$$
20030129132 \text { BIC FILE Na (1) }
$$

Anthropometry and Mass Distribution for Human Analogues

March 1988

Harry G. Armstrong Aerospace Medical Research Laboratory Wright-Patterson Air Force Base, Ohio 45433-6573
AAMRL-TR-88-010

Naval Aerospace Medical Research Laboratory
Pensacola, Florida 32508-5700
NAMRL-1334

Naval Air Development Center
Warminis!er, Pennslyvania 18940-5000
NADC-88036-60

Naval Biodynamics Laboratory New Orleans, Louisiana 70189-0407 NBDL 87R003

U.S. Air Force School of Aerospace Medicine Brooks Air Force Base, Texas 78235-5301 USAFSAM-TR-88-6

U.S. Army Aeromedical Research Laboratory Fort Rucker, Alabama 36362-5292 USAARL Report No. 88-5

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

16. SUPPLEMENTARY NOTATION

17.	COSATI CODES	
FIELD	GROUP	SUB-GROUP
05	Q	

18. SUBJECT TERMS (COntinue on ieverse if necessary and identify by biock number) Anthropometry, anthropology, human mass distribution, human limb pivot axes, pilot size.m.. ${ }^{\text {. }}$
19 ABSTRACT (Continue on reverse if necessary and identify by block number)
Anthropometric and mass distribution data for use in constructing three-dimensional human analogues -- mathematical models or test dummies -- are presented in this report. Included here are body dimensions, joint locations, and mass distribution properties appropriate for modeling the Small, Mid-size, and Large male aviator of the 1980 . The data were derived from: (1) 139 body dimensions of standing and seated males obtained by traditional anthropometric methods; (2) mass distribution data for body segments obtained by stereophotographic techniques; and (3) skeletal joint centers obtained by estimation. The anthropometric data, generated from multipie regressions on stature and weight, are suitable as the basis for models to be used in testing responses to impact and other mechanical forces; they are not recommended for other purposes such as the sizing of clothing and personal protective equipment, or workspace design.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT unclassifiedunlimited \square SAME AS RPT DTIC USERS	21 ABSTRACT SECURITY CLASSIFICATION Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL Chief Scientific Information Centar	22 D TELEPHONE (Include Area COde)(205) 255-6907 $\|$226 OFFICE SYMBOL SCRD

PREFACE

This publication is the culmination of a project initiated more than seven years ago by Mr. Joe Haley of the U.S. Army Aeromediral Resparch Ladoratory (USAARL). A great many people, including representatives from industry, academic institutions, and a number of government apencies, cooperated ia the development of this tri-service data base for use in the construction of three-dimensional human analogues. The lengthy process of generating and selecting data appropriate and acceptable to the Air Force, Army, and Navy was begun on 13 March 1980 at the Harry G. Armstrong Aerospace Medical Research Laboratory (AAMRL). Final coordination and agreement was achieved through the Iri-Service Working Group on Biomechanics, which facilitated the achievement of specifications acceptable to all three services, and provided for final report preparation.

Special acknowledgement is made to Mr. Richard Chandler and Mr. Joe Young of the Civil Aeromedical Institute of the Federal Aviation Administration for their recomendations, to Dr. Ints Kaleps of the AAMRL for coordinating and incorporating comments and recomendations, and to the staff of Anthropology Research project, Inc. for conducting numerous analyses and preparing the final report. Illustrations were designed and executed by Gary Ball.

Page
INTRODUCTION 5
ANTHROPOMETRY 6
Data Base 6
Body Size 6
Body Segmentation 32
Mass Distribution 34
Segmental Masses 34
Body Linkage and Center of Mass (CM) Locations 40
DEFINITIONS 47
BIBLIOGRAPHY 52

list of Illustrations

Figure Page

1
The body in standard anatomical position 7

2

3

4
Planes of body segmentation 33
Principal axis orientation for the head relative to the anatomical axis sytem. 39
Body linkage and centers of mass (excludes arms)for the Small male aviator.41
Centers of mass and linkage for the arms of theSmall male aviator.42
Body linkage and centers of mass (excludes arms) foz the Mid-size male aviator 43
Centers of mass and linkage for the arms of the Mid-size male aviator 44
Body linkage and centers of mass (excludes arms) for the Large male aviator. 45Centers of mass and linkage for the arms of theLarge male aviator...46
: Dimensions of the Small, Mid-Size and Large Male Aviator ...

2 Mass Distribution of the Body Segments 35

INTRODUCTION

The comparative testing, analysis and evaluation of the safety and performance of manned systems require the use of standardized mechanical or analytical human surrogates which approximate human body properties. This document provides the design parameters for the Small, the Mid, and the Large sized male aviator, with mass distribution and body size appropriate for the 1980-1990 time period. Included in this document are data for body dimensions, joint locations, and mass distribution properties.

The data provided in this document are meant to serve as a basis for three-dimensional mathematical models and test dummies which are to be used for investigating responses to impact or other mechanical forces. The dimensions in this report have been generated from multiple regressions on stature and overall body weight. This method provides internally consistent body dimensions for each model but does not necessarily provide appropriate descriptive statistics for a population for any single dimension. For example, when compared to the 1967 survey of U.S. Air Force rated male aircrew (Churchill, Kikta and Churchill, 1977), the Small and Large values for head breadth in this document rank at 38 th and 67 th percentiles, respectively. Only 31\% of the Air Force survey personnel fall within these bounds. Therefore, it is strongly recummended that the data in this document not be used for purposes such as fit analysis, sizing of personal protective equipment and clothing, or for workspace design or evaluation.

Data Base

The criteria in this document are derived from: (1) body dimensions obtained by traditional anthropometric methods; (2) mass distribution data obtained by stereophotographic techniques; and (3) skeletal joint centers obtained by estimation. All computations for the Small, Mid-size, and Large male aviator are based on stat're and weigh:.

Body Size

A total of 139 body dimensions of standing and seated males are reported here. Most of these anthropometric measurements were derived from stature and weight multiple regression equations calculated from the 1967 survey of U.S. Air Force raced male aircreч. The srature and weight values used were the 3 rd, 50 th, and 95 th percentiles projected to reflect assumed increases in body size berween 1967 and the 1980-1990 time period (Churchill and McConville, 1976). Those dimensions not measured in the 1967 survey were derived from those data or were estimated from other studies (McConville and Laubach, 1978; McConville et al., 1980) and are marked with an asterisk. Body dimensions are referenced to the standard "anatomical position," with the head in the Frankfort plane, unless otherwise specified in the measurement description. This position and body reference cerminology is illustrated in figure 1 . For design purposes, the body is assumed to be bilaterally symmetrical. Dimension descriptions and measurement data are given in Table 1.

Figure 1. The body in standard anatomical position.

Dimension Descriptions	$\begin{gathered} \text { DESIGN VALUES } \\ (\mathrm{cm}) \end{gathered}$		
	SMALL	Mid	LARGE
*1 ABDOMINAL DEPTH, SITTING: The maximum horizontal depth of the abdomen.	22.4	25.5	$28 . \mathrm{i}$
2 ACROMIAL HEIGHT: The vertical distance between the standing surface and the lateral tip of the shoulder (acromion).	136.6	146.2	155.7
3 ACROMIAL HEIGHT, SITTING: The vertical distance between the sitting surface and the lateral tip of the shoulder (acromion).	57.8	61.5	65.0
4 ACROMION-RADIALE LENGTH: The length of the upper arm measured as the vertical distance between the lateral tip of the shoulder (acromion) and the proximal end of the radius (radiale).	31.1	33.2	35.2
5 ANKLE CIRCUMFERENCE: The minimum horizontal circumference of the lower leg (calf).	21.1	22.7	24.1
6 ANKLE HEIGHT: The vertical distance between the standing surface and the level of the ankle circumference.	13.0	13.8	14.6
7 ANTERIOR NECK LENGTH: The surface distance in the midsagittal plane between the point of the deepest depression of the top of the breastbone (suprasternale) and the juncture of the neck and the jaw.	8.3	8.4	8.5
*8 AXILLA HEIGHT: The vertical distance between the standing surface and the apex of the armpit (axilla).	126.6	135.1	143.6
9 BALL OF FOOT CIRCUMFERENCE: The circumference of the foot passing over the maximum protuberance of the first metatarsal bone and the fifth metatarsal bone.	23.6	25.0	26.4
10 BIACROMIAL BREADTH: The norizontal distance berween the lateral tips of the shoulders (right and left acromion).	39.1	41.0	42.8
II BIAURICULA? BREADTH: The horizontal distance between the most lateral points of the right and left ears.	18.4	18.9	19.3
12 BICEPS CIRCUMFERTiNCE: The circumference of the upper arm perpendicular to its long axis, measured with the arm hangirg relaxet at the side. (The level of the dimension is established at the maximum protrusion of the flexed biceps.)	28.4	31.3	33.7
13 BICRISTAL BREADTH (Bone): The maximum horizontal distance between the lateral crests of the pelvis (ilia) measured with enough pressure to compress the tissue.	25.8	28.3	30.5

* See section on Body Size, page 6.

TABLE 1 (cont'd)

TABLE 1 (cont'd)

Dimension Descriptions	$\begin{gathered} \text { DESIGN VALUES } \\ (\mathrm{cm}) \end{gathered}$		
	SMALL	MID	LARGE
14 BIDELTOID BREADTH: The naximum horizontal distance across the shoulders at the level of the deltoid muscles.	45.3	48.8	51.9
15 BIGONIAL BREADTH: The horizontal d.stance between the corners of the jaw (right and left gonion).	11.4	11.8	12.2
16 BIMALLEOLAR BREADTH: The maximum horizontal distance between the lateral and the medial protrusions of the ankle (medial and lateral malleolus).	7.0	7.4	7.8
17 BIOCULAR BREADTH: The horizontal distance between the outer corners of the ryes (right and left ectocanthus).	9.0	9.2	9.4
Io BITRAGION BREADTH: The horizontal distance betseen the right and the left tragion (the point at the top of the cartilaginous flap in front of the opening of the ear).	13.9	14.3	14.7
19 BITRAGION-CORONAL ARC: The vertical surface distance between the right and the left tragion passing over the top of the head.	35.0	35.9	36.7
20 BITRAGION-MENTON ARC: The surface distance between the right and the left tragion passing over the tip of the chin (menton).	31.5	32.8	34.0
21 BITRAGION-MINIMLM FRONTAL ARC: The surface distance between the right and the left tragion passing over the greatest indentation of each temporal crest (frontotemporale).	30.2	30.9	31.6
22 BITRACION-POSTERIOR ARC: The surface distance between the right and the left tragion passing over a bony midline point on the back of the head (inion).	28.7	29.6	30.4
$\begin{aligned} & 23 \text { BITRAGION-SUBMANDIBULAR ARC: The surface distance } \\ & \text { between the right and the left tragion passing } \\ & \text { over the juncture of the jaw with the neck. } \end{aligned}$	29.6	31.2	32.6
24 BITRAGION-SUBNASALE ARC: The surface distance between the right and the left tragion, passing over the juncture of the nose with the philtrum.	28.6	29.4	30.2
25 BIZ GOMATIC BREADTH (Face Breadth): The horizontal distance between the maximum protrusions of the cheekbones (zyzomatic arches).	13.9	14.3	14.7
26 BUTTOCK CIRCUMFERENCE: The horizontal circumference of the body at the level of the maximum protrusion of the buttocks.	91.1	100.0	107.8

TABLE 1 (cont'd)

Dimension Descriptions	$\begin{aligned} & \hline \text { DESIGN VALUES } \\ & (\mathrm{cm}) \end{aligned}$		
	SMALL	MID	LARGE
27 BUTTOCK DEPTH: The horizontal depth of the body at the level of the maximum protrusion of the buttocks.	21.7	24.4	26.8
28 BUTTOCK HEIGHT: The vertical distance between the standing surface and the level of the maximum protrusion of a buttock.	84.4	90.8	97.0
29 BUTTOCK-KNEE LENGTH: The horizontal distance between the maximum protrusion of a buttock and the anterior point of the knee of a seated subject. The knee is flexed 90 degrees.	56.6	60.9	63.0
30) BUTTOCK-POPLITEAL LENGTI: The horizontal distance between the maximum prctrusion of a buttock and the posterior surface of the knee of a seated subject. The knee is flexed 90 degrees.	47.1	50.8	54.4
31 CALF CIRCUMFERENCE: The maximum horizontal circumference of the calf.	34.7	37.7	40.3
32 CALF HEIGHT: The vertical distance between the standing surface and the lavel of the maximum circumference of the calf.	33.0	35.8	38.6
33 CERVICALE HEIGHT: The vertical distance between the standing surface and the tip of the spinous procrss of the 7 th cervical vertebra (cervicale).	143.4	153.1	162.6
*34 CERVICALE HEIGHT, SITTING: The vertical distance between the sitting surface and cervicale.	64.6	68.4	72.0
35 CHEST BREADTH: The horizontal breadth of the chest at the level of the nipples.	30.5	33.2	35.6
36 CHEST CIRCUMFERENCE: The horizontal circumference of the chest at the livel of the nipples.	91.2	100.0	107.5
37 CHEST CIRCUMFERENCE AT SCYE: The circumference of the chest at the level of an axillary cold (scye point).	95.3	103.6	110.8
38 CHEST DEPTH: The horizontal depth of the chest at the level of the nipples.	22.5	24.9	27.0
39 CHEST HEIGHT: The vertical distance between the standing surface and the level of the nipple.	121.9	130.1	138.2
*40 CHEST HEIGHT, SITTING: The vertical distance between the sittine surface and the level of the nipple.	43.1	45.4	47.6
41 CROTCH HEIGHT: The Jertical distance between the standing surface and the midpoint of the crotch.	80.2	85.6	91.1

* See section on Body Size, page 6.

TABLE 1 (cont'd)

TABLE 1 (cont'd)

Dimension Descriptions	DESIGN VALUES(cm)		
	SMALL	MID	LARGE
42 EAR BREADTH: The breadth of the ear perpendicular to its long axis.	3.7	3.8	3.9
43 EAR LENGTH: The length of the ear along its long	6.4	6.6	6.9
44 EAR LENGTH ABOVE TRAGION: The distance along the long axis from tragion to the top of the ear.	2.9	2.9	3.0
45 EAR PROTRUSION: The horizontal distance between the most protruding point on the surface of the ear and the bony eminence of the mastoid process immediately behind the ear.	2.1	2.2	2.3
46 ECTOCANTHUS TO TOP OF HEAD: The vertical distance Letween the outer corner of an eye (ectocanthus) and the plane of the ton of the head.	11.7	12.0	12.2
47 ECTOCANTHUS TO WALL: The horizontal distance between the outer corner of an eye (ectocanthus) and the plane of the back of rhe head	17.5	17.8	18.1
48 ELBOW CIRCUMFERENCE: The circumference of the elbow perpendicular to the long axis of the arm passing over the tip of the elbow (olecranon process).	26.0	28.0	29.8
49 ELBOW HEIGHT: The vertical distance between the standing surface and the proximal end of the radius (radiale).	105.6	113.1	120.5

TABLE 1 (cont'd)

TABLE 1 (cont'd)

Dimension Descriptions	$\begin{gathered} \text { DESIGN VALUES } \\ (\mathrm{cm}) \end{gathered}$		
	SMALL	MID	LARGE
50 ELBOW REST HEIGHT: The vertical distance between the sitting surface and the bottom of the elbow with the upper arm hanging freely and the forearm flexed 90 degrees.	23.9	25.4	26.7
51 ELBOW-WRIST LENGTH: The distance between the tip of the elbow (olecranon process) and the distal end of the radius (stylion) with the upper arm hanging freely and the elbow flexed 90 degrees.	28.4	30.2	32.0
52 EYE HEIGHT, SITTING: The vertical distance between the sitting surface and the outer corner of an eye (ectocanthus).	77.5	81.4	85.1
53 FEMORAL BREADTH (Bone): The breadth of the femur between its medial and lateral epicondyle, with the tissue compressed.	9.5	10.1	10.6
54 FOOT BREADTH: The maximum breadth of the foot perpendicular to its long axis.	9.3	9.8	10.3
55 FOOT LENGTH: The maximum length of the fout parallel to its long axis.	25.7	27.2	28.7
56 FOREARM CIRCUMFERENCE: The maximum circumference of the forearm perpendicular to its long axis.	26.5	28.5	30.2
*57 FOREARM-HAND LENGTH: The distance between the tip of the elbow (olecranon process) and the tip of the middle finger (dactylion) when the upper arm is hanging freely and the elbow is flexed 90 degrees.	46.6	49.3	52.0
58 GLABELLA TO TOP OF HEAD: The vertical distance from the midsagittal point jetween the browridges (glabella) to the plane of the top of the head.	9.2	9.3	9.4

* See section on Body Size, page 6.

TABLE 1 (cont'd)

TABLE 1 (cont'd)

Dimension Descriptions	DESIGN VALUES (cm)		
	SMALL	MID	LARGE
59 GLABELLA TO WALL: The horizontal distance from the midsagittal point between the browridges (glabella) to the plane of the back of the head.	20.0	20.4	20.8
60 GLUTEAL FURROW HEIGHT: The vertical distance between the standing surface and the lowest point of the juncture of the curve of a buttock with the thigh (gluteal furrow).	76.1	81.7	87.3
61 HAND BREADTH: The breadth of the hand between the second ard the fifth metacarpal-phalangeal joints.	8.5	9.0	9.4
62 HAND BREADTH ACROSS THUMB: The breadth of the hand, perpendicular to its long axis, at the level of the metacarpal-phalangeal joint of the thumb.	9.7	10.3	10.8
63 HAND CIRCUMFERENCE: The circumference of the hand around the second and fifth metacarpal-phalangeal joints.	20.7	21.7	22.6
64 HAND CIRCUMFERENCE INCLUDING THUM3: The circumference of the hand, perpendicular to its long axis, passing over the first metacarpal-phalangeal joint.	24.6	25.9	27.2
65 HAND LENGTH: The distance between the end of the forearm (stylion) and the tip of the middle finger (dactylion) parallel to the long axis of the hand.	18.3	19.2	20.1
66 HAND THICXNESS: The thickness of the hand between the palm and the top of the third knuckle of the hand (head of the third metacarpal).	2.7	2.8	2.9

TABLE 1 (cont'd)

TABLE 1 (cont'd)

Dimension Descriptions	DESIGN VALUES(cm)		
	SMALL	MID	LARCE
67 HEAD BREADTH: The maximum horizontal breadth of the head above the eari.	15.4	15.6	15.9
68 HEAD CIRCUMFERENCE: The maximum circumference of the head above the browridges and ears.	56.5	57.7	58.8
69 HEAD DIAGONAL FROM INION TO PRONASALE: The distance between the cip of the nose (pronasale) and the point inion on the back of the head.	21.5	22.0	22.5
70 HEAD DIAGONAL-MAXIMUM FROM MENTON TO OCCIPUT: The maximum distance between the tip of the chin (menton) and tha back of the head (occiput).	25.0	25.7	26.3
71 HEAD LENGTH: The maximum distance from the midsagittal point between the browridges (glabella) to the back of the head	19.5	19.9	20.3
72 HEEL-ANKLE CIRCUMFERENCE: The circumference of the foot and ankle passing under the tip of the hee: and over the anterior juncture of the foot with the ankle.	32.1	34.2	36.2
73 HIP BREADTH: The maximum horizontal breadth of the hips.	32.9	35.7	38.2
74 HIP BKEADTH, SITTING: The maximum horizontal breadth of the hips of a seated subject.	34.8	38.3	41.5
75 HUMERAL BREADTH (Ec,ne): The breadth of the humerus between its redial and lateral epicondyles with the tissue compressed.	6.8	7.1	7.5
*76 ILIOCRISTALE HEIGHT: The vertical distance from the standing surface to the top of the pelvis (ilium) in the midaxillary line.	100.0	107.3	114.5
77 INSTEP CIRCUMFERENCE: The vertical circumference of the arch of the foot.	24.3	25.9	27.4
78 INSTEP LENGTH: The horizontal distance between the back of the heel and the level of the maximum medial protrusion of the foot.	18.8	19.9	21.0
79 INTEROCULAR BREADTH: The horizontal distance between the inner corner of each eye (entocanthus).	3.3	3.3	3.4
80 INTERPUPILLARY BREADTH: The horizontal distance between the zenter of the pupil of each eye.	6.2	6.3	6.4
81 INTERSCYE: The horizontal surface distance across the back between the lowest points of the posterior axillary folds.	36.7	39.2	41.3

* See section on Body Size, page 6.

TABLE 1 (cont'd)

TABLE 1 (cont'd)

Dimension Descriptions	DESIGN VALJES(cm)		
	Sma ll	Mid	Large
82 KNEE CIRCUMFERENCE: The horizontal circumference of the knee at the level of the middle of the kneecap (patella).	35.9	39.2	42.1
$\delta 3$ KNEE HEIGHT: The vertical distance between the standins, surface and the level of the middle of the kneecap (patella).	46.4	50.0	53.6
84 KNEE HEIGHT, SITTING: The vertical distance between a footrest surface and the top of a knee of a seated subject. The knee is flexed 90 degrees.	52.3	56.2	60.0
*85 Lateral femoral epicondyle height: The vertical distance between the standing surtiace and the level of the maximum protrusion of the lateral femoral epiconcyle.	47.6	51.0	54.3
86 LATERAL MALLEOLUS HEIGHT: The vertical distance between the standing surface and the lateral point of the ankle.	6.6	7.1	7.6
87 LIP LENGTH: The horizontal distance between the outer corners of the lips.	5.1	5.2	5.4
88 LIP PROTRUSION TO WALL: The horizontal distance between the most protruding point of the lips and tine plane of the back of the head.	20.7	21.2	21.7
*89 LOWER THIGH CIRCUMFERENCE: The circumference of the thigh just above the kneccap (ratella).	38.4	43.7	47.9
90 MAXIMUM FRONTAL (Forehead) BREADTH: The horizon- tal distance between the lateral ends of the browridges.	11.4	11.6	11.9
91 MEDIAL MALLEOLUS HEIGHT: The vertical distance between the standing surface and the medial point of the ankle.	8.1	8.6	9.1
92 MENTON-SELLION LENGIH (Face Length): The distance between the tip of the crin (menton) and the deepest point of the nasal root depression (sellion).	11.7	12.1	12.4
93 MENTON-SUBNASALE LENGTH: The distance between the tip of the chin (menton) and the base of the nose (subnasale).	6.7	6.9	7.1
94 MENTON TO TOP OF HEAD: The vertical distance between the tip of the chin (menton) and the plane of the top of the head	22.3	22.8	23.3
95 MIDSHOULDER HEIGHT, SITIING: The vertical distance between the sitting surface and the midpoint of the top of the shoulder (half the distance between the lateral bast of the neck and acromion).	61.3	65.0	68.6

* See section on Body Sizn, page 6.

TABLE 1 (cont'd)

TABLE 1 (cont'd)

Dimension Descriptions	$\begin{gathered} \text { DESIGN VALUES } \\ (\mathrm{cm}) \end{gathered}$		
	Sma 11	Mid	Large
96 MINIMUiA FRONTAL AKC: The surface distance between the points of greatest indentation of the temporal crests.	13.4	13.6	13.9
97 NASAL BREADTH: The maximum horizontal breadth of the nose.	3.5	3.6	3.6
*98 NASAL ROOT EREADTH: The horizuntal breadth of the root of the nose.	1.5	1.8	2.1
99 NECK CIRCUMFERENCE: The maximum circumference of the neck, including the Adam's apple, perpendicular to its long axis.	36.5	38.7	40.6
100 NOSE LENGTH: The distance between the lowest point of the nasal septum (subnasale) and the deepest point of the nasal root depression (sellion).	5.0	5.1	5.3
*101 NOSE PRUTRUSION: The distance betwaen the tip of the nose (pronasale) and the lowest point of the nasal septum (suinasale).	2.0	2.4	2.8
*102 NUCHALE HEIGHT: The vertical distance in the midsagittal plane between the standing surface and the lowest palpable bony point of the back of the head (nuchale).	151.2	161.2	170.7
103 PALM LENGTH: The vertical distance between che distal end of the radius (stylion) and the crease at the base of the middle finger.	10.4	10.9	11.4
104 PHILTRUM LENGTH: The length of the groove between the upper lip and the base of the nose.	i. 5	1.6	1.6
105 POPLITEAL HEIGHT: The vertical discance between a footrest suriace and the lower lateral surface of the thigh, just behind the knete, when the subject is seated with the knee flexed 90 degrees	41.2	44.0	46.7
106 PKONAGALE TO TOP OF HEAD: The vertical distance between the tip of the nose (oronasale) and the plane of the top of the head.	14.5	14.8	15.0
107 PRONASALE TO WALL: The horizontal distance betwern the tip of the nose (pronasale) and the plane of the back wi the head.	**	**	**
108 Radiale-stylion length: The distance, along the long axis of the formarin, between the proximal end of the radius (radiale) and the distal end of the radius (styilion)	25.3	27.1	28.8

* See section on Budy Size, page h.
** These valnes deleted due 10 inconsistamev with 121 ; the 121 values are deemed to be correct.

TABLE 1 (cont'd)

TABLE 1 (cont'd)

Dimension Descriptions		$\begin{gathered} \text { DESIGN VALUES } \\ (\mathrm{cm}) \end{gathered}$		
		Smal1	Mid	Large
	SAGITTAL ARC: The surfare fistance over the top of the head from the point berweren the browridges (glabella) to the bong point on the back of the head (inion).	34.2	34.7	35.2
110	SCYE CIRCUMFERENCE: The vertical circumference passing over the shoulder and through the highest point of the axilla.	45.1	48.9	52.3
111	SELLION TO TOP OF HEAD: The vertical distance tetween the deepest point of the nasal root depression (sellion) and the plane of the top of the head.	10.5	10.8	11.0
112	SELLION TO WALL: The horizontal distance between the deepest point of the nasal root depression (sellion) and the plane of the back of the head.	19.8	20.2	20.6
	SHCULDER CIRCUMFERENCE: The maximum horizontal circumference of the shoulders at the level of the deltoid muscles.	110.6	119.1	126.4
114	SHOULDER-ELBOW LENGIH: The distance, along the long axis of the upper arm, between the tip of the shoulder (acromion) and the bottom of the elbow (olecranon process) wien the apper arm is hanging freely with the elbow flexed 90 degrees.	34.0	36.2	38.3
115	SHOULDER LENGTA: The surface distancp between the lateral juncture of the base of the neck with the shoulder, and the tip of the shoulder (acromion).	15.8	16.7	17.6
116	SIITING HEIGHT: The vertical distance between the sitting surface and the tof of the head.	89.3	93.7	98.0
$\star 117$	SPHYRION HEIGHT: The vertical distance between the standing surface and the distal end of the tibia (sphyrion).	6.5	7.0	7.5
	STATURE: The vertical distance between the standing surface and the top of the head.	168.1	178.4	188.6
	STOMION TO TOP OF HEAD: The vertical distance between the midpoint of closid lips and the plane ot the top ot the head.	18.0	18.4	18.8
120	SUBNASALE TU TOP OF HiAd): The vertical distance between the base of the noss (subasale) and the plane of the tap of the head.	15.8	16.1	16.5
121	SUBNASALE TO WALL: The horizontal distance between the lowest point of the nasa! septum (subnasale) and the plane of the back of thi head.	20.6	21.1	21.5

* See section on Body Size, page 6.

TABLE. 1 (cont'd)

TAELE 1 (cont'd)

Dimension Descriptions	$\begin{gathered} \text { DESIGN VALUES } \\ (\mathrm{cm}) \end{gathered}$		
	Smal1	Mid	Large
122 SUPRASTERNALE HEIGHT: The vertical distance between the standing surface and the point of deepest depression of the top of the breastbone (suprasternale).	136.9	146.2	155.3
*123 TENTH RIB HEIGHT: The vertical distance between the standing surface and the level of the lowest point of the tenth rib.	105.1	112.5	119.8
124 THIGH CIRCUMFERENCE: The circumference of the thigh perpendicular to its long axis at the lowest point of the juncture of a buttock with the thigh.	53.7	59.9	65.2
125 HHIGH CIRCUMFERENCE, SITTING: The vertical circumference of the thigh at its juncture with the groin of a seated subject.	52.7	58.9	64.2
126 THIGH CLEARANCE: The vertical distance between the sitting surface and the highest point on the thigh of a seated subject.	15.1	16.8	18.3
127 THUMB-TIP REACH: The horizontal distance between the plane of the back (a wall) and the tip of the thumb with an arm extended forward and the tip of the index finger touching the pad of the thumb. The palm is down.	76.0	80.8	85.5
128 THUMB-TIP REACH, EXTENDED: The horizontal distance between the plane of the back (a wall) and the tip of the thumb with an arm and a shoulder extended forward as far as possible while keeping the back of the other shoulder firmly against the wall. The tip of the index finger tcuches the pad of the thumb. The palm is down.	85.1	90.1	95.1
129 TPAGION TO TOP OF HEAD: The vertical distance between tragion and the plane of the top of the head.	13.2	13.5	13.7
130 TRAGION TO WALL: The horizontal distance between tragion and the plane of the back of the head.	10.2	10.4	10.5
131 TROCHANTERIC HEIGHT: The vertical distance between the standing surface and the top of the greater trochanter of the femur (trochanterion).	88.4	54.6	100.8

* See section on Body Size, page 6.

TABLE 1 (cont'd)

TABLE 1 (cont'd)

Dimension Descriptions	$\begin{aligned} & \text { DESIGN VALJJS } \\ & (\mathrm{cm}) \end{aligned}$		
	Sma 11	Mid	Large
132 WAIST BREADTH: The horizontal breadth of the torso at the level of the navel.	28.1	31.5	34.5
133 WAIST CIRCUMFERENCE: The horizontal circumference of the torso at the level of the navel.	79.0	89.4	98.2
134 WAIST DEPTH: The horizontal depth of the corso at the levei of the navel.	20.2	22.8	24.9
135 WATST HETGHT: The vertical distance between the standing surface and the navel.	100.3	107.2	114.0
*136 WAIST HEIGHI, SITTING: The vertical distance between the seated surface and the navel.	21.5	22.4	23.4
137 WEIGHT: Weight of the subject to the nearest tenth of a pound.	$\begin{gathered} 139.5 \\ 1 \mathrm{bs} \end{gathered}$	$\begin{gathered} 179.7 \\ 1 \mathrm{bs} \\ \hline \end{gathered}$	$\begin{gathered} 215.4 \\ 1 \mathrm{bs} \\ \hline \end{gathered}$
*133 WRIST BREADTH (Bone): The maximum distance between the radial and ulnar styloid processes.	5.3	5.7	6.0
139 WRIST CIRCUMFERENCE: The circumference of the wrist perpendicular to the long axis of the forearm at the level of the distal tip of the radius (stylion).	16.7	17.7	18.7

* See section on Body Size, page 6.

TABLE 1 (cont'd)

In order to describe its mass distribution properties, the body is segmented by planes as shown in Figure 2. These planes relate to the body in the erect standing position and are identified as described below:

1 HEAD PLANE: A plane that passes through the right and left gonion and nuchale.

2 NECK PLANE: A compound plane in which a horizontal piane through cervizale intersects anteriorly with a second plane. The second plane passes through the lower of the two clavicale landmarks, is perpendicular to the midsagittal plane, and makes a 45-degree angle with the horizoncal plane.

3 THORAX PLANE: A horizontal plane that passes through the loth rib midispine landmark.

4 ABDOMINAL PLANE: A horizontal plane passing through the higher of the two iliocristale landmarks.

5 HIP PLANE: A plane perpendicular to the frontal plane passing through the center of the crotch and the midpoint between the anterior superior iliac spine landmark and trochanterion.

6 KNEE PLANE: A horizontal plane passing through the lateral femoral epicondyle.

7 ANKLE PLANE: A horizontal plane passing through the sphyrion landmark.

8 SHOULDER PLANE: A plane passing through the acromion landmark and the anterior and posterior scye point marks of the axillary folds.

9 ELBOW PLANE: A plane passing through the oiecranon process and the medial and lateral humeral epicordyle landmarks.

10 WRIST PLANE: A plane perpendicular to the long axis of the forearm passing through the radial stylion landmark.

Figure 2. Planes of body segmentation.

The mass distribution data were calculated from regression equations reported in McConvilie et al. (1980). These data are based upon a stereophotometric assessment of vo'ume. The assumption that tne distrihution of volume can be substituted for the distribution of mass is supported by the data reported in Young et al. (1983). The reader is referred there for more information.

The alignment of principal axes for each segment, the mass, and principal moments of inertia (calculated with respect to the segment center of mass) are pre, nted in Table 2. A general assumption of body symmetry with respect to the midsagittal plane has been made so that properties of right and left segments are identical.

For purposes of specifying the segmental principal axes directions, a whole body reference axis system (r) is defined. This reference system is based on a standing surface in which the X_{r} axis points anteriorly, the Y_{r} axis to the left and the Z_{r} axis vertically upward.

The neck, thorax, and pelvis principal axes are rotated from this reference position, as shown in Table 2. The principal axes for the extremity segments (with the exception of the hand and foot) are such that the Z_{p} axis is aligned with the long axis of the bones and the X_{p} and Y_{p} axes are perpendicular to it with no preferred direction since the X_{p} and Y_{p} principal moments are equal. The orientation of the principal axes for the hand and foot are coincident with the reference axes.

For the head, a local anatomically defined coordinate system (a) is used as the reference coordinate system. It is defined by the Y_{a} axis running from the right tragion to the left tragion, the X_{a} axis being the normal vector from the Y_{a} axis to the right infraortitale, the 7_{A} axis being formed by the cross product of the X_{a} and Y_{a} axes vectors, and the origin being located on a line connecting the tragions (Y_{a}) at a point closest to sellion. The relative orientation of the head principal axes to the anatomical axes (a) is shown in Figure 3. For the head, the X_{p} axis is rotated 36° counterclockwise about the Y_{a} axis (see Table 2).

Segmental Masses

The segmental masses were determined from the relative proportions of segmental volumes obtained from regression equations developed by McConville et al. (1980), and total body masses of 63.3 kilograms for the Small sized man, 81.5 kilograms for the Mid-sized man and 97.7 kilograns for the Large sized man.

TABLE 2

MASS DISTRIBUTION OF THE BODY SEGMENTS
（mass in kilograms；moments of inertia in kilograms $/ \mathrm{cm}^{2}$ ； X is anterior；positive rotation is clockwise）

HEAD				
	$\begin{gathered} \text { Segment } \\ \text { Mass } \\ \hline \end{gathered}$	X	$\begin{gathered} \text { men } \\ Y \end{gathered}$	2
$\begin{aligned} & \text { SMALL. } \\ & \text { MID-SI ZE } \\ & \text { LARGE } \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.2 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 193 \\ & 206 \\ & 218 \end{aligned}$	$\begin{aligned} & 219 \\ & 235 \\ & 250 \end{aligned}$	$\begin{aligned} & 144 \\ & 153 \\ & 161 \end{aligned}$
The principal axes are rotated -36° about the Y_{a} axis．				

NECK				
SMALL MID－SIZE LARGE	$\begin{gathered} \text { Segment } \\ \text { Mass } \\ \hline \end{gathered}$	X	Y	2
	0.9 1.1 1.2	13 18 23	16 22 27	19 28 35
The principal axes are rotated $+22.2^{\circ}$ about the Y_{r} axis．				

TABLE 2 (cont'd)

ABDOMEN				
	Segment		men	
	Mas s	X	Y	Z
SMALL	1.9	108	58	160
MID-SIZE	2.4	175	99	266
LARGE	2.9	233	133	356

The principal axes are coincident with the reference axes.

TABLE 2 (cont'd)

UPPER ARM				
	$\begin{gathered} \text { Segment } \\ \text { Mass } \end{gathered}$	X	$\begin{gathered} \mathrm{men} \\ \mathrm{Y} \end{gathered}$	2
SMALL	1.5	85	85	17
MID-SIZE	2.0	141	141	29
LARGE	2.4	192	192	39

The Z_{p} axis is coincident with the Z_{i} axis and the X_{p} and Y_{p} axes are degenerate.

FOREARM				
SMALL MID-SIZE LARGE	$\begin{gathered} \text { Segment } \\ \text { Mass } \end{gathered}$		$\begin{gathered} m<i l \\ Y \end{gathered}$	2
	$\begin{aligned} & 1.1 \\ & 1.4 \\ & 1.6 \end{aligned}$	$\begin{array}{r} 61 \\ 90 \\ 117 \end{array}$	61 90 117	$\begin{array}{r} 9 \\ 14 \\ 18 \end{array}$
The Z_{p} axis is coincident with the Z_{r} axis and the X_{p} and Y_{p} axes are degenerate.				

TABLE 2 (cont'd)

The Z_{p} axis is coincident with the Z_{r} axis and the X_{p} and Y_{p} axes are degenerate.

CALF				
	Segment Mass	X	Moments SMALL MID-SI2E	3.1
LARGE	3.8	406	406	48

The Z_{p} axis is coincident with the Z_{r} axis and the X_{p} and Y_{p} axes are degenerate.

FOOT				
	Segment Mass	X	Moments SMALL MID-SIZE LARGE	0.8
	1.0	6	31	3

The principal axes are coincident with the reference axes with the foret aligned as shown in figure 1 .

Figure 3. Principal axis orientation
for the head relative to the anatomical axis system.

Body Linkage and Center of Mass (CM) Locations

Figures 4 through 9 illustrate the location of the centers of mass and joint centers for body segments for the Small, the Mid, and the Large sized male aviator. The centers of mass of the body segments with respect to their adjacent joint centers are assumed not to change from the standing to the seated position.

With the exception of the head, the centers of mass locations are based on the stereophotometric assessments of McConville et al. (1980). The location of the head center of mass is based on both the McConville data and that of Beier et al. (1979) and is similar to that derived by Robbins (1983).

The inserts in figures 4,6 , and 8 show the estimated location of the trochanterion landmark with respect to the seated surface and a vertical plane tangent to the posterior surface of the buttock for an erect, seated posture. These data are based upon the data developed by Geoffrey (1961).

Figure 4. Body linkage and centers of mass (excludes arms) for the Small male aviator. Units are in centimeters.

Figure 5. Centers of mass and linkage for the arms of the Small male aviator. Units are in centimeters.

Figure 6. Body linkage and centers of mass (excludes arms) for the Mid-size male aviator. Units are in centimeters.

Figure 7. Centers of mass and linkage for the arms of the Mid-size male aviator. Units are in centimeters.

Figure 8. Body liniage and centers of mass (excludes arms) for the Large male aviator. Units are in centimeters.

Figure 9. Centers et masis and linkage for the arms of the large nale aviator. lnits are in centimeters.

DEFINITIONS

ABDOMEN:	As defined in this document, the abdomen is that segment of the torso bounded superiorly by a horizontal plane passing through the lowest point of the 10 th rib and inferiorly by a horizontal plane passing through iliocristale.
ACROMION:	The lateral point on the bony tip of the shoulder.
ANTERIOR:	Pertaining to the front of the body; as opposed to posterior (see Figure 1).
ANTERIOR SUPERIOR	
ILIAC SPINE	The anterior end point of the crest of an ilium.
AXILLARY FOLDS:	The anterior and posterior folds formed by the juncture of the upper arms and the torso.
EI:	A prefix relating to each of two symmetrically paired points.
BICEPS (Brachii M.):	The large muscle on the anterior side of the upper arm.
BICRISTAL:	Pertaining to the crests of the ilia.
BIFEMORAL HEAD	
BREADTH:	The horizontal distance between the center of the head of the right and left femur. (Estimates derived from cadaveric material.)
BIHUMERAL HEAD	
BREADTH:	The horizontal distance between the center of the head of the right and left humerus. (Estimates derived from cadaveric material.)
CERVICALE:	The superior point on the spinous process of the 7 th cervical vertebra.
Clavicale :	The superior point of the medial end of the clavicle.
CORONAL:	Pertaining to the crown of the head.
DACTYLION:	The tip of the middle finger.
DELTOID MUSCLE:	A large muscle passing over the top of the shoulder and incerting into the upper half of the humerus.
DISTAL:	The end of a body segment furtiest from the torso; the opposite of proximal (see Figure 1).

ECTOCANTHUS:	The point of the juncture of the eyelids at the lateral corner of an eye.
ENDOCANTHUS:	The inner corner of an eve.
EPICONDYLES:	Bony eminences at the distal ends of the humerus and femur.
FEMUR:	The thigh bone.
FRANKFORT PLANE:	The standard horizontal plane or orientation of the head. The plane passes through the right tagion and the lowest point of the right eye socket.
FRONTOTEMPORALE:	The point of greatest indentation of the temporal crests.
GLABELLA:	The anterior point in the midsagittal plane between the eyebrows.
GONION:	The lateral point of the obtuse angle at the back of the lower jaw formed by the intersection of the vertical and horizontal portions of the jaw.
HUMERUS:	The upper arm bone.
ILIOCRISTALE:	A point in the midaxillary line on the crest of the ilium. The point is midway between the superior and lateral margins of the crest.
ILIUM (ILIA pl.):	The upper one of three bones composing either half of the pelvis.
INFERIOR:	Lower, nearer to the feet (see Figure 1).
INFRAORBITALE:	Inferior point of the orbit of the eye.
INION:	A protuberance of the occiput (the posterior bone of the skull) located in the center of the lower back of the head.
LANDMARK:	A mark placed on the body or a body surface feature used to identify the origin, end-point, or level of a measurement.
LATERAL:	Lying away from the midsagittal plane of the body; opposed to medial (see Figure l).
LATERAL FEMORAL EPICONDYLE LANDMARK:	The lateral point on the lateral femoral epicondyle.
LATERAL HUMERAL EPICONDYLE LANDMARK:	The lateral point of the lateral humeral epicondyle.

Lateral malleolus:	The bony prominence at the distal end of the fibula.
lateral malleolus	
LANDMARK:	The lateral point of the lateral malleolus.
MASTOID PROCESS:	An inferior process of the temporal bone palpable just behind the ear.
MEDIAL:	Lying near the midsagittal plane of the body; opposed to lateral.
MEDIAL HUMERAL	
EPICONDYLE LANDMARK:	The medial point of the medial humeral epicondyle.
Medial malleolus:	The bony prominence at the distal end of the tibia.
MEDIAL MALLEOLUS	
LANDMARK:	The medial point of the medial malleolus.
MENTON:	The point of the tip of the chin in the midsagittal plane.
METACARPAL:	One of five long bones of the palm of the hanc. Numbered sequentially from (thumb) through V (little finger).
Metatarsal:	One of five long bones in the instep of the foot. Number d sequentially from I (big toe) through V (little toe).
midaXillary line:	A vertical line on the torso dividing it into front and back portions. The line originates at the center of the axilla.
MIDSAGITTAL Plane:	The jertical piane which divides the body into right and left halves.
NuChale:	The lowest palpable bony point in the midsagittal plane of the back of the head.
OCCIPUT:	Pertaining to the occiput, the bone making up the inferior part of the back of the skull.
OLECRANON PROCESS:	The curved, hock-like head of the ulna that is the bony part of the back of the elbow. When the elbow is flexed 90 degrtes, verticai measurements to the elbow are made to the bottom and horizontal measurements to the elbow are made to the back of the olecranon process.
PATEI.LA:	The kneecap.

PHILTRUM:	The vertical groove between the upper lip and the bottom of the nose (subnasale).
POPLITEAL:	Pertaining to the posterior surface of the knee.
POSTERIOR:	Pertaining to the back of the body; opposed to anterior.
PRONASALE:	The anterior point of the nose.
PROXIMAL:	The end of a body segment nearest the torso; upposed to distal.
RADIALE:	The lateral point of the head of the radius.
RADIUS:	One of the two bunes of the forearm. It is on the thumb side of the upper extremity.
SELLION:	The lowest point in the midsagittal plane of the nasal ruot depression.
SCYE:	A tailoring term denoting the armhole of a garment. Scye points are the inferior points of the anterior and posterior axillary folds.
STYLION:	The distal point of the radius.
SPHYRION:	The distal point of the tibia.
SUBNASALE :	The point in the midsagittal plane at the juncture of the nasal septum with the philtrum.
SUPRASTERNALE:	The lowest point of the notch of the proxinal end of the breastbone (manubrium).
TEMPORAL CREST:	A protruding ridge on the right and left sides of the frontal bone (the major anterior bone of the skull primarily underlying the forehead). It originates at the outside of a browridge and runs in a generally upwards and then backwards direction, where it becomes the inferior temporal line along the side of the skull.

TENTH RIB MIDSPINE L.ANDMARK:

TIBIA:

A mark placed on the spine at the mean level of the inferior points of the right and left loth ribs.

The shinbonee

TROCHANTERION:
The superior point of the tragus (the cartilaginous fiap in front of the ear).

The highest point of the greater trochanter (a large, blunt bony process on the lateral side of the proximal ard of the femur).

Beier, G., M. Schuck, E. Schuller and W. Spann. Determination of Physical Data of the Head: 1. Center of Gravity and Moments of Inertia of Human Heads.
Scientific Report, office of Naval Research, Contract N 000 14-75-c-0\% 0 (AD 080 333). Institute of Forensic Medicine, University of Munich, L - ocúo Munich, West Germany, April 1979.

Brantigan, O.C. Clinical Anatomy. McGraw-Hill Book Company, New York. 1953.
Chandler, R.F. and J. Young. Uniform Mass Distribution Properties and Body Size Appropriate for the 50th Percentile Male Aircrew Member During 1980-1990. Memo Report No. AAC-119-81-4. Civil Aeromedical Institute, Federal Aviation Administration, Oklahoma City, Oklahoma. 1981.

Churchil:- Edmund and John T. McConville. Sampling and Data Gathering Strategies for Future USAF Anthropometry. Technical Report AMRL-TR-74-102 (AD A025 240). Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio. 1976.

Churchill, Edmund, Paul Kikta and Thomas Churchill. The AMRL Anthropometric Data Bank Library: Volumes I-V. Technical Report AMRL-TR-77-1 (AD A047 314). Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio. 1977.

Clauser, Charles E., John T. McConville and J.W. Young. Weight, Volume and Center of Mass of Segments of the Human Body. Technical Report AMRL-TR-69-70 (AD 710622). Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio. 1969.

Daniels, Gilbert S. The "Average Man"? Technisal Note WCRD-53-7 (AD 102 03). Wright Air Development Center, Wright-Patterson Air Force Base, Ohio. 1952.

Dempster, W.T. Space Requirements of the Seated Operator. Technical Report, WADC-TR-55-159 (AD 87 895). Aerospace Medical Research Laboratory, WrightPatterson Air Force Base, Ohio. 1955.

Geoffrey, S.P. A 2-D Mannikin--The Inside Story, X-Rays Used to Determine A New Standard for A Basic Design Tool. Preprint of paper presented at the 1961 SAE International Congress and Exposition of Automotive Engineering, Detroit, Michigan, Jenuary 9-13, 1961.

McConville, John T. and Lloyd L. Laubach. Anthropometry. Chapter III in Anthropometric Source Book, Vclume I: Anthrupometry for Designers. NASA Reference Publication No. 1024 (NTIS - HC A99/MF A01 CSCL 05H). National Apronautics and Space Administration, Scientific and Technical Information office. 1978.

Mc Conville, John T., Thomas D. Churchill, Ints Kaleps, Charles E. Clauser and Jaime Cuzzi. Anthropometric Relationships of Body and Body Segment Moments of Inertia. Technical Report AFAMRL-TR-80-119 (AD A097 238). Air Force Aerospace Medical Research Laburatory, Wright-Patterson Air Force Base, Ohio. 1980.

Robbins, D.H. Development of Anthropometrically Based Design Specifications for an Advanced Adult Anthropomorphic Dumm Family. Vol. I in Anthropometry of Motor Vehicle Occupants. Final Repore No. UMTRI-83-53-2. U.S. Department of Transportation, National Highway Traffic Safety Administration, Washiagton, D.C. 1983.

Reynolds, H.M. The Inertial Properties of the Body and Its Segments. Chapter IV in Anthropometric Source Book, Volume I: Anthropometry for
Designers. NASA Reference Publication No. 1024 (NTIS - HC A99/MF A01 CSCL 05H). National Aeronautics and Space Administration, Scientific and Technical Information Office. 1978.

Singley, G.T. and J.L. Haley. The Use of Mathematical Modeling in Crashwortiy Helicopter Seating Systems. Paper A22-1 in NATO-AGARD Conference 253 , Models and Analogues for the Evaluation of Human Biodynamic Response, Performance, and Protection. Neuilly sur Seine, Frauce. No date.

Young, Joseph W., Richard F. Chandler, Clyde C. Snow, Kathleen M. Robinette, Gregory F. Zehner and Maureen S. Lofberg. Anthropometric and Mass Distribution Characteristics of the Adult Female. Technical Report No. FAA-AM-83-16. Civil Aeromedical Insticuce, Federal Aviation Administration, Oklahoma City, Oklahoma. 1983.

Distribution

International University
Box 97751
IsT Kowloon, Hong Kong

Medical Librarian
Israel Air Force
Aeromedical Center
Tel Hashomer, Isreal

Commander
U.S. Army Natick Research and Development Center
ArTN: Documents Librarian
Natick, Mi 01760
Commander
U.S. Army Natick Research and Development Laboratories
ATTN: DRDNA-YB
Natick, MA 01760
Francis A. Countway
Library of Medicine
10 Shattuck Street
boston, MA 02115

Mathematician
NUSC (Code 2212, B117i-2)
Newport, RI 02841

COL Vance H. Marchbariks, Jr.
31 Woodland St., Apartment 10-D Hartford, CT 06105
J. Friedman, D.D.S. Demetron Research Corp. 5 Ye Olde Road Danbury, Cr 06810

Aeromedical Library
Japan Air Self Defense Force
1-2-10 SAKAE-CHO
Tachikawa-shi Tokyo, Japan
Dr. Benjamin Ricc
Department of Exercise Science
Boydon 230
University of Massachusetts
Amherst, MA 01003
Commander
U.S. Army Research Institute of Environmental Medicine Natick, MA 01760

Kent B. Pandolf, Ph. D.
U.S. Army Research Institute of Environmental Medicine
ATTN: SGRD-UE-ME
Natick, MA 01760
Commanding officer
Israel Air Force
Aeromedical Center
Military P.O. B
Zahal, Isreal 02166
Naval Submarine Medical
Research Laboratory
Medical Library, Naval Sub Base
Box 900
Groton, CT 05340
Commanding of"icer
Naval Submarine Med Res Lab Naval Submarine Base, New London
Box 900
Greton, CT 05349-5900
U.S. Army Research and Development Suppor: Activity
Fort Monmouth, NJ 07703

Commander/Director
U.S. Army Combat Surveillance
\& Target Acquisition Laboratory
ATTN: DELCS-D
Fort Monmouth, NJ 07703-5304
Dr. Edwin Hendler
8 Sandringham Place
Cherry Hill, NJ 08003
Flight Surgeon's office
57 FIS/SGPB
APO New York 09057-5000
USAF Hospital Hahn/SGP
APO, NY 09109-5000
USAF Clinic Sembac/USAFE
APO New York 09130-5000
Commander
10th Medical Laboratory
ATTN: Audiologist
APO New York 09180
USAF Hospital Torrejon/SGP
APO New York 09285-5000
USAF Hospital Upper Heyford/SGP
APO New York 09406-5000
USA Medical Liaison Officer
US Embassy Box 54
ATTN: USADO-AMLO
FPO New York 09509
Air Force Office
of Scientific Research
Elropean Office of Aerospace
Research and Development (CI)
BCX 14
FPO, NY 09510
USAF Clinic
Bentwaters/SGPF
APO, NY 09755-5000

Albert D. Anderson, M.D. 930 Grand Concourse Bronx, NY 10451
U.S. Army Avionics Research and Development Activity
ATTN: SAVAA-P-TP
Fort Monmouth, NJ 07703-5401

USAF Clinic/SGP
Box 3134
APO New York 09057-5000
2 AES/SGNT
APO New York 09057-5000

4684th ABG/SG
AFO New York 09121-5000
USAF Hospital Bitburg/SGP
APO New York 09132-5000
USAF Hospital Iraklion/SG
APO New York 09201-5000

USAF Clinic Aviano/SGPF
APO New York 09293-5000
USAF Hospital Lajes/SGP
APO New York 09406-5000
Biotechnology Liaison Officer DET 1, AFOSR (EOARD) BOX 14
FPO New York, NY 09510

Commanding officer
Office of Naval Research Branch Office
Box 39
FPO New York 0951-0700

Respiratory Therapy Services ATTN: $5 P / 6$ Fields
BOX 2
APO, NY 09757
Director General Medical Services Naval Headquarters
Sena Bhaven
New Delhi, India 110011

Dr. Harold A. LYors
160 Harbor Road
Sands Point, NY 11050
Dr. James D. Block
Developmental Center
Maimonides Community
Mental Health Center
4802 Tenth Avenue
Brooklyn, NY 11218
Chief, Benet Weapons Laboratory
LCWSL, USA ARRADCOM
ATTN: DRDAR-LCB-TL
Watervliet Arsenal, NY 12189
Commanding officer
Diving Medical Centre,
MCM Service Marine Postkamer,
Zuidwal 1, CA Den Helder
The Netherlands 1780
Robert A. Montgomery
Environmental Tectonics Corp.
James Way
County Line Industrial Park
Southampton, PA 18966
Commander
Man-Machine Integration System
Code 602
Naval Air Development Center
Warminster, PA 18974
Commander
Naval Air Development Center
ATTN: Code 6021 (Mr. Brindle)
Warminster, PA 18974
Mr. George Frisch
Crew Systems (code 99)
Naval Air Development Center
Warminster, PA 18974
Commander (60B)
Naval Air Development Center
Warminster, PA 18974-5000

Dr. Harold A. Lyons
160 Harbor Road
Sands Point, NY 11050

Dr. James D. Block
Developmental Center
aimonides Community
4802 Tenth Avenue
Brooklyn, NY 11218
Chief, Benet Weapons Laboratory
LCWSL, USA ARRADCOM
ATTN: DRDAR-LCB-TL
Watervliet Arsenal, NY 12189

Commanding Officer
Diving Medical Centre,
MCM Service Marine Postkamer,
Zuidwal $1, C A$ Den Helder
The Netherlands 1780

Robert A. Montgomery
Environmental Tectonics Corp. James Way

County Line Industrial Park

Commander
Man-Machine Integration System Code 6

Naval Air Development Center Warminster, PA 18974

Commander
Naval Air Development Center
ATTN: Code 6021 (Mr. Brindle)
Warminster, PA 18974
Mr. George Frisch
Crew Systems (Code 99)
Naval Air Development Center
Warminster, PA 18974

Commander (60B)
Naval Air Development Center Warminster, PA 18974-5000

William T. Ingram
Department of Civil Engineering Polytechnic Institute of New York 333 Jay Street Brooklyn, NY 11201

Dr. Murry Plissner
303 Beverly Road
Brooklyn, NY 11218

Sharon A. Mecca
Scott Aviation Division
of $A-T-O$ Inc.
225 Erie Street
Lancaster, NY 14086
Commander (Code 8131)
Naval Air Development Center
Warminster, PA 18940

Commander
Naval Air Development Center Biophysics Lab, ATTN: G. Kydd Code 60B1
Warminster, PA 18974
Naval Air Development Center Technical Information Division Technical Support Detachment Warminster, PA 18974

Dr. E. Hendler
Human Factors Applications, Inc. 295 West Street Road
Warminster, PA 18974
CPT William F. Maroney
Code 60
Naval Air Development Center
Warminster, PA 18974
Dr. Alfred T. Kornfield
3016 Reilere Dr.
Drexel Hill, PA 19026

Leonard M. Pakman
Department of Microtiology
Temple University Dental School
3223 Ncrth Broad Street
Philadelphia, PA 19040
Michael P. Natt, Ph.D.
Mgr. Scientific Information
Wyeth Labs
Box 8299
Philadelphia, PA 19101
Boeing Vertol Company
ATTN: M/S P32-18
P.O. Box 16858

Philadelphia, PA 19142
Dr. John B. Heyde
The L.D. Caulk Co.
P.O. BOX 359

Milford, DE 19963

Staff Office Aerospace Medicine
RAF Staff, British Embassy 3100 Massachusetts Avenue NW Washington, DC 20008

Medical Liaison Officer Canadian Defense Liaison Staff 2450 Massachusetts Avenue NW Washington, DC 20008

Medical Liaison Officer Royal Air Force Staff British Embassy 3100 Massachusetts Avenue NW Washington, DC 20008

Staff Office, Aerospace Medicine RAF Staff, British Embassy 3100 Massachusetts Avenue NW Washington, DC 20008

American Psychological Association PSYCINFO Acquisitions
and Selection Unit
1200 Seventeenth Street NW Washington, DC 20036

Abraham Fremer
Benson Manor, Suite 116B
Jenkintown, PA 19046

George H. Stewart
Temple University School of Medici 3400 North Broad street
Philadelphia, PA 19140
U.S. Air Force Hospital/SGP

Dover Air Force Base 19901-5000

Assistant, Defense Research and Engineering
Attache, Embassy of France 4101 Reservoir Road, NW Washington, DC 20007

French Embassy
Materiel, French Military Mission 2164 Florida Avenue NW Washington, DC 20008

Royal Netherlands Embassy
Office of Air Attache 4200 Linnean Avenue NW Washington, DC 20008

Canadian Forces
Medical Liaison Officer Canadian Defence Liaison Staff 2450 Massachusetts Avenue NW Nashington, DC 20008

Office of Air Attache Embassy of Australia 1601 Massachusetts Avenue W Washington, DC 20036

Under Secretary of Defense for Acquisition
Military Assistant for Medical Research The Pentagon, Room 30129 Washington, DC 20301

OUSDRE (E\&LS)
The Pentagon, Room 3D129
Washington, DC 20301

Under Secretary of Defense Research and Engineering Military Assistant, Training \& Personnel Support
The Fentagon
Washington, DC 20301
John T. Legowik, M.D.
Pulmonary Pathology Armed Forces

Institute of Pathology
Washington, DC 20306
Director
Army Audiology and Speech Center Walter Reed Army Medical Center Washington, DC 20307-5001

Commander
U.S. Army Institute of Dental Research
Walter Reed Army Medical Center
Washington, DC 20307-5300
Office of the Surgeon General
Department of the Army Canadian Forces Medical

Medical Liasion Office
Washington, DC 20310
Headquarters
U.S.Army, DAMA-WSA

The Pentagon
Washington, DC 20310
SAF/ALR (Dr. Bernard Paiewonsky)
Deputy of Advanced Technology
Assistant Secretary
of the Air Force
Research, Development and Logistics
Room 4D-977, The Pentagon
Washington, DC 20330-1000
HQ USAF/SGPA
Boliing Air Force Base
Washington, DC 20330-5000

Under Secretary of Defense
for Research and Engineering
ATTN: Military Assistant for Medical and Life Sciences
Washington, DC 20301
Under Secretary of Defense for Acquisition
Military Assistant
for Medical Research
The Pentagon, Room 3D129
Washington, DC 20301
AFIP/CPL-A/COL Charles Ruehle Washington, DC 20306

COL Franklin H. Top, Jr., MD
Walter Reed Army
Insititute of Research
Washington, DC 20307-5100
DASG-AAFJML-P
Joint Medical Library
The Pentagon, Room 1B-473
Washington, DC 20310

Headquarters
Department of the Army
(DASG-PSP-O)
Washington, DC 20310

Deputy for Environment \& Safety SAF/MIQ
The pentagon
Washington, DC 20330
Director of Aerospace Sciences Bolling Air Force Base Washington, DC 20332

Air Force Office of Scientific Research/NL Bolling Air Force Base Washington, DC 20332-6448

HQAFSC/SGP
Andrews Air Force Base, MD 20334-5000

AFSC/DL (Program Element Manager)
Andrews Air Force Base, MD 20334

Chief of Naval Operations op-91, Navy Department
Washington, DC 20350-2000
Chief of Naval Operations OP-098, Navy Department
Washington, DC 20350-2000
Naval Air Systems Command
Code AIR-5311
Washington, DC 20361

Commander
Air Systems Command (AIR-931)
Naval Air Systems Command HQ
Washington, DC 20361-0001
Commander
Naval Air Systems Command (AIR-933G)
Naval Air Systems Command HQ
Washington, DC 20361-9330
Commander
Naval Medical Command (MED-23)
Navy Department
Washington, DC 20372-5120
Naval Research Laboratory Library Code 1433
Washington, DC 20375

Commandant of the Marine Corps HQs, U.S. Marine Corps (MED) Washington, DC 20380-0001

Commander
Air Force Systems Command
Andrews Air Force Base
Washington, DC 20334-5000
Assistant Secretary of the Navy Research, Engineering \& Systems Navy Department Wasinington, DC 20350-1000

Chief of Naval Operations
OP-50, Navy Department
Washington, DC 20350-2000
Chief of Naval Operations OP-093, Navy Department Washingtor, DC 20350-2000

Naval Air Systems Command
Technical Air Library 950D
Jefferson Plaza II, Room 278
Department of the Navy
Washington, DC 20361
Commander
Air Systems Command (AIR-531)
Naval Air Systems Command HQ
Washington, DC 20361-5310
Commander
Naval Medical Command (MED-02D)
Navy Department
Washington, DC 20372-5120
Naval Medical Command (MEDCOM-00D4)
Navy Departments
Washington, DC 20372-5120
Naval Research Laboratory Library Shock and Vibration

Information Center, Code 5804
Washington, DC 20375
Commander of the Marine Corps HQs, U.S. Marine Corps (APW) Washington, DC 20380-0001

Surgeon General Malaysia USDAO Kuala Lumpur Department of state (Pouch Room) Washington, DC 20520

Jon L. Jorjan, M.D.
Deputy Federal Air Su=geon AAM-2
Federal Aviation Administration 800 Independence Avenue SW Washington, DC 20591

Commander
Naval Air Test Center (SY-70)
Patuxent River, MD 20670-5304
Harry Diamond Laboratories
Technical Information Branch
2800 Powder Mill Road
Adelphi, MD 20783-1197
Nicholas Yanowsky
Code 49 Naval Medicine Research and Development Command Naval Medicine
Command National Capital Region Bethesda, MD 20814

Commanding officer (Code 404)
Naval Medical Research and Development Command Bethesda, MD 20814-5044

Commanding officer
Naval Medical Research Institute Bethesda, MD 20814-5055

Arthur A. Wykes, Ph.D. Toxicology Information Program NLM, NTH, DHEW 18900 Diary Road Gaithersburg, MD 20879
U.S. Army Materiel Systems Analysis Agency
ATTN: Reports Processing
Aberdeen Proving Ground, MD 21005-5017

NASA Headquarters

NHB-12
600 Independence Avenue, SW
Washington, DC 20546
U.S. Navy Liaison Officer

Federal Aviation Administration
800 Independence Avenue SW
Washington, DC 20591

Dr. Charles J. Ruehle 1000 Lower Pindell Road Lothian, MD 20711

AFRRI Library
NNMC Building 42
Bethesdã, MD 20814

National Library of Science
TS-Index Medicus
8600 Rockville Pike
Bethesda, MD 20814

Commanding Officer
Naval Medical Research
and Development Command
NMC NCR
Bethesda, MD 20814-5044
Commanding Officer
Naval Medical Research and Development Commard National Naval Medical Center Bethesda, MD 20817

Director
U.S. Army Human Engineering Laboratory Technical Library Aberdeen Proving Ground, MD 21005-5001

Commander
U.S. Army Test and Evaluation Command ATTN: AMSTE-AD-H
Aberdeen Proving Ground, MD 21005-5055

Director
U.S. Army Ballistic Research Laboratory ATTN: DRXBR-OD-Tech Reports Aberdeen Proving Ground, MD 21005-5066
U.S. Army Environmental Hygiene Agency Laboratory
Building E-2100
Aberdeen Proving Ground, MD 21010

Technical Library
Chemical Research and Development Center
Aberdeen Proving Ground, MD 21010

Commander
U.S. Army MedicalResearch and Development Command
ATT: SGRD-RMS (Mrs. Madigan)
Fort Detrick, Frederick, MD 21701

Commander
U.S. Army Medical Bioengineering Research and Development Lab ATTN: SGRD-UBZ-I
Fort Detrick, Frederick, MD 21701
Office of Naval Research Code 440
800 North Quincy Street
Arlington, VA 22217
Director, Biological
Sciences Division
Office of Naval Research
600 North Quincy Street
Arlirgton, VA 22217
DTIC/FDAC
Cameron Station
Alexandria, VA 22304-6145
Commander
U.S. Army Materiel Command ATTN: AMCDE-S (CPT Broadwater)
5001 Eisenhower Avenue Alexandria, VA 22333
U.S. Army Ordnance Center and School Library
Building 3071
Aberdeen Proving Ground, MD 21005-5201

Commanding Officer
USAEHA
ATTN: Library Building E-2100
Aberdeen Proving Ground, MD 21010-5000

Commander
U.S. Army Medical Research Institute of Chemical Deferse
ATTN: SGRD-UV-AO
Aberdeen Proving Ground, MD 21010-5425

Commander
U.S. Army Medical Research Institute of Infectious Diseases
Fort Detrick, Frederick, MD 21701

Commanding General

Marine Corps Development and Education Command
Quantico, VA 22134-5001

Office of Naval Research
Code 441
800 North Quincy Street
Arlington, VA 22217
Chief of Naval Research ONR-144
800 North Quincy Street
Arlington, VA 22217-5000

Defense Techn Information Center
Cameron Station
Alexandria, VA 22314
Commanding Officer
U.S. Arny Research Institute

5001 Eisonhower Avenue
Alexandria, VA 22333

HQ, Department of the Army Office of The Surgeon General British Medical Liaison Officer DASG-ZX/COL M. Daly
5109 Leesburg Pike
Falls Church, VA 22401-3258
Mr. James S. Herndon
Center for Appli.ed
Psychological studies old Dominion University
Norfolk, VA 23508-8561
Commander
Naval Air Force
U.S. Atlantic Fleet (Code 018)

Norfolk, VA 23511-5188
Commandant
U.S. Army Aviation

Logistics School
ATTN: ATSQ-TDN
Fort Eustis, VA 23604
U.S. Army Training
and Doctrine Command
ATTN: ATCD-ZX
Fort Monroe, VA 23651
Structures Laboratory Library USARTL-AVSCOM
NASA Langley Research Center
Mail Stop 266
Hampton, VA 23665
William J. Murray, M.D.
Box 3094
Department of Anesthesiology
Duke Jniversity Medical Center
Hham, NC 27710
Commanding officer
Headquarters, RAAF Base
Point Cook Victoria,
Australia 3029
Aeromedical Service
U.S. Air Force Hospital/SGP

Moody Air Force Base, GA 31699
U.S. Army Foreign Science and Technology Center
ATTN: MTZ
220 Seventh Street NE
Charlottesville, VA 22901-5396

Mr. Ben B. Morgan, Jr. Center for Applied

Psychological studies Old Dominion University Norfolk, VA 23508-8561

Commanding General
Fleet liarine Force, Atlantic
Norfolk, VA 23515

Director,
Applied Technology Laboratory USARTL-AYSCOM
ATTN: Library, Building 401
Fort Eustis, VA 23604
U.S. Army Training
and Doctrine Command
ATTN: Surgeon
Fort Monroe, VA 23651-5000
HQTAC (SGPA)
Langley AFB, VA 23665-5000

Aviation Medicine Clinic TMC \#22, SAAF
Fort Bragg, NC 28305

John R. Barry
Phychology Department
University of Georgia
Athens, GA 30602
Aerospace Physiology
U.S.Air Force Hospital Tyndall

Tyndall Air Force Base,
FL 32403-5000

Naval Aerospace Medical Institute Library
Building 1953, Code 102
Pensacola, FLA 32508
Chief of Naval Education and Training $\mathrm{N}-02$
NAS Pensacola, FL 32508
Commanding officer
Naval Aerospace Medical Institite Building 488
NAS Pensacola, FL 32508-5600
Commanding officer
Naval Training Systems Center
orlando, FL 32813
U.S. Air Force Hospital/SGT

Patrick Air Force Base,
FL 32935-5000
Command Surgeon
U.S. Central Command MacDill Air Force Base, FL 33608

Dr. Richard B. Shepard Department of Surgery/UAB 718 Lyons Harrison Research Bldg. birmingham., AL 35294

Air University Library (AUL/LSE)
Maxwell Air Force Base, AL 36112
Commander
U.S. Army Aviation Center and Fort Rucker
ATTN: ATZQ-CDR
Fort Rucker, AL $363 \in 2$
Directorate of Training Development Building 502
Fort Rucker, AL 36362
Chief
Human Engineering Laboratory Field Unit
Fort Rucker, AL 36362

Chiof of Naval Education and Training
 $\mathrm{N}-1$

NAS Pensacola, FL 32508-5100
Chief of Naval Education and Training $\mathrm{N}-5$
NAS Pensacola, FL 32508
U.S. Air Force Armament Development and Test Center Eglin Air Force Base, FL 32542

Commanding Officer
Naval Training Equipment Center
Orlando, FL 32813-7100
CDR Stanley J. Coltune
1655 Drexel Avenue
Miami Seach, FL 33139
U.S. Air Force Regional

Regional Hospital/SGP
MacDill Air Force Base, FL 33608
U.S. Army Missile Command Redstone Scientific Information

Center ATTN: Documents Section Redstone Arsenal, AL 35898-5241

Commander
U.S. Army Aeromedical Center

Fort Rucker, AL 36362
Directorate of Combat Developments Building 507
Fort Rucker, AL 36362

Chief
Army Research Institute Field Unit Fort Rucker, AL 36362

Comnander
U.S. Army Safety Center

Fort Rucker, AL 36362

Commander

```
U.S. Army Aviation Center
```

 and Fort Rucker
 ATTN: ATZQ-T-ATL
Fort Rucker, AL 36362

President
U.S. Army Aviation Board Cairns Army Air Field
Fort Rucker, AL 36362
Netherlands Army Liaison Office Building 502
Fort Rucker, AL 36362
British Army Liaison Office
Building 602
Fort Rucker, AL 36362

Director
U.S. Army Aeromedical Activity

ATTN: HSXY-A
Fort Rucker, AL 36362-5000
CPT Dennis R. Trotts U.S. Air Force Hospital/SGT

Columbus, MS 39701-5000
Dr. C.A. Mertz
2101 East 41 st Street
Ashtabula, OH 44004

National Occupational Safety and Health Library C-21
Robert A. Taft Labs 4676 Columbia Parkway
Cincinnati, OH 45226
AFAMRL/HEX
Wright-Patterson AFB, OH 45433
Mi. Mark W. Cannon, Jr.

Human Engineering Division/HEA U.S. Air Force Aerospace Medical Research Laboratory Wright-Patterson AFB, OH 45433
U.S. Army Aircraft Development Test Activity
ATTN: STEBG-MP-QA
Cairns Army Air Field
Fort Rucker, AL 36362
Canadian Army Liaison Office
Building 602
Fort Rucker, AL 36362

German Army Liaison Office
Building 602
Fort Rucker, AL 36362
French Army Liaison Office
Building 502
Fort Rucker, AL 36362

Chief of Naval Technical Trainin (Code 0160)
NAS Memphis
Millington, TN 38054
Flight Surgeon's office
U.S. Air Force Hospital/SGP

Columbus Air Force Base, MS 39701
U.S. Army Research \& Technoiogy Labortories (AVSCOM)
Propulsion Laboratory MS 302-2
NASA Lewis Research Center
Cleveland, OH 44135
Wright State University School of Medicine Dept. of Community Medicine P.O. Box 927

Dayton, OH 45401
U.S. Air Force Institute
of Technology (AFIT/LDEE)
Building 640, Area B
Wright-Patterson AFB, OH 45433
Naval Medical Research Institute Toxicology Detachment (NMRI/TD) Building 433, Area B Wright Patterson AFB, OH 45433

Naval Medical Research Institute
Toxicology Detachment (NMRI/TD)
Building 433 , Area B
Wright-Patterson AFB, OH 45433
AAMRL/TIS (STINFO)
Wright-Patterson AFB, OH 45433

Mr. Herbert A. Colle Department of Psychology Wright state University Dayton, OH 45435

Dr. William G. Shafer
Indiana University
School of Dentistry
1121 West Michigan Street
Indianapolis, IN 46202
University of Michigan
NASA Center of Excellence
in Man-Systems Research
ATTN: R.G. Snyder, Director Ann Arbor, MI 48109

Waldo F. Keller, D.V.M.
A153 Veterinary Clinical Center College of Veterinary Medicine Michigan State University East Lansing, MI 48824

Government Publications Department University of Iowa Library Iowa City, IA 52242

133 TAC Hospital

Minnesota Air National Guard
Minneapolis-St Paul, MN 55111
U.S. Air Force

Regional Hospital/SGAS
Minot Air Force Base, ND 58701
U.S. Air Force AMRL/VL
Building 838
Wright-Patterson AFB, OH 45433

Commanding Officer
Harry G. Armstrong Aerospace Medical Research Laboratory Wright-Patterson AFB, OH 45433

Wright State University Biomedical Engineering Dept. ATTN: Dr. A. J. Caciappo School of Engineering Dayton, OH 45435

191 U.S. Air Force Clinic Selfridge Air Guard Base, MI 48045

Dr. James K. Avery
The University of Michigan
School of Dentistry Room \#3209
Ann Arbor, MI 48109
Roger DeHaan
921 Britten Avenue Lansing, MI 48910-1325

Technical Report Center Engineering Library 215 North Randall Avenue Madisor. NI 53706

LT COL Letter G.H. Lewis HC 70 Box 4705 Lake Kabekona Laporte, MN 56461-9502

Dr. M. K. Wells
Department of Civil Engineers
and Engineering Mechanics Montana State University Bozeman, MT 59170

Commanding officer
Naval Dental Research Institute
Great Lakes, IL 60088-5259

John J. Hefferren, Ph.D. American Dental Association 211 East Chicago Avenue Chicago, IL 60950

Henry L. Taylor
Director, Institute of Aviation
University of Illinoiswillard Airport
Savoy, IL 61874
HQ MAC/SGPB
Scott Air Force Base, IL 62225
Derlene R. Sredl
AV-Nurse International Inc. P.O. BOX 1247

Ballwin, MS 63011

Commander
U.S. Army Aviation Systems Command

ATTN: DRSAV-ED
4300 Goodfellow Boulevard
St. Louis, MO 63120
Commander (ATTN: AMSAV-DACL)
U.S. Army Aviation Systems Command 4300 Goodfellow Boulevard
St. Louis, MO 63120-1798

Project officer
Aviation Life Support Equipment ATTN: AMCPO-ALSE
4300 Goodfellow Boulevard
St. Louis, MO 63120-1798
Dr. Benjamin D. Fremming Laboratory Animal center 1015 East 50th Street Kansas City, MO 64110

Laura Ann Wilber, Ph.D.
Hearing Clinic
Frances Searle Building
Northwestern University 2299 Sheridan
Evanston, IL 60201
U.S. Air Force Hospital/ATC Chanute Air Force Base, IL 61868

John A. Dellinger, MS, ATP University of IllinoisWillard Airport
Savoy, IL 61874

HQ MAC/SGPC
Scott Air Force Base, IL 62225
Commander
U.S. Army Aviation Systems Command

ATTN: SGRD-UAX-AL (MAJ Lacy)
4300 Goodfellow Blvd., Bldg. 105
St. Louis, MO 63120
U.S. Army Aviation Systems Command Library \& Information Center Br.
ATTN: DRSAV-DIL
4300 Goodfellow Boulevard
St. Louis, MO 63120
Commander
U.S. Army Aviation Systems Command

ATTN: DRSAV-WS
4300 Goodfellow Boulevard
St. Louis, MO 63120-1798
George X. Trimble, M.D.
101 Memorial Drive
Kansas City, MO 54108

Dr. Jay Goldman
113 Electrical Engineering University of Missouri Columbia, MO 65211

Document Department
Library
Kansas State University
Manhattan, KS 66506
HQSAC/SGPF
Offutt Air Force Base, NE 68113

Dr. James May
Department of Psychology
University of New Orleans, Lakerront
New Orleans, LA 70148
Medical Library
USAF Hospital England/SGOAL
England AFB, LA 71322

Dr. Jerry L. Purswell
202 west Boyd, ${ }^{7} 124$
University of Oklahoma
Norman, OK 73069

Federal Aviation Administration
Civil Aeromedical Institute, AAM-100
P.O. Box 25082

Oklahoma City, OK 73125
Federal Aviation Administration
Civil Aeromedical Institute
CAMI Library AAC 64D1
P.O. Box 25082

Oklahoma City, OK 73125
Mr. Tnompson
OC-ALC/MMIRAE
Tinker Air Force Base, OK 73145
Mr. Ron Griffin
OC-ALC/MMIRAP
Tinker Air Force Ease, OK 73145
U.S. Air Force Hospital Tinker/SGPS

Tinker Air Force Base, OK 73145

Boeing Milita: Y Airplane Co. Library
Wichita, KS 67220

Chairman
Department of Psychology Tulane University New orleans, LA 70018

Commanding Officer
Naval Biodynamics Laboratory
P.O. Box 29407

New Orleans, LA 70189-0407
Harry D. Olree
P.O. Box 765

Hading College
searcy, AR 72143
J.R. Hordinsky, M.D.

Mgr., Aeromedical Research Br.
AAC-110 TAA
P.O. BOX 25032

Oklahoma, OK 73125
Dr. Nilliam E. Collins
FAA-CAM1, AAC-118
P.O. BOX 25082

Oklahoma City, OK 73125
J. Robert Dille, M.D., AC-100

Dir., Civil Aeromedical Institute
Federal Aviation Administration
P.O. BOX 25032

Oklahoma City, OK 73125
Mr. Robert Oltmanns
OC-ALC/MIIRAE
Tinker Air Force Base, OK 73145
Charles j. Hoskins
OC-ALC/MMIRAP
Tinker Air Force Base, OK 73145
U.S. Army Field Artillery School

ATra: Library
Snow Hall, Room 14
Fort Sill, OK 73503

```
Ministere de la Defense
EASSAA-CERMA
26, boulevard Victor
Paris Armees, France }7599
```

S.B. Sells, Ph.D.
Director Institute
of Behavioral Research
Texas Christian University
Box 32902
Fort Worth, TX 76129
Houston Academy of Medicine
Texas Medicine Center Library
Jesse H. Jones Library Building
Houston, TX 77030
William J. Frome, D.D.S.
NASA/Johnson Space Center SD24
Houston, TX 77053
Chairman
Department of Psychology
Texas A\&M University
college Station, TX 77843
Herman S. Wigodsky
420 East Houston Street
San Antonio, TX 78205
Dr. Bryce O. Hartman
USAFSAM/NG
Brooks Air Force Base, TX 78234
Commander
U.S. Army Institute
of Surgical Research
ATTN: SGRD-USM (Jan Duke)
Fort Sam Houston, TX 78234-6200
U.S. Air Force School
of Aerospace Medicine
Strughold Aeromedical Library
Documents Section, USAFSAM/TSK-4
Brooks Air Force Base, TX 78235

Ecole D'Application Du Service
De Sante, Pour L'Armee De L'Air
Et Centre D'Estudes
De Medecine Aerospatiale
26, boulevard Victor
Paris Armees, France 75996
Texas Christian University
Box 32902
Fort Worth, TX 76129

Richard T. Walter EN-3
NASA Johnson Space Center
Houston, TX 77058

NASA
Mail Code CB/Senior Naval Officer
Johnson Space Center
Houston, TX 77058
HQATC/SGPA
Randolph Air Force Base, TX 78150

Commandez

```
U.S. Army Academy
    of Health Sciences
ATTN: Library
Fort Sam Houston, TX 78234
```

Commander
U.S. Army Health Services Command
ATTN: HSOP-SO
Fort Sam Houston, TX 78234-6000
Director of Professional Services
AFMSC/GSP
Brooks Air Force Base, TX 78235

USAFSAM/EDB
ATTN: T.A.C.O
Brooks Air Force Base, TX 78235

USAFSAM/EDB
ATTN: MAJ Rick Island Brooks Air Force Base, TX 78235

```
HSD/SORT
ATTN: Belva Williams
Brooks Air Force Base, TX }7823
Dr. Samuel G. Schiflett
USAFSAM/VNB
Brooks Air Force Base, TX 78235
Commander
U.S. Air Force
    Human Systems Division
Brooks Air Force Base, TX }7823
Stronghold Aeromedical Library
Documents Section (TSKD)
U.S. Air Force
    School of Aerospace Medicine
Brooks Air Force Base, TX }7823
MSgt Loras White
433rd TAC Hospital
4 3 3 ~ T A W
Kelly Air Force Base, TX 78241
Chief of Naval Air Training
N-3
NAS Corpus Christi, TX }7841
U.S. Air Force Hospitai Laughlin/SGP
Laughlin Air Force Base, TX 78840
```

Dr. Charles Wilber
Department of Zoology
Colorado State University
Fort Collins, co 80523-5000
U.S. Army Dugway Proving Ground
Technical Library
Bujlding 5330
Dugway, UT 84022
U.S. Army Yuma Proving Ground
Technical Library
Yuma, A2 85364
U.S. Air Force Clinic/SGP
Brooks Air Force Base, TX 78235
USAFSAM/TSK
Brooks Air Force Base, TX 78235
USAFSAM/NGEA
ATTN: Mr. Sutherland
Brooks Air Force Base, TX 78235
HSD/SORT/Mrs. L. Glisson
Brooks Air Force Base, TX 78235Aerospace Associates Inc.
309 Driftwind
San Antonio, TX 78239
Head, Aviation Physiology Training
Naval Regional Medical CenterCode 08
Corpus Christi, TX 78419
Memorial Library
1801 Lamar Boulevard
Austin, TX 78701
ChairmanPsychology DepartmentTexas Tech UniversityLubbock, TX 79409

USAF Clinic/SG
Peterson Field, CO 80914-5000

Arizona State University Library Government Documents Tempe, AZ 85281
U.S. Air Force Fospital Cavis Monthan Air Force Base AZ 85707-5000

162 Tactical Clinic (TAC) AzANG	Mr. Howard A. Hasbrook
P.O. Box 11037	Aviation Safety Consultant
Tucson, AZ 85734	Campwood Route
	Prescott, AZ 86301
U.S. Air Force	U.S. Army White Sands
Hospital Kirland/SGAL	Missile Range
Kirtland Air Force Base, NM 87115	Technical Library Division
	White Sands Missile Range,
	NM 88002
U.S. Air Force Hospital/SGHL	Joseph Raymond, M.D.
Holloman Air Force Base, NM 88330	Associate Director
	UCLA Center for Health Science
	Los Angeles, CA 90024
Biomedical Library	Oscar J. Balchum, M.D.
Center for Health Sciences	University of Southern California
University of California	Medical School
Los Angeles, CA 90024	2025 Zonal Avenue
	Los Angeles, CA 90033
Library	Dr. Diane Damos
Los Angeles County	Department of Human Factors
Medical Association	ISSM, USC
634 South Westlake Avence	Los Angeles, CA 90089-0021
Los Angeles, CA 90057	
USAF Clinic Chicksand/SGA	Medecin-Chef du Centre d'Essais
APO New York 90103-5000	en Vol (CEV) et du Laboratoire de Medecine Aerospatiale (LAMAS
	Centre d'Essais en Vol, B.P. No 2
	Bretigny Air, France 91220
146 TAC Hospital (MAC)	Commander
8030 Balboa Boulevard	Naval Air Force
Van Nuys, -A 91409	U.S. Pacific Fleet (Code 014)
	NAS North Island
	San Diego, CA 92135-5100
Library	Commanding Officer
Naval Health Research Center	Naval Health Research Center
P.O. Box 85122	P.O. Box 85122
San Diego, CA 92138-9174	San Diego, CA 92138-9174
NPRDC Technical Library	Commanding officer
San Diego, CA 92152	Library Code 231
	Navy Personnel Research and Development Command
	San Diego, CA 92152-6800

162 Tactical Clinic (TAC) AzANG
P.O. Box 11037

Tucson, AZ 85734
U.S. Air Force

Hospital Kirland/SGAL
Kirtland Air Force Base, NM 87115
U.S. Air Force Hospital/SGHL

Holloman Air Force Base, NM 88330

Biomedical Library
Center for Health Sciences
University of California
Los Angeles, CA 90024

Library

Los Angeles County Medical Association 634 South Westlake AvenLe Los Angeles, CA 90057

USAF Clinic Chicksand/SGA APO New York 90103-5000

146 TAC Hospital (MAC)
8030 Balboa Boulevard
Van Nuys, :A 91409

Library
Naval Health Research Center . Box 85122
San Diego, CA 92138-9174
NPRDC Technical Library
San Diego, CA 92152

Mr. Howard A. Hasbrook
Aviation Safety Consultant
Campwood Route
Prescott, AZ 86301
U.S. Army White Sands Missile Range
Technical Library Division White Sands Missile Range, NM 88002

Joseph Raymond, M.D.
Associate Director
UCLA Center for Health Science

Oscar J. Balchum, M.D.
University of Southern California
Medical School
2025 Zonal Avenue

Dr. Diane Damos
Department of Human Factors ISSM, USC
Los Angeles, CA 90089-0021

Medecin-Chef du Centre d'Essais en Vol (CEV) et du Laboratoire de Medecine Aerospatiale (LAMAS)
Centre d'Essais en Vol, B.P. No 2
Bretigny Air, France 91220
Commander
Naval Air Force
U.S. Pacific Fleet (Code 014)

Island

Commanding Officer
aval Health Research Center
O. Box 85122

Commanding officer
Library Code 231 and Development Command
San Diego, CA 92152-6800

```
U.S. Air Force Clinic Norton/SGP
Norton Air Force Base, CA 92409
```

AFFTC Technical Library
6520 TESTG/ENXL
Edwards Air Force Base, CA 93523

Mr. Ron Erikson
Code 31504
Naval Weapons Center
China Lake, CA 93555
Commander (Code 64A)
Naval Weapons Center
China Lake, CA 93555

Charles E. Billings
Mail Stop 239-2
NASA-AMES Research Center
Moffett Field, CA 94035
Dr. Alan Chambers
Mail Stop 239-1
Ames Research Center
Moffett Field, CA 94035

Commander

Letterman Army Institute of Research ATTN: Medical Research Library
Presidio of San Francisco,
CA 94129
David Grant Medical Center/SGPM
Travis Air Force Base, CA 94535

Bruce W. Jackson, M.D. 2828 Russell Streer
Berkeley, CA 94705
Dr. A. H. Smith
Chronic Acceleration Research
Dept. of Animal Physiology
University of California Davis, CA 95616

Commander
Pacific Missile Test Center
Point Mugu, CA 93042
U.S. Army Aviation Engineering Flight Activity
ATTN: SAVTE-M (Tech Lib) Stop 217
Edwards Air Force Base, CA 93523
Commander
Code 3431
Naval Weapons Center
China Lake, CA 93555
U.S. Army Combat Developments Experimental Center
Technical Information center
Building 2925
Fort Ord, CA 93941-5000
NASA
Ames Research Center
Library 202-3
Moffett Field, CA 94035
Aeromechanics Laboratory
U.S. Army Research
and Technical Laboratories
ふmes Research Center, M/S 215-1
Moffett Field, CA 94035
Sixth U.S. Army
ATTN: SMA
Presidio of San Francisco, CA 94129

Director
Naval Biosciences Laboratory
Naval Supply Center, Bldg 844
Oakland, CA 94625
U.S. F.ir Force

Hospital Castle/SGP
Castle Air Force Base, CA 95342
U.S. Air Force

Clinic McCleilan/SGP
McClellan Air Force Base,
CA 95652-5000
U.S. Air Force Hospital Mather/SGP Mather Air Force Base, CA 95655

USAF Hospital Yckota/SGPF APO San Francisco, CA 96328

Surgeon General Thailand USDAO American Embassy APO San Francisco 96336-5000

USAF Hospital OSAN/SGP APO San Francisco 96570-5000

HQ PACAF/SGPA
Hickam Air Force Base, HI 96853

The Boeing Military Airplance Co.
ATTN: Library Acquisitions
P.O. Box 3707

Seattle, WA 98124
Engineering Library
University of Washington
Seattle, WA 98195
Commanding officer
Centre of Aerospace Medicine
Quarter's King Albert Ith
Raketstraat 70
Brussels, Belgium B-1130
Schiffahrtmedizinisches Institut der Marine
Bibliotheksoffizier
Kopperpahler Allee 120
Kronshagen
Federal Republic of Germany D-2300
Director Naval Medical Service
Chief of Defence
Postbox 202
Vedbaek, Denmark DK 2950

MAJ Tim Philpott
USAF Clinic/15PTF
APO San Francisco, CA 96239

Medical Library
USAF Clinic Andersen
SAC/SGPB
APO San Francisco 96334-5000
Commanding officer
U.S. Naval Medical Research

Unit No. 2
APO San Francisco 96528-5000
Surgeon Major, Singapore AF
USDA, American Embassy
APO San Francisco 96699-0001
Commanding General
Fleet Marine Force, Pacific
Camp H. M. Smith, HI 96861
Primate Information Center
Regional Primate Research Ctr.
University of Washington
Seattle, WA 98195
U.S. Air Force

Clinic McChord/SGP
McChord Air Force Base, WA 98438
Commanding officer
404 Squadron CFB Greenwood
Greenwood, NS, Canada BOP 1NO

Head, Underwater Madicine Division
DFVLR Institute ror Aerospace Medicine
Linder Hohe, Koln 90
Federal Republic of Germany D-5000

DRIC, Distribution Section
Procurement Executive
Ministry of Defence
Kentigern House, 65 Brown Street Glasglow, United Kingdom G2 8EX

National Defence Headquarters
101 Colonel By Drive
ATTN: DPM
Ottawa, Ontario, Canada k1A 0K2

USAF/AFSC Liaison Office
110 O'Connor street, Suite \#202
ottawa, Ontario, Canada KIP56J
Major J. Soutendan (Retired)
Technical Advisor, Canadian
Air Line Pilots :ssociation
1300 Steeles Avenue East
Brampton, Ontario, Canada L6T 1A2
Chief
Defence and Civil Institute
of Environmental Medicine
P.O. Box 2000

ATTN: Director MLSD
Downsview, Canada M3M 389
Aeromedical Training officer
School of Operational and Aviation Medicine
Defense \& Ciril Institute of Envir.
Medicine, 1133 Sheppard Avenue West Downsview, Untario, Canada M3M 3B9

Dr. Alan H. Roscoe
Medical Department
Royal Aircraft Establishment
Bedford, United Kingdom MK41 GAE
Head, DRPS
Institute of Naval Medicine
Alverstoke iosport Hants
United Kingrom P012 2DL
FOA Dept. 5
Linkoping, Eiweden S-580 13

Dept. of Aviation Medicine HQ Director Army Air Corps Middle Wallop, Stockbridge Hants, United Kingdom S020 8DY

Dr. S. Laham, Head
Occupational Toxicology Research
B-35, Environmental Health Centre
Health and Welfare
Ottawa, Canada KIA OL2
Health Science Library
University of Alberta
Edmonton, Alberta, Canada T6G 2J8
Professor G. R. Hervey
Department of Physiology
The University of Leeds
Leeds, United Kingdom LS2 9JT

Officer Commanding
School of Operational
and Aerospace Medicine
DCIEM P.O. Box 2000
1133 Sheppard Avenue West
Downsview, Canada M3M 3B9
Canadian Society of Aviation
Medicine c/o Academy of Medicine ATTN: Ms. Carmen King 288 Bloor Street West Toronto, Canada M55 1V8

University of Trondheim Norwegian Institute of Technology The Library
Troludheim-NTH, Norway N-7034
Head, DRPS
Institute of Naval Medicine
Alverstoke Gosport Hants
United Kingdom P012 2DL
Specialist in Aviation Medicine
HQ, Director A\&M MR Corps
Middle Wallop, Stockbridge Hants, United Kingdom SO20 8DY

Specialist in Aviation Med. HQ Director A\&M MR Corps Middle Wallop, Stockbridge Hants, United Kingdom S020 8DY

Department of Aviation Medicine HQ Director Army Air Corps Middle Wallop, Stockbridge Hants, United Kingdom S020 8DY

