80

. .

۲

63_3_2

GIIIII ID

GENERAL DYNAMICS | CONVAIR

1 c + .

Report No. 8926-128 Material - Nickel Base Alloy - Monel Metal Countersunk Rivet Shear Strengths

401 388

J. K. Neary, H. A. Buehler, W. E. Wise

10 June 1958

Published and Distributed under Contract AF 33(657)-8926

.

Post Office Box 1950, San Diego 12, California 296-6611 Material Post Office Box 2071 273-8000 Accounting Post Office Box 510 DOCUMENT PROVIDED BY THE ABBOTT AEROSPACE TECHNICAL LIBRARY ABBOTTAEROSPACE.COM

GIHIIID

BENERAL DYNAMICE | CONVAIR

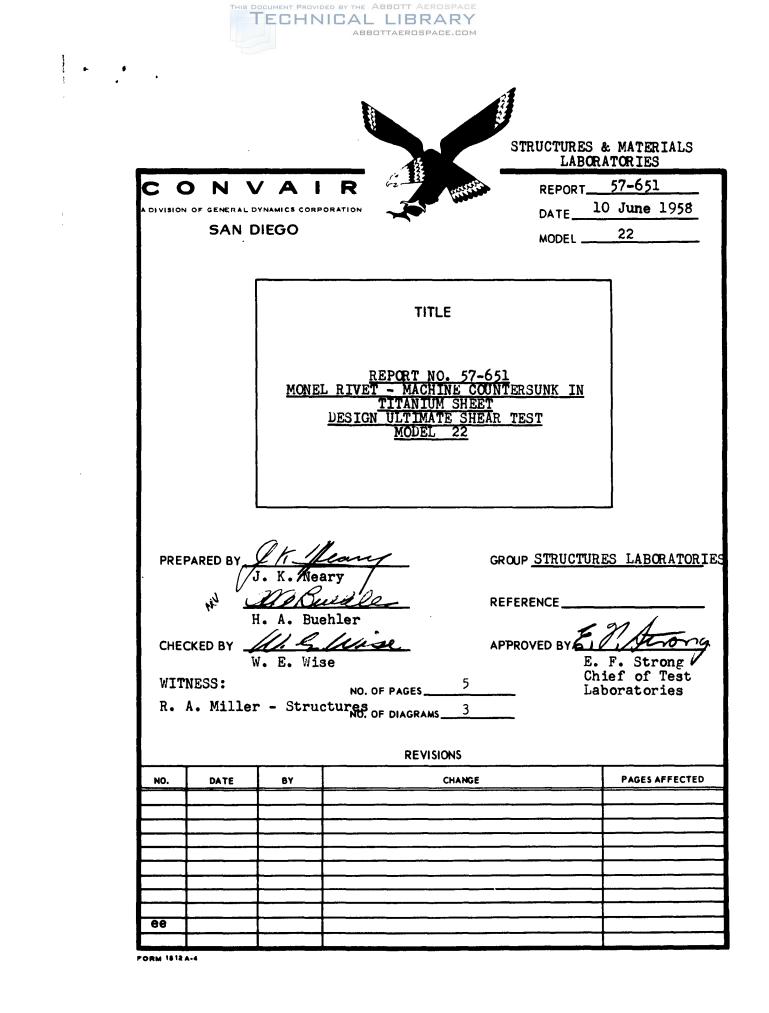
PAGE REPORT NO.

Report No. 8926-128

Material - Nickel Base Alloy - Monel Metal

Countersunk Rivet Shear Strengths

Abstract:


1012 0 (NEV. 12/61)

MODEL

DATE

The ultimate and yield strength of AN427 Monel metal 5/32 and 3/16 inch diameter rivets driven into various thicknesses of Ti 6A1-4V alloy sheet were determined. Rivet installations in sheet thicker than 0.060 inch failed by rivet shear. Those joints which contained sheet material of less than 0.060 inch thickness failed by tear-out or crushing under the rivet. The ultimate and yield strengths of those rivets which failed in shear were: 3/16 inch diameter, 1781 and 2726 lbs. respectively; and 5/32 inch diameter, 1590 and 1985 lbs. respectively.

Reference: Neary, J. K., Buehler, H. A., Wise, W. E. "Monel Rivet -Machine Countersunk in Titanium Sheet - Design Ultimate Shear Test," General Dynamics/Convair Report MP 57-651, San Diego, California, 10 June 1958 (Reference attached).

÷

ANALYSIS PREPARED BY CHECKED BY REVISED BY SAN DIEGO

PAGE 1 REPORT NO. 57-651 MODEL 22 DATE 10 June 1958

INTRODUCTION:

J. K. Neary

W. E. Wise

The higher performance characteristics of modern aircraft necessitates aerodynamically clean skin surfaces. In the past, countersunk rivet installations in thin sheet thicknesses were made by dimpling, a method which produced uneven skin surfaces. In an attempt to produce smoother skin surfaces, dimpled rivet installations are being replaced with countersunk installations.

Since the thin skin thicknesses now being countersunk are less than the minimum allowable per present installation specifications, allowable rivet loads are not available for structural design.

OBJECT:

The object of this test is to determine the design allowable load of AN 427 monel rivets in machine countersunk titanium sheet.

CONCLUSIONS:

Design ultimate shear loads for AN 427 monel rivets in machine countersunk titanium sheet, are as follows:

Diameter of Rivet	5/32"	3/16"
Sheet Thickness		
• 040" • 055" • 073"	732 Lb. 705 Lb. 863 Lb.	1280 Lb. 1533 Lb. 1188 Lb.

TEST SPECIMEN:

Test specimens were riveted lap joints, two rivets at each joint, using AN 427 MC monel rivets in machine countersunk, mill annealed, 6 Al - 4V titanium sheet. Specimen dimensions and rivet spacing are shown in Table I and Figure 1 respectively. Specimens having skin thickness less than the .060 minimum, per Q 2001, were countersunk to the depth necessary to maintain the specified countersink diameter. This resulted in the countersink projecting through the top and into the bottom sheet, greatly reducing the bearing area.

ANALYSIS PREPARED BY CHECKED BY REVISED BY CONVAIR SAN DIEGO

FAGE 2 REPORT NO. 57-651 MODEL 22 DATE 10 June 1958

TEST PROCEDURE:

J. K. Neary

W. E. Wise

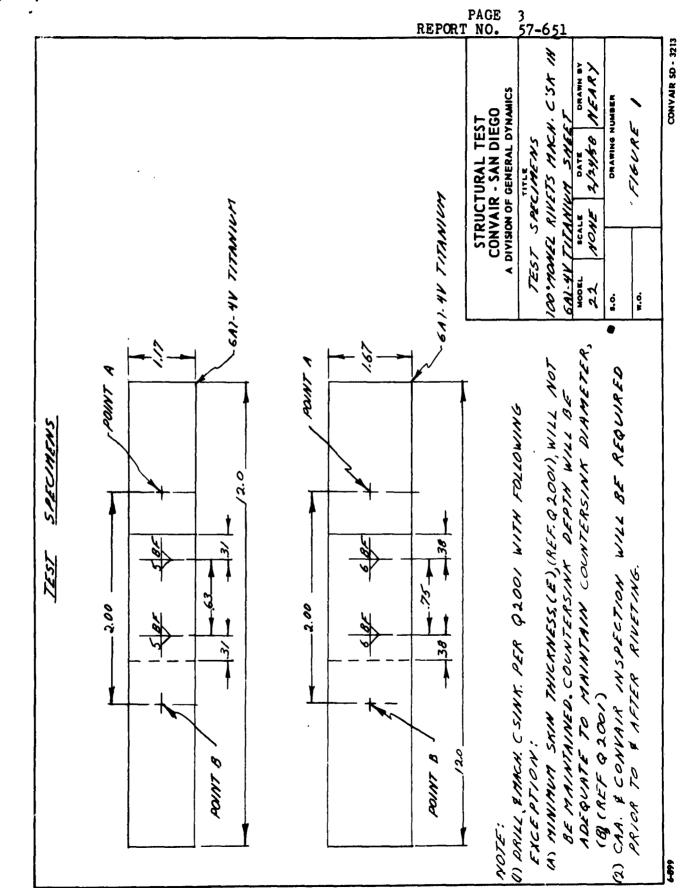
The riveted specimens were tested in a 12,000 pound Tinius-Olsen test machine. Lead was applied in increments which produced a joint elongation of .005 inch and reduced to a tare of 25 pounds, after each load increment, to determine permanent set. After yield was determined, the load was increased until failure occurred.

Joint elongation was measured with a dial gage extensometer over a 2 inch gage length (Reference Figure 1).

Tensile coupons were removed from all titanium sheet tested to determine if the mechanical properties were within design specifications.

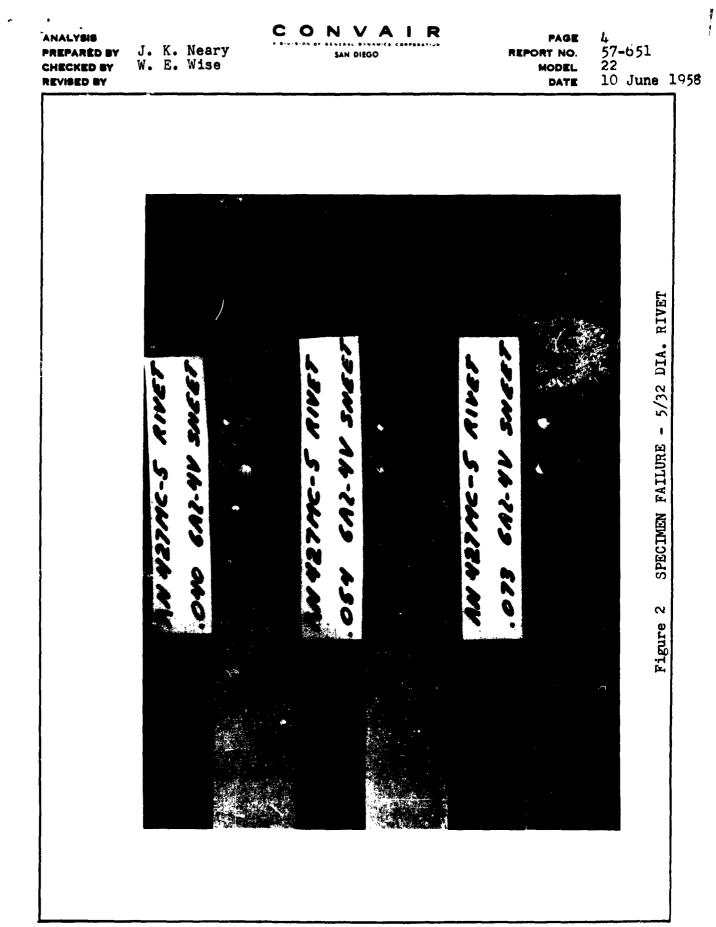
RESULTS:

Test results from all specimens and coupons are presented in Table I. Photographs of typical test specimen failures are shown in Figures 2 and 3. Modes and sequences of failures were as follows:


RIVET DIA. In.	SKIN THICK In.	TYPICAL FAILURES (Reference Figures 2 and 3)
3/16	.040	Tear out of countersunk skin.
5/32 3/16 5/32	.040 .055 .055	Primary bearing failure of counter- sunk skin followed by a secondary combined shear-tension failure of the rivet.
3/16 5/32	.072 .072	Shear failure of the rivets.

NOTE:

The test data from which this report was prepared are recorded in Structures Test Laboratory Data Book No. 4003, pages 131-144.


B ECHNICAL LIBRARY ABBOTTAEROSPACE.COM

•

668-9

CONVAIR 5 57-651 22 10 June 1958 PAGE J. K. Neary W. E. Wise ÈD BY SAN DIEGO REPORT NO. CHECKED BY MODEL REVISED BY DATE SPECIMEN FAILURE - 3/16 DIA. RIVET CAL-4V SNEET :013 ENI-4V SAEET AN 427MC-6 RIVET AN 427MC-6 AIVET . OVO EAI. 4V SNEET ANY27MC-6 RIVET 150. Figure 3

Y SEWAN		RIVET	Mare Dat.		200000		217.A	7857 NIELO 7E57	7EST WT.	des/6 M	
ì		THEAMESS DIAMETER (REF. FIL)	REF.F.G.I)	Res 5061) Di ~ M.	- 10/01 ~ 019/1 SND	TENS. 417.	76 FLANK. 2"LEWETH	* ° 2 ×	872	119.	
	-				-			-			
1104		3//6	.170	35	120492	131247	13.00	1750	2920-		,
4021			061.	.35				1780	2940	1202	
4031			.192	.ع د		-		1310	2055		
1401		3/16	161.	. ع ح	120492	131247		2000	3115 -	-1	
1072		5/32	.163	29	19591	13063-3		1050	2265 -		
4082			164	25		-		016	2190	152-	
1092			164	.29	-	-		1020	2205		
2001		<i>7</i> 32	164	. 29	119577	130653	13.00	920	2255-	_	
11.5		3/10	717	. ج بر	13015-1	142 403	12.25	2170	- 0115	1	
52)			192.	34				2050	3645	55/1-	2
531			.193	.3 4		-	-	2.100	3505		2
145		3//5	061.	.34	130151	142463	12.75	2170	3510-		
562		32	.164	4	127250	084041	11.50	1180	1625		
572			164	82.	-4			1200	1620	705	
502			. 164	52		-	-	1280	1600		
502		5/32	-164	.29	127250 .	084041	11.50	1220	1645		
511		<u>"</u>	161.	.36	126108	133663	14.75	1720	2745		
521			190	·36				1675	2650	5811-	
541			161.	.36	- j er-		-	1860	2730		
552	.073	3/K	161.	.36	1 26108 1	133663	14.75	1270	2780-		
562		732	.164	.29	125476 1	133602	15:00	1610	0661		
572			164	29	-	-	-	1550	1905	863	
502			164	28				1660	2060		
7592	•	5/32	.164	.28	125476 1	133602	15,00	1540	- 586/		57 -
210										¥,	65
	•	LOAD WHICH PRODUCED	PRODUCE	7	PERMANENT	T 5ET	CF. OOS M. OVER	W. OVER	4 2.00	IN. GAGE LENGTH	

DOCUMENT PROVIDED BY THE ABBOTT AEROSPACE ECHNICAL LIBRARY ABBOTTAEROSPACE.COM

.

1

2E157 AVERAGE IEN ----TIMES 150, WHICH

λ EVER

7

ţ