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DAAJ02-74-C-0066.

Numerous design concepts, material selections, and manufacturing techniques were investigated
for the various helicopter components (e.g., body group, main rotor, and transmission). The
best overall concepts were selected and integrated into a complete advanced helicopter design,
with predictions of improved weight, cost, and aircraft performance.

Mr. L. Thomas Mazza, Technology Application Division, served as project engineer, with
Mr. E. Rouzee Givens directing the ""Free Planetary Transmission Drive’’ study portion of the
program.
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PREFACE

This study of the application of advanced concepts and materials to a
medium-size utility transport helicopter was conducted under Contract
DAAJO2-TL-C-0061 with the Eustis Directorate, U. S. Army Air Mobility
Research and Development Laboratory, Fort Eustis, Virginia.

The work was performed under the general direction of Mr. L. Thomas Mazza
of the Technology Applications Division. Sikorsky Aircraft's principal
participants were Melvin Rich, Project Manager; David Lowry, Airframe
and Landing Gear Structures; John Longobardi, Rotor and Control Systems;
Patrick Romano, Transmission System; David Unsworth, Weights; Neville
Kefford, Helicopter Design Modeling; George Howard, Helicopter Design;
Ralph Monte, Composite Fabrication; James B. Foulk, Vulnerability/
Detection; and Alfred Wolf, Reliability and Maintainability.
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INTRODUCTION

The objective of this study was to assess the advantage of advanced heli-
copter structural concepts and materials for application in a medium-
size utility transport helicopter. For the purpose of the study a base-
line helicopter design was established using current UTTAS technology.

In the initial portion of the investigation, the advantages were deter-
mined for an advanced helicopter of the same design gross weight as that
of the baseline. The resultant improvements were reflected in cost,
weight, and payload. The initial investigation grouped the advanced
concepts into two catepories: low cost and low weight. The most prom-
ising advanced concepts were then selected on the basis of best pay-

off in weight and cost, with fail-safety and safety considered as addi-
tional primary factors, detectability, crashworthiness, vulnerability,
reliability, and maintainability were considered secondary attributes.

Having selected the most promising advanced design incorporating the ad-
vanced concepts, the overall weight and cost comparison was made with the
baseline conventional design. The results were used to derive trending
weight and cost data. These data were then processed in a Helicopter
Design Model (HDM) computer program to find the results for a helicopter
incorporating the advanced structural design, but maintaining the same pay-
load as the baseline conventional helicopter. Each of the advanced designs
was then reviewed for risk and feasibility in future production.

13
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BASELINE CONVENTIONAL DESIGN

Basic Requirements

The specification (Reference 1) establishes the basic aircraft perfor-
mance and requirements for a Medium Range Utility Transport (M.U.T.)
baseline helicopter design. The pertinent requirements are summarized
as follows:

Design Limit Load Factor N, = 3.5

Design Gross Weight W = to be established

Cruise Speed V, = 150 kt (minimum with payload of 960 pounds with
not more than maximum continuous power € S.L.)

Endurance = 2.3 hours (plus reserve fuel for 30 minutes, for
specification mission)

Landing Sink Speed = 10 fps at design gross weight, and crash-
worthy capabilities

Crashworthiness: in compliance with MIL-STD-1290 (AV)
Damage Tolerance: 1limit load capability of primary structure from
.30 cal APM?2 projectiles (tumbled), as defined

in Reference (1)

Transportability: in C-130 and C-141 aircraft, as specified in
Reference (1)

General Structural Criteria: MIL-S-8698 for Class I aircraft
GCeneral: Twin engines, 3 litters, 7 passengers, 1L0 cubic feet cargo

compartment, wheel type gear, IR suppressor, low
detectability

Hover Out-of-ground Effect: L4000 ft 950F at not more than 95% of
intermediate power.

Vertical Rate of Climb: 450 fpm from hover OGE, at not more than
95% of intermediate power.

Crew: 2

1k ]
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Basic Requirements -~ continued

Reliab.ility:

Mean time between failure of not less than 39 aircraft

flight hours between mission aborting failures.

Mean time between removal for aircraft dynamic
components (scheduled and unscheduled) of 1500 aircraft
flight hours.

Maintainability:

Mean time between maintenance for preventive and
corrective maintenance not less than 3.%
flight hours.

Replacement time for each major component
less than 3.0 hours.

15
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Baseline Design

The baseline design was established by using UTTAS technology and
investigating the configurations of internal volume requirements (for

crew, litters, passengers, cargo volume, estimated fuel, transportability,
and equipment). Estimates were then put into the Sikorsky-developed Heli-
copter Design Model (HDM) which is a computerized mathematical design model.

The HDM output is the sizing, weights, and costs for the estimated configu-
' ration. The process is iterative, and the result is the baseline aircraft.
i A detailed description of the system design modeling is presented in
f Appendix "A" of this report.
i

Figure 1 is a three-view drawing of the baseline configuration. Driving
factors in the configuration were litter and cargo space, and air trans-
portability, P~ air transportability, the main landing gear is a close-
in design. Only the horizcital stabilizer and one blade of the tail rotor
must be folded. The main rotor blades can be folded or removed. The tail
gear is designed for kneeling.

Table 1 is the data sheet for the baseline conventional design, listing the
attributes and output of the HDM results.

Baseline Weight and Costs

Table 2 supplies the group weight summary for the baseline design.

Group weight and percentage of group weight empty are listed for reference.
Table 2 also presents the percentage of group weight empty less engines,

‘ avionics, and contingency. Since the investigation was limited to group

! weight empty, the percentages shown were used later to identify relative
costs and weights and to identify areas in conventional design in which
costs are most important.

The HDM program also provides a costing trend and was used to project
weight empty item costs. For this investigation, the following considera-
tions were applied in projecting flyaway costs of components:

{a) Costs are stated in 1974 dollars both for current
conventional materials and for advanced materials in 1978.
Costs of advanced materials are especially significant
for the advanced concepts, since they will use a large
proportion of advanced composites.

(b) Labor costs are based on $22.50 a man-hour for fabrication.

(c) Material costs include a 35% factor to account for aircraft
b, manufacture handling charges.

(d) Production costs are based on a 500-aircraft production.

(e) No tooling or development costs are included.

!
¥ 16
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FIGURE 1.
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T AT P

TABLE 2. BASELINE GROUP WEIGHT SUMMARY

GROUP GROUP WEIGHT PERCENT OF
LB (PERCENT) WEIGHT EMPTY*
MAIN ROTOR GROUP 820 (12.4) 1k.5

Mai: Rotor Blades 371 1b
Main Rotor Hub LkLg 1b

TAIL GROUP 152 ( 2.3) 251
Tail Rotor U7 1b
Tail Surfaces 105 1b
BODY GROUP 1055 (15.9) 18.6
ALIGHTING GEAR 380 ( 5.7) 6.7
FLIGHT CONTROLS 638 ( 9.6) 11.3
Servos, etc, Lo7
Rotor Controls, Rods etec. 231
ENGINE SECTION 100 ( 1.5) 1.8
PROPULSION GROUP 1907 (28.8) 26.1
. Fngines 422 (less engines)
Air Induction Lo
Exhaust System 297
Fuel System 269
Engine Controls 25
Starting System 19
Drive System 835
Transmission
Housing
Gears, Shafting, etc.
EQUIPMENT AND OTHERS 1567 (23.7) 18.6
. Instruments 135 (less contingency
Electrical o247 and avionics)
Avionics L60
Armament Group 53
Furnishings 422
Anti-Ice L8
Auxiliary Gear 60
Suppression Vibration 76
Contingency 66
[WEIGHT EMPTY 6618
(Continued)
20
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TABLE 2. (CONCLUDED)

(at takeoff)

GROUP GROUP WEIGHT PERCENT OF
LB (PERCENT) WEIGHT EMDTY*
FIXED USEFUL LCAD 504
Pilot and Copilot 470
0il-Engine 14
Trapped 0il 6
Fuel-Trapped 1k
FUEL USABLE 1389
PAYLOAD 960
DESIGN GROSS WEIGHT 9471

*Percent of weight empty less engines, avionics, and

contingenc)

21
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Table 3 summarizes taseline aircraft weights and costs. The average

cost is $93.4/1b for the weight empty groups. Structures with highest
cost per pound generally are those in which parts are complex and require
many labor hours, for example, rotor blades. Lower cost items generally
are those that are massive, such as the drive system and alighting gear.
Material costs generally are a small portion of the costs in a conven-
tional helicopter design. For example, the airframe is made primarily
of aluminum alloys costing $1.20 per pound. For this reason, the
material costs are estimated at about six percent of helicopter cost.

In estimating material costs, actual material costs must be differentiated
from processed parts costs, which are incurred, for example, when air-
frame stringers are purchased from outside sources and then processed by
the aircraft manufacturer. Another example is forgings.

Once the larger weight areas and cost areas are identified, the study

can investigate the use of higher strength materials and means of
reducing labor costs. The true value of the improvements is reflected in
changes of weight and cost (A $/A1b) from the baseline components. Other
factors in judging these improvements are primary attributes of fail-
safety and safety, and the secondary factors of vulnerability, crash-
worthiness, detectability, reliability, and maintainability.

22
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TABLE 3. BASELINE AIRCRAFT WEIGHT/COST SUMMARY

GROUP CROUP WEIGHT GROUP COST COST
(LB) (%) ($/1B)
MAIN ROTOR GROUP 820 74,210 90.5
Main Rotor Blades 371 1b
Main Rotor Hub 449 1b
TAIL GROUP 152 15,548 102.3
Tail Rotor 47 1b (5,720) (121.7)
Tail Surfaces 105 1b (9,828) (93.6)
BODY GROUP 1055 98,748 93.6
ALIGHTING GEAR 380 16,606 43,7
FLIGHT CONTROLS 638 T7,6L5 121.7
ENGINE SECTION 100 9,880 98.8
PROPULSION (LESS ENGINES) 1485 1h7,L454 99.3

. Air Induction 4o (6,324) (158.1)
Exhaust System 297 (46,956) (158.1)
Fuel System 269 (34,970) (130.0)
Engine Controls 25 (3,953) (158.1)
Starting System 19 (2,312) (121.7)
Drive System 835 (52,939) (62.4)

Transmission

Gears, Shafts, etc.
EQUIPMENT & OTHERS (LESS 1041 89,Lk4s5 85.9
AVIONICS & CONTINGENCY)

. Instruments 135 (16,983) (125.8)
Electrical okt (19,266) (78.0)
Armament Group 53 (1,908) 26.0
Furnishings ko2 (36,883) (81.4)
Anti-Ice 48 (5,347) (111.%)
Auxiliary Gear 60 (3,996) (66.6)
Suppression Vibration 76 (5,062) (66.6)
TOTALS 5670 529,536 93.4

23
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DESIGN CRITERIA

Desiﬂ Loads

The baseline design was used to establish design loads for the advanced
concept components. Since the design gross weights of the baseline and
advanced design helicopters were the same, the only difference in loads
would be the difference in inertial forces. However, most loads result
from applied external forces with some inertial relief, so within the
accuracy of a preliminary stress analysis, the effect of weight changes
can be assumed to be small.

In determining airframe loads, panel point weights were established and
external forces were applied to resolve forces and moments as required.
Tables 4 and 5 summarize the load factors, accelerations, and applied
resultant loads to the wvarious airframe and landing gear structures.

Limit loads are given except as specified. Ultimate loads are 1.5 times
limit loads as required in Ref. (2). In addition, the miscellaneous loads,
as listed in Table 5, are applicable to the specified structures.

Figures 2, 3, and 4 present the shears, moments, and torsions (limit)

for the airframe structures.

The design data sheet of Table 1 also lists component criteria and loads
. for use as applicable,

In addition, the design spectra of Table 6 apply to mechanical components.

Design Allowables

Design allowables for metallic materials were based on those specified

in Ref. (3). "A" allowables were used for primary nonredundant structures,
and "B" allowables were used for redundant structures and for secondary
members (not essential to flight).

Advanced composites design "B" allowables are specified in Table 7.

In general, the composite design allowables are typical strength values
that were reduced statistically by 1.3 standard deviations to obtain

"B" design strengths. Whenever specific data were not available,
estimates were used to derive "B" strength allowables. Elastic properties
specified are typical values, since these data generally do not have a
scatter as great as that of strength properties.

The usual safety factor of 1.5 times limit locad covers all yield
conditions. As stated in Table T, however, where specific values are
not available, the properties can be further estimated from the stated
data. The ultimate tension and compression allowables used are for the
g degree orientation. The ultimate shear allowables would be for
panel shear flow (in-plane).
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Design Costs

o The criteria for acquisition costs were based on the following:
(a) Production of 500 aircraft.

(b) Labor cost of $22.50 per hour.

(c) Material costs as presented in Table 8,

! (d) No tooling, engineering, or development costs. It should be noted
) that the tooling costs are relatively small for production heli-
copters (approximately 3 percent). Development costs are not in-
cluded, since it is presumed that prior programs of manufacturing
technology would be required to achieve production of the advanced
structural concepts.

o - vt e
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-t

TABLE 8. MATERIAL COSTS (1974 $)

Material $/LB

2024=T3 Aluminum 1.20

Titanium (Ti-6-k) 16.00

Graphite/Epoxy (A/S) 20.00

Kevlar-49/Epoxy 10.00

E-Glass (Fabric) 2.35

E-Glass (Roving) 1.00

Miscellaneous 1.00

3
&
$
i
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* INCREASED COST —- REDUCED WEIGHT

T + A= - O WT ==
+$100/LB

RATING
FACTOR

0

NOTE: INCREASED COST

8 WEIGHT = 0
CEZCREASED COST
& WEIGHT = 10
-$100/LB .
‘ DECREASED COST < INCREASED WEIGHT
i - O $/+ O WT
~A$t+A WP
i
FIGURE 5. COST AND WEIGHT RATING DIAGRAM H
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ADVANCED DESIGN CONCEPTS r
General

The baseline desigrn helicopter of Figure 1 was investigated for application
of advanced concepts involving both configuration and advanced materials.

i The investigation first required determination of the affected structural
weight of the baseline design and development of means of reducing weight
and cost,

The advanced design concepts were in the structural areas of airframe and
landing gear, rotor and control systems, transmission systems, and selected
areas of propulsion. The cost and weight comparisons of the baseline design
and the advanced designs are presented here only for the affected structures.
A rating system was used to enable the comparisons to include the primary
factors of weight and cost, fail-safety, and safety. Ratings are also pro-
vided for the secondary factors of detectability, crashworthiness, vulner-
ability, reliability, and maintainability.

Data sheets were prepared for each structural system. The data sheets were
then reviewed to rate each advanced design concept as: (a) a lower cost
grouping, (b) a lower weight grouping, and (c) 2 recommended grouping for
integration of the concepts into an advanced design helicopter. All adv-
anced designs were required to meet the criteria and loads specified for the
baseline helicopter,

Rating Procedure

The specified primary factors were: (a) weight and cost, (b) fail-safety,

and (c) safety. For cost and weight, the rating was based on A cost ¢

A weight, which was obtained from the baseline cost and weight data for the

structural component. The rating of A cost + QAweight is from zero to ten.

As illustrated in Figure 5, the study considered areas in which weight sav-
¥ ings were achieved at increased cost and areas in which decreased costs were

achieved at increased weight.

A weight saving of $50 per pound was assigned the median value of 5.

A weight saving achieved at no additional cost over the baseline design was

assigned a value of 10. Any increased cost without a weight saving was

assigned a zero value. Any configuration producing a saving in weight and
' cost was assigned a value of 10.

v,

The combined rating of an advanced structural concept is a weighted average
of the cost + weight rating plus the ratings for fail-safety and safety.

‘alues assigned for fail-safety and safety were made by expert, specialized
design personnel. The factors were defined as follows: }

Fail-Safety: Ability to carry limit flight loads after loss
of a single member. Residual strength and life

35
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after damage within a mission period of 3 hours.
Ability to detect and inspect for damage.

Safety: Operational safety, such as hazards due to
clearances, flammability, toxic gas emission,
structural penetration into critical areas,
overall safety in crashes.

Both fail-safety and safety were rated from zero to a maximum value of ten.
The baseline design was assigned a rating of 5 for purposes of comparison.

The weighted rating of the primary factors was as follows:
Overall rating (primary factors) = .50 Ocost + Aweight rating

+ .25 fail-safety rating

+ .25 safety rating
Secondary factors were rated subjectively by expert, specialized design
personnel, using a zero to ten scale. The following definitions were
employed:

Detectability Radar Cross Section
IR Suppression

Noise

Crashworthiness Capability for Crash Conditions for
MIL-STD-1290 (AV)

"Light Fixed and Rotary Wing Aircraft

Crashworthiness"
Vulnerability .30 Caliber Damage
(Survivability)
Reliability MTBF 39 hrs
and MTBM 3.5 hrs

Maintainability Replacement time 3 hrs
Operational Availability T78%
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Airframe and Landing GCear System

The airframe structures consist of the cockpit, cabin, flooring,
transition (between cabin and tail cone), tail cone, tail pylon, and
fairings (secondary structures). The horizontal stabilizers were also
considered airframe structures, since their construction is gimilar to
that of the body groupings. The landing gear consists of the main and
tail landing gear structures.

Cockpit Section

The advanced concepts considered for the cockpit section are shown in
Figure 6. The areas considered were the canopy structure and the lower
section (tub). The conventional baseline structure is shown for reference
and comparison with the advanced structures. The baseline canopy frame
work is made of fiberglass/epoxy. Advanced concept A-1l of Figurc 6 uses

a combination of Kevlar-LW9/epoxy and graphite/epoxy. The graphite is

used only to reinforce sections in compression. Kevlar-49 is used
throughout, mainly for its high specific strength in tension.

Three tub concepts are presented in Figure 6 (A-2, A-3 and A-L). A-2

and A-3 are of composite construction, using Kevlar-L9 and graphite/

epoxy. A-2 uses a molded foam core (polyurethane, 8 1b/ft3 density) to 2
provide stability wnd to increase crashworthiness.

Construction graphite/epoxy (A/S fiber) carries axial loadings, and Kevlar
-49 (+ U5 degrees) is used as the skin to carry shear loads. The light
Kevlar-49 skins are designed to work in a post-buckled stace (diagonal
tension) to take advantage of their light weight. This concept was
proposed in Ref. (7), and some verification of the post-buckled capability
of composites is cited in Ref. (8). Tub concept A-4 is of spot weld-
bonded aluminum construction. Spot welds are an inexpensive means of
clamping parts to be bonded adhesively. The advantages are lower cost of
fabrication and moderate weight reduction due to increased skin effective-
ness acting with the stringer. This type of bonded construction also
improves skin/stringer panel interaction strength (combined shear, and
axial compression loading) compared with conventional riveted construction.
This construction has been used in Soviet aerospace construction for over
twenty years (Ref. (9)) and in the Sikorsky Blackhawk TM S-67 helicopter.
It is currently being investigated for wider use under an Air Force
contract (Ref. (10).

Table 9 1is a summary data sheet for the airframe and cockpit and includes
primary factors, secondary factors, and ratings.
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A-1 HYBRID COMPOSITE
CAlIOPY FRAMEWORK
WT - 33 LB
CcoST - $5062

A-2 MOLDED LOWER COCKPIT

WI - 65 LB A-3 COMPOSITE SKINS, SAN]
cosT - $9,400 LOWER COCKPIT
WP - 39 LB

COST - $6903

FIGURE 6. ADVANCED CONCEPTS - COCKPIT SECTION.
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COCKPIT - 47 LB $hs12 12
TUR - 63 LB $6510

A=k SPOT-WELDED BONDED
A-3 COMPOSITE SKINS, SANDWICH BEAMS AL MONEE, IECGHFIY
LOWER COCKPIT = ol
o o 58 2B COST - $5896

COST - $6903
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Main Cabin Section

The main cabin section consists of the upper cabin assembly, floor, and
lower cabin. The advanced concepts considered ere illustrated in Figure 7,
wvhich also shows cost and weight comparisons with the baseline design. The
upper cabin advanced concepts are shown as A-5a, b, and c. A-5a is a hybrid
combination of Kevlar-49 and graphite epoxy using sandwich construction.

The skin surfaces are of Kevlar-49 (sandwich) and polyurethane foam stabili-
zed frames for the high loads induced by fuselage bending and the landing
gear loads. A-5a, b are similar in use of materials, but employ laminate
Kevliar skins and fo~in stabilized stringers and frames. A-5c¢ construction is
similar to that of A=k, employing spot-welded bonded aluminum.

A-6 is a hybrid composite floor using Kevlar-49 for tension stresses and
graphite for compression stresses.

The lower cabin concepts are A-T, A-8, and A-9. A-T employs a molded
hybrid sandwich construction similar to that of A-2, A-8 is of built-up
hybrid skin/stringer/beam/frame construction similar to that of A-3.

A-9 is of spot-welded bonded aluminum construction similar to that of A-k.

Cost and weight trends for the various upper and lower cabin concepts are
very similar to thcse presented for the tub in the cockpit section. The
lowest cost structure is the spot-weld bonded. The lowest weight structure
is built-up hybrid composite.

Table 10 summarizes weight, cost and ratings for the main cabin section,

Transition and Tail Cone Sections

The trensition section consists of an inner structure containing equipment
and fuel cells. The advanced concepts are shown in Figure 8. Concept A-10
is a hybrid composite sandwich construction that is very adaptable to attach-
ments for shelves of equipment and capable of withstanding fuel cell loads

as well as flight and ground loading conditions.

The outer shell of the transition section is adaptable to concepts A-11,
A-12 and A-13. A-11 is of Kevlar sandwich construction. A-12 is a built-
up hybrid composite. A-l13 is of spot-welded bonded aluminum construction.
The built-up composite shows up best in weight reduction. The spot-welded
bonded design shows a moderate weight saving and some cost saving compared
with conventional riveted aluminum airframe construction.

Three advanced concepts for tail cones are shown in Figure 8. A-12 is of
hybrid composite sandwich construction., A-13 is a hybrid composite em-
ploying built-up stabilized skins/stringers/frames. A-14 is of spot-welded
aluminum skin/stringer/frame construction.
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Fa

. A

B
pre-

S

WT - 85 LB WI - 68 LB WT - 105 LB
COST - $14,500 COST - $12,77h cosT - $9,500

-a—

SAUDWICH SKINS,
FOAM STABILIZED

FRAMES

~b-
COMPOSITE SKIN/
STRINGERS/FRAMES

—c—
SPOT-WELDED
BONDED ALUMINUM

CABIN - 116 LB -
TUB - 80 LB -
FLOOR - 30 LB -

A-5 UPPER CABIN
ASSEMBLY

A-6 HYBRID COMPOSITF

CARGO FLOOR
WI - 22 LB A-T MOLDED SANDWICH
COST - $k,202 LOWER CABIN

WD - 70 LB
COST - $11,950

FIGURE 7. ADVANCED ATRFRAME CONCEPTS - MAIN CABIN.
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A-9 SPOT-WELDED
BONDED ALUMINUM
WI - 72 LB
COST - $7,862

CABIN - 116 LB - $12,693
TUB - A0 LB - $8,735 8
FLOOR - 30 LB f

|

<
w
-
o

"o

[»]

—

)

A-8 COMPOSITE SKIN/STRINGER/
FRAMES /BEAMS i
A-T MOLDED SANDWICH

WT - U5 LB
LOWER CABIN COST - 48,328

Wl - 70 LB
COST - $11,950
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A-1G COMPOSITE SANDWICH
BULKHEADS

Wl - 139 LB
cosT - $19,316

A-11A COMPOSITE SANDWICH
SHELL

WD - 170 LB
coST - $25,600

A-11B COMPOSITE SKIN/STRINGER
SHELL

WI - 118 LB
cosT - $21,655

FIGURE 8. ADVANCED AIRFRAME CONCEPTS - TRANSITIOR AND TAIL CONE
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—WI - 101 LB

COST - $7,165
WT - 413 LB

COST - $40,130 (BULKHEAD WT - 225 LB)

A-11C SPOT-WELDED BONDED
ALUMINUM SHELL

Wl - 161 LB
cosT - $18,612

A-1Lk SPOT-WELDED RONDED
ALUMINUM TAIL CONE

WP - 91 LB

COST - $§6,440

A-13 COMPOSITE SKIN/STRINGER
TAIL CONE
WT - 68 LB
cosT - $7,942

A-12 COMPOSITE SANDWICH
TAIL CONE
WI - 87 LB
COST - $9,22h
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The trend is similar as for previous constructions. The built-up
composite concept is lighter, and the spot-welded bonded concept provides
moderate weight savings and some cost reduction.

The comparative costs, weipghts, and ratings for the transition and tail
cone section are presented in Table 11.

Tail Pylon and Stabilizer

The tail pylon and stabilizer baseline design is of conventional riveted
aluminum construction. Three advance! concepts for the pylon are shown

in Figure 9 as concepts A-15, A-16, and A-17. A-15 is a foam-filled (poly-
urethane) core with Kevlar skins for shear, and graphite/epoxy for axial
loaded members. A-16 is of built-up composite construction of Kevlar

and graphite/epoxy. The skins are of Kevlar to carry shear loads. The
stringers are foam filled for stabilization against crippling. They are
made of Kevlar and graphite/epoxy. The front and rear spars are sand-

wich beams, Kevlar for shear, and graphite/epoxy for axial loads. A-17

is of spot-welded bonded aluminum construction.

Of the concepts, the composite hybrid built-up construction is lightest.
The spot-welded bonded aluminum offers moderate weight savings and reduced
cost compared with conventional riveted construction.

Figure 9 shows two advanced concepts for the stabilizers. A-18 is a

hybrid built-up composite, similar in construction to A-16. A-19 is a

foam core wrapped with Kevlar for shear and reinforced with graphite/

epoxy for axial loading. No spot-welded bonded concept is presented, since
it would have no advantages over conventional riveting. The built-up hy-
brid composite construction provides a weight saving.

Weight, costs, and ratings are given in Table 12.

Fairings and Landing Gear

The baseline design employs a large number of fairings as aerodynamic
covers, doors, and secondary structures. Current UTTAS technology uses
fiberglass, Kevlar, and metal for these items. Advanced concept A-20,

shown in Figure 10, is a waffle construction of two skin surfaces. The |
outside surface is formed to the contour required. The inside laminate
skin is formed as a grid of structural shapes, stabilized with an inner :

core. Kevlar is the general material, and graphite/epoxy is intermixed
in the inner and outer skins and the structural hat section shapes to
form the grid of beams. The beam grid is a pattern 8 x 8 inches to
withstand pressure loading.
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. PRECEDING PIGE NO'R. FILMED =}V,
Al o o b IR il - s«mg:s:s;“us.udﬁ

A-15 MOLDED CCMPOSITE
BOX STRUCTURE, PYLON
WT - L8 LB
COST - $2,910

A-16 COMPOSITE SKIN/STRINGER

SANDWICH SPAR, PYLON A-17 SPOT-WELDED BONDED
WI - 29 LB ALUMINUM PYLON
cosT - $4,888 WT - 43 LB

COST - $4,995

FIGURE 9. ADVANCED AIRFRAME CONCEPTS - TAIL PYLON AND STABILIZER,
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- W - L8 LB .
> " COST - $5,550 A-19 MOLDED COMPOSITE
il W——" STABILIZER
1 : t WT - 34 LB
s Wl - 37 LB COST - $1,450
-
g COST - $4,300 ’

A-18 COMPOSITE SANDWICH
SKIN/SPAR STABILIZER

WI - 23 LB
CoST - $3,102

POT-WELDED BONDED
LUMINUM PYLON

- L3 LB
= $h9995
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The baseline design main gear responds to an air transportability require-
ment. As ¢ result, it is designed to be close to the fuselage. The gear
is designed for normal landing load conditions and for high-energy absorp-
tion crash landings. Thus, the gear has an upper cylinder and a lower
cylinder. Advanced design concept A-21, shown in Figure 10,uses Kevlar
and graphite/epoxy. The upper cylinder is filament wound and then cut
into halves to form the sections for the left-hand gear and the right-
hand gear. The axially loaded portion along the axis of the cylinder
consists of polar-wound graphite/epoxy. Kevlar is then wound around

the circumference of the upper cylinder to react internal pressure
loads.

Similar construction is used for the lower cylinder of the gear. The
lower cylinder is used for normal loadings,and oil actuation is the
energy absorption mechanism. The upper cylinder has an aluminum honey-
comb core that crushes during crach landings. The wheels are also a
molded Kevlar reinforced with graphite/epoxy. Except for the axle, all
fittings are of graphite/epoxy fiber-oriented molded construction.

The weights, costs, and ratings are shown in Table 13.

Rotor Systems

The baseline design consists of an elastomeric main rotor head and blades
with a titanium spar to carry all structural loads. The aerodynamic

blade cover is made of fiberglass and graphite/epoxy. The main rotor head
is a machined titanium forging equipped with articulated elastomeric
bearings. The tail rotor is a cross-beam design, using a graphite/epoxy
spar. The aerodynamic cover is of fiberglass.

The advanced concepts (B1-B8) for the rotor system are illustrated in
Figure 11. B-1 uses a graphite/epoxy/fiberglass spar, with a fiberglass
cover. The blade is fabricated in halves, which are then bonded together.
This construction concept is currently in experimental fabrication under
a Navy contract (Ref. (11)). The paddle tip is considered to offer the
advantage of increased hover performance without loss of forward speed
capability. B-1l considers two types of root ends, which are not
illustrated here. B-1 (a) is hingeless and uses the qualities of
composites to provide the needed lower root torsional restraint for
control of collective and cyclic pitch. B-1(b) is the normal hinged,
articulated root end.

iR

B-2 is similar to B-1 except for a swept tip, which provides increased

forward speed capability, reduced control loads, and possible reduction
in noise.

The other blade advanced concepts are lumped in B-3. They consist of
hingeless and articuleted composite blades. Both fiberglass and graphite/

epoxy spars were considered, using a fiberglass aerodynamic cover with
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Bl A et b R

- LANDING GEAR
Wl - 219 LB

cosT - $8,200

te
VA
bl e e - —

A-21 COMPOSITE
LANDING GEAR

WT - 164 LB
COST - $10,800

(MAIN AND TAIL)

FIGURE 10. ADVANCED AIRFRAME CONCEPTS ~ LANDING GEARS, FAIRINGS, AND DOQRS.
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A-20
WAFFLE COMPOSITE

FAIRINGS
WT - 136 LB
cosT - $13,100

ND DOQRS.

L 3

FAIRINGS
Wr - 199 LB
COST - $24,000

i {ar
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PRECEDING
—— s

Y TYT
< <snninliBifElane
_Sssissnsig menmEsusnss=:

B-1 PADDLE TIP
ROTOR BLADE

Wwr - 334 TO 408 LB
cOST - $29,300 TO $32,000

A,
fﬂJ
B-8 INTEGRAL HUB CROSS~-BEAM BLADES {EASELIHE]
COMPOSITE TAIL ROTOR WT - 371 LB
WD - L4 LB COST - $4b,L0O

cosT - $5,148

HUB (BASELINE)

WwT - LL9 LB
cosT - $30,200

B-7 PLATE TYPE
ROTOR HUB

WD - L4B LB

CcosT - $30,k400

B-6 FILAMENT-WOUND
ROTOR HUB
WT - 376 LB
cosT - $26,900

FIGURE 11. ADVANCED ROTOR SYSTEM CONCEPTS.
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‘==mmlllllllln==::;

‘giiiF B-2 SWEPT TIP
; ROTOR BLADE
- 334 0 Lo8 LB

WT - 334 TO L08 LB

[md
T.R. (BASELINE) COST ~ $29,300 TO $32,000

WT - 43 1B
COST - $5,030

- $29,300 TO $32,000

B-3 FILAMENT-WOUND AND
PULTRUDED SPAR BLADES

WT - 3k2 TO 477 LB
COST - $22,300 TO $41,200

B-4 COMPOSITE CROSS~BEAM

ROTOR HEAD
. WT - 347 LB
B-5 CLAMSHELL COST - $28,600
ROTOR HEAD
WT - 24 LB

COST ~ $31,250
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honeycomb interior support for the trailing portion of the blade aft of
the spar. Both pultruded fabrication and filament-wound fabrication were
considered.

The articulated concepts for the blades are generally lighter and less
costly, but consideration must be given to the effect on the hub concepts.
The pultruded spar concept of B-3b, 4 is the lowest cost solution and
reduces weight significantly. Pu’trusion spar costs were the driving
factor, since many fabrication operations were eliminated compared with
other concepts.

The baseline rotor head is a titanium r.achined forging with elastomeric
bearings. B-4 is a cross-beam design using graphite/epoxy and glass
epoxy. The concept can be integrated with all the hingeless blade
concepts (a). B-5, B-6, and B-T are advanced hub concepts for articulated
blade designs. All use graphite/epoxy for high strength and improved
fatigue resistance compared with conventional metal designs.

Tail rotor concept B-8 is a moderate improvement over the baseline, which
uses composites. The major advancement is made by machining the composite
structure integrally with the root end.

Weights, costs, and ratings are presented in Table 14, Since the blade
and hub designs must be integrated, Table 15 presents a further summary
of weights and costs.

Control System

Figure 12 illustrates advanced concepts for portions of the control system.
Concepts B-9 and B-10 are presented as substitutes for the conventional
aluminum forged swash plate. B-10 provides the greater weight saving,

with a moderate additional cost where graphite/epoxy is wound over a
fiberglass X-section core.

B-11 and B-12 are advanced concepts for the rotating and stationary

scissors. B-1ll employs a corrugated steel diaphragm and appears
to offer the best weight and cost saving compared to Concept B-12.

Composite control rods and bell cranks, concept B-13, provide only a
moderate weight saving and an increase in cost. 4

In general, the control system concepts provide only a small advantage.
The major improvement may well be in reduced vulnerability.

Table 16 presents weight, cost, and rating summaries.
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B-9 COMPOSITE
SWASH PLATE
WT - 85 LB
COST - $4,760

B-10 FILAMENT-WOUND COMPOSITE
SWASH PLATE
WT - 79 LB
COST - $k,T40

FIGURE 12. ADVANCED CONTROL SYSTEM CONCEPTS.
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BASELINE
CONTROL RODS, BELL CRANKS, ETC.

BASELINE
ROTOR HEAD CONTROLS
WI' - 101 LB

COST - $6,22L

WT - 130 LB
cosT - $15,210

I

WAY \‘ﬂ
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BASELINE

- ROTOR HEAD CONTROLS
WD - 101 LB

OFT - $6,224

9

LL CRANKS, ETC.

LB
,210

B-11 CORRUGATED
DIAPHRAM SCISSORS
Wl - 9 LB
COST - $1200

pr

-

B=13

COMPOSITE FOAM STABILIZED

CONTROL RODS AND BELLCRANKS
WT - 123 LB

cosT - $16,000

~

B-12 ELASTOMERIC/SPRING
COIL SCISSORS
WI - 1C LB
COST - $1300

SN A ARSI 5 il A e
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Transmission System

Figure 13 shows the advanced concepts for the main gearboxes, gearing,
and tail rotor drive shafts of the transmission system.

The baseline main gearbox employs machined magnesium castings reinforced
by bearing linings. The composite gearbox, concept C-1, uses Kevlar

as the surface material oriented * 45 degrees for carrying shear loads.
Graphite/epoxy is used in ribs to carry the axial loads arising from
thrust and bending loads. Graphite/epoxy is also used in rings to accept
the bearing liners that provide local reinforcement. The result is a
very low weight gearbox compared with the conventional magnesium box.
Costs are substantially higher, due mainly to the materials used and the
added operations of lay-up.

C-2 and C-3 are advanced concepts for the main gearbox. C-2 is a fab-
ricated build-up using stainless steel. C-3 is a stainless steel truss
with stainless steel skins. For a gearbox of the desiga size, analysis
indicated that the fabricated type weighs less and costs less than the
truss type. The primary reason is that the low load intensity results in
minimum gage steel tubes for the truss. As the gearbox increases in size
for helicopters larger than the design helicopter, there could be a cross-
over in weight as the truss efficiency increases.

Weights, costs, and ratings for the main gearbox are summarized in
Table 1T7.

C-ba, b, and c are the advanced concepts for the gearing. C-la employs
conformal gear teeth. C-bb employs high-contact-ratio gears. C-kc uses
high-strength gear material. This material can be applied to all gears of
conventional and advanced concepts to achieve a percentage reduction in
weight and cost. Table 18 summarizes weights, costs, and ratings of the
gearing.

Three advanced concepts for tail rotor drive shafts are shown in Figure
13. All concepts are supercritical drive shafts. C-5 is an 202L-T3
aluminum shaft., C-6 is a graphite/epoxy Teira-Core shaft. C-T is a
graphite/epoxy tube stabilized with a foam core and having integrally
formed flanges. Table 19 summarizes weights, costs, and ratings of
the tail drive shafts.
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MAIN GEARBOX GCEARING
WT - 129.3 LB
COST - $11,250

MAIN GEARBOX HOUSING
WT - 162.2 LB
cosT - $8,770

C-1 COMPOSITE
MAIN GEARBOX
Wl - 82.6 LB

cosT - $23,686

C-2 FABRICATED
{ SHEET METAL)
MAIN GEARBOX

WD - 128.2 LB
cosT - $7,160

(a) CONFORMAL GEAR TEETH
WT - 7L.8 LB

c-3 (TRUSS)
MAIN GEARBOX GOS0 SO
WT - 155.5 LB (b) HICH CONTACT RATIO CI
cosT - $7,880 (2ND STAGE CONVENTIO!
WT - 89.7 LB
Cc-4 SIMPLIFIED BULL GEARING SYSTEM COST - $7.802

(WITH VARIATION IN GEAR TOOTH FORMS3)
(c) HIGH STRENGTH
WT - 107.9 LB
COST - $9,387

FIGURE 13. ADVANCED TRANSMISSION CONCEPTS.
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MAIN GEARBOX GEARING
WI - 129.3 LB
COST - $11,250

MAIN GEARBOX HOUS1NG
Wl - 162.2 LB
cosT - $8,770

.?* DRIVE SHAFT
() W - 21.7 LB
COST - $1330

(a) CONFORMAL GEAR TEETH
WT - 74.8 LB
COST - $10,701

(b) HIGH CONTACT RATIO GEAR TEETF
(2ND STAGE CONVENTIONAL)
WT - 89.7 LB
| COST - $7.802
(c) HIGH STRENGTH
WT - 107.9 LB
CoST - $9,387

C-5 SUPERCRTTICAL
ALUMINUM DRIVE SHAFT
Wl - 17.7 LB
COST - $1080

-6 SUPERCRITICAL

TETRA-CORE DRIVE SHAFT
WI' - 14.2 LB

COST - $1,515

C-7 SUPERCRITICAL
COMPOSITE DRIVE SHAFT
WT - 10.9 LB
COST - $985
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Propulsion System

Two advance concepts, D-1 and D-2, for the propulsion system are shown

in Figure 14, D-1 is an infrared (IR) suppressor integrated with the air-
frame structure. The exhaust is discharged in a thin film, and rotor and
free-ctream airflow dilute the heat flux. The slotted geometry shown re-
duces the visible exhaust areas. The structure for IR suppression is of
stainless steel and requires a fiberglass fairing for streamlining. Since
no engine power is used, an additional benefit is an estimated 90 hp re-

duction in power required.

D-2 is an integrated fuel pump rod filter system to reduce cost and
weight.

A summary of weights, costs, and ratings is contained in Table 20.

B A e S A i R R R gt
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Selection of Advanced Concepts

The advanced concepts presented in Figures 6 through 14 and the data
tabulated in Tables 9 through 20 were evaluated for assessment of
reduction in total weight empty (payload increase) at the same aircraft
gross weight.

Three groupings of advanced concepts were considered: a lower cost

group, a lower weight group, and a recommended selection for use in the
final aircraft configuration. 1In these evaluations, the IR suppression
concept D-1 was omitted. Although the concept shows promise in reducing
weight and cost, it was rejected in this study because of anticipated
difficulties in integrating other subsystems, such as controls, tail rotor
drive, and tail wheel. Further detailed investigation of concept D-1 is
recommended for future Army studies.

Initial comparisons of the advanced concepts with the baseline aircraft
considered only the affected components of subsystem weight, and costs.
The effect on the total system structure, weight, and cost was then
assessed.

Detail weight and cost analysis substantiation is contained in Appendix B
for affected structure of the recommended advanced concepts.

Lower Cost Grouping

The lower cost group emphasizes concepts that meet the rating require-
ments, where cost saving dominates.

! A number of the airframe concepts in this group employs spot-welded bonded
construction, taking advantage of the moderate weight saving and signifi-
cant cost reduction. In some areas, however, composites show both a weight
and cost saving and are included in this grouping. The conventional landing
gear is used in this group, since it is the lowest cost structure at this
time without a weight penalty.

Composites dominate the rotor group. The materials lend themselves to
producing high aerodynamic performance at reduced cost. The cost saving
is primarily due to the reduction in labor to produce the complex shapes
that are excessive to achieve in conventional materials, such as titanium.

Only limited opportunities are apparent within the drive system for the
lower cost group. The transmission appears to be a fruitful area for

weight and cost reduction through the use of a fabricated gearbox, conformal
gearing, and higher strength materials. The only propulsion system concept
is the combined fuel pump/filler (concept D-2).

Table 21 summarizes the lower cost group of advanced concepts.
Comparison is made with the affccted baseline structural weights and costs.

¢
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TABLE 21. ADVANCED CONCEPTS, LOWER COST GROUPING
BASELINE ADVANCED LOWER

STRUCTURE DESIGN COST GROUP

(REF. )

W $n CONCEPTS AW A$

LB
Airfreme, 1132 117415  A-4, A-5C, =212 -23988
Including A-9, A-10, A-11C
Pylon and A-14, A-15, A-19,
Stabilizer A=-20
Landing Gear 219 8200 Use Conventional 0 0
Main Rotor 820 74600 B-3 (a,2) +4 -22216
(Blades & and B-4
Hub)
Tail Rotor 47 5720 B-8 -3 =365
Controls 231 21434  B-11 -3 -2k0
Transmission 313.2 21350 C-2, C-4(b), -86.2 -5269

_ C-h(C), C"7
Fuel System 11.5 1740  D-2 -3.2 -390
Totals 2773.7 250069 -303.%  -52468
#Affected
Weight &
Costs Only
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TABLE 22. ADVANCED CONCEPTS, LOWER WEIGHT GROUPING
BASELINE ADVANCED LOWER WEIGHT
STRUCTURE DESIGN GROUPING
(REF.)
W $* CONCEPTS AW A$
LB
Airframe, 1132 117415 A-1, A-3, A-5B, 412 -10143
Including A-6, A-8, A-10,
Pylon & A-11B, A-13,
Stabilizer A-16, A-18, A-20
Landing Gear 219 8200 A-21 =56 +2600
Main Rotor 820 74210 B-3 (b,L4),B-6 -102 -23017
(Blades &
Hub )
Tail Rotor L7 5720 B-8 -3 -365
Controls 231 21434  B-10, B-11, -20 +506
B-13
Transmission 313.2 21350 C-1, C-ha, C-4C, -151.4 +12745
c-7
Fuel System 11.5 17ho D-2 -3.2 -390
Totals 2773.7 250069 -Th6.6  -18064
#Affected
Weight &
Cost Only
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Lower Weight Grouping

The payoff in using many of the advanced concepts stems from the great
potential for weight reduction, provided that the overall rating meets
the criteria established for the baseline aircraft. Thus, whereas
manufacturing cost per unit weight may increase significantly, the
weight reduction for that component yields an overall reduction in cost.
The effects of weight savings on reducing total aircraft cost are further
emphasized when the design is resized to the same payload requirement.

Table 22 summarizes the advanced concepts for the lower weight group
and their relationship to the baseline design.

The airframe concepts selected are those for built-up Kevlar and
graphite/epoxy construction. The composite landing gear shows an
appreciable weight saving, but at increased cost. The pultruded
graphite/epoxy blade spar with a composite hub for an articulated
(hinged) system was selected. The same teil rotor concept previously
selected is used to realize its weight and cost benefits.

The transmission system now includes a composite gearbox, conformal
gearing, high-strength materials for gears, and composite tail rotor
shaft. The propulsion system includes only the fuel system, since
the IR suppressor was dropped from consideration at this time.

The overall effect is a significant weight saving, but somewhat reduced cost
saving. The important factor to be noted is that an overall weight and
cost saving is projected.

Detailed Summary

(Recommended Selected Advanced Concepts)

The final recommendations for selection of the advanced concepts were
screened between the two groups of Tables 21 and 22 and a further
review of the weights, costs, and ratings of Tables 9 through 22.

Selection of advanced concepts also considered an aircraft design with
the same payload but lighter gross weight. Considering that 1 pound
saved in the study may have a value of 2 in a final design, there should
be a cutoff factor in comparing the advanced concepts. A value of A
$100/A 1b is used for the cutoff in final selection and recommendations.

Table 23 summarizes the recommended selected advanced concepts to be
integrated into a final advanced medium-size utility helicopter. The
results show an appreciable weight saving and a moderate cost reduction.
Table 24 summarizes the effects or. weight, cost, and payload. The most
dramatic effect is the 70% increese in payload. '

The selected advanced concepts for the airframe and landing gear are
shown in Figure 15.
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After calculation of manufacturing costs per unit weight for the

2dvanced medium-size utility designs, and adjustment of weight trending
equation coefficients to reflect the weight savings discussed above,
HDM was exercised to resize each of the three advanced solutions to the
same payload requirement as the baseline. The results are summarized
in Table 25, The recommended design, previously Judged to represent
concepts providing weight savings at acceptable costs per unit weight,
shows a 14% reduction in flyaway cost from the baseline,

Detailed "M.U.T." weight comparisons and summary weight statements are

provided in Tables 26 through 30. Life cycle cost summaries are
presented in Tables 31 through 33.
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FIGURE 15. M.U.T. COMPOSITE STRUCTURE.
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‘ TABLE 26. M.U.T. WEIGHT COMPARISONS
Group Baseline Advance Advance
Design Design Design
(Seme G.W) Same Payload
Main Rotor 820 718 619
Tail Group 152 111 9k
Body Group 1055 755 712
Alighting Gear 380 311 276
Flight Controls 638 622 546
Engine Section 100 87 87
. Propulsion Group 1907 1781 1575
Instruments 135 135 135
Electr L Group okt 243 243
Avionics L60 457 57
Armament Group 53 51 51
Furnishings 422 L21 421
Air Cond. and Anti-Ice 48 48 L8
Aux. - Gear 60 56 56
4 Vibration Suppression 76 76 65
Contingency 66 59 54
3 Weight Empty 6618 5931 5439
Fixed Useful Load 504 50k 504
; Payload 960 1611 960
o Fuel-Usable 1389 1389 1260
Gross Weight k71 okT1 8163
100
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TABLE 27.

M.U.T. DESIGN COMPARISONS.

Baseline Advance Advance
Conventional Design Design
Design (Same G.W) (Same Payload)
Design Gross Weight, Lb 9471 kTl 8163
Payload, Lb 960 1648 960
Weight Empty, Lb 6618 5931 5439
Fuel, Lb 1389 1389 1260
Main Rotor
¢ Radius, Ft. 20.5 20.5 19.03
Chord, Ft. 1.322 1.322 1.227
No. Blades L 4 4
Tail Rotor
Radius, Ft. 4.4o 4.4o k.09
Chord, Ft. .535 .535 - 495
No. Blades L 4 4
L Main Gear Box Design, H.P. 156k 1564 135k
Hover Power (SHP.) 1178 1178 1020
‘ Hover & Climb H.P. 1261 1261 1092
1
§
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TABLE 28. SUMMARY WEIGHT STATEMENT

M. T, BASELINE

CROLP WE TGHT

“8IN ROTCP GROUP
WING CROLP
TAIL GROULP
TAIL ROGYOR/FAN
TAIL SURFACES
BODY CROULP
ALIGHTING GEAR
FLIGHY CCNTROLS
ENGINE SECTION
PPOFULSION GROUP
ENGINES
AIR INDUCTTON
EXHAUST SYSTEM
LURRICATING SYSTEM
FUEL SYSTEM™
EMGINE CONTROLS
STARTING SYSTEM
AUXTILIARY PROPULSICN PROPFLLERS
DRIVE SYSTFM
AUXILIARY POKER UNIT
INSTRUMENTS
HYDRAULICS
ELECTRICAL GRGUP
AVIONICS
ARMAMENT GROUP
FUKNTIHINGS
ATR CONDITIONING AND ANTI-TICE
AUXILIARY GEAR
VIBRATION SUPPRESSION
YFCHNOLOGY SAVINGS
CONTINGENCY

WEIGHT EVMPTY

F TXED USEFUL LOAD
PILOT
co-PILOY
OJL-ENGINE

~TRAPPFD
FUEL TRAPPED
MISSION EQUIPMENTY
OTHER FUL.

PAYLOAD

FUEL-~USABLE

GROSS WEIGHT

47,
105,

422.
40
297.

2€9.
25.
19.

835.

235,
235,
14.
6.
14,
Q.
O.

820.
a.
152.

1055.
380.
638,
10G.

1907,

e
135,
e
247,
460.
53,
422.
L8,
60.
76,

66.
66138.
504.

960.
1389,
9471,

T GW

8.65
.00
1.60
49
1.11
11,14
“'01
6.74
1.06
20.14
Y.46
b2
T.13
.00
274
026
«?0
«N0 "
8.82
« 00
1.43
.00
2.61
4.86
e56
4.46
«51
63
«80
.00
«70

69.88 i
5.32 i

-

10.14
14,66
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TABLE 29. SUMMARY WEIGHT STATEMENT
M.U.T. ADVANCED DESIGN (SAME G.W.)
GROUP - WEIGHT - - t-6¥
MAIN ROTOR GROUP
WING GROUP 7]8' ng
L 1AL 6ROUP - - — "y iz
TAIL ROTOR/FAN 44, ' -
TAIL SURFACES 67. 49
BODY GROUP 755 7.3(;
ALIGHTING GEAR N7 oh
FLIGHT CONTROLS 522, e
ENGINE-SECTION - = R it 2
PROPULSION GROUP 781" o
ENGINES 422. ) 4. 46
AIR INDUCTTON 40. '
EXHAUST SYSTEM 297. g
LUBRICATING SYSTEM 0. 3.13
FUEL SYSTEM - — — - — — 243  —ee -09
ENGINE CONTROLS 25. 2.5
STARTING SYSTEM 7. -26
AUXTLIARY PROPULSION PROPELLERS 0. .18
DRIVE SYSTEM 736. B0 *
AUXILIARY POMER UNIT . 7-83 !
HEMETRUMENTS. — - 3 §
HYORAULTICS 0. .00 ‘
ELECTRICAL GROUP 243, )
AVIONICS : 2.57
457, 4.83
ARMAMENT GROUP 5) o
FURNISHINGS o1 o
| AZR—CONDLTIONING AND ANFE=FCE -—m o - - oo Voo i
AUXILIARY GEAR -y X
VIBRATION SUPPRESSION %, o
TECHNOLOGY SAVINGS ol 0t
CONTINGENCY 59, 63
WEIGHT EMPTY 5931. 62.62
FIXED USEFUL LOAD 504. 5.32
PILOT 235,
- -€O=PHOT - — - . .—2235.
OTL-ENGINE 14,
-TRAPPED 6.
FUEL TRAPPED 4.
MISSION EQUIPMENT 0.
OTHER FUL. 0.
L PAYLOAD — —— e o e - 1611. 17.40
FUEL-USABLE 1389. 14.66
6ROSS VEIGHT 9471.
103 I
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TABLE 30. SUMMARY WEIGHT STATEMENT
M.U.T. ADVANCED DESIGN (SAME PAYLOAD)
GROUP - - WEFEHF—- - ———— G
H
MAIN ROTOR GROUP 619. 7.59
WING GROUP 0. .00
LTAIL GROUR : e e e e— o 94, ———- 1,15
| TAIL ROTOR/FAN 36. .44
TAIL SURFACES 57. .70
B80DY GROUP 2. 8.72
ALIGHTING GEAR 276. 3.38
FLIGHT CONTROLS 546. 6.69
[ ENGINE-SECHON —— —— — == oo s gy —— 1,07
PROPULSION GROUP 1575. 19.29
ENGINES 422, 4.65
AIR INDUCTION 40, .49
EXHAUST SYSTEM 297, 3.40
LUBRICATING SYSTEM 0. .00
! FUEL- SYSTEM -  — — - — — 260y e ——— 2.7]
ENGINE CONTROLS 25, .31
STARTING SYSTEM 19, : 19
AUXILIARY PROPULSION PROPELLERS C. .00
DRIVE SYSTEM 503, 6.16
AUXILIARY POWER UNIT 0.
- JNEFRUMENTS — — - 135, —— .00
HYDRAUL ICS 0. 1.65
| ELECTRICAL GROUP -~ os3. — 2.98
‘ AVIONICS 467, 5.60
ARMAMENT GROUP 5. - . 62
FURNISHINGS 421, 5.16
_ ALR CONDITIONING-AND ANTI=FCE -—— — —— o oo - 48. -— .59
7 AUXILIARY GEAR 56. .69
VIBRATION SUPPRESSION . 65. - .80
i TECHNOLOGY SAVINGS 0. .00
CONTINGENCY 54. .67
; WEIGHT EMPTY 5439. 66.63
- FIXED USEFUL LOAD 504. 6.17
PILOY 23S,
€O=PHOTF - — - - ——23y
OJL-ENGINE 14,
-TRAPPED -6 -
FUEL TRAPPED 14,
MISSION EQUIPMENT 0.
OTHER FUL, 0.
H-PANLOAD — — — c—— e e e ——— L —— - 960. = "11.76
; FUEL-USABLE 1260. 15.44
i 6ROSS WEIGHT 8163.
104
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& TABLE 32. LIFE CYCLE COST SUMMARY.

M.U.T. ADVANCED DESIGN (SAME G.W.) 2:::::2
DEVELOPMENT COST PFR AIRCRAFT 84004.
PROTOFYPE COST PER PRODUCTION AIRCRAFT - - - - 21213.
. RECURRING PRODUCTION COS?T 497332
GFE AVIONICS 40000.
ENGINE COST 89378.
(FLYAWAY COST) (626708. )
INITIAL SPARES 198825,
- GROUND SUPPORT EQUIPMENT 37602,
1 INIT.TRAINING AND TRAVEL 52017,
ACQUISITION COST 915153.
FLIGHT CREW 457200.
FUEL & OIL 298318.
' REPLENISHMENT SPARES 812636.
‘ N ORG4D¢#S+6/S MAINT. 344377.
DEPOT MAINTENANCE 292003.
J RECURRING TRAINING 271107.
MAINTENANCE OF GSE 19019.
OPERATING COST 2494732,
LIFE CY¥CLE COST 3515102,
PRODUCTIVITY .02084
FLEETY LIFE CYCLE COST 1757550784,

g 106
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TABLE 33. % CYCLE COST SUMMARY.
e .
DOLLARS
M.U.T. ADVANCED DESIGN (SAME PAYLOAD) .::....
'| DEVELOPMENT COST PER AIRCRAFT 80391,
- PROTOTYPE COST PER PRODUCTION AIRCRAFT - - - 19521.
RECURRING PRODUCTION COST 457023.
GFE AVIONICS 40000.
f . ENGINE COST 79677.
} (FLYANAY COST) (576700. )
| INITIAL SPARES 180825.
. e GROUND SUPPORT EQUIPMENT 84602.
i INIT.TRAINING AND TRAVEL 51599,
ACQUISITION COST 843725.
| FLIGHT CREW 457200.
. FUEL + OIL 269893,
f REPLENISHMENT SPARES 754927.
- ORG4D4S46/S MAINT- - - - 326394,
DEPOT MAINTENANCE 270006. .
RECURRING TRAINING 268675. %
MAINTENANCE OF GSE 17892. ]
OPERATING COST 2364987,
LIFE CYCLE COST : - : 3308625. 4
PRODUCTIVITY .01324 !
<}
FLEET LIFE CYCLE coOSTY 1654312416. ¢
\
b
|
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Risk and Feasibility

The recommended advanced concepts for each group of structures were re-
viewed for potential problem areas and assessed with respect to risk and
feasibility. Based on the list of problem areas, further review was made
in regard to the need for research and development required for risk re-
duction.

For airframe and landing structures, the major problem areas listed in
Table 34 consist mainly of the need for detail design data and the ability
to fabricate large, complex structures. While there is considerable data
available from composite rotor blade work, the complexity and number of
parts in an airframe will require considerable specimen testing and
attention to detail part design. (See Table 38). Overall risk and
feasibility are medium.

Rotor system and control system problem areas shown in Tables 35 and
36 consist mainly of fabrication processes. While considerable risk
reduction is needed (see Table 39 ), overall risk appears low and
feasibility is high. This conclusion was reached since the experience
level is higher in R&D efforts to date (Ref. 11).

Transmission structures, as listed in Table 37, appear to be in the low-

to medium-risk range, and feasibility is high. Table 40 lists the
associated R&D efforts recommended.
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TABLE 35.

ROTOR SYSTEM PROBLEM AREAS

CONCEPT

POTENTIAL PROBLEM AREAS

RISK FEASIBILITY

B-3 (b, 4)

Main Rotor Blade -
Pultruded Spar,
Filament-Wound
Outer Skin,

Nomex Honeycomb
Core

B-6

Main Rotor Head -
Filament-Wound

Hub With Composite
Molded Fittings

B-8
Tail Rotor -
Integral Hubs,
Cross Beam
Composite
Structure

. Development of pultrusion

process

. Methods to fabricate spar
"with fiber mixture and

orientation

. Obtain physical properties

of mixture of unidirection
and * 45° fiber orientation

. Mechanical attachment at

root end, consisting of
alternate laminated metal
and composite lay-up, will
require minor development

. Development of filament

winding hub in multiaxis
directions required

. Small-scale trial samples

with integrated fittings
to minimize risk and cost
and to expedite learning
would be first approach

. Blade attachment

Hub integration
Both require development of

. Alternate layers and lay-

up of composite and metal
laminated build-up

Medium High

Low

Low High
but

requires
extensive
develop-
ment

Low High
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TABLE 36. CONTROL SYSTEM PROBLEM AREAS

CONCEPT POTENTIAL PROBLEM AREAS RISK FEASIBILITY
B-10 Combination of filament
Swash Plate - winding and tape lay-up
Filament- in match metal molds for Low High
Wound split-half outer members
will require development.
Mechanical attachment of
hard points and liners for
control rods and bearings
can be structurally bonded
and will require minor
development.
B-11
Bellows Development is needed to
Diaphragm determine proportions of
Scissors - graphite at + 45° and
Filament - unidirectional fiberglass Low High
Wound filament 90° to axis to
Fiberglass carry combined cylindrical
Tape Laying torsional stiffness (graphite)
Graphite and axial softness (fiberglass)
Structure to allow for tilting and up/
down motions about cylinaer
axis. Mechanical attachment
of metal rings by struct iral
bond will require minor
development.
B-12 Development problems similar Low High
Diaphragm to B-11,
Flex Scissors -
Elastomer
and Boron/
Steel
Composite
Structure

o
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TABLE 36. (CONCLUDED)

CONCEPT POTENTIAL PROBLEM AREAS RISK  FEASIBILITY
! B-13 . Unidirectional and +45° wraps

Bellcranks of high-modulus composite

and around metal inserts of the
! Rods - bellcranks and foam filled Low High

Composite for stability.

Foam

Stabilized + Metal fitting filament wound

Structures and structurally bonded.

Development required to
integrate metal hard points
(bearings and bushings to
composite roam).
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TABLE 37. TRANSMISSION PROBLEM AREAS

CONCEPT

POTENTIAL PROBLEM AREAS

RISK FEASIBILITY

C-2
Fabricated Shaft
Metal Housings

C=kp
High~-Contact-
Ratio Gear
"eeth

1
Foam-Filled
Composite Drive
Shaft

Welding

Static and Fatigue Strength
Properties of Welded Joints
Heat Transfer
Characteristics of Housing
Rigidity of Structure

Strength Properties
Torque Capacity
Sensitivity to Machining
Tolerances

. Scoring Tendency
Establishment of Fatigue
Properties
Consistency of Fatigue
Properties from Lot to
Lot

Joint Attachments
Low-~Cost Manufacturing
Capability

Ballistic Vulnerability

Low

Low

Medium

Medium

High

High

High

High

113
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TABLE 38. AIRFRAME STRUCTURES R&D REQUIREMENTS

POTENTIAL PROBLEM AREAS

RECOMMENDED R&D INVESTIGATIONS

DESIGN

. Strength Properties
of Hybrid Composite

Post-Buckled Strength
of Kevlar Skin Panels

“

. Interaction Strength

Mechanical Attachments
. Loca! Stress
Concentrations

. Crashworthiness

. Durability
Fireproofing

. Repair

. Lightaing/Discharge

Small specimen testing to determine mechanical]
properties for design.

Static tests for initial shear buckling and
ultimate shear strength. Fatigue testing
(for post-buckled state) for ground-air-
ground cycling. Reduction of shear stiffness
in post-buckled state. Effect of panel
curvature on strength and stiffness properties

Combined load tests of stringer skin panels
to develop interaction strength data for
design of flat and curved panels. Develop
semiempirical analysis for crippling.

Small specimen testing, static and fracture,
for rivet and bolt attachments in various
ply orientations of composites. Develop
finite-element/laminate analysis for pre-
dicting local loads and stress concentration

in mechanical attachments.

Conduct prototype tests of selected sections
of molded hybrid composite construction to
derive energy absorption capabilities.

Conduct wear tests on representative composite
construction for walking loads.

Conduct flame tests on affected areas.
Decrease residual strength capabilities.

Conduct tests on repaired portions of
structure. Develop a design guide for

repair.

Determine requirements for composite
airframes. Conduct tests.
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TABLE 38. (CONCLUDED)

POTENTIAL PROBLEM AREAS

RECOMMENDED R&D INVESTIGATIONS

DESIGN

Cocure of Hybrid

Select composite resin system for

Composites graphite and Kevlar. Conduct specimen
tests to determine optimum system for
structure and fabrication.

One Stage Develop tooling concept for one-stage

Cocure of cocure of hybrid molded composite

Hybrid structure.

Composite

115
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TABLE 39. ROTOR SYSTEMS AND CONTROLS
R&D REQUIREMENTS

POTENTIAL PROBLEM AREAS

RECOMMENDED R&D INVESTIGATIONS

L Physical properties of various
oriented fibers of composite
structures for all selected
designs

. Development of process for
pultruding cross-ply and
unidirectional composite
simultaneously (Blade Spar)

- Development of filament
winding multiaxis directions
(Hub)

Laboratory test small specimens
having required fiber orientation to
ascertain physical properties for
all designs.

Evaluate scaled-down dies and _
mandrels and pultrude ‘hybrid composite
similar to full-scale design.

Develop winding process and determine
methods of integrating metal attach-
ments.

Ry i
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CONCLUSTONS

The application of advanced concepts and advanced materials
can reduce both weight and cost of a medium size utility
transport helicopter.

The application of advanced concepts and advanced materials
can reduce cost and increase payload for a medium size utility
transport of the same gross weight.

The concepts for the alrframe and landing gear are reasonably
feasible. TFuture research and development programs are
recommended with medium risk.

The concepts for the rotor system and control system are
very feasible and a lcw risk research and development program
is recommended.
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Appendix A - System Design Modeling

Introduction

The Sikorsky Helicopter Design Model (HDM) is a rapid, efficient tool

for design iteration and evaluation of an air vehicle at the system level.
It was useful in evaluating the baseline helicopter and the advanced
concept helicopter of this study.

Preliminary design of an aircraft is an iterative procedure involving
configuration, weights, and performance. An initial configuration is
developed from such design constraints as payload, volume, number of
crew, number of engines, limit on rotor size, and mission equipment.
This configuration is used to generate drag and wetted area estimates
for HDM (Ref. 12). Other inputs to HDM are derived entirely from
the system design specifications.

HDM is a digital computer program directed at specification, under design
constraints, of rotor geometry, component weight breakdown, mission
analysis, engine and gearbox sizing, speed capability, and cost. These
outputs provide the designer with the refinements needed for the next
configuration interation. A closed solution is achieved when the
configuration, performance, weights, mission requirements, and system
design specifications are consistent. Thus, HDM plays an important part
in closing the design loop and furnishes insight into design sensitivities
at the preliminary level never previously realizable. Aside from the
derivation of the design point aircraft, the extensive trade-off and
optimization cupability of HDM has yielded a new phase of preliminary
design, that of trending away from the baseline configuration.

The program is available on the UNIVAC 1110 facility at Sikorsky's corporate
research laboratories in Hartford, Connecticut. HDM is sufficiently
versatile to handle articulated and hingeless lifting systems. The

program has been the primary preliminary design tool for the following
contracts and proposals:

ii

.S. Army Advanced Antitorque Study

Army HLH Proposal

.S. Army UTTAS Proposal

A/Army Rotor Systems Research Aircraft Predesign Study
. Army Structural Armor Fucelage Study

. Army ABC Operational Configuration Study

. Navy VIOL Escort Study

. Army AAH Proposal

Eab

ccCccamcaca
nmmonmn

For the present study, HDM was modified to =suit the design constraints
for a medium-size utility helicopter and to obtain the desired level of
detail in weights equations, engine and gearbox sizing criteria, and
aerodynamic performance. This fine tuning of the program was used
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throughout definition of the baseline helicopter during Task I, the
advanced concept helicopter design of Task II, and comparison of the twc
designs in Task IlT.

Program Operation

HDM has four basic loops (LO, L1, L2, L3) as shown in Figure A-l1. LO is
the loop used to derive the gross weight needed to achieve the required
payload. 1f gross weight is specified, payload is calculated. The cal-
culations within this loop form the nucleus of the program. Tie remain-
ing three loops enable trending, for a single set of input data, of what

are considered the three primary design constraints: blade loading (Cp/e ),

disc loading (DL), and percentage of power (PCTPR) provided at the engine

shaft output that will be available for the antitorque device. Elements of

the drive system may be sized on the basis of a design performance re-
quirement, such as percentage overrating above the design hover input
power. Knowledge of rotor power and PCTPR defines total power required
from the engines, thus enabling selection of engine type and size. If re-
quired rotor geometry (radius and chord) is specified, CTSIG and DL are
calculated. If a particular tail rotor geometry is specified, PCTPR is
calculated. CTSIG, DL, and PCTPR may be selected as single inputs or as a
required range (initial, final, and incremental values), so that repeated
passes are made around the appropriate loop (Ll, L2 or L3) Lo create a
matrix of design points. For each range of any of these three variables,
the interpolated value needed to produce the aircraft is selected, based
on user preference for minimum weight, minimum cost, maximum productivity,
etc. Thus, if ranges of ‘ralues are desired for CTSIG, DL, and PCTPR, the
program will identify thce combination of values needed to optimize the
helicopter design. The user may request printouts at various levels of
definition and at varying frequency through the calculation. For example,
he may request a complete detailed weight breakdown for every pass around
loop LO, or a summary weight statement on completion of the optimization.

Generally, loop LO is entered with rotor CT/o~ , disc loading, and number
of blades specified. A gross weight has been assumed. A given rotor
geometry may be assumed, but the general case was considered in this
study. The main rotor of a conventional helicopter is usually designed
to two design criteria: a hover point at given altitude and temperature,
and a crulse speed goal possibly at some other altitude and temperature.

At the design hover condition, the power required is computed by the
figure of merit method. At this stage, accessory and mechanical power
losses are known, and power consumed at the tail rotor has been assumed.
Hence, total shaft power at the engines can be calculated, as well as the
power at the input and at other stations through the drive system.
(Certain helicopter configurations, such as the Heavy Lift Helicopter
(HLH), required an salternate hover condition at an increased gross weight,
but less stringent altitude and temperature environment. HLH powers

were determined at the alternate hover point.) Where a cruise speed

poal is set, power required at that speed is computed by the Sikorsky
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Nondimensional Rotor Performance (NDRP) method (Ref. 13). Engine
size and transmission rating may now be selected from one of the following
cptions:

Specified engine

Sufficient for the design hover point
Sufficient for the alternate hover point
Sufficient for the design cruise point
Greater of 2 and 3

Greatest of 2, 3, and L

[oAN A IS —l UV B G I S

Engine powers are reduced to sea level standard equivalents for purposes
of comparison. Where applicable, the tail rotor is evaluated. Sub-
routine ANTORK is entered with knowledge of the hover torques at the

maln rotor; constraints on the antitorque device such as number of blades
maximum CT/ @~,maximum disc loading, etc.; and allowable amount of power
to be consumed in stesdy-state hover. An initial tail rotor radius is

! assumed from which is calculated thrust, hence power required, in steady-
state hover at alternate gross weight. Iteration of radius continues
until a power match is obtained.

£ 4

The maximum thrust requirement needed to satisfy the MIL-H-8501A specifi-
cation for yaw control is calculated. This gives the maximum sustained
pover to be transmitted through the tail drive shafts and gearboxes.
Power consumption at design steady-state hover is also evaluated, from
! which overall system hover efficiency is computed: main rotor power *

| engine shaft power. This value is compared with the value assumed at

: the commencement of the design evaluation. Iteration proceeds until a
power consumption match is reached. Tail surface areas and parasite
drag are taken from input values or are computed from empirical data,
depending on user preference. A simple acoustic model calculates
perceived noise level in terms of gross weight, tip speed, and blade

! loading.

The mission analysis routine provides sufficient flexibility for division
of a mission into discrete elements at the required altitude, temperature,
and speeds. The mission profile may contain as many as 50 segments.
Alternatively many missions may be stacked to a total of 50 segments to be
processed sequentially. Speed may be specified in knots, or coded as

the speed required to produce maximum range, maximum endurance, rotor
stall threshold; or the speed required to match a gearbox design power

or some engine rating. In addition, the analysis accounts for such
aircraft limitations as stall speed and engine torque limit. Fuel burn-
off and changes in aircraft configuration are accounted for that may
result from payload expenditure or pickup of passengers. Performance
calculations are based on the NDRP method for forward flight and the
figure of merit method for hover. Engine performance is represented as
curve data of specific fuel consumption versus shaft horsepower normalized
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to one line by altitude and temperature effects. The data sheets of
Tables A-1, A-2, and A-3 {llustrate HDM summary output for the baseline
and advanced helicopters.

The weights subroutine accounts for each helicopter subsystem, providing a

sufficient degree of component identification to accurately reflect each
subsystem weight. Component weights are evaluated by a set of statistical
weight equations. To some degree, these equations are tailor-made to suit

& specific helicopter type. R¢tor group weight estimates take proper
account of blade aspect ratio, design dive speed, and hinge offset effects.
The drive system is broken down into individual shaft lengths and gear-
boxes, and weight estimates reflect the transmitted horsepower and
rotational speeds of each component. Empennage configuration may be
selected as low-T, high T, V, inverted V, or single asymmetric. Landing
gear type may be selected as tricycle, tail wheel, quadricycle, retractable or
fixed, or skids. The weight statement output is available either as a
detailed breakdown by subsystem component, or as a summary by major

group (rotor, body, etc). The medium-size utility helicopter summa

weight statement is shown in Table 28. The three-view drawing of Fligure 15
illustrates the resulting design of the helicopter.

Life-cycle cost of a military helicopter is a summation of the costs of
development, production, ground support equipment, crew training,
maintenance, spares, and fuel. The composition of each of these items
depends on the particular project under study. Development and production
costs for the baseline helicopter were statis<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>