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ABSTRACT

Wing rock at high angle of attack is an oscillatory

lateral-directional motion phenomenon known to exist in

some of today's high performance tactical aircraft. The

motion has been consistently characterized as a lightly

damped Dutch-Roll oscillation attributable to asymmetric

wing stall. However, evidence gathered from wind tunnel

simulations and at least one British study indicate that

aerodynamic nonlinearit ies may be the source of wing rock.

Regardless of the actual cause of the phenomenon, a study

of wing rock has positive ramifications with respect to

gaining a clearer understanding of the aerodynamics associ-

ated with high angle of attack flight. This report presents

the results of an investigation of wing rock which centered

on the premise that two distinct nonlinear aerodynamic mech-

anisms (aerodynamic hysteresis and a cubic nonlinearity in

yawing moment) not only can cause wing rock but may drive

it to a limit cycle oscillation as well.
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I. INTRODUCTION

Wing rock at moderate to high angle of attack is a char-

acteristic known to exist in some of today's high performance

aircraft, particularly those possessing the characteristics

of thin swept wings and a slender fuselage. The terminology

"wing rock" has been used to characterize an oscillatory

lateral-directional motion exhibited by some aircraft when

operating near stall, or when flow separation is evident by

airframe buffeting. Although the motion has been observed

and documented extensively during flight tests, its exact

cause has remained essentially unknown. In an attempt to

explain wing rock, fleet aviators, test pilots and aerodynam-

icists have consistently advanced the theory which has gener-

ally concluded that the apparent random rolling moments

manifested by alternating wing rock motion at or near stall

are due to asymmetric spanwise loading, i.e., alternating

stall condition along the wing span. It is not the intent

of this thesis to dispute such arguments but rather to present

new arguments based on the premise that aerodynamic nonlinear-

ities may not only cause wing rock but may drive it to a limit

cycle oscillation.

A. PAST EXPERIENCE WITH WING ROCK

The author has had experience as a test pilot at the Naval

Air Test Center and has personally observed what could be

essentially described as a wing rock limit cycle while

10





conducting high angle of attack flight tests with the Northrop

T-38A airplane. The T-38A is control limited longitudinally

to the extent that it can not be made to achieve the so-called

"classic aerodynamic stall", i.e., complete flow separation

along the wing span. As a result, the normal 1-g stall is

defined when a maximum angle of attack is reached due to

control-limiting, moderate- to-heavy airframe buffet and a wing

rock motion are evident with an average amplitude excursion in

bank angle of +_ 20 degrees. This lateral motion occurs with

essentially no heading deviation and will continue indefinite-

ly, albeit accompanied by a large sink rate, until the angle

of attack is reduced. The buffeting and wing rock will

immediately cease and a complete recovery can be effected

with very little additional loss of altitude, when afterburner

thrust is applied.

The question of whether wing rock motion in the T-38 (F-5

series probably behaves the same) is indeed a limit cycle

oscillation caused by aerodynamic phenomena other than asym-

metric spanwise loading has never really been seriously con-

sidered from a flight test standpoint. Instead, most test

pilots and engineers associated with experimental/developmental

flight testing quickly assume that an asymmetric stall condi-

tion is responsible, since the motion is typically accompanied

by separation as evidenced by airframe buffeting. iMost swept

wing aircraft exhibit wing rock motion to one degree or another

near stall, although few can actually be said to exhibit motion

behaving as a limit cycle. Since most aircraft are not control
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limited, the approach to stall will often continue past that

point where an oscillation similar to that exhibited by the

T-38 might occur. The Vought A- 7 and F-8 series are notable

examples of aircraft that can quickly reach a point where

directional stability is lost, resulting in an almost immedi-

ate departure from controlled flight, if the pilot does not

respond quickly enough to reduce the angle of attack.

Informal liaison with NASA Langley revealed that free

flight model testing of the T-38A had on at least one occasion

confirmed the existence of a wing rock limit cycle. Although

credibility of this report would have been enhanced had it

been possible to conduct an analysis of lateral directional

motion at high angle of attack on a current production air-

craft such as the T-38 or F5, the necessary information needed

to conduct such an analysis was not forthcoming owing to

proprietary considerations. Thus, it was necessary to inves-

tigate and illustrate the concept of a wing rock limit cycle

using the textbook airplane, F-94, as presented in Blakelock

[Ref . 1] . During the course of the research the stability

derivatives of the production F-94 were modified as necessary

to simulate desired test conditions. To the extent that the

F-94 served as a vehicle with which to demonstrate the concept

of wing rock as a limit cycle, it was a satisfactory substi-

tute in lieu of a current production aircraft.

R. A NEW THEORY PROPOSED

Explaining wing rock as an aerodynamic phenomenon apart

from the theory of asymmetric wing stall poses some difficulty

12





partly from the fact that the motion closely resembles a

lightly damped Dutch-Roll oscillation. Evidence obtained

from closely controlled wind tunnel experiments [Ref. 2] and

observations made during flight tests seem to suggest the

possibility of a limit cycle oscillation wherein the amplitude

and period of the motion may result solely from nonlinear

aerodynamics. This contrasts with the response of a lightly

damped Dutch-Roll oscillation where the amplitudes are a

function of the initial conditions.

Some difficulty arises when attempting to identify an

aerodynamic nonlinearity that may contribute to wing rock

motion in wind-tunnel or flight tests since most dynamic

analysis techniques, including aircraft parameter identifica-

tion, are oriented towards a linearized model of the aircraft.

Presumably, a nonlinear model could be assumed for parameter

identification purposes but a question of uniqueness would

arise since several completely different plant models might

produce equally valid time history matches with actual flight

data. Therefore, a significant step at this time would be

the recognition of wing rock motion as a limit cycle oscilla-

tion induced by aerodynamic nonlinearities

.

Ross [Ref. 3] , has shown that a wing rock limit cycle can

exist when a nonlinearity of cubic form is present in either

yawing or rolling moment with respect to sideslip angle.

Ross used the Krylof -Bogoliubof method (KB method) with the

assumption of slowly varying parameters to analyze the mathe-

matical model of the motion described by the test airplane.
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A portion of the analysis presented herein explores further

the work done by Ross with the objective of obtaining a

simplified form of the theory she proposed as well as ampli-

fying upon it. Preceding this, however, will be an analysis

and discussion designed to support the claim that a wing rock

limit cycle may also be the result of a nonlinear mechanism

referred to as aerodynamic hysteresis.

C. MOTIVATION

The study of wing rock and its causes has direct applica-

tion to an analysis of stall and post-stall gyrations which

have long been difficult to predict and control on many

tactical aircraft. The Vought F-8 and A- 7 are notable exam-

ples. Increased knowledge in this area would surely enhance

the ability to predict aerodynamic behavior, thus enabling

an earlier detection of undesirable flying qualities, or

design improvement or, at least, a minimization of mission

limiting or annoying characteristics.
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II. METHOD OF INVESTIGATION AND EQUIPMENT USED

The investigation of wing rock involved the use of the

EAI (Electronics Associates Incorporated) model 580 analog

computer as well as the Naval Postgraduate School's Depart-

ment of Aeronautics digital computing facilities, namely,

the Hewlett Packard, HP-9830. Mathematical models represent-

ing the pertinent equations of motion were programmed on, and

results compared from, both machines to ensure validity of

programming. The output from these computing machines con-

sisted of time histories of the motion exhibited by the test

aircraft (F-94) when released from some initial condition.

Output data were recorded by a graphical plotter or strip

chart recorder attached as a peripheral device to the main

computing units. These time history plots were used to make

both qualitative and quantitative assessements of the motion,

including measurements of critical damping ratio, frequency

and/or period. Digital as well as graphical output was ob-

tained using the HP-9830. Time history plots appearing herein

were initially made using the analog computer, but final copies

were obtained from the HP-9830 plotter as it produced a more

compatible form for this report. The analog computer was

superior to the digital machine in terms of its ease of pro-

gramming or modification of the program during execution where

it was possible to view readily the effects of altering certain

key aircraft parameters.

15





The mathematical model used for laboratory tests consisted

of the linearized lateral-directional equations of motion with

certain simplifications to be presented later. As mentioned

earlier, the F-94 airplane as presented in detail in Blakelock

[Ref. 1] was used as the test vehicle for conducting laboratory

simulations of wing rock motion. In its production configura-

tion the airplane exhibits no inherent instabilities with

respect to the lateral-directional modes of motion. Modifica-

tions were made to its production stability derivatives as

necessary to conduct desired simulations.
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III. RESULTS AND DISCUSSION

The discussion will focus on the particular lateral-

directional motion exhibited by some aircraft within their

respective flight envelopes and referred to hereafter as wing

rock. The first part of this section will be devoted to a

presentation of the analysis and investigation of wing rock

as a limit cycle induced by aerodynamic hysteresis. The

second part will present a similar analysis and investigation

of wing rock as a limit cycle induced by a natural instability

in the aircraft that is constrained by a nonlinearity in one

or more stability derivatives. The reader is advised to refer

to pages 8 and 9 for definitions of symbology used throughout

the following discussion.

A. THE GENERAL LIMIT CYCLE OSCILLATION

A limit cycle oscillation is similar physically to the

motion described by the typical undamped harmonic oscillator

represented by:

X -f- ^ X = O

which has solution:

The motion amplitude of the linear undamped system will depend

upon the initial conditions, and hence different initial con-

ditions will result in different amplitude histories.

17





The linear undamped system will, of course, exhibit no damping

behavior of the motion. By contrast, a nonlinear system that

demonstrates a limit cycle behavior will have the same ampli-

tude description for motion regardless of the initial condi-

tions. A system that is weakly nonlinear with a limit cycle

behavior will appear to have the properties of a linear system;

however, the characteristic of motion amplitude regardless of

initial condition is a distinctly different attribute of the

nonlinear system. One should recognize that the above differ-

ences are somewhat heuristic and a mathematician would char-

acterize the distinctions with considerably more detail.

B. AERODYNAMIC HYSTERESIS

Wind-tunnel tests on aircraft models often show that the

rolling moments measured on a symmetric model, when yaw angle

is zero and angle of attack is increased, are approximately

zero-valued until the angle of attack approaches close to

stall. Rolling moments tend to be erratic at or near stall,

and it is customary to attribute these traits to slight

asymmetries in the model or tunnel flow, with a resulting

early stall of one wing relative to the other. A recent wind-

tunnel test [Ref. 2] upon a sting-mounted model having a strain

gage balance with appropriate electronic filtering, used the

test technique of conducting a slow, continuous yaw angle

sweep through a complete cycle of yaw motion. When the cyclic

yaw sweep was conducted at or near stall angle, both rolling

and yawing moments showed incremental shifts in value that

appeared to be related to the direction of the slow yaw sweep.
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The curves of rolling moment, when plotted versus yaw angle,

gave evidence of aerodynamic hysteresis.

Simply stated, aerodynamic hysteresis is a type of behavior

wherein an aircraft's response to a given input is such that

it does not follow the same path returning to equilibrium as

it did when initially displaced. Of importance here is the

fact that the aircraft remains positively stable. Figure 1

is an illustration of stall hysteresis wherein the airplane

experiences a sudden decrease in lift coefficient as a result

of complete flow separation along the wing span at stall angle

of attack. The airplane recovers to a lower lift coefficient

and angle of attack only to repeat the cycle if the controls

are held in a pro-stall condition. This type of motion is

often referred to as "stall porpoising" and is common to most

aircraft with high aspect ratio wings. This example of longi-

tudinal hysteresis is presented to the reader as an aid in

understanding the discussion to follow pertaining to lateral-

directional hysteresis.

LOHblTUOiNtiL
HYSTfXES/S IOOP

fiNQLE of tfrr/?c«- <<

Figure 1. Stall porpoising and longitudinal
hysteresis

.
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1. Theory

The analysis presented here will include some simpli-

fications where deemed appropriate. The interest is to use

state variable format to represent the mathematical model of

the pertinent lateral-directional motion. The state variable

format will be extended in an illustrative sense to demonstrate

a wing rock limit cycle due to aerodynamic hysteresis. It is

assumed that the lateral-directional motion of the aircraft

occurs in such a manner that the airplane remains on a straight

flight path, hence yaw and sideslip angles are related by:

y - •/ CD

Further, it is assumed that the aircraft is operating at a

fixed angle of attack with all control surfaces fixed.

Therefore

,

jiJ.^= .^L yawing moment

= fSbLC^^-ZtfCC^A *Cnff)j (02a)

and

rolling moment

= f St>fcj
j3
f*-2ir(CJiAt A. * Cj^f)] (02b)

Since A = 4jt- = - ^£- = - and A= -/? equations (02a)

and (02b) can be simplified to:

fi = -tyf ^^fi ~^f (03a)

and

J> = tfift-t+f ~<*ff (03b)
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Further modifications have been made yielding a dimensional

form of the linearized lateral-directional equations of motion,

The assumption that a straight flight path is maintained

effectively eliminates any influence from sideforces and the

usual accompanying spiral mode. Such an assumption is reason-

able and consistent with flight test observations of wing rock

motion.

The freely vibrating system represented mathematically

in equations (03) may be cast into state variable format as:

ffWH
which corresponds to the shorthand notation for the following:

i K
-N

fi %. Vjf, r
- LJS -4 uX-f

(04)

A third equation or identity A' = fi is necessary to accommo-

date all the state variables in the matrix format.

To digress briefly, jx\ represents the state vector

which contains the components of sideslip angle, /f, sideslip

velocity
, jS , and roll rate, 7^. The plant matrix [tf] is of

order 3 and contains the dimensional stability derivatives

(standard NASA convention) which resulted from the previous

analysis. These derivatives are explicitly defined as follows

'3 «*/< = *>
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Equation (04) represents an eigenvalue problem of a freely

vibrating system in which the eigenvectors are the modes of

motion and the eigenvalues contain the corresponding char-

acteristics of damping, natural frequency, and period. In

its present linear form the system described by equation (04)

has a solution consisting of three roots (one real and one

complex conjugate pair) corresponding to the roll convergence

(subsidence) and Dutch-Roll modes respectively. Again, making

use of the state variable format the solution to the freely

vibrating system may be expressed as:

[*«}- [$>($] J*"*}
(OS)

where [^("O] is "the state transition matrix and jX (
o

)
j is

the vector of values for the state variables at time equal to

zero. In essence, the state transition matrix is used for

modal analysis to project or propagate the aircraft's motion

numerically from some starting values (initial condition) to

another set of values at a specified time greater than zero.

The equations of motion for the dynamic system with

control applied is given by:

{*}'["]{*}+ M/«J (06)
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where the control matrix [8] contains the control power

derivatives for yawing and rolling moments associated with

the aileron and rudder controls. The vector [u| contains

the magnitudes of the inputs for the respective controls.

The general solution to equation (06) is expressed as:

where the integral term is a convolution integral. This is a

general solution in the sense that it applies to any of the

standard input methods, i.e., step, ramp and impulse. The

analysis and experimentation to which this section of theory

applies was restricted to the case of step inputs, which is

probably the most common control input method used in aero-

dynamics for studying aircraft dynamic stability.

The specific solution to equation (06) for a step

input of control is expressed as: [Ref. 4]

[xo;J 5 [wjfxwj +[*] few - i][b] fuj (08)

where [/?] and [I] are the plant inverse and identity matrices

respectively.

Figure 2 contains a representative form of the aero-

dynamic hysteresis assumed in the analysis of rolling moment.
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Figure 2. Assumed form of roll hysteresis

The motion of the system corresponds to a periodic variation

of the state variables such that the amplitude of the sideslip

angle is assumed to be bounded by:

Referring to figure 2, the hysteresis loop is defined by the

dashed lines. The value of the rolling moment corresponding

to a particular sideslip angle will be the sum of the produc-

tion aircraft's linear roll-due- to sideslip and the additional

hysteresis term, which has constant magnitude but varies in

sign according to the sign of the sideslip velocity. This

latter condition alludes to the manner in which the increment

of rolling moment was applied, i.e., through a relay action

mechanism (+_) driven by the sign of sideslip velocity. Side-

slip velocity will naturally be plus or minus in sign according

to the direction of yaw, hence the increment of rolling moment

was added or subtracted accordingly. Thus, the rolling moment

due to sideslip as shown in Fig. 2 may be expressed as:

Roll due to sideslip = Lit) = Lfi & + &L * Sl^N (/?)
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Figure 2 should not be construed to represent the only form

that roll hysteresis may take but was used in this analysis

to illustrate the concept. Nothing has been stated explicitly

or implied up to this point with respect to the direction

assumed by the hysteresis loop as the aircraft oscillates in

yaw, i.e., clockwise or counter-clockwise, but this will be

clarified later in the presentation of experimental results.

Although not shown, yaw moment hysteresis may be assumed to

be of similar form as that presented in Fig. 2.

In order to predict the behavior of the aircraft it

was necessary to solve equation (08) after some simplifications

required to facilitate the ease of computation were implemented

Under the assumption of a limit cycle, the motion is periodic

and the amplitude remains constant, which can be expressed

in part as

:

fxf*)] = fxCt+T)j

where T is the period. Referring back to the column vector

of state variables in equation (05) and with a convenient

choice of the time origin:

X
t
(o) = XL

(r/z) = x(r) = >= o

This is a necessary and sufficient condition to assure proper

establishment of the relay action on roll moment hysteresis.

The forcing function portion of equation (06) may be expressed

as :

[a]{u]*AL{l}t,v,(i)
(09)
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where /\L = J— ACj

The value of unity in vector element u(3) of equation [09) is

used to denote a step input of the roll moment increment, AL .

This can be equated to a step input of aileron by the pilot,

though roll hysteresis should not be considered as having that

as its source, in keeping with the requirement for this analysis

that controls be -Fixed. An external source may, in fact, be

the origin of roll hysteresis. Carrying the previous logic

further, it is valid to consider the motion over a half-cycle

since periodicity once again requires that:

and X
z
(o) = Xi(TA) =

Substituting these simplifications into equation (08) yields

-fa(o)]
. 0( T/z) fx(o) j

r [*]'*[*<&) - ?][b] [u] 6 L

{x(o)j - ~ [t+ 4(tA)] [*J''[0<r/*>-T][e] {«}&L*
(Q9)

Equation (09) can be solved for the period T by numerically

iterating for the value of T/2 which will cause X
7 (0), side-

slip velocity, to vanish. However, it is necessary first to

solve for the state transition matrix [$ {-h}] in order that

all values are known except T/2. Coincidental to computing
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the period, the maximum values of the state variables X- (0)

and X^CQ) (sideslip angle and roll rate, respectively) were

determined, since these necessarily occurred at the state

point where X
?
(_0) vanished. Computationally, this was a

simpler method than integrating equation (07). A sample

solution will be presented later. Upon examining equation

(09) it should be noted that the period of the limit cycle

in no way depends upon the sign of roll moment hysteresis;

however, the amplitude of the state variables is a linear

function of the magnitude of roll moment hysteresis, AL •

The same procedure as outlined above could be applied to an

analysis of yaw moment hysteresis.

2 . Analysis

For reasons given earlier in the introduction, the

F-94 airplane was chosen as the test vehicle for conducting

laboratory simulations of wing rock motion. In addition to

being in the landing configuration, the following pertinent

data relative to the F-94 was obtained from Blakelock [Ref. 1]

U = 135 mph = 198 fps C?
4

= .0278 RAD
-1

*
= 46 ' 6 pf Co. = -.0916 »

S = 239 ft
Z **-

b = 37.3 ft ^6 =
* 105

Ix = 7.16 x 10
3 slug-ft 2 Cnj = -.053 "

Iz = 33.01 x 10
J slug-ft^ n ,1n .,

SJtfi
= "-048 7 RAD L

CJf
= -.450 »

For these values the plant matrix of equation (04) became:
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[A] =

Q

1.3214

2.822

1

.2491

1.517

.0629

2.4557

(10)

a. Numerical Predictions

The system of three first order, ordinary linear

differential equations in (04) were solved by using the com-

puter program subroutine BASMAT, listed and described in Melsa

and Jones [Ref. 5]. The Standard Fortran IV code was trans-

lated into the BASIC program language code for adaptation of

BASMAT to the HP-9830 digital mini-computer. The eigenvalues

of equation (04) using the plant defined by equation (10) were:

JU = a = -2.4473 SEC
I

\
2 3

= b + ic = -.12873 + 1.1755 i SEC
-1

These values contain characteristic information pertaining to

the two modes of motion which the aircraft exhibited as a

freely vibrating system, i.e., no hysteresis imposed. These

two modes were the roll convergence and Dutch-Roll modes. The

roll convergence mode is indicated by the single real root, A,,

while the Dutch-Roll mode is represented by the remaining

complex roots, A ~> ? • This information was needed for compari-

son with the motion solutions obtained when hysteresis was

applied (to be presented later) . The Dutch-Roll mode indicated

the following characteristics with respect to period, frequency

and damping of the stable motion.
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^H= 0.12873 sec

CL)j = y7- 3* w
/v = 1.7S5 sec'

1

Hence: 5 = 0.109

OJ = 1.183 sec
n

T
d

= 5.345 sec.

These calculations show that the Dutch-Roll mode is indeed

stable, as expected for the production aircraft, with a damp-

ing level and undamped natural frequency of 10.9% of critical

and 1.185 rad/sec, respectively. The roll convergence mode

was not considered further, since the primary interest was in

the oscillatory mode of motion.

The state transition matrix, [0(^)1, was obtained

likewise from BASMAT and is presented below.

[?(*)]*[*] e** + [W i°>(c t) + [4] s/«<c*)]
(ii)

where

[R] =

0.0114 0.0012 0.0093

0.0279 -0.0030 -0.0228

1.2146 0.1318 0.9916

[F] =

[G] =

Q.9886 -0.0012

0.0279 1.0030

1.2146 -0.1318

0.1320 0.8531

1.1791 -0.1084

0.0050 -1.0305
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0.0093

0.0228

0.0084

0.

—

0184

0. 0086

-0. 0236
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and a, b, c derived from Xx = a

A
2,3

s b 1 ic

With this information input to equation (09) , and applying an

iterative solution technique, the period and amplitudes of the

state variables for the cases of imposing roll and yaw moment

hysteresis either independently or concurrently was obtained.

The results for varying values of roll and yaw moment hysteresis

are presented in Table I.

TABLE I

Results of Numerical Solution of Eq. (09) for
Different Magnitudes of Roll | Yaw Hysteresis

Type
Hysteresis

Magnitude
of

Hysteresis

Max P
(Radians)

Max -P
(Rad/sec)

Period T
(sec,)

Roll 1 .0922 .2948 5. 5977

Roll 2 .1844 . 5897 5. 5979

Yaw .05 .2105 -.2551 5.5459

Yaw .1 .4210 -. 5102 5.3457

Roll -1 - .0922 - . 2948 5.5977

Roll (1) 1

.05
.3007 .0419 5.4219+ '

Yaw
Roll (1) .03

.5

.1714 -4. 514E-03 5.4121+

Yaw

CI) Only condition for which roll rate,-/7
, is not a

maximum. All other values are necessarily maximums
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The iterative solution technique of interval

halving, as described by Gerald [Ref. 6] was used to solve

Eq. (09) for the values in Table I. Two function values of

opposite sign were initially obtained by inputing estimates

of the period. Thus started, the interval halving routine

converged in an iterative fashion to a solution. The computer

program used for this purpose and implemented on the HP-9830

is presented in Appendix A.

The state transition matrix, with its linear com-

bination of the eigenvectors (mode shapes) , allowed identifi-

cation of the individual parameters comprising the Dutch-Roll

mode. This identification follows from equation (11) and the

following trigonometric identity:

fl sm e +& co 5 & 5 k ( ir Jw & *• -f cos 9) ~ K sm (e + f)

where

2 2
K = A + B = magnitude of motion vector in polar

coordinates

<r = Arctan B/A = phase angle of motion vector in

polar coordinates.

Applying this mathematical form to the second term on the

right of equation (11) results in:

[f]> . C*S (Ci) + k]j Sin (Or) E K i^C **« * + 4" tofs)sKsm(e+i>)

f \ 1/2
where K. = [F] + [G] . .] = magnitude of motion vector

[Fli
iand <p . . = Arctan r r1
^ = phase angle of motion

x 'l L J i,j vector

i,j = array locations.
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Using this and appropriate initial conditions such that

]X(6)\ =
/ j Co)

the resulting relative magnitudes and phase angles of the

elements comprising the total Dutch-Roll motion vector when

normalized with respect to sideslip angle were:

ft » 1.00 ?/$ = 0.0 Deg.

/S = 1.183 f ) f> = 96.25 Deg.

^= 1.218 ( ' J fV = 187.38 Deg.

^ ^ 1.030 ^ ^ 91.13

Although bank angle was not a state variable, its

value can be determined as a function of time according to the

relationship fi($ ~ J -f(t) dt , or approximated by fi(it-)
=• ^—- .

The integration approach was used on both the analog and digital

computers. Bank angle was introduced to gain a better under-

standing of the motion's character, specifically with respect

to the relative amplitude ratio of bank angle to sideslip angle.

A positive value for the phase angle above indicates phase lead.

b. Verification of Numerical Predictions

The numerical computations presented in the fore-

going were verified qualitatively by modeling the subject air-

craft in the laboratory on the EAI-580 analog computer. The

circuit required for the hysteresis model is shown in Appendix

E. The same model using the system of equations given in

equations [03) was programmed on the HP- 9830 for the purpose
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of obtaining quantitative data. Digital propagation of air-

craft motion was obtained by a numerical time-solution of the

differential equations using the Euler Predictor- Corrector

method given in Ref. [fe]. The computer program used on the

HP-9830 for this purpose is presented in Appendix B. A

separate program (Appendix C) for plotting output from the

program in Appendix B was necessary to avoid overflowing

available memory capacity due to large storage arrays used.

Time history plots of aircraft response are pre-

sented in figures 5 through 10. These computer generated

plots were obtained by numerically integrating, as previously

mention ed, the following governing equations of motion:

yj = /f/ - /AJj - J.pf -h AL x- ttSAi (#)

These are equations (03) with roll and yaw hysteresis terms

added. The third equation contained in matrix equation (04)

was merely an identity and thus served no useful purpose in

performing numerical integration.

The time history responses in figures 3 through 6

are arranged to facilitate comparison of the characteristics

of the two forms of motion, i.e., the damped Dutch-Roll and

limit cycle oscillation. The Dutch-Roll mode was not dupli-

cated on all plots; therefore, it will be necessary for the

reader to refer back to figures 3 through 6 for comparison

purposes. All of the time history data were plotted with

sideslip angle as a reference parameter.

Figures 3 through 6 show the limit cycle resulting

from the application of an increment of roll moment hysteresis
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(AL= 1) via the relay action mechanism. The relay action was

simulated on the analog computer by patching the output of

sideslip velocity through a comparator and relay module whose

output of +_ 10 volts was a function of the sign of p . The

same mechanism was simulated on the digital computer by making

use of the predefined function, SGN, which returns a plus or

minus 1 value according to the sign of its argument.

Two rather unusual features that require some

elaboration are present in the time history plots. Specifi-

cally, the unusual shape of the roll rate curve with roll

hysteresis applied was believed due to the sudden application

of a rolling moment step input via the relay action. The

lower of the two peaks per half cycle was judged the more

accurate for analysis (refer figure 4) . Secondly, a solution

was obtained to equation (08) using a negative value of the

roll hysteresis, which except for a change in sign was identical

to the solution obtained using a positive value of equal mag-

nitude roll hysteresis (Table I). However, both the analog

and digital computers gave a time history response for the

same value of hysteresis that was heavily damped or essentially

deadbeat after one cycle. The numerical prediction was there-

fore assumed to be in error, although this did not reflect on

the validity of the mathematical modeling used. Rather, it

was concluded that the predicted solution failed to account

for the overall interaction of the production aircraft's sta-

bility derivatives during a dynamic propagation of the motion.

Stated another way, the hysteresis action would only traverse
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in the counter-clockwise direction about the loop in figure 1.

A similar check was made on yaw hysteresis with identical

results

.

Figure 7 shows the limit cycle caused by applying

yaw hysteresis via the same relay mechanism used for roll

hysteresis. When compared to the corresponding time history

plot for the Dutch-Roll oscillation in figures 4 and 5, the

motion induced by yaw hysteresis in figure 7 bears a remarkable

resemblance. The phase angle relationship and period (Table I)

are identical to the Dutch- Roll. From this, one may conclude

that yaw hysteresis is essentially a forced Dutch-Roll response.

The combination of roll and yaw hysteresis reflects

to some extent the relative influence of each on the total

aircraft response. As one might intuitively expect, the result-

ing motion was a compromise or average of the individual effects

of roll and yaw hysteresis as previously seen. In Table I it

was pointed out that the maximum value for roll rate was not

necessarily achieved when sideslip velocity,^, was zero. This

was confirmed by the plot in figure 9. (Although not explicitly

shown in figure 9
, ft was obviously zero when fi was an extremum)

.

There were many more combinations of roll and yaw hysteresis

that could have been tried; however, this was not considered

feasible nor productive. Again, the relay action can be seen

in the behavior of the roll rate response in figure 9. The

distortion of the roll rate response curve was due to the

combined effects of roll and yaw hysteresis. Likewise, the

phase shift for bank angle is a compromise between that seen

in figures 7 and 5.
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With the exception of figures 6 and 8, the limit

cycle oscillations were not completely developed at the ter-

mination of the time allotted for the numerical integration.

This was due primarily to the limited plotting space avail-

able, whereas in figures 6 and 8 the phase plane plot was not

so restricted, and clearly shows convergence or divergence to

the limit cycle amplitudes after release from the initial

conditions

.

For the sake of visualization, one could equate

the values of roll or yaw hysteresis to a deflection of the

appropriate control surface, i.e., a nominal _+ 101 of avail-

able control power from the aileron or rudder control surfaces.

From the analysis conducted on the analog computer, with its

real time ability to reflect changes in the problem variables,

it became apparent after some experimentation that the cross

coupling between roll rate and yawing moment through the

adverse yaw stability derivative,^-/7
, though weak, was respon-

sible for excitation of the limit cycle when roll hysteresis

was applied. Yaw hysteresis, on the other hand, acted directly

through the directional stability derivative,^, to produce

a yawing moment.

3 . Summary of Hysteresis Induced Wing Rock

There are several significant points worth considering

from this analysis and the data presented in Table I and

figures 3-9. These include:

CI) The amplitudes of the limit cycle were directly dependent
upon the magnitude of applied hysteresis.

(2) The period of the limit cycle was independent of the
magnitude of applied hysteresis.
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(3) While the roll rate was 180 degrees out of phase with
the sideslip angle for the Dutch-Roll oscillation, it
was exactly in phase for the limit cycle due to roll
hysteresis

.

(4) In addition to phase differences, the ratio of bank
angle to sideslip angle was three times greater for
the limit cycle due to roll hysteresis than for the
Dutch-Roll oscillation.

C5) The limit cycle for yaw hysteresis is essentially a

forced Dutch-Roll response. Frequency and phase angle
relationships are unchanged from the Dutch-Roll.

(6) Reversing the relay action dependence on the sign of
6 results in a deadbeat response. Therefore, a wing
rock limit cycle is dependent upon the sign of roll
or yaw hysteresis.

(7) Combined yaw and roll hysteresis produces a limit
cycle response which is essentially a compromise or
average of the two effects.

C. ANOTHER FORM OF AERODYNAMIC NONLINEARITY

1 . Previous Research

As stated earlier, some research has been done and

reported by Ross [Ref. 3] on wing rock as a limit cycle caused

by nonlinear aerodynamics interacting with an unstable Dutch-

Roll oscillation. Ross reports that a wing rock limit cycle

occurred on the Handley Page 115 testbed aircraft as the

result of increasing the angle of attack to a critical point

where any small lateral-directional perturbation excited an

alternating wing rock motion, which steadily grew to a con-

stant amplitude with the controls fixed. The motion would

immediately damp to zero when the pilot commanded a reduction

in the angle of attack below critical. The Handley Page 115

is a British aircraft designed to serve as a flying testbed

primarily for research on the Supersonic Transport and has
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geometric characteristics similar to many current tactical

aircraft, i.e,, thin swept delta wings and a slender fuselage.

In modeling the motion observed in flight and wind-

tunnel tests, Ross essentially took the linearized equations

describing lateral-directional motion and imposed a nonlin-

earity on yawing moment due to sideslip, Np . The extent of

the nonlinearity was reflected in a polynomial of degree

sufficient to match flight and wind-tunnel data which indicated

a nonlinear variation of aerodynamic moments and forces as a

function of sideslip angle. A fifth order polynomial (in odd

powers only) was proposed initially; however, as Ross pointed

out, a cubic nonlinearity was sufficient to yield good agree-

ment with experimental results of wing rock. Ross concedes

that although nonl inearities existed in the dihedral effect

and sideforce characteristic, these were considered relatively

insignificant and thus ignored.

An analysis follows which resulted from an intention

to simplify the mathematical modeling proposed by Ross and

provide a better analytical tool for use in analyzing lateral-

directional motion at angles of attack near stall. As the

reader will see, the analysis and conclusions presented here

do not necessarily agree with those of Ref. [3].

2 . Theory

As a means of simplification, the sideforce equation

and the accompanying spiral divergence mode were, as in the

hysteresis evaluation, assumed to be insignificant and thus

eliminated from the equation set describing lateral-directional

motion. This is not unreasonable, as flight tests involving
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aircraft exhibiting wing rock have shown that the sideforce

is sufficiently small as to be non-discernible to the pilot

and has virtually- no effect on the heading or ground track.

Therefore, the equations of motion applicable to this analysis

are the same as in the section on hysteresis, i.e., equations

~ -Afo/t + A!,/ - typ
( 03a)

/> = h* - Ufi -l,f c 03b)

Ross concluded that the term which contributed most

to the limit cycle in view of an unstable Dutch-Roll oscilla-

tion was a cubic nonlinearity in yawing moment due to sideslip.

For this analysis the cubic nonlinearity was introduced as:

Yawing moment due to sideslip = Na £ = W/$ (( + € fi
K

)

A

where € is a scalar of arbitrary magnitude which facilitated

varying the desired level of nonlinearity for a given analysis.

It was necessary to reduce the set of simultaneous differential

equations in (03) to a single third order equation as a func-

tion of a single independent variable,^. From equation (03a)

the cubic nonlinearity yields:

fi --Afc/? (/**/?*) + ^A/S-/V^f (03c)

Taking the derivative of this equation with respect to time

yields

:

(12)
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Solving for -f in C_l 2 ) as a precursor to elimination of the

variable 7^ from the equations set yields:

j> = ^ L-% 'Mfi ('* 3€j3*)fi + tys /?] (13)

Now solve for -f from equation (03a) and substitute the result

in equation C03b)

.

<jfi *£fifi -I*/* +A+?

Equations (13) and (14) can now be equated to complete the

elimination of ^and yield a single third order differential

equation in the single variable^, from which the analysis

proceeds

.

Clearing through by a minus N^ and collecting terms yields:

It is convenient to introduce the following notation for ease

of writing:

a = -(N
r

* y
B = b

l(
J + b

3 f
3

C - clP* c 3^
3

where: b-. = N* + N L -NL
1 P r p p r

b
3
-iWjS

C
l

= N
p
L
/*

" LpV
c
3

" "
€Vp

Thus, the resulting third order equation can be expressed in

a more general form as:

dt (15)
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This is a nonlinear differential equation for which there is

no analytical solution. Necessary assumptions were made in

order to gain an approximate solution as discussed in the

following

.

3 . Analysis

With the resulting general form of the equation of

motion given by (15) it was possible to proceed with an analysis

of the motion similar to that presented by Ross, differing only

in the degree of simplicity. Recall that the simplicity was

gained by making the assumption that V = -& or that the air-

craft remains on a steady track (without heading deviation)

while engaged in wing rock. Ross, however, did not make this

assumption but rather included the side force equation result-

ing in a fourth order system. It was further assumed, as did

Ross, that the oscillatory motion regardless of damping could

be represented by the following:

f* = D $ cos u> t = V~ cos <S

where r = D<Z I
>

A = r/r oti r = A<r
(;i6)

& = lu t J co = a

This simply says that wing rock motion can be described as a

sinusoidal oscillation with sideslip amplitude considered as

a slowly varying function of damping and time. The shorthand

notation of sigma ( <r* ) and -bh^to.( 6 ) was used for writing

convenience

.

In order to gain an approximate solution to equation

(15), the Krylof and Bogoliubof (KB) method, Ref. [7] was used.
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This method has been used extensively to analyze second order

systems with "weak" nonlinearities. With the exception of

this analysis, as well as that done by Ross on the fourth

order system, no other reference to use on higher than second

order systems could be found. Nevertheless, there was no

apparent mathematical restriction to applying the KB method

to the third order system of equation (15) . Moreover, the

KB method is applicable given the assumption that the ampli-

tudes of a vibratory system vary only slightly over a single

cycle. Thus, the terminology often used is the assumption of

slowly varying parameters, which is equally valid when con-

sidering a slowly divergent Dutch-Roll oscillation.

It was necessary to take the assumed form of the

solution in equation (16) for the dependent variable,/^, and

derive the first, second and third derivatives, which were:

4&- = r [A cos e - u> sin 6
] (17a)

L = T [ (A -w* ; cos e - 2^/CsinS] (17b)

*t£t = <T [ (A*-3W
XA) cos & + (^

3
-JujX

1

') sins
] (17c)

« r

Substituting equations (17) into equation (15) yields:

= q- l'4\(k- co
Z
) Cos &-Zu)is/r/3j- ^[/.CaSd -co s/sv a]

-3b3 [J* cos & -cos/* $]r
Z
C6s*'6 - C

f
CoJ&~CjT \os* e }

-\.3b3 /L-hC
3 ]T

z
co5

1
& i-3yj cor

l
sjty^ cos

1
e J (18)
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Equation (18) is of the form:

77 = r F (/j u*, r, cos s
}

j//v #)

The governing principle of the KB method says that since the

amplitudes are considered essentially constant over a given

cycle Cslowly varying parameters) , then the average value

over the cycle is a sufficiently close approximation to the

actual maximum value. This averaging process, when applied

to equation (18), yields the following:

> f
Cl!:i9a)

,9b)

Arriving at equations (19) necessarily involved the orthogon

ality principles of integration as shown below:

Cos
Z
s> de = / S/rt

l & d& -77

riff /i/r

J Cos
H
d$> r If rrJ jv/y a cos 4 d d ^ o

rzrr ft*?

J6 s//v& cos e d& ~o A/vo J4 J//v
z
& cos & q & - ~^r

Note that equations (19) yield the characteristic equation

for the stable system, when the nonlinearities vanish which

are contained in the odd subscripted variables, b, and c,:

(Jl + i'aiA U*- *«**/>]- i[»K 3"JL
l

]
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which is equivalent to:

Assuming that a limit cycle occurs, the following conditions

must hold:

£ = f5 cos B

Thus A s
= = damping

V~
s

= D = constant

where the subscript, s, is used to denote steady-state condi

tions. Hence, from equations (19), with the limit cycle

conditions of zero damping imposed, X5 = 0, there is

o = /?a>s - c, - % Cj r;

^5 = 4 ^s + % 6, co <rj

It can be reasonably assumed that a limit cycle will not occur

for a frequency ^ = . The phrase "reasonably assumed" is used

advisedly. Although it seems intuitive that such an assumption

would be valid, some researchers, notably Parkinson [Ref. 8]

detailed a study of the transverse galloping of a long prism

of square section in a steady flow field in which the subject

body possessed an unstable focus at rest. Whether this means

that U>= is a valid solution for a wing rock limit cycle,

and thus cannot be discarded, remains largely unanswered.

Nevertheless, such an assumption was made, as did Ross, enabling

elimination of the u)s term between the two above equations

yielding the final equations describing the limit cycle.
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AU, + \i9 r,
x)-c

l
- %*j rS~o

I

Ab> - C, > V fdji
~ g

'

The frequency, U^5 , for the limit cycle can then be obtained

as

:

a

^fr^C^)/'
Recall that one of the preconditions for the limit cycle as

proposed by Ross was that the aircraft must possess an unstable

Dutch-Roll mode of slowly varying parameters, which is con-

strained in amplitude by a positive cubic nonlinearity in

yawing moment (yawing moment increasing with sideslip angle).

Yet there was nothing explicitly incorporated into the mathe-

matical model, which yielded equations (20) and (21), that

would account for this condition. Instead, it was assumed

that a limit cycle existed due to a constrained motion in-

stability. The modeling proceeded on this basis with the

motion constraint explicitly incorporated by NgCl-h £/? ^/f

.

This should not be interpreted to mean that a limit cycle

will occur only if there is a divergence of the vibrating

system initially (refer to section III. A); however, when

applied to aircraft dynamics this is probably the most common

way limit cycle oscillations occur, as was experienced by

Ross and has been experienced by the author as well.
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The effect of inducing a limit cycle via a positive

nonlinearity on Np at high angle of attack is intuitively

appealing. This would amount to increasing directional sta-

bility with sideslip, or the spring in the spring mass damper

gets stiffer with displacement from equilibrium, until there

is an equilibrium established between the energy contained in

the unstable Dutch-Roll and that absorbed by the spring.

Physically, this could correspond to an aircraft exhibiting

a decrease in directional stability at low sideslip angles

and high angle of attack due to a turbulent, low energy flow

field emanating from the wing and engulfing ehe empennage

section, thus reducing the restoring moments generated by

stabilizing and/or control surfaces. This is often the case

for the tactical high performance aircraft. However, as the

tail is yawed out of the low energy flow and into a lower-

turbulence- level , higher energy flow (higher kinetic energy

or dynamic pressure), the directional stability will increase

Thus, the premise of an unstable motion constrained by a non-

linearity in directional stability would appear to be valid.

The F-94 airplane as originally used had a stable

Dutch-Roll; therefore, it was necessary to destabilize the

airplane artificially for the sake of conducting wing rock

studies. The primary means of achieving an unstable Dutch-

Roll oscillation consisted of altering the sign and magnitude

of the yaw rate damping derivative, N . The effect of this

can be seen in figure 10, where the motion slowly diverges at

a frequency equal to the stable Dutch-Roll. Since the

53





denominator of equation (20) is positive, and in order to

ensure that the radical term remained positive, it was neces-

sary to alter a second derivative such that Ab, > c, . After

some manipulation, the following derivatives were changed as

indicated:

Nr = .02

Np - -.3

a. Predictions Based on Analytical Solution

The following is a sample calculation of a pre-

dicted limit cycle using equations (20) and (21).

A - -(NA + L
p

) = 2.4357

b
1

= N^ + N r L - N
p
L r = 1.7274

C, = N L A - N
fl
L = 4.0916

1 p P P p

b
3

= 6N^ = 1.32146

c
3

= -*N,L
p

= 3.245

V _ , 1C , 7
/ (2.4357)(1.7274) - 4.0916

V
v
s *•"*' ^ - e (1 - 2.4557) (1.3214),

with i = 5

fj. = .1267 Rad = 7.15 Deg

U> = 1.3454 Rad/sec

T = 4.67 sec.
s

In addition to the analog and digital computer

programs previously mentioned, programs were likewise written

and executed based upon the reduced third order equation (15)
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These are presented in Appendix D and F. These programs were

used primarily to compare with the results hased on the two

equation system (equations 03b, 03c) to ensure consistency

and accuracy to the maximum extent possible of the mathematical

modeling that led to equations (20) and (21) . The same plot-

ting program of Appendix C was used. Heavy reliance was

placed upon the analog computer for qualitative analysis,

where changes could be made and their effects observed imme-

diately.

b. Verification of Predictions

The limit cycle predicted by the above sample

calculation was not obtained. Rather, another limit cycle

of lower steady state sideslip amplitude, figure 10, occurred

almost immediately upon release from initial conditions with

a level of nonlinearity , 6=5.

-a. is l

TIME C5EC)

Figure 10. Time History of Wing Rock Limit Cycle
and Divergent Dutch-Roll.
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The value of the predicted (T
-
= .13 radians was greater than

the initial condition f*t = .08. Thus, according to theory and

the fact that an unstable Dutch-Roll existed as shown in Fig.

10, the motion should have slowly diverged to the predicted

steady state values. Similarly, an initial condition greater

than the predicted value of ^T was tried (not shown) to see

if the motion would converge to the limit cycle; however, the

time history was essentially identical to the first in that a

limit cycle again developed with an amplitude very nearly the

same as the initial conditions. Therefore, the wing rock

limit cycle appeared to be a function of the stability deriv-

atives, N r and N
p , and the initial conditions, rather than of

the value of the nonlinearity in yawing moment.

The effect of the level of nonlinearity as viewed

on the analog computer was merely to alter the frequency, with

no change in amplitude. On the other hand, the predicted

frequency, u) , agreed very well with experimental data. For

the above sample, the predicted lo in terms of the period

(where period T = — ) was 4.67 sec, while experimental results

showed 4.7 sec. This close agreement on frequency held for

changes in the level of nonlinearity £., as well as changes in

the stability derivatives, as long as the requirement Ab-, > c,

was satisfied, as previously discussed.

Experimentation on the analog computer showed

that the time history response behaved as if neutral stability

existed. When considering motion without nonlinearity imposed,

the Routh Stability Criterion can be used to determine the
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neutral stability boundary, and it appeared at first that

possibly the Routh discriminant had been inadvertently satis-

fied through the manipulation of Nr and N ; i.e. , Ab, - c-, = 0,

is directly proportional to Routh discriminant. However, this

was not the case as Ab-, - c, was found equal to 0.1158.

4 . Summary of Wing Rock Induced by Nonlinear
Yawing Moment

Now, an obvious question arises as to the source of

disagreement between these findings and those of Ross. The

main difference with this analysis and that carried out by

Ross was the simplification imposed at the beginning, i.e.,

that the sideforce equation and accompanying spiral mode were

insignificant and need not be considered. Since the F-94

possessed no natural instability in the Dutch-Roll at the

angle of attack tested, the artificial manipulation of the

stability derivatives N r and N , as discussed above, may have

been so arbitrary as to not correctly represent the character-

istics previously exhibited by the Handley Page 115, and docu-

mented by Ross. Whether these or other concepts were the

source for the disagreement in results is unknown. Possibly

the analysis Ross presented for the Handley Page 115 was

peculiar to that aircraft, although intuitively one would

tend to argue in favor of the premise that a limit cycle

would occur for an unstable Dutch-Roll in the presence of an

increasing yawing moment with sideslip angle. In view of

this, it is recommended that follow-on research be conducted

using the complete set of equations of motion, i.e., including
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the sideforce equation and the analysis technique presented

here to make a more conclusive determination as to the validity

of the concept that a wing rock limit cycle can be the result

of an unstable Dutch-Roll coupled with a cubic nonlinearity

in N*. Moreover, any additional research should be conducted

on an aircraft known to exhibit wing rock motion such as the

Handley Page 115 or preferably on an operational, tactical

aircraft such as the Northrop T-38 or F-5.
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IV, CONCLUSIONS AND RECOMMENDATIONS

The existence of a lateral-directional aircraft limit-

cycle oscillation, due to an aerodynamic hysteresis corres-

ponding to a roll or yaw moment relay action that is dependent

upon the sign of sideslip velocity, has been demonstrated.

The use of state variable notation allowed the limit-cycle

motion to be expressed in a concise and clear manner.

Although bank angle was not a state variable in the

analysis and hence could only be estimated from roll rate,

the inclusion of this term by the introduction of a sideforce

equilibrium equation is practicable for a more detailed anal-

ysis. However, in keeping with the purpose of the analyses

presented here, to illustrate a concept, the only equations

used were those absolutely required to achieve that goal.

The existence of a wing rock limit cycle oscillation due

to a nonlinear yawing moment, as reported by Ross [Ref. 3] >

was not confirmed by the analysis presented here. The essence

of the differences in the two analyses was in the basic assump

tion that the sideforce equilibrium equation need not be

included. Such an assumption is based in large part upon

personal flight test experience of the author, in which the

characteristics of wing rock at high angle of attack have

clearly indicated that yaw excursions are relatively small,

thus adding support to the contention that sideforces be

assumed negligible.
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From the exhaustive experimental observations made in

the laboratory, albeit using an aircraft that was known not

to possess any wing rock limit cycle characteristics, serious

doubts have been raised concerning the generality of Ross'

analysis. While on the one hand the concept of a nonlinear

spring, as applied to aircraft dynamics, and the "limiting"

of the divergent Dutch-Roll oscillation, has intuitive appeal,

experimental results using analog or digital modeling consist-

ently indicated an effect only on the frequency of the vibra-

tion, with no effect on damping. Indeed, a limit cycle was

achieved based upon the modeling criteria used by Ross, but

not as predicted with respect to steady state amplitude.

However, the predicted and resulting experimental value for

frequency of the oscillation showed excellent agreement. Of

the limit cycle obtained, the damping appeared to be a func-

tion of the modified stability derivatives necessary to

artificially destabilize the Dutch-Roll of an otherwise

stable test aircraft (F-94) rather than of the level of the

cubic nonlinearity

.

The source of disagreement between the results obtained

here and those of Ross remained unknown at the termination

of this research. Sufficient time was unavailable to pursue

the question further; however, it is recommended that follow-

on research be conducted, when time permits, to make a more

detailed analysis, possibly including the sideforce equa-

tion, in an effort to determine the source of disagreement

between the two analyses, which has led to quite different

aircraft responses

.
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Finally, it is hoped that these analyses will make clearer

that interpreting an actual aircraft time history as represent-

ing a Dutch-Roll mode with exactly zero damping may be mis-

leading, since a motion with very similar appearance could be

a limit cycle due to aerodynamic relay, or hysteresis actions,

or nonlinear yawing and rolling moments as posed by Ross. The

direct problem of determining the time response of an aircraft

due to forcing functions, be they linear or nonlinear, is

tractable. The inverse problem of identifying the plant from

the aircraft time histories (known as aircraft parameter iden-

tification) is much more difficult, because of the uncertainties

in estimating types of plant nonlinear ities

.
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APPENDIX E

ANALOG COMPUTER PROGRAM FOR

i = -N (1 + eS
2
)S +

N

r 3 - N p + AN*SIGN(3)
p P

p = L
g
S - L

r 6 + L p + AL * SIGN(e)

Q
CD

>-

k

1

70





APPENDIX F

ANALOG COMPUTER PROGRAM FOR

B = -AB - 3 Cbi + 3b
3 3

2
) - C]_6 - c 3 3

3
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Q
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