

UNCLASSIFIED

THIS PAGE IS UNCLASSIFIED

WADC TECHNICAL REPORT 53-106

+1-215

DO NOT DESTROY REFUENTO TECHNICAL LANXIEST NE CONTROL SECTION WCOSE3

TENSILE AND TENSILE-FATIGUE PROPERTIES OF TRANSPARENT ENCLOSURE ATTACHMENTS FOR AIRCRAFT

ECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

RAYMOND D. LIGGETT Elber Latham J. G. Stansbury

SWEDLOW PLASTICS COMPANY

APRIL 1953

Sonnned by DTIC

Statement A Approved for Public Release

WRIGHT AIR DEVELOPMENT CENTER

200 30 50 10 12

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The information furnished herewith is made available for study upon the understanding that the Government's proprietary interests in and relating thereto shall not be impaired. It is desired that the Judge Advocate (WCJ), Wright Air Development Center, Wright-Patterson Air Force Base, Ohio, be promptly notified of any apparent conflict between the Government's proprietary interests and those of others.

0000000000

TECHNICAL LIBRARY ABBOTTAEROSPACE.COM

FOREWORD

This report was prepared by Swedlow Plastics Company under Air Force Contract Number AF 33 (038)-22456. The work was administered under the Special Projects Branch, Aircraft Laboratory, Wright Air Development Center, with Captain F. M. Cooper acting as project engineer. The project was identified by RDO No. 453-303 "Development of Stronger and More Fatigue Resistant Attachments for Transparent Materials".

ABSTRACT

Fifteen types of edge attachments, eight for monolithic acrylic material and seven for laminated acrylic material were designed, fabricated and tested for tensile strength at room temperature and -65°F, and in tensile-fatigue at room temperature. Thirteen of these types were designed using MIL-P-6886 acrylic material and two were designed using MIL-P-5425 acrylic material.

Though ultimate tensile strengths vary widely depending on design and materials used in the attaching edge, it appears that the tensilefatigue limit in all cases where good engineering design practices are maintained approaches one pound per mil thickness per inch of width of MIL-P-6886 transparent acrylic material at 500,000 cycles. Although MIL-P-5425 acrylic material appears to have a slightly greater endurance limit, insufficient data are available to definitely draw such a conclusion.

PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR THE COMMANDER:

lof 0509

DANIEL D. MCKEE Colonel, USAF Chief, Aircraft Laboratory Directorate of Laboratories

TABLE OF CONTENTS

IECHNICAL LIBRARY

Page

Tensile and Tensile-Fatigue Properties of Transparent	
Enclosure Attachments for Aircraft	1
Appendix I, Material Specifications	12
Appendix II, Transparent Enclosure Edge Attachment Designs	14
Appendix III, Tensile Test Data	30
Appendix IV, Tensile-Fatigue Data	36

LIST OF TABLES

Table 1	L	Average Tensile	Strengths	2
Table 2	2	Tensile-Fatigue	At Ambient Temperature	3

LIST OF FIGURES

Figure 1.	Tensile-Fatigue Units Six to Ten	5
Figure 2.	Tensile-Fatigue Unit, Drive End	5
Figure 3.	Tensile-Fatigue Units, With Cold Box	6
Figure 4.	Test Specimens	6
Figure 5.	Test Specimens	7
Figure 6.	Test Specimens	7
Figure 7.	Test Specimens	8
Figure 8.	Test Specimens	8
Figure 9.	Test Specimens	9
Figure 10.	Test Specimens	9
Figure 11.	Test Specimens	10
Figure 12.	Test Specimens	10
Figure 13.	Specimen Showing Typical Fatigue Fracture	11
Figure 14.	Specimen Showing Typical Fatigue Fracture	11

LIST OF FIGURES-CONTINUED

ROVIDED BY THE A

TECHNICAL LIBRARY

/BBOT

Page

Figure	15.	Detailed Design	of Specimen	STS-001A	15
Figure	16.	Detailed Design	of Specimen	STS-002	16
Figure	17.	Detailed Design	of Specimen	STS-003A	17
Figure	18.	Detailed Design	of Specimen	STS-004A	18
Figure	19.	Detailed Design	of Specimen	STS-005	19
Figure	20.	Detailed Design	of Specimen	STS-007	20
Figure	21.	Detailed Design	of Specimen	STS-008	21
Figure	22.	Detailed Design	of Specimen	STS-009	22
Figure	23.	Detailed Design	of Specimen	STS-010	23
Figure	24.	Detailed Design	of Specimen	STS-012	24
Figure	25.	Detailed Design	of Specimen	STS-013	25
Figure	26.	Detailed Design	of Specimen	STS-014A	26
Figure	27.	Detailed Design	of Specimen	STS-015	27
Figure	28.	Detailed Design	of Specimen	STS-022	28
Figure	29.	Detailed Design	of Specimen	STS-023	29
Figure	30.	Tensile-Fatigue	Data 70°F.,	STS-001A	37
Figure	31.	Tensile-Fatigue	Data -65°F,	STS-001A	38
Figure	32.	Tensile-Fatigue	Data 70°F.,	STS-002	39
Figure	33.	Tensile-Fatigue	Data -65°F,	STS-002	40
Figure	34.	Tensile-Fatigue	Data 70°F.,	STS-003A	41
Figure	35.	Tensile-Fatigue	Data -65°F,	STS-003A	42
Figure	36.	Tensile-Fatigue	Data 70°F.,	STS-004A	43
Figure	37.	Tensile-Fatigue	Data 70°F.,	STS-005	44
Figure	38,	Tensile-Fatigue	Data 70°F.,	STS-007	45
Figure	39.	Tensile-Fatigue	Data 70°F.,	STS-008	46
Figure	40.	Tensile-Fatigue	Data 70°F.,	STS-009	47
Figure	41.	Tensile-Fatigue	Data 70°F.,	STS-010	48
Figure	42.	Tensile-Fatigue	Data 70°F.,	STS-012	49
Figure	43.	Tensile-Fatigue	Data 70°F.,	STS-013	50
Figure	44.	Tensile-Fatigue	Data -65°F,	STS-013	51
Figure	45.	Tensile-Fatigue	Data 70°F.,	STS-014A	52
Figure	46.	Tensile-Fatigue	Data 70°F.,	STS-015	53
Figure	47.	Tensile-Fatigue	Data 70°F.,	STS-022	54
Figure	48.	Tensile-Fatigue	Data 70°F.,	STS-023	55

TECHNICAL LIBRARY ABBOTTAEROSPACE.COM

TENSILE AND TENSILE-FATIGUE PROPERTIES OF TRANSPARENT

ENCLOSURE ATTACHMENTS FOR AIRCRAFT

Late in World War II it became apparent that transparent enclosures for aircraft could no longer be attached by the simple means previously used in unpressurized craft. This realization induced a general reaction toward edge reinforcement in the technical sections of all concerns involved. Solutions to the problem were in many cases independently evolved and consequently many types of attaching edges appeared.

The basic purposes for this attaching edge were threefold:

- 1. To increase bearing strength.
- 2. To prevent the inception of fracture in the body of the transparent material.
- 3. To prevent propogation of fracture from the attaching edge into the body of the transparent material.

The direction of attack to achieve these purposes has been universally similar in that some attaching edge has been cemented to the transparent enclosure. The materials used for this purpose have varied widely and include cast acrylic reinforcing strips, rubber extrusions, stainless wire screen - acrylic laminates, square woven Fiberglas cloth-acrylic laminates, and free Nylon loops. More recent inovations have included new weaves of glass cloth as satin weaves and unidirectional weaves built into acrylic laminates and many synthetic fiber acrylic laminates, most notably Orlon and Dacron.

This report covers engineering data sponsored and financed by Wright-Development Center, Wright-Patterson Air Force Base, Dayton, Ohio, on tensile strength and tensile-fatigue of fifteen edge attachment designs (see Appendix II, Page 14 through 29). These designs are similar to six which have been in actual use in the past several years. However, they have been arbitrarily adapted to both monolithic and laminated acrylic sheets as well as to standard caliper transparent stock to reduce the number of variables. Monolithic designs are all adapted to transparent material .312 inch thick, and laminated designs are all adapted to .500 inch laminated material consisting of two outside skins of acrylic sheet .150 inches thick, with a center ply of polyvinal butyral .200 inches thick. All designs were developed using MIL-P-6886 transparent material except STS-022 and STS-023 (Appendix II, Page 28 and 29) in which MIL-P-5425 transparent material was used. Otherwise these two designs were duplicates of STS-001A and STS-002 respectively.

Forty two specimens of each of the fifteen designs were fabricated for test purposes in thirteen inch long panels and the specimens were cut and finished from the panels. Materials used in the fabrication of these specimens are described in Appendix I, Page 12 and 13.

All tensile and tensile-fatigue tests were conducted on rigid attaching edge specimens in bearing on two evenly spaced 1/4 inch pins (see Figure 1, Page 5). The Nylon loop types were tested with a lateral locking pin in a slot simulating actual frame installation.

Ultimate tensile strengths were determined for each of these designs at both $70^{\circ}F. \pm 5^{\circ}F.$ and $-65^{\circ}F. \pm 0^{\circ}F. - 5^{\circ}F.$

TECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

Table 1 shows these values as averages of 10 specimens in each case. The wide variation in these average values is due to the original design strength and the comparison of the specimen design with the corresponding ultimate thesile makes apparent the reasons for corresponding high and low values. The erratic increase or decrease due to thermal depression may be of design interest but will not be discussed in this report. Tensile test details and data are in Appendix III, Page 30 through 35.

TABLE 1

AVERAGE TENSILE STRENGTHS

DESIGN	TENSILE STE PER INCH	CENCTH IN LBS.	INCREASE (+)OR DECREASE (-)	
	<u>+70°F ± 5°F</u> .	<u>-65°F.+0°F -5°F</u> .	Lbs/inch	Percentage
STS-001A	1379	1728	↓ 348	+ 39.9
STS-002	1771	2201	+ 430	+ 24.3
STS-003A	913	1019	+ 106	+ 11.6
STS-004A	1391	1362	- 29	- 2,1
STS-005	598	773	+ 175	+ 29.3
STS-007	331	800	+ 469	+141.6
STS-008	630	605	- 25	- 4.0
STS-009	628	769	+ 151	+ 22.5
STS-010	1076	1148	+ 72	+ 6.7
STS-012	1222	1533	+ 311	+ 25.5
STS-013	1803	1416	- 387	- 21.5
STS-014A	1491	1605	♦ 114	+ 7.6
STS-015	1467	2041	+ 574	+ 39.1
STS-022	1522	2052	+ 550	+ 36.4
STS-023	1206	2771	+1565	+129.7

Equipment for tensile-fatigue testing was specially designed and constructed to meet the requirements of this program. The design requirements were as follows:

- 1. Load accuracy to 11%.
- 2. Elongation from 0 to 10% in a 10 inch specimen.
- 3. All loads in the positive or tensile direction with a minimum load in each cycle of zero pounds.
- 4. Adjustable maximum load in each cycle from 100 lbs. to 5,000 lbs.
- 5. Cycling rate of approximately 15 cycles per minute.
- 6. An even division within the cycle between (a) at rest, or zero load, (b) apply stress, (c) maintain stress, (d) decrease stress.

The design finally evolved to meet these requirements was a simple beam mechanism with a variable fulcrum. Load accuracy was maintained through careful design, accurate calibration and careful operational techniques. Elongation variations were made possible by the use of a variable cam drive. Stress was applied by dead weight application at the aft end of the simple beam through a

cam operated rocker arm. As the dead weight came to rest on a platform, no compressive load was applied to the specimen. Cycling rate was arrived at by a simple mechanical speed reduction to the drive cam. Item 5 above posed a difficult problem in that normal fatigue cycles follow a sine wave pattern. The equipment design for this program arrived at four even quadrants of cycle in the following manner. The "at rest" position was maintained at no load by resting the dead weight load on a tray. In the second quadrant stress was applied by lifting the dead weight on a restrained helical spring calibrated to support slightly more than the dead weight. Stress was maintained by lifting and suspending the dead weight load. Stress was decreased by resting the weight on a tray and decreasing the spring tension to zero. Figures 1, 2, and 3, on Pages 5 and 6 show the equipment at work.

Fatigue data is reported herein as ultimate load in pounds per inch of attaching edge. Detailed results are given in Appendix IV, Page 36 through 55. Table 2 below shows a tabulated comparison of fatigue results.

TABLE 2

	TENSILE-FAT	GUE AT AMBIENT	TEMPERATURE (75°F.	, ± 5°F.)
SPECIMEN NUMBER	FATIGUE STRENG 1.000 Cycles	TH IN LBS. PER 10.000 Cycles	INCH OF ATTACHING 100.000 Cycles	EDGE AT: 500,000 Cycles(Est)
STS-001A	825	645	485	420
STS-002	7 90	55 5	420	370
STS-003A	495	350	245	220
STS-004A	740	520	335	270
STS-005	405	345	300	300
STS-007	230	200	175	150
STS-008	500	450	410	380
STS-009	415	340	265	210
STS-010	530	360	320	310
STS-012	590	425	330	310
STS-013	680	460	365	340
STS-014A	790	575	450	420
STS-015	760	525	360	320
STS-022	850	650	560	540
STS-023	740	585	450	410

Several conclusions emerge from the fatigue data as evolved. All rigid attachments show a steep decline of fatigue strength. Nylon attachments STS-005, STS-007, STS-008, and STS-009, though they do not have a high initial strength, show a very flat fatigue decline as compared to the rigid designs. Fiberglasacrylic attaching edges to MIL-P-6886 acrylic sheet in general show a typical slope of loss and appear to approach an endurance limit of approximately 300 lbs. per inch of width. Since all specimens are designed on either .312" thick monolithic sheet or .300" acrylic sheet in one half inch laminated stock this value seems to approach 1 pound per mil thickness of the transparent sheet.

For identical designs and a difference only in the acrylic sheet a rather interesting comparison can be made between STS-001A and STS-002, (MIL-P-6886) and their equivalents, STS-022 and STS-023 (MIL-F-5425). Initial strengths are somewhat at variance but fatigue strength at 1,000 cycles and again at 10,000 cycles

-3-

are almost identical for the monolithic designs (STS-001A and STS-022) and for the laminated designs (STS-002 and STS-023). However, beyond this point MIL-P-5425 sheet shows definitely super characteristics.

TECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

Tensile-fatigue tests were started at -65° F. on specimens STS-001A, STS-002, and STS-003. Results showed an amazing similarity between room temperature and depressed temperature data, with the cold temperature fatigue essentially strengths parallel to, but higher than the room temperature fatigue strengths (Figure 31, Page 38, Figure 33, Page 40 and Figure 35, Page 42).

It was decided that should this be the case all the way through, further pursuit along this line would not be worth the relatively great amount of time and effort involved, particularily in view of the fact that the information evolved would be of little or no value insofar as edge attachment designs is concerned.

To prove this apparent relation it was decided to pick a design where cold temperature ultimate tensile strength was materially less than room temperature tensile. STS-013 seemed to fit this description nicely since it shows a 21.5%loss in tensile strength at -65°F. (Table 1, Page 2).

Tensile-fatigue data as developed on STS-013 (Figure 44, Page 51) shows the fatigue strengths at room temperature and at -65° F. equal at approximately 40 cycles, and the predicted relation of higher values at cold temperatures thereafter. This probably indicates an unbalanced condition of internal stress in this design at depressed temperatures.

Cold fatigue work was discontinued at this point for the reasons outlined above.

-4-

Figure 1. Tensile-fatigue units six to ten showing specimens in test position in the specimens grips.

Figure 2. The operating and control end of the tensile-fatigue unit six to ten showing dead weight loads and rock arm assembly.

Figure 3. Tensile-fatigue units one to five showing cold chamber.

Figure 4. Test specimens.

Figure 5. Test Specimens.

Figure 6. Test Specimens.

Figure 7. Test Specimens.

Figure 8. Test Specimens.

Figure 9. Test Specimens.

Figure 10. Test Specimens.

TECHNICAL LIBRARY

Figure 11. Test Specimens.

Figure 12. Test Specimens.

WADC TR 53-106

-10-

Figure 14.

Figure 13 and Figure 14 show typical fatigue fracture and craze originating from the butyral layer after long cycling at relatively high loads for laminated specimens.

APPENDIX I

MATERIAL SPECIFICATIONS

Monolithic cast acrylic sheet per specification MIL-P-6886 (.312"; 1/16"; 3/16"). Source: Rohm & Haas, Knoxville, Tennessee.

Nonolithic cast acrylic sheet per specification MIL-P-5425, (.312"). Source: Rohm & Haas, Knoxville, Tennessee.

Laminated cast acrylic sheet per BMS 8-4 (.50"). Surface sheets .15" Polyvinyl butyral innerlayer sheet .20". Source: Pittsburgh Plate Glass Company, Creighton, Penna.

Laminated cast acrylic sheet per BMS 8-4 (.50") with the exception that the surface sheets conform to specification MIL-P-5425. Surface sheets .15". Polyvinyl butyral innerlayer sheet .20". Source: Pittsburgh Plate Glass Company, Creighton, Penns.

Fiberglas fabric, X-27-14 (Owens-Corning, finish 14). Source: Coast Manufacturing Company, Livermore, California. Physical characteristics:

Plain weave 17 x 17 Yarn, 150 3/3 Thickness, .016" Minimum Breaking Strength, Warp, 375 lbs/sq. inch. Minimum Breaking Strength, Fill, 375 lbs/sq. inch. Weight, 12.73 oz/sq. yard.

Fiberglas fabric, ECC-11-128-14 (Owens-Corning, finish 14). Source: Coast Manufacturing Company, Livermore, California. Physical characteristics:

Plain weave 42 x 32 Yarn, 225 1/3 Thickness, .007" Minimum Breaking Strength, Warp, 250 lbs/sq. inch. Minimum Breaking Strength, Fill, 200 lbs/sq. inch. Weight, 6.07 oz/sq. yard.

Stainless steel 30 mesh wire, 0.013" thickness. Source: The Ludlow-Saylor Wire Company, St. Louis, Missouri.

Finished Nylon Duck, SN-5. Source: Wellington Sears, Shawmut, Alabama. Physical characteristics: 3 x 4 basket weave 58 1/2 x 58 Thickness, .0375" Maximum Breaking Strength, Warp, 1169 lbs/sq. inch. Maximum Breaking Strength, Fill, 1177 lbs/sq. inch. Weight, 18.30 oz/sq. yard.

TECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

Source: Swedlow Flastics Company, Los Angeles, California Characteristics:

Totally reactive thickened methylmethacrylate syrup catalyzed to induce polymerization either by ultraviolet irradiation or by heat.

Penacolite XG-1500-2. Source: Koppers Company, Inc., Chemical Division, Pittsburgh, Pa.

APPENDIX II

TRANSPARENT ENCLOSURE EDGE ATTACHMENT DESIGNS

WADC TR 53-106

-14-

...

TECHNICAL LIBRARY ABBOTTAEROSPACE.COM

TECHNICAL LIBRARY

TECHNICAL LIBRARY

TECHNICAL LIBRARY

APPENDIX III

TENSILE TEST DETAILS

Tensile test performed at $70^{\circ}F$. $\pm 5^{\circ}F$. were conducted on a Dillon Tensile Tester, (Hercules Model K). This machine is operated with a mechanical power drive. The dynamometer indicator is calibrated regularly by the Los Angeles County Department of Weights and Measures using a dead weight method of calibration. Tensile tests performed at $-65^{\circ}F$. $\pm 0^{\circ}F$. $-5^{\circ}F$. were conducted on a Baldwin Universal Tester maintained as commercial testing equipment by Triplett and Barton Incorporated, 831 No. Lake Street, Burbank, California.

In all cases the testing was conducted using a grip which roughly simulated actual frame installation. In the case of rigid attaching ends the specimen was tested in bearing on two $1/4^n$ pins at each end. The Nylon loop type attachments were tested with the loop locked around a $1/4^n$ lateral pin in a slot simulating frame installation.

Tensile test procedures were per ASTM D-628-49T and the rate of pull was .25" per minute.

In the following tabulated test results all specimens ruptured in the acrylic sheet at the inner edge of the attachment unless otherwise noted.

--STS-001A (75°F)---

--STS-001A (-65°F)--

Spec. <u>No.</u>	Width	Thick <u>ness</u>	Lbs. <u>Pulled</u>	Lbs/inch of_Width	Width	Thick <u>ness</u>	Lbs. Pulled	Lbs/inch <u>of Width</u>
1	1,986	.309	3400	1715	2.003	.301	3175	1585
2	1.991	.295	3000	1505	2.000	.303	3260	1630
3	2.012	.301	2550	1268	1.997	.306	3795	1900
4	2,002	.300	2500	1250	1.999	.311	3560	1781
5	2.000	.300	2500	1250	2.008	.323	4265	2124
6	2.007	.298	2500	1243	2.006	298	2915	1453
7	2.006	.302	2750	1370	2.012	.307	3415	1697
8	1.992	.306	2450	1230	2,008	309	3565	1775
9	1.995	.323	3050	1530	2.014	.302	3180	1579
10	2,000	.311	2850	1425	2.006	.309	3515	1752
			Average	1379			Average	1728

--STS-002 (-65°F)--

--STS-002 (75°F)--

Spec. No.	Width	Thick- ness	Lbs. Pulled	Lbs/inch of Width	Width	Thick- ness	Lbs. Pulled	Lbs/inch <u>of Width</u>
1	2.004	.517	2750	1370	2.003	.526	4515	2254
2	2,000	.517	3500	1750	2.004	.521	3825	1909
3	2.006	.516	4000	1990	2,003	.531	4400	2197
4	2.009	.510	4600	2290	2.003	.522	5035	2514
5	2.004	.520	3150	1570	1.960	.515	4025	2054
6	2.008	.518	3100	1542	2.002	.523	4600	2298
7	1.985	.516	3695	1860	2.002	.531	3925	1961
8	2.005	.514	3450	1720	2.002	.527	4050	2023
9	2,007	.516	3700	1840	2.001	515	4480	2239
10	2.000	.515	3550	1775	2.001	.531	5130	2564
			Average	1771			Average	2201

--STS-003A (75°F)--

1.992 2.004	.306 .318	1950 1950	980 970	2.005 1.999	.319 .315	1980 1790	988 895
1.992	.306	1950	980	2.005	.319	1980	988
	• • • • •		/~/		•_=-	20/0	2 · •
1.999	.313	1850	925	2,006	.321	1890	942
2.007	.317	2050	1022	2,002	.326	1995	997
2,006	.313	1850	921	2.006	.316	1820	907
2.007	.316	1700	848	2.013	.309	2190	1088
2.010	.319	1650	820	2.009	.325	1700	846
2.005	.318	1850	922	2.009	.325	1990	991
2,008	.315	1650	823	2.007	.315	2415	1203
2.002	.314	1800	900	2.000	.311	2675	1338
	2.002 2.008 2.005 2.010 2.007 2.006 2.007 1.999	2.002 .314 2.008 .315 2.005 .318 2.010 .319 2.007 .316 2.006 .313 2.007 .317 1.999 .313	2.002.31418002.008.31516502.005.31818502.010.31916502.007.31617002.006.31318502.007.31720501.999.3131850	2.002.31418009002.008.31516508232.005.31818509222.010.31916508202.007.31617008482.006.31318509212.007.317205010221.999.3131850925	2.002.31418009002.0002.008.31516508232.0072.005.31818509222.0092.010.31916508202.0092.007.31617008482.0132.006.31318509212.0062.007.317205010222.0021.999.31318509252.006	2.002.31418009002.000.3112.008.31516508232.007.3152.005.31818509222.009.3252.010.31916508202.009.3252.007.31617008482.013.3092.006.31318509212.006.3162.007.317205010222.002.3261.999.31318509252.006.321	2.002.31418009002.000.31126752.008.31516508232.007.31524152.005.31818509222.009.32519902.010.31916508202.009.32517002.007.31617008482.013.30921902.006.31318509212.006.31618202.007.317205010222.002.32619951.999.31318509252.006.3211890

Specimen No.2 failed in bearing. All specimens failed in bearing.

---STS-004A (75°F)---

1	2,011	.510	2700	1342
2	2.004	.512	3050	1520
3	2.002	.508	2850	1425
4	2.004	.507	2350	1172
5	2.004	.512	2950	1472
6	2.009	.507	2650	1320
7	2.000	.509	2700	1350
8	2.001	.514	2800	1400
9	2.003	.512		
10	1.992	.513	2850	1432
11	2.000	•508	2950	1475
			Average	1391
		.		

All specimens failed in bearing except specimen No.4 which ruptured acrylic sheet at the inner edge of the tongue. - shoetmonts retron III new.TIR

--STS-003A (-65°F)--

STS-004A (-65°F)
------------	--------

2.02	25	.517	2200		1086	
2.00	07	.513	3095		1542	
2.03	18	.519	2960		1467	
2.01	11	.510	2375		118 1	
2.01	۱5	.517	2875		1427	
2.01	14	.511	2800		1390	
2.01	11	.533	2945		1464	
2.00)3	.512	1500		749*	
2.01	15	.511	2435		1208	
2.01	15	.517	3005		1491	
			Average	e	1362	
411	speci	mens	failed	in	bearing	•

--STS-005 (75°F)--

--STS-005 (-65°F)--

		510-000				<u> </u>	-) -/
Spec. No.	Width	Thick- ness	Lbs. Pulled	Lbs/inch of Width	Width	Thick- Lbs ness Pull	. Lbs/inch ad of Width
1	1.995	.312	1250	627	1,999	.334 1500	750
2	1.985	.302	985	497	1.998	.323 1440	721
3	1.981	.307	1100	555	1.999	.331 1440	720
4	1.982	.309	1200	605	1.996	339 1485	744
5	1.997	.303	1225	615	1.952	.339 1425	730
6	1.982	.311	1250	630	1,999	.306 1385	693
7	1,992	.303	1300	653	2.000	.323 1545	773
8	1.995	303	1225	615	1.998	.330 1410	706
9	1.992	.303	1150	578	2.000	.338 1510	755
10	1.998	.309	1200	600	1.998	.312 1465	_733_
14 - 1 - 14 - 14	ing the second		Average	598		Averag	e 733
Specime	en No.l	ruptured	the Nylo	n Cloth			
at the	lower e	dge of t	he acryli	с.			
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	+ · · · · ·		-				
		STS-007	(75°F)			STS-007 (-65°F)
1	2.004	.523	600	299	1.994	.533 1685	845
2	1.999	. 520	600	300	1,998	.534 1665	833
3	1.999	.528	775	388	1.997	.514 1640	821
4	1.999	518	700	350	1,995	517 1600	832
5	2.000	.531	760	380	1,997	.513 1590	796
6	2.001	524	525	262	1,993	511 1485	745
7	2.000	.522	600	300	1,995	.509 1555	779
8	1.997	.521	575	288	1,998	.510 1625	813
9	2.000	.530	760	380	1,995	. 524 1440	722
10	1.996	. 523	, 720	361	1.997	.527 1620	811
		, in the second	Average	331	a da esta esta	Averag	e 800
In even	ry case	the acry	lic ruptu	ILLE			
origina	ated fro	m the fa	ce rout.				
		STS-008	(75°F)			sts-008 (-65°F)
	1 008	306	1200	601	1 000	226 1285	- AILA
2	1.980	307	1225	618	1 080	- Jav 1205	604
3	1 984	306	1250	630	1 001	-276 1)/J	601
ר ער	1 002	306	1250	628	1 007	•JJV ⊥J7J 220 1240	626
5	1 00/	306	1224	610	1.005	• J&U 1230	2020
6	2 000	204	1275	628	1 002	- JCL LL70	500
U.	2.000	• JUM	14()	0,00	±•773	1070 בכני	257

WADC TR 53-106

1.998

1.998

1.997

1.993

.306

.303

.306

.306

Item 10 failed in the Nylon cloth.

Items 1 through 7 and item 9 failed cem-

ent line between Nylon and acrylic sheet.

Item 8 ruptured acrylic above the attach.

7 8

9

10

-32-

650

650

626

640

630

2.000

1.998

1.996

1.933

1300

1300

1250

1275

Average

Average 605

535

601

501

<u>629</u>

1070

1200

1000

All specimens failed in shear between Nylon and acrylic sheet.

.292 1215

.331

.332

.344

--STS-009 (75°F)--

•

--STS-009 (-65°F)-

Spec. _No.	Width	Thick- _ness	Lbs. Pulled	Lbs/inch of Width	Width	Thick ness	Lbs. Pulled	Lbs/inch of Width
1	2 002	200	1000	604	1 006		1 5 5 0	000
2	2,000	- 300	1270	625	1.990	• 501 50h	1550	777
2 2	2 004	300	12/10	668	2.002	• JU4 507	1515	()(
4	2.003	.300	1220	63/1	1 008	• JU (505	1/100	754
5	2.003	.300	1220	600	1.990	+ JVJ 507	1490	740
6	2.002	.300	1220	610	1 000	• JU7 517	1600	800
7	2.003	.300	1270	634	1 007	• 547	1520	261
8	2.000	.300	1270	635	1 008	525	1/20	701
9	2.001	.300	1080	540	2 000	• J2J 518	1520	740
10	2.006	.300	1365	680	1.996	500	1505	700
	~.	••••		600	1.//0	• • • • •		
[n 0]]	maaima	l na tha a	verage	020			Average	769
under t	pe ceme:	ns the ad	rylic ia	ce sneets		specime	ns faile	d the
ad and	abotton	nteu par	bond foi	100p crack-	Nylo	n cloth	•	
or and	DUGCCET	eu, men	bond rat.	reg.				
	;	STS-010 (75°F)			STS-	010 (-65	°F)
1	1.992	.326	2000	1003	2,002	. 333	2400	1109
2	1.992	.331	2050	1028	2,002	.340	2665	1331
3	1.993	.318	2200	1105	2,000	308	2150	1025
4	1.992	.326	1850	928	1,996	.312	2405	1205
5	1.985	.318	2500	1260	1.995	300	1030	120J 067
6	1.985	.323	2350	1184	2.002	.332	2475	1236
7	1,985	,326	1750	882	1,998	320	1040	071
8	1.987	.318	2450	1233	2.000	318	2100	1050
9	1.987	.318	2300	1158	1,987	332	2355	1185
10	1.987	.323	1950	982	1.991	.331	2515	1263
						+//+	<u>, (</u> ± (, , , , , , , , , , , , , , , , , ,	_1202
		A	verage	1076		1	lverage	1148
	5	STS-012 (75°F)			S TS-(012 (-65	°F)
1	2.005	.306	2650	1322	1,996	.330	3210	1608
2	2.005	.309	2600	1297	1,997	343	3050	1527
3	1.997	.299	2350	1177	2,001	.333	2955	1477
4	1.997	.297	2350	1177	1.992	.335	3055	1534
5	2.003	.308	2480	1238	1,990	.340	3050	1533
6	1,999	.303	2250	1125	1,995	.337	3265	1627
7	2.005	.311	2480	1237	1,997	176	3260	1622
8	2.000	.300	2480	1240	1.987	• <i>JJ7</i> 222	2110	1556
9	2.003	298	2384	1190	1 002	•222 2110	0000	1966
10	2.004	298	2422	1213	1.77J	• J46 2h2	2700	1355
		/-	~,)~		2.004	• 346	2720	1457
		Av	erage	1222	· .	A	verage	1533

-33-

--STS-013 (75°F)--

--STS-013 (-65°F)--

Spec. <u>No.</u>	Width	Thick- <u>ness</u>	Lbs. Pulled	Lbs/inch of Width	Width	Thick- ness	Lbs. <u>Pulled</u>	Lbs/inch of Width
1	1,999	. 523	3705	1853	2.000	.510	3400	1700
2	1,990	. 521	3935	1977	1.981	493	2895	1462
3	1.995	.524	4035	2022	1,999	.503	2700	1351
ر د	2.001	. 522	3110	1555	1,996	498	2730	1368
5	2.004	524	3790	1890	2,000	497	2865	1433
6	1,990	. 509	3355	1686	1,995	497	2665	1336
7	2,000	.512	3550	1775	1.998	502	2865	1434
Ŕ	2.003	.511	3450	1772	2,000	.503	2615	1308
9	1,990	498	3450	1732	2,000	496	2860	1430
10	2.005	.514	3650	1820	2.005	475	2675	1334
10	2.000	• 10			2000			
-		1	lverage	1803		1	average	1410
In spea	cimens 2 to feile	, 7, and d in hear	10 the 1 ring.	fibergias				
TOWING	O TOTTO	u in boa	. тп <u>0</u> •					
		STS-014A	(75°F)	-		STS-	014A (-6 <u>4</u>	5°F)
1	1,997	.313	3210	1607	1.987	.294	3200	1611
2	2.002	.295	3210	1604	1.985	.309	4 120	2076
3	1.975	.314	2965	1502	1,992	.327	2775	1393
4	1.999	.315	3110	1555	1.995	.336	3250	1629
5	1.994	.315	3210	1610	1.997	•337	3225	1615
6	1.992	.296	2965	1488	1.983	.335	3150	15 89
7	2.000	.297	2565	1283	1.998	•333	3245	1624
8	1,985	.295	2575	1297	1.996	•338	3495	1751
9	2,001	.314	2870	1435	1.995	.331	2560	1283
10	2.004	.313	3065	1530	1.998	.325	3350	1677
			Average	1491			Average	1605
		STS-015	(75 ⁰ F)			STS-	015 (-65	°F)
1	2.004	•514	2480	1237	1.997	.517	4025	2016
2	1.998	.515	2480	1241	2.005	•527	3755	1873
3	2,002	.517	2720	1358	1.998	.531	4225	2115
4	2,003	•493	3115	1555	2.005	.494	4730	2359
5	2.001	.510	2870	1434	1.998	•496	3630	1817
6	2.003	• 502	3110	1552	2.000	.512	4390	2195
7	2.009	• 500	2820	1404	1.999	•529	3710	1856
8	2.000	• 509	3450	1725	1,996	.530	4250	2129
9	2.008	.512	3210	1599	2.009	•518	3940	1961
10	1.996	.508	3115	1560	2.004	•529	3790	_1891_
			Average	1467			Average	2041

TECHNICAL LIBRARY ABBOTTAEROSPACE.COM

--STS-022 (-65⁰F)--

--STS-023 (-65°F)---

--STS-022 (75°F)-

.

Spec. No.	Width	Thick- <u>ness</u>	Lbs. Pulled	Lbs/inch <u>of Width</u>	Width	Thick- <u>ness</u>	Lbs. Pulled	Lbs/inch of Width
1	2.001	. 288	2720	1359	2.001	.318	4600	2299
2	1.995	.302	2965	1486	2.002	285	3740	1868
3	2.002	.289	3060	1528	2.001	.293	4050	2014
4	1.997	.297	3545	1775	2.002	.290	3710	1853
5	2.003	.285	2670	1332	1.998	.319	3710	1857
6	2.000	.285	2625	1313	2.003	.321	4540	2267
7	2.003	•301	3400	1697	2,002	.292	3800	1898
8	1.991	.297	3200	1607	2.003	.330	4680	2336
9	2.005	•307	3075	1533	2.005	.322	4650	2319
10	2.003	•313	3000	1497_	2.001	•336	3615	1807
		A	verage	1512	•	A	verage	2052

--STS-023 (75°F)--

,000 ,998 ,006	2,000 1,998 2,006	•508 •502 •505	2600 2135 2300	1300 1068 1147	1.998 1.995 1.998	.520 .504 .511	5320 5575 5620	2663 2795 2813
,000 ,998	2.000 1.998	•508 •502	2600 2135	1300 1068	1.998 1.995	•520 •504	5320 5575	2663 2795
,000	2.000	•508	2600	1300	1.998	.520	5320	2663
,004								
004	2.004	•504	1985	9 90	1.998	.520	5565	2785
.009	2.009	.507	2280	1135	2.001	.500	5525	2761
.004	2.004	.506	2430	1213	2.003	.521	5775	2883
.001	2.001	.504	2510	1255	2.003	.509	5850	2921
.0 01	2.001	.504	2200	1100	2.003	.521	5590	2791
	1,998	.520	3240	1622	2.004	.519	5115	2552
•998			2400	1228	2.003	.512	5495	2743
	1.9	998	998 . 520	302 .514 2460 398 .520 3240	002 .514 2460 1228 998 .520 3240 1622	002 .514 2460 1228 2.003 998 .520 3240 1622 2.004	002 .514 2460 1228 2.003 .512 998 .520 3240 1622 2.004 .519	002 .514 2460 1228 2.003 .512 5495 998 .520 3240 1622 2.004 .519 5115

APPENDIX IV

.

TENSILE-FATIGUE DATA

TECHNICAL LIBRARY ABBOTTAEROSPACE.COM

TECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

TECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

WADC TR 53-106

TECHNICAL LIBRARY ABBOTTAEROSPAGE.COM

LIBRAR

MADC TR 53-106

TECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

WADC TR 53-106

.

IS DOCUMENT PROVIDED BY THE ABBOTT AEROSPACE TECHNICAL LIBRARY ABBOTTAEROSPACE.COM

.

TECHNICAL LIBRARY

.

TECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

WADC TR 53-106

TECHNICAL LIBRARY ABBOTTAEROSPACE.COM

