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A need has existed for a comprehensive handbook containing proper
ties of various geometrical shapes to be used by design engineers at 
governmental agencies. 

It is the purpose of this publication to supply technical personnel 

with information concerning these mathematical properties in a complete 

volume that includes moments of inertia, centroidal distances, volumes, 

areas, and radii of gyration of solids, thin shells, thin rods, plane 

area� and ogival shapes. In addition, examples of various types are 

included. 

The work of compiling, organizing, and preparing this publication 

was done at the U. s. Naval Ordnance Test Station in September 1961 
under Bureau of Naval Weapons Task Assignment RM3773-009/216-1/F008-22-
002 of 22 September 1961. 

This handbook was reviewed for technical accuracy by Genge Indus
tries, Inc., of Ridgecrest, California. Suggested additions or criti
cism will be appreciated. The information contained herein is to be 
released at the working level only. 
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ERRATA 

Page 81:  Under the heading "Moment of Inertia About the Base 
Plane,  the equations are correct for moment of inertia about the base 
plane; however, to obtain moment of inertia about a base diameter axis, 
add "+ yl. 'to the right-hand side of each of the three equations for 
IB- 

Page 82:  Under the heading "Moment of Inertia About the Base 
Plane," the equations are correct for moment of inertia about the base 
plane; however, to obtain moment of inertia about a base diameter axis, 
add "+ jI A" to the right-hand side of each of the two equations for 
XB- 

Page 88:  In the underscored heading, change "the Base Plane" to 
read  a Base*Diameter Axis." 

In the equations below the figure, change "lg" to "igA'" tnree 

places. 

Page 89;  In the figure, change the dimension "L" to "h" and "b" 
to "DT" 

In the last underscored heading, change "the Base Plane" to read 
"a Base Diameter Axis." 

In the equations at the top and at the bottom of the page, change 
to "IBA. In  to  IRA. 

Page 90:  In line 2, change "a = L/R = sin 0" to read 
"a = h/R = sin (p." 

In the third equation below the figure, change "lp" to read "i^»" 

In the fourth equation below the figure, change "ITB" to reac* "iß1 

The fourth equation changed as above to read "ig = ..." is correct for 
the moment of inertia about the base plane; however, to obtain moment 
of inertia about a base diameter axis, add " + j I\"   to the right-hand 
side of the equation. 

Enclosure (1) 
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COMMENTS 

1. Inertia equations give answers in inches to the fifth power. 

2. Do not use a slide rule to calculate ogival properties.  At 
least six significant figures must be calculated for each term within the 
brackets given with the ogive equations.  Therefore, it is advised to 
use a desk calculator or other type of computer to establish the desired 
accuracy. 

3. Central axis: The central axis is the symmetrical center line 
axis of the ogive sometimes referred to as the polar, or polar longitu- 
dinal axis. 

4. Base diameter axis:  The base diameter axis denotes an orthogonal 
transverse axis which intersects the central axis at the base of the 
ogive.  This is commonly referred to as the transverse axis. 

5. Base plane:  The base plane denotes a plane passing through the 
base of the shape and normal to its center line axis. 

6. Moment of inertia about the base plane:  The moment of inertia 
about the base plane can be computed by subtracting one-half the value 
of the moment of inertia about the central axis from the value of the 
moment of inertia about a base diameter axis.  Conversely, the moment 
of inertia about a base diameter axis can be computed by adding one1- 
half the value of the moment of inertia about the central axis to the 
value of the moment of inertia about the base plane.  Mathematically, 

and 

where 

IB " *BA " TIA 

BA = *B + 7IA 

Ig = moment of inertia about the base plane 
I3A = moment of inertia about a base diameter axis 
1^ = moment of inertia about the central axis 

7.  Example (from Calculus, by Edward S. Smith, Meyer Salkover, and 
Howard K. Justice, New York, John Wiley and Sons, Inc., 1947, Article 113, 
Example 5, pp. 317-318; used by permission of the publisher):  The 
following example is given to show the methods for obtaining moments of 
inertia about planes and axes of a solid of revolution. 

Enclosure (1) 
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Example:  Find the moment of inertia of the volume of a right 
circular cone of altitude h and base-radius a with respect to the 
following planes and axes parallel to the base:  (i) a plane through 
the apex;  (ii) an axis through the apex;  (iii) an axis through the 
centroid;  (iv) a plane through the centroid. 

(i)  Choosing three mutually perpendicular coordinate planes 
as shown in the figure, we proceed to find Ivz by integration.  Using 
discs as elements of volume we have 

Lyz -/: 
rry dx 2 a*   f X    =Wo x4dx 

7ra 2h3 

(ii)  By symmetry, the moment of inertia of the volume of the cone 
with respect to any axis through the apex and parallel to the base is 
equal to Iz }   which may be expressed in the form 

whe 

z ""  xz    yz 

re I„„ is given and I   remains to be found y ^ X & 

Enclosure (1) 
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Evidently Ixz = Ix , and hence 

*xz " 2' xv "  xz' xz   ? x xy    xz 

= TIX 

. 7ra4h 
20 

Substituting the values of Ixz and IyZ> we obtain 

Iz -ffa2h(a2 + 4h2) 
20 

(iii)  The distance from the apex to the centroid of the cone is "irh, 
Hence, if V represents the volume of the cone and a g-axis is drawn 
through the centroid G parallel to the z-axis, we have 

Ie = Iz - V(^h)
: 

Therefore 
g 

I  = ![£?£ (4a2 + h2) 
g   80 

Obviously this result is the moment of inertia of the volume of the cone 
with respect to any axis drawn parallel to the base through the centroid 

(iv)  With respect to the gh - plane, drawn through the centroid G 
and parallel to the base, the moment of inertia of the volume of the 
cone is 

*&'   = Jyz -V(ih)2 

7T   2, 3 
= — ah 

80 

September 1966 
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LIST OF DIAGRAMS 

The following is a list of the geometrical shapes for which diagrams 
and equations are given. 

Solids 
Right Circular Cylinder   10 
Hollow Right Circular Cylinder    10 
Right Circular Cone  11 
Frustum of a Cone  11 
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Thin Rods 
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IV 
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NOMENCLATURE 

An effort has been made to typify symbols for thickness, height, 
and base width for all shapes and plane areas considered.  However, in 
some instances, additional nomenclature has been introduced for descrip- 
tive purposes.  It is advisable to refer to the diagram associated with 
each item. 

A Area, in2 

1 Moment of inertia.  The unit is generally expressed as follows: 
for a solid, lb-ft2, slug-ft2, etc; for a plane area, in4, ft4, etc 

I Polar moment of inertia 

Ix Moment of inertia about the x-axis 

Iy Moment of inertia about the y-axis 

Iz Moment of inertia about the z-axis 

Ixy Product of inertia in the x-y plane 

Ixz Product of inertia in the x-z plane 

IyZ Product of inertia in the y-z plane 

kx Radius of gyration about the x-axis 

ky Radius of gyration about the y-axis 

kz Radius of gyration about the z-axis 

L Length, in. Where t (thickness) or d (diameter) of a thin rod is 
constant, V, W, and m are proportional. Statical moments and mo- 
ments of inertia of the area or body may be functions of L 

m Mass, lb or slugs 

V Volume, in3 

W Weight, lb 

x Centroidal distance along the x-axis, in. 

y Centroidal distance along the y-axis, in. 

2 Centroidal distance along the z-axis, in. 

p Mass density factor, lb/in3j m/V 

vi 
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INTRODUCTION 

This handbook is published for the convenience of those whose work 
requires the use of equations of mass and area properties for various 
geometrical shapes.  It is hoped that this compilation will be an aid to 
technical personnel and will eliminate the need for searching through 
many handbooks and tables for a particular mathematical property. 

In certain sections of this handbook, equations for moments of in- 
ertia and centroidal distances are developed through the use of the cal- 
culus, which, it is believed, will serve as a supplementary method for 
finding information not included herein.  Other, simplified, forms for 
calculating properties are included that can be used in lieu of integral 
calculus. 

As an aid in finding a particular item, the diagrams and accompanying 
equations for the various shapes are grouped under the following headings 
shown at the tops of the respective pages: solids, thin shells, thin rods, 
plane areas, and ogival shapes. 

Certain structural shapes such as channels, I-beams, angles, and T- 
sections are omitted because these are normally found in a construction 
manual such as the AISC steel construction manual.  However, variations 
of these sections, without fillets and bulbs, are included. 

A separate section is devoted to the properties of ogival shapes, 
which are commonly used in the design of missile nose cones.  The solid 
and thin-shelled tangent ogives are included because of their frequent 
use. 

Special Notes 

1. A thin-shelled body is one in which t < (L/30), where t is the 
gage thickness of the material and L is the length, or radius, perpen- 
dicular to the axis of rotation measured at the maximum diameter. 

2. A thin rod is one in which L ^ 30d, where L is the length of the 
rod and d is the diameter of the rod. 

3. Elliptic-area formulas may be used for circular complements such 
as half circles and quarter circles by substituting a = b = R. 

4. Weight moments of inertia for plane areas can be obtained by 
multiplying the area moment of inertia by the area mass, M, and then 
dividing by the section area. 

5. Linear dimensions are in inches in the sections that follow. 

6. In most cases involving integration, cartesian, or rectangular, 
coordinates are used.  Should the need arise to use polar coordinates 
for ease of integration of special integrals, it is advised that a review 
of a calculus text or similar reference be made.  Also, double integration 
methods, if used, will in many instances reduce calculation time. 
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SOLIDS 

SOLIDS 

SUMMARY OF EQUATIONS  FOR MASS AND VOLUME PROPERTIES 

Centroicl   by   Integration   (Homogeneous  Mass) 

J'xdV JydV JzdV 
x  =  , y  =  , z  =   

JdV JdV /dV 

Center of Gravity of a Coplanar System of Particles 

My       SMx                          Mx       ZMy 

m          M                             m          M 

Center  of  Gravity  of  a Non-coplanar  System of Particles 

Myz       ZMx                          Mxz       2My 
x  =            -                          y  -            -         , 

m             M                                 m             M 

Mxy 

m 

SMz 

M 

Moment of Inertia 

I = /r2dm 

Product of Inertia 

Ixy = /xydm,      I z = /yzdm,      Ixz = Jxzdm :y - J»J"~> *yZ 

Transfer of Axes 

I = I + md2 

k2 = k2 + d2 

Radius of Gyration 

k = v
/l7m 

Centroid of a Composite Solid Body 

ZWx  Zhx       ZVx 
x = 

y = 

z = 

w L V 

SWy £Ly 2Vy 
=   =   

W L V 

SWz SLz 2Vz 
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CENTER OF GRAVITY OF A SYSTEM OF PARTICLES 

Two systems of particles exist that will be defined as coplanar 
and non-coplanar. 

Coplanar Particles 

The first system, coplanar particles, can be resolved into a common 
mass located at such a position that the moment of its mass with respect 
to the x-axis would be equal to the moment-sum about the x-axis, and 
that the moment of its mass with respect to the y-axis would be equal to 
the moment-sum about the y-axis.  The two coordinates presented would 
then locate the point that represents the center of gravity of the sys- 
tem in the x-y plane. 

Therefore, 

xm = My and ym = Mx 

or 

x = 

and 

My 

in 

Mx 

rrijXj -f m2x2 + • • * + mnxn   £mx 

m,   + m-,   + 

»i yi   + m2y2   + 
y = 

Example. 

in m,   + m,   + 

+ mr 2m 

+ mnyn      2my 

+ mn 2m 

i_r 

*2 

o 0 
i_t 

2.42 CG 

-0.42 

© 
*3 

1 

'1 = 1   in., 

= 2   in., 

Yl = 1 in., 

y2 = 2 in.. 

y3   = -2  in., :3   = 3   in., 

(1)(1)   +   (2)(2)   +   (4)(3) 

ml = 1 lb 

m2 =2 lb 

m3   = 4   lb 

x  = = 2.428   in. 
1+2+4 
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SOLIDS 

(1)(1) + (2)(2) + (4)(-2) 
y =   = -0.429 in. 

1+2 + 4 
Note.  Care must be taken to account for the proper signs when cal- 

culating the moment-sums. 

Non-coplanar Particles 

The second system, non-coplanar particles, can be resolved into a 
common mass located at a point in space represented by the coordinates 
x, y, and z, which are readily calculated by the procedure used in the 
coplanar system and with the inclusion of the third reference-plane co- 
ordinate. 

Thus, 

Myz  mjxi + m2x2 + * ' * + mnxn  2mx 
x  = 

y - 

z   = 

M 

Mxz 

nij   + m2   +   •   •    •   + mn 2m 

mlYl   + m2y2   +   '    •    *   + mnyn       Smy 

M m1   + m2   +   •   •    •   + mn 

Mxy       mjZj   + m2z2   +   •   •    •   + mnzn 

M m.   + m,   +   •   •    •   + rnn 

2m 

2m z 

2m 

Example. 

Xj = 2 in., yl =  6  cos 45"  =  4.24, zl   =  6  cos   15°  = 4.24 

x2 =  4 in., y2 =  -4   cos   30°   =  -3.46, z2   =  4   cos   60°   =  2 

x3 =  6 in., y3 =  12   cos   45°   =  8.48, z3   =  -12   cos   45°  =  -8.48 

nij =   1 lb, m2 =  2   lb, m3   =  3   lb 

(1)(2)   +   <2)(4)   +   (3)(6) 
x  =   = 4.66  in.   (ans.) 
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(1)(4.24) + (2X-3.46) + (3)(8.48) 
y =  = 3.79 in. (ans.) 

6 

(1)(4.24) + (2)(2) + (3K-8.48) 
z =   = -2.87 in. (ans.) 

6 

The resulting coordinates of 4.66, 3.79, and -2.87 inches fix the loca- 
tion of the system's center of gravity. 

TRANSFER OF AXES ON A SOLID BODY 

Let the radial distances from the two axes to any element of mass 
dm equal r and r0, with the separation of the axes being d; applying 
the law of cosines, r2 = TQ + d2 + 2r0d cos 0.  The definition of the 
mass moment of inertia gives 

I = _[r2dm = J*(r£ + d2 + 2r0 d cos 0)dm 

= Jrodm + d2J*dm + 2dJ"r0 cos 0dm 

Since the y-coordinate of the center of gravity with respect to an 
origin at 0 is zero, the third integral drops out, leaving 

I = I + md2 

RADIUS OF GYRATION 

The radius of gyration, k, of a body with respect to any axis is 
defined as the distance from the axis at which the mass may be conceived 
to be concentrated and to have the same moment of inertia with respect 
to the axis as does the actual whole, or distributed, mass. 

Mathematically, k = -/l/m by definition.  Substitution into 
1=1+ md2 results in k2 = k2 + d2, which provides a method for trans- 
ferring the centroidal radius of gyration to a parallel axis on the 
same body. 

PRODUCT OF INERTIA 

Generally, a three-dimensional body has three moments of inertia 
about the three mutually perpendicular coordinate axes and three products 
of inertia about the three coordinate planes. 
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SOLIDS 

The product of inertia of the body with respect to a pair of coor- 
dinate planes is the algebraic sum of the products obtained by multiply- 
ing the mass of each element of the body by its coordinates with refer- 
ence to these planes.  The value of the product of inertia can be 
positive, negative, or zero. 

Mathematically, the products of inertia about the three planes are 
expressed as 

*xy = /xydm>      lyz = Jyzdm,      Ixz = Jxzdm 

where dm is an element of mass.  Or, the product of inertia may be cal- 
culated for an area where the two rectangular coordinate axes provide 
the system on which the computation is based, in the form 

Ixy = /xydA 

where dA is an element of area, and x and y are the respective distances 
from the axes to the elements of area. 

An application of the product of inertia may be seen on page 53 
covering the properties of an angle. 

CENTROIDS OF COMPOSITE VOLUMES 

The determination of the centroid of a composite solid shape can 
be calculated by the application of the moment principle, in which the 
basic relationship takes the form 

(WX  + W2  + W3 + *  •  ' )X = WjXi  + W2X2 + W3X3 + •  •  • 

where w represents the weight of each part, X represents the x-coordinate 
of the center of gravity of the total body, and x represents the center 
of gravity of the individual parts. The resulting basic relationships are, 
therefore, 

2wX Swy Zwz 
X =  ,      Y =  ,      Z =   
WWW 

In each of the above relationships, weight values may be replaced 
with values for length, area, or volume, depending on the shape of the 
object. 

It is likely that interest will be found in the determination oi 
the centroidal distance of a hollow geometrical shape such as the frus- 
tum of a cone; the applicable equations will then be 

2vx Zvy 2)vz 
X =  ,      Y =   ,      Z =   

V V V 

where it is obvious that only one of these relationships is valid for a 
symmetrical body. 

For hollow objects, or objects with holes in them, it should be 
realized that the void volume must be subtracted, as in the case of a 
hollow cone frustum. 

Zvx   (Vx)T - (Vx)H 

X =   =   
v    vT - vH 
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where (Vx)m represents the total solid frustum and (VX)H represents the 
inner, or hollow, frustum. 

CENTROID OF A VOLUME 

By expansion of the concepts used in the resolution of a system of 
particles, it is apparent that a summation, by integration, of a differ- 
ential element of a body, leads to the determination of the centroid of 
the body. 

If the body is homogeneous, the density of the body, p, will be 
considered constant.  Therefore, the element of mass is 

dm = pdV 

and,   for   the  entire  body, 

m = fpdV 

Using previous equations and substituting, 

fxdm       fpxdV       JxdV 
x  = 

m 

J'ydm 

/pdV /dV 

JpydV      /ydV 
y = 

m   JpdV        JdV 

jzdm      /pzdV fzdV 

m   /pdV   /dV 

Therefore, it can be seen that the first moments of each summation are 
Vx, Vy, and Vz for a homogeneous body. 

Example.  The centroid of the solid generated by revolving the area 
of the half parabola y = 4 - x2 about the y-axis may be determined as 
follows. 
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dV =  7TX2dy 

/dV = /4
TT(1  - y)dy 

o 

/dV = 7rJ"4(4  -  y)dy 

V = 7r[4y  -   (y2/2)]o   = TT(16 - 8)  = 8TT 

Vy  = /ydV 

= ^47ryx2dy = 7r/o
4(4y - y2)dy = 7r[2y2 - (y3/3)]* 

= TT[32 - (64/3)] = 327T/3 

Therefore, 

32;r/3  32   4 
y =   = — = - (ans. ) 

8TT    24   3 

and z = x = 0, by symmetry. 

MASS MOMENT OF INERTIA 

The inertial resistance to rotational acceleration is that property 
of a body which is commonly known as its mass moment of inertia. 

If a body of mass m is allowed to rotate about an axis at an angular 
acceleration a,   an element of this mass, dm, will have a component of ac- 
celeration tangent to the circular path of va,   with the tangential force 
on the element being rßdm.  Since the distance to the element is r, the 
resulting moment on the force equals r2o.'dm. 

Integrating the elements of the body, 

I = /r2dm 

an expression is obtained that is known as the mass moment of inertia oi 
the body, where a  is dropped out because it is constant for a given 
rigid body. 

If the body is of constant mass density, the differential, dm, may 
be replaced with pdV, since dm = pdV, and the following expression 
results 

I = p/r2dV 

The units of mass moment of inertia are commonly expressed as 
lb-ft-sec2 or slug-ft2, or, dimensionality. ML2. 

8 

http://www.abbottaerospace.com/technical-library


NAVWEPS REPORT 7827 

Examples. 

RIGHT CIRCULAR CYLINDER 

rP-V-^i- 
di 

The mass moment  of  inertia  for  a   right   circular  cylinder  is   found 
by  the  use  of   I   = Jr2dm and   the  equation  for  elemental  cylinders,   as 
follows 

dm = pdV = p27rxhdx 

Iy  = p/0 (x2)(27rx)hdx 

= 27rphj"  x3dx 

27rph R       p-nhR4 

__4 
**.- 

M M 

P   = -  = 
V      7rR"h 

M     /7rhR4\        MR2 

h  = 7rR2h\  2 
(ans.) 

2 

9 
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SOLIDS 

RIGHT CIRCULAR CYLINDER 
Z 

R —x 

li 

'■—■*< 

HOLLOW RIGHT  CIRCULAR CYLINDER 

R 

9i*~ 

H-X 

VOLUME 7TR
2

H rH(R2 - r2) 

CENTROID Z     a    — 
2 

WEIGHT 
MOMENT 

OF 
INERTIA 

Xx = Iy - 3~ (3R2  * H2) 

T     , WR2 

lx  ■  Iy •S"[3(R2 + r2) + H2] 

I,  -5 (R2 ♦ r2) 

kx   =   ky   =  0.289   Y 3R2   * H2 

RADIUS 
OF 

GYRATION 

kxl = kyi "0.289y3R2 ♦ UH
2 

kz   =  0.707   R 

kx = ky - 

k7   =  0.707 

0.2S9^3(R2   ♦  r2)   4- H2 

^R2  ♦ r2 

-  k       -   JR2 ♦ r2  A H2" 
*i    kyi    I —E—   T" 

Adapted from Weight Handbook,  Vol. 2,   Society of Aeronautical Weight Engineers,   Inc. 

10 

http://www.abbottaerospace.com/technical-library


NAVWEPS   REPORT   7827 

RIGHT  CIRCULAR CONE 
Z 

FRUSTUM  OF A  CONE 
z 

VOLUME R2*! TTH    (R2 ♦ Rr  ♦ r2) 

CENTROID 
H 

7»    C 
H 

7-5 
R2  » 2Rr  ♦ 3r2 

2 2 R*  ♦ Rr  ♦ r ] 

WEIGHT 
MOMENT 

OF 
INERTIA 

**mll 

Xx    -1 

J5W    (R^  ♦ IT) 
20 IT 

IN    (3R2  4- 2H2) 

I   - 3W   |R5 - 

^] 
i    yi   20 

I,   «J5      R2 

10 

RADIUS 
OF 

GYRATION 

kx   =   ky   =   0.387 

k        -   k        -  0.224 
*i      yi 

y/*7 r 
/^r 2HC 

k       ■  0 
*2 

.387      .A2  ♦ I4Ü2 

kz  =  0.548   R 

k2  = 0.548 7R5  -  r5 

V R3 - r3 

Adapted from Weight Handbook,  Vol.   1,   Society of Aeronautical Weight Engineers,  Inc. 
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SOLIDS 

CÜ^E 

By  similar  triangles,   y  =   (Rx/h) 

dm = pdV 

Ixdisk = mR2/2 

r2   = v2 

dlv  = dmr2/2 

=   (p7ry2dx)(y2/2) 

Ix  = /r2dm 

= —U —  dx =— h;/0 *4dx 
2       \h / 2 \h4/ ° 

prf 

2h4 

in 

p   = -     = 

pit R4h 

10 

*x   " 

V 7rR2h/3 

3m7:R^h 

107rR2h 10 
(ans. ) 

12 
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FRUSTUM OF A CONE 

By similar triangles, 

R - r  y - • r 

h x 

hy   -  hr hy hr 

dx   = 

R-r R-r       R-r 

/     h     \ 
   dy 

\R -  r/ 

Ixdisk = mR2/2 

dl     = y2dm/2 

dm = pdV = p?ry2dx 

dlx  = —(p7ryzdx)   = 
p7ry4 /     b 

dy 
2      \R  -   r, 

p7Th 
Jx  ■ 

2(R -  r) 
iVdy 

pTTh p;rh   (R5   -   r5) 

2(R -   r) .5 . r        10        (R-r) 

7Th 
V = —   (R2   +  Rr   +   r2) 

3 

m7rh(R5   -   r5)(3) 

I     = 
x 

107Th(R2   +  Rr   +   r2)(R  -   r) 

3m   (R5   -   r5) 
(ans.) 

10   (R3   -  r3) 

13 
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SOLIDS 

SPHERE 

—X 

HOLLOW SPHERE 

Z 

VOLUME fi3 k   7T      (R3  -  r3) 

CENTROID 

WEIGHT 
MOMENT 

OF 
INERTIA 

JX     -Iy     "I«     -£   W^ 
7 5 

y 5    VR^-^r 

RADIUS 
OF 

GYRATION 

kx   =   ky   =   kz  =  0.632   R kx   -   ky = kz = 0.632//B^_-_r5 

Adapted from Weight Handbook,  Vol. _1>   Society of Aeronautical Weight Engineers,   Inc. 
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SOLID  HOMOGENEOUS   SPHERE 

x  = 

.1 

v/r2 - y 
.2 x     =  r     -  y 

y 

dm 

r2   - x2 

= p7ryzdx 

2-»2, dmy^ (.pity   dx)yc        7Tp(rz   -  xO   dx 

dl.   = 

rp 
!X  = —& <rZ   ~ x2)2d*  " 

87rpr- 

15 

m 
P = 

I.. = 

V       (4/3)7rr3 

(87rr5/15)m       2 
  = —mr2(ans.) 
(4/3)7rr3 5 

15 
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SOLIDS 

VOLUME 

HEMISPHERE 

Z 

R5 

ELLIPTICAL CYLINDER 

■n  ABH 

CENTROID 

WEIGHT 
MOMENT 

OF 
INERTIA 

Ix   -  Iy.   -  0.26   WR2 

x*i  - Tyi  " lt  -0.4WR2 

Ix   - W (3B2   ♦ H2) 

h  ■» (3A2  *H2) 

I«   -2 (A2   ♦ B2) 
h 

RADIUS 
OF 

GYRATION 

kx   =  ky   =  0.51R 

kY     =  k        =   k7   =  0.632R 

kx   =  0.289 JSB2  * H2 

ky   =  0.289 vJ3A2   ♦  H2 

kz   -> I2   *B2 

Adapted from Weight Handbook, Vol. _1,   Society of Aeronautical Weight Engineers,  Inc. 
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ELLIPSOID 

A> B> C 

PARABOLOID OF REVOLUTION 

VOLUME -7T  ABC 
3 

I?H 

CENTROID -  - H 1       ? 

WEIGHT 
-> MOMENT 

OF 
INERTIA 

x  - W (A2   * C2) 

"5 
„- W (6A2 ♦ C2) 

. W  (A2  ♦ B2) 
y    "5 
yl- W  (6A2  ♦ B2) 

, - w (* ♦ c2) 
5 

ix - iv - w   (31? ♦ H2) 

I    -W {# *H2) 
1   Z 

ixg ■; (^ * 3H2) 
o 

I.   - WF? 1    T 

= 0.447       VA     ♦ 

RADIUS 
OF 

GYRATION 

kx     =  0.447 

ky   =   0.447 

ky     =  0.447 

kz   =   0.447 

^6A2  ♦ 

yl A2 ♦ 

\/6A
2
 ♦ 

J~77 

kx   = ky   =  0.236 

kx     =  0.408 

kv     = 0.408 

kz   =   0.577   R 

Ellipsoid*of   revolution-»» 
-sphoroid 

SURFACE 
AREA 

Appr. ■ 

EXACT ft» 

EXACT -for 
(JroU + i    «äIKH-OIA 

B 

^A 

C 

4<B V A2  + B2 

^   .2 B*   , 1   +   8 -    2nA2  ♦ «§    loge - 

e     c    eocentrioity ■ 

D 

-jaejtz^ 
Adapted from Weight Handbook,  Vol. _1,   Society of Aeronautical Weight Engineers,  Inc. 
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SOLIDS 

WEIGHT 
MOMENT 

OF 
INERTIA 

ELLIPTIC   PARABOLOID 
Z 

Ix = YQ (3B2   ♦ H2) 

rxx-|   IB2*!?) 

Iy = 5g (3A2  ♦ H2) 

v I (A2 * H2) 

IZ  - W     (A2  + B2) 

THIN CIRCULAR   LAMINA 
/Y 

7TR2   H 

AT 0  = GEOMETRICAL CENTER 

_ WR^ 
'"IT 

WR< 

RADIUS 
OF 

GYRATION 

=   0.236   V 3B2   ♦ H2 

=   0.408V B2   ♦  H2 

k     =  0.236   V 3A2   ♦ H2 

y 

k       = 0,408 V A2  * H2 

kz = 0.408   JA2  * B2 

k     =1 x       P 

k     = R__ 
y     ^~ 

NOTE Y AXIS  IS   PERPENDICULAR  TO PLANE 
H  -  THICKNESS 

Adapted from Weight Handbook,  Vol.   1,  Society of Aeronautical Weight Engineers,   Inc. 
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VOLUME 

TORUS 

27r2r2R 

SPHERICAL SECTOR 

| r R2 H 

CENTROID       -r • 7 • R ♦ r y*r T - f    (2R-H) 

WEIGHT 
MOMENT 

OF 

INERTIA 

Ix  = Iz   - g    (I4R2  ♦ 5r2) 

Iv -5    (I*2 ♦ 3r2) 

WH 

5 
iz - 2#    (3R-H) 

y "5 

RADIUS 
OF 

GYRATION 

k      =   k_   =   0.354 ^ UR2 ♦ 5> kz  = 0.447    /(3R-H)   (H) 

ky  - V  J4R2  ♦  31-2" 
2 

Adapted from Weight Handbook, Vol. ^   Society of Aeronautical Weight Engineers,  Inc. 
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SOLIDS 

SPHERICAL SEGMENT 

Z 

VOLUME 
7T H -      TTff 

(3r2  ♦ H2)   = -2L- (3R - H) 

CENTROID 
-        3     (2P   - H)2 

Z  =5     (3R   -  H - 

WEIGHT 
MOMENT 

OF 

INERTIA 

RADIUS 
OF 

GYRATION 

*«•!&  &?-}«*&#) 

■/fff182-!8"*^"2) 

Adapted from Weight Handbook, Vol.   lj   Society of Aeronautical Weight Engineers,  Inc. 
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SEMICYLINDER 

Elemental  volume,   half   cylinder: 

p27rrLdr 
dm = pdV = = p7rrLdr 

Iz  = Jr2dm = J*   r2(p7rrLdr) 

•R   3 
= P7TL/   r  dr  = p7rL 

p?rR4L 

0 

m m 
p = - =   

V       77R2L/2 

D f7TR4L\        mR' 

Iz = (ans.) 

l7rR2L/2/\   4 

21 

http://www.abbottaerospace.com/technical-library


SOLIDS 

SEMICYLINDER 

Elemental  volume,   wedge  shape: 

dm = pdV = prdödrL 

Iz  =    JVdm  = /0
R/0V (prLd0dr) 

= pL ^Vdödr   =  piaffed* 

phirR4 

=   pLTT 

iR 

. c 

in 

P   =  ~   = 
V      7TR2L/2 

7TLR4 \  I 

1-7      = 

zm mR< 

7TR2L1 

(ans.) 
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SEMICYLINDER 

VOLUME 
7TR2L 

2 

CENTROID 

4R 

37T 

WEIGHT 
MOMENT 

OF 

INERTIA 

mR2 

Iz  ~ 
2 

RADIUS 
OF 

GYRATION 

R 
kz   =    =  0.707R 

v/2 

23 
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SOLIDS 

RIGHT ANGLED WEDGE 

Z 

ISOSCELES WEDGE 

Z 

VOLUME 
ABH 

2 

CENTROID 
— - A 
x      "" 

3 y     7    z    7 

WEIGHT 
MOMENT 

OF 
INERTIA 

Zx   " J     (2H2   ♦ 3B2) 
36 

Xy  "2    (A2  ♦ H2) 
IB 

Jr   - W    (2A2   * 3B2) 
36 

**  •*    (2H2  # 3A2) 

36 

Xy  "S    (i*2  OB2) 
72 

I«   *2     (2A2   ♦ B2) 
2k 

RADIUS 
OF 

GYRATION 

k     =  0.167 \ 2H2   ♦  3B2 

ky : 

k
2    '■ 

=  0.236 ^   A     ♦  H2 

=  0.167J 2A2   *  3B2 

kx   =  0.167 ^H2   ♦  3A2 

ky = 0.H8 JUH
2
 ♦ 3B2 

kz  : 2A2   * B2 

Adapted from Weight Handbook,   Vol. _lj   Society oi'Aeronautical Weight Engineers,   Inc. 
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RIGHT RECTANGULAR  PYRAMID 

z 

REGULAR TRIANGULAR PRISM 
Z 

VOLUME ABH 4* 
CENTROID H 

7"5 
H 

7 " ? 

N (B 

WEIGHT 
MOMENT 

OF 

INERTIA 

,.2   ♦   3H2
) 

IX1= ^ (B2  ♦ 2H2) 

y   20 lA  *5"^ 

ln- "    (A2  * 2H2) 

I,   - h &  + & 

v; 
y    25 (A2  * 2H2) 

2     IF 

RADIUS 
OF 

GYRATION 

kx = 0.224 y 

0.224^ 

B2 •¥ 
kxi = B2 ♦ 2H2 

ky = 0.224W A2 

IT 

kYl =  0.224W A2 ♦ 2H2 

kx   -  ky =  0.204    1/ A2  ♦ 2H2 

k-  = 0.289A 

kz  = 0.224   JA
2
  ♦ B2 

Adapted from Weight Handbook. Vol. _1,  Society of Aeronautical Weight Engineers,  Inc. 

25 

http://www.abbottaerospace.com/technical-library


SO.IDS 

VOLUME 

CENTROID 

CUBE 

_/ 

~X 

X, 

X 7 2 K 

WEIGHT 
MOMENT 

OF 
INERTIA 

RADIUS 
OF 

GYRATION 

I„   -  Iv   »   U   "  WA' 

i  -1   -1 xi    yi      Bi 

* 12 

2WA* 
~r * 3 

kx  = ky  = kz  = 0.408A 

^i = kyi = k*i = °'816A 

kvo   =  0.646A 

RECTANGULAR  PRISM 

h 

A 

Y; 
2 r/y- 

k—v' 

CJA 

0 

ABH 

— » A - - B 
y     7 

- W     (B2   ♦ H2) 

-   • W (B2   ♦ H2) 

• If (A2   ♦ H2) 
y     T? 

» W (A2   t H2) 

•   «2 (A2   ♦  B2) 
12 

Z1- W (A2   ♦ B2) 

kx  = 0.289 

IS,,   =  0.577 \/B2   *  H2 

r  
kx     =  0.289 V B2 ♦ Uh 

ky   =   0.289    \/A2 ♦     H2 

ky     =  0.577J A ♦  IT 

JA2 ♦   B2 k7   =  0.289 

kZl [ A2   ♦  B2 

Adapted from Weight Handbook,  Vol. _l,   Society of Aeronautical W'eigJit Engineers,  Inc. 
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THIN SHELLS 

A thin shell can be developed by the subtraction of a smaller inner 
solid from a larger outer solid of similar shape, by the summation of 
elemental rings by integration, or by revolving an arc or a segment of 
an arc about a desired coordinate axis. 

SUMMARY OF EQUATIONS 

Surface Area Generated by Revolving Arc 

If A(a,c) and B(b,d) are two points on a curve F(x,y) = 0.  The area 
of the surface generated by revolving the arc AB about the x-axis is given 
by 

S = 2*4,3 yds = 27r/a
b
yv/l + (dy/dx)

2dx 

or 

27r£ yv/l + (dy/dx)
2dy 

When revolved about the y-axis, the arc AB generates a surface area 

S = 27r/  xds = 27r/bxv
/l + (dy/dx)2dx 

AU        a 
or 

2irJ  xy/l  +   (dx/dy)2dy 

If A,   given by u  = U],   and  B,   given  by u = u2,   are   two points  on  a 
curve  that   is  defined  by  the  parametric equations  x  =  f(u),   y = g(u), 
the  surface  area  generated  by revolving the   arc AB about   the  x-axis   is 

S = 27r/Aßyds  = 27r/u
U2yv/(dx/du)2   +   (dy/du)2du 

and  the   area  generated  about   the  y-axis   bounded  by AB  is 

S  =  27r/Aßxds  = 27r/U2xv/(dx/du)2   +   (dy/du)2du 

Cc-ntroid  of  a Surface  of  Revolution 

The  centroid  of  a   surface  of  revolution generated  by  the arc of  a 
curve   y =  f(x)  extending  from A(a,c)   to B(b,d)   is  defined  by 

rb Sx"   = 2TT]   xyds 

where ds is an element of arc as described in the above equations as 

ds = *J\   + (dy/dx)2dx 

when  taken  about   the x-axis,   and 

,b 
Sy  = 2irJ   xyds 

when taken about the y-axis. 

27 
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SURFACE AREA AND CENTROIDAL DISTANCE 

From the diagram above, the variable radius y is 

(x + Lj)2 + (y + b)2 = R2 

y + b = v/R2 - (x + Lj)' 

y = ^R2 -   (x + Lj )2 - b 

= [(R2 - Lf) - 2L,x - x2]1/2 - 

The surface area developed is 

S = |27ryds    where    ds = y/l +   (dy/dx)2dx 

dy  / 1 \       -2x - 2Lj x + Lj 

2/   [(R2   -   L2)   - 2L]X   -   x2]1/2 (R2   -   Lf   -   2L2x   -  x2)1/2 dx 

/dy 
1   +     — 

\dx 

(x   +   Lj) R-tfx 

R2   -   L?   -  2L,x  -  x2 
+  1   = 

n   ~ *^i- R2   -   Lf   -  2LjX  -  x 

28 
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S   =  2TT/
L

{[(R
2
   -  Lf)   -  2L2x  -  x2]1/2   -   b}| 

R2 

R2   -  Lf   - 2LlX - x2/ 
- dx 

S   =  27TR/ 1 - 

=   27TR 

=   27TR 

(R2   -  Lf   - 2LlX - x2)1/2 

T   ■>L 

x + Li 

dx 

;„-] x  -  b  sin 

L -  b     sin 

R 

L + L, 

■ o 

-l 
^2 

 sin-1   — 
R R ) 

(ans.) 

The  centroid  of   the  shell  can be determined  by applying the  basic 
mathematical  statement 

Sx = 27r/0 xyds where ds  = ^/l  +   (dy/dx)2dx 

Then 

Sx  = 27r/o xy-y/l  +   (dy/dx)2dx 

and   substituting y =   [(R2   -  Lf)  -  2Lxx - x2]1/2   - b, 

Sx   =  2TT/0
L

X{[(R
2
   -  Lf)   -  2LlX  -  x2]1/2   _  b} 

[(R2   -  Lf)   -   2LlX  -  x2]1/ 
dx 

= 27TRJ1- 
xb 

x  - 
[(R2   - Lf)   - 2LlX - x2]1/2 

dx 

=   27TR 

=   27TR 

—  +  b 
2 

[(R2-  Lf)  - 2LlX - x2]1/2   + LY   sin   l- 
x  + Li 

iL 

— 
I 2 

[(R2   -   Lf)   -  2L2L -  L2]1/2   +   Lj   sin"1 

R 

L + Lj 

■ o 

=   27TR 

(R2   - Lf)1/2   + L2   sin"1— 
R 

L + Lj\ 
[— + b2   + bL,   sin-1     -b 

R 

2 
(b + r)   + Lj   sin_i— 

R . 

=   27TR 
L2 / L  +   Lj Lj 
— -  br  + bL2   sin-1     -  sin""1  — 

L2 \ R R /J 

2TTR 

x  = 
((L2/2)  -  br  + bL2{ sin'1    [(L +  L: )/R]  -  sin'1    (Lj/R)}) 

27TR(L -  b {sin-1    [(L +  Lj )/R]   - sin"1    (Lj/R)}) 

(L2/2)   -  br  +  bLj{   sin"1    [(L +  Lx )/R]   -   sin"1    (Lj/R)} 

L -  b{  sin"1    [(L + L2)/R]  - sin"1    (Lj/R)} 
(ans.) 
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THIN SHELLS 

Applying this result to a thin-shelled hemisphere, it can be seen 
that all terms containing b reduce to zero, which leaves 

x = L/2, but L = R for the hemisphere; 

therefore, 

x = R/2  (ans.) 

An alternative method for determining the location of the centroid 
of a thin-shelled ogive is to perform volume subtractions: that is, to 
calculate the volume of the ogive that corresponds to the exterior di- 
mensions desired and then to subtract a volume of the proportions that 
will ultimately leave the desired wall thickness.  Combining the cen- 
troidal distances of the two volumes with their respective values of 
volume, the basic equation becomes 

SVx   (Vx)0 - (Vx)i 
x  =   =   

V     VQ - Vj 

where (VX)Q and (Vx)-, are the statical moments of the outer and inner 
volumes, respectively, with V and Vj representing the outer and inner 
volumes. 
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LATERAL SURFACE OF 
A CIRCULAR CONE 

z 

CONSIDER Ix AS  THE SUM OF  TWO 
MOMENTS  OF  INERTIA 

CIRCLE  OF RADIUS    R 

TRIANGLE  OF ALTITUDE    H 
WT.   OF CIRCLE AND  TRIANGLE 
EQUALS WT.   OF  SURFACE 

LATERAL SURFACE   OF 
FRUSTUM OF 

CIRCULAR  CONE 

CONSIDER  Ix AS  THE SUM OF  WO 
MOMENTS  OF  INERTIA 

CIRCLE  OF RADIUS     R 

TRIANGLE   OF ALTITUDE     H 
WT.   OF CIRCLE AND  TRIANGLE 
EQUALS  WT.   OF SURFACE 

SURFACE 
AREA 7TR      yR2  ♦ H2 MR ♦ r)     {}£ * (R - r)' 

CENTROID H 
Z  =3 

H IZT  ♦ R) 
3 [   r  ♦ R) 

WEIGHT 
MOMENT 

OF 
INERTIA 

y-^«2*!«2) 

WR2 

Ixi " ly\ =i2 13R2
 * 2R2) 

».■v-5^^1».^ 

X. -|<R2T8) 

RADIUS 
OF 

GYRATI ON 

kx   _   ky   _ V 9R2   * 2H2' 
 5  

cx     =  ky     =0.289   W3R2  ♦ 2H2 

kx - ky -y -1_   ♦-^   (i ♦ ■£_ 

kz  = 0.707  V R2  ♦ r2 

k,   =  0.707   R 

Adapted from Weight Handbook,  Vol. _1,   Society of Aeronautical Weight Engineers,   Inc. 
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THIN  SHELLS 

LATERAL CYLINDRICAL SHELL 

Z 
TOTAL CYLINDRICAL SHELL 

SURFACE 

AREA 2    7T RH 2 ir  R(R   4 H) 

CENTROID 
H 

2   =2 

WEIGHT 
MOMENT 

OF 
INERTIA 

H Ix   -   Iy   -|   (R2    ♦   *£) 

Iz  =  WR2 

Ixi  ■ lyj   =1 13R2  + 2H2) 

Ix - Iy - n Suaj f^»*«^»«*] 

= WR£   |"R ♦ 2H1 
2       [  R+H     J 

RADIUS 
OF 

GYRATION 

kx   _   ky   _ =  0.707    Y R2   •*• 51 kx  =  kv   =  n.^g|/3R2(R^H)^(3R*H) 
f R   ♦ H 

kx     =  fcy     = 0.408 y3R2   ♦ 2H2 kx 
= k    =0  vsQl/3R2(R^2H)f2H2(3R^HT 

1        vl f R   ♦ H 

k7   =  R kz   =  0.707   R i/y2g 
y R ♦ H 

adapted from Weight Handbook,   Vol. _1,   Society of Aeronautical Weight Engineers,  Inc. 
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SPHERICAL SHELL HEMISPHERICAL SHELL 
Z Z 

/v- r~^>. 

I 

X 

/>     "   "~^>\ 1 X 
(        J         M /          L   r             \ 

Z 
1       A        J 
v  / // 

\K         /     ».                   \\ xl \/ /*   J f /\N __ ___ s/ 

/^ 

Yl 

SURFACE 

AREA k   7T   R2 2   TTR2 

CENTROID x   =  y   =   z   =  0 
R 

Z = 2 

Xx  c  *y  ■  I«   "f WR2 Ix  -  Iy  - |^WR2 

WEIGHT 
MOMENT 

OF 
*B • lacj * *yj "1 vm2 

INERTIA 

RADIUS 
kx   =   ky   =  kz   =   0.816   R kx   =   ky   =   0.646   R 

OF 
GYRATION 

kz   ~   kX!   ~  kyx 
=  0.816   R 

Adapted from Weight Handbook,   Vol. _1,   Society of Aeronautical Weight Engineers,   Inc. 
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THIN RODS 

THIN RODS 

A thin rod, or wire, is so designated when the length, L, is greater 
than 30 times the diameter, d. Lengths of curved arcs will be designated 
by s as noted. 

SUMMARY OF EQUATIONS 

Length of Arc 

The  length  of  arc  of   the  curve  F(x,y)   = 0  limited  by  two selected 

points  A(a,c)   and  B(b,d)   is  given  by 

s  =/Aßds  = /'V1  +   (dy/dx)2dx or Jcy/l  +   (dx/dy)2dy 

Example.     For  the   length  of  arc  of   the  curve  y = x3/2   from x  = 0 
to x =  5, 

/ dy \2 9 
and t + I —       =l+-x 

dx       2 \ dx / 4 

dy       3 
— = -x1/* 

then 

/dy\2 /       9 8/9   \3/2 

»   =   fU.v/l   +    —     dx =   f5\/l   +-x  dx = —[l   +-x Ja   V                   I JQ    V I 
\dx/ 4 27 \          4   / 

335 

27 
(ans.) 

If A, given by u = U], and B, given by u = u2, are points on a curve 
defined by the parametric equations x = f(u), y = g(u), the length of arc 
AB  is  given  by 

s  = /    ds= /"2v/(dx/du)2   +   (dy/du)2du JAB -V 

Example.     For  the     length  of  arc  of  the  curve  x =  t2,   y =  t3   from 
t   =  0  to  t  = 4, 

dx dy 
—  =  2t, —  = 3t2 

dt dt 

and 

then 

dx\2    /dy\2 /      9 

—       +    —       = 4t2   + 9t4   = 4t2   1   + -t; 

\dtl \dt/ \ 4 

9     \3/2 
_ 4 

= f  y/l   + -t2(2tdt)  = — 1   + -t; 
= —(37^/37  -   1)   (ans.) 

27 27 
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Centroid of an Arc 

The centroidal coordinates (x,y) of an arc of a plane curve of 
equation F(x,y) = 0 or x = f(u), y = g(u) can be determined by the 
relationships 

xs = x/ds = /xds    and    ys = y/ds = /yds 

where the limits of integration are determined from the extent of the 
desired integration. 

Example.  For the centroid of the first quadrant arc of the circle 
x2 + yc   =  25, 

dy   x /dy\2      x2   25 

— = --    and    1+ —  =1+ — = — 
dx    y \ dx/        y2   y2 

since s = R0 = 57r/2 

57ry 
  = /5yv/

1   +   (dy/dx)2dx  = J"55dx  = 25 
2 

and y = 10/7T by symmetry, x = y, and the coordinates of the centroid are 

110  10 \ 
—,—  (ans.) 

\   7T   7T / 

Moments of Inertia of an Arc 

The moments of inertia of an arc, referred to the coordinate axes, 
are given by 

Ix = f yzds    and     Iv = f'x
2ds 

Example.  For the moment of inertia of the arc of a circle with 
respect to a fixed diameter, 

dy   x 
,      y/l   +   (dy/dx)2 = R/y,     s = 2TTR 

dx   y 

The total moment of inertia is four times that of the first quadrant 
arc. 

R   R2s 
Ix  = 4/0 y2ds  = 4/0 y2-dx  = 4R/   ^R2   - x2   dx  = TTR

3
   =     (ans.) 

y 2 

It should be noted that the value obtained contains only linear 
dimensions; therefore, to obtain the moment of inertia, Ix, in terms of 
mass, m = ps, the transformation should be made as s = 27rR.  Then 

Ix = p7TR
3     and    p = m/27rR 

which results in 

Ix = mR
2/2  (ans.) 
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Centroid of an Area 

The theorem of Pappus for the determination of the centroid of an 
area produced by the revolution of an arc is as follows. 

If an arc of a curve is revolved about an axis in its plane and not 
crossing the arc, the area of the surface generated is equal to the 
product of the length of arc and the length of the path described by the 
centroid of the arc. 

Example.  For the centroid of the first quadrant arc of a circle of 
radius R, 

s = 27TR2 = (l/27rR)(27Tx) 

by symmetry, x = y, and the centroid has coordinates (2R/TT , 2R/TT) . 

It follows that the appropriate surface area can be found from the 
same theorem if the centroidal distance is known. 

Moment of Inertia of a Thin Rod 

The moment of inertia of a long, slender rod can be calculated from 
the relationships 

Iy = /0x
zdm    or     Ix = /0

Lyzdm 

depending on the choice of axes. 

Example.   For the moment of inertia of a thin homogeneous rod about 
an end, 

Iy = /Vdm = p/o
Lx2dx = pL3/3 

where dm = pdx 

Recalling that p = m/L, 

Iy = (m/L)(L
3/3) = mL3/3  (ans.) 
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LENGTH 2 R a 

CENTROID . RSIN a 
x         a y 

* R SIN a 

WEIGHT 
MOMENT 

OF 
INERTIA 

SEGMENT OF A CIRCULAR ROD 

a in radians 

x [2 2a) 

™m2fU      SIN a COS a] 
i«i-*?[)£- 2-*—) 

2 TU      SIN a COS a) ra   [(2 * To— J Iy- 

SI 

SI 

N2 a I 

N2 a:l 

Iyl- WR 

I„  « WR* 

SIN gj COS a 
2  a 

L      SIN2 Q?j 
I        3T1 

RADIUS 
OF 

GYRATION 

*x ■»JF« a COS a 
2 a- 

^     HJI.SHO«».^,, 

F _     1   .  SIN a COS a      SIN" a 
2 a a* 

ky = ,-■« 
SIN a COS a 

2 a 

= R y 1  - 
SIN2 Qf 

a2 

Adapted from Weight Handbook,  Vol.   1,   Society of Aeronautical Weight Engineers,  Inc. 
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THIN   RODS 

CIRCULAR ROD SEMICIRCULAR   ROD 

LENGTH 2   7T R IT R 

CENTROID "7'R — • fi -  =  0.6366R 

WEIGHT 
MOMENT 

OF 

INERTIA 

IT   =   I 3 WR2 

Ip  - WR2 

0.0947   WR2 

x,   •   0.5   WR^ 

y  = 0.5   WR"2 

yi   >   1.5  WR2 

-     ■ 0.5947  WR2 

Pi 
= 2 WR2 

RADIUS 
OF 

GYRATION 

kx  = ky  =  0.707   R 

kv.   ■   k,p,   =  1.225   R 
*i ~  yi 

k„    = R 

1^  =  0.308   R 

kv.   = 0.707   R 

k       =   0.707   R 

ky     =  1.225   R 

kp     = 0.771   R 

k       =  1.414   R 
Pi 

Adapted from Weight Handbook,  Vol. _1,   Society of Aeronautical Weight Engineers,  Inc. 
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PARABOLIC ROD 

Y 

LENGTH 
2A     (3A

2
  * B2) 

(More (-Accurate! ~       »~1 
\ciL_TfeAiu22A^B2-3BU 

j2H UA
2

+B
2
  - B + -~ LOGe 

J2JL 

+ V ilA2*] 

CENTROID y  ■ B -~7^A2*B2)^   .   B2 

"BÄL T5Ä y  ■ B 

WEIGHT 
MOMENT 

OF 
INERTIA 

iU WBg(55Aa+  10A2B2  -  B**) 
x  "  2  (Ü5/P   *  22A2B2 -   3B^) 

j    . WA2(33AU+ 3UA
2

B
2
 - 5B^) 

7      2    (U5.^^ 22A
2

B
2
  -  }BU) 

*X    •     Ii 

_  WB2f\JA2+   B2V 3     B£) 
:       ÖA2\ L 2   / 

1     OA^V L 5/ 

wJ(l+A2+B2)3,    IX   _WX
; 

12L 

. WJ(UA
2

*B
2
)3       I 

yi ia 01* 

Ix      *      Iy 

RADIUS 
OF 

GYRATION 

k„   - I_x 
W \ 

Ix 
W 

y   Jsr w 

w 

* w 

kyi= 

w 

\ w 

fc "pi 

NOTE A^B 

Adapted from Weight Handbook, Vol. _1,   Society of Aeronautical Weight Engineers,  Inc. 
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THIN  RODS 

U-ROD 

Y 

n 

^FFP 
y 

! 

RECTANGULAR ROD 
Y 

x 

K 

lb 

y\ 

JS 

T x 

y 

LENGTH LX   +   2L> 2(LX   ♦ L2) 

CENTROID 
L22 

Ll+2L2 
y - gr 2 

-      L2 
**~2 

-      Ll 
y -- 

WEIGHT 
MOMENT 

OF 

INERTIA 

V/L-,    (Lj    -   &p) 

12(LX   + 2L2) 

WL2
3   (2Li   ♦ L2) 

3   (Li*2L2)2 

Jx  ♦  ly 

WLj   (Li>3L2) 

12(L1+L2) 

12(L1+L2) 

IT  ♦  Iv 

RADIUS 
OF 

GYRATION 

NOTE 

k^   =  0.289L-L Ll+&2 

ky   = 
0.577L2 

Ll*2L2 

Lj_*2L2 

IL2(2LI*L2) 

kP=Jw 

wx-Iiup   w - w1*2w2 - w2 ri * 2 
L2    d \L2 / 

*x  = 0.289Ll   )Ll*3L2 

L^+L2 

ky 

k„  = 

0.289L2   1*0*2 
     y Li   ♦ L2 

W,    - Ü Wo      W -  2Wi+2W2„2W2ri  ♦  1 
1      L2    d ^L2 

Adapted from Weight Handbook,  Vol.  1,   Society of Aeronautical Weight Engineers,  Inc. 
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V-ROD 

-   X 

L-ROD 
Y 

JL 

^^ e 

LENGTH 2L Li   ♦ L2 

CENTROID x - 2 SIN 01 y = L COS a x  = 
2(LX   +   L2) y = 2(LX   +  L2) 

WEIGHT 
MOMENT 

OF 
INERTIA 

RADIUS 
OF 

GYRATION 

x , ^   cos2 a 

«■ a WL2 COS2 a 
32 2 o WL__   SIN    a 

9       12 

x       12 

W_      Ll3   (L1W4L2) 

~äl"+L2)2 

P 

T?L2 

3 
SIN2 a 

W_    L23   (ULj+Lg) 
12 (L1-L2)2 

Ix  ♦  Iy 

PI" x*i * xyi 

Xx  * Iy 

kx   =  0.577   L  COS Of 

kxl-   1.15  L  COS   a 

ky  = 0.289   L SIN a 

k       =  0.577   L SIN a 

kx   =  °-289Ll 

Li+Lo 

k     =   0.289   L2 

L1+L2 

1^   (L1+UL2) 

JL2(UL1+L2) 

kp   =   0.289   L     Ik  COS2  a  ♦  SIN2  a 
kP  = 

w 

kp     = 0.577  L / U COS2 a ♦ SIN2  a 

NOTE W^   •»- W2 = W2    Ji ♦ 1       - W 

Adapted from Weight Handbook,   Vol.  1,   Society of Aeronautical Weight Engineers,  Inc. 
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THIN   RODS 

STRAIGHT ROD 

Pi 
C&^V>f 

INCLINED ROD NOT THROUGH C G AXIS 

T    < 
LENGTH LX   ♦ L2 

CENTROID 
-     L 
x  ■ 2 

WEIGHT 
MOMENT 

OF 

INERTIA 

I     - NEGLIGIBLE 
x 

WLj 
12 

1Y\ " XPI 

Ic 

ID 

WL2 

7" 
WL2SIN2 Of 

- WL2ßIM2 g 
3 

Ix  - £ SIN2 or (LX
2-  Li   L2   ♦ L2^) 

Iy - 2 COS2 a (Li2- Ll  L2  * L22) 

NOTEi        ASSUME»   WT.   OF Lx   « Wi 

WT.   OF L2 " W2 

THEN:       WT- ^ W?    W - ITj,^ 
^2 

7fx   ♦ W2=W2 b * ■) 

RADIUS 
OF 

GYRATION 

k     =  NEGLIGIBLE 
X 

kv   a   0.289L 

k       =  0.577L 

kc   =   0.289L  SIN a 

kD  =  0.577L  SIN a 

./ kx  = 0.577 x J Li2-Lx   L2*L2
2 

ky  = 0.577 COS   a \l L±   -l^  L2+L2
2 

kP = 0.577./ 
2 ? 

LX   -Ll  L2*L2* 

Adapted from Weight Handbook,   Vol. j.,   Society of Aeronautical Weight Engineers,   Inc. 
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PLANE AREAS 

SUMMARY OF PLANE AREA PROPERTIES 

Centroid by Integration 

/ydA /xdA 
y = x = 

A A 

Centroid by Area Moment Summation 

aiYi + a2y2 + • • • + anyn 
y = 

x = 

ai + a2 + • • • + an 

aix2 + a2x2 + • • • + anxn 

ai + a2 + • • • + an 

Moments of Inertia 

Ix = J'y
2dA 

Iy   =  jVdA 

Iz = 
Jz = /r2dA = *x + *y 

Transfer of Axes 

Ix = Ix + Adx 

Iy = Iy + Ady' 

Jz = Jz + Ad
2 = Ix + Iy 

k2 = k2 + d2 

Radius of Gyration 

k = y/ TZK 

CENTROID OF AN AREA 

The centroid of an area is represented by a point whose distance 
from any axis times the total area is equal to the first moment of the area 
with respect to that axis. 

The first moment of an area, often referred to as the statical moment, 
is the algebraic sum of the moments of the differential parts of the area, 
with the product of the differential area and the perpendicular distance 
from the differential area to the axis in question representing the moment 
of each segment. 
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Letting Q represent the first moment of the area, the resulting math- 
ematical expressions define the moment of area A 

Qx = /ydA, Qy = /xdA 

and, for the centroid, 

Ay = /ydA, Ax = /xdA 

or 
/ydA /xdA 

y = x = 

Examples. 

TRIANGLE 

A = bh/2 

y 

t 

Ay = /ydA 

dA = xdy 

Ay = /xydy 

From similar triangl es, 

X b 
= —} or     y 

b(h - y) 

h - y   h 
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b     h bh2 

Ay = - S0 
(h ■ y)ydy = — 

h 6 

bh2/6       h 
y =   = —   (ans. ) 

bh/2 3 

CIRCULAR  SECTOR 

Ax  = /xdA 

x  = p   cos   ( 

dA = pdödp 

r rOL 
2r3   sin a. 

^ = S0 S_a P  cos  öpdpdö  = 

(2/3)r3   sin a       (2/3)r3   sin a       2r  sin a 
x =   =   =       (ans.) 

rzOi 3a 

HALF  PARABOLA 

Parabola:     y = 4  -  x' 

dA = ydx 
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PLANE AREAS 

Qy = /xdA = /0 xydx = JQ  (4x - x
3 )dx = 4 

Qi 
X = 

Qx 

A 

128/15   8 
  = —  (ans.) 
16/3    5 A   16/3   4 

Note.  When summing the elemental strips about the x-axis as shown 
in the diagram, the moment arm is equal to y/2.  If the summation is made 
with respect to the y-axis, the moment arm is equal to x (not x/2). 

CENTROID OF A COMPOSITE AREA 

Composite areas have centroids, the coordinates of which may be de- 
te2-mined by applying the basic definition to the total area as follows: 

Ay = 2ay 

or 
Say 

y = 

and 

and 

Ax = Sax 

Lax 
x = 

A 

where x and y are the perpendicular distances from their respective axes 
to the areas in question, a is the area of each individual part, and A 
is the total area of the composite body. 

Example. 

' 

1 

1 

> 

/°2 

\ s"' 
1 

.1 * 1 
«J I 

1 -+  6 —  ^ \ 

aiYi + a2yz   (D(6)(l/2) + (6)(1)(4) 
y =   =   = 2.25 in.  (ans.) 

6 + 6 

x = 0, by symmetry. 
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MOMENT OF INERTIA OF A COMPOSITE AREA 

0. 

y=0.25 

0.1 

a. 

7 

© © 
HIF^ 

\l ÜJ J 
1.25 

0.1 

y = 

[(1.25X0.1)] (0.05)   +   (0.1X0.9X0.55)   +   (2) (0.1) (0. 2) (0. 2) 

0.06375 

0.255 

(1.25X0.1)   +   (0.1X0.9)   +   (2)(0.1)(0.2) 

= 0.25  in.      (ans.) 

An  alternative method  for obtaining   the moment  of   inertia  of  a  com- 
posite  area and   the  centroidal  distance,   d,   as in   the  diagram above,   is 
given   in Table  1. 

TABLE 1. COMPUTATION TABLE FOR THE MOMENT OF 

INERTIA AND CENTROIDAL DISTANCE OF A 

COMPOSITE AREA 

Moment, 

b/3(hi-h3), Part 
Area, 

.   2 in 
b. 
in. 

»1» 
in2 

h2, 
in 2 

b(h?-h2) 
2 

k3 

in3 
h3, 
in3 

in3 in* 

1 0.125 1.25 0.01 0 0.006 0.001 0 0.00003 
2 0.09 0.1 1.0 0.01 0.049 1.000 0.001 0.03333 
3 0.02 0.1 0.09 0.01 0.004 0.027 0.001 0.00087 
4 0.02 0.1 0.09 0.01 0.004 0.027 0.001 0.00087 

A =0.255 0.06375 1/ = 0.035 

The  centroidal distance  may  be  found   by either method.     By  definition, 

M       0.06375 
d  = - =   = 0.25  = y 

A 0.255 

*x   =   Jx - Ad2 

= 0.035 - 0.255(0.25)2 

= 0.0191  in4   (ans.) 

47 

http://www.abbottaerospace.com/technical-library


PLANE AREAS 

MOMENTS OF INERTIA OF A PLANE AREA 

The moment of inertia of a plane area, mass, or volume is some- 
times referred to as the second moment, since the first moment, Q, is 
multiplied by the differential area moment arm. 

y V"! dA 

-S5 
ix = jy dA 

Iy = /x
2dA 

where the elements are integrated over the entire body. 

The moment of inertia of the body about the z-axis is 

Iz = Jz = /r2dA 

and, since r2 = x2 4- y2 ,  J2 = Ix + Iy where Jz is known as the polar 
moment of inertia of the body. 

Example. 

The moment of inertia of the parabola y = 9 - x2 about the y-axis 
is calculated as follows 

dA = ydx 

x2 = 9 - y 

y = 9 - x2 

Iy = /*2ClA 

3/,. 2 = 2/o
3(x2)(9 - x2)dx 

= 2/o
3(9x2 - x4)dx 

= 2 
x5^ 

3x2 + — 
5 

324 
(ans.) 
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TRANSFER OF AXES ON A PLANE AREA 

«« dx—+• x0 

^ 

/dA 

Ü 
\       y°   x        ♦ 

y G ) ) -1 
dy 

t      1 

dlx = (y0 + dx)
2dA 

Jx = /(yo + 2y0dx + dx
2)dA 

= /y0
2dA + 2dx/y0dA + dx

2/dA 

Since the second term in the equation above is zero, the resulting 
integrations leave 

Ix = Ix + Adx
2 

and similarly, 

Iy = Iy + Ady
2 

The sum of these two equations (from J = I  + I ) gives 
z     *     j 

Jz = Jz + Ad
2 

which is the polar moment of inertia of the body when transferred through 
the distance d. 

RADIUS OF GYRATION 

By definition, k = ^/i/A.  Substituting into the moment of inertia 
equations yields 

k2 = k2 + d2 

where k is the radius of gyration about a centroidal axis parallel to the 
axis about which k applies, the axes being separated by d. 
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PLANE  AREAS 

SQUARE 

Z * ^ A 
A 

s 
m 

X 1 / 

/ 
/ 
/ 

Y 

P1 / m s »" 
Xl 

HOLLOW SQUARE 

AREA S2-82 

CENTROID i.j-|      5-1 = 0.7078 x = y = |      ^=J = °-7075 

WS« 
1*1« — 

x      xy      12 
WEIGHT 
MOMENT 

OF 

INERTIA 

WS' 
yi    T 

*P - h * *y " * 

-   I        4  1       - 2VVS 

,W(S2-    32) 
x     Ly i2 

W(US^  ♦ s?)   . 5 

■Vl 12 x       12 *1       ^ 

.  T 
p y 

WS' 

T     .  L. - "(S2 ' *2) 

Pl 
r w(Us2 + B^ m2 

IN =  Ix  =  Iy  = T^ 
S4  -  s4 

12 
AREA 

MOMENT 
OF 

INERTIA 

Ixl   ~   Jyi   "  3 

S4 
Ip =   Ix  +  Iy  = 6" 

2S_4 
Ipx -  iXl  + Iyi "    3 

N  =   Ix   =   Iy   : 

xl   =   l*l   " 

S4  - s4 

P  ~ 6 
4S4   ■-   3S 

Pl   ~ 

12 
4S4   -  3S2s2   -   s4 

12 

:2.,2 

ü 

RADIUS 
OF 

GYRATION 

kN  =  kx  =  ky   =  0.289S 

kx     =   ky     =  0.577S 

kp  = 0.408S 

kD    = 0.816S pl 

kN = kx  = ky  = 0.289      ^S2  + s 

*   =       /sÄs  = 'S    ^3(4   S2   +   s2) 

'i   =    V R2 - «2  = ß   v 3(4  S2  +  s2 

kp  = 0.408 

k 

s/s2 
-f  s' 

Pl 
2—-2  =1    V6(4   S2 

Adapted from Weight Handbook,  Vol. 1,   Society of Aeronautical Weight Engineers,   Inc. 

+   S' 
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RECTANGLE 

X 

N 

H 

Pi 
/   - 

N 

7LV 

/ 

B 

PT 

AREA BH 

CENTROID 

B 
X  = 2 

H 
y = 2 

f  = 

m = 

Bsino; + Hcosa 

BH 

VBZ   +  W 

WEIGHT 
MOMENT 

OF 
INERTIA 

AREA 
MOMENT 

OF 
INERTIA 

Ix      12      7      IT      *P      12 CEr      B ' 

yi 

IN = 

XE  = 

B3H3 

6(B2   +  H2) 

BH(B2sin2a + H2cos2a) 
12 

RADIUS 
OF 

GYRATION 

kY=0.289H  k,,=0.289B  kn=0.289 ^ kN  = 
BH 

\6(B2   +   H2) 

\^  =0.577H k     =0.577B  kp =0.577JH
2

+B
2 k /B2sin2Q!  + H2cos2Qf 

Adapted from Weight Handbook,   Vol. _1>   Society of Aeronautical Weight Engineers,   Inc. 
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PLANE  AREAS 

AREA 

CENTROID 

WEIGHT 
MOMENT 

OF 
INERTIA 

AREA 
MOMENT 

OF 
INERTIA 

RADIUS 
OF 

GYRATION 

HOLLOW RECTANGLE 
Xl- Y 

X * 

^ S \x 

H 
I v. 5: xx 

* * 

^ 

1 

&N yl 

pi 
)- 

m B —1 

BH - bh 

-      B 
x " 2 

-      H 
y -2 

W  fffif3 - bh3   ] T w  [HB
5
  - hb31 

Ix a T?[BH    -  bh      J Iy  " XS BH -    bh _ 

<%-*■♦*   S-V^ 

•P - r» * Iy iPl - ^ * Iyx 

T  ■ BH? - bh?  T  . HB3 - hb? 
**   12   V      12 

IX1" SH? - bh(?H2^* hg) ^-^ + (BH-bh)Bg 

T 
X
P ' x* + xy 

12" 

k JfiE?. - bh? ,. jHB?-hb?    k 
*7l2(BH-bh)    v=Jl2(BH-bh)kP=J BH - bh 

S^1 *1 
BH  - bh 

kyi=| Iyi 

BH  - bh 
v •Pi 

BH - bh 

Adapted from Weight Handbook,   Vol. _1,   Society of Aeronautical Weight Engineers,   Inc. 
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ANGLE 

-* B H 

\ 

~7 

/ 
90°/'W 

*- 

'- 

21 
Tan 20 = 

xy 

Iy - I, 

Ixv = product of inertia about x-x and y-y uxy 

xy 

(bBhHt) 

4(B + h) 

AREA 

CENTROID 

WEIGHT 
MOMENT 

OF 
INERTIA 

AREA 
MOMENT 

OF 
INERTIA 

RADIUS 
OF 

GYRATION 

Ixy is negative when the heel 
of the angle, with respect to 
the center of gravity, is in 
the first or third quadrant; 
positive when it is in the 
second or fourth quadrant 

t(B + h) 

x = 
B^ + ht 

2(B + h) 
y = 

H/ + bt 

2(B + h) 

m 
Ix = ~ 

3 

m 
I.. = - 

r.\3 -3 t(H - y)3   +  ByJ - b(y - t) 

t(H + B - t) 

t(B - x)3 + Hx3 - h(x - t)3 

t(H + B - t) 

m(Ix sin
2 0   + I , cos2 6  + I _, sin 20) 

A V XV 
JN = 

Iw = 

xy 

t(H + B - t) 
,  T   «*«2 m(Ix cos'' 6   + Iy sin^ 6  - Ixy sin 20) 

t(H + B - t) 

Ix = 

Iy = 

IN = 

IW = 

l/3[t(H - y)3 + By3 - b(y - t)3] 

l/3[t(B - x)3 + Hx3 - h(x - t)3] 

Ix sin
2 6 + Iy cos2 6  +  Ixy sin 26 

lx  cos2 6 + Iy sin2 0  -   Ixy sin 26 

k = v/l/A 
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PLANE AREAS 

EQUAL RECTANGLES 

y 

T 

J! 

T 
h 

i 
+ 

-« B 

i 
T 
T 

UNEQUAL  RECTANGLES 

H   h 

1 
R 
y. c 

Li 
AREA B(H - h) Bt + bt! Ci = H - c 

CENTROID y = H/2 

(l/2)Bt2 + bt^H - (1/2)1!] 
c = 

Bt + bt 

WEIGHT 
MOMENT 

OF 

INERTIA 

I.,   m 

I„   = 

m(H3   - h3) 

12(H - h) 

mB' 

12 

m (Bt3   +  12Bty2   + bt3   + 12btjy{) 

I„  = 

I„  = 

12(Bt   + bti) 

m(tB3   +   txb
3) 

12(Bt  + bt!) 

AREA 
MOMENT 

OF 
INERTIA 

3 u3 

Ix   = 

h = 

B(HJ   -  h3) 

12 

B3(H -   h) 

12 

Bt" bt3 

I„   = 

Iv    = 

   f Bty'   +    + btiyf 
12 12 

tB3   + tjb3 

12 

RADIUS 
OF 

GYRATION 

k„   = 

k . * 

HJ   -   h" 

12B(H  -  h) 

/B3(H - h) 

12B(H  -  h) 

/Bt3   +  12Btyz   +   bt?   +  12bt1yf 

=  0.289B 

kx   " 

ky   = 

12(B   t   +   bt2) 

tB3   +   t,b3 

12(Bt   +  btx) 
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Hrh 
+ 

H-SECTION 

h    H 

AREA BH - h(B - b) 

CENTROID y = H/2     x = 0 

WEIGHT 
MOMENT 

OF 

INERTIA 

U   = 

Irr     = 

m[BH3   -  h3 (B  -   b)l 

12[BH  -   h(B -   b)] 

m(hb3   +  2sB3) 

12[BH  -  h(B -   b)] 

AREA 
MOMENT 

OF 
INERTIA 

Iv  = 

U,  = 

BH3   -  h3(B  -   b) 

12 

hb3   +  2sB3 

12 

RADIUS 
OF 

GYRATION 

k„   = 

k„   = 

/BH
3
  - h3(B   - b) 

12 [BH -   h(B  - M] 
/       hB3 +   2sB3 

12[BH  -   h(B  -   b)J 
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PLANE AREAS 

Z-SECTION CROSSED RECTANGLES 

AREA t(H + 2b) Hb + h(B - b) 

CENTROID V = H/2 = 0 y = H/2    x = B/2 

WEIGHT 
MOMENT 

OF 
INERTIA 

(Ht   -   t2)(B2   -  Bt) 
tan  20  = 

*x  -   Iy 

I„  = 

I..  = 

m[BH3   -   b(H  -   2t)3l 

12[t(H +  2b)] 

m[H(B  +   b)3   -   2b3h   -   6bB2h] 

12t(H  +  2b) 

in 

Iv    = 

[bH3   +  h3(B - b)] 

Jy = 

12[Hb   +  h(B  -  b)] 

mfhB3   +   b3(H  -   h)] 

12[Hb   +   h(B -   b)] 

AREA 
MOMENT 

OF 
INERTIA 

Iv   ■ 

Iv   = 

BH3   -   b(H  -   2t)3 

12 

H(B  +   b)3   -  2b3h   -   6B2bh 

12 

U   = 

h   - 

bH3   +  h3(B     -   b) 

12 

hB3   +  b3(H  -   h) 

12 

IN =   Iv   sin2   6   +   Iv  t;os2   0  +   Ivw  sin 2| 

Iw   = Ix  cos2   Ö  +   I     sin2   0 -  Ixy  sin 2( 

RADIUS 
OF 

GYRATION 

kx   =   %/lx/A 

ky   =   v/ly/A ^x   - 

ky   = 

/bH3   +  h3(B  - b) 

12[Hb   +   h(B  - Ml 
/hB3   +   b3(H  - h) 

12[Hb   f   h(B -   b)] 
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CHANNEL OR U-SECTION 

t 

- 

y 

s II 

y 

--- — X 

ii 

h 

J 
— b »* 
B *• 

AREA BH -  h(B -   t)   = A 

CENTROID 
y = 

H 

2 

2B2s   +  ht2 

2BH  -  2h(B  -   t) 

WEIGHT 
MOMENT 

OF 

INERTIA 

m 

i: 

m 

3 

[BH3   -  h3(B  -   t)] 

l[BH  -  h(B -   t)] 

[2sB3   +  ht3   -  3A(B  -  x)2 

BH  -  h(B  -   t) 

AREA 
MOMENT 

OF 
INERTIA 

Jx 

Jy 

BH3   -  h3(B -   t) 

12 

2sB3   +  ht3 

3 

*x 

ky 
=v 

/BH3   -  h3(B -   t) 

RADIUS 
OF 

GYRATION 

V12[ßH  -  h(B -   t)J 

/2sB3   +  ht3   -  3A(B -  x)2 

3JBH  -  h(B -   t)] 
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PLANE AREAS 

T-SECTI ON 

n 
t i   I 

AREA Bs + ht 

CENTROID y = H - 
H2t + s2(B - t) 

2(Bs + ht) 

WEIGHT 
MOMENT 

OF 
INERTIA 

m 

I„  = - 
3 . 

-r,3 7,\3 tyJ   +  B(H  -  yr   -   (B -   t)(H  -   y  -   s) 

Bs  +  ht 

m /sB-5   +  ht' 

I„  = — 
12\  Bs  + ht 

AREA 
MOMENT 

OF 
INERTIA 

■ r,3 

h   " 

h = 

tyJ   + B(H - y)J   -   (B -  t)(H - y -  s) 

sBJ   +  ht- 

12 

RADIUS 
OF 

GYRATION 

kx   =   >/VA 

ky = \/yÄ 

58 

http://www.abbottaerospace.com/technical-library


NAVWEPS   REPORT  7827 

MODIFIED  T-SECTION 

-Ik- 

AREA 
h(T +  t) 

Bs  +   = A 

CENTROID y  =  H  - 
[3Bs2   +  3ht(H  +   s)   +  h(T  +   t)(h   +  3s)] 

6A 

WEIGHT 
MOMENT 

OF 
INERTIA 

*x   = 

i{[4Bs3   + h3(3t  + T)]   -  12A(H - y -  s)2} 

6[2Bs + h(T + t)] 

AREA 
MOMENT 

OF 
INERTIA 

RADIUS 
OF 

GYRATION 

Ix  = 

4Bs3   +  hJ(3t   +  T) 

12 
-  A(H  -   y  -s) 

ISc  "  \/lx/A 
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PLANE AREAS 

n = number of sides 

180° 
B  = 2^/R2   -   if 

AREA 
nB2   cot  6       nR2   sin 20 

= nR2   tan 

CENTROID x  -  y   = 0 

WEIGHT 
MOMENT 

OF 

INERTIA 

B B 
R  = Ri  = 

2   sin 0 2   tan 

m(6R2   - B2) 
Iy ~  *N = 

24 

m(12R2   + B2) 

48 

AREA 
MOMENT 

OF 
INERTIA 

A(6R2   -  B2)        A(12Rf   +   B2) 
Jy   ~   IN  ~ 

24 48 

RADIUS 
OF 

GYRATION 

'6R2   -  B2 /12Rj   +  Bi 

ky  = kN 
24 48 

60 

http://www.abbottaerospace.com/technical-library


NAVWEPS   REPORT  7827 

REGULAR HEXAGON REGULAR  OCTAGON 

-x   — R — 

AREA 0.866   H  2 

2.82814  R2 

CENTROID 
_       B 

y ■ 2 x ■ y - R 

WEIGHT 
MOMENT 

OF 

INERTIA 

I_   -   Iv   ■  0.0694WH2   =  0.0521WB2 

*      y 

I_     -  0.3194WH2 

I      =   0.1389WH2   =  0.1042WB2 

I        - 0.4028WH2     =  0.3021WB2 

yi 

Ix   ■   I«   -   0.2256WR2 

IX1   -   Iyi   ■  1.2256TVR2 

I      - 0.4512WR2 

AREA 
MOMENT 

OF 
INERTIA 

Iy  ■   0.0601H4 

■ 0.2766H4 

Ix-   Iy   -   0.6381R4 

-   I, 

I        - 0.3488H4 

n 
I      -  0.1203H4 

'1        ^1 

ID  " 1.2761R** 

3.U665R1 

RADIUS 
OF 

GYRATION 

kx   =   k     =  0.2635H   =   0.2282B 

kx   =  0.5652H 

k_     =  0.6346H 
yi 

k     =  0.3727H 

kx  =  ky   =  0.4750R 

k^     = kv     =  1.1071R 

kp  =  0.672R 

Adapted from Weight Handbook,  Vol.   1,   Society of Aeronautical Weight Engineers,   Inc. 
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PLANE  AREAS 

ISOSCELES   TF.APEZOID OBLIQUE TRAPEZOID 

I A 

AREA H(A   ♦  B) 
2 

H(A ♦ B) 
2 

CENTROID I *.-■&**&* H(A+2B) 
3U-B) 

x  is  on a line co 
of 8i ' 

on  a  line  connecting mid-polntp 
dee   A & B.  T7,H(B+2A7       «Blgfi+fl 

WEIGHT 
MOMENT 

OF 
INERTIA 

T      - HZ. f 1   ♦  2AB
      ^ 

IX1- gffigA+Oj   or WH2(3A+- B) 
1       &(A+C) _  6(A+1T 

I 

I 

'(A+C) 

■ jL (A2+B2) 

yi g- (A2.7B2) 

2E! 
18 

ix   .B£ 

l + 2AB 
TT^BT

2
, 

3A+3 
A+B 

Ip * Ix  4  Iy 

J
PI 

= Ixi * ryi 

AREA 
MOMENT 

OF 
INERTIA 

X     , H^(A2-^AB^B2) 
x 36(A*B) 

Ixl   ,  H3(AgBM2^) 

Iyi  «=  H(A^B)   (A2+7B2) 

ix = H3(A
2

-^AB+B
2
) 

36(A+B) 

T       - H
3
(B+3A) 

1 12 

Ip 
I 
PI 

♦  I' 

X*l   + JVi 

RADIUS 
OF 

GYRATION 

kg  = H  \J 2(B24|AB-*-A2) 
r4 £U*B) 

1    V A+C 

*x  - H  V2(A
2

4UAB   ♦ B2) 
6(A+B) 

ky  = /A2
+B2 <x,   =  H 

-Vl V    ST 

3A+B 
6(A+B) 

7Bj 

kp=/2Ip kPl  =2IP1 
v/HU ♦ B) H(A*B) 

Adapted from Weight Handbook,  Vol. _!,   Society of Aeronautical Weight Engineers,  Inc. 
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PARALLELOGRAM RIGHT-ANGLED   TRAPEZOID 

AREA BH | (2A ♦ B) 

CENTROID 7 - A +_B -     H 
y ■ 2 

x ■ ^A    ♦ 3AB ♦ B 
3  (2A  ♦ B) 

2    - 
y     M2AT 

WEIGHT 
MOMENT 

OF 
INERTIA 

. US? 
x        12 

. WH2 

n  - g (2A
2  + 2B2 + 3AB) 

W    , .2 
P 

Pi 

l?^-*2 

W(2A< 2B 

H2) 
2 + ?AB  ♦ 2H2) 

- TK
2

(6A
2
 + 6AB  ♦ B2) 

18(2A * B)2 

6 (2A ♦ B 

y  -   Iyi  - Wx 
2 

wf6A2(2A-f5B)   + B2(12A+5B) 
yi  "     |_ 18(2A+B) 

P 

Pi 

Jx * ly 

AREA 
MOMENT 

OF 
INERTIA 

x   ■  BH^ 

« BH3 
*1 

- BH(A2   ♦ B2) 

n --IT 
12 

|£ (2A
2
*
2

B
2

*3AB) 

BH  (A2
  ♦ B2 ♦ H2) 

i SH (2A
2
+2B

2
*3AB*2H

2
) 

xl 

y 

y\ 

p 

PI 

- H3(6A
2

+6AB+B
2
) 

36(2A+B) 

= H3(UA+B) 
12 

- H(3A
2

+3AB+B
2
)
2 

18(2A+B) 

.H[6A
2
(2A»3B)  ■» 32(12A*5B)1 

Lyi 

35 
*x ♦ Iy 

*1 + I yi 

RADIUS 
OF 

GYRATION 

kg   =   0.289H 

l^     =  0.577H 

ky   =  0.289      JA
2
  +B2 

kyi  = 0.408    \J2A
2

+
2

B
2

+3AB 

k„     = 0.289   \[ffi+B2+H2 

kv  = 
0.236H 
(2A+B) 

kXl   =  0.408H 

VöA2   +   6AB  +  B2 

!4A  +  B 
2A  +  B 

21 
ky   = 

H   (2A  +  B) 

i     =   0.408   ^ 2A
2

*2B
2

+3AB*2H
2 

^1 
/6A2(2A+3B)   +  B2(12A+5B) 

* 18(2A+B) 

r 2I
P       .     / 2I

PI 
"      V  H   (2A  +  B) Pi   '        V  H   (2A+B   ) 'P  "     V  H   (2A  +  B) 

Adapted from Weight Handbook,  Vol. _1,   Society of Aeronautical Weight Engineers,  Inc. 

63 

http://www.abbottaerospace.com/technical-library


PLANE  AREAS 

OBTUSE-ANGLED TRIANGLE 
Y, 

x 

RHOMBUS 
Y 

AREA BH BH 

CENTROID x   = 
\ _+_ 2C 

3 
H 

y  =3 
-      A+B 
X     =    —A 

_        H 
y -  2 

WEIGHT 

MOMENT 
OF 

INERTIA 

x2* 

y ' 

n' 
p ' 

Vffl2 

WH2 

WH2 

TT 
W     (B2*BOC2) 
Iff 
Yf(B2+3BC+3C2) 

5 
W(H

2
+B

2
+BC+C

2
) 

IS 

*i 

y " 

yi 

p 

PI 

TNH2 

nr 
WH2 

- W(A2+B2) 
"~T2  

' W(2A
2

+2B
2
+3AB) 

5 
. VJB2 

WB(3A ♦  hB) 
6 

AREA 
MOMENT 

OF 
INERTIA 

RADIUS 
OF 

GYRATION 

X 

XI 

*2 

y 

yi 

p 

BH3 

W 
BH3 

- BH3 
IT" 

- BH   (B2  ♦ BC  ♦ C2) 

BH  (B2  + 3BC  * 3C2) 
TS 
5|  (H2   «• B2  ♦ BC   ♦ C2) 
36 

**! 

k*2  = 
k    = 

y 

V 
L   = 

i  0.236H 

=  0.408H 

=  0.707H 

O'23^2   *  BC   ♦  C2 

0.408JB2   ♦• 3BC   ♦  C2 

0.236 v/H2^ 32   ♦  xJC   *-  C2 

*1 

y 

yi 

p 

PI 

BH3 
IT 
BH^ 

- BH(A2   ♦ B2) 
 12  

- BH(2A2   + 2B2   ♦ 3AB) 

if" 
B*H(3A UB) 

^   =  0.289H 

kx     =  0.577H 

ky   =  0.289/(A2   ♦  B2) 

ky   -0.408J2A2   ♦ 2B2   ♦ 3AB 

kp  = 0.408B 

kp     = 0.408jB(3A  ♦  hB) 
Pi 

Adapted from Weight Handbook,  Vol.   I,   Society of Aeronautical Weight Engineers.   Inc. 
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ISOSCELES TEIANGIE OBLIQUE TRIANGIE 

AREA BH BH 

CENTROID x = — y = 3 y = T: x = B + C 

WEIGHT 
MOMENT 

OF 
INERTIA 

X 

y ' 

yi' 

p ' 

WH2 

Iff 
WH2 

WH2 

WB^ 

7WB^ 
2U 

WH
2 

WH2 

WH2 

W(i4H2   ♦ 3B2)    I01   - W(7B2  * UH2) 

"75   ^  

Jy "^(B2 *C2-BC) 
JP " ? (H2  ♦ B2 ♦ C2  - BC) 

AREA 
MOMENT 

OF 
INERTIA 

hi" 

BH3 

BH3 
15" 
BH5 

B^H 

7B3H 
ET" 
l+BH^ 3B3H 

WT 
IP1 - 1JBH5 7B3H 

IX - BBy 

Ixi- BH^ 

VIS* 
Iy - BH  (B2  ♦ C2-BC) 

Ip  - BH  (H2
+B2*C2-BC) 

35 

58 

RADIUS 
OF 

GYRATION 

kx = 0.236H 

kx  = 0.408H 

kX2 = 0.707H 

ky = 0.204B 

kyi = 0.540B 

kp   =  0.118    74H2   +  3B2 

kx   =  0.236H 
kx     =  0.408H 

kv     =  0.707H 
^2 

ky   =   0.236 y^c2 - BC 

k     =  0.236 ß ♦  B2   *C2  - BC 

kpi   =  0.204   ./4H2   + 7B' 

Adapted from Weight Handbook, Vol. _1,   Society of Aeronautical Weight Engineers,  Inc. 
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PLANE  AREAS 

RIGHT  TRIANGUB EQUILATERAL TRTANGLfc 

X 

H 

AREA BH 
T 

BH 
2~ 

CENTROID 
7   y     3 

-      ■   Q      -   •   H 

WEIGHT 
MOMENT 

OF 
INERTIA 

Ix  - WH2 

ia 

Ix - WH2 

1    6 

Iy  - WB2 

18 

Ip   - *&+&) 
35 

TTH2 

Iyi. 

Pi 

WB2 

T 

' W(H2+B2) 

—5  

r,     -   WB2 

5T" 
WH2 

x2 

yi - TNBd 

1     ar~ 
p     - WB2 

T2~ 
I        -  5*B* pl     T2- 

AREA 
MOMENT 

OF 
INERTIA 

ix - BH3 
75~ 

x2 

Lyi 

BH^ 

B3H 

B3H 

ID    - BH(B2  ♦ H2)       ID  - BH(B2*H2) 
p      ~^T       P1   —2  

X!" B3H 

BH3 r" 
7B3H 
TB" 
B3H 
~2H 

X2 

yi 

PI 5B3H 

RADIUS 
OF 

GYRATION 

kx = 0.236H 

kXl = 0.408H 

kX2 = 0.707H 

ky = 0.236B 

ky  = 0.408B 

kp = 0.236 JB
2
  + H2 

kpi = 0.408  /B
2
 + H: 

kx = 0.204B 

kXl = 0.354B 

ky = 0.204B 

kX2= 0.707H 

ky = 0.540B 

kp = 0.289B 

kp = 0.456B 

Adapted from Weight Handbook,   Vol.   1,   Society of Aeronautical Weight Engineers,   Inc. 
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HOLLOW CIRCLE 

AREA 0.7854  D' *(#-!*) 

CENTROID 
* "y x - y B 

WEIGHT 
MOMENT 

OF 
INERTIA 

Ix  ' .    WD2  . WBp 

Iyi - 1.25 WB2 

I-   - WD2     ■ Wt 
p   -5-    "sr 

y       * 

p   —2  

lx - iy   - w(5i? ♦ £2 
4 

AREA 
MOMENT 

OF 
INERTIA 

T      -  T     =  0.0491D4 xx        Ay U  - L TT(I^  -  pU) 

lx,   -  I yi 0.2454D4 
I-   -    „(rfi  -   rU) 

I      - 0.0982D4 

**! yi ■(5Hf*-l*!f?P2-pU) 

RADIUS 
OF 

GYRATION 

kx   _   ky   _ - 

kXl   =  kyi   =  0.5590D   =  1.118R 

k     = k 
x y = \( R

2 *r2 

*v4*4J- 
kp  =  0.3536D % = S =    \\J$R2 * r2 

Adapted from Weight Handbook, Vol. _1,   Society of Aeronautical Weight Engineers,  Inc. 
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PLANE  AREAS 

SEMICIRCLE HOLLOW SEMICIRCLE 

AREA 0.3927  D2-   1.571# 
■zr 

CENTROID x = R    y  = 0.2122D = 0.4244R = R  y = 0.4244 (R + -R-^) 

WEIGHT 
MOMENT 

OF 
INERTIA 

x = 0.06987  WR
2 = 0.01747 WD2 

=0.25 WR2 = 0.0625 WD2 

=0.25 WR2 = 0.0625 WD2 

= 1.25 WR2 = 0.3125 WD2 
y 

y% 

Ei 

= 0.3199 WR2 = 0.0800 WD2 

=1.50 WR2 = 0.3750 WD2 

h U 
P - Xx  * h 

xi —TT    /x    zj  

AREA 
MOMENT 

OF 
INERTIA 

VI 

Pi 

= 0.1098 R4 = 0.00686 D4 

= 0.3927     R4 = 0.02454  D4 

= 0.3927 R4 = 0.02454 D4 

=   1.9635     R4   =  0.12272   D4 

= 0.5025 R4 = 0.03140 D4 

=  2.3562     R4   =  0.14726  D4 Yl      g  

p ' ** * h 

RADIUS 
OF 

GYRATION 

^ = 0.264R = 0.132D 

kx     =  0.5R  =  0.25D 

k^   =  0.5R  =  0.25D 

kv  = 1.118R = 0.559D yl 
kp = 0.566R = 0.2828D 

kp  = 1.225R = 0.6124D 

"JI"! 2hl 

ky •] & + ^ y  * —2— 

kP ■ 

"Pi 

HT^y 

r. (if1-!*) 
21. PI  

Adapted from Weight Handbook,   Vol. _1,   Society of Aeronautical Weight Engineers,  Inc. 
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NOSE RIB 

h m 
X 

x 
t 

' 
1 \cnord line f     f 

C 
■           * 

■             A 

based on parabolic segment 

CIRCULAR SECTOR 

Q in 
radians 

AREA | A  (B   * C) R2 Oi 

CENTROID 0.6A y  =  0.375   (B-C) -.§ [kip] RSIN a 

WEIGHT 
MOMENT 

OF 
INERTIA 

X* - — (19B2 ♦ 26BC ♦ 19C2) x  320 
1*1" 3 (B2 - BC * C2) 

y 
Iy  -   0.0686WA2 

Iyl«  0.4286WA2 

Ip  -   Ix   ♦  Iy 

PI Ixi  ♦ Iy, 

WR j-~p    (a-SIN a COS a) 

,«*  Ix  ♦ WR2SIN2a 

«2, 
*   ITS * 9« 5 
v  * Jü5£ (a ♦ SIN a COS of) 
yi   iia 

ix * iy 

AREA 
MOMENT 

OF 
INERTIA 

I-  -   AtB   t £3   (19B
2

+26BC*19C
2
) 

U60 

Ijn" 0.1333 (AB +  AC)   (B2  -  BC  +  C2) 

Iy   - 0.0457  A3   (B  +  C) 

Iyi-  0.2857  A3   (B  +  C) 

RU 
T (a-SIN a COS a) 

PI 

Ix    *   Iy 

' IX1   + Iyi 

- {LL   (a-SlN a :0S a)  +R^ a SIN2» 

3 R^  /„ 16 SIK2a?    4 SIN  2 a 
y     IT 9 a 2 
m'Jtta* SIN a COS a) ai    IT 

- ?LL (2 a-  16 SIN2 a \ 
p      U 9 a 

RADIUS 
OF 

GYRATION 

kv   = 

kx=/llx 
= JL   /l     SIN ^ CQS a 

" 2   V a 

2A(B*C) 

ky - / 3IV 

kxi=/ E£ 
R2 a 

2A(B+C) 

k    = R   /i   I SIN a COS a -  16 SIN2 a 
y   " ?V, a ~~9^T2" 

kyi   =RJi   » SIN a COS a 

k    = R / 2 - 16 SIN2 a? 
SV 9 «2 

Adapted from Weight Handbook,  Vol.  1,  Society,' of Aeronautical Weight Engineers,   tnc 
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PLANE  AREAS 

HOLLOW   CIRCULAR SECTOR 

a  in   radians 

AREA (R2 - r2)a 

CENTROID 
2S1H a  (R3-r3) 

*  =     3 a (R2-r2)    "5 
RSIN  a 

WEIGHT 
MOMENT 

OF 
INERTIA 

Ix   =  W (ft2+.r2)   (^   SIN  Q;  COS   a) 
17 a? 

I        =* 1     ♦ VYR^SIh2» 
1 x 

J
yi   = W (R^+r2)   (X   + sUaCOSa) 

,-T 

I        ♦   I 
*      y 

S - w 2SlNa (R3-r3) 

3<*(R2-r2) 

AREA 
MOMENT 

OF 
INERTIA 

*x = a    ^mTh)  d  . SIN« NofOOSa) Iy1  * a (Rk- rh) (1+    SI Ma COS a) 
IT a 

**!  - 1x ♦ Of (fi^-r2 R2) SIN2 a *P 

lv ■ IVl   -  I f2SINQ?(R3~r3)12 

y        yi      a(R2-r2)| 3     J 

*x + Iy 

RADIUS 
OF 

GYRATION 

^/¥ [   .  SIN  tt  COS  Qfl kyx   ^[i^üiiri   +S1N   «^s "1 

*,   = 

Ky = 

U2-r2) a 

kp = 

(R2  - r2)Q! 

(K2-r2)  a 

Adapted from Weight Handbook,   Vol. _1,   Society oi Aeronautical Weight Engineers,   Inc. 
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WEIGHT 
MOMENT 

OF 
INERTIA 

CIRCULAR SEGi^ENT y 

a in radians 
A = area 

AREA 1  R2
 (2 a - SIN 2 a) 

1   2 

CENTROID 
UK SIN 5  a 

,   x  = 3(2 Qf-SIK  2 a) y z ■  RS1N  a 

f' - 2 SIN    a COS Qf 
3 (a-SIN a COS a) ] 

I        =» Wh2 
1   ♦ 2 SIN^ a? COS a 1 

a-SlM a COS a 

r     » I     *■ WR2SlN2a h=Jx    + 1y 

Iy   • *y,    -   Mi [ 
2R SIK3 Q> I  2 

3 (of-SIJl a COS a) I 

AREA 
MOMENT 

OF 
INERTIA 

Ix   B  AR2    [l   -   2   ["SIN3  g  COS  g    ll 

"IT"  [       3 [a-SIN a COS a J 

*»  » Xx ♦ ^ (2 a-SIN 2 «)  (S1N2
 «) 

=» AR2 fl ♦ 2 SIN3 a CQS a] 
I       a-SlH a COS a 

*x  + Jy 

Iv,   - Lft6 SIN6 a 
n      9Ä  

RADIUS 
OF 

GYRATION 

*x  = 

*y   = 

kP  = 

R2   f".       2 SIN3 a COS a      "| 
IJ     L       3 (a-SIK a COS a) 

21 

H? (2 a-S!N2a) 

21, 

H2 (2 a-SIN  2 a) 

Adapted from Weight Handbook,  Vol.   1,   Society of Aeronautical Weight Engineers,   Inc. 
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PLANE AREAS 

CIRCULAR COMPLEMENT ELLIPTIC COMPLEMENT 

Y 
Y 1 Y 

/ 
R 

— c —• 

X 

B  1      / 
\ x y / 

El ^^^ y 
» 

xi 
i 

f 
X •- 

AREA 0.2146   R2 0.2146 BC 

CENTROID - . - .  0.2234   R 
x    y 

x   .  _C—=  0.7766C    y   . -. 
1.288                           l 

B 
.280 

0.7766B 

Ix  =   I     =  0.035  WR2 Ix   =  0.035   WB2 

WEIGHT 
MOMENT 

Ix     =   Iyi   =  0.085   WR2 
Iy  =  0.035  WC2 

Ip   =  0.035  W(B2   +  C2) 

OF I     =  0.070  WR2 

Ip-   =  0cl70   WR2 INERTIA 

Ix  =   Iy   =  0.0075   R4 Ix   =  0.0075B3C 

AREA Ix     =   Iy     =   0.0183   R4 Iy   =  0.0075BC3 

MOMENT 
OF 

INERTIA 
Ip  =  0.0151   R4 

In     =   0.0365   R4 
pl 

Ip   =  0.0075  BC(B2   +  C2) 

RADIUS 
kx  = ky  = 0.188  R kx   =  0.188B 

OF 
GYRATION kx     = kv     = 0.292  R xl         yl 

kp  = 0.265  R 

ky    =   0. 

kp=V' 

188C 

0.035(B2   +  C2) 

kpi = 0. 412 R 

Adapted froin Weight Handbook,   Vol.   \_,   Society of Aeronautical Weight Engineer-..   Inc 
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SEMIELLIPSE 

¥—xj 

HOLLOW SEMIELLIPSE 

-   X 

AREA fr AB 
2 

7T (AB-CD) 

CENTROID y  =   0.424  B y - J*~ AB2-CD2 

-AB-CD 

WEIGHT 
MOMENT 

OF 
INERTIA 

Ix = 0.070 VJBZ 

Ix = 0.25 WB2 

Iy   =  0.25   WA2 

Iyi   =1.25   WA2 

I     =   W(A2   +  0.28QB2) 

U 
IP1   =W(5A2   +  B2) 

. W/AB3-CP^). W A. 
*      k \ AB-  CD  / 3 * 

AB2-CD2 

AB   -CD   J 

w 
xi 

AB^-CD^ 

AB  -CD 

= W /A>B-c3p 
7       IT (    AB-CD 

■ W/A^B-C3D 
1X1    k \    AB-CD 

WA2 

Ix   +  I, 

AREA 
MOMENT 

OF 
INERTIA 

Ix   =  0.1098  AB3 

Iv     =  0.3927   AB3 

Iy   =  0.3927   A3B 

Iy     =  1.9635  A3B 

Ip  = AB   (0.3927  A2  + 0,1098 B2) 

Ip     =  AB   (1.9635   A2   +  0.3927  B2) 

IT (AB^-CD^)-TT (AB-CD)[U(AB
2

-CD
2

)]^ 
2        [3^ (AB-CD). 

7T_ (AB3-CD3) 
X1       6 

JL    (A^B-C^D) 
b 

yi 

p 

JL (A^B-C^D)   ♦   7T A2(AB-CD) 
2 

Ix   +   Iy Pi Ixi    *   I y\ 

1^   =  0.2643   B 
\ 

2T 

RADIUS 
OF 

GYRATION 

ky -£ 

^JAB^CDI 
'AB3-CD3 

1 \ h(:AB-CD) 
:
yi"  1»H6  A 

■« ^P 
■PI 

21 pi 

s. 

7T    AB 

*   (AB-CD) 

Adapted from Weight Handbook,  Vol.   1,   Society of Aeronautical Weight Engineers,  Inc. 

LiAB-CD) 
21 yi 

7T  (AB-CD) 
21 

21, 
kPi! Pi 

* (AB-CD) 
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PLANE AREAS 

y=B 

HOLLOW ELLIPSE 

y=B 

AREA 7T AB 7T (AB-CD) 

CENTROID 

WEIGHT 
MOMENT 

OP 

INERTIA 

x   =   A 

I,     *  1.25 WB2 

T     _ WA2 

Iyi   =1.25 WA2 

I    = *(A2 •» P2? 
P k 

x   -  A y   -   B 

I     -  S 

T -     W 

it 
T -     W Iy  c 
*yl*? 

AB^-CD^ 
AB-CD    . 

AB  -CD _ 

A^B-C^D 
AB  -CD _ 

A3B-C3D 

LAB  -CD 

IjJ    =    Ix    *    Iy 

WB' 

WA2 

AREA 
MOMENT 

OF 
INERTIA 

Ix   =   JEJgt   =   0.7854   Aß3 

IXI   = 1.25     TTAB
5
  c 3%927 AB3 

Ix  =    7L (AB
5

-CD
5
) 

=   7T A^B   =  0. 

"IT' 
7854   AJB 

Iyi   -  1.25    7T A5B   =  3.927   A5B 

T      «    7T.AB(A2  + B2) 

IX1   " 5-  (AB3-CD
5
)   -♦■   7T (AB-CD)     (B2) 

k 
Iy   =    JL (A5B  -  C5D) 

u 
1yl   = JL (A^B-C^D)   ♦   7r(AB-CD)   (A2

) 

XP " **  * Iy 

RADIUS 
OF 

GYRATION 

"x       2 

xx   » 1.118  B 

A. 
2 

^CAB-CD) 

V    =   — S 
xi 

yi -  1.116  A 

.VA2  *  B2 V 

* (AB-CD) 
A5B-C3D 
U(AB-CD) 

n 
'p = 

J 7T (.AB-CD) \ 

-E  
7T   (AB-CD) 

Adapted from Weight Handbook,  Vol.   1,   Society of Aeronautical Weight Engineers,   Inc. 
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QUARTER ELLIPSE 

y.      M 

HALF  ELLIPSE 

AREA 7rab/4 7rab/2 

CENTROID 
4a 

37T 

X    = 

4b 

37T 
y = 

4a 

3TT 

x   =  0 

WEIGHT 
MOMENT 

OF 
INERTIA 

4ma/  7T 4 \ 

7T    \16        97T/ 

4mb2 / 7T        4   ^ 

Iy  =  
7T       \16 97Ti 

.2 ma 

N 

JM = 

mb 

I..  = 

I..  = 

IM   = 

2ma2 
/7T 8 

7T \8 97T 

mb2 

ma 

AREA 
MOMENT 

OF 
INERTIA 

Ix   = *'b - 
8 

97T, 

*y = 

JN  = 

7rab3 

8 

7ra3b 

8 

RADIUS 
OF 

GYRATION 

= VWA 

kx   =   yix/A 

ky  = y/ly/A 
kN = \AN7A" 
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PLANE  AREAS 

AREA 

PARABOLIC  SEGMENT 

-x 

 i_ 

i AB 

PARABOLIC HALF-SEGMENT 

2 AB 

3 

CENTROID x  = 0.6A y   «=  B x = 0.6A y   =  0.375B 

WEIGHT 
MOMENT 

OF 
INERTIA 

x = 0.2WB
2 

=1.2 WB2 •vl 

y = 0.0686WA2 

= 0.4286WA2 

P       =       IX       +        Iy 

xi 

=  0.0594WB2 

=  0.2WB2 

=  0.0686WA2 

y     = 0.4286WA' 

P  =    x "*"  Iy 

n    =  IY     +   I„ 
>'l 

AREA 
MOMENT 

OF 
INERTIA 

_   =  0.2667AB3 

Xl   = 1.6AB3 

«   =  0.0914A3B 

y     =  0.5714A3B 

p   =   Ix   +   Iy 

RADIUS 
OF 

GYRATION 

kx = 0.4472B 

kxi = 1.095B 

ky   =  0.2619A 

ky     =  0.6547A 

kp   =  & 
P    VUAB 

Ix   =  0.0396AB3 

Ix     =  0.1333AB3 

Iy   =  0.0457A3B 

Iy     =  0.2857A3B 

Ip   =   Ix   +   Iy 

Ip!   =   Ixx   +   Iyi 

kx = 0.2437B 

S =  0.4472B 

ky   a 0.2619A 
kyi 
kp. 

=  0.6547A 

V 2AB 

kpl =/5I
P1 

2AB 
Adapted fmm Weight Handbook.  Vol.   1,   Society of Aeronautical Weight Engineers,  Inc. 
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AREA 

COMPLEMENT OF HALF PARABOLA 

B 

i= 
■f. 

T BC 

PARABOLIC FILLET IN RIGHT ANGLE 

CENTROID 
*■* 

2. 
y - 10    E 

x - y - 5 I    B  V?     C   ■ 2    V^" 

x     700 

WEIGHT 
MOMENT 

OF 
INERTIA 

hmfa TO' 

XP     20(35 3H 

ix - iv - a£ 
x        y        100 

3WT2 

50 

-  JZ_    B^C 
2100 

AREA 
MOMENT 

OF 
INERTIA 

80 
BC 5 

20^105 
B2 * c£ 

) 

11    -^ 
2100 

In    = 
100 

RADIUS 
OF 

GYRATION 

kx   =  0.230  B 

kv   =  0.194   C 

3TP 

kx   =  ky   =  0.173   T 

kp   =  0.2449   T 

Adapted from Weight Handbook,  Vol. _!,   Society of Aeronautical Weight Engineers,  Inc. 
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OGIVAL SHAPES 

OGIVAL SHAPES 

An ogival shape is one that is developed as a convex solid of revolu- 
tion. 

The solid of revolution developed in the diagram above is bounded by 
the arc PQ of a circle of radius R  (radius of longitudinal curvature) 
whose center, o , lies on the side of the axis of revolution, ox, opposite 
to the arc PQ and distant D = oo'from the axis of revolution ox. 

If the arc PQ cuts the axis ox for the desired length, h, the ogive is 
said to be pointed.  The diameter of the base, d, is known as the diameter 
of swell, which is effectively the maximum transverse diameter of the body. 

A tangent ogive is one that includes its base as illustrated in the 
above diagram. 

A secant ogive is one that does not include its base; that is, the 
length h does not extend to the point where the maximum swell occurs. 

If the radial center of the arc PQ, designated as o', is moved to a 
location on the arc (PQ) side of the axis of revolution ox, a non-standard 
ogive will result as illustrated below. 
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The properties of ogival shapes are included because of their common 
usage in the design of missiles, artillery shells, and other systems re- 
quiring this family of geometrical shapes. 

Sample derivations are given so that the reader can quickly review 
methods of approach in the basic steps involved in the development of a 
general equation used to describe an ogival property. 

The section entitled Properties of a Solid Ogive contains the equa- 
tions describing the volume, moment, and moments of inertia about the 
central axis and the base plane for both the truncated and the complete 
ogive. 

These equations have been developed in both the exact and approx- 
imate forms.  Examination of the equations will show that the term 0/sin Q 
found in the exact equations has been replaced by a convergent series ex- 
pansion, thereby leading to the simpler approximate forms. 

The use of the approximate equations is left to the reader's discretion; 
however, tables of expected error are included as a guide in determining the 
number of terms to be used in the equations. 

PROPERTIES OF A SOLID OGIVE 

y 

COMPLETE 

R = ogive radius 

h = length of ogival head (truncated or complete) 

r = radius of base 

d = radius of truncated nose (d = 0 for complete ogive) 

D = R - r 

a = r - d 

sin 0 = h/R 

SUMMARY  OF  EQUATIONS   FOR A  TRUNCATED   OGIVE 

Volume 

u2 / 

V  =  7Th R*  - Dd+R 
0 

sin  91. 
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OGIVAL SHAPES 

7Th 

V = — 
9 

R -  r fl        3    a 4   /a 
(3r -  a)2   + 2a2   - 6a' 

R 

4   /a 

8     /a\4 

  "       + 
8     /a 

- I  + 

-4 +   -       + 
5        35   R       105\R/ 

6 64     /a 

- I 
1,OOI\R/ 2,145\R/        36,465\R/ 230,945\R 

231\R/ 

192      /a\7 

+   '    * : 

Trha' 3r y I r] 

 1       +2-61  

a / \ Bt 

4   U-\5 ♦ 

13a 4   /a\2 

5       35  R       105\R/ 

4   /a\3 

8     /a 

+   -       + 
64 

1,001\R/ 2,145\R/ 36,465 
-   ♦ 

231\R 

7 192     /a 

  -I     + 
\R/ 230,945\R, 

First  Moment 

yV = 7T 
h£ I 2 h'\ 2 
— Ir2   + -RD  -Da(R -  a)' 

L2   \ 3 2/3 

= 7ra 
i i        i j 

Rrd  + -a2(R + 2r)   - -a   r2   + -a2 

3 2   \ 2     1 

Moment  of   Inertia About   the Central  Axis 

IA =-h 
/2 1 

(R2   +  D2)2   +  2D2(2R2   -  h2)   -  h2  -R2   - -h2 

\3 5     i 

IT 

 Dh 

4 
+  R  -   a   (4D2   + 3R2)   + 2(R  -  a)3 

sin 

IA =-h 
/          4 \       2 / r\       1 

r3[r a  + —r2a2   9   + 2-    + -a3(R -  5r  + a) 
\ 3/15 \ R/        5 

-  a 
r / r Y / r 

7   -   15-  +  12 -       -  4 - 
R \R/        \R 

n 1    R 4 4     a 8     la] 

L35   a       315        693   R       3,003\R, 

8     /a\3 

  -       + 

64 a\ 
-        + 

64 fa \ 

-       + 
6,435\R/ 109,395\R/ 230,945\R 

IT 

= -ha4J 
2 

r\3/r       4\ 2 /r \2 / r\        l/R       5r 

 + — -       9   +  2-     + +   1 
\a/  \a       3/       15\a/  \ R/       5\a a 

r Irr / r 
7  -   15-  +   12  -        -  4  - 

R \R/ \R 

31 1    R 4 4     a 
 +    + + 

8      /a 

35   a        315        693   R       3,003\R 

8    ay 
+   -        + 

64 er + 
64 

—I     +   '    *    * 
6,435\R/    109,395\R/    230,945\R 
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Note.  Since a density of unity was used in the derivation of the 
equations, it would be well to recall the relationship p = m/V. The 
use of this relationship when coupled with the moment of inertia equations 
leads to the determination of the mass moment of inertia. 

Moment of Inertia About the Base Plane 

IB =—h 
15 

5(R2 + D2) - 3h; 
7T 

- -Dh 
4 sin 6 

- (R - a)(R2 - 2h2) 4-  ^Xc 

Ig = 7rha 
2  /   9 \   1 1 
-a2 R + -r  + -r2(2R - a) a(4Rr + a2) 
7  \   5 /   3 5 

2      o R - rl 
- 2a: 

1    la 
— + + 

2  /a 
  —  + 

R  / .315   693 R   3,003\R/    6,435\R 

16   /a\4 

+   -  + 
16 

-  + ' ' ' 
109;395\R/ 230,945\R 

+ X I, 

= 7rha4 
2/R       9   r\        l/r \2/2R 1/4 Rr 

-21  
R/   315        693   R       3_,003\R/ 6,435^ 

16        /a\4 

+   -        + 
16 a \ 

-       + 
109,395\R/ 230,945\R + tX" 

SUMMARY   OF  EQUATIONS  FOR  A  COMPLETE   OGIVE 

Volume 

V = 7rh 
h2 

IT DR   
3 sin 

V = -7Thr2 

3 

4       4     r        1  /r\2 8   /r 

[.5        35   R       21\R/ 385\R/ 

4 / r \4   64  / r \5 

- + 
429\R/  15,015\R 

24  /r 128  /r 64 

-   + -   + 
r \ 

12,155\R/ 138,567\R/ 146,965\R 

First  Moment 
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Moment  of   Inertia  About   the  Central  Axis 

la  = -h 
/ 5    \ 12 7       \        RD       6 

R2   R2   + -D2     -  h2  -D2   + — h2 (4D2   + 3R2) 
\ 2     / \3 15/2     sin   6 

IA = 47Thr4 
16 32        r 
   + + 

8     /r\2            8     /r\3 

  -       +   ~        + 

181 

.315        3,465   R       2,145\R/ 5,005\R/ 255,255\R 

4 

r \3 28 
+   -   * 

24,871\R/ 188,955\R 

Moment  of   Inertia  About   the  Base   Plane 

7T 7T        / 

IR  = —h3(8R2   +   17D2)   - -Dh   R3 lH 
60 sin  6 

-  D3    rfr  i    Iß 
9- 

IB = 27rhr4 
8     R 4 2        r 

    + + 
1    iry 
 —      + 

16      /r\3 

  -        + 

*. V4 

32 

+ 
415,701 

16 r \ 
-       + 

128 'r\5 

R/ 440,895\R/ 7,436,429\R 

r \ 
-       + 

.105   r        315        1,155   R       1,287\R/ 45,045\R/ 12,155\R 

iix° 

TABLE 2. UPPER BOUND FOR FJJROR WITH THE USE OF 

APPROXIMATE EQUATIONS FOR THE VOLUME OF A 

TRUNCATED OGIVE 

Number 
of terms 

Upper bound for error, % 

a/r=0.3        a/r=0.5        a/r = 0.7        a/r = 0.9 

r/R  =0.1 

None .... 1.3 4.1 8.8 15.2 
One   0.02 0.09 0.3 0.7 
Two   0.009 0.03 

r/R = 0.3 

None .... 1.1 3.4 7.3 13.1 
One   0.04 0.2 0.7 1.7 
Two   0.02 0.07 0.2 
Three.... D.03 

r/R =0.5 

r/R =0.7 

None ... 0.5 1.6 3.7 7.1 
One   0.04 0.3 0.8 2.0 
Two   0.04 0.2 0.6 
Three.... 0.04 0.2 
Pour. 0.05 
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EXPECTED ERROR WITH THE USE OF APPROXIMATE EQUATIONS 

Tables 2—7 give the upper bounds for error incurred with the use of 
the approximate equations.  Examination of the tables will show that includ- 
ing a sufficient number of terms in the convergent series expansion will 
reduce the error markedly. 

TABLE 3. UPPER BOUND FOR ERROR WITH THE USE OF 

APPROXIMATE EQUATIONS FOR THE MOMENT OF INERTIA 

ABOUT THE CENTRAL AXIS FOR A TRUNCATED OGIVE 

Number 
of terms 

Upper bound for error, % 

a/r=0.3      a/r   =0.5     a/r   =0.7     a/r   =0.9 

r/R =0.1 

r/R =0.5 

r/R = 0.7 

None .... 1.32 7.1 20.2 38.4 
One    0.05 0.5 2.3 6.9 
Two   0.03 0.2 0.9 
Three.... 0.02 0.1 
Four  0.02 

None .... 0.5 2.7 8.5 18.7 
One   0.03 0.3 1.4 4.4 
Two   0.04 0.2 0.9 
Three.... 0.04 0.2 
Four  0.04 

None .... 0.2 1.0 3.4 8.2 
One    0.02 0.2 0.8 2.4 
Two   0.03 0.2 0.7 
Three- 0.04 0.2 
Four  0.05 
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TABLE 4. UPPER BOUND FOR ERROR WITH THE USE OF 

APPROXIMATE EQUATIONS FOR THE MOMENT OF INERTIA 

ABOUT THE BASE PLANE FOR A TRUNCATED OGIVE 

Number Upper bound for error, % 

of terms 
a/r  =0.3 a/r   =0.5 a/r   =0.7 a/r   =0.9 

r/R  =0.1 

None .... 
One  ... 

0.004 
0.00005 

0.02 
0.0005 

0.08 
0.003 

0.3 
0.01 

r/R = 0.3 

None 
One  ... 

0.01 
0.0004 

0.06                  0.2 
0.004                0.02 

0.7 
0.08 

r/R =0.5 

None .... 
One .. 
Two 

0.U1 
0.0007 

0.07 
0.008 

0.3 
0.05 

0.9 
0.2 
0.04 

r/R =0.7 

None  .... 
One    . 

0.01 
0.001 

0.07 
0.01 

0.3 
0.06 

0.9 
0.8 
0.08 

TABLE 5.  UPPER BOUND FOR ERROR WITH THE USE OF 

APPROXIMATE EQUATIONS FOR THE VOLUME OF 

A COMPLETE OGIVE 

Number Upper bound for error, % 

of terms 
r/R =0.1 r/R =0.3 r/R  = 0.5 r/R = 0.7 

One    1.5 5.1 9.5 15.4 
0.06 0.6 1.9 4.1 

Three.... 0.003 0.08 0.4 1.2 
Four  0.01 0.09 0.4 

0.002 0.1 
0.04 

TABLE 6.  UPPER BOUND FOR EMROR WITH THE USE OF 

APPROXIMATE EQUATIONS FOR nib: MOMENT OF INERTIA 

ABOUT THE CENTRAL AXIS FOR A COMPLETE OGIVE 

Number Upper bounr for error, % 

of terms 
r/R =0.1 r/R =0.3 r/R =0.5 r/R = 0.7 

One   1.9 6.4 12.1 19.6 
0.08 0.7 2.2 4.9 

Three.... 0.003 0.1 0.5 1.4 
Four    0.01 0.1 0.5 
Five  0.03 0.2 
Six 0.05 

84 

http://www.abbottaerospace.com/technical-library


NAVWEPS   REPORT  7827 

TABLE 7. UPPER BOUND FOR ERROR WITH THE USE OF 

APPROXIMATE EQUATIONS FOR THE MOMENT OF INERTIA 

ABOUT THE BASE PLANE FOR A COMPLETE OGIVE 

Number Upper bound for error, % 

of terms 
r/R =0.1 r/R =0.3 r/R =0.5 r/R =0.7 

One   1.7 5.0 8.3 11.7 
Two   0.03 0.3 0.8 1.9 
Three.... 0.001 0.03 0.2 0.6 
Four  0.005 0.04 0.2 
Five  0.01 0.06 
Six     . 0.02 

ALTERNATIVE EQUATIONS FOR VOLUME, MOMENT, AND MOMENT OF INERTIA 
OF AN OGIVE 

Another and perhaps more concise set of methods for determining the 
volume, moment, and moment of inertia of an ogival shape is shown below. 
Again, complete derivations are included that can be used as guidelines in 
equation development.  Special note should be made that angles are measured 
in radians. 

Complete Ogive 

Volume. 

R COS -fr-0 

m = D/R 

= sin (p  = y/l  - m" 

V = 7r/y2dx 

V = 7r/(R COS 9  - D)2dx 

= 7r/(cos 6   - D/R)2R2dx 

= 7T/R2(COS 9  -  ra)2dx 

dx = R(cos 0)d0 
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V = 7T/R
2
(COS  6  - m)2R cos  0d0 

= 7rR3/0  (cos  0  - m)2   cos  OdO 

= 7TR
3
/Q (cos2   0  -  2m cos  0   + m2)  cos  0d0 

= irR3ff (cos3   0  -  2m cos2   0  + m2   cos  0)d0 

= TTR: 
sin3 0 

sin 0 — -  2m -0 + - sin 0 cos 0  + m2 sin 
\2   2 / 

sin 

10 

■ o 

=   7TRJ    - + sin 0 + m2   sin <p - m sin 0 cos 0 - m0 

= 7rR  I +  a - m0 
\      3 | 

Moment. 

m  = D/R 

dV = 7rR3(cos   0  -  m)2(cos   0)d0 

r   =  R  sin   0 

M  = /rdV 

M = /^(R sin  0)[TTR
3
(COS  0 - m)2 (cos  0)]d0 

= 7rR4r^(cos3   0  -  2m  cos2   0  4- m  cos  0)   sin  0d0 

cos     0       2m cos m2   cos2 

= TTIT 

m  =  D/R =  cos   0 

1       2m       m2 

4        3 2 

1<P 
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/     m4        2m4        m4       1       2m       m2 \ 
M  =   7TR4 f + +    

\      4 3 2 4        3 2 / 

/-3m4   + 8m4   -  6m4       m2        2m       l' 
= TTR

4
         + + - 
\ 12 2 3        4, 

/     m4        m2       2m       l\ 
= TTR

4 + + - 
\     12        2 3 4/ 

Moment  of   Inertia About   the Central  Axis. 

IA = -JVdv 
2 

dv   = 7rR3(cos   0 - m)2   cos  0d0 

r  = R(cos  0  - m) 

m = D/R, cos <p = m, sin <p =  a 

rf 
•o IA =  y    (cos  6 - m)4   cos  Odd 

7TR2 

•<;> ■pCcos4   0  - 4  cos3   0m  + 6 cos  02m2   - 4  cos  0m3   + mMcos  0d0 

7TR5      , 

=  f^(cos5   0  - 4m cos4   0  + 6m2   cos: 

2J° 

/   cos5   0   = 
cos     0  sin  0       4 sin- 

- 4m3   cos2   0  + m4   cos   0) 

<;> 

/ cos 

  + - sin  0    
5 5 \ 3 

cos3   0  sin  0       3/0       sin  0  cos 
+ - -  + 

4\2 

0 

■ 0 
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/   cos3   0   = 

j cos2 e ■- 

7TR 

sin3   0 10 
sin 

-  + 

0 

sin  v  cos 10 

0 

»A ' 

9m4 a       9m2 a 4a 
  + 2m2 a3   + — 

4a; / 3m\ 
-     2m3   + —\(p 

5 15 

Moment   of   Inertia About   the  Base   Plane. 

dlc  - differential  of  inertia  about   the  centroid 

IB  = J'dlc   + /x2dv 

dv 
dlc   a — [3y2   +   (dx)2] 

12 

dv  = 7ry2dx 

dlc  =   (y2dv/4) 

m = D/R = cos tp 

a  = Lv/R = sin <p 

y 7ry dx 
IB = /  + J'xz7ry2dx 

4 

{^ \ 
= 7r/l— + y2x2   dx 

\ 4 / 

IB   =   7TR5/ 
(cos  0  -  m)4   cos   0d0 

+   (cos  0  - m)2   sin2   0  cos   0d0 
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IB  = 7TR- 
9m4a       9m2a       m2a3 

20 8 

a       a3        1/ 3m\ 3m4 a 
+ 2m3   + —U +   

5       15       4\ 2 / 10 

m2a       m2a3 

= TTR
: 

a      aJ       m 
— +   + (p 
I 3 5        15        4 

3m4a       7m2a       m2a3       2a       2a3        / m3        5m \ 
  + + — + —U 

20 8 6 5 15 \2 8   / 

Truncated   Ogive 

Moment. 

2mbJ       m* b 2K2 

M   =   TTlCi - 
vf       2m       1 

   + + - 
2 2 3 4, 

Volume. 

V = 7TR3( + a + m2a - mab - mcp\ 

Moment  of   Inertia About  the  Central  Axis. 

7TR5 b4a                                           3bma 4a3       4a 
1A  =  2a3m2  + —  + m4a 

2 [   5                                               2 15           5 

/                3m\ 
+ 6am2   -    2m3   + — \(p 

\                  2 /    J 
Moment   of   Inertia  About   the   Base   Plane. 

2a3 3b4a       mb3a       5mab       m3ab m2a3       m4a       3m2a 
IB  =  7TR5   

20            4              8 2 15 6              4            2 

2a       /irr        5m\ 

5 \ 2 8  / 
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where 

a = VR ■ oin- ft 

b = y/%  •* a2 ■ cos </> 

m = D/R 

a = : k/p r <^~ 

THIN-SHELLED OGIVE 

The thin ogival shell illustrated is one commonly encountered in the 
design of a missile nose cone.  Simplified approximations have been devel- 
oped that offer the designer a short-cut method of determining the prop- 
erties of this type of section.  These relationships are 

V  =   27TR2t[(a2   -  aj)   -  m(az   - ax)] 

C*|   -  af)     
M  =  27TR3t     +   m\^/l   -   af   -   y/l   -  af ) 

where 

I     = 27rR4t 
(a2

3   -  a3) 
(a2  - a! ) (1 + 3m2 ) m3 (az  - ax) 

3m 

2 

l|B  =   27TR4t 

t  = R2   -  Ri 

(Q?2   - 05] )   +   (a2v/l   -  af   -  alv/l  - af) 

(a2
3   -  af) 

2 
(a2   - otl )  -  (a2>/l  - a?   -  a v71   "   al2> <iJ< 

R  = 

m  = D/R 

a   =  h/R 

90 

http://www.abbottaerospace.com/technical-library


NAVWEPS REPORT 7827 

SOURCES 

Material from the following sources was used by permission in com- 
piling this handbook. 

American Institute of Steel Construction.  Steel Construction, 5th ed. 
New York, AISC, 1955. 

Ayres, F.  Theory and Problems of Differential and Integral Calculus. 
New York, Schaum Publishing Co., 1950. 

Computation Laboratory of Harvard University.  ''Tables for the Design of 
Missiles,'' in Annals of the Computation Laboratory of Harvard Uni- 
versity, Vol. XVII.  Cambridge, Mass., Harvard University Press, 1948 

Hudson, Ralph G.  The Engineers' Manual.  New York, Wiley, 1955. 

Meriam, J. L.  Mechanics.  Part I.  Statics.  New York, Wiley, 1955. 

 .  Mechanics.  Part II.  Dynamics.  New York, Wiley, 1957. 

Oberg, Erik, and F. D. Jones.  Machinery's Handbook, 15th ed., Holbrook 
L. Horton, ed.  New York, The Industrial Press, 1954. 

Society of Aeronautical Weight Engineers, Inc.  Weight Handbook, Vol. 1, 
3rd ed., Sydney S. Brown and Brian C. Wildsmith, eds. Los Angeles, 
SAWE, 1944. 

U. S. Naval Ordnance Test Station.  ''Formulas for Ogive Volume and 
Moments,'' by John W. Odle, Science Department, Mathematics Section. 
Paper No. 21.  China Lake, Calif., NOTS, 7 January 1947. 

91 

http://www.abbottaerospace.com/technical-library


NAVWEPS REPORT 7827 

INITIAL DISTRIBUTION 

24 Chief, Bureau of Naval Weapons 
DLI-31 (2) RM-37 (2) RMMO-43 (2) 
FWEW (2) RM-3772 (2) RMMP (1) 
PMA-12 (1) RMGA-43 (1) RMMP-2 (1) 
RAAV-34 (1) RMMO-2 (1) RMMP-3 (1) 
RM (1) RMMO-22 (1) RMWC-3 (1) 
RM-3 (1) RMMO-3 (1) RUME-11 (1) 
RM-32 (1) 

7  Chief of Naval Operations 
0P-721D (1) 
Deputy Chief for Air (1) 
Operations Evaluation Group (2) 

2 Chief of Naval Research 
Code 104 (1) 
Code 463 (1) 

1  Naval Air Force, Atlantic Fleet 
1  Naval Air Force, Pacific Fleet 
1  Naval Air Material Center, Philadelphia 
1  Naval Air Technical Training Center, Jacksonville 
1  Naval Ammunition Depot, Crane (Code 4100) 
1 Naval Avionics Facility, Indianapolis (Library) 
3 Naval Ordnance Laboratory, White Oak 

Associate Director for Aeroballistics (1) 
Chief, Aerodynamics Department (1) 
Chief, Ballistics Department (1) 

2 Naval Propellant Plant, Indian Head 
1 Naval Research Laboratory (Code 2021) 
2 Naval Underwater Ordnance Station, Newport 
2  Naval Weapons Laboratory, Dahlgren (Technical Library) 
1 Naval Weapons Plant (Code 755) 
2 Naval Weapons Services Office, Naval Weapons Plant 
1  Operational Test and Evaluation Force 
1  Bureau of Naval Weapons Fleet Readiness Representative, Pacific 
1 Bureau of Naval Weapons Representative, Azusa 
5 Chief of Ordnance 

ORDTA, H. S. Beckman (1) 
ORDTB (1) 
ORDTM (1) 
ORDTS (1) 
ORDTU (1) 

2 Aberdeen Proving- Ground 
Ballistic Research Laboratories 

Chief, Free-Flight Aerodynamics Branch (1) 
Chief, Exterior Ballistics Laboratory (1) 

6 Army Rocket & Guided Missile Agency, Redstone Arsenal 
ABMA (1) 
ORDDW-IDE (1) 
ORDXR-OTL, Technical Library (1) 

• 

92 

http://www.abbottaerospace.com/technical-library


o 
a: 
< 

§ 
CE 

(/> 
CD 
< 

CO              •                                      «\ W                   •                                                   's 
CD 0,                         co CD a                    co 

•H a                    -a •H a                   T3 
P •   <H                    0 t • «H                0 
IH <   Ol   Q    0     1    H    l. <   N   Q    0    1    rH    JH 
0 Gi W        to  cd 

& 
0) Cd       to  cd 

a jrf       M  ö -H  cj  d ^          H    3   .H    ü    d 
0 O           fe    0   TJ   -H   -H 0 Ü           Pt|    0   73   -H   -H 
u Cd      •   M   -H           P   Xi 

& 
cd      •  M   -H          P   XI 

OH b   N   W   -P  H    cd   P b  N W   *! H   cd   P 
(O CO   d   ffl   B CD  CO   cd   cd   B 

(4 >> CT>   <   rH   "3    CD      »» 
Xt   H   J   -H   -H   Xi    IG 

cd >, 05   <   rH  T3    CD      's 
XI   H   J   -H  -H   X!    CO CD CD 

h o  a o p H h ü     O.   0    P    rH 
<5 •DHZ g  in on < ■C   rH   SZ    S    JH    Cd   rH 

3 -H » o p  E cu CD   -H   S    0   P    B    CD 
TJ rH    JH            O     C           X! T3 rH     JH            O    d           X! 
c •H   a   «N      CD  *-»  to d •H    O,     's         CD    JH    tO 
3 Q, «fi x-N   cd   ü   CD cd OH <fi   /-«.    Cd    ü     CD 

B         00               AC E        00              X!   d 
fi    co O       ^ CO     t0      *\ -i->   -H d  to 0      •% CO    Cfl      's P   -H 
o   to CJ  CO   CO   vH   cd   O  X! o  to U  CO  00   -H   cd   0   X! 
•H    3 
P   S 

H    W             -H             P       • 
-s O          C   P "3          10 

•H   cd 
p s 'J 

H   N           -H           P      • 
O        d p x>        co 

3         (A Z   OH    O    5-    C     's  CD       / X 
H  -H   CD   3   to   O.     /         \ 

cd        to z pH   o   J-i   d    «so      s—N. 
E-t-HCDcdtoft     /        \ p   u CD P    (H o 

CO   0 5, p   d       -3   cd     l         / co  o ft p  d       X3   cd     [        ) 
"H Ed • co   cd -H    •*. -H xi     Vy «H Cu • CO    cd  rl     -s -H  X!       V7 

P         X! "H    h     U              d    rH     tO 
•H    O    -H   «H     O     O 

•»->        X! sH    H     O              d    rH     tO             ^-^ 
•H   O   -H   *H    0    0 to   to ■Ti CQ    CQ co 

a)  d r-K    Z    rH     O    -H     ffl   H CD   d H   Z   t-\    0   -H    CO   rH 
H  o H cd       xi       p        cd H    0 '-f cd       Xi       p        cd 

•H cd ü     -> 3   10   cd   O    > •H cd O     's 3   to   cd   0   > 
0)    ■♦-» Ü t*    Q. 4->    U   P   -H CD   -M u C^     O, P     JH    P   -H 
O   al • H 's CNJ            d    >»           CUD ü   cd •H -. CN           d    >.          b£ 
d    3 ~ CD  00    t0    CD    faß "3    O d   3 h CD   00    tO    CD    bß "3    0 
3    O* fJ X   t>   -H   B          CD cd  er ^J JLI  r*  -H   E         CD 
3  Cd 0 cd         XI    O  <H   P  *3 

J  P  H   E   O    cd   d 
d u a cd         X!   0 <H   P TJ 

-3 p H  s  o   cd  d TJ          B "3         B 
JH   <H 1 0 U                     rH   cd 5 o|5 JH                           rH     Cd o o|g cd   O          U  -H   CD cd    0           JH   -H    CD 

d     Q,     .    O   -H    IH      ♦» 3    O,    •   0   -H   b     »s 
rH    .* •H     CD    H    «H    TJ              C0 rH   .* •H    CD   H   «H   "3            CO 

CO     0 to Ä K ü         cd   to   cd cd   0 DB Xi   K   CJ           Cd    CO    3 
CJ          <   (0    JH    CD    CD 

CO   K    3           -H    JH 
>     O 3 O           <fi     CO    5-i    CD     CD 

co cd   c       -HU 
>   0 9 

Cd    Xl 6 cd xi 5 
2: TJ —1 0< H   O    ^ p   cd SB   -3 •-I OH   H    0       's P    cd 

d :. •     W     CO      "H       CO       r« d JH •  Cd   CO   -H    CO    U 
• cd :■; 10   S   CQ   P    CD    CD    CD •  cd K tO   s   CQ  P   CD   CD    CD 

JH   >   <1   Cd    ü    OH   d CO   33 > 'M > <   cd   o   O. d co s > 
CD <:      D c o cd CD <       3  d  o  cd 

<H| >> z       a* cd  t, H •           SH|>,Z            CTCdr,rH 
D       OS ■*-*       o P  a a D       o S %*       CDPO.0. 

w "» to •                                                  's 

Q) Q,                               10 CD a                  co 
•H 

•                •   <H                       O 
•rH a                    -3 

p p •   SH                    0 
h <   CN   Q    O     1    H    l. JH <   CN   Q    0    1    rH    JH 
CD OJ   Cd           to    cd 

& 
(7)   Cd          CO   cd 

a ^5             rH     C    -H     O     d M             rH     C    ,H     y     C 

o O          CH    O   -3   -H   -H 0 ü           ÖH    0   "3   -H   -H 
JH Cd       •   HH    .H             P    X! JH Cd        •   rH    -H             P    X! 
fi •^   N    CO    P   rH     Cd    P OH ^   tN   CO   P   rH    Cd   P 

co co   cd   cd   E co  co   cd   cd   B 
cd >>   CD    <     rH    -O      CD         'S 

Xi   H  M  *i  «H XI    W 
cd >> O   <   rH   XJ    CD      *« 

0) CD xi »H J -H -H x:  to 
b CJ     Q,    O    P    rH JH u a o p ^H 
< -O    rH    Z     E     r4     Cd    rH < -3   iH   JE    B    U    Cd   rH 

0)  -H   P   O   *J   S   0) CD   -H  D   0  P   B   CD 
TJIrH     JH            O    C           X! •OlrH    JH           ü    d          X! 
|  <H   ft    «i         CD    JH    CO d|-H  a   «.      CD ri  to 
fl   ft< A   cd   o   Q) cd   0, < -s   cd   O   CD 

B        co              AC S        00              X!   d 
C   en O       •% CO    CO      *< +>   -H d   to 0      's CO    tO     's P   -H 
O   w U  co oo  -H   cd   O X! 0    10 ü co oo -H  cd  0 xi 
•H   cd 
p S 

e IN     .H     p   • 
-x ö          d   P   "3          w 21 H  N         -H         P     • 

's O       d p TJ       w 
cd        to Z   Q,    O    SH    fl      -x  CD       /-"^N cd        to Z   OH    0    JH    d       1   CD         /^-\ 

h-HCDcdcoa.    f        \ P    JH o H-rt   CücdWQ,     f           N •M    JH 
& CO    O ft p   d       -3   cd     V         J co  o P    3          TJ    3       l             1 

«H cd •   CO     Cd   'H      -v -H   X!         V / VH d •  CO    3   -H     »s -H   XI        \ • 
P          43 «M    H     O              O    rH     W 

•H   O    -H    «H     O     O 
P         X! <H    H     U              3    rH     tO 

•H    O    -H   <H     0     0 to   to co to   10 BQ 
CD    0 rH    Z    rH     O    -H     t0    rH a>  d H   Z   rH    0   -H    tO   rH 

tH   O H cd       Xi       +->        cd H   o r-1 Cd         XI         P          « 
•H er. O     's 3   to   cd   O   > •H C3 cj    's 3  to  a  o   > 

CD    P CJ t>.     O, ■*->    ii   P   -H CD   -M Ü t«.    OH P    JH   P   -H 
o   cd •H •N CM        d   >,       bfi o   cd •H «s CM         d   >>         bß 
C   3 M CD  00    10    CD    b0 "3    O d   3 ~ 3  00    tO    CD    bß TJ    0 
cd   C7 M Jt?   N   -H    6            CD cd   o* ♦J X  t»  -H   E         ü> 
c w (U cd         X!   O «H  P   -3 

r-1   P  H   E   O   cd   d 
Ss                        <H    cd 

d  Cd Cd         Xi   0  «H   P   TJ 
J P H  i  o   3  d 

JH                        H    Cd 
•a       s •3          ■ 

ö  o|| Cd     0              r<    -H     CD 3     0              JH    'H     3 
d a,   • o -H u.   «, d    0.    •   0   -H    JH      »s 

M .* •H    CD   H  «H   TJ           CO •H jd •H    CD   H   <H   TJ             CO 
cd   O DO xi  K U        cd   to   cd S 8 H Xi   K   Ü           3    10    3 

U           «fi    tO    JH     3    3 
CO   K    d          -H    JH 

>   O 9 O           <    CO    JH    CD     CD 
CO   K    d           -H     *H 

9 
cd Xi 0 cd Xi 0 
Ä   TJ H OH   H   0     -s ■♦-»   cd •Z,   "3 ■H OH   H    0      *s P     3 

c -■ •  W   CO   -H   to   u d h .  Cd   CO   -H    tO    JH 
10   B   CQ   P    CD    CD    3 •   cd ri to   ■  CO   P   CD   CD   CD 

u > <  cd  o  a d 
•   cd d 

co B > co X > U > <   3   Ü   o, d 
3  <*          3   C   O   cd CD   <           3    3    0    cd 

'Hl >> 55            3*   3    JH   iH tMl   >>   Z                 3*    Cd      r*     rH 
D          OS v         CD   P   Q.   O. £3          0 |S "s-^         CDPQ<3. 

http://www.abbottaerospace.com/technical-library


1 Diamond Ordnance Fuze Laboratory (Library) 
2 Frankford Arsenal 

Pitman-Dunn Laboratory (1) 
Library (1) 

6  Picatinny Arsenal 
Ordnance Special Weapons and Ammunition Command (1) 
Samuel Feltman Ammunition Laboratories (3) 
Technical Division (1) 
Library (1) 

1 Rock Island Arsenal 
2 Headquarters, U. S. Air Force 
2 Aeronautical Systems Division, Wright-Patterson Air Force Base 

ASAPRD-Dist (1) 
Materials Laboratory (1) 

1 Air Force Cambridge Research Laboratories, Laurence G. Hanscom  Field 
2 Air Proving Ground Center, Eglin Air Force Base 

PGEM (1) 
1 Air Research and Development Command, Andrews Air Force Base 
1  Air University Library, Maxwell Air Force Base 
1 AFSC Liaison Office, Aberdeen Proving Ground 

10  Armed Services Technical Information Agency (TIPCR) 
1 Weapons Systems Evaluation Group 
1 Langley Research Center (Library) 
1 Lewis Research Center 
1 National Bureau of Standards (Ordnance Development Laboratory) 
1 Allegany Ballistics Laboratory, Cumberland, Md. 
2 Applied Physics Laboratory, JHU, Silver Spring 
1  Armour Research Foundation, Chicago (G. A. Nothmann) 
1  Arthur D. Little, Inc., Cambridge (W. H. Varley) 
1  Atlantic Research Corporation, Alexandria, Va. (Materials Laboratory) 
1  AVCO Manufacturing Corporation, Wilmington, Mass. (Document Control 

Center) 
1  Bruce H. Sage Consultant, Pasadena 
1 Douglas Aircraft Company, Inc., El Segundo (Chief Engineer) 
2 Franklin Institute, Philadelphia 

Manager, Applied Physics Laboratory 
Library (1) 

1  Hughes Aircraft Company, Culver City, Calif. (Research and Development 
Library) 

1  Jet Propulsion Laboratory, CIT, Pasadena (Dr. W. H. Pickering) 
1  Operations Research Office, JHU, Bethesda, Md. (Document Control Office) 
1 Rocketdyne, Canoga Park, Calif. (Librarian) 
2 Rohm & Haas Company, Redstone Arsenal Research Division (Librarian) 
1  Society of Aeronautical Weight Engineers, Inc., Chula Vista, Calif. 

(Library) 
1  The Martin Company, Denver 
1  Thiokol Chemical Corporation, Redstone Division, Redstone Arsenal 

(Technical Library) 
1  Thompson Ramo Wooldridge Inc., RW Division, Canoga Park, Calif. 

(Technical Information Services) 
1 University of Chicago, Institute for Air Weapons Research (Library) 

NOTS CL 1718 (7/63) IC 

http://www.abbottaerospace.com/technical-library

