLOAD.DAT)

The files M12CAPLOAD.DAT and M95CAPLOAD.DAT contain the force and moment data from the force-model store in the carriage position at Mach numbers of 1.2 and 0.95 , respectively. These data are included to provide a point of comparison with the forces and moments measured on the pressure-instrumented store in the carriage position during the trajectory run.

## Free-stream store force and moment data (M12FREESTR.DAT and M95FREESTR.DAT)

The files M12FREESTR.DAT and M95FREESTR.DAT contain the force and moment data for the force-model store in the free stream. These data were collected to obtain the lateral and longitudinal characteristics of the store.

## LIST OF SYMBOLS AND DEFINITIONS

| ALPHA | Angle of attack of the wing model, deg |
| :--- | :--- |
| ALPHAS, ALPSRB | Angles of attack of the force and pressure models of the store, respectively, deg |
| BETA | Wing model angle of sideslip, deg |
| BETAS, BETSRB | Angles of sideslip of the force and pressure models of the store, respectively, deg |
| BL | Model Butt Line (spanwise location of an orifice row relative to the wing model centerline), cm. |
| C | Local chord length, cm. |
| CAT | Axial-force coefficient of the force model of the store, (axial force)/(Q)(S) |
| CBAR | Mean aerodynamic chord length, 21.59 cm. |
| CLL | Rolling-moment coefficient of the force model of the store (rolling moment)/(Q)(S)(d) |
| CLM | Pitching-moment coefficient of the force model of the store calculated about the store center of <br> gravity located 7.09 cm aft of the store nose (pitching moment)/(Q)(S)(d) |
| Pitching-moment coefficient of the pressure model of the store calculated about a point 45.03 |  |
| cms aft of the model nose |  |


| Re | Free-stream unit Reynolds Number, (10) ${ }^{-6} / \mathrm{ft}$ |
| :---: | :---: |
| RUN | Sequential indexing number for referencing on-line data |
| S | Store model cross-sectional area, $5.07 \mathrm{~cm}^{2}$ |
| S1 | Wing model planform arca, $1425.5 \mathrm{~cm}^{2}$ |
| T | Free-stream static temperature, deg R; Time, sec |
| TT | Total temperature, deg F |
| THETA | Pitch angle of the store: Angle between the store longitudinal axis and its projection in the flight axis horizontal plane, deg. |
| VX, VY, VZ | Velocity components of store cg in flight-axis system, as determined from the local wind velocity, ft/sec |
| X, Y, Z | Flight-axis system. Origin fixed in space. X is positive in direction of flight path, Y is positive to pilot's right, Z is positive downward. Not used in data presentation. |
| X | Model pressure orifice location measured from the store nose or the leading edge of the wing, pylon, or fin at the local chord, cm . |
| X/LW, X/LB, X/LF | X position non-dimensionalized by local chord length of Wing, Store Body, Store Fin, respectively. |
| XXX | Orifice Identification Number. |
| XP, YP, ZP | Pylon-axis system, full-scale ft. Origin is coincident with cg of store in carriage position. Used for description of store cg motion. |
| $\mathbf{X P}$ | Distance of the store cg from the pylon-axis system origin in the direction of the flight path. |
| YP | Distance of the store cg from the pylon-axis system origin parallel to $\mathrm{X}-\mathrm{Y}$ plane, positive to pilot's right. |
| ZP | Distance of the store cg from the pylon-axis system origin perpendicular to X-Y plane, positive downward. |

## FORMULARY

## 1 General Description of model

1.1 Designation
1.2 Type
1.3 Derivation
1.4 Relative motion control
1.5 References

Clipped generic delta wing with pylon and generic finned store positioned initially in its carriage position at pylon.

Full 3-D model of wing, pylon, and finned store.

Generic. For time-accurate CFD code validation purposes.

Store is attached to sting that is moved with computercontrolled motors. An online 6-DOF computer program solves equations of motion which gives next position of store using sting-balance readings of forces and moments as initial conditions for each step. Steps are usually 0.0002 seconds in pseudo time (falling-store real time).

2, Section 4 in Appendix

## 2 Model Geometry

2.1 Wing planform
2.2 Wing aspect ratio
2.3 Leading-edge sweep
2.4 Trailing-edge sweep
2.5 Taper ratio
2.6 Twist
.7 Root chord
Span of model
9 Area of planform
2.10 Location of reference of profiles and definition of profiles
2.11 Lofting procedure between reference sections
2.12 Form of wing-body, or wing-root junction
2.13 Form of wing tip
2.14 Wing centerbody
2.15 Pylon elevation view
2.16 Pylon profile shape
2.17 Pylon locations
2.18 Store diameter
2.19 Store fin leading-edge sweep
2.20 Store fin length
2.21 Store fin root chord
2.22 Form of store fins at body junctions
2.23 Control surface details
2.24 Store model shape
2.25 Full-scale store and ejector characteristics
2.25.1 Weight
2.25.2 Center of Gravity
2.25.3 Roll Inertia
2.25.4 Pitch Inertia
2.25.5 Yaw Inertia
2.25.6 Roll damping Coefficient
2.25.7 Pitch damping Coefficient
2.25.8 Yaw Damping Coefficient
2.25.9 Forward Ejector Location
2.25.10 Forward Ejector Force
2.25.11 Aft Ejector Location

45-degree-leading-edge, clipped delta wing
1.73 ( 38.1 cm mid-wing chord; 66.04 cm full span)

45 degrees
0.0 degrees
0.133

None
38.1 cm
66.4 cm
$1425.8 \mathrm{~cm}^{2}$
NACA 64A010 airfoil section over entire span
Straight line
NACA 64A010 airfoil section; note references below

NACA 64A010 airfoil section
Ogive-cylinder: Tangent at trailing edge of wing. Nose 16.51 cm from wing leading edge. Maximum diameter of centerbody is 4.23 cm

Rectangular blade: 11.43 cm long by 3.05 cm vertical distance from wing reference plane (plane through LE and TE of wing).
Leading and trailing edge shapes are identical. Ogive tangent 1.47 cm back from leading and trailing edges. Blade is 0.75 cm thick.
Centerline is 16.51 cm from wing centerline, both left and right. Pylon LE positioned 1.95 cm back from wing LE.
2.54 cm

60 degrees
0.89 cm measured from maximum diameter of store
4.23 cm centerline projection

NACA 0008 airfoil section

## None

Store shape is tangent-ogive forebody and afterbody. Tangent at point 4.23 cm back from radii intersections on centerline. Store model is 2.54 cm in diameter. Afterbody is truncated 2.39 cm aft of aft tangent point.

### 8896.4 N

$\mathrm{XCG}=1.416 \mathrm{~m}$ aft of store nose
IXX $=27.12 \mathrm{~kg}-\mathrm{m}^{2}$
IYY $=488.1 \mathrm{~kg}-\mathrm{m}^{2}$
$\mathrm{ZZ}=488.1 \mathrm{~kg}-\mathrm{m}^{2}$
CLP $=-4.0 / \mathrm{rad}$
$C M Q=-40.0 / \mathrm{rad}$
$\mathrm{CNR}=-40.0 / \mathrm{rad}$
1.24 m aft of store nose
10675.7 N , constant (No forward-aft time differential)
1.75 m aft of store nose

| 2.25.12 Aft Ejector force | $\mathbf{4 2 7 0 2 . 9} \mathrm{N}$, constant (No forward-aft time differential) |
| :---: | :--- |
| 2.25.13 Ejector Stroke Length | 0.10 m |
| 2.26 Model references | 1,3 |

## 3 Wind Tunnel

3.1 Designation
3.2 Type of tunnel
3.3 Test section dimensions
3.4 Type of roof and floor
3.5 Type of side walls
3.6 Ventilation geometry
3.7 Thickness of side wall boundary layer
3.8 Thickness of boundary layers at roof and floor
3.9 Method of measuring velocity
3.10 Flow angularity
3.11 Uniformity of velocity over test section
3.12 Sources and levels of noise or turbulence in empty tunnel
3.13 Tunnel resonances
3.14 Additional remarks
3.15 References on tunnel

## 4 Model motion

4.1 General description
4.2 Reference coordinate and definition of motion
4.3 Range of amplitude
4.4 Range of frequency
4.5 Method of applying motion
4.6 Time-wise purity of motion
4.7 Natural frequencies and normal modes of model and support system
4.8 Actual mode of applied motion including any elastic deformation
4.9 Additional remarks
4.10 References on model motion

5 Test Conditions

```
5.1 Model planform area/tunnel area
0.098
```

5.2 Model span/tunnel width
5.3 Blockage
5.4 Position of model in tunnel
5.5 Range of Mach number

AEDC Aerodynamic 4T
Continuous, variable pressure
$1.22 \times 1.22 \times 3.8 \mathrm{~m}$
Porous, adjustable
Porous, adjustable
Variable, 0.5 to $10.0 \%$ open
Not recorded
Not recorded

Total pressure, static pressure, and temperature in test section: Mach no. $x$ sound speed
Less than 0.1 degree in test section
See Flow angularity
Compressor blade tips and edge tones from porous walls; level is typical; considered of secondary-tertiary importance
None recorded; high frequency and of no concern
Honcycomb addition has nearly eliminated free-stream turbulence

AEDC www home page

CTS generated trajectories of store from pylon
Bottom of pylon is reference point. Move-pause motion. Quasi-steady.
Not applicable
Not applicable
CTS rig
Not time accurate; yaw, pitch, roll then pause
Not applicable

Not applicable

Trajectory is calculated on-line from equations of motion using measured forces and moments as input. Induced velocity is accounted for in algorithm (to account for changed wind vector from effect of dynamic store motion: considered as a secondary effect)
2

### 0.54

Not given
Inverted; store on tunnel centerline
0.95 and 1.2
5.6 Range of tunnel total pressure
5.7 Range of tunnel total temperature
5.8 Range of model steady, or mean, incidence
5.9 Definition of model incidence
5.10 Position of transition, if free
5.11 Position and type of trip, if transition fixed
5.12 Flow instabilities during tests
5.13 Changes to mean shape of model due to steady aerodynamic load
5.14 Additional remarks
5.15 References describing tests

## 6 Measurements and Observations

6.1 Steady pressures for the mean conditions
6.2 Steady pressures for small changes from the mean conditions
6.3 Quasi-steady pressures
6.4 Unsteady pressures
6.5 Steady section forces for the mean conditions by integration of pressures
6.6 Steady section forces for small changes from the mean conditions by integration
6.7 Quasi-steady section forces by integration
6.8 Unsteady section forces by integration
6.9 Measurement of actual motion at points of model
6.10 Observation or measurement of boundary layer properties
6.11 Visualisation of surface flow
6.12 Visualisation of shock wave movements
6.13 Additional remarks
$5.75 \mathrm{~N} / \mathrm{m}^{2}$
300 K to 333 K
0.0

None
Unknown
No trips anywhere on test articles. Free transition.
None
Not measured; very stiff model; store/CTS rig position corrected for deflection by aerodynamic forces.
Concerns have been raised in subsequent tests in 4 T regarding transition. There is evidence that transition has occurred far aft on some store models.
3-5

Yes
No

Yes
Not applicable
Balances only

Balances only

Balances only
Not applicable
Yes, using CTS rig

None

None
None
Store loads from strain-gauge balances only

## 7 Instrumentation

### 7.1 Steady pressure

7.1.1 Position of orifices
7.1.2 Type of measuring system
7.2 Unsteady pressures
7.3 Model motion
7.3.1 Method of measuring motion

On wing, there are 7 spanwise locations with 6-11 chordwise orifices each, with orifices both on top and bottom of wing. See Fig. 3 in Section 4 in Appendix. Store has 28 orifices arranged longitudinally at five azimuthal positions chosen so that swapping store across CL and rotating store 90 degrees 3 times at both locations gives 36 equally spaced orifice rows. See Section 2 of Appendix. There are two rows of fin orifices on one side of each fin; each is positioned at a different span location. Opposite side is taken when store is moved across CL. Using the swapping across CL and rotations of store, 8 effective rows of taps are on each side of each fin. There are two rows of four orifices each on each side of the pylon (inboard and outboard).
Electronically Scanned Pressure (ESP) module
None
CTS rig
Touch point on pylon
reference coordinate
7.3.2 Method of determining ncxt
position of store
7.3.3 Accuracy of measured motions
7.4 Processing of unsteady measurements
7.4.1 Method of acquiring and processing measurements
7.4.2 Type of analysis
7.4.3 Unsteady pressure quantities obtained and accuracy achieved
7.4.4 Method of integration to obtain forces
7.5 Additional remarks
7.6 References on techniques

8 Data presentation
8.1 Test cases for which data could be made available
8.2 Test cases for which data are included in this document
8.3 Steady pressures
8.4 Quasi-steady or steady perturbation pressures
8.5 Unsteady pressures
8.6 Steady forces or moments
8.7 Quasi-steady or unsteady perturbation forces
8.8 Unsteady forces and moments
8.9 Other forms in which data could be made available
8.10 Reference giving other representations of data

## 9 Comments on data

9.1 Accuracy
9.1.1 Mach number
9.1.2 Steady incidence
9.1.3 Reduced frequency
9.1.4 Steady pressure coefficients
9.1.5 Steady pressure derivatives
9.1.6 Unsteady pressure coefficients
9.2 Sensitivity to small changes of parameter
9.3 Non-linearities
9.4 Influence of tunnel total pressure
9.5 Effects on data of uncertainty, or variation, in mode of model motion
9.6 Wall interference corrections
9.7 Other relevant tests on same model
9.8 Relevant tests on other models of nominally the same shapes

Error signal to motors. (Spatial mode of motion.)
Uncertainty of trajectory position is recorded as $\pm 0.15 \mathrm{~cm}$ for model-scale position and $\pm 0.15$ degs for attitude.

Orifices, tubes, and transducers. Strain gauges. On-line computer. Off-line data reduction through Engineering Unit conversion FORTRAN codes
Discretized equations of motion
None
None
None
3-5

Mach $=0.95$ and 1.2 at $\operatorname{Re}=7.87 \times 106 / \mathrm{m}$ simulated store drops to equivalent real time of approximately 0.35 secs
Same

See files on CD-ROM
No
No
See files on CD-ROM
No
No
None
3-5.
$\pm 0.01$ with 0.003 uncertainty
0.15 degs uncertainty

Not given
0.0069 uncertainty

None
None
Not recorded
Not recorded
Not recorded
Not recorded

CTS rig has no effect; subsequent CFD solutions confirm
None
None
9.9 Any remarks relevant to comparison
between experiment and theory
9.10 Additional remarks
9.11 References on discussion of data

References $3-5$ present comparisons with CFD solutions. All the CFD solutions use the Euler equations. All CFD solutions show excellent agreement with the store's cg displacement. Good agreement was shown comparing pitch, yaw, and roll angles. Pitch angles compared least well. See Section 5 of Appendix.

## None

3-5

## 10 Personal contact for further information

Dr. L. Liejewski, AFRL, Eglin AFB, FL 32542

## 11 List of references

1. Abbott, Ira H., and von Doenhoff, Albert E., "Theory of Wing Sections." Dover Publications, New York, New York, 1959.
2. Carman, J. B., Hill, D., Christopher, J. P., "Store Separation Testing Techniques at the AEDC. Vols. I-II," AEDC TR-79-1, Arnold Engineering Development Center, Arnold AFB, TN 37389, 1980.
3. Liejewski, L. and Suhs, N. E. "Chimera-Eagle Store Separation." AIAA-92-4569, August 1992.
4. Jordan, J. K., Suhs, N. E., Thoms, R. E., Tramel, R. W., Fox, J. H., and Erickson, J. C. Jr., "Computational Time Accurate Body Movement: Methodology, Validation, and Application." AEDC-TR-94-15, October 1995.
5. Nichols, R. H., "Applications of a Highly Efficient Numerical Method for Overset-Mesh Moving Body Problems." AIAA-97-2255.

## APPENDIX

1 Test Points

| Mach Number | Equivalent Real Time of <br> Trajectory | Data Recorded |
| :---: | :---: | :---: |
| 0.95 | 0.01 second increments <br> through complete trajectory | Position, Forces, Moments, Velocities, and Accelerations |
| 1.20 | 0.01 second increments <br> through complete trajectory | Position, Forces, Moments, Velocities, and Accelerations |
| Mach Number | Position Points in |  |
|  | Trajectory | Additional Data Recorded |
| 0.95 | 4 | Wing, Store, and Pylon Pressures |
|  | 16 | Wing, Store, and Pylon Pressures |
|  | 23 | Wing, Store, and Pylon Pressures |
|  | 31 | Wing, Store, and Pylon Pressures |
|  | 38 | Wing, Store, and Pylon Pressures |
| 1.20 | 4 | Wing, Store, and Pylon Pressures |
|  | 16 | Wing, Store, and Pylon Pressures |
|  | 22 | Wing, Store, and Pylon Pressures |
|  | 33 | Wing, Store, and Pylon Pressures |
|  | 43 | Wing, Store, and Pylon Pressures |

Table 1 Test Points

## 2 Identification of Orifices

| Span Position | 21.1 cm |  | 19.5 cm |  | 18.0 cm |  | 16.5 cm |  | 15.0 cm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chord LW | 17.0 cm |  | 18.5 cm |  | 20.1 cm |  | 21.6 cm |  | 23.1 cm |
| Orifice Number Bottom-Top | $\mathbf{X} / \mathbf{L W}$ | Orifice <br> Number <br> Bottom-Top | X/LW |
| 102-302 | 0.1194 | 108-308 | 0.1096 | 115-315 | 0.1013 | 123-323 | 0.0941* | 202-332 | 0.0879 |
| 103-303 | 0.2388 | 109-309 | 0.2192 | 116-316 | 0.2025 | xxx-324 | [0.1882] | 203-333 | 0.1758 |
| 104-304 | 0.3582 | 110-310 | 0.3288 | 117-317 | 0.3038 | xxx-325 | [0.2824] | 204-334 | 0.2637 |
| 105-305 | 0.4776 | 111-311 | 0.4384 | 118-318 | 0.4051 | xxx-326 | [0.3765] | 205-335 | 0.3517 |
| 106-306 | 0.5970 | 112-312 | 0.5480 | 119.319 | 0.5063 | xxx-327 | [0.4706] | 206-336 | 0.4396 |
| 107-307 | 0.7164 | 113-313 | 0.6575 | 120-320 | 0.6076 | 140-328 | $0.5647 *$ | 207-337 | 0.5275 |
|  |  | 114-314 | 0.7671 | 121-321 | 0.7089 | 141-329 | 0.6588 | 208-338 | 0.6154 |
|  |  |  |  | 122-322 | 0.8101 | 142-330 | 0.7529 | 209-339 | 0.7033 |
|  |  |  |  |  |  | 143-331 | 0.8471 | 210-340 | 0.7912 |

Table 2 Wing Orifice Positions

| Span <br> Position | 13.5 cm | 11.9 cm |  | 3.8 cm |  | $\mathbf{- 3 . 8} \mathbf{c m}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chord LW | 24.6 cm |  | 26.2 cm |  | 34.3 cm |  |  |
|  |  |  |  |  |  | $\mathbf{3 4 . 3} \mathbf{c m}$ |  |
| Orifice <br> Number <br> Bottom-Top | X/LW | Orifice <br> Number <br> Bottom-Top | $\mathbf{X / L W}$ | Orifice <br> Number <br> Bottom-Top | $\mathbf{X / L W}$ | Orifice <br> Number <br> Bottom-Top | X/LW |
| $211-402$ | 0.0825 | $221-412$ | 0.0777 | 232 | $(0.2259)$ | 239 | $(0.2259)$ |
| $221-403$ | 0.1650 | $222-413$ | 0.1553 | 233 | $(0.3000)$ | 240 | $(0.3000)$ |
| $213-404$ | 0.2474 | $223-414$ | 0.2330 | 234 | $(0.3741)$ | 241 | $(0.3741)$ |
| $214-405$ | 0.3299 | $224-415$ | 0.3107 | 235 | $(0.4482)$ | 242 | $(0.4482)$ |
| $215-406$ | 0.4124 | $225-416$ | 0.3884 | 236 | $(0.5222)$ | 243 | $(0.5222)$ |
| $216-407$ | 0.4949 | $226-417$ | 0.4660 | 237 | $(0.5963)$ | 244 | $(0.5963)$ |
| $217-408$ | 0.5773 | $227-418$ | 0.5437 | 238 | $(0.6704)$ | 245 | $(0.6704)$ |
| $218-409$ | 0.6598 | $228-419$ | 0.6214 |  |  |  |  |
| $219-410$ | 0.7423 | $229-420$ | 0.6990 |  |  |  |  |
| $220-411$ | 0.8247 | $230-421$ | 0.7767 |  |  |  |  |
|  |  | $231-422$ | 0.8544 |  |  |  |  |

* Orifices partially covered by pylon on bottom surface
[] Orifices unavailable on bottom surface
() Orifices with no counterpart on top surface
xxx Orifices 124 to 139 unavailable on bottom surfacc
Table 2 (continued) Wing Orifice Positions


## Pylon Orifice Numbers and Positions

The Pylon pressure data is the last 16 CPWs in the Wing data set. There are two rows of four orifices each on each side of the pylon (inboard and outboard). The orifice numbers run from 124 through 139 . Orifice numbers $126,130,134,138$ make the outboard row of taps closest to the store. Orifices $125,129,133,137$ make the outboard row closest to the Wing. Similarly, orifices $127,131,135,139$ make the inboard row closest to the store, and $124,128,132,136$ make the inboard row closest to the wing. Orifices 126 and 127 , which correspond to outboard and inboard respectively, are on straight rows (call them Row $10 B$ and Row IIB) positioned 0.25 cm inward from the edge attached to the store and parallel to it, and they are 2.1 cm aft of the leading edge of the pylon. Each orifice is equally spaced along the row by 2.03 cm . The rows closest to the wing (call them Row 2 OB and Row 2 IB ) are positioned 1.52 cm in from the edge attached to the store and parallel to Rows 10 OB and IB with their orifices exactly aligned vertically with those in Rows $10 B$ and IB.

## Store Body Orifice Rows

Row 1 is 45 degs cew from pylon looking upstream. Row 1 is also coincident with Fin 1 footprint chord.
Row 2 is 30 degs cow from Fin 1.
Row 3 is 20 degs cw from Fin 3, which is diametrically opposite Fin 1.
Row 4 is 80 degs ccw from Fin 3. Fin 4 is 10 degs cew from Row 4,90 degs cew from Fin 3.
Row 5 is 40 degs cw from Fin 1.

## Store Fin Orifice Rows

There are two rows of orifices on each fin. They are positioned differently on each fin.
Rows 1 and 5 are on Fin 4. Fin 4: Row 5 is 0.44 cm in from Fin tip and Row 1 is 0.80 cm in from Fin tip.
Rows 2 and 6 are on Fin 3. Fin 3: Row 6 is 0.35 cm in from Fin tip and Row 2 is 0.71 cm in from Fin tip.
Rows 3 and 7 are on Fin 2. Fin 2: Row 7 is 0.27 cm in from Fin tip and Row 3 is 0.62 cm in from Fin tip.
Rows 4 and 8 are on Fin 1. Fin 1: Row 8 is 0.18 cm in from Fin tip and Row 4 is 0.53 cm in from Fin tip.

BODY ORIFICE ROWS
FIN ORIFICE ROWS
$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$ ORIFICE IDENTIFICATION NUMBER

| Numbers increment aftward |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 502 | 522 | 604 | 632 | 714 | 932 | 906 | 828 | 806 | 920 | 841 | 818 | 742 |
| 2 | 503 | 523 | 605 | 633 | 715 | 933 | 907 | 829 | 807 | 921 | 842 | 819 | 743 |
| 3 | 504 | 524 | 606 | 634 | 716 | 934 | 908 | 830 | 808 | 922 | 843 | 820 | 744 |
| 4 | 505 | 525 | 607 | 635 | 717 | 935 | 909 | 831 | 809 | 923 | 844 | 821 | 745 |
| 5 | 506 | 526 | 608 | 636 | 718 | 936 | 910 | 832 | 810 | 924 | 845 | 822 | 746 |
| 6 | 507 | 527 | 609 | 637 | 719 | 937 | 911 | 833 | 811 | 925 | 846 | 823 | 747 |
| 7 | 508 | 528 | 610 | 638 | 720 | 938 | 912 | 834 | 812 | 926 | 847 | 824 | 802 |
| 8 | 509 | 529 | 611 | 639 | 721 | 939 | 913 | 835 | 813 | 927 | 902 | 825 | 803 |
| 9 | 510 | 530 | 612 | 640 | 722 | 940 | 914 | 836 | 814 | 928 | 903 | 826 | 804 |
| 10 | 511 | 531 | 613 | 641 | 723 | 941 | 915 | 837 | 815 | 929 | 904 | 827 | 805 |
| 11 | 512 | 532 | 614 | 642 | 724 | 942 | 916 | 838 | 816 | 930 | 905 |  |  |
| 12 | 513 | 533 | 615 | 643 | 725 | 943 | 917 | 839 | 817 | 931 |  |  |  |
| 13 | 514 | 534 | 616 | 644 | 726 | 944 | 918 | 840 |  |  |  |  |  |
| 14 | 515 | 535 | 617 | 645 | 727 | 945 | 919 |  |  |  |  |  |  |
| 15 | 516 | 536 | 618 | 646 | 728 |  |  |  |  |  |  |  |  |
| 16 | 517 | 537 | 619 | 647 | 729 |  |  |  |  |  |  |  |  |
| 17 | 518 | 538 | 620 | 702 | 730 |  |  |  |  |  |  |  |  |
| 18 | 519 | 539 | 621 | 703 | 731 |  |  |  |  |  |  |  |  |
| 19 | 520 | 540 | 622 | 704 | 732 |  |  |  |  |  |  |  |  |
| 20 | 521 | 541 | 623 | 705 | 733 |  |  |  |  |  |  |  |  |
| 21 | $\cdots$ | 542 | 624 | 706 | 734 |  |  |  |  |  |  |  |  |
| 22 | --- | 543 | 625 | 707 | 735 |  |  |  |  |  |  |  |  |
| 23 | - | 544 | 626 | 708 | 736 |  |  |  |  |  |  |  |  |
| 24 | - | 545 | 627 | 709 | 737 |  |  |  |  |  |  |  |  |
| 25 | --- | 546 | 628 | 710 | 738 |  |  |  |  |  |  |  |  |
| 26 | --- | 547 | 629 | 711 | 739 |  |  |  |  |  |  |  |  |
| 27 | --- | 602 | 630 | 712 | 740 |  |  |  |  |  |  |  |  |
| 28 | --- | 603 | 631 | 713 | 741 |  |  |  |  |  |  |  |  |

Table 3 Store Orifice Numbers

BODY ORIFICE ROWS

|  | 1 | 2-5 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X/LB |  | X/LF |  |  |  |  |  |  |  |
| 1 | 0.0337 | 0.0337 | 0.0623 | 0.0647 | 0.0673 | 0.0702 | 0.0733 | 0.0767 | 0.0805 | 0.0846 |
| 2 | 0.0673 | 0.0673 | 0.1245 | 0.1294 | 0.1347 | 0.1404 | 0.1466 | 0.1535 | 0.1610 | 0.1692 |
| 3 | 0.1010 | 0.1010 | 0.1868 | 0.1942 | 0.2020 | 0.2107 | 0.2199 | 0.2302 | 0.2415 | 0.2538 |
| 4 | 0.1347 | 0.1347 | 0.2491 | 0.2589 | 0.2694 | 0.2809 | 0.2933 | 0.3070 | 0.3221 | 0.3384 |
| 5 | 0.1683 | 0.1683 | 0.3113 | 0.3236 | 0.3367 | 0.3511 | 0.3666 | 0.3837 | 0.4026 | 0.4280 |
| 6 | 0.2020 | 0.2020 | 0.3736 | 0.3883 | 0.4040 | 0.4213 | 0.4399 | 0.4605 | 0.4831 | 0.5076 |
| 7 | 0.2357 | 0.2357 | 0.4359 | 0.4531 | 0.4714 | 0.4916 | 0.5132 | 0.5372 | 0.5636 | 0.5922 |
| 8 | 0.2693 | 0.2693 | 0.4981 | 0.5178 | 0.5387 | 0.5618 | 0.5865 | 0.6140 | 0.6441 | 0.6768 |
| 9 | 0.3030 | 0.3030 | 0.5604 | 0.5825 | 0.6061 | 0.6320 | 0.6598 | 0.6907 | 0.7246 | 0.7614 |
| 10 | 0.3366 | 0.3366 | 0.6227 | 0.6472 | 0.6734 | 0.7022 | 0.7331 | 0.7675 | 0.8052 | 0.8460 |
| 11 | 0.3703 | 0.3703 | 0.6849 | 0.7120 | 0.7407 | 0.7725 | 0.8065 | 0.8442 |  |  |
| 12 | 0.4040 | 0.4040 | 0.7472 | 0.7767 | 0.8081 | 0.8427 | 0.8798 |  |  |  |
| 13 | 0.4376 | 0.4376 | 0.8095 | 0.8414 | 0.8754 |  |  |  |  |  |
| 14 | 0.4713 | 0.4713 | 0.8717 | 0.9061 |  |  |  |  |  |  |
| 15 | 0.5050 | 0.5050 |  |  |  |  |  |  |  |  |
| 16 | 0.5386 | 0.5386 |  |  |  |  | (cm) |  |  |  |
| 17 | 0.5723 | 0.5723 | 4.08 | 3.93 | 3.77 | 3.62 | 3.46 | 3.31 | 3.15 | 3.00 |
| 18 | 0.6060 | 0.6060 |  |  |  |  |  |  |  |  |
| 19 | 0.6396 | 0.6396 |  |  |  |  |  |  |  |  |
| 20 | 0.6733 | 0.6733 |  |  |  |  |  |  |  |  |
| 21 | ----- | 0.7071 |  |  |  |  |  |  |  |  |
| 22 | ---.- | 0.7406 |  |  |  |  |  |  |  |  |
| 23 | ----- | 0.7743 |  |  |  |  |  |  |  |  |
| 24 | ----- | 0.8079 |  |  |  |  |  |  |  |  |
| 25 | ---. | 0.8416 |  |  |  |  |  |  |  |  |
| 26 | ----- | 0.8753 |  |  |  |  |  |  |  |  |
| 27 | ----- | 0.9089 |  |  |  |  |  |  |  |  |
| 28 | ----- | 0.9426 |  |  |  |  |  |  |  |  |
|  | 1 cm |  |  |  |  |  |  |  |  |  |

## FIN ORIFICE ROWS

Table 4 Store Pressure Orifice Locations

## 3 Format of Data on CD-ROM

For files M12BODY.DAT and M95BODY.DAT, there are 55 items in each list. For example, below is the first list in file: MI2BODY.DAT FORMAT(6(IPE12.5))

| $9.12200 \mathrm{E}+03$ | $4.00000 \mathrm{E}+00$ | $1.00000 \mathrm{E}+00$ | $1.00000 \mathrm{E}+00$ | $1.15188 \mathrm{E}+03$ | $9.40000 \mathrm{E}+01$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $2.04393 \mathrm{E}+03$ | $1.20030 \mathrm{E}+00$ | $4.78861 \mathrm{E}+02$ | $4.74823 \mathrm{E}+02$ | $2.43897 \mathrm{E}+00$ | $4.29820 \mathrm{E}+02$ |
| $-1.10000 \mathrm{E}-01$ | $0.00000 \mathrm{E}+00$ | $8.58740 \mathrm{E}-02$ | $8.48428 \mathrm{E}-03$ | $7.05405 \mathrm{E}+00$ | $-6.80302 \mathrm{E}+00$ |
| $2.10713 \mathrm{E}-02$ | $1.42177 \mathrm{E}-02$ | $1.41720 \mathrm{E}-02$ | $2.41153 \mathrm{E}-02$ | $8.37489 \mathrm{E}-03$ | $7.29932 \mathrm{E}-02$ |
| $5.00000 \mathrm{E}+00$ | $5.07298 \mathrm{E}+00$ | $6.92000 \mathrm{E}+02$ | $8.63788 \mathrm{E}-01$ | $6.74838 \mathrm{E}-01$ | $5.24998 \mathrm{E}-01$ |
| $4.01009 \mathrm{E}-01$ | $3.07119 \mathrm{E}-01$ | $2.80552 \mathrm{E}-01$ | $3.82871 \mathrm{E}-01$ | $5.73961 \mathrm{E}-01$ | $3.01025 \mathrm{E}-01$ |
| $7.88166 \mathrm{E}-02$ | $-1.67391 \mathrm{E}-01$ | $-3.31710 \mathrm{E}-01$ | $-3.93508 \mathrm{E}-01$ | $-3.58220 \mathrm{E}-01$ | $-3.55254 \mathrm{E}-01$ |
| $-3.15861 \mathrm{E}-0-$ | $-2.76891 \mathrm{E}-01$ | $-2.55959 \mathrm{E}-01$ | $-2.53289 \mathrm{E}-00$ | $-2.27156 \mathrm{E}-01$ | $-1.52431 \mathrm{E}-01$ |
| $-1.68920 \mathrm{E}-01$ | $-2.24603 \mathrm{E}-01$ | $-2.52846 \mathrm{E}-01$ | $-3.29054 \mathrm{E}-01$ | $-5.11267 \mathrm{E}-01$ | $-6.51763 \mathrm{E}-01$ |

Table 5 Data List, Store Body

Nomenclature Map of Above and M95BODY.DAT List:

| Test number | ID number | Point | Configuration | PT | TT |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Patm | M | Q | P | Re | T |
| ALPHA | BETA | ALPSRB | BETSRB | CLMRB | CLNRB |
| XP | YP | ZP | THETA | PSI | PHI |
| ROW | PHIR | RUN | CPW01 | CPW02 | CPW03 |
| CPW04 | CPW05 | CPW06 | CPW07 | CPW08 | CPW09 |
| CPW10 | CPW11 | CPW12 | CPW13 | CPW14 | CPW15 |
| CPW16 | CPW17 | CPW18 | CPW19 | CPW20 | CPW21 |
| CPW22 | CPW23 | CPW24 | CPW25 | CPW26 | CPW27 |
| CPW28 |  |  |  |  |  |

Table 6 Nomenclature Map, Store Body
The FORTRAN STATEMENTS to recover the data could be as follows for this dataset.
C READ DATA
REAL F(55)
OPEN (UNIT $=5$, FILE $=$ 'c:IFTMM95BODY.DAT)
OPEN (UNIT $=8$, FILE $=$ 'c:IFTNM95BODY.OUT')
REWIND 8
DO 105, K=1,99999
READ (5, 100, END=105)F
100 FORMAT(6(1PE12.5))
Write ( $\left.{ }^{*}, 100\right)(F(I), i=1,55)$
C Convert to MKS (International) units from Anglo-American
C Psf to Pascals
$F(5)=F(5) * 47.8802$
$F(7)=F(7) * 47.8802$
$F(10)=F(10)^{*} 47.8802$
C Farenheit to Kelvin
$F(6)=(F(6)+459.69) / 1.8$
C Rankine to Kelvin
$F(12)=F(12) / 1.8$
Table 7 FORTRAN Statements to Read Data, Store Body

```
C. Feet to Centimeters. Note these are full-scale. Multiply by
C 0.05 to recover subscale (tunnel scale) lengths.
        \(F(19)=F(19) * 30.48\)
        \(F(20)=F(20) * 30.48\)
        \(F(21)=F(21) * 30.48\)
C 10** 6 per foot to \(10^{* *} 6\) per Meter
        \(F(11)=F(11) / 3048\)
        Write \((8,101)(F(I), I=1,18)\)
        Write (8,102)(F(I), I=19,39)
        Write \((8,103)(F(I), I=40,55)\)
101 FORMAT (III,' Test =',F9.1,' ID = ',F9.1,' Point ='
    \(\times\), F9.1,/.
    \(x^{\prime}\) Config =',F9.1,' PT =',F9.2,' TT ='
    \(x\), F9.4,/,
    \(x \cdot\) Patm = ',F9.2,' \(M={ }^{\prime}, F 9.4,{ }^{\prime} Q='\)
    \(\mathrm{x}, \mathrm{F9} 9.4,1\).
    \({ }_{x}{ }^{\prime} \cdot \mathbf{P}={ }^{\prime}, F 9.2,{ }^{\prime} \operatorname{Re}=\) ',F9.4,' \(T={ }^{\prime}\)
    \(x, F 9.4, /\),
    \(x \cdot\) ALPHA \(=\) ',F9.4,' BETA \(=\) ',F9.4,' ALPSRB \(='\)
    \(\mathrm{x}, \mathrm{F9} .4, /\),
    \(x^{\prime}\) BETSRB \(=\) ',F9.4,' CLMRB \(=\) ',F9.4,' CLNRB \(={ }^{\prime}\)
    \(\mathrm{x}, \mathrm{F9} .4\), )
102 FORMAT(' XP = ',F9.4,' YP =',F9.4,' ZP ='
    \(x, F 9.4, /\),
    \(x\) ' THETA =',F9.4,' PSI =',F9.4,' PHI ='
    \(x\), F9.4,l,
    \(x\) 'ROW =',F9.4,' PHIR =',F9.4,' RUN ='
    \(\mathrm{x}, \mathrm{F9} .2, / 1\),
    \(x\) ' CPW01 = ',F9.4,' CPW02 \(=\) ',F9.4,' CPW03 \(=\) '
    \(\mathrm{x}, \mathrm{F9} 9.4\), ,
    \(\mathbf{x}\) ' CPWO4 = ',F9.4,' CPW05 = ',F9.4,' CPW06 \(=\) '
    \(x, F 9.4\), /.
    x • CPW07 = ',F9.4,' CPW08 = ',F9.4,' CPW09 ='
    \(x, F 9.4\), ,
    x' CPW10 = ',F9.4,' CPW11 = ',F9.4,' CPW12 ='
    \(\mathrm{x}, \mathrm{F9} .4\) )
103 FORMAT(' CPW13 = ',F9.4,' CPW14 = ',F9.4,' CPW15 ='
    \(\mathrm{x}, \mathrm{F9} .4\), ,
    x ' CPW16 = ',F9.4,' CPW17 = ',F9.4,' CPW18 ='
    \(x\), F9.4./
    x \({ }^{\prime}\) CPW19 = ',F9.4,' CPW20 = ',F9.4,' CPW21 = '
    \(\mathrm{x}, \mathrm{F9} .4\), ,
    x' CPW22 = ',F9.4,' CPW23 = ',F9.4,' CPW24 ='
    \(\mathrm{x}, \mathrm{F9} 9,4\) /,
    x \(\cdot\) CPW25 = ',F9.4,' CPW26 = ',F9.4,' CPW27 \(=\) '
    \(x, F 9.4, /\),
    x' CPW28 =',F9.4)
104 CONTINUE
105 CONTINUE
            END
```

Table 7 (continued) FORTRAN Statements to Read Data, Store Body

For a typical fin data list, there are 58 items, but the map is somewhat different.
NOMENCLATURE MAP OF M12FIN.DAT OR M95FIN.DAT

| Test number | ID number | Point | Configuration | PT | TT |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Patm | M | Q | P | Re | T |
| ALPHA | BETA | ALPSRB | BETSRB | CLMRB | CLNRB |
| XP | YP | ZP | THETA | PSI | PHI |
| ROW | PHIF | RUN | CPF01L | CPF02L | CPF03L |
| CPF04L | CPF05L | CPF06L | CPF07L | CPF08L | CPF09L |
| CPF10L | CPF11L | CPF12L | CPF13L | CPF14L | RUN |
| CPF01R | CPF02R | CPF03R | CPF04R | CPF05R | CPF06R |
| CPF07R | CPF08R | CPF09R | CPF10R | CPF11R | CPF12R |
| CPF13R | CPF14R |  |  |  |  |

Note that the suffix $L$ and $R$ indicate right and left looking upstream, with store virtually positioned on pilot's right wing.
Table 8. Nomenclature Map, Fin

For a typical wing data list, there are 171 items.
NOMENCLATURE MAP OF M12WING.DAT OR M95WING.DAT

| Test number | ID number | Point | Configuration | PT | TT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Patm | M | Q | P | Re | T |
| ALPHA | BETA | ALPSRB | BETSRB | CN | CLM |
| XP | YP | ZP | THETA | PSI | PHI |
| RUN | CPW102 | CPW103 | ETCETERA | ETC. | CPW106 |
| CPW107 | ETC. | ETC. | ETC. | ETC. | CPW112 |
| CPW113 | ETC. | ETC. | ETC. | ETC. | CPW118 |
| CPW119 | ETC. | ETC. | ETC. | CPW123 | CPW140 |
| CPW141 | CPW142 | CPW143 | CPW202 | CPW203 | CPW204 |
| CPW205 | ETC. | ETC. | ETC. | ETC. | CPW210 |
| CPW211 | ETC. | ETC. | ETC. | ETC. | CPW216 |
| CPW217 | ETC. | ETC. | ETC. | ETC. | CPW222 |
| CPW223 | ETC. | ETC. | ETC. | ETC. | CPW228 |
| CPW229 | ETC. | ETC. | ETC. | ETC. | CPW234 |
| CPW235 | ETC. | ETC. | ETC. | ETC. | CPW240 |
| CPW241 | CPW242 | CPW243 | CPW244 | CPW245 | CPW302 |
| CPW303 | ETC. | ETC. | ETC. | ETC. | CPW308 |
| CPW309 | ETC. | ETC. | ETC. | ETC. | CPW314 |
| CPW315 | ETC. | ETC. | ETC. | CPW319 | CPW320 |
| CPW321 | CPW322 | CPW323 | CPW324 | CPW325 | CPW326 |
| CPW327 | ETC. | ETC. | ETC. | ETC. | CPW332 |
| CPW333 | ETC. | ETC. | ETC. | ETC. | CPW338 |
| CPW339 | CPW340 | CPW402 | CPW403 | CPW404 | CPW405 |
| CPW406 | ETC. | ETC. | ETC. | ETC. | CPW411 |
| CPW412 | ETC. | ETC. | ETC. | ETC. | CPW417 |
| CPW418 | ETC. | ETC. | ETC. | CPW422 | CPW126 |
| CPW130 | CPW134 | CPW138 | CPW127 | CPW131 | CPW135 |
| CPW139 | CPW125 | CPW129 | CPW133 | CPW137 | CPW124 |
| CPWI28 | CPWI32 | CPW136 |  |  |  |

Table 9. Nomenclature Map, Wing

For a typical free-stream data list, there are 27 items.
NOMENCLATURE MAP OF M12FREESTR.DAT OR M95FREESTR.DAT

| Test number | Run Point | Point | PT | TT | Patm |
| :--- | :--- | :--- | :--- | :--- | :--- |
| M | Q | P | Re | T | ALPHA |
| BETA | ALPHAS | BETAS | CAT | CY | CN |
| CLL | CLM | CLN | XP | YP | ZP |
| THETA | PSI | PHI |  |  |  |

Table 10. Nomenclature Map, Free Stream

For a typical carriage loads data list, there are 27 items. Nomenclature map is identical to that of free-stream data. NOMENCLATURE MAP OF M12CAPLOAD.DAT OR M95CAPLOAD.DAT

| Test number | Run Point | Point | PT | TT | Patm |
| :--- | :--- | :--- | :--- | :--- | :--- |
| M | Q | P | Re | T | ALPHA |
| BETA | ALPHAS | BETAS | CAT | CY | CN |
| CLL | CLM | CLN | XP | YP | ZP |
| THETA | PSI | PHI |  |  |  |

Table 11. Nomenclature Map, Carriage Loads

For a typical trajectory data list, there are 38 items.
NOMENCLATURE MAP OF M12TRAJ.DAT OR M95TRAJ.DAT

| Test number | Run Point | Point | PT | TT | Patm |
| :--- | :--- | :--- | :--- | :--- | :--- |
| M | Q | P | Re | T | ALPHA |
| BETA | ALPHAS | BETAS | CAT | CY | CN |
| CLL | CLM | CLN | XP | YP | ZP |
| THETA | PSI | PHI | DPSI | DTHA | DPHI |
| VX | VY | VZ | P | Q | R |
| ETIME | T (Time) |  |  |  |  |

Table 12. Nomenclature Map, Trajectory

## 4 Drawings of Test Articles



Fig. 1 Store at Carriage


Fig. 2 Store Model


Fig． 3 Wing Upper Surface


Fig． 4 Captive Trajectory Support Rig

## 5 Inviscid CFD Comparisons, Reference 5



Fig. 5 Position vs Time


Fig. 6 Attitude vs Time

