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In the book of the emineut Soviet scientist and rocket enthusiast F. A. Tsander,

_qnestions of long-distance rocket flight, problems of interplanetary flight, and

f problems dealing _rith the preparations for such flights are discussed. _ The new

edition includes one biographical and seven scientific papers published for tile

first time. The book is for engineers and technicians associated with the rocket

industry, and also for the general public.

TransIatlon Editor's Note

The editor of thfs translation endez_voured to render the author's idea_

faithfully. Some obvious errors appearing in the formulas or in the text of

the Russian original have, 'however, been corrected.
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"Is there anyone who, looking at the sky on a clear spring night

and seeing the twinMing stars, has not thought oS the possibility that

the distant planets may be inhabited by intelligent creatures thou-

sands of years ahead of ourselves irt their civilization ? What iacalcu-

Iable cultural wealth may be hrough_f0a'c]c_to Earth through science

should man be capable of travelling there, and how cheap is the cost

of such a tremendously important achievement in comparison to the

vast amomlts that are wasted by humanity. "

F. A, Tsander

INTRODUCTION

Nineteen hundred and sixty-two will be the seventy-fifth year since tile

birth of the great Soviet research scientist and talented engineer Fridrikh

Arturovich Tsander [Canders], who devoted his entire life to solving dif-

ficulties associated with interplanetary flight. He pursued throughout his

life the slogan "Forward to Mars", In the history of science, the name

Tsander will, along with our remarkable scientist K.E. Tsiolkovskii, re-

main associated with the development of rocket technology.

The first edition of Tsander's book "Problems of Flight with the Aid of

Jet Propulsion Machines" was published by the government aviation and

auto-tractor publishing house ONTI NKTP SSSR in 1932 and edited by
Tsander himself.

A collection of papers written by Tsander and editedbyM.K. Tikhonravov

was published in 1947 by the Oborongiz publishing house.

The purpose of the present, second edition of papers by Tsander, pub-

lished on his seventy-fifth birthday, is to present in a single book all his

main papers on rocket technology and interplanetary flight; however, this

is not a complete collection of all his works.

An edition including all Tsander's works will become possible only after

the decoding and studyingof allhis scientific papers. This is an extremely

difficult task, because Tsander used shorthand in his notes in order to save

time; this shorthand code was known only to him. Decoding his shorthand

is particularly difficult, since Tsander could use the Latvian, Russian and

German languages, which he knew fluently.

In addition to articles already published in 1932 and 1947, the present

edition contains for the first time the following papers:

Design of the ER-1 engine;

Flights to Other Planets (The Theory of Interplanetary Travel);

The Use of Light Pressure for Flight in Interplanetary Space. Light

Pressure on a Combination of Mirrors;

Calculations of Spaceship Flight in the Earth's Atmosphere (gliding de-

scent) ;

Calculations of Spaceship Flight in the Earth's Atmosphere (ascent);

Spaceship Temperature in Glide Landing on Earth;

Deflection and Repulsion of Meteors by Electrostatic Charges Emitted

by the Spaceship.

These articles contain the present editor's notes. The notes in other

articles were reproduced from t he first edition almost without alterations.

ix



As a supplement we have an article "The Life and Work of F. A. Tsander"

(Zhizn', tvorchestvo i deyatel'nost' F.A. Tsandera), based on information

from archives and personal reminiscences of his students and friends.

Some of the articles being now published for the first time in the present

edition were originally scattered among various notes in a state unsuitable

for publication. In them, we find new and extremely interesting ideas for

anyone working in the field of space travel.

It is important to point out that 30 to 40 years ago Tsander was capable

of foreseeing many of the problems of space travel, to develop them, and

to show the technical methods for their solution.

The variety of problems covered by Tsander's articles that are included in

the preseni publication (heat technology, aerodynamics, celestial mechanics,

electrical engineering, physics and other subjects) show the high level of his

engineering and technical ability and his broad erudition in the field of rocket

technology and interplanetary flight of space vehicles.

The editor would like to thank all the friends and pupils of Tsander who

took part in the preparation of the present edition as well as his wife, who

was kind enough to supply us with material from his personal archives.

L. Korneev



L.K. Korneev

LIFE AND WORK OF F. A, TSANDER

(On the 7Sth annP_'ersary of his birth)

On 4 October 1957 Soviet scientist took the first step on the road to re-

alizing man's ancient and daring dream of conquering space. Theylaunched

the first artificial satellite weighing 83.6kgs. After this first firing, others
followed.

On 3 November 1957 the second Soviet Satellite, carrying the dog Laika,

was launched. The third Soviet satellite launched on 15 May 1958 was a

well-equipped scientific laboratory. The first space rocket to reach the

second cosmic speed was "Mechta", fired on 2 January I959.

On 12 September 1959 the second space rocket was launched, andreached

the Moon's surface; a Soviet pennant was planted there. It was a trium-

phant day in the annals of Soviet rocket technology.

Within a month, on4Oetober1959, the third Soviet space rocket was

fired. It carried an automatic interplanetary station which photographed

the face of the Moon, hitherto unseen by man, and relayed the pictures to

Earth. The last stage of the rocket weighed 1553kgs (without fuel), and the

weight of the automatic station including the scientific and radio-technolog-

ical equipment was 278.5kgs, Humanity welcomed our scientific achieve-

ment.

This, however, was not the end; the Soviet people continued to develop

spaceships further and to prepare them for man's flight into space. It

meant more sleepless nights, research, strenuous, selfless and inventive
labor.

On 15 May 1960 the first spaceship, weighing 4540kgs, began to orbit

the Earth (without a rocket launcher); it was fifty-two times heavier than the

first Earth satellite fired on 4 October 1957. The capsule of tile first

spaceship was airtight, and was loaded with a weight similar to that of a

human being. The capsule was also fitted with various types of instruments,

and other installations necessary for future manned flight; these, together

with the food supply, weighed 1447kgs. Thus a reliable foundation, guar-

anteeing the safety of future manned space probes was laid.

Three months later, on 19 August 1960, the USSR launched a second

spaceship around the Earth. The cabin carried all the equipment neces-

sary for future manned flights. The capsule also carried two dogs, Belka

and Strelka; in addition there were rats, white mice, flies, mushrooms

and seeds of various plants. A radio-television network within the capsuIe

enabled close observation of the animals' be ha_ipUr pattern and relayed to

Earth all physiologicaI symptoms. The capsule covered a distance of

700,000kms around the Earth, and a signal on its eighteenth orbit started its



descent. Immediatelyspecialequipmentstartedto relay theperformance
of thebrakin'gandcontrolsystems,keepingarecordof theparametersas
thevehiclepassedthroughthedenselayersof atmospherebackto Earth.
Boththecontrolandbrakingsystemsworkedwithextraordinaryprecision,
andguaranteedthedescentof thespaceshipwithinthedesignatedarea. The
deviationof theactuallandingplacefrom theestimatedonewasonlylOkms.

ThespaceshippassedsuccessfullythroughtheEarth'satmosphere,and
thecapsulewith the test animals descended smoothly and safely after sep-

aration. After the flight, on 21 August 1960, Strelka and Belka and all the

other animals were delivered to Moscow in perfect health.

For the first time in world history, living creatures returned safely to

Earth after completing a space trip. In the Soviet Union the life of a man

is valued above all else; consequently, one successful trip with livingcrea-

tures was insufficient proof for a manned orbital flight. Therefore, on

1 December 1960, a third spaceship weighing 4563kgs was launched. With-

in the capsule were the dogs Pchelka and Mushka and other animals. The

spaceship's booster-rocket was not included in the above weight. More

work was carried out on the spaceship's systems and also on the medico-

biological data collected from observations of the animals.

Two months after the third spaceship had been fired, on 4 February 1961,

the heavy artificial Earth satellite (AES) was launched. All the satellite's

controls functioned normally, both during the ascent and during its orbital

flight. The weight of the (AES) was 6483 kgs without the booster rocket.

The next stage was to check the course of the interplanetary flight, the

launching, the radio communications and the controls of the cosmic sta-

tion. Thus on 12 February 1961 a guided space rocket was fired from the

heavy Earth satellite. The space rocket then placed the automatic inter-

planetary station on a trajectory to Venus. The weight of the automatic in-

terplanetary station (AIS) was 643.5 kgs. Gradually, the components were

developed, information from space was analyzed, and the performance of

the rocket-assembly system was checked.

In the conclusive stages of construction of the spaceship, March 1961

was the most decisive month. The fourth and fifth spaceships, were fired

on 9 and 25 March 1961 respectively. The fourth spaceship weighed4700kg

without the booster rocket, and carried the dog Chermushka. The fifth

space ship weighed 4695kgs, and carried the dog Zvezdochka. In both

cases all the equipment within the satellites worked normally, and Cher-

nushka and Zvezdochka descended within the required areas of the USSR;

both animals were fit.

At 0907 hours (Moscow time) 1961 the great event took place: Yuri

Alekseevich Gagarin, a Soviet pilot, orbited the Earth once, and landed

successfully within the USSR. This was man's first successful attempt at

orbital flight.
It was a triumph of man over nature, a great conquest of science and

technology, and a victory of the human mind. It was the beginning of man's

flight into space.

The second Soviet cosmonaut German Stepanovieh Titov was launched in

the "Vostok 2" on 6 August 1961. The "Vostok 2" orbited the Earth seven-

teen times, spending over 25 hours in space.

A period of three and a half years elapsed between the launching of the

first satellite and man's first orbital flight. It was during those years that



a gigantic task was accomplished on the way to man's mastery of space.

The following paragraphs will answer the questions as to where these un-

interrupted space flights had their beginnings, and who started this move-

ment in the USSR.

The history of rocketry in the USSR is an interesting narrative of rock-

et-technology enthusiasts, of selfless and strong-willed people, manfully

laboring and laying the foundations for today's space flights. We dedicate

this book to Fridrikh Arturovich Tsander, an important Soviet scientist

and research-worker and a talented engineer, whose whole life was devoted

to the development of interplanetary flight. Tsander was a close friend

and follower of Konstantin Eduardovich Tsiolkovskii.

In the history of science the names of Fridrikh Arturovich Tsander and

Konstantin Eduardovich Tsiolkovskii will remain connected with Soviet

rocket technology.

Tsander's father, a medical doctor and a lover of natural science, was

employed at the Zoological Museum in Riga. Tsander was born there on

Ii August 1887. His life was many-sided and academic; he was humble,

shy, affable, kind and richly-endowed*.

Fridrikh's mother died when the boy was two years old. The family had

five children, three boys and two girls. Fridrikh was an extremely sen-

sitive child. Frequent visits to the Museum, stories related by his father

about other planets which could be inhabited by unknown creatures and the

first flights of Lilienthal awoke in Tsander during his childhood the urge...

"to try and succeed in reaching other planets. This thought, later, never

left me", wrote Tsander in his autobiography.

He had an uneventful childhood and began his studies at the Riga High

School from which he graduated in 1905 at the top of his class. During his

last year at school the astronomy teacher introduced his pupils to the

article by K.E. Tsiolkovskii"Space Research with the Aid of Jet Propul-

sion Machines" (Issledovanie mirovykh prostranstv reaktivnymi priborami)

written in 1903. This article created a great impression on the young

dreamer. Thinking of distant worlds and endless space, he dreamed of

using the wealth of the universe for the good of mankind. This idea was

the source of his inexhaustible and endless enthusiasm throughout his life.

Tsander knew that only science could help him realize his dream of in-

terplanetary flight. Consequently in 1907 when he enrolled in the mechan-

ical department of the Riga Polytechnic Institute, he displayed the same

interest and zest for his studies as he had previously when attending High

School.

In 1908, Tsander as a student, invested his first savings in a small tel-

escope, 1.5m ]ongand 4inches in diameter, and carried out observations

of the Moon and planets,

Observations alone did not satisfy Tsander, as already then he conceived

the idea of organizing a group or a society dedicated to the problems of in-

terplanetary flight. He spoke to the students of the necessity of research

* Biographical and other data about Tsander were taken from his autobiography written on 12 March 1927,

from the synopsis of his popular science essay "Flights to other Planets and the Moon" (Polety na drugie

planet 3, i na lunu), 2 August 1925, and are also based on additional information from Tsander's archives.

It was compiled for the contemplated edition of this book.
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in the field of interplanetary flight. Having roused the interest of his com-

rades, Tsander, together with other students, addressed the following re-

quest to "His Excellency, the Director of the Riga Polytechnic Institute":*

"Herewith is the project for the First Riga Students' Society of Air

Travel and Flight Technology, and a list of those willing to organize this

Society. We are honored to ask Your Excellency to place this petition for

the introduction of this Society before the Committee of the Riga Polytech-

nic Institute." This request was discussed later by the educational corn-

mittee, and on 8 April 1909 the statutes of the Society were confirmed.

¢

Tsander as a student- 190_

This was one of the first students' aeronautical societies, and therefore

its statutes are of particular interest. The full text and the facsimile

of the first page follows.

* The copy has been taken from the original preserved in the Riga archives.



Approved by the session of the Educational
Committee on 8 April 1909.

Director: Prof. Dr. V. F, Knirim
Secretary: Pro/. g. Vod_inskii

STATUTE

FIRST STUDENTS' SOCIETY OF AIR TRAVEL AND FLIGHT

TECHNOLOGY AT THE RIGA POLYTECHNIC INSTITUTE

I. AIM AND PURPOSE OF THE SOCIETY

§ 1. To develop knowledge in the field of theoretical and practical aero-

nautics.

§ 2, To remain purely a student body and not to participate in politics.

II. SOCIETY ACTIVITIES

§ 3. The activities of the Society consist of:

a) The theoretical section, i.e., the reading of papers, scientific

discussions and other preliminary work.

b) On the practical side: the building of airplanes, flying projec-

tiles, other related machines and their preliminary testing.

I[I, SOCIETY MEMBERSHIP

§ 4. Membership is open to all students of the Riga Polytechnic In-

stitute who own a legitimate student's card for the current half-

year. The candidate must, however, receive a two-thirds majority

in a secret ballot. Should admission be refused, n_ reasons are

given.

§ 5. Honorary members of the Society may be only those who have pre-

viously held membership in the First Students Society of Air

Travel and Flight Technology, and who have made important con-

tributions to the Society or to air travel. They enjoy full member-

ship rights but cannot have tl_e deciding vote.

6. Members may be expelled for unseemly behavior, failure to pay

membership dues and insubordination to other Society rules. Mem-

bets are expelled by majority vote. Those expelled may reapply

for membership on the same basis as any new member.

§ 7. Every member has a right to vote at meetings and all members are

permitted to enter the workshops and participate actively or pas-

sively in the work.

§ 8. Members must pay monthly fees in accordance with the decisions

of the general assembly. New members are liable to entrance fees

which are also set at the general meeting.

§ 9. Entrance fees are paid on the first of every month except during

holidays; these are determined at a meeting.



iV. DISTRIBUTION 0]: DUTI]_S

§ I0. Elections are held biannually at the General Meeting for:

a) the Presidium;

b) the Officers;

c) the Technical Committee.

a) The Presidium is the body responsible for the activities of the

Society before the Educational Committee of the R.P.I. and the

police. This body shall hand to the Director of the R.P.I. at the

beginning of every semester a list of Society members, members

of the Presidium, and the Society's address.

The Presidium is composed of:

I) The President of the Society who is the official representative

of the Society in all business', he also presides at all meetings.

2) The Vice President who helps the President in his duties and

is his deputy.

3) The Secretary who is in charge of the Society's protocols and

all the correspondence.

b) The Officers responsible to the General Meeting:

i) Librarian;

2) Cashier controlled by the Presidium.

c) The Technical Committee is responsible to the General Meeting.

This Committee in turn chooses the technical representative. All

flight experiments are made under the supervision of the technical

representative or of his assistant.

Not e. The Society is not responsible for any mishaps to its members. Under special circumstances

a meeting may be convened and may decide to aid the victim financially according to available means,

if approached by said victim.

V. MEETINGS

§ 11. Meetings will be held outside the R. P. I. , and are divided into

three categories:

a) General Meeting;

b) Extraordinary Meeting;

c) Regular Meeting.

All meetings are convened by the Presidium. All meetings of a higher order

include the rights of the lower ones with the exception of conditions under which

the meeting may be convened and under which it can make decisions.

a) The General Meeting is convened at the beginning anti at the end of

every semester. All current members must attend, and should have

one week's notice and the agenda. The General Meeting chooses the

new Presidium, receives the Cashier's report, decides on questions

of payment of fees, and inspects the activities of the functionaries.

It requires a quorum of three-quarters of the members and may

make decisions with a two-thirds majority.



Note. If owing to the absence of the necessary number of members the meeting does not take placej

the Presidium has the right at some future time to convene a postponed General /Veeting. It does not

require a quorum, and carries out decisions in a similar manner to an Extraordinary Meeting. It is com-

pulsory for all members.

b) An Extraordinary Meeting may be convened at any time. All mem-

bers should be informed of the agenda not later than three days be-

fore the meeting. It may accept new members whose names must

be handed in to the Presidium. It may expel members and may

make decisions on important affairs of the Society, financial and

otherwise. A quorum of two-thirds of the members is necessary,

and requires a two-thirds majority of all present.

c) The Regular Meeting takes place at least once every two weeks,

and all members of the Society must be informed one day in ad-

vance. It may make use of the workshop and the office. It may

decide, and pass judgement, on essays. It requires a 50% quorum,

and its decisions are carried out by a simple majority. In case of

a tie, the deciding vote is cast by the President.

VI. SOCIETY RESOURCES

§ 12. The resources for the Society's organization are:

1) Monthly dues determined at the General Meeting (see § 8).

2) Entrance fees set at the General Meeting.

3) Voluntary contributions.

4) Charity.

5) Fines for breaking any of the Society's laws.

Note. Money is not returnable

VII. EXPENDITURE

§ 13. Expenditure is permissable for ends not opposed to those of the

Society, i.e. ,

1) To cover building costs, rent and purchase of equipment;

2) To cover office expenses;

3) To cover library costs;

4) Any other expenses approved at a General Meeting.



Vlll. LIQUIDATION OF THE SOCIETY

§ 14. Should the number of members be fewer than eight, the Society

will be dissolved. The disposition of property is to be decided by
the last General Meeting.

IX. STATUTE CHANGE

§ 15. Any changes in the statutes may be introduced only during a Gen-

eral Meeting. All changes must be approved by the Educational

Committee of the R.P.I., before they may be enforced.*

In 1908 Tsander began work on various problems of interplanetary com-
munications. He made several calculations connected with the problem of

gas escaping from containers, and studied the possibilities of overcoming

the force of gravity and acquainted himself with various other problems.
The .opposition of Mars on 24 September 1909 at a minimum distance of

56 million kms (maximum distance 400 million kms) was of particular in-

terest to Tsander and other young enthusiasts of the Society. The same

year, they began the construction of a glider, but as Tsander wrote in his

autobiography, the Society never progressed further than the initial stage.

Glider built in 1909, To the left - Tsander

* Unfortunately, no evidence is available of the activities of the First Riga Students' Societ) of Air Travel

and Flight Technology.
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In 1914 Tsander received an honors degree in "Technological Engi-

neering" from the Riga Polytechnic Institute. The Institute had a wide cur-

riculum, and the knowledge acquired was of great value in Tsander's sub-

sequent scientific and engineering work. He was the first engineer in our

country to devote himself to the practical solution of problems connected

with interplanetary flight and rocket technology. "Flight to Mars" was his

slogan throughout life.

The purely scientific study, and the first fundamental theoretical works

in the field of interplanetary flight belong to K.E. Tsiolkovskii who showed

a great perspective in rocket technology and in the realization of space

flight. The preliminary technicalwork

on rockets in the USSR, and the crea-

tive theoretical research which made

possible the charting of paths for in-

terplanetary flights, belong to Tsander.

F.A. Tsander's obituary in the

newspaper "Tekhnika" on 30 March 1933

read as follows: "To him belongs a

series of theoretical works containing

the world's only calculations in the

field of jet propulsion from which he

created his own school of theory and

jet engine construction. "

Throughout his life he worked in-

tensively in the field of theoretical in-

terplanetary flights, and as a result

he developed a new thermal cycle for

rocket engines. He was the first to

propose the use of metals, including

components of the spaceship itself, as

fuel for propulsion. He made this
Tsander in 1913

public for the first time in December

1923 during a lecture to the theoretical

section of the Moscow Society of Astronomic Amateurs, and also in the

Journal: '*Tekhnika i Zhizn", No. 13. July 1924. Discussing his project

for the construction of a spaceship, he pointed to the possibility of using

solid structural materials as rocket fuel. Tsander first mentioned this in

a series of lectures in several towns in the years 1924 to 1925.

In the years prior to 1927, Tsander wrote the theoretical work "The Use

of Metal Fuel in Rocket Engines" (Primenenie metallicheskogo topliva v

raketnykh dvigazvaniem); however, it was published only in 1936, in the

Journal: "I-laketnaya Tekhnika", No. 1. In 1937, his second article: "Prob-

lerrls in the Construction of a Rocket Using Metallic Fuel" (Voprosy

konstruirovaniya rakety ispol'zuyushchei metallicheskoe toplivo) was pub-

lished in the Journal: Raketnaya Tekhnika, No. 5.

Two of his articles, under the heading "Thermal Estimates of a Liquid

Rocket Engine" (Teplovoi raschet raketnogo dvigatelya na zhidkon top]ive),

are of particular interest. They present for the first time estimates of the

combustion chamber wall temperature, and of the chamber's capacity re-

quired for full and effective combustion of all fuel components. In addition

to a series of theoretical deductions it contains estimates of heat transmission

10
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indicating the possibility of an all-metal rocket engine without the use of

ceramics; it also gives rocket engine estimates from entropy diagrams.

On 16 February 1926, at the "Motor" factory imeni M.V. Frunze,

Tsander demonstrated with the help of diagrams the engine he proposed

to use for launching a spaceship* ; he spent much time over the construe-

tion of aircraft engines too. In one case he considered the use of a high-

pressure piston engine without carburetor running on liquid oxygen and

gasoline fed into the cylinders by pumps. The above high-pressure piston

engine was to serve as a spaceship launcher.

At the same time, Tsander worked out important problems of astro-

nautics, some of which still exist today. In papers on interplanetary travel

Tsander discussed the problem of choosing interplanetary trajectories for

maximum fuel conservation. He determined the launching time and the

time spent on the journey and discussed trajectory corrections of inter-

planetary rockets to guarantee safe landing on the planet. He gave, in par-

ticular, a detailed trajectory description of the flight to Mars.

The idea of orbiting the Moon or other planets in order to accelerate or

decelerate the spaceship, was put forward by Tsander in 1924. He also

developed a method for calculating the acceleration**.

He also devised a method for calculating a spaceship's orbit, based on

the determination of the planet's angular distance from some fixed direction

in space, and its angular diameter.

In the years 1920-1930 several authors devoted their books to the re-

search in interplanetary trajectories, yet not a single one touched on the

question of corrected trajectories of the spaceships and the disturbance of

the heliocentric orbit of the rocket by pIanets 9r satellites.

Tsander paid particular attention to the return of the spaceship to Earth.

His paper "Calculations of Space-Vehicle Flight in the Earth's Atmosphere"

(Raschet poleta mezhplanetnogo korablya v atmosfere Zemli), considered

the ballistic and aerodynamic problems of ascent and descent from space

to Earth. He set forth the idea of a gliding descent from space with decet-

eration within the Earth's atmosphere; this idea is integrated into his pro-

ject for a spaceship. In 1920 he discussed the above project in a lecture,

and in 1924 he pubrished an article in the Journal: "Tekhnika iZhizn'",

No. 13.

Tsander showed an acute awareness of the problems of interplanetary

flight. In particular he realized that the return journey to Earth demanded

the solution of complicated scientific problems, one of which is the protec-

tion of the spaceship from the heat generated by friction, when traveling at

supersonic speeds within the Earth's atmosphere. In his paper "Space

Vehicle Temperature on Re-entry into the Earth's Atmosphere" (O tem-

perature, kotoruyu primer mezhplanetnyi korabl'pri planiruyushchem

spuske na Zemlya}one method of coping with the aerodynamic heat of the

spaceship is discussed. In 1925 Tsander suggested the use of static

'_ The manuscript of this lecture is in Tsander's personal archives.

** Problems connected with acceleration when orbiting the Moon were investigated by V. A. Egorov in 1957;

Egorov's method of approximation is very closely related to Tsander's. {Egorov, V.A. O nekotorykh

zadachakh dinamiki poleta k Lune (Some Problems of the Dynamics of Flight to the Moon)}, -Uspckhi fizi-

che_ikh nauk, Vol. 13, No. la. I957. [English translation published byIsrael Program for Scientific

Trandations. IPSTCat. No. 112. 1961.]}
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electricity for the deflection of meteors from the spaceship thus avoiding

any possible collisions*.

Time and again in his works Tsander proved himself to be one of the founders

of applied space technology i.e., the study of rockel movement in space.

He never overlooked any of the practical problems of interplanetary travel,

paying particular attention to the life and diet of the future cosmonauts. In

1915 Tsander began a series of experiments, which lasted a number of

years, on the construction of a lightweight hothouse supplying fresh vege-

tables, and absorbing the carbon dioxide exhaled by the astronauts; he cul-

tivated beans and cabbage in flower pots filled with crushed charcoal. Thus

patiently and painstakingly he achieved success.

In his autobiography compiled on 12 March 1927, he wrote: "To the best

of my knowledge, I am the originator of the following**:

1. Supplying the rocket with wings for flight within the atmosphere and

for attaining a cosmic speed of 8kms per second in its upper layers; also

a gliding descent to Earth and other planets possessing an atmosphere.

2. Equipping the rocket with airplane engines***, for flight in the lower

layers of the atmosphere where the rocket efficiency is very small owing

to the slow speed. The engines should be of a special type preferably work-

ing for about half an hour without danger of failure.

3. Proposals for the simultaneous combustion of rocket propellants

yielding both solid and gaseous combustion products. We may use (par-

ticulary as the method proposed by others of inserting one rocket inside the

other demands enormous weights and is therefore not economical, and be-

cause of insufficient study of booster -rocket construction, it is more danger -

ous than my method of flight with the aid of an airplane) parts of the space-

ship as rocket fuel, i.e., rods etc., made from various alloys of alumi-

num, magnesium, lithium, etc. When the spaceship becomes lighter due

to fuel combustion, these parts become unnecessary and may therefore them -

selves be used as fuel. The main advantage is that we may build reliable

spaceships and still be able to carry enough fuel.

4. A proposal for the use of an arrangement of rockets with convex

mirrors to concentrate sunlight within the spaceship in order to increase

the speed of the escaping gases thereby increasing the speed of the rocket

for flights in space.

5. The use of coils carrying an electric current; the pressure of the

Sun's rays on a cloud of iron dust held within the coil by electromagnetic

forces, produces a thrust on the spaceship traveling through space. The

advantage is that meteors passing through the cloud cause practically no

interference with the flight.

6. A proposal for the concentration of the Sun's rays with the help of a

system of huge convex and concave mirrors in parallel clusters, as in

No.4, for the sole purpose of attaining great speeds for flights to other

solar systems (this is the only feasible method which even today may re-

alize the hope for trave] to ot_her solar systems).

* Tsander wrote all his works in shorthand which he later decoded. Therefore we consider 1925 as the date

when he decoded this article.

** Typed strictly in accordance with Tsander'smanuscript.

*** Piston engines are implied.
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7. The use of a sphere made of extremely thin metal plates, electri-

fied by a charge from Earth, and pushing itself away through electrostatic

forces for space flights. This is possible only if the Earth contains a
charge. -'_':_' _,_ :%_'_

8. A proposal for flight around planets, in their atmospheres, or out of

them, in order to increase the speed of flight (thus gaining energy during
interplanetary flights). A further proposal to accelerate the spaceship at

the point of the trajectory ychile its velocity is the highest (for the same
purpose).

9. A proposal for the deflection of meteors by using static electricity

emitted against them in the form of cathode rays. The rays emitted by the
spaceship are also placed within an electrified sphere.

I have another series of suggestions connected with the construction of

the spaceship and its components. I also have other unfinished proposals."
After his graduation from the Institute, Tsander worked at the rubber

plant "Provodnik"; here he familiarized himself with the rubber industry,

for rubber could be used as insulating material in the vacuum of space. In

1915, during World War I, the factory was moved to Moscow, and when the

factory closed down in 1917, Tsander devoted himself to the theoretical

calculations ef interplanetary flight. In the initial stages he worked from

estimates of an airplane flying at high altitudes in the Earth's atmosphere

by means of a propeller-driven engine; later, attaching a rocket to the en-

gine, he made calculations connected with interplanetary travel.

In February 1919, he started work at the aviation factory No. 4 "Motor"

in order to realize his plans for interplanetary flight. He devoted all his

spare time to the construction of an airplane fitted with an engine which

would enable it to fly out of the Earth's atmosphere. He also spent much

of his time on the problem of cosmic speed.

In 1920 he made a detailed speech about his spaceship at the Pro-

vincial conference of inventors in Moscow. V.I. Lenin was present and

promised to help the scientist. Although Tsander described his meeting

with Lenin modestly and briefly, he remembered it throughout his lifetime.

This is what he told me when we were working together in the years
1932-1933: "Before the lecture I was informed that Lenin would be in the

audience. This upset me and I became nervous. However, noticing later
how intently Lenin was listening to my speech, I calmed down and lectured

with enthusiasm on the construction of my spaceship, on the possibility of

man's flight to other planets, introducing my calculations. After the speech

I was invited to meet Lenin; this made me confused. Lenin was greatly in-
terested in my work and my plans for the future; he spoke with such sim-

plicity and cordiality that I am afraid I took advantage of his time by re-

lating to him in great detail my work and my determination to build a rocket
spaceship.

"I also told Lenin that I was working on the problems of man's flight to

Mars: the construction of a suitable spaceship, which method to devise in

order to assist man to overcome acceleration, and also the questions of

suitable clothing and diet.

"Lenin asked me: 'Will you be the first to fly?' I answered that I had to

set an example, and that I never thought possible to do otherwise. I was

sure that others would subsequently fly after me. At the end of our con-

versation, Lenin shook my hand strongly, wished me success in my work,
and promised support.

15



"Leninmadeatremendousimpressiononme: thatnightI couldnotsleep.
Pacingupanddownin my smallroom,I thoughtof thegreatnessof this
man- our country is ravaged by war, there is a lack of bread, of coal, and

the factories are at a standstill, but this man who controls this huge country

finds time to listen to space flights. It means my wishes will come true, I

thought ' _.

Having completed his story, Tsander stopped speaking and began to pace

the room excitedly; he was thinking, and one could feel him going through

his meeting with Lenin once again.

After his encounter with Lenin, Tsander devoted himself with renewed

energy to the construction of a spaceship.

In those days the Soviet'Union had not yet overcome the ravages of the

civil war, and it was impossible to apportion large sums for the purchase

of equipment and special materials needed for the solution of the rocket

problem; still the conditions contrasted greatly with those under which
Tsander worked before the revolution.

Before the revolution, Tsander as well as Tsiolkovskii were on their

own. Now Tsander felt the support of the Soviet society; this increased

his strength and greatly helped him in his work.

t?rom 15 June 1922 to 15 July 1923 Tsander devoted himself entirely to

the construction of his spaceship and consequently had to leave his work at

the _Motor r_ factory. The workers at the factory helped him a great deal

financially. In April 1923 during a speech at the factory, Tsander stated:

'_I hope sincerely that at a later stage, the possibility of handing over the

execution of my project to our factory will arise, "

We found notes of this speech in the archives. Reading the speech, it

was difficult to remain unaffected by this lucid mind and by the romantic

and great personality of this talented space flight enthusiast.

"Who knows? The inhabitants of other planets may be more intelligent

and better organized than the inhabitants of Earth. Their discoveries, in-
ventions and achievements could contribute much to man's welfare. Or if

we were to populate the other planets, it would be possible to extend man's

life to 100 or 120 years, i.

The theoretical calculations of this scientist-inventor are of particular

interest*:

J_My spaceship consists of an airplane fitted out with a high-pressure

aviation engine. The engine would use liquid oxygen, and gasoline or eth-

ylene or hydrogen, depending on which of these would be found more suitable

during experiments.

"This engine would start the propellers and the plane would leave Earth.

The speed would increase proportionally to the height. At a height of 28 kms

the aviation engine would be cut out and the rocket engine would take over

with a force of 1500kgs. Then, with the aid of a special mechanism, we

would transfer parts of the airplane to the boiler. We would then get liquid

aluminum, which combined with hydrogen and oxygen furnishes us with an

excellent fuel. The speed of flight would increase eonstantly as a result of

rocket engine thrust, also increasing the height. At approximately 85 kms

above the Earth the plane would have vanished. It would have melted in the

* St3'le changes have been made in the excerpts from the speech.
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boilerandthemoltenmetalwouldbeusedasfuelleavingonlytherocket
withsmallwingsandruddersandthemannedcabin.

"Fromthesecalculationswewouldhaveattainedsufficientspeedto leave
Earthandto fly overto otherplanets. Thespeednecessarybeforerota-
tionaroundtheEarthmaybeachievedshouldbe8km/sec. In orderto
leaveEarth andenter spacethe necessaryspeedwouldhaveto be
ll.3km/see, andin order to reachanotherptanet- Mars - 14km/secare
required. It is mucheasierto attainthesespeedsin spacethanit is with-
in theEarth'satmosphere.

Tsander in 1922

"In order to return to Earth, it is necessary to reverse the rocket motor,

thus slowing the flight speed. It is possible to achieve a gliding descent or

else to make use of a small engine _'.

Tsander has expressed his belief that _Thumanity will fly out of its child-

hood nest, into the huge world", and that "astronomy as no other science

beckons humanity to unite for a longer and happier life _.
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On20January1924helecturedat thetheoreticalsectionof theMoscow
Societyof AmateurAstronomers. In hispersonalarchiveswehavefound
ther6sum_of theabovelecture.

Thesedocumentsareof greatinterestandshowthewidescopeof prob-
lemshetoucheduponwhenworkingtowardsthesolutionof problemsof in-
terplanetarytravel, 35yearsago. Thecompleter6sum_follows.

RI_SUMI_ OF TSANDER'$ SPEECH*

This speech about his spaceship and flights to other planets

was read before the theoretical section of the Moscow Soot°

e W of Amateur Astronomers on 20 January 1924.

At the beginning Tsander read the article entitled "Flights to Other

Planets" (Perelety na drugie planety) which he wrote for the magazine

' ' Sam olet' '.

In this article he put forward a series of proposals constituting a new

method for interplanetary travel: a combination of airplane and rocket,

and the use of solid components of the ship's structure as fuel. He ex-

plained his sketch of such a spaceship and demonstrated the advantages of

this method of flight as compared to that of rockets: the rockets are smal-

ler, the material stress is lessened, experimental flights are easy, the

acceleration is low, and a gliding descent is feasible.

He then gave an estimate of the rocket performance and of the deter-

mination of temperature, pressure, velocities and the rocket's internal

friction**; he presented diagrams of these values and efficiency formulas

characterizing the transfer of energy during flight. He showed that the

ratio of the outflow velocity to the maximum velocity attainable was approx-

imately 0.8; the percentage loss resulting from the friction of gases against
the rocket walls was rather small.

He then moved on to estimates of velocity, time and flight altitude, and

discussed the influence of friction and the lifting-performance; these val-

ues were shown on a diagram as functions of the rocket's decreasing

weight. A table of mean flight efficiency was shown, and an area where a

test of flight without oxygen is desirable, was pointed out.

The efficiency of certain metals and their rate of discharge when used

as fuel were discussed. In the second part of his speech, he presented

briefly his estimates of the minimum and total additional velocities re-

quired by the spaceship to overcome gravity and to reach the closest and

more distant planets. It was proved that this additional energy is unim-

portant for reaching the planets Mars and Venus, and that in the instance

of other planets this small additional energy would suffice when orbiting

Mars and Venus in the upper layers of their atmospheres. The speech in-

cluded formulas and tables shown with the aid of a slide-projector. To-

wards the end a recent book by Obert was shown, and in addition the results

of experiments by Professor Goddard on the escape velocities of gases were

* The r_sum_ is printed strictly in accordance with the original without any stylistic corrections.

** P,eferenee being made to a rocket engine.

18



given*, confirming the estimates reported in the relevant part of the

speech. "

In his summary of the speech,** Tsander puts forth once again his idea

of the possibility of using mirrors and screens instead of rocket engines

during flight in space.

At this meeting, the section upheld a proposal by Tsander to organize

within the USSR a "Society for the Study of Interplanetary Travel", and

within a short while it was created. F.E. Dzer_hinskii, [Dzier_ynski],

K.E. Tsiolkovskii, Ya.l. Perel'man et al., were honorary members of

this society. The chairman of the society was the pamphleteer G.M.

Kramarov. This society existed for almost a year, and Tsander played

a very active part in it.***

Eager to see as early a start as possible on work related to the various

practical problems of spaceships, Tsander proposed, on 15 July 1924 in a

speech before the society's research section, to organize the section's

activities under the following divisions:

i. theoretical research;

2. construction work;

3. production and laboratory work.

He recommended the following plan****:

i. Testing small rockets powered by different fuels.

2. Testing rockets inserted one into another.

3. Constructing and testing folding and nonfolding aircraft models of

various types, propelled by rockets and engines or by rockets only.

4. Testing high-acceleration effects in specially-constructed centri-

fugal machines.

5. Constructing and testing engines running on liquid oxygen or by

means of solar energy.

6. Testing diving suits and safety devices for high-altitude flights.

7. Testing an apparatus for regenerating the exhaled air.

8. Investigating lightweight hothouses.

9. Testing, with the aid of a wind tunnel consisting of two rockets

joined together at their wide section, parts of spaceships under the effect

of low pressure and high velocities, determining resistancej lift, and

heating.

i0. Investigating the upper atmosphere by rockets, free and sounding

balloons, and photometric observations of twilight.

II. Testing very thin sheets for screens.

12. Testing coils carrying an electric current and enclosing iron filings.

In 1924 a report was received that on 4 August of that year, Professor

Goddard in America had sent a missile to the Moon*****. A debate on

this news was arranged by the Society for the Study of Interplanetary Travel,

and was scheduled to take place on 1October 1924 in the large auditorium of

the Physical Institute of the First University (in the MGU Building on

Mokhovaya Street). Tsander later reminisced that the number of people

* The speed of gas ejected from rocket engines is considered. - Editor's note.

** The summary may be found in Appendix 1 to this collection.

*** Material on the work of this society was recently discovered, and will be prepared for publication.

*_* In abridged form. For the full plan, see Appendix 2.

***** It was learned later that this was a false report.
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whocameto hearthe_'truth" aboutProfessorGoddard'sdispatchof a
missile to theMoonwassogreatthat they could not all be accomodated;

the horse militia had to be called out to keep order, and the debate had to

be repeated twice more - on 4 and 5 October.

Participating in the debate, Tsander stated that he had constructed a

spaceship which consisted of two aircrafts with a jet engine. He discussed

the spaceship's capabilities in take-off and gliding re-entry, its flight

safety, and the possibility of starting and shutting off the jet engine at

will. He also prescnted his ideas on the creation of interplanetary sta-

tions, which could receive spaceships from Earth and dispatch them for

further flights or back to Earth; he then went on to speak of flights to Mars

and Venus. He pointed out that three kinds of engines could be employed

for distant interplanetary travel:

a) metal-fueled jet engines;

b) mirrors utilizing solar energy;

c) coils containing electrified iron filings.

Tsander also spoke about lightweight (from the point of view of avia-

tion) hothouses which could supply fresh vegetables on cosmic flights. In

addition, he explained the significance of interplanetary flights for science,

particularly for astronomy. His talk was illustrated by slides. Finally,

he discussed the aims of the Society for the Study of Interplanetary Travel.

Tsander remained an indefatigable promoter of the idea of interplanetary

travel throughout his life, and strove to attract as many people as possible

to developing this field. In this he was successful. He made speeches in

Moscow, Leningrad (here the famous astronomer, Professor C.P. Glazenap

presided), Kharkov, Saratov, Tula, Ryazan, and other cities.

In 1924 Tsander began to write actively for publication, and his first

article, "Flights to Other Planets" (somewhat abridged) appeared in the

July 1924 issue of the Journal "Tekhnika i Zhizn' "

At the beginning of this article, Tsander wrote:

'_As I arn interested in mathematical and structural investigations re-

lated to interplanetary travel, I have for some years been doing some com-

putations and have come to the conclusion that flights to other plan-

ets will become feasible, in all probability, within the

next few years".

This article contained the first formulation of the idea of utilizing parts

of a rocket spaceship as fuel. It should be noted that this idea had already

been mentioned in a manuscript dated 11 March 1909, and that in 1917

Tsander designed and had constructed a crucible for use in experiments

in burning molten metal. Thus, it is Tsander who must be

credited with the concept of using metal as fuel.

The idea of using separate parts of a rocket ship as a form of fuel was

one which Tsander persistently strove to realize throughout his life. The

first rocket he constructed to run on liquid fuel, in 1932, was originally de-

signed also to run on metal fuel.

In 1924 he also wrote an article entitled, "Description of Tsander's

Spaceship" (Opisanie mezhplanetnogo korablya sistemy F.A. Tsandera);

on 8 April of that year Tsander sent it to the Committee on Inventions, as

a statement. The statement was not published until 1937, when it was
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included in the Journal "Raketnaya Tekhnika" No. 5, in slightly abridged

form*.

In this article Tsander developed further the idea of using metallic fuel.

He considered that several parts of a spaceship should be made of various

materials such as aluminum, magnesium, and various plastic substances,

that give great heat when burned in rocket engines. As the spaceship as-
cended, these parts (tanks, wings, etc.,)wouldbecomesuperfluous. Theidea

was that they should be retracted by a special device into a special com-

partment of the spaceship, ground, transferred to aboiler, melted, and

fed in molten form to the jet engine as fuel.

The above-mentioned papers also dealt with a number of problems re-

lated to the practical realization of interplanetary flights. Tsander's idea

of using wings on spaceships is presented for the first time, and the supe-

riority of wings over parachutes, for descent to Earth or to other planets

possessing an atmosphere, is established. He also mentions the superi-

ority of winged rockets over wingless types for ascent in the Earth's at-

mosphere or in that of some other planet. Tsander's idea was that awinged

cosmic rocket should have a compound engine consisting of a piston engine

with propellers, or a jet engine for flight in the atmosphere, and a rocket

engine.for use beyond its limits.

The article also contained a description of the construction of a space-

ship, which represented a combination of two aircraft, the one large, the

other small with the latter mounted inside the former. The body of the

rocket serves both aircraft, while the wings, tail fins, and propeller en-

gine belonging to the larger aircraft are of foldable construction, so that

in flights in outer space they might be used as fuel. For such flights, the

length of the rocket's body is similarly reduced so that at the end of the

flight, before re-entry into the atmosphere, we are left with the smaller

aircraft only, which can glide easily to Earth.

According to Tsander's calculations, the use of wings would allow a 15-

to 20-fold reduction in the weight of the rocket; it would reduce sharply the

dangers connected with re-entry from outer space, and would free the crew

from the effects of high acceleration, etc.

A model of Tsander's spaceship was shown at the interplanetary flight
exhibition held in Moscow in 1927.

In 1924 Tsander conceived the idea of bringing out a popular-science

book on "Flights to Other Planets and the Moon" (Polety na drugie planety

ina Lunu). In the book's preface, he states:

f'The idea of producing a popular-science book on flights to other plan-

ets came to me when, at the invitation of the Art-Lectures Bureau of the

Political Directorate of the Leningrad Military District, I began giving lec-

tures on the theme of flights to other worlds. At one of these lectures a

representative of the Ryazan Provincial Administration of Literature and

Publishing Houses proposed that I write a book on this theme.

"The main purpose of this book should be: 1) to acquaint a wide group

of readers with the achievements, to date, of a theoretical and practical

characters implying the great probability that interplanetary travel will be-

come a reality in the near future; and 2) to prepare scientific workers by

:# See below, "Description of Tsander_s spaceship" (Opisanie rnezhplanetnogo korablya sistemy F, A. Tsandera L
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Tsander's corner at the interplanetary flight exhibition held in Moscow in 1927
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transmitting to them, in the form of a survey, several results of my com-

putations. My scientific works will be published somewhat later."

He stated further: _."I have in draft form a total o_ approximately 650

large-format page_-s _fvarious scientific and technical"co_rnputations in the

field concerned; all this material is written in shorthand, whereby it is

contracted four- or five-fold. In addition, there are 27 structural sketches.

"[ will give the results of my scientific investigations the utmost atten-

tion. I hope that the thoughts I have expressed will attract to this sphere

new investigators and engineers.

"This is avast and rich field but man has as yet scarcely touched it by

means of scientific investigations and technically developed constructions

and experiments. "

In 1926 Tsander proposed to publish a book on "Flights to Other Planets;

the First Step into the Vast Universe (Theory of Interplanetary Flight)"

(Perilety na drugie planety', pervyi shag b neob' yatnoe mirovoe prostrans-

tvo; teoriya mezhplanetnykh soobshchenii). A ten-page list of the sub-

divisions of this book was found in Tsander's archives. The main sub-

divisions were the followingS:

I. Preface. The investigator's and inventor's path.

II. Introduction. Subject of the book. Outline of the problem.

Ill. Calculations for the design of rockets for spaceships.

IV. Theory of interplanetary flight.

V. Calculations for rocket flights through outer space around a large

part of the terrestrial globe. Minimum velocities to be given to a rocket

to ensure a given range of flight. Numerical data.

VI. Calculations for flight in outer space with the aid of light pressure.

VII. Apparatus for the Conversion of solar rays into low-velocitycathode

rays. Flight with the aid of cathode-ray pressure.

VIII. Calculations of charged spheres repelled by the planets and the

Sun. Stresses in the material of these spheres. Repulsion and attraction

forces. Attainable velocities. Methods of charging the spheres.

IX. Design and calculation of a spaceship and of its engine.

X. Use of lightweight hothouses and the closed cycle necessary to sus--

tain life in airtight quarters in a spaceship, in an interplanetary stalion,

on the Moon, and on other planets possessing an atmosphere.

XI. Approximate outline of theoretical and experimental investigations

of materials and structures stuitable for interplanetary flight. Conditions

of life in interplanetary Space.

XII. Brief survey of results achieved.

XIII. Prospects for the future, i) The near future. 2) The distant

future.

Some of the author's calculations, namely:

l) On the advantage of accelerating flight by means of a rocket, when

the rocket-flight speed is high;

2) Calculations for the _esign of rockets for spaceships;

3) Flights to other planets;

4) Calculations for the flight of a spaceship in the atmosphere,

and several other computations were sent by Tsander to the Scientific

* A full list of subheadings will be found in Appendix 3 to this collection.
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CounciloftheNARKOMPROSof theRSFSRwhichon15October1926trans-
mitted the material, underfile No.141,938,to ProfessorV.P. Vetchinkin
for his conclusions.

On 8 February 1927 Vetchinkin addressed the following conclusions to The

Main Administration of Scientific Institutions:

"Tsander's calculations of interplanetary iravei and the des{gn of a

spaceship rank undoubtedly as foremost contributions to the literature

on this subject.

"K.E. Tsiolkovskiiwas the first scientist, as early as 24 years ago, to

point out that rockets were the only possible means of reaching outer space.

He also demonstrated the possibility of reaching, with their aid, cosmic

velocities of over llkm/sec, and the possibility of breaking out of the at-

mosphere employing only existing fuels. However, he provided no engineer-

ing solution to the problems of the rocket, and his proposed way of take-off

overcoming the force of gravity by a reaction force is not entirely sound.

"Foreign scientists - Esnaud-Pelterie, Goddard, Oberth, and Vallier -

followed the path of Tsiolkovskii, repeating his work and advancing it theo-

retically (Oberth) and experimentally (Goddard).

"An essentially new contribution to this difficult problem was made by

Tsander in his three proposals:

I. To provide the rocket with wings for flight in the atmosphere and

for gliding descent. This would make it possible to use a lighter rocket

using low acceleration (j<g/2}, in place of the high acceleration required

in Tsiolkovskii's method (]>3_), and to achieve considerable economy in

fuel, braking the rocket down to 8km/sec only and not to zero.

2. Flight with the aid of engines of a specially light type capable of only a half

hour's continuous operation in the atmosphere's lower layers, where the

rocket's efficiency is negligible and resumption of rocket flight occurs only

after reaching rarefied air layers.

3. The use of solid fuel in the form of unnecessary ccmponents of the

rocket itself as a supplement to ordinary fuel in order to raise the com-

bustion Iempe_'ature.

_'In addition, he engaged in flight and descent calculations and in work

on fundamental engineering problems, e.g., calculations on the design of

the nozzle and its cooling system, which appears to be the chief obstacle

in rocket flight.

"Unfortunately Tsander only delivered his reports orally but did not

publish them. ]%ieanwhile, W. Hohman published in 1925 a study in which

he, too, proposed flight with the aid of wings and gliding descent. Possibly,

Tsander's work, and his reports on it in the winter of 1924-25, influenced

the appearance of this study.

"Thus, due to the lack of a possibility of publishing our work, we lose

the credit for discoveries even in those instances where it undoubtedly be-

longs to the USSR.

"In the light of the above considerations, Iconsider it entirely essential

that Tsander be given the possibility, as soon as possible, to prepare for

publication, and to have published the works whose several headings he

presented to Glavnauka.

8 February 1927. V. Vetchinkin."
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Several days after the submission of this evaluation, Tsander presented

to the Science Department of Glavnauka a ten-page conspectus on the advice

of Professor Vetchinkin, and on 23 February 1927 he requested authoriza-

tion to receive, either from TsAGI or from Aviatrest facilities to work ex-

clusively in the field of interplanetary travel, or to receive permission to

prepare a book for publication on interplanetary travel and to submit reg-

ular reports on the progress of his investigations.

At the end of his application, he added: "Approximately 5000 to 6000

individuals are employed in the USSR in the aviation field. If an opportunity

is provided even to one person, for the time being, to work exclusively in

the field of high-altitude and high-velocily and interplanetary flights, this
research would constitute only 1/5000th of the effort devoted to the field of

conventional aviation which may be considered entirely permissable. "

After four months, Tsander received Glavnauka's response (letter dated

7July 1927, File No. 76,990), as follows: "It is not considered possible to

satisfy your petition for assistance in completing your work on interplan-

etary travel. "
Thus, Tsander's proposedbooks - "Flights to Other Planets and to the

Moon" and "Theory of Interplanetary Travel" - were not written at that

time.

In order to unify his work on the development of a spaceship, Tsander

joined, in October 1926, the staff of Aviatrest's Central Bureau of Con-

struction as a senior engineer.
On 30 November 1928, he presented a paper on "Preliminary Work on

the Construction of a Jet Propelled Machine" at the XVth session of the

Commission for Scientific Aeronautics of the Moscow Aeorological Obser-

vatory, held at the First Meteorological Observatory of the Moscow State

University. Tsander systematized all his reports with a view to writing a

book on rocket technology in the near future.

At the end of 1929, Aviatrest, where Tsander was [still] employed, re-

ceived an invitation from the Dutch Royal Club to participate in the Vth In-

ternationaI Congress on Air Travel, and to present a paper. Tsander,

among others, was asked to prepare a report for the Congress scheduled

to open on 1 September 1930 at The Hague.

This proposal appealed to Tsander. He postponed the preparation of his

book, and by 25 January 1930 he had already prepared a paper entitled,

"Problems of High-Altitude Flight. _let Engines Improved by Closed-Cycle

Operation. Preparatory Tasks for Interplanetary Travel" (Problemy

sverkhaviatsii. Reaktivnye dvigateli, uluchshennye rabochimi krugovymi

protsessami. Oeherednye zadachi po podgatovke k mezhplanetnym

put eshestviyam).

The paper was discussed at a technical meeting on 23 February 1930,

then underwent editing and revision, and, on 5 April 1930 was submitted to

Aviatrest under the title, "Problems of High-Altitude Flight and Prepar-

atory Tasks for Interplanetary Travel" (Problemy sverkhaviatsii i ocherednye

zadachi po podgotovke k mezhplanetnym puteshestviyam)*. For this paper,

* The original copy is dated 25 March 1930.
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based entirely on original material, Tsander utilized the results of past

years of work and the article, "Flight of Long-Distance Rockets Beyond

the Atmosphere" (Polet daleko letayushchikh raket vne a'tmosfery), which

he had wanted to publish in the Journal "Tekhnika Vozdushnogo Flota"_.

Six months later, by 6 May 1930, the paper had been translated into

French for sending to The Hague and had been inspected by Professor

Vetchinkin who evaluated it highly.

However, it was decided to send no one to the Vth International Congress

on Air Travel, for the reason that neither Aviatrest nor TsAGI were en-

gaged in any work on interplanetary travel.

It may be considered certain that when he wrote the paper for the Hague

Congress, Tsander knew only Tsiolkovskii's work and, of foreign literature,

only Oberth's book in its first edition. Furthermore, Tsander took a posi-

tion completely contrary to that of Oberth who opposed the use of rockets in

combination with aircraft.

Concerning the theme of his paper, Tsander stated, in a letter dated

6 February 1930: "Unfortunately, I have not had an opportunity to acquaint

myself with the newest German books (and books appearing recently in other

languages) in the field of interplanetary travel. "

After the decision not to send anyone to The Hague, Tsander wanted to

have the unrevised version of his paper published under its former title in

the Journal "Tekhnika Vozdushnogo Flota" °:"_,but later revised it and

changed the title to "Problems of Flight with Jet Propulsion Machines and

Problems of IIigh-Altitude Flight in General" (Problemy poleta pri po-

moshchi reaktivnykh apparatovi problemy sverkhaviatsii voobshche). This

was not completed until 20 July 1930. However, Tsander decided later

against publication in the form of a journal article and reverted to the plan

of publishinga book. He worked on the material once more and then com-

pleted the book. On receipt of consent for its publication, he submitted

part of the manuscript on 9 May 1931 and the remainder on 15 May 1931;

the book turned out to be twice the length of the paper.

The book came off the press in 1932 under the title, "Problems of Flight

with the Aid of Jet Propulsion Machines". It dealt in detail (for that time)

with problems of interplanetary flight.

Tsander states in the preface:

"...the purpose of the present book is to popularize the ideas of inter-

planetary travel. The author addresses himself to inventors in general,

students, engineers, and astronomers, with an appeal to work in this

field..."

It is to be noted that this was one of the first books ever to provide a

comprehensive discussion of flight with the aid of rocket engines - com-

prehensive not only from the theoretical point of view but also in its pres-

entation of the practical engineering aspects of the subject. One of the

special features of this book was the fact that the author did not confine

himself to an examination of the liquid jet engine, Which proves unsatis-

factory for use at low altitudes and velocities, but pointed out once more

* Tsander's letters of 3 December 1929 and 5 j'anuary 1930.
** Letter of 30 May 1930.
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the advantage of a jet or piston-type engine running on a mixture of pure

oxygen and gasoline, for use in ascent within the limits of the atmosphere.

In this book Tsander proposed to use a new kind of thermodynamic cycle

in order to increase the exhaust velocity; he also expounded the principles

of practical thermodynamic and thermal calculations for the liquid jet en-

gine. A considerable part of the book is devoted to questions of dynamics

and flight conditions for a w_nged rocket in the atmosphere and in outer

space, and also to determining the most advantageous trajectories for

spaceship flights. Several of the calculations are given in outline only, to-

gether with the final results.

In 1932 Tsander proposed publishing a book under the title, "Calculations

of Jet Engines and Their Combinations with Other Engines" (1Raschet reak-

tivnykh dvigatelei i ikh kombinatsii s dvigatelyami drugikh vidov), and

reached an agreement with the publishing house. Death, however, pre-

vented him from realizing this plan; after his death only the detailed table

of contents remained*. His more detailed calculations on the liquid jet

engine were published posthumously in 1936-1937, in the Journal "Raket-

naya tekhnika".

Simultaneously with the theoretical work on interplanetary flight with its

long-term aspects, Tsander tirelessly worked for the practical solution of

technological problems connected with the creation and testing of several

components of the rocket and with the design of a spaceship.

On 20 December 1930 he began working at the Central Institute for Air-

craft Motor-Construction, where he embarked on experiments with the

first jet engine, known as ER-I**, fueled by gasoline and gaseous air. It

is interesting to note that the E1R-1 engine contained all the basic elements

of present day liquid jet engines: a combustion chamber with a conical

nozzle which was cooled by components of the fuel mixture, a feed system

for the mixture components, electric ignition, etc.

At that time the testing station for rocket engines was only rudimentary

and had very limited material facilities. Consequently, the dimensions of

the (ER-I type) engine were very small by today's standards; total fuel and

oxidizer consumption per second was only 1.69g. At the same time the

diagram method of calculation and engine testing that Tsander worked out

is the same as that employed with modern liquid jet engines. As may be

seen from the calculations the thrust was determined by the formula

P = (too×+ m_u_l) _2,

and not by the formula corresponding to the jet engine

P = (mox + mpfue]) B_27- too×W0.

Subsequently, in developing the idea of using atmospheric air to improve

the thermodynamic cycle of the liquid jet engine, Tsander arrived at an

See Appendix 4 at the end of this book,
** [In Russian OR-10pytnaya raketa (experimental rocket) number 1.]
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enginedesignwitha direc.tandan inversecone. This is howhedescribed
his first rocketengine,ER-I, in notesdated30Seplember1929:

"WhenI hadcompletedall Ihetheoreticalcalcul_ii6_s,I hadto subject
mymethodandcalculationsto apracticaltest, andobtainthe initial ex-
perimentalresultsessentialfor tile creationof a second,morepowerful
engine. In addition,I hadto usethisenginefor testsandinitial results
onthecombustionof metallic fuel.

Spark

Inle

_z

Overflow ¢ocl_ Air- intal_e_'--_

Schematic diagram of the ER-1 Engine

"Because of the shortage of funds, I unexpectedly conceived the idea of

transforming a blowtorch into the first jet engine. I made this idea a real-

ity. My first engine consisted of a transformed blowtorch, of the Le-

noszhatgazTrustFactoryimeni Matveev in Leningrad. The gasoline tank

was of one-liter capacity, the air pump diameter ihduding the piston was
16mm, the pist0fi sfroke was i07mm, the inner outlet diameter of the

torch nozzle was 22ram. I reconstructed the nozzle and encased it in a

jacket into which air was forced under pressure. There was a combustion

chamber insicte the jacket arranged with the aid of a special pipe. A dis-

posable conic nozzle was attached to the end of the pipe; this ensured ex-

haust velocities 6xc_e6dihg the speed of Sound.

"The copper pipe for liquid gasoline was replaced by a longer one coiled

around the conic nozzle for heating the gasoline. In addition, the tank was

equipped with a pressure-gauge to control the feeding of the gasoline and a

nipple for air release. A thermometer for measuring the temperature of

the tank lid was attached to the tank. There was a special gauge-cock for

the control of fuel consumption.
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"Compressed air for combustion and cooling of the combustion chamber,

was conducted into a cooling section via a connecting pipe attached to the

casing in front of the nozzle.

"Ignition of the mixture was accomplished by means of an electric spark-

plug screwed into a socket; I called this engine ER-I."

By July 1932 Tsander had conducted more than 50 combustion experi-

ments with the ER-I and numerous cold experiments. He developed a de-
tailed method for successive experiments and, characteristically, his ex-

periments with new structures were a gradual transition to more complex

experimental conditions. He was capable of repeating an experiment count-

less times in order to ensure reliability of the required results.

Direct and inverse cone for the ER-1 engine

Individual stages of the combustion experiments with the E1R-1 are of

interest. When it became necessary to measure the thrust of this unique

engine, it became apparent that there did not exist a special dynamometer

or other measuring apparatus for this purpose, nor were funds for the con-

struction or purchase of such equipment available. Tsander resorted to

his native common sense. He suspended the small engine on metal wires and

started it. The jet pressed upon a small metal disc attached to calibrated

scales on whose other side were placed the usual weights; a home-made

pointer indicated the thrust of the E1R-1.

Tsander encountered a variety of other difficulties, both in constructing

and testing the E1R-1, but managed to overcome all of them.

He worked intensively, produce_d theoretical calculations, and went on

designing and building his first jet engine, the ER-I. During the same

period he designed a special building for an experimental station, hoping

to have it erected in the near future. The design included space for the

installation of machines for the production of liquid oxygen and other lique-

fied gases and for their storage, laboratories of all kinds for the testing of

materials at low and high temperature, separate compartments for experi-

ments in the combustion of metals and preparation of new alloys. The sta-

tion would be used for testing both liquid rockets on vertical and horizontal

stands, and compound piston and rocket engines. Provision was included

for separate quarters for testing pisfvn engines operating on liquid oxygen

and in combination with liquid jet engines.

A testing stand was developed for mechanisms designed to retract metal

components of aircraft components tobe melted in special boilers. In addi-

tion compartments were reserved for developing gyroscopic instruments

for stabilizing rocket flights, a start-control device, etc.

It was Tsanderls plan to develop, test and produce in this building all

parts and components of the rocket and of the spaceship. However, he was
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The ER-1 engine suspended on two wires, and the weights for measuring the thrust
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Diagram of the Testing Station and Laboratory Designed by Tsander

1-Setup for liquefying gases; 2-setup for liquetying oxg'gen; g-storage reservoir for liquid

gases; 4-testing turntable; S-exhaust hood i 6-machil,e for mechanical testing of materials;

7-piston engines; 8-compound engine; 9-compound jet-and-piston engine; 10-piston en-

gine operating on carbureted oxygen; ll-jet rotor; 12-compound piston and Iiquid rocket

engine; 13-horizontal stand for liquid jet engine; 14-vertical stand for liquid jet engine.
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not destined to realize personally his big dream. A jet testing station, a

powerful one (for those days), comprising many buildings and compart-

ments, was built only in 1935 by one of Tsander's former students.

In the thirties the Osoaviakhim, a voluntary organization, was performing

many useful services in the Soviet Union, including provision of financial

assistance to many individuals, such as inventors engaged in developing new

technologies.

At the beginning of 1931 a jet-engine section was established within the

Central Council of Osoaviakhim, and Tsander was appointed its Director.

The members were specialists in different fields of science and technology.

In the second half of 1931 the section was reorganized into TsGIRD; a

technical council under Tsander's chairmanship was put in charge of the

group.

Combining the task of conducting the first Soviet experiments with the

liquid jet engine and the duties of chairman of the Technical Council of

TsGIRD, this tireless scientist and thinker, engineer and inventor, man-

aged not only to be everywhere and help everyone, but to be connected in

numerous ways with scientific and technical circles, as well as with the

youth, in whom he placed great hope. Tsander understood well that the

practical development of rocket technology required the participation of

adequate numbers of engineers and technicians, and he therefore made an

effort to involve as many students of the Moscow Aviation Institute as pos-

sible by giving them lectures, conducting group study courses, and entrust-

ing them with certain technical calculations and with the construction of

various rocket components, etc.

No matter with whom he spoke he constantly turned to problems of cos-

mic flight, especially flight to Mars.

In 1932, courses on jet propulsion were organized under the auspices of

TsGIRD, and Tsander drew up a detaiIed study program. Many leading

specialists were enlisted as lecturers: Vetchinkin, B.C. Stechkin, V.V.

Uvarov, and others; Tsander constantly prepared and renewed his lec-
tures.

At this time a number of enthusiasts in jet technology formed a group

and decided to start practical work in the construction of rocket engines

and rockets. This, in turn, resulted in the establishment in April 1932,

by decision of the Central Council of Osoaviakhim, of a production group
named GIRD.

The Moscow Group for the Study of Jet Propulsion
(GIRD)' played a significant roIe in the practical devel-

opment of rocket technology in the Soviet Union.

However, this work did not begin smoothly. The sums allocated by

Osoaviakhim were very limited, and the lack of a building in which to per-

form the work of production and construction was an even greater problem.

In those days the attitude to rocket enthusiasts was one of scepticism. They
,1 * II

were jokingly referred to as Iunattcs , and the response to their applica-

tion for a small building was a smile and the expression of a sincere wish

that they might fly off to the moon as quickly as possible and not bother

"serious" people. But the "GIRD-ers" did not despair, and continued ener-

getically to seek quarters. Finally, they were lucky: an unoccupied base-

ment was discovered at No. 19 Sadovo-SpasskayaStreet, which, while some-

what dark and damp, was nevertheless spacious. Tsander's exultation at

finding these quarters cannot be described.
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Thebasementwasquicklyleased,cleaned,relievedof its rubbish,and
whitewashed;it waswiredfor electricity, andequippedwithtwohalf-
brokenmachine-tools;soonthepremisesbeganto humwithactivity.

ThusbeganGI1RD'swork. Manyyearshavepassed. Muchis forgotten.
Whatwill notbe forgottenis theenthusiasm,love, andfaith in their work
evincedbyTsanderandhisyoungcolleagueswhentheybeganworkingin
thatbasement.Manywerethesleeplessnightstheyspent,oftenonan
emptystomach,in searchof solutionsof rockettechnologyproblems.

Onetechnicalproblemranagainstthenext,andat timeseverythingwas
soconfusedthatthereseemednowayout. Therewereweeksandeven
monthsof successivefailures. Inthecombustionexperiments,rocketen-
gineswereburnedupin oneinstant,sincethetemperatureinsidethecom-
bustionchamberreached3000°, andnooneknewhowandwithwhatto cool
them. Whena satisfactorilyoperatingenginewasat lastachieved,it was
discoveredthattheexhaust-speedfromthenozzleshouldbe2500to
3000m]sec while only one-third of this speed was obtained. Often there

were failures in the fuel-feeding system, and even some of the simplest

mechanisms, such as, for example, the armature and the reducing valves,

caused trouble and failed to operate at liquid oxygen temperature. There

was also some difficulty with the ignition. In addition, there was a con-

stant shortage of necessary metal and cutting instruments, not to speak of
the absence of needed machine-tools.

The situation was particularly difficult as regards measuring instru-
ments. These were not produced in the Soviet Union at the time, and GIRD

had to design and manufacture their own instruments, inventing various

ways of testing them.

In addition to everything else, there was an extreme shortage of funds:

available funds did not even meet production costs, not to speak of the

miserly salaries received by Tsander and his colleagues. GIRD was hu-

morously referred to as the "Gruppa inzhenerov, rabotayushchaya darom"

(Group of Engineers Working Gratis),

It was the solidarity of the staff of GIRD, their love of rocket technology,

and their deep faith in what they were doing that overcame many obstacles.

Tsander went over to full-time work for GIRD in April 1932. Most of

the other rocket enthusiasts worked for GIRD only in the evening and in

their spare time.

Tsander's work in designing rocket engines and rockets attained full

stride. He continued experiments with the ER-I engine and began design-

ing and later constructing a new engine, subsequently called ER-2.

This was a particularly fruitful period in Tsander's life. He found he

had a following of students to whom he lovingly and patiently elucidated

complex problems of rocket technology. By nature very modest, good-

natured, and somewhat shy, Tsander, both at work and in his personal life,

was inseparable from his idea of interplanetary flight. He was cheerful,

loved jokes and laughter. When something went wrong, or when testing

had to be interrupted for one reason or another, Tsander became very dis-

tressed but would then say, with a smile, "Just the same, weWll fly to

Mars"; whereupon he would carry on. He was endowed with an inexhaust-

ible store of creative imagination and with a gift for fostering creative en-

thusiasm among his students and followers. He loved people and believed
in them.
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Tsan(ler deeply respected the founder of rocket technology, K.E.

Tsiolkovskii; at the latterts request, Tsandcr edited his works*. These

two Soviet patriots and life-long devotees of the most complex technical

subject - rocket technology - enjoyed an exceptionally warr_ and sincere

mutual friendship.

On his seventy-fifth birthday, Tsiolkovskii received as a gift from

Tsander a copy of the latter's book, "Problems of Flight with the Aid of

Jet Propulsion Machines", together with the following letter:**

,, H ighly esteemed Konstantin Eduardovich!

'TOn your seventy-fifth birthday I send you warm greetings and sincere

congratulations! My wish is that you may still be present at the time of

the first flights into interplanetary space and to the nearest heavenly

bodies.

Group of rocket enthusiasts, tal_en in 1931 ('l%ander _its on the extreme right)

"The enthusiasm that is apparent in your books has inspired me from

childhood, and we in GIRD, through the friendly collaboration of a num-

ber of inspired people, will continue research in the successful field of

stellar flight, a field in which your works broke the eternal ice that had

been obstructing the path to this objective.

"I have undertaken to edit and prepare for republication a number of

your books on astronautics and rocket flight, and I am convinced that their

,videst dissemination will bring us a large number of new workers,

"The most important thing at the mornent is the full development, test-

ing and practical application of all proposed methods of jet flight.

* They were published in 1934, after Tsander's death.

_'* A cop) of this letter is kept in the archives of the Academy of Sciences of the USSR.
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"When successful flights have occurred, the necessary funds for the

widest possible development of this matter will, I am sure, be available,

and it is desirable thaltyou too, despite your advanc.ed a_e, should still
directly participate {n the development of contempo_'r_ l:luestions.

"With the present letter, I send you a copy of my book, "Problems of

Flight with the Aid of Jet Propulsion Machines", in which I have presented

my views on projects whose development will lead to flights to other planets.

"I also express my thanks for having sent me allyour books, of which

I acknowledge receipt.

"Long live he whose birthday we celebrate today[

"Long live work on interplanetary travel, to the benefit of a]1 mankind_

Engineer F.A. Tsander

17 September 1932

Moscow. "

Tsander began designing the ER-2 engine in September-October 1931

when he had not yet transferred to GIRD. The ER-2 engine constituted the

first liquid jet engine, earmarked for installation as an independent engine,

in the GL-1 glider of the B.I. Cheranovskiimake.

This was a deliberate decision, as it was Tsander's belief that one of

the steps towards flight in outer space was the development of the combined
use of rocket and aircraft.

In designing the ER-2, provision was made to have the thrust controlled

by regulating the feeding of the fuel mixture. Gasoline was chosen as fuel

and the oxidizer was liquid oxygen. Fuel was fed from tanks with the aid

of a pressure accumulator and liquid nitrogen. Cooling of the combustion

chamber was accomplished through the use of oxygen, which was then

burned, and the engine nozzle was cooled by water circulating through a

closed-circuit system.

The engine system consisted of one tank for gasoline and two tanks for

oxygen, all pear-shaped and equipped with a device for discarding them

through round openings in the wing of the GL-1 glider. The oxygen tanks

were double-walled, like Dewar flasks.

The system also contained a small water tank, a centrifugal water

pump, a pressure accumulator with liquid nitrogen, a compensator for

tank pressure control, two heat-exchange evaporators for the liquid

oxygen, and the engine itself.

This system operated as follows: the engine was fed gasoline and liquid

oxygen with the aid of nitrogen under pressure; this was pipe-conducted to

each tank. The liquid oxygen first entered the evaporators, from which it

traveled in gaseous form to the engine jacket, and thence, through special

outlets, to the combustion chamber. The gasoline was fed directly to the

spray nozzles, which were mounted inside the combustion chamber.

The tanks were kept at a constant pressure by using the nitrogen com-

pensator; this consisted of a small tank containing liquid nitrogen and a

charged cylindrical vessel through which hot water supplied from the small

water tank circulated. The quantity of nitrogen evaporated depended on

the extent to which the vessel containing hot water was immersed in the

compensator. If, for example, the pressure in the system dropped, a

small piston in the nitrogen compensator rose, lowered the hot-water
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vessel more deeply in the liquid nitrogen, and thus increased the pressure.

When the pressure became greater than necessary, the hot-water vessel

rose (as if emerging from the nitrogen), gasification was reduced, and the

pressure dropped*.

Assembly diagram of the ER-2 engine

The pressure accumulator and the tanks were equipped with safety

valves, and the oxygen evaporators were doubled-walled cylindrical ves-

sels between which hot water circulated. Liquid oxygen passing through

the evaporators was gasified by heat exchange with the hot water and

passed on to the cooling section of the combustion chamber.

The GL°I glider, specially designed for the ER-2 jet engine and pro-

duced by Osoaviakhim in 1932, was of the "Flying Wing" type, triangular

in shape. The wings, made of wood, consisted of three parts with the pi-

lot's seat in one of them.

* The nitrogen compensator was not used for combustion experiments, and the pressure was regulated

manually.
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Carbon dioxide jacket
Gasoline spray-

Gasoline pipe.

Check valves Check valves

Layout of the fuel-combustion section of the ER-2 engine

Starting spark-plug of ER-2

Combustion chambers of ER-2, with nozzle and spray-valve
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Gasoline tank with discarding device

Felt

Handle for fastening

the support

Spring

Exit for evaporated gases

Felt hose

gage

Glass wool

Asbestos cord

Steel spring _.

Wooden disk

Metal ring
Ring of asbestos cord

Liquid-oxygen tank
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Duraluminbeamswereplacedbetweenthelongeronsto securethetanks
to thewings,whilethetankscouldbediscardedat will. Steeringwasdone
manuallyandbypedals,whilethecontrolsticksandkeelswerelocatedat
thetips of thewing. By pressingthepedalthecontroldeviatedonlyinone
direction(thedirectionin whichthevehiclewasbeingturned). Thealti-
tudesticks wereattachedbybracketsto therear centeredgeof thewing;
theaileronsweresimilarly attachedat theendof thewing.

__ Chamber

_s seat

The GL-I glider, "Flying Wing", designed for use with the ER-2 engine

General view of the GL-1 glider

45



Dimensions of the GL-I:

Span ................ 12.1 m

Length ............... 3.09 nn

He ight ............... 1.25 m

Wing area .............. 20m 2

Elongation .............. 7.3 m

Weight exclusive of rocket engine ..... 200kg

Maximum quality ........... 16

The design of the whole system and the ER-2 engine were completed in

August-September 1932. Everyone was anxious to see the whole thing as-

sembled as soon as possible, and to see the "live" flying rocket.

Take-off of the CL-1 glider

Despite the great enthusiasm and dedication of the GIRD staff, progress

was not rapid enough. For this reason, the party bureau of GIRD decided

in December 193_ to declare a week of 'storming'. The entire staff whole-

heartedly supported this measure.

A committee of three, one of whom was Tsander, prepared the 'storm-

ing' plan. After its approval at a general meeting, the work assumed an

extraordinary pace. Tsander seemed to have grown younger; he could be

seen everywhere, helping everyone. Boundless was the joy when the ER-2

stood fully assembled on its stand in the GIRD building in the shape re-

quired for use on the GL-1 glider.

On 23 December the engine received the approval Of a special committee,

and several days later its builders were rewarded with a certificate of honor.

Tsander was not destined to see this engine in action. The combustion

tests of the ER-2 engine, which began on 18 March 1933 in the vicinity of

Moscow, took place in his absence, since he had gone to Kislovodsk to un-

dergo medical treatment.

At the end of 1932, on completing the assembly of the ER-2 engine,

Tsander began to design a new, more powerful liquid engine with a thrust
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Diploma granted to B.V. Florov, mechanic on the s_-aff of GIRD
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The ER-2 engine on the test stand

Testing the ER-2 engine
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of 600kg, as well as three different versions of an engine with a thrust of

5 tons.

In the first version of the 5 ton engine the combustion chamber was de-

signed on the same principle as in the ER-2 engine but the whole layout was

significantly simplified*.

The fuel tanks operated without surplus pressure, fuel being fed with

the aid of special injectors. The system was started with the aid of a sep-

arate, small, liquid-oxygen tank (not shown in the diagram) or by manual

pumps.

Oxidizer

' -'-- "-"- ' ""_" """"" -"_ "-"-"" ""-- Injector

Combustion _. _" ,_.

Liquid fuel r _.... chamber ./ .._. -_. ""_ "---_

?<.--. j-' 77 i 'Agatepa;
Agate parts J _. _./'- __

.........._. _../. ---'_" "'- Injector

_..._.._ Oxidizer

First version of the $ ton jet engine

The engine nozzle was constructed in the form of a double (a direct and

an inverse) cone to ensure rapid exhaust. Oxygen, cooling the inverted

cone, proceeded to the cooling section of the combustion chamber and then

reached the engine sprayer. Fuel supplied by the injectors went directly

to the fuel sprayers, The critical section of the nozzle was regulated to

maintain low pressure, with the aid of a movable core and an automatic

device in the form of bellows or a Bourdon tube. The system was ca-

pable of operating without the double cones if more powerful injectors were

used.

In the second version of this engine Tsander retained the same water-

cooling system and oxygen evaporators as in the ER-2 engine. In this ver-

sion the inverse cone was water-cooled, and four injectors were employed,

one of which was for water, two for the oxygen tanks, and one for fuel.

The water injector was operated by a jet of combustion products. After

cooling the section of the inverted cone, the cooling water entered a three-

branched pipe and was utilized for heating two oxygen evaporators. From

there, already cooled, it traveled to the water compensator, and then, with

the aid of an injector, it was employed for the cooling of the inverted cone.

The injectors that fed oxygen to the evaporators operated by issuing a

jet of evaporated oxygen from the cooling section to the combustion chamber.

The oxidizer then returned from the evaporators to cool the combustion

* The operating principle of the engine is explained in Tsander's technical descriptions, dated 2January 1933.
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chamber, and was then conveyed to the combustion chamber for combustion,

the remainder being used again as the active jet from the injector. The

liquid fuel was fed by the injector directly to the combustion chamber.

Here too, as in the water injector, the combustion products formed the ac-

tive jet.

The third version of the engine, again with a 5 ton thrust, more closely

resembled the ER-2 engine. There were no injectors and fuel was supplied

instead by centrifugal pumps, started by a small gas turbine. The gas tur-

bine, in turn, ran on selected combustion products from the combustion
chamber.

As in the two previous versions, cooling of the combustion chamber and

heating of the evaporator were effected in a closed cycle employing the

same principle as in the ER-2, but with the aid of pumps.

Heater or

inj ector
\ Oxidizer evaporator

f \ t _,,_,,, i _ _ __
f Liquid fuel _..._ ....... -_ I c°mbusti°n l.-'_:_____JI 1

k ]- _"_rnje'_tor --L]chambler_ __ [[

.....
-- L --

Heater or injector ---

Second version of the S ton jet engine

Tsander started to design his next engine - the 600kilogram thrust

one - with the idea of using metallic fuel in combination with liquid fuel.

He regarded this engine as a step toward realizing the idea of employing

rocket components as fuel for the rocket engine. He believed that he could

solve the problem of constructing a rocket by using a large part of itself as
fuel.

It was proposed to first test in this engine certain powdered materials -

magnesium, boron, beryllium and aluminum, and then to test pieces of dif-

ferent alloys that might be used for the construction of rocket components.

It was also planned to test certain liquid fuels whose combustion gives the

bulk of gaseous products, namely, kerosene, gasoline, alcohol, etc., and

such oxidizers as liquid oxygen, nitrogen tetroxide, nitric acid, fluorine,
and chlorine.

Tsander's idea was that the layout of this engine should consist of three

tanks, with a tank containing oxidizer inside another containing powdered
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solid fuel. This arrangement was designed to utilize the heat-insulating

qualities of the powdered material.

In the second tank (boiler), there was solid fuel in pig form which would

be melted by heat from a tubular coil within which the fuel components

would be burned. The third tank was a reservoir for the liquid fuel, which

would be fed with the aid of pumps turned on by a small gas turbine or by a

windmill.

Evaporator of 0 2 or N204

-"_'- " ",. Pump _ _ ....

N 2 evaporator .,,__ __ h_ Double cone/ .i- .......... --+o_b,,_,ion+___)C_ q i
/ /" _-_. Pump chamber _+_ ___ / _.

........ / :m -
..._,co_oloW-j _,s,,,+,...._T \ _ l_ -

.;y +va++a,_ J_ i
_+N;o+)--] "_ o_orN_O4-+- +-<y)--....

• x .......... )" H20 compensator

Third version of the 5 ton jet engine

IllI Solid flel IJ II tnel n

,t >

Powdered- + _k_ /tlnlp I l I li t_itil/pIl_II pIlII ,I mp
metal fuel "i + ! 1 ill]I i i .,,, ,_

+JJ: I --.-+++-.,,J-.-J

c, o o o OoO a ioOoO ooooo o

+-_ _ _-31++.310%+1o;o',o_o_0%o;o_>oo ....

4L _ ,

Schematic diagram of a solid-fuel engine

In January 1933, the first GIRD brigade began work, under Tsander_s

immediate supervision, on a liquid rocket, subsequently named GIRD-X.
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Developingthe ideathatfuturespaceshipswouldbe fueledbycomponents
of thespaceshipitself, ascomponentslosetheirusefulnessafter a certain
stageof the flight, Tsanderdesignedthe first rocketusingmetalas its
basicfuel andgasolineasa secondaryone. Theroeket_wasdesignedto
useliquidoxygenasoxidizer*.

Thereweretwokindsof metalin therocketthatcouldbeusedasfuel -
powderedmetalconveyableto thecombustionchamberby injectors, and
componentsof therocketwhichhadtobemeltedfirst in a specialboiler
andthenfedto thecombustionchamberbya specialinjector.

At thattimetheproblemof employingmetallicfuelwasfar fromany
practicalsolution. For this reason,simultaneouslywithworkonthe rock-

et structure and the theoretical calculations, the brigade started research

on a feed sy§tem for metallic fuel and on a method of burning such fuel.

The following equipment was designed and produced: a tank in which metal

could be melted; a counter-pressure chamber; a filings-settling cyclone;

and an injector for conveying powdered magnesium. The ER-I engine was

used for testing the metallic fuel.

Soon after the first tests of the injector and of metallic fuel combustion**,

it became apparent that using metallic fuel in rockets presented enormous

difficulties both in evolving a feed system and in elucidating its effect on the

jet engine's basic parameters. Experiments on burning rocket components

showed the need for many years of determined effort, and problems even

more difficult than those involved in the use of powdered magnesium would

have to be solved.

Tsander strove hard to see the rockets in flight, but at that time the

Soviet Union had not yet flown liquid rockets and no one knew what they

would be like in flight, how the automatic fuel-feeding device and the jet

engine would work, etc. These considerations constantly worried Tsander

and he tried to simplify the rocket's construction. Another version was

developed without provision for burning components of the structure. Use

of metallic fuel was retained, but only in the form of powdered metal fed by

a special injedtor; gasoline and liquid oxygen were similarly fed by in-

jectors, which needed perfecting and preliminary investigation.

Tests revealed that it was impossible to eject the metallic fuel into the

engine's combustion chamber because the powdered metal was baked into

a hard mass. Furthermore, the GIRD production facilities, being old and

deficient, failed to turn out injectors of adequate quality - they usually

failed after a short period of operation..

Because of all these difficulties substantial modifications were made in

the second version and a third version, the GIRD-X, evolved which was

fully developed ]ater and withstood test flights successfully.

In this model the liquid fuel and the oxidizer were no longer fed by in-

jectors, but by pressure from a small balloon with the aid of a special re-

duction valve. The use of solid fuel was temporarily excluded pending lab-

oratory tests using better equipment.

* This rocket design was unfortunately not preserved in the archives.

** Combustion experiments in burning fuel, including all related work_ were carried out by L K. Korneev

and A.I. Polyarnyi.
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The rocket, with a parachute equipped with an ejector, had the following

characteristics:

Lenath .......... 220 cm ........

Weight .......... 29.5 hg (of which 8.3kg w- -;,el}
Diameter ......... 14 cm

Engine thrust ...... " . , 70 kg

Duration of combustion .... 22 sec

Pressure accumulator ..... special balloon, 1.50 atm, _ liter capacity

Payload .......... 2 kg

CaIculated height of flight . . 5.5 km

Tsander was not destined to realize his dream of seeing the rockets in

flight. Despite his heavy duties in connection with the construction and

testing of rockets, Tsander continued his systematic scientific and theo-

retical research, in addition he was working at new constructions, writing

a book, being active in public affairs, and tending his hothouse at home.

The extent of his accomplishments was amazing. Tireless, sweeping every-

one along with him by the strength of his faith in the possibility of inter-

planetary flight, Tsander began his day early and filled it to capacity. The

painstaking experiments on the combustion of powdered solid fuel and the

development of an injector system would go on late into the night. Tsander

brushed aside with a joke all suggestions that he take more res t and sleep,

and was in the habit of staying at his work until satisfied that some progress

had been achieved.

As a result, he began to show alarming signs of overwork. After a

great deal of persuasion he agreed to go to Kislovodsk for rest and treat-

ment. On arrival he .was found to be runninga very high temperature; he

had apparently contracted typhoid fever during his journey to the sanato-

rium.

From his sickbed he sent a letter to the GIRD start in which he shared

with them his latest thoughts and future plans. He dreamed of a quick re-

covery and of resuming work with renewed energy. The letter closed with

a general exhortation:

-"Forward, comrades, and only forward!

Raise the rockets ever higher, higher and higher,

closer to the stars! "

At 6a.m. on 28 March 1933, shortly after this letter was written,

Tsander succumbed to the typhoid fever. This extraordinary and brilliant

man's life came to an abrupt end in his 46th year.

An obituary appeared in the newspaper "Tekhnika '_, No. 30, of 30 March

1933 (see page 57).

The following are the recollections of a former GIRD mechanic, N.N.

Krasnukhin:

"When, in 1932, I was employed by GIRD as a fitter, my job was to

mount and assemble structures for the first jet engine designed by Tsander.
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Granite tombstone on Tsander's grave at Kislovodsk

56



"After each successful experiment, Tsander's confidence in the work

he had begun mounted. At the end of each talk with us he wou]d say:

"Forward to MaTs". We so loved and respected him that we wanted to

complete the mouhting and assembly ahead of schedule; _>ften paying no

heed to time and remaining at his side until we had fully completed an ex-

periment.

"So deep was his belief in the reality of his ideas, and so convincingly

did he imbue us with that faith, that, as we worked, we envisaged the con-

tours of the future and took joy in our success.

"Fridrikh Arturovichwas often to be found in the workshops, and the

construction workers were in the habit of coming to him there to ask him

how to calculate this or that detail. He would promptly indicate the rel-

evant book, page and f0rmula, and, to our wonder, was never wrong. He

would calculate on the spot, in his head, the required material thickness,

and tell us the best way to manufacture or assemble the part in question.

"At that time we were working by artificial light in the basement quar-

ters of GIRD. Carried away, Tsander would work late into the night, and

would not leave unless led away by force. His eating habits were hap-

hazard, and he remained constantly preoccupied by his constructions,

sketches, descriptions and calculations.

"Very often we traveled with him to Osoaviakhim to attend study courses.

Tsander used the time of our journey, or any free moment that we might

have, to talk to us of jet-aircraft rockets and rocket flights from Earth and

back, and expounded his idea on the possibility of using aircraft components

as fuel. He wag lucid and convincing and was pleased if we understood him

well.

"As soon as an engine began working, Tsander would become a different

man. His spirits would rise and infect all those present, thus easing our

work and enabling us to overcome difficulties more readily.

"On learning of his death we deeply mourn the loss of such a wonderful

man. ''

Obituary appearing in "Tekhnika", No. 30, 30 March 1933.

F.A. Tsander - Engineer

The eminent jet-propulslon theoretician, and engineer-inventor, Pridrikh Arturovich Tsander, passed

away in Kislovodsk at 6 a.m. on 28 March.
Tsander began in the new, then only rudimentary, field of applied-jet propulsion in 1908. After the

October Revolution he was one of the first engineers to go to work in a Soviet factory and for many years
he was the most eminent specialist devoting himself to the work of socialism in the aviation industry. With

extraordinary persistance and enthusiasm he conducted theoretical research in the technology of jet propul-

sion, and, on the basis of these theoretical and practical activities he created his own school of jet-engine

theory and construction.

Fridrikh Arturovich devoted the whole of the last year of his llfe to practical jet-engine construction. He

took an active role in establishing TsGIRD, The Central Group for the Study of Jet Engines, of the Central

Council of Osoaviakhim of the USSR. Despite poor health, Tsander displayed on many occasions genii'he

bolshevlst zeal and heroic enthusiasm.

Tsander was the author of a series of theoretical works providing the only existing calculations in the field

of jet propulsion.

EIDEMAN, BELITSKII, BELOTSKII, MAI.INOVSKII, NOVIKOV, TERENT'EV, KONONENKO,

TSIOLKOVSKII, IL'IN, NIKITFOROV, PETROV, RASKIN, KORO/EV, FORTIKOV, BULANOV,

PARAEV, TIKHOMIROV, POBEDONOSTSEV, KORNEEV, EFREMOV.
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iXmemorialmeetingwasconvenedbytheCentralCouncilofOsoaviakhim
on 14May1933. ProfessorVetchinkindeliveredanaddressonthesig-
nificantlife workof the great scientist and great man.

TPA,VPHK3AOEILAHIE

lnol_ll_m'Kn _ ,_O'ra ll13J r,t_ e Gt_lK ),rN e rep. I_rjoe_l_lm

.,. ,-_'_._"_ ,'._'_.,._-_',t, ,_, '-_

Poster of the memorial meeting

The memorial plaque at Tsander's house in Riga

Later, at the initiative of his friends and students, a granite tombstone

bearing an exact replica of the GIRD-X rocket was placed on Tsander's

grave at Kislovodsk. In Riga, his birthplace, a commemorative plaque

was placed at the house on Bartas Street in which Tsander lived.

The brigade continued working on Tsander's GIRD-X rocket after his

death, and, on 25 November 1933, one of the Soviet Union's first liquid

rockets stood ready on its launching platform on the outskirts of Moscow.
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When the final preparations had been made, the tanks filled with fuel

and oxidizer, and the hatch closed, the pressure in the tanks began to rise,

and with it the tension of the launching crew. At last, the pressure reached

the required level, and an excited voice ordered: "Fit;e. r''

I

Rocket enthusiasts just prior to the launching of GIRD-X, on 25 November I933

Ignition was instant, the jet engine went into action, and the rocket

bearing the inscription "GIRD-X" flew off. Gathering speed, it dis-

appeared into the clear blue sky, thus glorifying the name of the great

scientist, the ardent Soviet patriot, the pioneer of rocket construction in

the USSR - Fridrikh Arturovich Tsander.
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PROBLEMS OF FLIGHT WITH THE AID OF

JET PROPULSION MACHINES*

PREFACE

This book has been written to popularize principles of interplanetary

communications.

Calculations of the theoretical compression diagram in a jet super-

charger and calculations of the flights of long-range rockets outside the

atmosphere are presented. However, in view of the limited size of the

book, some calculations are omitted, e.g., the jet supercharger's Prac-

tical calculation and its air compression diagram; detailed calculations of

a rocket carrying with it the oxygen for combustion; original formulas for

rocket efficiency; determination of heat loss through the nozzle walls;

all detailed theoretical and practical calculations of various forms of jet

engines; the theory of ascent of a rocket airplane into interplanetary space

and its descent back to the Earth; and, finally, the theory of flight of long-

range rockets, taking into consideration the rotation of the Earth about its

axis and about the Sun, including in particular, the most suitable flight tra-

jectories.

I hope that this book will arouse interest in the problem of interplanetary

communications in a wide circle of aviation workers and in general among

all those following the many-sided development of aviation engineering re-

search. The author appeals to inventors in general, to students, engineers

and astronomers to work in this field in view of its importance for super-

aviation.

For high-velocity rockets, one arrives at rather high power, simple de-

sign and high efficiency. To overcome terrestrialgravitation, the rocket

must overcome a sort of obstacle, present at velocities of about 400-

700m/sec**, after which further acceleration is already easier.

For astronomers the future spaceship will serve a s a flying astronomical

observatory, since, during the flight to another planet, astronomical in-

struments must be used for observations and so astronomers will naturally

take an active part in its construction.

F.A. Tsander

* Published as a separate book: Pmblema poleta pfi pomoshchi reaktivnykh app_ratov. - Moskva, ONTI. 1932.

** [The physical nature of this "obstacle" is by no means clear, _ince the velocities mentioned are quite

above the "sound barrier", where difficulties were expected 30 years ago.]
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INTRODUCTION

Theoretical and practical studies in the field of jet engines are now car-

ried out in two directions. The first is the development of an independent

rocket which could serve for research in the upper layers of the atmos-

phere, the second is the design of an airplane which would be able to fly

away from the terrestrial atmosphere using its engines and a rocket, and

then be further accelerated by jet engines outside the atmosphere. In order

to reach a height of 2200km (or 20 _ of the Earth circumference), a ve-

locity of 4.3 km/sec has to be given to the airplane inside the atmosphere.

The duration of stay outside the atmosphere would then be 12.6 rain which is

sufficient for further acceleration to a velocity of 7.9 km] sec, necessary for

free flight around the Earth.

From this example we see that the velocity which has to be developed in-

side the atmosphere is considerably lower than the velocity (11.2 kin/see)

necessary for complete escape from the Earth. Jet engines (rockets) for

super-aviation, as well as for flight to other planets, can work quite suc-

cessfully at high velocities in airless space. This is due to the fact that their

axial thrust is increased while air resistance falls off. This simplifies consid-

erably the problems of super-aviation and interplanetary communications.

In the following the author acquaints the reader with a new type of rocket

whose theory he adequately developed in recent years. These rockets are

particularly safe since they do not use liquid oxygen with its explosion

hazards. For flights through the lower layers of the atmosphere, the

absence of liquid oxygen creates particularly favorable conditions due to

the weight reduction. We will also examine rockets that use part of their
structure as fuel. In these rockets the limit of usable fuel material is so

near 100% of the rocket's total weight that it is quite probable they will be

used in the first flight to cosmic space with complete escape from Earth.

1. THE HEIGHT OF THE EARTH'S ATMOSPHERE

The pressure, temperature, density and composition of the atmosphere

at high altitudes play a primary role for flights through its upper layers and

for short duration flights beyond it.

In Figure 1 we show curves of these quantities as functions of the alti-

tude, according to the data of the international standard atmosphere. These
curves will be used for future reference.

The international standard atmosphere, for which the standard atmos-

phere of France was adopted in 1920, is shown up to an altitude of 20km;

P_,. L, and "t_,denote the pressure, temperature and density of the atmos-

phere.

Figure 2 shows lgp_, and ]g'i_,uP to 300 km and Figure 3 gives T;_, assuming

a constant temperature (7_, = -56.5°C -- 216.5 ° abs) from 11 km upwards.

For comparison, we show in Figure 3 temperature curves according to vari-

ous sources, and also in Figure 2 the logarithms of the corresponding density

and pressure. Curve T_ represents an adiabatic variation of the temperature

at great heights; curve T_ is drawn assuming that for heights above

200 kmthe temperature is close to the absolute zero; curve T3 is an approx-

imate average between curves T_ and T,, the latter assuming a constant
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temperature of 180 abs above 33km. From curves T2, Ts and T, l have cal-

culated the logarithms of the density and of the pressure shown in Figure 2.

Finally, curve Ts gives the temperature according to Andoier; this is close

to the values of curve Y,.

The temperatures and the logarithms of the density for three constituents

of the atmosphere, O 2, N 2 and H 2, are also shown in Figure 3. These val-

ues are derived from a paper by Professor V. G. Fesenkov*, who conducted

observations on the duration of the evening-glow in 1915-1916 in Kharkov.

His purpose was to determine the atmosphere's height and temperature. The

curves have been calculated on the basis of these observations by V.P.

Vetchinkin in Moscow by a special method, resulting in coincidence of the ini-

tial temperatures with those calculated**.

kkm

13 --_
fZ---

8

O-8O
0 -60 -_0 -ZO 0 s + gO r°c

0.2 0,6 1.0 L# _kg/m ipatm

FIGURE 1. Temperature, pressure and densi W of the atmosphere

up to a height of 20 km

The result of Professor Fesenkov's observations is represented by the

curve At', in quite good agreement with his theoretical curve At. The density

curve, obtained by Professor V.P. Vetchinkin, practically coincides with

the curve Al'.

Logarithms of the pressure of individual constituents o'f the atmosphere,

according toFesenkov, are given in Figure 4, which shows also, for c0m-

parison, a pressure curve of Wegener. It is seen that the form of both

curves is in quite good agreement with each other and that hydrogen and

the hypothetical element geocoronium introduced by Wegener in his theory

* Tmdy Glavnoi Rossiiskoi Astrofizicheskoi Observatorii, Vo]. II, pp. 6-113. 1923. (I used these data to

calculate the absolute values of pressure and density).

** Russkii Astronomicheskii Zhurnal, Vol. IV, No.4. 1927.
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play a decisive role in determining the density arid pressure of the atmo-

sphere at heights above 80 kin.

It should be noted, however, that the geocoronium, introduced by Wege-

her, very probably does not exist, since its spectrum coincides with the ni-

trogen spectrum at the extremely low pressures prevailing at such great

heights and nothing is known on the disintegration of nitrogen molecules at

these pressures.

If we assume a homogeneous composition, the atmospheric pressure, ac-

cording to Fesenkov, is given by the curve At" {see Figure 4).

The volume percentage content of the individual components of the at-

mosphere is given, according to Fesenkov, Vetchinkin, and Humphreys in

Figure 5, and according to Wegener, in Figure 6.

2. INFLUENCE OF COMPC_ITION, DENSITY, PRESSURE AND TEMPERATURE OF THE

ATMOSPHERE ON TECHNICAl. FLIGHT PROBLEMS*

From the above figures, we see that at a height of 55-60km above the

surface of the Earth the volume of hydrogen is approximately twice the volume

of oxygen, so that the mixture constitutes a detonating gas to which nitrogen

has been added. If we are able, by means of the special jet superchargers

which will be discussed below, to compress this mixture to sufficiently

high pressures, it would be possible to use it as a fuel, eliminating the ne-

cessity of liquid fuel for high velocity flights at this height and also for fur-

ther acceleration to the first interplanetary velocity of 8km/sec.

* tit is interesting to remark that although the concept of the atmosphere's structure prevailing at the time

has been found inaccurate, some of Tsander's conclusionS and proposals have turned out to be of great

practical s_gnificance {e. g., the importance of aerodynamic heating and the solution of this problem by

ablative cooling).]
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The atmospheric density at this height is approximately 0.0001 kg/m 3,

whieh corresponds to a flight velocity of _3500 m/see for an airplane brought

into motion by a rocket*. In this ease it is preferable _t_ fly slower, since

then the velocity is lower and the amount of propellant consumed for accel-

eration up to the flight height of 55-60km is smaller.

However, in our case the necessary amount of propellant is considerably

reduced, due to the fact that at velocities larger than 3500m/see no propel-

lant is used. Using, for example, an ordinary jet engine working on gaso-

line and liquid oxygen, and assuming an ejection velocity of the combustion

products of gasoline equal to 3340m/see, we need in our case (in order t_

reach a height, attainable for airplanes, of 60kin) an amount of gasoline

and liquid oxygen constituting 65 % of the total weight of the ship. If we

do not use the detonating gas, then the amount of propellant required for

flying around the Earth should constitute 91% of the total weight of the ship,

neglecting in both cases air friction and the Earth's attraction; for an in-

clined flight and sufficiently high accelerations, the actual amount of propel-

lant does not exceed the above-indicated by much.

In order to support the full weight of the airplane up to flight velocities of

about ll,000m/sec, we need an atmospheric density of about 10 -skg]m 3,

which exists at a height of 89-90km over the surface of the Earth. At a

height of 200kin over the surface of the Earth, the atmospheric density,

even taking into account its heterogeneous composition, is equal to 1:330

only of the above-indicated figure; its resistance is reduced by the same

amount for that flight velocity. It follows therefore that for a complete

departure from the atmosphere, the atmospheric layer above 100-120km

does not play a great role. The situation is different if we desire to fly in

the extremely rarefied atmosphere. It can be easily seen from Figure 2

that for a homogeneous composition of the atmosphere its resistance at heights

greater than 120km can be completely neglected since here lg'l_,= -7.5, i. e.,

_is= 3.10-8 kg/m 3.

The atmospheric pressure is of interest to us because the efficiency of

jet engines increases with height over the Earth's surface, since the gases

can expand more; it is assumed that the nozzle is constructed so that

its exit cross section can vary in such a way that for constant initial

pressure the final pressure is always equal to atmospheric. We shall

further see that a pressure of 0.001arm is completely sufficient for

obtaining thermal efficiencies of 80 to 90%. This pressure exists at a

height of 45-50km.

In the presence of external lubricated parts or open vessels for melting

metals or other types of propellants as, for example, naphthalene or cel-

luloid, these may evaporate rapidly in the almost absolute vacuum. It

should be remembered, however, that due to the strong cooling the external sur-

face freezes. The partial pressure at the moment of freezing is extremely

small-for metals it is of the order of 10-6arm; by covering the metals by a

layer of nonmelting material or constructing a jacket, inside which a gas

under rather low internal pressure is held, it will be possible to reduce the

evaporation considerably.

At pressures lower than _150mm of mercury man needs either a her-

metic cabin or a completely closed suit.

* [The way Tsander finds a correspondence between densi W and flight velocity is not clear.]
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Air temperature at great heights plays a rather important role in deter-

mining the heating of the frontal parts of the ship. Assuming adiabatic corn-

pression of the air at the vehicle's front, a rather strong air heating may be
obtained. This will happen in particular if the air temperature, calculated

by Professor V.P. Vetchinkin for heights of 60-80km (up to +60°C) where

strong temperature inversion occurs, will be found by further research to

be correct.

Assuming adiabatic compression of the air, its temperature can increase

Considerably at these heights in particular, and itmay turn out that all parts

would melt, making flight beyond the limits of the terrestrial atmosphere

very difficult. A calculation of the heat developed per unit time based on the

power corresponding to the airplane's total resistance indicates, however, that

it is quite possible to remove it. This can be achieved either by making the

frontal parts of refractories or by passing through them a sliding surface
which would also come into contact with cold air. It will also be possible to

utilize the heated parts as heaters for the air, for the evaporation of the fuel

and also for melting of the more fusible metals. If local heating turns out to

be too great, the flight through the air layer from 60 to 80kin must be com-

paratively slow and one then accelerates above 80 km (for example, with a

velocity of 4.3 km/sec and at an angle of 40 ° to the horizontal).
In vertical ascent the velocity becomes zero at aheight of 80kin if the

rocket's velocity at the Earth's surface was somewhat above 1.3 km/sec, and

flight continues by inertia; if, however, ascent is effectedby accelera-

tion, the amount of propellant for the entire flight up to velocities of

5-12km/sec will be larger.

In order to counteract the extreme cooling of some parts in flights out-

side the atmosphere it is possible to pass an electric current through them;

other parts can be made tubular and one could pass heated air through them
or use them as radiators. Certain components could constitute apart of the

jet engine, as will be explained below. Due to the fact that at low tempera-

tures heat capacity and radiation are low, a small amount of heat should be

sufficient for a quite considerable amount of heating. Such metals as tin and

certain kinds of steel, possessing high strength at low temperatures, can be

used in very hot places together with materials possessing great strength at

ordinary temperatures.

At great heights the pilot's window will not be cooled but at low altitudes

the glass has to be heated either by warm air from outside or by warm wa-

ter, circulating between double windows, from inside. One can also con-

ceive a rotating brush which wipes the glass automatically and is then

dried when passing near very hot surfaces such as the exhaust tubes of the

engine. It is also possible to build the external windows as a moving trans-

parent band, which is dried inside the ship on part of its path.

3. REVIEW OF METHODS FOR ATTAINING GILEATHEIGHTS AND HIGH FLIGHT VELOCITIES

In passing to the basic problem of super-aviation, the methods for attain-

ing great flight velocities and heights, it has to be noted that research and

experiments have brought, in recent years, such advances in rockets and jet

engines in general, that their use in super-aviation is no more in doubt.
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Centrifugalsuperchargerstakefirst placeamongthemethodsusedfor
increasingthepowerof aviationengines.It is possibleto increasetheir
efficiencyto approximately80%bygivingtheinlet andoutletsuitableform
anddimensions;thedegreeof superchargingcanalso]seraisedbyincreas-
ingthenumberof rotationsandthediameterof thewheel. In this respect,
however,there is a limit to theperipheralvelocitysuitablefor super-
aviationpurposes;it shouldnotexceedapproximately500m/sec.Thiscor-
respondsto a pressureincreaseupto h=_ T-!u'=0.5 50_ = 15,600ram of water.

g 8

or approximately 1.5 arm for one stage.

When two stages are used, there is atemperature increase which causes

certain difficulties. It is very likely that a further increase of the engine's

power may be achieved by placing the carburetor between the first two

stages; in this method, no special heater for the carburetor is required in win-

ter. In the jet engines examined below, it is possible to transform heat into

useful flow velocity producing a thrust; this feature does not exist in super-

chargers.

With two stages, the pressure obtained is equal to about (1+1.56) 2=6.5

times the initial pressure; this will provide normal engine power up to a

height of about 13kin (see Figure 1). The free atmosphere pressure at this

height is about 1:6.5 kg/cm 2.

With ten stages, a compression factor of 2.56z°=1.2.104 is obtained which

would give, under complete cooling of the air, normal power at a height of

approximately 85 km, although the power required at this height is many

times larger. However, due to the large supercharger, the weight of the en-

gine is almost doubled and the air temperature is raised by a factor of

(2.56'°)°._1'._=2.562s6=14.7, or approximately to 285.14.7=4200 ° abs. Even

with complete cooling between each couple of neighboring stages (which is

not quite possible) the amount of heat, uselessly removed, is great and the

power necessary for operating the supercharger is considerab]e.

It is possible, nevertheless, that a combination of such an engine with a

jet engine in whose channels the compressed air is cooled, will allow us to

attain a height of about 60 kin, as mentioned earlier.

At peripheral velocities larger than 500m]sec, the weight of the super-

charger's wheel becomes too great. In order to reduce the gyroscopic

effect on the airplane, one part of the supercharger must be operated in one

direction and another in the opposite one; this may be accomplished by a

design with two parallel axes.

Next, it is possible to increase the engine's power by increasing

the area of the piston for constant dimensions of the crank mechanism. This

measure, combined with an increase in compression ratio in usual engines,

gives rather good results; the increase in compression ratio economizes

the fuel. Under super-aviation conditions, an increase in the piston area

by a factor of nine trebles its circumference, and also the weight of the

cylinders by approximately the same amount. For cylinders arranged in

series, this increases the length of the shaft, while in a star-engine

this requires, in general, removal of the cylinders further from the center.

This method may, nevertheless, find some application in combination with

the previous one.

Another method for increasing the power of the engine is the addition of

oxygen to the air. By adding pure oxygen to the fuel, the calorific capacity

•is increasedby a factor of 4-5, andby adding 15 % of oxygen, it goes upby 50%.
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Theliquid oxygenweighsapproximatelyfour timesasmuchasthefuel,
but in verticalflight greatheightsare rapidlyattained. Therefore,the
methodof adding atomized liquid air in the space between the stages of the

supercharger can be regarded as important. Complications arise due to

the explosiveness of a mixture containing
_klll
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PO kg/cm2

FIGURE 7, Average effective pressure

of high-akitude engines up to a height

of 9 km

oxygen. However, the methods for reduc-

ing detonation eliminate these difficulties,

especially when operating on heavy fuel.

In engines working on liquid oxygen, it

would be possible to allow high friction on

the shaft journal (larger than kv) if the shaft

and the hearings are cooled by liquid oxygen.

Liquid oxygen may also be used for partial

cooling of the cylinders, which may there-

for have larger dimensions.

The reduction of the average effective

engine pressure with increasing flight

height is shown in Figure 7 for low alti-

tudes (up to 9 kin): curve 1 refers to an

ordinary engine: 2-to an engine with an

enlarged compression ratio; 3-to an engine

with an enlarged compression ratio and

enlarged piston dimensions; 4-to an engine

equipped with a supercharger; 5-to the use

of additional oxygen.
Engines working on pure oxygen instead of air have not yet been studied

extensively. I have designed schematically two such engines. In the first

one, liquid oxygen is sprayed directly into the cylinder by a special pump

together with liquid fuel. In this design a very high pressure, of approxi-

mately 200arm, is envisaged; the enginels weight is very small and it may

work with a variable volumetric efficiency. In combination with a jet en-

gine, it would weigh, for a large volumetric efficiency, tess than 0.2 kg/hp.

In this design, the following points have not yet been investigated:

1) the possibility of injecting liquid oxygen at high pressures;

2) the possibility of ignition with liquid fuel, which may be established ex-

perimentally in the combustion chamber of a jet engine. If this is successful,

liquid oxygen may be used in aviation engines;

3) the possibility of cooling the walls of the cylinder, which, however, does

not cause any complications for small diameter cylinders;

4) the possibility of constructing a system of leakproof piston rings for

the combustion products at such a high pressure.

The low weight of an engine operating on liquid oxygen allows 2-3 hours

of flight, and the total weight of the engine, fuel and oxygen is lower than

that of an ordinary engine with its fuel. By varying the pressure and the

volumetric efficiency, it is possible to vary the power within rather wide

limits. Furthermore, the airplane is light due to the low weight of the en-

gine and this enables it to ascend higher than with an ordinary engine.

The second design is of an engine with external combustion of oxygen

with fuel; this has the advantage that at low altitudes, the combustion
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products can be used in the engine, and at high altitudes - in the rocket.

The combustion process can take place in the combustion chamber of the rock-

et. However, in this connection there are some difficulties with the cooling

of the inlet valve by liquid oxygen, a possibility which should be tested first.

4. JET COMPRESSORS, THEORETICAL COMPRESSION DIAGRAM COMBINATIONS

OF JET COMPRESSORS WITH lET AND PISTON ENGINES

I shall now examine types of jet compressors in which air, or generally

any gas, after being heated under a given pressure and expanded adiabat-

ically, polytropically or according to any other law, accelerates in a

nozzle where a rather low pressure is attained. The gases are then

compressed again, slowing down in another chamber. The process

takes place again according to some law. This can be, in particular, either

isothermal or almost adiabatic. The important point is that during the corn -

pression a rather large amount of heat should be removed from the gas.

_ Pl=L36atmj_O

_1= b6,$cal/kg

"e-.o_ _ _=,8, ° . ¢OOQr _o_

G _ PO =O'/65atm

[ D] _=288 _ tl/O--- _Om/se c

FIGURE 8. pv diagram of a jet compressor; air compression to
P2 - 1.86 atm

The theoreticalpv diagram (p-pressure, v-volume) of such a device is

shown in Figures 8 and 9. FigureS refers to a compression from Ito 1.86atm,

and Figure 9 to a compression from I to 10atm. The initial state of

the gas is represented by point B (see Figure 8); the gas is heated at con-

stant pressure, its final stage being point C; then it expands down to point

D and is compressed again along the curve DBE.

The velocity is given by the formula w_-/2g=S vdp. Thus, the velocity at

point D, for example, is obtained from w_12g=area of ACDG; the velocity at

point B in the reverse compression isw_ /2g=area of BCD; the velocity at

point E is equal to zero if the area of BCD is equal to the area of FEBA.

The practical diagram will differ somewhat from the theoretical one and

will give a somewhat lower pressure. The pressure p, the temperature
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T°abs and the velocity wm/sec are given in the diagrams as well as the

amount of heat which has to be supplied or removed from the air.

The scheme of the apparatus for this cyclic process is shown in Fig-

ure 10. High pressure gas (combustion products from the engine or fuel

specially burned under high pressure, and so on) f]ows through the chain-

betH; it expands and is recompressed to the pressure of the external air

in the inverted coneL, and streams out through the openingO. External air "

is sucked in between the external jacket A and the chamber H; from B to C

it is heated by ribs. The chamber H may a]sohave the form of a heating

spiral or of a radiator. From C to D the air expands and is then compressed

again, leaving for further use through pipe E. K is a small pipe instead of

which an opening in the wall of the internal pipe can also be used. This pipe

serves as an air pump for establishing the low air pressure in the cavity D

during the starting period; P are cooling ribs or a cooling medium, e. g. ,

liquid air, rather cold fuel, or cooling water.

4£$cal/k_

w[6zo
T=ZS&°

FIGURE 9,

/00 q_ o
L -W-, =,_%

_=flZ, Scallkg _e=O'_'l

pl= /an,L/ rO;,_ 0 ta=,q70m/sec

E T7= 760O abs p = 0.O3$atm

_....R= 1.405 r=Z$8 °

66..5 cal/kg "lJ

pv diagram of a jet compressor; com-

pression of air to p2=lO arm

FIGURE 10. Jet compressor for compressed air

The high pressure which may be expected from these devices, makes it

quite probable that they will replace the engine supercharger. The pres-

sures which may be attained under intensified cooling are so high that
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especiallystrongengineswiththickpartswill be requiredandthepower
will increasevery muchevenat greatheights.

In combinationsof engineswiththesedevicestheheatingfromB to C

(see Figure 8) can be secured partly from the air, which cools the cylin-

ders, and partly from the exhaust gas. In engines with air cooling, 58 %

of the entire heat contained in the fuel is used for cooling the cylinder and

in the exhaust; this ensures strong air compression.

We can also go further and let the air, sucked in at B, pass with a cer-

tain velocity through pipe E and use its thrust, by pointing the pipe in a direc-

tion opposite to the airplane's flight direction.

It is also possible to compress part of the air to a pressure larger than

one atmosphere and the rest, only to a pressure of one atmosphere. The

first part may be used for combustion and the remaining, for production.

In one variant, the entire device may be placed at the end of the propel-

ler blade, bringing there the exhaust gases of the engine. The high periph-

eral velocity of the blades enables one to use, to some extent, the ki-

netic energy of the air reaching the device at B.

The combination of an internal combustion engine with a jet engine isvery

advantageous, since the first has a high efficiency at altitudes attained al-

ready how, and the second, at altitudes at which the propeller unit cannot

be used.

Theoretical diagram of atmospheric air compression

by a jet compressor

Let the initial pressure of the air or gas we want to compressbe p,kg/m 2,

its initial temperature 7_, abs. Let us also denote by vlm3/kg the specific

volume of the gas and by R, the gas constant (for air R=29.26).

Then the specific volume in the initial state, corresponding to point B in

the pv diagram (see Figure 8), is obtained from the equation of state

RT,, ( 1 )
V a -------

P1

Heating the air under constant pressure p_ to temperature T,. we obtain for

the specific volume

Rr, (2)
"01 _ --

Pl

From this we find point C of the diagram.

If the velocity of the gas at point C is low, its kinetic energy can be neg-

lected. In the case of a fast airplane or rocket, we have two possibilities:

1. We may take for the velocity at points B and C of the diagram approxi-

mately the flight velocity; then the pressure p, will be equal to the pressure

of the surrounding atmospheric air.

2. We may compress the air at the entry to the device by a special noz-

zle, as in the Loren engines; then, p, will be greater than the pressure of

the surrounding atmospheric air, and the velocity for points B and C of the

diagram will be lower than the flight velocity.

Let us denote in the general case the velocity at point C by m,. Ex-

panding the air adiabatically to a low pressure P0 corresponding to the
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temperature of the surrounding medium or to a lower temperature To the

kinetic energy increase of the air is given by

TIP_
74#

_I v alp, (3)
2g

9o

or, for an adiabatic expansion

_ff0 . ]
_g-_o_2g _'A (r'-- r°)-= _---_i-RT'- 1 \P, )-r-j, (3a)

where cp is the }]eat capacity at constant pressure;

A=1:427 is the mechanical equivalent of heat;

k=cf& is the polytropic exponent.
CV

From this expression we may determine the velocity w0 at point D.

In the last equation RT, can also be replaced by p,v,.

Formula (3a) is easily obtained by integration, if we remember that

"_ = k---_R. (4)
A k--I

The pressure p_ at point D is obtained from

k

(_

The specific volume at point D is equal to

(5)

v--- Rr._____o (6)
P0

The amount of heat, transmitted to the air under constant pressure along

BC, is equal to

Q_ =%(T,--ro):_ AR(T,--r.). (7)
k--I

In a theoretical cycle, the greatest final compression pressure is ob-

tained by carrying out the compression at the lowest temperature. Taking

an isotherm for the compression, we obtain for the velocity in the inverted

cone (in which the compression takes place under atmospheric pres-
sure)

P_

w°-_8 yelp, (a)
2g

where t_ is the air velocity at point B in the reverse compression.

After substituting v from the equation of state of the gas we obtain

for an isothermal compression

_0 2 --
_'S:Rro In P._L. (8a)

2g PO

The velocity w_enables us to compress the air to a pressure P2 higher

than the pressure p>
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We shall examine here only the case in which the entrance air velocity

w_can be neglected.

In this case, the air loses again all its velocity at a point for which the

following condition is satisfied

S "vdp= vdp. (9)
Po Po

However, compressing the air according to an isotherm, we obtain

vdp=RTol n P_
Po

p_

(10)

and, taking into consideration that from (3) and (3a)

O*

(Ii)

we obtain by substituting (10) and (1 1) in (9)

P2 C9 IT T

Rr0 fn_ =-X'-'- 'o,-

Further, using equations (5) and (4), we obtain for P2:PJ

(9a)

= / r0V-' (T.-').
Pl Po P_ \Tjl

(12)

By giving, for example, the ratio T0:T,, we can calculate the pressure

increase p::p_ for this theoretical cycle.

The solution of the reverse problem is not so convenient. However, it

is possible to determine the curve p2: p, vs T, : To for a given k and then to

calculate the required T, : T0for a given P2 : p,.
Let us also determine the amount of heat which has to be removed from

the air during its compression in the inverted cone. From the lowest

pressure Po to the pressure p, (path DB in Figure 8), the following amount of

heat has to be removed per kg of air

P_

QwB= A _ _,dp =At_RT oIn _ ;p0
D*

this follows from the general equation of thermodynamics

(13)

--dQ =di--Avdp, (14)

where dQ is the heat removed, and diis the enthalpy increase. However, in

view of the fact that the temperature is constant, we have di=0; in this case,

we obtain equation (13) by integration of (14).
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Comparing(13)with(8a),wealsofind

i.e., underisothermalcompression,theentireheat,correspondingto the
reductionof thekineticenergyof thejet, shouldberemovedthroughthe
walls.

In a similar wayweobtainfor theamountof heatwhichhasto beremoved
from theair alongBE (see Figure 8) for a pressure variation from pi to P2

Q2_= ARToln _---=A'w----__a . (15)
Pl 2g

We divided the compression curve into these two sections in view of the

fact that in the jet engines examined below, the compression is partly car-

ried out to the pressure Pl only, letting the air with the velocity _ into the

atmosphere in order to obtain an axial thrust from the atmospheric air en-

trained in this way.

The total heat removed from the air during its compression in the in-

verted cone is equal to

Q2"= Q2os + Q_sE = AP, To In P: p_= ARTo In P2 =Aw_ i " (16)
Pl Po Po 2g

In our case, the initial temperature 7", of the air sucked in was taken

equal to the temperature To of the isothermal compression. In this case we

find easily from (7) and (3a), assuming T0=T, and wl=0

Q, =_-- (17a)
2g

Comparing (17a) and (16), we find that in our case Q,=Q2, i.e., in the

diagram of Figure 8, the whole heat which was given to the air under con-

stant pressure pl should be again removed from it in the reverse isothermal

compression.

However, the air temperature varies during the heating from To to T_ and

in the reverse compression it was equal to the lower value T0, so that heat

passes from a higher source to a lower one.

We shall see nevertheless in the following, that the heat Q2 which must be

removed from the air can be used to heat the fresh air. The cycle, how-

ever, must then be different.

Let us also determine the efficiency of the working cycle considered.

The thermal efficiency of the cycle BCD, in which air is compressed only

to the pressurep_, is equal to

_,_1 - _p-_- , (17)
Oi

since QI- Q2oe is the useful kinetic energy obtained.

But, in our case

QI -- Q*DS_'_Q_#E" (18)
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Using (15) and (7) and taking r.=To, we ohtain

ck_ i)ro_.2._" ,. (p, _ -c-
_t,-- Q--'7--- _(r,-ro) -- r, (19)

----|

r0

We can look upon the second cycle ABEF (see Figure 8) as the isothermal

compression cycle with which other cycles are usually compared. The ki-
netic energy spent here is equal to (see 15)

The useful compression work obtained, equal to the area ABEF, is given
for an isotherm by

Rr0zn P-L,
Pl

i.e., it is also equal toQ2B_:A

Therefore, the thermal efficiency of the cycle ABEF is

R.To_n
PJ -_I

_g

and the total thermal efficiency Nt is
k--I

_¢= _t ,"q¢_---._¢j = . • . (19a)
r, l
r0

Example. The theoretical diagram of air compression from p,= 1 atm to

p2=1.86atm (see Figure 8).
We take for air

k= 1.405; cp=0.238; To--288°abs.

Let us determine initially the values of p_:pj for a series of values T_:To

according to formula (12) (see Figure 20 below); we find r--!-_ 1.68 for ____2 I.___
To Pl ] '

and therefore, T,=1.68.288=484 °abs.

The pressures and specific volumes are now obtained for points B, C ,D
and E.

]?or point B

for point C

pt-----I atm; To=T0=288°; v= z_r°=_26'288=O.844m3/kg;
Pl 1 .lt_

p,-_latm; Tj_484"; v_29'26"484==l.416m3/kg;
l.I04

77



for point D

for point E

t 1.405

rTo =_
70=288°; v=_9"28"2BS=5.11 mS/kg;

0.165.10 _

P2= 1.86atm;To_288°; v=29"2628-_S----O.453mS/kg.
1.86.104

The amount of heat transmitted to the air along BC is, by (7)

Q, ___.__._k AR (T t -- T0) _---1.405.29.26 (484 --288) = 46.6 caI/kg;
k -- 1 0.405.427

the amount of heat, removed from the air along DB, is by (13)

Q._. = ARToln ____ 29.26.288 In _ = 34.7 cal/kg;
•ou P0 427 0.165

and that along BE, by (15)

Q_se 29"26'2881n 1.86= 12.3cal/kg; 34.7 +12.3=47.0ca]lkg.
427

By (17) the thermal efficiency is

_t = _/n _---1 -- Q2D....__gn= l -- 34"7=-0.255.
QI 46.6

If the compressed air has to serve for burning gasoline, giving i= H, =
L

= 10500---705cal/kg (where I-1_,=10,500 eal/kg is the calorific value of gaso-
14.9

line and L= 14.9 is the theoretical amount of air required for the combustion

of Ikg of gasoline), then the theoretical fraction of this amount of heat

that must be spent on air compression, is

lOOL.Ot = 100.14.9.46.6 =6.63%.
Hu I0 500

The theoretical air velocities at points C, D, B , and B are the following:

at point C w,=0; at point D, according to (7a)

where

w o = V/_A g Q, = 91.5 _= 630 m/sec,

_-V2.9.81.427---91.5.

According to equation (15), for reverse compression at point B we have

w B = 91.5 _ = 91.5 _= 317 m/sec

and, finally, at point E, tv2 = O.
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S. DIRECT-ACTION JET ENGINES WiTH CONSTANT FLOW VELOCITY. CURVES OF

STATE OF GASES VELOCITY. AXIAL THRUST. HEAT TRANSFER THROUGH THE

WALLS, FRICTION WITH TItE WALLS

Let us now examine pure jet engines. If the engines are mounted on an

airplane the engine nozzle is placed with its axis more or less hori-

zontal. If these engines are built into the structure, they may consti-

tute an independent flight device - a rocket.

By the term pure jet engines, we mean those carrying with them the oxy-

gen for combustion.

Most jet engines described in literature are of the direct-action type,

i. e., the propellant is burned under high pressure and then expands in a

nozzle of suitable form. The combustion products do not participate in a

cyclic process, but are ejected directly from the nozzle with a velocity

which is constant or almost constant with respect to it (luring the entire

flight.

f I l
I p. =/0atm ] dm=6.85cm I I

# _ =3620o G=3.33 kg/sec

7It ! wz _ ..........

o _.o7 5 ...11-'" ° .......... _t
o. • . ° _...... _.

_ __!_ .-" _J._._1,- ___-I 0.8 _4 .: "'l p

"_ • •

_z 0., _, ' , ......

"_-_ o_z i -_-_-_ p

t I

Pkg

200O

1500

1000

500

FIGURE 11. Diagram ofstate and flow ofthe gases in a hydro-

gen-oxygen rocket

I performed a calculation of the phenomena taking place inside the nozzle

of such a rocket for a large hydrogen-oxygen rocket with a thrust of approx-

imately 1500kg; the calculation is analogous to that of steam turbine injec-

tors, where a specially constructed iS diagram (i-enthalpy, S-entropy) and

Pit's* formula for the heat content of water vapor are used. When the di-

mensions of the nozzle are large, the amount of heat passing through the

walls represents a small percentage of the total heat andI have, therefore,

assumed an adiabatic variation of the state of the gas (Figure 11).

* [The name has been transliterated back from the Russian.]
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Basic data of the rocket

Combustion pressure 20 atm

Combustion temperature 3620 ° abs

Hydrogen flow rate 0.37kg/sec

Oxygen flow ratu 2.96 kg/sec

Minimum diameter of the 6.85 cm

nozzle

Angle between the axis and 10 ° and

the generatrix of the 10 _ and 12°10 '

nozzle cone

In Figure 11 the following quantities are given as functions of the dia-

meter d of the cross section considered (this may be taken in particular as

the exit cross section):

w2 the velocity of combustion products, km/sec;

t ° the temperature of gases, ° C;

]gPatm the logarithm of gas pressure;

lgT(kg/m 3) the logarithm of specific weight of gases;

P the resulting thrust, kg;

_, the thermal efficiency up to the cross section considered, as-

suming the heat of the exhaust gases as lost.

We can see from the diagram that _he curves for P, _lt and w2 change rather

sharply from a steep ascent to a gentle slope at a pressure of about 0.01 atm,

which corresponds to a diameter of the exit section of approximately 1 m,

t°_1500 °C, P_1500kg, w2=4.4km/sec, andre=0.71.

We may therefore draw the conclusion that direct-action jet engines,tde-

veloping tremendous power at high flight velocities, need a comparatively

smaI1 cross section. The length of the nozzle is approximately 2.6 m.

A free atmospheric pressure of 0.0latin exists at a height of approxi-

mately 28 km. For operatingthe engine at low altitudes, it is possible to

construct a nozzle with streamlined folding walls, though, due to the re-

sulting impact with the air sucked in, it is expedient to use in this case one

of the jet engine designs considered below, which suck in external air.

Regulation is also possible by varying the initial gas pressure, by vary-

ing the minimum cross section area of the nozzle or by varying the exit

cross section by means of a flexible tube or flap.

Figure 12 has been composed with the purpose of showing the influence

of the initial pressure p_ on the final diameter of the nozzle for a given final

pressure and given minimum diameter. We see the linear dependance of

the thrust P on p,, while the final nozzle diameter d2 depends also, but not so

strongly, on Pl. We can therefore conclude that the use of high combustion

pressures (about 100atm) is possible.

The combustion chamber. Assuming for it a diameter of 0. 5 m,

a length of I m, and a wall thickness of 4 mm, and using the Nusselt-Nernst

formula for heat transmission through walls, we find for a cooling water

temperature of I00 °C, a heat loss of approximately 0.4 % of the entire heat

contained in the fuel; the difference between the temperatures of the exter-

nal and internal wall surfaces is only 2°C. We see, therefore, that for

a combustion chamber of large diameter the heat loss is negligible.
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The heat loss through the walls of the nozzle was de-
termined for various diameters, starting with the smallest (Figure 13).
Curve 1 represents the heat loss through the walls in eal/hour for unit length
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of the tube (lm). Curve 2 represents the percentage fraction of heat loss

starting with the smallest diameter. We see that the total loss in this sec-

tion is equal to approximately only 2 % of the total heat contained in the fuel.

Curve 3 represents that temperature _ of the walls (the least suitable one)

(t_ t i,
at which the heat flow rate is highest _--_) where t is the gas temper-

aturej and I_ is a temperature dependent coefficient in the heat conductivity

of water vapor). The entire calculation of the heat transfer through the

walls was performed according to Nusselt's formula

• =19.23 _

where ,, is a coefficient of heat transfer from the gases to the nozzle walls;

Xand _w are the heat conductivity coefficients of the gases at the average

temperature inside the nozzlej and at the wall temperature;

cp is the specific heat of the gases at constant pressure;

d is the nozzle diameter;

B is the fuel flow rate.

In this formula, the heat transfer coefficient _ and the percent of heat

lost through the walls, are inversely proportional to d0-2_t i. e. , by reducing

the diameter by a factor oftenj the percent of heat lost is increased by a

factor of 10 °2_=1, 64; in other words, in smalt rockets the percent of heat

lost is larger than in big rockets. This conclusion is applicable to nozzles

having similar forms and identical initial state of the gases; Nusselt's for-

mula is applicable if the temperature of the walls is higher than the lique-

faction temperature of the gases or part of them, i.e., in the absence of

condensation. In this respect rockets are more advantageous for use than

aviation engines, where much heat is lost due to the fact that part of the

gases is liquefied near the walls of the cylinders which are considerably

colder than the walls of properly cooled rockets.

By increasing the initial pressure of the gases, the coefficient a increases

proportionally to B °-_s6, and the percent of heat lost is reduced proportionally to

B -02,4 for a given nozzle.

Curves 4 and 5 show the temperatures of the nozzle walls due to heat ra-

diation; it is assumed either that the walls are bare (@'-curve 4}, or that

their radiation surface is increased by a factor of ten using ribs. It is seen

that in the first case the temperature is higher than 800 ° over a length of

approximately 1.5 m and in the second case that temperature is established

over a length of approximately 0.6 m.

The nozzle walls will have the temperatures indicated above only if wc

wish to pass through them the greatest amount of heat without the appearance

of condensation. We can, of course, maintain any temperature of the walls,

cooling them, for example, by water or by liquid oxygen.

If the walls are thick, heat propagation along them is rather important

for successful heat removal and the wall temperature falls off steeply atthe

nozzle throat. A sufficiently low temperature can be easily established by

heat radiation; from Curves 4 and 5 (see Figure 13) it is seen that quite

close to strongly heated places of small diameter there are places re-

quiring comparatively little heat removal.
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Theheatgeneratedby friction with the walls canbe expressedbythe
formula

z- f caltkg.- 2-/[J

where _ _ 0.02 is the friction coefficient, A=11427, g0=9.81m]sec 2.

For the above-mentioned nozzle, the curve ofw2/dis shown in Figure 14.

The total loss constitutes 12.3% of the entire heat contained in the fuel. For

similar nozzles, the percent lost is a constant quantity, if the final velocity

wzis the same in both cases, i.e., if the initial and final gas pressures are

the same. The greatest loss occurs somewhat behind the throat; this place

should be especially smooth. The pressure loss in the nozzle due to friction

is given by the expression

t/35 .

The curve_--ls also given in Figure 14; the greatest loss is near the
d

throat; the total loss is 3.5% of the initial pressure.

1M Z

-_- km/sec 2

fZ 30 .....

l 058

8

#

o t

FIGURE 14.

'T-
=20atm

3 '_ 5 [m

Friction of H 2 + O gases in a rocket

The increase in thermal efficiency with height for various initial pres-

suresp_, assuming adiabatic expansion after combustion, is shown in Fig-

ure 15; we find e.g., that an initialpressurepr-latm, gives,it=0.20 at a

height of 16kin. For such a low initial pressure, the walls of the nozzle

may be very thin.

Instead of the above formula for Z it is possible to use more exact for-

mulas, taking then w '-T instead of w 2. This, however, changes the picture

very little.
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6. JETENGINESWITlfCLOSEDWORKINGCYCLE

Theuseof a closed working cycle in a jet engine with constant exhaust

velocity has a great effect in flights in a not too rarefied atmosphere.
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FIGURE 15. Thermal efficiency of a rocket, flight

velocity and power of a jet engine as functions ot

flight altitude

Indeed, examining the diagram in Figure 16, wherepis the pressure, and

v is the specific volume of the gas expanding in the rocket nozzle, we find

that the velocity attained by the gases leaving the nozzle is given by

Da

Pz

where p= is the combustion pressure and p,, the pressure of the free atmos-

phere at the given altitude above the Earth.
Pa

However, _ v dp is the area of ABCD. If we continue the expansion curve
Pz

(adiabatic, polytropic, or any other curve) beyond point C and then compress

the gas isothermally along EF at a temperature as low as possible, then the

total area, corresponding to the kinetic energy, w:/2g, of the gas obtained
will be equal to ABEFD; this area is considerably larger than the area
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ABCDand, therefore, the exhaust velocityW2, the reaction force Pand the

total thermal efficiency ,lt are increased.

8

P.

,E

FIGURE 16, po diagram of a jet engine improved b'_

a working cyc le

The gas can be cooled strongly in the reverse compression, it can also

be cooled initially at the lowest pressure since here the friction Ioss is

small {see Figure 14), and compressed ]ater, while cooling, to the pres-

sure p=.

Ribs for strong

- L@

Ribs for weak Cone for re_ erse

cooling /._/ compression

' r y " k.J O_eheatoffllc

external air

FIGURE 17. Two schematic diagrams of jet en-

gines improved by a working cycle

A scheme of such a rocket is shown in Figure 17. The cooling can be

performed either by air (with longitudinal ribs) or by water; if liquefied

gases (02, H a or others) are available they ma3; also be utilized for cooling.

Another possibility is to cool or freeze the usual fuel (gasoline, toluene) before

the flight, in order to obtain an area _ t, dp, as large as possible i.e., a

thrust as large as possible.
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For a low energy fuel it is possible to extend the expansion curve to

temperatures lower than that of the externalair. When cooling by liquid

air or by liquid hydrogen it is possible to use some of the heat of the ex-

ternal air, i.e., using the energy of the atmospheric air: this is possible

since on Earth we have done research on the cooling and liquefying of fuel.

A detailed investigation of the conditions under which one could regain

part of the rather great amount of energy spent on the liquefaction of oxy-

gen and hydrogen would be desirable; the entire working cycle should tllen

be carried out accordingly. In this case hydrogen will become an even more

powerful fuel.

It is also possible to start a secondary expansion, e.g., a polytropic ex-

pansion with subsequent compression (see curve GHIin Figure 16) at a par-

ticular point on the compression curve.

This method can give good results if the cooling on curve EG is effected

at a higher temperature than on curve HI.

7. EFFICIENCIES OF PURE JET ENGINES USING COMBUSTION PRODUCTS EXCLUSIVEI.Y

While the thermal efficiency in the method described above can be in-

creased already for low altitude flights, the mechanical efficiency of the jet

engines considered here remains low at low flight velocities since the com-

bustion products carry with them a large amount of kinetic energy (corres-

ponding to their absolute velocity).

This follows also from the following considerations.

At flight velocities v, small compared with the exhaust velocity w2, it is

sufficient to consider the efficiency _1i, which is equal to the ratio of the use-

ful work during a short time interval, to the total heat content of the fuel

consumed during the same period of time

_ 2v_2 = 2__L_is the ratio of the useful work to the energy correspond-
where _,-- '_'--T _2

ing to the velocity _2;

_= w_ is the velocity reduction coefficient due to friction;
_2 max

_t_=it--/2 is the thermal efficiency, where i_ is the initial enthalpy,
i I -- t 0

i_ the effective final enthalpy, and i0the greatest possible
final enthalpy without friction.

We may also write

2_v :_
_i_ w_ rnaK '

It is seen, therefore, that for a constant exhaust velocity, _1_is propor-

tiona] to v, i. e., at low flight velocities the efficiency is proportional to

the flight vetocity (Figure 18).

If the flight velocity is increased so much that the kinetic energy of the

propellant in the tanks of the ship (airplane or rocket} starts to increase

* [The assurnpt_on _t:l is implicitly made here. ]
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noticeablyascomparedwith thethermalenergy,thenwehaveto takeinto
accountthesumof theabsolutekineticenergyandthethermalenergyof
thepropellantexhaustedat thatinstant. This efficiencyis denotedby_];+e-
Wecanthenwrite theformula(whichI derivedin 1918)

A '2g '2w2v = _ =

where v2 denotes the absolute exhaust velocity after ejection from the nozzle,

and q, is the heat escaping to the outside in cal[ kg.

Curves showing ,I_+E vs v/w2 and vs the flight velocity v for an exhaust

velocity w, of 4000m/sec are also given in Figure 18 for,1,.q_=l, _t.cp2=0.75
and 'i," _2=0.5.

Thus, the theoretical maximum of,1;+_=l is obtained for v=w_, i.e., when

the absolute velocity v2 of the gases ejected from the nozzle is zero; in other

words, when there is no loss of kinetic energy. We see that for flight ve-

locities from 1500m/sec to 8000m/sec, of interest in the field of super-

aviation, the efficiency in interplanetary space will be high with wz= 4000 m/sec.
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FIGURE 18. Instantaneous efficiency of a

jet engine operating on the combustion pro-

duct alone versus flight velocity
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FIGURE 19. Average efficiency and flight velocity

of a rocket versus mass ratio, neglecting gravity

If the flight conditions do not permit a rapid transition from low to high

velocities, then the air breathing jet engines examined below, utilizing part-

ly the external azr to produce the reaction force, should be used for flight

velocities lower than 1500m[sec, while the aviation engines described above

will be needed in the lowest layers of the atmosphere.

I have derived, following the Russian scientist K.E. Tsiolkovskii, the

average efficiency _av during the entire flight (Figure 19) as a function of the

ratio of propellant consumed A4_ to the final mass M, of the rocket. The max-
imum average efficiency _av=,x=0.65 is obtained for

-_=4.
Mi
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The curve v/w2 for w2=4 kin/see is also shown. We see that initially the

velocity grows rapidly and it increases little subsequently, i.e., it is a

logarithmic curve. The entire diagram refers to flight in a medium with-

out gravitational forces; attraction by the Earth and friction with the air

reduce the values of _lav and v. To attain a flight velocity of 8 km/sec, neg-

lecting gravity and friction with the atmosphere, a value of M2/M,=6.5 or a

propellant consumption of _ = 0.965 of the initial weight of the rocket would

be needed for an exhaust velocity of w2=4 km/sec, whereas for a flight ve-

locity of 3.5 km/sec, a MjM,=l.41 or a propellant consumption of 59 % of the
initial weight of the rocket would be required.

8. AIR-BREATHING JET ENGINES. THEORETICAL AIR COMPRESSION PRESSURES.
SECONDARY USE OF THE OUTGOING HEAT. VARIOUS CYCLES. SCHEMATIC

DP,AV_'INGS. WEAK IMPACT MIXING OF AIR AND COMBUSTION PRODUCTS AND
INDIVIDUAL CYCLES

We have already examined, to a certain extent (see Figure 10), one

of the forms of air-breathing jet engines; the theoretical working cycle of

the air sucked in is given in Figures 8 and 9. In the case of an adiabatic ex-

pansion from atmospheric pressure p, and temperature T, to P0<P, and an

isothermal recompression to a final pressure P2 and temperature 7", we may

express all the quantities referring to the closed cycle as functions of 7',/r

(Figure 20). In this figure _; _; lg_and _tare given for air (with adiabatic
Pz Pz P,

exponentk=l.405); _lris the theoretical thermal efficiency of the part BCDB

_lt-I Q2DB where Q, is the amountof the process (see Figure 8), defined as - --_,
0,

of heat transferred to the air under atmospheric pressure along the section

BC, and Q2oa the amount of heat removed along the section DB. Consequently,

the final pressure p0 should not be too low even under strong heating and the

theoretically obtained pressure p_ increases quite steeply. Increasing the

temperature by a factor of four (to approximately 900°C for T=300 °abs)

gives a pressure of about 275 atm and a temperature increase by a factor of

five (to 1200 °C) yields a pressure of 4000atm. Consequently, by means of

such a device, a jet engine could compress air for combustion to rather high

pressures and, in addition, up to rather high flight altitudes. Assuming the

air temperature at high altitudes to be -60°C or 273-60=213 °abs, we ob-

tain for 7',17=5, a temperature of 5×213=1065 °abs, or 792°C. It is quite

probable that it will be possible to compress the mixture of hydrogen, oxy-

gen and nitrogen, existing at altitudes of about 60kin, to such an extent that

it will be ignited and could serve as a fuel giving a high reaction force P.

Even considerably higher final pressures may be obtained when cooling by

liquid oxygen, which can also be injected for cooling into the inverted cone.

The only difference in the case of weak cooling is that lower pressures are

obtained. The thermal efficiency of such an engine increases with temper-

ature (see Figure 20), reaching up to 60% for 7,/7"=5.

If we use the external air for heat removal, we may increase the thermal

efficiency by utilizing it as the air sucked in; since it is already slightly
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heated, it reduces the heat flow out of the engine. For this purpose it is

possible to put behind the engine streamlined pipes around which the hot

gases coming out of the engine would stream; at the same time these pipes

would suck in fresh air for the jet engine. The schematic design of such an

apparatus is shown in Figure 21.
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FIGURE 2 I. Schematic diagram of an air-breathing jet engine with sep-

arate cycles

/4-rue! tank; B-reverse compression of air for combustion; C -reverse com-

pression of the air _lcked in; D-expansion of the combustion products; E-

expansion of the air sucked in; F-reverse compression of the combustion

products; 6 -connecting openings for sucking in air to obtain low pressure;

H-space for increasing gir pre_Ure; I-heating of air for combustion; g-

connecting pipe to the air used for combustions for obtaining low pressurei

/.-expansion of air for combustion; M-location of flame.

It should be noted that in this design the length of the pipe conductors does

not correspond to the actual dimensions. Should the calculations show that

the pipes of the inverted cones should be short, they may be built along a

straight line and not along a spiral.

The device itself compresses all the air necessary for the combustion

and thus constitutes an independent engine without continuously _movii_g parts.

Only control means are required: valves, folding flaps and other shutters.

The efficiency of such a device is considerably higher than that of the
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previous one, since the heat removed from the air during compression is

transferred to air which is going to participate in the closed process in-

stead of being lost. The amount of heat which has to be removed from the

combustion products for compressing the air necessary for the combustion

is small. For the theoretical closed process, shown in Figures 8 and 9, it

is equal to 62/3% of the entire heat contained in the fuel for a compression

factor of 1.86, and it is 15% for a ten-fold compression.

Cooling the air in the reverse compression by the fresh air sucked in

may further reduce the heat loss. The limit for the possible cooling is im-

posed by the weight of the entire device and the problem consists in design-

ing the hardware which wi]l give best results under given flight conditions.

If the air sucked in does not serve for combustion, and is only accelera-

ted inside the engine to increase the reaction force, it can be mixed with

the combustion products at the place of lowest pressure. This place should

be chosen so that the velocity of the heated air is equal to the velocity of the

combustion products, or is somewhat lower (Figure 22). In this ease, there

is no impact between the air and the combustion products. This impact ex-

ists in ordinary injectors and constitutes the main reason for their low effi-

ciency. Therefore in the device considered, the efficiency is considerably

higher than in ordinary injectors. If the working conditions vary a certain

impact loss may be encountered. This may be avoided by using a design

(see Figure 21), in which the velocities of the air and of the combustion

products may be different in the connecting slots or pipes between the air

and the combustion products.

In order to reduce the friction, the walls of the cones, in particular near

the place of the critical velocity, have to be ground; the nozzles of the di-

rect cones have to be made short, choosing a design which minimizes the

sum of the losses due to friction and to partial jet separation from the walls.

B _ r_a, c D //

C B_

FIGURE 22. Schematic diagram of an air-breathing Jet engine, in

which the combustion products are mixed smoothly with air

A-_ue]; B-isolating wall; C-ribs; D-envelope; E-liquid oxygen for

cooling; F-airl _-mixingchamber; //-ribs for external heat inflow;

/-wallsofthe cones; /(-pipe for sucking inthe heated air; /.-pipe for

carrying off 0 2.

There may be different closed cycles and it is possible to find the most

advantageous cycle for a given case by a variational calculation. The amount

of air sucked in may be very large in these designs. The amount of heat

which must be removed from the combustion products in order to equalize

the velocities, has been determined for the device shown in Figure 22 for

various ratios of air to combustion products, (it is assumed that combustion
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takes place between gasoline and the theoretical amount of air). Further,

the velocityw, common to both gases at their mixing place, has been de-

termined. FromFigure 23 is seen that if, for example, the amount of air

is ten times larger than the amount of combustion pr0ducts (M=IO), then

for the equalization of the velocities it is necessary to transfer to the air

x=82.3% of the total heat contained in the fuel, and the common velocity at

the mixing place will be w=lOOOm]sec. The diagram has been drawn assum-

ing that the initial air temperature is ?'=300 °abs, and the final temperature,

identical for the air and for the combustion products, is 50 °abs [sic*l, at

the point of lowest pressure, i.e., at the mixing place. For large M, the ve-

locity wand to some extentx, too, depend on thedifferencebetweenthese two

temperatures. For M=100, the pressure at the mixing place is approxi-

matelyp=0.0033atm if the heat is removed at constant pressure from the

combustion products, and only then they are expanded adiabatically. The

largest amount of heat can be removed if the pressure of the combustion

products is not varied, i.e., if the heat is removed at the highest pressure

of the combustion products. This is important for the design.

rrl ]see

2#OO [
r

?000 TO0

16o_ _ _ SO

f ZO_ \ 60

1 1
o lo #o $o 8o ,Om

FIGURE 23. Diagram foranair-brea_ingJetcngine

t0-common velocity; x-fractionof heat transferred

to the air (percent}.

The diagram in Figure 24 is obtained for the following conditions: cooling to

an external air temperature 7a of 288 ° abs during the reverse compression;

initial combustion products pressure of 1.86 arm; an external air pressure of

one atmosphere; an expansion of the air and the combustion products to the

same pressure p, with a temperature decrease to the same value T,; heat

transfer at a pressure p2=1.86 atm followed by a separate compression. The

diagram shows also the velocities t_3 and w_ of the air and the gases at the

* [This i$ well below the condensation temperature of air.]
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exit from the device, its total thermal efficiency, and its total reaction

force P; without air sucking this force is equal to 160g for the given fuel

consumption. From Figure 24 we see the great increase of the effect due

to the air sucking. Other quantities plotted are the temperature T'aof the

gases leaving the device when the temperature of the gases at the place of

lowest pressure p4is T_, and the percent of the entire heat contained in the

combustion products which should be transferred to the air. If we adopt

the design of Figure 21, then the axial forces obtained will be even higher,

in particular for a large air surplus hL From Figure 21 we see that with-

out secondary use of the heat removed from the air during the compres-

sion period, it is possible to reachM=30. Further, the reaction force P

increases only slightly. For M=30, the reaction force increases by a factor

of 6.2 with respect to an ordinary rocket. It is interesting that the reaction
force increases with M, whereas the thermal efficiency has its optimum val-
ue {,It,.ax=0.42)at M:2; this is due to {he fact that at the high exhaust veloc-

ities which occur for small M, the reaction force is comparatively small

M increases faster than _3 diminishes, and the reaction force, being propor-

tional to /_w_ increases. The product Mw], which is approximately propor-

tional to _It,however, decreases. Complete cooling is, of course, impos-

sible, and therefore, the performance of the device will be somewhat lower°

The efficiency 11,will, however, be considerably higher in the device of Fig-

ure 21 and, therefore, the reaction force will also increase considerably.

Only the arrangement of the engine's separate parts brings about certain dif-

ficulties; it is necessary that the air sucked in, in particular at high flight

velocities, should not change its direction of motion sharply. Taking into

consideration all these losses, it is possible to develop the best design. It

is possible, for example, to reduce the air velocity at the inlet to the appa-

ratus, making the inlet section of variable cross section in the form of an

inverted cone. This method has the following advantages:

I) at high air pressures, the efficiency of the apparatus increases and

2) with low gas velocity inside the device, the Idsses due to variations

of jet direction will be small.

Till the present time, designs of jet engines use impact mixing like or-

dinary injectors, which gives low efficiency, or the outgoing gases have a

high temperature, which also lowers the performance. If the air sucked in

serves at the same time for combustion, there exists an upper limit to the

air surplus equal approximately to twice the theoretica] amount, since in

a large amount of air the mixture does not ignite. At rather high flight ve-

locities, the following simple design may find application (Figure 25). The

incoming air is compressed in the cone AB, it is heated under high pressure

(see pv diagram) from B to B' and then expands from B" to C; the area ABB'C

corresponds in the pv diagram to the kinetic energy obtained _- '_" In this
2g

case also it is better, however, to add an inverted cone DE in order to obtain

.a closed process, (see the dotted section). We obtain then a higher exhaust

velocity. The increase in kinetic energy corresponds to the area ABB'C+CDE

in the pc diagram, if DE is cooled.

* One should not confuse the specific volume v in the pv diagram with the flight velocity v }n the formula

2g

92



Tails ; Wjm/sec

_v
. _ f#,.O0.........................

O.S 7 _ _.........

O.6 ....... i. ........

o._, _ ..___ru

_

0,2 _-- _--_-_--_

20 _0 tO 80 lO0m

FIGURE 24. Diagrams for an air-breathing jet engine

with separate cycles

Ribs

Wall of the inverted

cone

P

8 8'

"_0

FIGURE 25. Schematic diagram of an ordinary air-breathing .jet engine

9. EFFICIENCY OF AIR-BREATHING JET ENGINES. COMPARISON WITH PISTON ENGINES

The problem of the effective efficiency 11, of an air-breathing jet engine at
high flight velocities is rather important. B.M. Stechkin* derives the

formula

2'_: 2o

7]e= i + _ _'_-_'_ ,•

* Stechkin, B.M.- Tekhnika vozdushnogo flora, No. 2. 1929.
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Appliedto ourcase,wehave

hereq is the amount of heat removed to the air per kg of combustion prod-

ucts, and 2v is the efficiency of the propeller, wherev is the air velocity
v+v._

in front of the propeller, which is equal to the flight velocity, and w2 is the

air velocity behind it. Comparing the jet engine with an ordinary internal

combustion engine, consuming 240g per hp per hour of fuel with an enthalpy

of 10,800cal per kg and having a propeller efficiency of 0.75, we obtain for

the internal combustion engine

632.0.75
%

0. 240.10800
0.244.0.75=0.183. i. e., 18.3%.

tl.##

?O.00

m Om/sec

2,0O 7l -- • --
v

0. 0 .4

FIGURE ,7:6. Comparison of an air-breathlng jet en-

gine with an internal combustion engine

For gasoline we may also write

_M
Y_== 5.68.10_x '

where x is the percentage of heat removed to the air. The results for the

case in which the total effective efficiency of the jet engine is also equal to

_o=0.183 i.e., for x=l.0, are shown in Figure 26. For points lying above

the curves, the jet engine is superior to the internal combustion engine, and

for points lying below., it is inferior. An increase in flight velocity and the

amount of air sucked in, improves the performance of the jet engine. In the

above formula, the thermal efficiency is referred to the amount of heat con-

tained in the fuel and not to the sum of the heat and of the kinetic energy
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accumulated during acceleration in the fuel situated in the tank. For the jet

engine shown in Figures 22 and 25, this may mean at high flight velocities

_t:>], similarly T1, in Figure 18. For the design of Figure 21 it is as if we

had two jet engines: an air-breathing one, in which tl_e t_eat is transferred

to the air, and one working with the combustion products only; a special

study has to be made on the most favorable conditions for the operation of

the latter type at high flight velocities. According to the formula of Stechkin,

at high flight velocities v and also for large amounts of air sucked in (large

M) the value of Tieapproaches from below that of _t.

10. FUEL FOR JET ENGINES

We will now examine various types of fuel which might have an ap-

plication in super-aviation. It can be shown that while our aviation en-

gines can carry a sufficient supply of fuel but are unable to lift the airplane

above a certain ceiling due to insufficient engine power, in jet engines, as

wellas in rockets, the power increase with higher altitudes and flight ve-

locities is adequate but it is difficult to store enough fuel in the vehicle. It

will, therefore, be rather expedient to use part of the fuel for jet engines

in solid form and to prepare from it beams and surfaces for the flying appa-

ratus (using, e.g., celluloid). It is also worthwhile to undertake experi-

mental research for extruded materials, used nowadays in almost all fields

of chemical engineering, which may be suitable for our purposes. Naph-

thalene engines already exist; one may conceive materials containing naph-

thalene or some other fuel mixed with such a substance, which melt by heat-

ing and then proceed from a special melting chamber as a liquid fuel to the

injectors of the rocket. Instead of heating, a solution process may be used

in certain cases. For example, cellulose, of which papier-mach6 is made,

may be dissolved in nitric acid. The oxygen of the latter may serve in this

case to replace partially the liquid oxygen, which will then be required in

smaller amounts. Some metals as, e.g., lithium, magnesium, aluminum,

contain a tremendous amount of heat; they may find successful applications

in air-breathing jet engines, but particularly in such engines in which li-

quid oxygen for combustion is taken along for flight. For air-breathing jet

engines, those materials requiring much oxygen are most advantageous.

The above-described closed processes can be carried out not only

in rockets with liquid propellant, but also in all thermochemical or solid

propellant rockets as well as in such working with liquid metals.

However, in all the cases in which the combustion products are obtained

partIy in the form of solid particles, it is necessary to use a fuel which

gives at the same time gaseous combustion products, or air containing in-

ert nitrogen, so that the heat of the solid particles might pass in the expan-

sion to the gaseous combustion products. For instance, black powder,

which contains KNO 3, produces K2CO3, K_SO 4, and K2S, and from these

heat passes to the carbon dioxide and to other gases which are formed at

the same time.

Furthermore, the inside surface of the walls should not be dirtied by the

soIid combustion products; for that purpose I have tested a very simple de-

sign (Figure 27) of a double cone (the internal one is perforated); a film of
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magnesiumwasburntunderit andgaseousbunsenburnerswereplacedinthe
spacebetweenthecones.Asaresultoftheentranceofgasthroughtheopenings

lI,Ii,l,;j/,

FIGURE 27. Experimentswith cones;

the internal cone is perforattd

of the internal cone, it remained completely clean

in a certain section. The total deposit on it was

reduced from 23 % of the total amount of combus-

tion products to 13 %. If a rocket is constructed

with perforated internal walls, on whose exterior

we maintain a pressure somewhat higher than the

internal pressure, then, in my opinion, the rocket

will be almost completely protected against con-

tamination. Schematic diagrams of rockets and

airplanes, which may use these structures, will
be shown below.

It is possible to perform, as I did, the follow-

ing experiment with magnesium: evaporate it in

a jet of very hot hydrogen in a closed vessel and

then ignite the hydrogen jet. A uniform brilliant

flame is obtained. All the metal may be evapo-

rated already below the boiling temperature if it

is atomized by a suitable atomizer. The boiling

temperature of several metals is the following:

Cd-770_; Zn-907°; Mg-ll20°; Sb-ll40°; Bi-

1420°; Pb-1525°; AI-1800_'; Mn-1900°; Cr-

2200°; Sn-2270°; Cu-2310°; Fer-2450¢C.

I have experimented in 1928-1929 with the pos-

sibility of igniting in air alloys containing mag-

nesium; it turned out that alloys of magnesium

with zinc containing also other impurities were

ignited on a wire loop; for a magnesium conlent

of 5-10 % and more, the alloys ignited better; although alloys containing much A1

did not burn well. Prohably only good atomization of alloys containing A1

will make it possible to burn the latter fully, since At is easily covered with
a film of oxide which protects it against further oxidation. AlLoys of copper

and iron with magnesium burned well. Probably all mixtures of metals

which are not covered by a protective oxide film and which combine readily

with oxygen wi]l burn well with Mg. Experiments with the eutectie alloys of

magnesium with zinc: 5%Mg, 95%Zn and40%Mg, 60%Zn are rather ad-

vantageous; theymeltattemperaturesofabout305and330_C. The metals

used as fuel should have sufficient viscosity and strength and be easy to

melt. The melting vessels should have a rate of heat ,transfer sufficient for

melting and using the materials employed as fuel during the flights; this

may be achieved by using fire-tubes or strongly corrugated walls, although,

in certain cases, the flame may impinge directly on the metal.

Several metals and other compounds are listed in order of increasing

fuel and oxygen consumption in Table 1 below. Column 1 gives the com-

pounds formed in the combustion; column 2 the required ratio of initial to

final rocket weight in order to obtain a flight velocity of 7.55 km/sec, as-

suming that the exhaust velocity amounts to 75 % of the theoretical one (the

energy loss is 1-0.75_=0.44 or 44"/o); column 3 gives the ratio of the weight

• of the metal fuel to the final weight of the rocket; column 4, the order of.

consumption of melted metal; column 5, the calorific value per kg of
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combustion products; column 6, the pereent of 02 in tile compound and

column 7, the theoretical exhaust velocity. We see that together with oxy-

gen compounds, fluorine (F) compounds may also find applications; the

latter has the advantage that fluorine is easier to liquet'y than oxygen. Only

the prier and the effect on the breathing organs may limit its application.

The lowest total weight would be obtained by lhe use of Li20 and the

smallest amount of solid material would have to be burned when using B203.

tIowever, it will be probably possible to use boron only in the form of in-

sulation powder (amorphous boron) or in the form of compressed rods (crys.-

talline boron). It might also be possible to earry along liquid boron hydride

in a rather cold state.

Compound

Ii20

[iF

B203

1120 upper

Mg (OH)2

AI203

Na2B407

MgO

MgF 2

A12F6

lt20 lower

CaF 2

NaF

Gasoline

TABLE

Total weight Weight of

0.75, combustible

¢' - 7.55 kin/see metal

4.98 1.85

5.82 2.33

5.85 1.53

5.92

6.06 2.09

6.07 2.68

6.14 2.24

6.34 2.69

6.64 2.18

6.78 1.g7

6.92

8.04 3.61

_.59 4.50

9.71

Order of

inetal COll-

sumption

2

7

1

4

8

6

9

5

3

10

11

Ca|orific

vahle

4710

4450

3900

324O

3750

3730

3700

3560

3400

3320

3830

2800

2640

2350

Percent el

O 2

53.5

44.7

68.5

55.1

47.0

55.5

39.7

61.4

68.0

48.7

45.3

77,5

Theoretical

exhaust

velocity

6270

6100

57O0

5200

5600

5590 '

5550

5450

5320

5260

5660:

4830

4690

4430

02 constitutes, howe,)er, 68.5% of the weight of B203; ihis is a high

percentage and may cause difficulties. The compound most favorable from

this point of view is MgO, which contains only 39.7%O2. For air-breathing

jet engines, I,i or B turn out to be better due to their low atomic weight and

consequent low total c'onsumption. In view of the eomparativbly high price

required for processing of the metal, the price of the raw materials is,

therefore, less important. The price of Li is, nevertheless, _rather high,

and it may therefore be assumed that in the meantime either MgO or A120 3

or A12F6 will be used; in this case the combustible metal's weight is onIy

1.87 times the weight of the 'empty rocket.

Among liquid fuels, we _ay point to liquid methane, which gives about

13,000cal/kg and is much cheaper than liquid hydrogen. In view of the'con-

siderable increase in rocket performance by the use of powerful cooling

means, low freezing fuels as, e.g., toluene (-100'C) will be generally

advantageous.

97



Pressurized kerosene wilt be useful in engines, specially those using

oxygen, because of its lubrication properties.

When using a metal as a fuel it should not be forgotten that if atmos-

pheric air is not used, one must always burn together with the metal a ma-

terial which yields gaseous combustion products. This may be celluloid or

naphthalene or some other solid material, so that the flight can be carried

out without any liquid fuel; this may increase considerably the strength of

individual sections of the flying apparatus. In air-breathing jet engines,

nitrogen constitutes the gaseous material and therefore the presence of a

liquid fuel is not necessary. The following experiment has been conducted

with aviation engines: 500g of gasoline per hour per hp were supplied to

the engine. Only after half an hour's operation did its valves become

strongly obstructed. It may therefore be assumed that in particularly sim-

ply designed engines for flight outside the terrestrial atmosphere it will be

possible to utilize metallic fuel. Towards the end of the first world war,

the French already built engines of particularly simple design intended for

one flight. If this is done in the conditions of super-aviation, such an en-

gine may be built of a suitable metal which will be used as metallic fuel,

leaving in the airplane only a small engine for landing,

When using metallic fuel, a ceiling for airplanes or rockets will not ex-

ist, since there will be no limit to the amount of fuel.

In designing a rocket or an airplane, using exclusively liquid fuel, the

problem of the designer is to design them so that they will carry along the

greatest amount of fuel for agivencalorificcapacity. For that purpose it is

necessary to use the strength of the material up to the admissible limit, and

to simplify the rocket as much as possible, since a large number of small,

sufficiently strong parts increases the weight reducing the amount of liquid

fuel which may be stored in the rocket.

The problem of how to cope with the two requirements of material quality

and minimum rocket complexity is reduced, in a device using metallic fuel,

to another problem - namely to design it so that some parts fall into others

and are melted in them until, finally, almost nothing is left.

The solution of the latter problem is, however, considerably simpler [sic! ].

11, ADVANTAGES OF VARIOUS TYPES OF ROCKETS, ACCESSORIES FOR ROCKETS

Detailed designs of stage rockets, consisting of two or several rockets

one within the other have been made in Germany and in America. These

rockets may also give rather high flight altitudes, but their initial weight

is many times larger than that of rockets using solid propellants. This is

due to the fact that after the ascent of a large rocket together with a small

one to a high altitude, the large rocket comes down gliding whereas in my

design all its weight is used for increasing the flight altitude further. Since

the_large rocket weighs 10-20 times more than the liquid propellant con-

tained in the small rocket, its use as a propellant may increase the flight

altitude by a huge factor. The use of the large rocket as a propellant might

be discarded with time, however, if it will become possible by gradual im-

provement of air-breathing jet engines and of combinations of the propeller-
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motor group with rockets, to fly away from the Earth without consuming

solid propellant or with a very small consumption of it.

The Russian scientist K.E. Tsiolkovskii proposed the use of rocket trains

for flights; in th_ese the rockets are uncoupled from'the train and descend

one after the other; the last, small rocket can achieve a high flight velocity

and even fly to another planet.

For rockets intended for research of the higher layers of the atmos-

phere, the following accessories are required: I) a meteorograph; 2) a

device for regulating the fuel and oxygen consumption, as well as the air in-

flow in air-breathing jet engines; 3) gyroscopes for controlling the flight

direction; 4) a device for ejecting the parachute in the return landing.

The advantages of those or other types of rockets can be decided in re-

lation to the purpose for which a given rocket is intended. Thus, multi-

stage rockets will be better suited to attain the highest altitudes, or the

highest flight velocities, than single-stage ones; rockets using a certain

proportion of atmospheric air and liquid oxygen will be more advantageous

than those using only atmospheric air or only liquid oxygen from the begin-

ning of the flight to its end. This is so since near the surface of the Earth

there is much atmospheric air and it will be disadvantageous, therefore, to

carry along liquid oxygen. At high altitudes over the Earth's surface the

opposite is true.

As indicated already above, rockets which throw away certain parts of

their structure during the flight will he less advantageous than those which

use them as a propellant.

As to the comparison of solid propellant rockets with those working with

liquid or liquefied propellants (for example, metallic), it should be noted

that liquid propellant rockets are extremely simple but, on the other hand,

the gas pressure in them is rather high, if we do not add to the propellant

a considerable amount of carbon or of some other suitable inert material

which, however, lowers the calorific value of the propellant. Propellant

powder belongs to materials containing all the oxygen for combustion. The

calorific value of smokeless powder is only 1240cal/kg, and from Table 1

we seej that, for example, gasoline and to an even larger extent, hydrogen

and light metals possess a considerably larger calorific capacity per kg of

combustion products.

Further, the feeding of a large amount of solid fuel in a comparatively

small combustion chamber of one rocket may present difficulties. But such

feeding may be required in a rocket airplane, where much fuelhas to be

taken for a small rocket. However, the total efficiency of solid propellant

rockets may be improved by introducing atmospheric air.

A comparison of solid-propellant rockets with those using other types of

propellant, leads therefore to the conclusion that rockets, working on dif-

ferent propellants, have a certain superiority. However, for certain pur-

poses, for example, for rather short duration jumps or for fast take-off

rockets not carrying persons where, consequently, safety does not play an

important role, solid propellant rockets will also be used.

Air-breathing _ jet engines working on metallic fuel will, probably, be the

safest, since fnthls case one not only avoids the explosive liquid oxygen,

but the metal itself does not yield gaseous products when heated.
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12, AIRPLANES EQU1PPED WITH A ROCKET AND ENGINES, PART OF TttE

STRUCTURE USED AS FUEl

Figure 28 shows my schematic design of an airplane, whose external

sections ma),be pulled in. The wings consist of separate sections within

a special frame, and by means of cables mounted on eonicaldrums of suitable

shape, the wing sections and all the rest of the parts are pulled into vessel A

for melting and subsequently used as fuel. Since the path of the individual

sections is not longer than 5-8m on the average, small drums are required.

I s|udied to some exlent the sections of the airplanes which can be used, and

calculated their strength; it turns out that such an airplane could carry only

approximalelg 10% less liquid fuel than an ordinary airplane due to the

weight of the dismantable joints. The airplane wings occupy the greatest

area of all parts which have to be moved; however, in certain airplane

constructions, the wing area may be reduced during the flight lo 1/3 of its

normal value in order to increase flight velocity, _o that in our case the

displacement will be only one step forward. The rest of the seclions, e. g.,

the rudders of a large airplane and the elevator can, aecording to my cal-

cul:ttions, be easily pulled in. At the end of the flight only the body of the

airplane might remain and on it the small wings and rudders shown in Fig-

ure 28. If necessary, certain parts of the body may also be used as f.uel,

after the weight of the ship has decreased considerably. The use of the en-

gine as fuel was mentioned above, The schemes for folding and retracting

the sections, and lhe order of performing these operations, maybe very dif-

ferent and a wide field is open for inventions. The combustion should be

sh/r'ted wilh lhe least necessary and cheapest sections. In many- cases, only

the" combustion of a small number of sections may be required. One has to

aim at ?l_e greatest simplic:il 3, and cheapness of the combustible sections,

l'pem development, the amount of combustible sections will be reduced; how-

ever, for the 1'conquest" of interplanetary space, the price of one airplane

will play only a ralber insignifican[ role.
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FtGIIRF 2g. Schematic diagram of an airplane with rcltactable parts driven hy an

cIl_hle and a rock._.t
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With other methods it is still impossible to fly away from the Earth, and

by the method proposed here a final weight of the empty flying device equal

to one hundredth of the initial weight can be easily imagined, i.e:, the fly-

ing device will receive thermal energy from its structure whose weight is

99 times larger than its final weight, This together with the designs of jet

engines examined above guarantees eompIetely the attainment of interplan-

etary velocities.

13. A CENTRAI ROCKET SURROUNDED BY A CLUSTER OF LATERA[ ROCKETS

AND FUEl. AND OXYGEN TANKS

The diagram in Figure 29 shows a central rocket with a cluster of lateral

rockets, arranged along branches of diverging spirals. Two lateral tanks

placed already inside the central rocket for melting are shown. By increas-

ing the number of lateral rocket_ and tanks on the branehps of the spirals,

the flight altitude increases. The spiral branches may consist of pipes in

which fuel and oxygen for combustion can be passed by a special valve sys-

tem. The diagram of a lateral rocket is denoted by the letter b in Figure 29

and of that a lateral tank by c. Fuel and liquid oxygen tanks are seen in the

, for ex-

i

FIGURE 29. Diagram of a central rocket wi_h a cluster of lateral rockets and

liquid fuel and oxygen tanks

nose section. They contain floats which release a spring by means of a

]ever. The spring closes and opens valves as necessary and allows thetank

to glide in to the central rocket for me]ling after the liquid is consumed. In

this ease too one can conceive a grea[ number of variants, including one in

which a series of central rockets fly together and fall subsequently into the

rocket placed at the center of the, whole device, i.e., the process described

above is repeated. In view of the fact that the individual tanks and lateral

rockets may fold like an umbrella, they may init£ally weigh considerably

more than the eentr-a] roeke! and nevertheless melt in it, so that it can be

imagined that the weight at the end of the flight will be equal to only one
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thousandth of the initial weight, i.e., one section receives the energy of

999 consumed sections; such a high fuel consumption is not required even

for a flight to another planet, As was shown above, the flight can be also

performed without any liquid fuel. Then, inoividual sections of the struc-

ture can be made especially strong and all the thick sections are used later

on as fuel. Thus, notwithstanding the more complex structure, the final

weight is not increased for a given initial weight.

The total air resistance for the above-examined arrangement of rockets

will be larger at the beginning of the flight and at high flight velocities at

the end of the flight it will be considerably smaller than in a single rocket
without lateral rockets.

According to the studies of K.E. Tsiolkovskii and H. Obert, the air re-

sistance to vertically ascending rockets does not play an important role if

the acceleration is sufficiently large. The work required to overcome the

rocket's weight is small for rather gently sloping flights if the acceleration

is not too high. By inclining slightly the rocket axis with respect to the

flight direction, a sufficient air resistance may be obtained for overcoming

the weight, in particular for a considerable flight velocity.

The rockets discussed above can be constructed as completely or partially

air-breathing jet engines. In this case, due to the low weight of the liquid

oxygen, they will be even more advantageous.

14, ROCKET AIRPLANE TAKE-OFF

Notwithstanding the tremendous experience accumulated in aviation, it

may be assumed that man will have to fly first not in a rocket but in an air-

plane on which a rocket will be mounted along with the engine which drives

the propellers. The action of the rocket on the plane can be stopped at any
moment and the pilot can pass to a safe flight by means of the propeller as-

sembly, or to gliding.

I have calculated (in 1921) flight curves for an airplane with a rocket for

a total weight of 00 =5000kgand a rocket with a reaction force of P=1500kg

(examined above in detail), for an altitude starting from 35 km and a constant

rate of fuel consumption. In the calculation I assumed a flat terrestrial sur-

face. The ratio of the acceleration to the gravitational acceleration may be

expressed by

1 dv P 2R cosa
_--_ .... Sill a,
godt o A

dv
where _- is the flight acceleration;

O, the weight of the airplane;

--cos=,the magnitude of air friction force under constant attack angles;
,4

a, flight trajectory inclination with respect to horizon;

sin a is proportional to lifting force of the airplane;
p

-o-" the apparent weight in airplane.
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The

use(]:

t,

h,

U,

AA,

A,

W,

NB,

S,

curves are given in Figure 30, where the following notation has been

the flight time;

the flight altitude;

the flight velocity attained;

the work done to overcome air resistance, in ton kin;

the entire work done by rocket to attain altitude h;

the useful power of rocket;

the power necessary to overcome atmospheric resistance;

the path traversed by rocket.

We see from the figure that a velocity of 8kin/see is attained for a weight

of -500kg and a flight time of l- 20minutes. The altitude is then h=80km,

the apparent weight at the end of the flight is P]G=3, tile flight range

s=3300km, i.e., --1112 of the Earth's circumference. The work for over-

coming the air resistance decreases strongly towards the end of the flight:

AdA=0.15 or 15% of tile total work. The work for overcoming the weight is

even lower, as can be seen from the curves of sin a and 20 cos a.
A

If we take into account the curvature of the Earth, then the results are

considerably better, since the centrifugal force, appearing in flight, very

much helps the airplane to rise.

I ton km

8" GODO 2_')0_

0.$ 50OO)IO-10 _

0.3 IO00 }l 1"_0 '

i0,Z}Z0_018"_0"

72""

Up to an altitude of 35 km the flight could be conducted by means of a

combination of an aviation engine and a rocket, and at lower altitudes with
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the engine only. My calculations show that when flying with the above-

mentioned external combustion engine which I started develcping, the power

is limited not by the engine, but by the propellers, which must have a rather

large diameter and which would revolve so rapidly at high flight velocities

that they turn out to be too heavy.

if we have reached the interplanetary empty space, which is most suit-

able for inertial flight, and we wish to descend again, then a glide landing

is a natural choice, since no fuel is needed for it; otherwise we must build

a heavier and more expensive structure. In studying the possibility of vary-

ing the flight path at these high velocities, I have obtained the following re-

sult (Figure 31): If we fly even with a velocity of ll.3km/sec, attained when

.,_ 1 /I//,'M//H,V,

U = 8 kin/see

FIGURE 31. Glide landing from interplanetary space on the Earth

falling on the Earth from infinity, it is possible to land safely (apparent

weight less than five times the gravitational weight) in a space of annular

cross section with a total height of 300kin. The atmosphere takes up

100km of this space and 200kin are left for skirting the Earth. Car-

drivers on Earth skirt a vehicle or a lamppost with a velocity of approxi-

mately 25m/see (90kin/hour). Our velocity is larger by a factor of

1i,300
25 =450. Arranging the wings and rudders of the airplane in such a way

that under high air pressures they would open to protect against breakage,

we have to increase the width of the road {10m) available to the driver pro-

portionalty to the velocity of our flight; this yields a path width for the air-

10.450

plane flying ai ll:3km/sec of I000 =4,5kin, whereas we have at our dis-

posal a width of 300kin. Therefore, such a landing can be regarded as pos-

sible. The airplane can be protected against spinning by the same wing

structure anti by automatically regulated rudders in too fast a descent. At

lower flight velocities, the zone, which is not too dangerous for flight, wid-

ens considerably.

1S. FIIGIIT OF RC,CKETS REACtIING FAR BEYOND TIlE ATMOSPt[ERE

I have ealculah,d the range outside the atmosphere of' rockets

with a given initial velocity for a static Earth {Figure 32). The highest
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flight altitude is attained when traversing a quarter of the terrestrial globe

(1330kin); the initial rocket velocity is then already equal to 7.2kin/see.

One sees that it is comparatively easy to achieve greater distances, since

in order to traverse the entire terrestrial globe an initial velocity of

7.9 km/sec is required, i.e. only0. Tkm/seclarger. To traversehalfofthe

terrestrial globe ifwe do not choose the shortest patb a velocity of 7.9 km/sec

is also theoretically required, and the flight will take place practically along a

somewhat extended ellipse. The propellant consumption for a gasoline rocket

is shown in Figure 33 and that for a hydrogen rocket in Figure 34; the curves

without a prime denote propellant consumption for the theoretical exhaust ve -

locity in the following cases:

a) only fuel is taken along, air is taken from the atmosphere, i.e.j we

have an air-breathing jet engine;

b) fuel and liquid oxygen are carried along and the air sucked in is used

to increase the efficiency at low flight velocities;

c) fuel and liquid oxygen are carried along again, but external air is not

used to increase the efficiency, i.e., this is the ordinary rocket case.

The curves marked with a prime denote the same as above, assuming

that in the third case the exhaust velocity is 0.75 of the theoretical velocity,

i.e., (1-0.752 )- I00=44% of the entire heat energy is lost, and that in the

first and second cases the same fraction of the total energy is lost. We see

that to traverse distances, making an arc of 20 ° of the entire circumference

of the Earth, the fuel consumption (neglecting atmospheric resistance and

the work spent on overcoming the weight) requires in the first case, 27a/0 in

the second case, 63% and in the third case, 73% of the total weight of the

ship; these results were for gasoline. For hydrogen the corresponding val-

ues are 12, 56 and 67%.

639 _ 583_.4.3!

U: 7.I8_ _ZSO

\ .... i %.]/}

FIGURE 32, Ranges of rocl_ets flying far outside the atmosphere

Figure 35 and 36 give the following trajectory elements: large and small

semiaxes, a and b of the elliptical flight trajectory, the largest and small-

est distances r; and r3 from the center of the Earth, the greatest height h

over the surface of the Earth, the angle 13 of the trajectory with respect to

the horizon at the initial and final points of the flight, the central angle a

corresponding to the flight range, the angle 0° from the take-off point to the

perigee, _he relative eccentricity of the trajectory _ and its absolute

105



eccentricity e, the average f]ight velocity c, the velocity v at the moment

of take-off and the flight duration t.

The curves show that initially, for short ranges, the ellipses are rather

narrow, and they get more circular with increasing range, until they be-

come a circle when the range is half the Earth's circumference. The av-

erage flight velocity increases rapidly at the beginning, attaining

10,500km/hour already for a range of 20 ° (2200kin). The time it takes to

cover half the globe is only 42.3 rain.

A rather considerable economy may be obtained by taking into account
the rotation of the Earth about its axis and about the Sun.

Flight of rockets in the atmosphere and vertical ascent above the at-

mosphere have already been dealt with by a series of authors such as

Tsiolkovskii, Obert, Rynin, and others. Little has beenwritten about the flight

of long range rockets outside the atmosphere although this region will play

a tremendous role in the near future in the transportation of express loads

and persons and also in the launching of missiles from one point on the Earth

to another through interplanetary space.
For those interested in more detailed calculations of the flight of long-

range rockets we present below formulas for the determination of all the

quant_ies, characterizing the flight; we also examined the conditions most
suitable for achieving maximum range with greatest fuel economy for a

given initial velocity, i. e., we calculated the cheapest flight per km of dis-

tance traversed.
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FIGURE 35. Elements of elliptical trajectories of

long-range rockets
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FIGURE 36. Elements of elliptical trajectories of long-range rockets
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Optimum trajectories. Trajectory elements.

Flight duration

Consider an ellipse having one of the foci at the center of the Earth.

A flight can be characterized by the following quantities: the flight range

or the corresponding angle as seen from the center of the Earth; the high-

est ftight altitude; the initial velocity and the initial inclination of the tra-

jectory with respect to the horizon; the flight duration and the propellant

consumption required for obtaining a given initial velocity.

We shall use the large and small semiaxes and the eccentricity of the

ellipse to describe the trajectory; for convenience, we shall use polar co-

ordinates (Figure 37).

For the trajectory section under consideration we introduce the notation:

r_, radius vector of ellipse at initial and final f]ight points;

h=r_--r t, the highest altitude reached by the rocket;

8, the true anomaly of initial flight point;

v_, orbital velocity (v 3 =7.9 km] sec)

S, flight range, measured at a distance r_ from Earth's center;

_°, central angle with vertex at Earth' s center, corresponding to flight

range S;

/', half period in an elliptic orbit, assuming the entire mass of the

Earth concentrated in its center;

r_, half circling period at a distance of r, from Earth's center;

t, the time required to fly from take-off point to perigee of el-

lipse;

it, flight duration from initial to final point;

E, eccentric anomaly of initial flight point.

"_=e then obtain from Kepler's second law, according to which the radius

vector draws equal areas in equal time intervals,

r_.vcos l_-- ,,b (1)
T

Next, we have the equation of the ellipse in polar coordinates

We have

a -]_e
r. = (2)

I+ _¢os_

e=_a: (3)

hence

r,=a+e-_a(l nt-_), (4)

Z_ r2='aa (4a)
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and

a_= a_V'arT__:=

= VE,_(2_- r0= _G;7;7:_,

Next, from Kepler's third law

(5)

(6)

FIGURE 37. Diagram for the calculation of the

trajectories of long-range rockets

Substituting e from (3) in (2) and v from (4a) in the result obtained, we

gel

cos_= _(2,_-7_9!-__4 (7)
n (ra --a)

The rocket traverses a path corresponding to a central angle

e=36W--2e °, (8)

so that the range, measured along a sphere of radius q, is equal to

, ,r,(180o _o). (9)S=rl_° 1_° go

l,et us determine next the angle 3 between the horizon and the initial

velocity v of the rocket at the initial point of the trajeelory.

From the properties of the ellipse it is known thai the normal ,4B (Fig-

ure 38) to its contour decreases by a half the angle between the radius vectors
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AF, and AF; the required angle g is equat to the angle BAF, so that the angle

between the normals to the ellipse and to a circle of radius r, is equal to

the angle between the corresponding tangents. It is also known that the sum

of the radii-vectors AF and AF, is equal to 2a

AF + AF, =2a.

By introducing the notation AFt= r'I we obtain

r;=2a-- rp (10)

Next, from Figure 38, we find

F,F=2e=2 (a--r3). (11)

FIGURE 38. Diagram for the calculation of the

trajectories of long-range rockets

From the triangle F,AF in which all the three sides are known, we obtain

for half its perimeter

1 (2a + 2a-2r3) = 2a-- rs=r _,
s-=---_-

and for cos

cos_=,_ 1/_2(_-2o+2,._ ¢ r,-_3
_= = (12)

V rtrl y (2a -- rl) r I (_a -- rl) r I

The initial rocket velocity is now found from formula (1) by substituting

in it b from (5), T from (6), cos B from (12), and taking also into considera-

tion that

T_= _r____&,, (13)
V3
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weobtain

7ta# _a

r, cos 0r £

rj (2a -- rl )r, e3

We have now five independent equations:

=v_ /2 rt
a (14)

e=r 3- a, (4)

= r_:-a (4a)

b = Vr 2 (2a - r=), (5)

COS 1}= a (2r 2 -- rl)-- r[ (7)

rl (r2-- a)

V=%/2 r,a (14a)

From these equations we determine the seven quantities, r2, a, b, e, o, X

and _, having in the general case two independent variables.

When we consider the most advantageous case of lowest initial veloeityv

for a given flight range, or of a given 0, we obtain one more equation and

all the quantities will be functions of one independent quantity only.

In the general case, any two quantities may be taken as the independent

variables, depending on the conditions of the problem, and we calculate the

other quantities from them.

In the case of the minimum initial velocity trajectory, i. e., minimum

energy spent for a given flight range, we shall use in the meantime O as

the independent variable and determine r2 so that we get the smallest ve-

Iocity v for a given @. We can write

are au da (15)
dr_ da dr 9 '

and v has a minimum, if dr-----0
dr, "

To find the derivative of a with respect to r2 we transform equation (7)

r, cos 0 (r 2- a) = a (2r 2-- r,) -- r_;
rlr2cosa +

a = (7a)
2r2 -- rj + rt cos $

Then for @= const, we obtain

da (r, cosll+2r2)f2r2--rt+rtcos_I--2(rjr2cos$+r_)

dr 2 (2r2 -- rt + rl cos b)2

2r] -- (rl cos _ + 2r2) r I (1 -- cos b)

(2r 2 -- rj + r I cos 5)_

(16)
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Differentiating equation (14) with respect to a, we obtain

,+ 2 --

Substituting (16) and (17) in (15) and replacing a by its expression from

(7a) we obtain

= v3rt 2r_-- (rl cos8 + 2r2).rl (l -- cos I_)
3 ' " (15a)

,.-, 2 (,.,_co+++&T[2,.,,._o_+2,.__2,.,.+,.,_(t_co,_)l _

Equating this expression to zero we obtain values of r= for which v is
either a maximum or a minimum. This condition is satisfied either by tak-

ing r2=_, which corresponds to the greatest value of v, or by making the

numerator of (15a) equal to zero, which gives

r_--r=r,(l--cosS)----cos (l--cos_)=O (17)
2

or

', Vr2----'_ -(1-c°sB)'4-- -4-r_(l_cosS)_nt_ cos O( l -- cos {))=

= (,+)

From (8): a=360 °-28 °, we find ==0, for _ -360°=-_ 180 °, "_-_ =90 ° and

1 ;45 therefore in our case 90°>_--_45 ".a=180 ° for tt---- =90 ° , °;

In Table 2 the ratios r; :r, and r_ :r+ for the range 0°_<a°4360 ° are given.

It follows from it that in the range 0 °<a°< 180 ° only r; :rj is larger than 1

and the flight corresponds to a minimum initial velocity. The rest of the

cases give r2<rJ; they are of no value for flight from the Earth. The situa-
tion is different if it is required later on in interplanetary space to transfer

the rocket from one place to another with the smallest initial velocity. For

180°<av< 360 ° flight in a circle around the Earth is theoretically most ad-

vantageous; practically in this ease, either a circle, lying outside the at-

mosphere, or an ellipse, rising somewhat above the atmosphere, may be

chosen.

Let us examine more exactly the case r2:q>l, 0-<a°,<18ff "(see Table 3).
In this case we have to choose the upper sign in (18); we then obtain

(18a)

The following quantities are given in Table 3 for various values of the

central angle a, i.e., the flight distances:

the true anomaly 0 ° at the moment of take-off;

the take-off angle Bo;

the initial flight velocity v;
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the rocket's greatest distance r2 from the Earth's center and the highest

altitude h over the take-off point, for which we have

(19)

Figure 32 shows the optimum flight trajectories corresponding to the data

of Table 3.

TABLE 2

a ° 40 I 80 120 160 180

_o : 2 80 I 70 60 50 45

r2:r I 1.140 I 1.206 1,184 1.080 1.0OO

r2:r t 0,800 ] (.562 0.318 0.094 0

-- ÷ ....

a ° 240 I 280 320 360

.... ÷_ _--
I

_° : 2 30 I 20 10 O [

Ir2 : r 1 0.683 [ ( .439 O,201

r2:r I -0.183 I-(.204 -0.141

TABLE 3

a ° 0 20 80 90

0°/2

po

v, km/sec

r2, km

h=(r_--O), km

a o

90

45

0

0

6370

0

10o

85

40

0.545

4.305

6875

505

40 60

80 75

35 30

0.713 0.815

5.63 6.14

7266 7535

896 1165

120 140 160

70

25

0.885

6.99

7671

1301

180

67.5

22.5

0.910

7.18

7690

1320

_°/2

p-

v, km/sec

r 2, km

h, krn

65

20

0.930

7.35

7671

1301

60

15

0.962

7.60

7535

1165

55 50 45

10 5 0

0.982 0.995 1

7.75 7.85 7.90

7266 6875 6370

895 505 0

In order to find the maximum height hm, x we determine dr_ and equate

it to zero. From (18a) we obtain d_/2

d--
2
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or

ctg _tg --45 ° ; 90 °- .... 45;2 2

8--=67°.5;
2

a = 360°--2_ = 360°--270°=90 °.

We see therefore that the maximum flight altitude for maximum range at

a given initial velocity is obtained for a range of one quarter of the Earth's

circumference. Substituting 9/2=67.5 ° in equation (19) we obtain for the al-

titude in this case

hml_= rz V_cos 67.5 ° sin (67°.5 - 45 °) = 0.208G.

Assuming r,=6370km for the radius of the Earth, we obtain

h,_._-=0.208 • 6370 = 1320 kin.

From equation (7a) we determine for an arbitrary angle _ the major semi-

axis a of the ellipse. By substituting r2 obtained from equation (18), and tak-

ing the upper sign, we obtain

r l(1-cos_+sinS)(2cosS+ 1--cos_+sin$)

4sln_

or

a: rl [(1 + sin t}l__cos2 l_]_=rl ? sin _ + 2sin2o
4sin_ 4sin_

or

a-_ r_l(12 +sln_)=rlc°sa(+--45*) "
(Tb)

Let us also express the remaining quantities as functions of 9. From

equation (14) we obtain, substituting a from (Tb), the initial flight velocityv

2 = V3 -- _ '/JS- "

V_V3 _ I +sin_ ] Jf sin 11- COS (-_ -- 4,5°)

The eccentricity v is obtained from equation (4a) by substituting e2 and a

from (18) and (7b), taking the upper sign in (18)

_ r_,--l_ l--cosO+sin8 1= cos_a 1 + sin_ I +sin_ ;

The linear eccentricity is obtained from equations (4), (18), and (7b)

r, cos o (4c)
2
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Theminorsemiaxisof theellipseis foundfrom equations(5), (18),and
(7b); wedetermineinitially theminimumvalueof theradiusvectorof the
ellipse r3

r_----2a--r_r,(1 -_sln %)--2 (1 --cos %+stn 0);

(2o)
r3=-_ (1 + sin _)-{- cos D) -- r, V2¢os (_- - 45°) s|n -_- ;

and find then

]/fi + sin %)2_ cos2% =rl _,/sin 8 (1
-t- sin_)

--" 23--2 2

= ca ,
The inclination angle [3 of the rocket's trajectory to the horizon at the

initial point, is obtained from equations (12), (18), (7b) and (20), using the
relation

2a-- rj =G stn %; (21)

COS"= V/(|--c°s'+sin')(12 +sinS+cos,)=C0S[4_(450--+)]; (12a)

>0, so that the lower sign has to be taken, i.e., we8 >/45 o and
where -_-

have

0
@=_- -- 45°. (12b)

From this formula we obtain for a flight around half the circumference of

the Earth, i.e., for t_=90 °, _--0, and for 8 = 180 °, i.e., for short ranges

45 ° 45".

Taking into consideration equation (8), we also obtain

a a

360°- 45°==45"--_ -, (12e)4

i.e., for _=180 °, _=45 °, we indeed obtain a=0, i.e., short ranges; for

8 =90 ° , _=0, we obtain a=4.45 °:180 ° , i.e., a flight around the Earth.

From (12c) we see that increasing the central angle a by 20 ° corresponds

to a reduction of the inclination _ by 20°/4 = 5 ° for the cases of maximum

flight range for a given initial velocity examined above.

According to the type of problem which has to be solved, it is possible

to choose also any other of the quantities r2; r3; h; a; b; Z; e; a: t_; _: _ as the in-

dependent variable, instead of 8, for exampIe, _ or a.

Let us collect all the formulas derived for the case of maximum flight range:
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_ cos(+_45 o)G= (1--cos_+sin_)=rll.'_sin- _-

'_ sin(' --45:)h= _ ( -- 1 -- cos _ + sin _) =rl I#-22cos -_ - -_ ;

8

e = -- _ cos _};
2

e = 360" --2_;

2

v = % 1,_ v3 _ si. o
r l + sin,_ cus 45*

n o _ o a

s-----r,i_a _-rl_-(180 --0 ).

(18b)

(19)

(20)

(7b)

(5a)

(4c)

(4b)

(8)

(12b)

(14a)

(9)

These formulas allow us to determine the angle 0 for any given quantity

and then to calculate all remaining parameters.

Particularly simple formulas are obtained, if all the quantities are ex-

pressed as functions of _. From (12b) we obtain

0
--=_+4s o
2

or

And so

I)= 21}+ 90 °, (12d)

r2= r, V-2 cos (45°-13) cos _; (18c)

h = r, ]f2sin (45 ° -- 8) sin [3; (19a)

r3= q _sin (45°--1_) cos 1_: (20a)

,, = r, cos:_; (7c)

O= r, |_ cos [3: (5b)

e= r-L s+n 2_; (4d)

_=lg[_; (4e)

_= 180 ° -4_; (8a)
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.inky3 C°_S 2_ ;

£0S

s=_n (180 o_4_)=_r' ,,r,_
180 45

Usually, tile range s will be given. We flaen obtain from (9a)

p= 4s°(_q - s) = 45° - 45s.

(14b)

(9a)

(9b)

The determination of all the important quantities characterizing the

flight is now quite simple.

The flight duration is determined by Kepler's equation; we have

and Kepler's equation

tt=2(r--t) (22)

t=T (E--ZsinE ). (23)

where the semirotation period T around the Earth is determined by equa-
tion (6)

3

The relation between the eccentric anomaly, appearing in Kepler's equa-

tion, the true anomaly 0, and the relative eccentricity Z is given by

(24)

geometrically this is shown in Figure 38, if we draw a normal to the major

axis of the ellipse DD1 from the take-off point A and continue it up to its

intersection M with the circle of radius OD=a and center O. Connecting

points M and O by a straight !ine we have: E=2_MOD.

Substituting a from equations (7b) and (7c) in (6a), we obtain in the case

of maximum flight range for a given initial veIocity

T-= T_cos3(+--45°)= 7Lcos_ _.
(6b)

Next, by substituting Z from (4e) and t) from (12d) in (24) we obtain

tgL=l_tJz 45" =Vtg(45°--[3).tg([3+45 °)
2 y l+,gl_ v(P+ )
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or

or

t_7=VtgO+4s°)--

V 8
sinE= _ = 2 tgT

I+ _g(_+ 45")
1+,gT

(24a)

(24b)

and from equations (22) and (23) we find

I - 2r (_-- sinE).;-T E+_ (22a)

Using formulas (24b),(6a), and (22a), we easily find the flight duration as

a function of the central angle a of the path traversed (Table 4).

The velocity v3 required to circle the Earth at a radius of r,--6370km, is

obtained from the condition of equality of the gravitational attraction to the

centrifugal force developed in the circular motion

g =Z! ; v_= V-_z = l O//'_l.S16370=7.90 km/sec.
,, V i-_

We can now find the half circling period around the Earth at a radius of

r,-- 6370km

637o
T 1= "rl ; T1=-- = 42.3 min.

v3 7,90.60

The path s traversed, corresponding to the central angle a, is equal by

(9) to

s=r, l_=63701_ a= l ll.4a.

The corresponding average velocity on the Earth is equal to c=s/tf s and

¢ are also given in Table 4.

Propellant consumption

The minimum amount of propellant required for given flight range and

exhaust velocity, is obtained for rather high rocket accelerations, if air re-

sistance can then be neglected. This case gives the lower limit for propel-

lant consumption. It may serve for comparison with the real performance

of rockets.
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For this limiting case we have the equation

Mo = ew*,, (26)
M

where w is the exhaust velocity of the gases with respect to the rocket;

M0 and M are the masses of the full and empty rocket;

e is the base of natural logarithms (it should not be confused with

the eccentricity of the elliptic orbit' );

v is the burnout velocity of the rocket.

In addition to rockets with constant exhaust velocity, we have examined

above rockets capable of using the external atmospheric air. In these rock-

ets, the exhaust velocity may be variable.

I

= [ 0 ° 20 °
l

0 : 2 I 90° 85°

sin E 0 0.544

180°--E 0 32°5Y

Z 1 0.8391

T : T I 0.355 0.451

Tmi n IS.0 19. |

t/ : T 0 0.660

t/min 0 12.6

s, km 0 2230

iO00km
¢ _ -- 10.63

hour

a 100 ° 120 °

_:2 65 ° 60 °

sin E 0.930 0.964

180°--E 68030 ' 74o35 '

Z 0.3640 0.2680

T : T 1 0.831 0.901

T 35.2 38.1

t/ : T 0.976 0.993

t/ 34.4 37.8

s 11 140' 13 370

c 19,46 21,2

TABLE 4

40 °

80 °

0.712

45028 ,

0.7O02

0.550

23.2

0.821

19.0

4450

14.2

1400

55 °

0.984

79040 '

0.1763

0A'55

40.4

0,996

40.2

156OO

23.3

60 °

75 °

0.816

54o40 ,

0.5774

0.650

27.5

0.907

24.9

6690

15. I

80 •

160 ° 180 •

50 °

0.996

84%0'

0.0875

0.990

41.8

0.998

41.6

17 800

25.6

70*

0.882

61o50 '

0,4663

O. 745

31.5

0.948

29, 8

8910

17.94

45 o

1

90 °

0

1

42.3

1

42.3

20 000

28,4

90 °

67.5 °

0.910

65o30 '

0.414

0.790

33.4

0.966

32.2

lO 00(3

18.65

My recent studies in this field clearly show the possibility of building

such rockets with a rather high efficiency. For these rockets an even lower

fuel consumption minimum is obtained, since in this case, in the limit, all

the energy contained in the fuel can be transformed into kinetic energy of the

rocket. Since in the rocket's nozzle the air may be expanded to rather low

temperatures and pressures with secondary compression to atmospheric

pressure, inflow of heat from the external air to the low temperature place

is possible. When cooling the secondary compressed jet by liquid air the
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heat of the external atmospheric air may be used in a rocket in addition to

the heat, obtained from the fuel.

Not considering here this last possibility, we obtain for a rocket suitable

for flight in air a lower limit for fuel consumption. Equating the kinetic

energy of the rocket to the work equivalent to the heat contained in the con-
sumed fuel, we obtain

__ (Mo_ M) g= M v.____2' (27)

here H is the calorific capacity of the fuel per kg of combustion products,

if the oxygen for combustion is carried along, and per kg of the fuel itself,

if atmospheric air is compressed by an injector or by another method into

the combustion chamber and the fuel only is carried in the rocket; ,4 = 11427

is the mechanical equivalent of heat and g is the gravitational acceleration
at the Earth's surface.

We can introduce in formula (27) the maximum exhaust velocity

2g A (28)

where w is the real value if oxygen is taken along and a purely calculated

one if fuel only is taken in the rocket.
From formulas (27) and (28) we obtain

-- t,2

M0 M = ____ or M0 =1-_-_, (27a)M w2 M

and from (28) we find

w = V-_-'A-----V22981. 427H= 91,5 V'H. (28a)

The amount of fuel consumed is equal to M0--M, so that its ratio to the final

mass of the rocket is

Mo -- M
M

Numerical values for the ratios of the initial to final mass (M0/M) are

given in Table 5 for two different fuels: for gasoline and for liquid hydrogen.

For gasoline the following values were used: heat capacity per kg

Hb = 10,500cal]kg; amount of air, required for the combustion of 1 kg of gas-

oline - 14.9 kg; fraction of oxygen in air - 23.1%.

Then, the heat capacity of gasoline per kg of combustion products (when
burning gasoline in pure oxygen) is equal to

H=. J0500 -----2370c al]kg.
14.g.0.23! "t-I

The maximum exhaust velocities, corresponding to _b and H are

_------91.5 ]/"_--9380 m/see,
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and

Similarly,

hence,

w _91,5 _= 44,50 m/see,

we obtain for hydrogen

Ha, = 28 900 cal/kg of Ha and H = 2890...____0=3210 cal/kg of H 2 O,
9

w =91.5_---- 15520 m/sec

w=91.5 _---5180 m/see.

Gasoline

Hydrog en

Gasoline

Hydrogen

II

v, kta/sec

Mo ,,4.45
3. -_- =

Mo v

M o u 2

3._uo= __.-_
M

Mo / v \_
2 _ = i;Sg) + ,

M o I v \2 1"--E = t _-V.g52) +

v, Eta/see
v

Mo e4._

M 0 'p

I.M.__o v

¢]

Mo es.-_

M o / _u \2
z _ =_,5.-7i_-) +,

1.,,

TABLE 5

0° } 20°

0 1 4. 395
I

I

1 [ 2.63

1 ] 1.939
L

I I 1.212

I
I

1 I 2.29

I

1 I 1.833

I
1 ] 1.077

i

I 100°

i
7.35

I
5.20

I
I 3.73
I
, 1.616

I
I

i

I

I

4.13

3.02

1. 225

4o°
I

.... _-- ---------4

5.63 5.44 6.99 ] 7.18
i

4.25 ' 4.80 I 5.01

3.10 ' 3.46 I 3.61

1.470 1.557 ] 1.587

3.54

2.60

I. 360

90 °

2.96 3.46 3.g5 { 3.96

2.18 2.55 2.82 [ 2.92

1.132 1.172 1.203 { 1.214

120 ° 140 ° 160 ° [ 180 °

7.60 7.75 7.85 ] 7.90

5.51 5.69 5.83 [ 5.89

3.94 4.04 4.13 [ 4.16

1.658 1.683 1.700 [ 1.710

4.33 4.45 4.54 I

3.16 3.2.5 3.30 I

1.240 1.250 1.256 ]

4.59

3,33

1.260

Table 5 gives the lower limits for fuel consumption in the cases indicated

above. We see that the necessary amounts of fuel are astonishingly small:

to orbit the Earth, i. e,, to attain the first cosmic velocity, the fuel con-

sumption required (if the entire energy contained in the fuel is used)
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constitutes for benzene (1-1/1.71)- 100=41.5%, and for hydrogen

(1-1/1.26). 100= 20.6% of the total initial weight of the rocket.

Rockets may take much more fuel, in particular if we include in it a

part of the rocket's structure itself*.

For the closest approach to optimal fuel consumption it is possible, as

was shown above, to solve the following practical problem. Let us assume

that we take part of the air for the combustion from the terrestrial atmos-

phere and that we supplement the insufficiency in the high layers of the at-

mosphere by oxygen carried along. We have then to find the trajectory,

the velocity, and the consumption of oxygen carried along, which give the

closest approach to the ideal case. Taking also the price into consideration,

it is possible to indicate those quantities which correspond to the cheapest

Night for a given final rocket weight and for a given altitude or flight range.

The exhaust velocities, obtained practically by Professor Goddard in

America in 1919 (see Obert, "Die Rakete zuden Planetenriiumen, pp. 90-91.

1925) for powder are the following: for the smokeless powder "infallible",

an exhaust velocity w up to 2434 m/sec and a combustion heat H= 1238.5 eal/kg;

for pistol powder No. 3 an exhaust velocity tv=2290m/sec and a com-
bustion heat H=972.5cal/kg.

Using these data, we can determine the theoretical exhaust velocities

from (18a)

_,.,= 91.5

Introducing next the following notation for the ratio of the practical exhaust

velocity, to the theoretical one

_ u, (29)
_max

and writing for the thermal efficiency

we obtain for smokeless powder

wm,x_ 91.5 V 1238.5-- 3210 m/sec.

-----2434=_0 76'
3210 " '

_,=0.76_=0.577;

I first proposed in public to use the solid structural material of a rocket as fuel in December 1923 in a

lecture given before the theoretical section of the Moscow Society of Amateurs of Astronomy. [ have

published a paper on the subject in July 1924, in No. 13 of the .[ournal "Tekhnika i Zhizn'" andonSJune

1924 1 described this idea in my statement to the Committee for Inventions. The idea of the advantages

obtainable by using the entire mass of a rocket as a fuel is already found, however, in my manuscript of

11 March 1909. I have always expressed this view in discussions with relatives and friends on the pos-

sibility of interplanetary travels. In 1917 a factory prepared for me a crucible for performing experiments

on the burning of molten metal. Numerical data on the calorific value of magnesium oxide and other

materials may be found in my manuscript for the first time on It January 1918. I therefore consider that

to my best knowledge I was the first to have expressed this idea and [ was the first to publish it. Kondra-

tyukFs manuscripts start in 1916 and his book - Zavoevanie mezhplanetnykhprostranstv (The Conquest of

Interplanetary Space) appeared only in 1929. In a series of lectures, which I ga_e in 1924 and 1925 in

various towns, l also explained the principle of the method of burning solid structural material and gave

the example of my own project for an interplanetary ship.
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and for pistol powder No. 3

_mx = 91.5_ ---- 2850 m/sec;

_-----_=0.803; _t----- 0.803_= 0.64&
2850

If we take _ = 0.75 for the combustion of gasoline or hydrogen with oxygen,

then we obtain for the practical exhaust velocity of the combustion products

of gasoline with oxygen: w = 0.75 _ = 3340 m/sec; for hydrogen and oxy-

gen: _v -- 0.75 1/'-_80 = 3380 m/sec. The calculated velocities in the case of

sucking in the external air for combustion are: for benzene w=0.75 1/9_0 =

=7040m/sec; for hydrogen w=0.75 ll/i5,520=ll,650m]sec.

Table 6 was calculated using these data. Used together with Table 5, it

gives an idea of the influence of the thermal efficiency on fuel consumption.

Gasoline

Hydrogen

Gasoline

Hydrogen

2 " "_o / v \2
' _ : _-5_) +
, "_0 r; 2

IP

. M0_e_3._-_
M o / r _

2' _ = _3-_) + '
I r M0 / ,j _2

• M -[.--_) +1

3'. Mo= __-_
M e

M o [ v \2
z. _- =_,-_-) + l

Mo / v \2

,'._ =_-_-) +,
v

• _ _£

2do ¢ v \2

TABLE 6

O* 20* 400 600 800

1 3.64 5,39 6.88 8.11

1 2.67 3.85 4,73 5.38

1 1.376 1.640 1.839 1.990

1 3.04 4.27 5.25 6.05

1 2.24 3.10 3.75 4.25

1 1.138 1.235 1.306 1.360

I00" 120" 140" 160"

9.02 9.75 10.18 10.48

5.85 6.20 6.40 6.54

2.09 2.165 2,22 2.24

I
6.65 7.11 i 7,35 7.57

I I

4.60 ] 4.85 ! 5.00 5.09

1.400 ] 1.426 I 1.442 1.455
I

90 o

8.60

5.63

2.04

6.35

4.43

1.381

180.

10.66

6.61

2.26

7.68

5.15

1.460

In order to obtain a more complete picture of the dependence of all para-

meters on the distance traversed, the following quantities are also calcula-

ted in Table 7:

a =r acos __ =6370 cos _ p; b= r_ 1/'_cos p= 6370 l/-_f-_'cos _;

e=rz--a; r_=2a--r
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as well as the quantity (viva) _, which is proportional to the kinetic energy

given to the rocket at burnout.

The results of Tables 3 and 7 for the values of the parameters charac-

terizing the optimum range for a given fuel consumption as functions of this

range are given in Figures 35 and 36.

In Figure 36 we can see a linear dependence between the flight range s

and the quantities a, 0 and 8; next we see a parabolic dependence for fl, and

also a rapid increase of the initial velocity v for small ranges s while it

grows slowly for distances larger than 6000kin.

TABLE 7

4, kin

b

e

r3

(vlva)_

_, _m

b

r3

(viva) 2

20 °

3738

2036

3137

601

0.298

1.580

40 °

4274

3050

2992

1282

0.510

1.540

0 o

3185

0

3185

0

0

100 o

5620

5245

2051

3569

0.867

1.655

120 o

5943

5735

1592

4351

0.929

1.683

60*

4777

39OO

2758

2019

0.665

1.576

140 o

6177

6090

1089

5088

0.967

1.700

80 ° 90 °

5232 5436

4635 4950

2439 2254

2793 3182

0.785 0.830

1.628 1,640

160 o I80 °

6321 6370

6300 6370

554 0

5767 6370

0.990 1.000

1.710 1.720

The quantity (v/v3) 2, which is proportional to the kinetic energy of the

rocket at burnout, increases strongly up to distances of 7000-8000 km and

varies little for larger distances. It follows therefore that longer flights

will be cheaper per km of distance traversed than short-range flights. From

Table 7 we see that the energy required to fly around one quarter of the

Earth, a =90 ° , s = 10,000km, is 83% of the energy required to go around
half the Earth.

Figures 33 and 34 show the curves of the required fuel consumption as a

function of the flight range. In this case we also see the same picture, since

the fuel consumption of a rocket with constant efficiency is proportional to

v and for a rocket with constant exhaust velocity it is approximately pro-

portional to v. The advantages of using rockets which take air from the

atmosphere for combustion are obvious if this turns out to be possible after

a more detailed examination of a rockeCs flight in the atmosphere.

Further, we see fromFigures 33 and 34 that within the given velocity
limits :the exponential and quadratic velocity laws give very similar consump-

tion curves and only the absolute value of the consumption is different. Table 7

shows the ratio of fuel consumption in a rocket with constant exhaust velocity to

that of a rocket utilizing a specific fraction of the fuel' s energy

M;

Mo--M ,uo l ,_
M 3.34_
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where M0 is the initial mass of the rocket in the exponential law, and

M0 is the initial mass of the rocket in the quadratic law for the same

mass M of empty rocket.

It can be seen from Table 7 that this ratio varies from 1.54 to 1.72 for

central angles varying from a=20 ° to a=180 ° . We have then vm,.:w=

= 7.9:3.34 =2.37.°
w

Expanding e in a series, we may write for any _,

_ M'0--M_ _ -- , -- _ -- , / _ _. ,.L(±I_+ .... (31)
.-- MT2T_M-TI-T-r_-/-I-7_¥/T _ _,j

For v=0 and for v =c_, we obtain _ =_.

The curve has a minimum, which is found by equating to zero the first

derivative of the expression

We obtain

or

IMo--M) : (M0--M} with respect to :, :_.

od--

=0

T =e T--2e" +2=0. (32)

This is a transcendental equation, whose solution gives --_-_= 1.590 and

pro,,= 1.542. w

We see therefore that in a gravity free medium a rocket with constant

exhaust velocity comes closest to a rocket utilizing completely the energy

corresponding to the velocity _ if the flight velocity is v=l.590w; it has

utLlized by then 64.8% i.e._65% of the entire energy, corresponding to the

velocity v.

For particularly low and particularly high values of u:w, a constant ex-

haust velocity rocket is especially unfavorable.

In our case, the advantages of a constant efficiency rocket strongly in-

crease only for flight ranges shorter than 2200km (a=20 ° ).

All formulas derived above refer directly only to a stationary coordinate

system with the origin of coordinates at the center of the Earth. Since the

Earth rotates, we must take into account the rotation velocity at the take-

off and arrival points. We find then the value of the trajectory inclination

known from the ballistic theory: in the northern hemisphere the rocket de-

viates to the right and in the southern hemisphere - to the left. The ve-

locities, which have to be given to the rocket, are obtained from the velocity

triangle: abso]ute velocities with respect to a stationary coordinate system;

relative velocities with respect to the surface of the Earth and to the veloc-

ity of the take-off point.

Flights to the east, for which the relative velocity and the rotation veloc-

ity of the Earth are added, give ranges longer than calculated above, those

to the west, on the contrary, give Shorter ranges. The take-off angle and

the absolute initial velocity should also be modified somewhat in order to

obtain the longest range for a given fuel consumption.

Coming still closer to practice, it is possible to take into account the air

resistance and the gravitational attraction. However, from Table 6 we
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already see that when atmospheric air is used for combustion and for in-

creasing the efficiency of a rocket, it is possible to carry in the rocket the

entire amount of fuel in liquid form, i. e., metals must not be used as fuel.

When using metals for part of the flight lying inside the atmosphere, leav-

ing the liquid fuel for the flight outside the atmosphere, flight to great dis-

tances and even escape from the Earth and flight into interplanetary space

will be considerably simplified.

126



JET ENGINES*

Our usual aviation engines have certain features and insufficiencies which

compel us to look for new types of engines radically different from those

employed at present.

Such new types of engines are the jet engines and the gas turbines. Be-

tween these two types of machines there exists still an entire series of com-

binations, These are: reactive propellers, engines in which the heat of the

outgoing gases or their pressure is used to obtain an additional reaction

force, and gas turbines operated by the outgoing gases of the engine and

FIGURE 1. Schematic diagram of Loren's air-breathlng jet engine

coupled to a centrifugal compressor supplying the engine with compressed

air or driving a special propeller. Recently, the so-called air-breathing jet

engines began to be distinguished from the series of jet engines. This name

refers to two types of engines: in one type instead of carrying along oxygen

or some other combustion oxidizer, external atmospheric air is introduced

or compressed into the engine and is used subsequently in the combustion;

in another type of engine, atmospheric air is mixed with the comhustion

products in various ways in order to decrease losses by the outgoing gases

which carry with them much heat and kinetic energy.

The engines of the famous French designer Rend Loren belong to the first

type. Three diagrams of these engines are shown in Figures 1-3.

In Figure 1 we see the diagram of a simple air-breathing continuous com-

bustion jet engine [ramjet]. Air enters into the engine through the frontal

section A, it is compressed in the cavity B, and then mixed with fuel com-

ing from injectors in the chamber C where it is ignited. Coming out of the

engine, the combustion products expand to atmospheric pressure and acquire

a considerable velocity, attaining in section D the critical velocity, which is

equal to the sound velocity in the hot gases. The reaction force of the out-

going combustion products pushes the engine forward.

Another type of air-breathing continuous combustion jet engine is shown

in Figure 2. In this engine, the compartment E represents a compressor

of centrifugal or piston type. In the first type of engine the kinetic energy

* This article was published in the Journal "Samolet", No. 1. 1932.
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of the incident air is tcansformcd in a special duct into potential energy con-

tained in the compressed air, and only part of it is lost due to friction, thus

reducing the useful axial thrust obtained, while in the second type of engine

all, or almost all the kinetic energy of the air entering the engine is des-

troyed; therefore this type of engine is applicable only at low flight veloci-

ties, where the kinetic energy of the incident air does not yet play an im-

portant role. Part of the kinetic energy of the incident air can be used only

by building an air-compressor which is half centrifugal and half axial.

Nevertheless, jet engines designed according to Figure 2, willhave a

low efficiency even at low flight velocities since they use only a small fraction

of the kinetic energy corresponding to the high exhaust velocity.

FIGURE 2. Schematic diagram of an air-breathing jet engine

with compressor

Figure 3 shows the diagram of a jet engine, in which the compressor E

feeds compressed air to the combustion chamber H periodically and not

continuously. The mixture is ignited by a spark plug G, and the combus-

tion products escape periodically through the nozzle I. The valve F ad-

mits a new portion of mixture into the combustion chamber only when the

pressure in the combustion chamber has dropped to a value below the pres-

sure in the space behind the compressor,

If a piston-type compressor is used instead of a centrifugal one, the

valve is operated by a distributor mechanism.

A combustion chamber, in which the pressure and temperature fluctuate,

is more easily cooled than a continuous combustion chamber; for the same

average jet thrust, however, the stresses in the walls of the engine will be

larger with fluctuating chamber pressure than in the case of constant pres-

sure. It is easy to show that the amount of energy spent is smaller in the

latter case.

The kinetic energy of the jet is proportional to the square of the relative

velocity, and the momentum of the force, which is proportional to the use-

ful work, grows only with the first power of this velocity.

N

FIGURE 3. Schematic diagram of an air-breathing discontinuous

combustion jet engine

Let us introduce the following notation:

w, the relative velocity acquired by combustion products particles inside

jet engine's nozzle;

din, an infinitely small mass which at a given moment acquired velocity w;
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P, jet thrust at a given moment of time;

dt, the time element;

C, the flight velocity;

L, useful work performed during time interval t;

E, work spent on acceleration of combustion products;

M, ejected mass of combustion products.

For a series of consecutive explosions (Figure 3) taking place under high

pressure in the combustion chamber, the gas particles will come out of the

nozzle with high velocity. With decreasing pressure the exhaust velocity

will also decrease, diminishing, at the end of the cycle, almost to zero.

The whole work spent on acceleration is equal to the kinetic energy

m|

F=_ _2dm2
(1)

The useful work spent per cycle of duration t in moving the jet engine

forward is equal to

t

L=[. pe,.o (2)

From the law of momentum we have

t m I

Substituting iPdt from (3) in (2) we obtain

(3)

L=Ci'wdm. (2a)

Denoting by subscript m all quantities for constant exhaust velocity _,
we obtain from (1)

2

E,, == mL_, (4)

and from (2a) 2

L= = Cw,nrn,. (5)

Let us now consider two cases: one with constant pressure (see Fig-
ure 2) and the other with varying pressure in the combustion chamber (see

Figure 3). Let the useful work performed at a given flight velocity be
equal in both eases

L = L,,,

we then obtain from formulas (5) and (2a)

wmm , =,_"avdM. (6)
0

Let us prove that the kinetic energy Em for constant exhaust velocity is

smaller than the kinetic energy E in the case of variable w. We denote by

* [Here the author assumes implicitly that the flight velocity C is constant.]
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wl the average exhaust velocity which would give the same kinetic energy E

for the same amount of combustion products. Then

and from (1) and (7) we obtain

Z m,=] (7)

ml

0

Let us compare formulas (6) and (8). Since the integral _ w2dm is

changed only slightly by small values of w, while large values of w in-

crease it considerably, w, is always larger than win.

Let us demonstrate this by an example. Let the exhaust velocity be pro-

portional to the mass already ejected since the beginning of the cycle, i. e.,

w=krn, (9)

where k is a proportionality factor. Upon substitution in (6) and (8) we find

wmrnt=__; wm= kl,nl ; (10)
2 2

2 3
_ kjmj _ k:ml

w,ml-----5--; _e_--_. (1 I_

Dividing (4) by (7) and substituting _ and w, from (10) and (11), we
obtain

E. u,,,, 3 (12)

we see that the amounts of energy which have to be given to the com-

bustion products for constant and variable velocities are in the ratio of

3to4.

If half of the mass is ejected at a velocity n times greater than the ejec-

tion velocity of the second half, we obtain

E_ n4- 1
n2 _- I" (13)

If n = 10, we obtain E_ 11-E= 10"--'1= 0.109.

We see that constant exhaust velocity engines will be in general more

advantageous than variable exhaust velocity engines. The engines proposed

by Loren may be very much improved by introducing a closed workii_g

cycle; this will be shown later on.

By careful study of jet engine designs, many deficiencies, characteristic

of our present aviation engines, can be overcome.
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THERMALCALCULATIONOF A LIQUIDPROPELLANT
ROCKET ENGINE

Paper One _

INTRODUCTION

In the present article we consider the calculation of the therma] proces o

ses taking place in a direct jet rocket engine. The combustion of fuel and

oxidizer takes place under a certain pressure in the combustion chamber,

and the combustion products expanding in the nozzle are ejected directly

to the atmosphere with a velocity which is constant or almost constant with

respect to the nozzle.

The parameters which characterize the thermaI phenomena in a rocket

engine, are: the pressure in the combustion chamber, the combustion tem-

perature of the working mixture, the flow temperature, pressure and ve-

locity in the nozzle critical section and in its exit section.

These parameters depend on the physicochemical properties of the com-

ponents of the working mixture and on the pressure in the combustion chamber.

In the present case we take as fuel high grade aviation gasoline, and as

oxidizer - liquid air enriched by oxygen. To be more general, the calcu-

lation has been performed for liquid air with oxygen content varying from

23 to 100%. Various pressures in the combustion chamber were also cho-
sen - from 3.5 to 11 arm.

DETEP,_MINATION OF THE COMBUSTION TEMPERATURE

Approximate determination of the combustion temperature for variable heat

capacities making no allowance for dissociation "'_

We shall use the following notation:

x0, percentage of oxygen (by weight) in the air used;

(l--x0), percentage of nitrogen (by weight) in the air;

£o, weight consumption of air per kg of fuel;

h, percentage of hydrogen in fuel;

c, percentage of carbon in fuel;

H,Omo,, amount of water vapor molecules obtained from 1 kg of fuel,

* This article was published in the Journal "Rak'etnaya Tekhnika", No, I. 1936.
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CO_mo_, same for carbon dioxide;

N2_,o r, same for nitrogen left from air after combustion;

Mjmo_, amount of mixture molecules per kg of fuel, in g;

Ro, Po, gas constant and molecular weight of oxygen;

RN, PN, gas constant and molecular weight of nitrogen;

R_, }'2, gas constant and molecular weight of combustion products;

egam, molecular weight of gasoline;

To, temperature of air supplied for combustion;

r i, combustion temperature;

H B, calorific value of fuel;

R_}h, gas constant and molecular weight of evaporated air.

Let us take as fuel gasoline of the following composition: h = 14.5% by

weight, c--85.5%by weight.

The amount of oxygen required for the combustion of 1 kg of fuel is

determined from

n_! e _ h \ _2/0.85S _0.145_ 3 44= = (-W-*-W--) = " kg.

The amount of liquid air required for the combustion of i kg of fuel will

be

L 3.44 kg.

The gas constant of evaporated air, taking Ro = 26.5 and R _ = 30.2, is equal

to

RI =xoRo+ (l--xo) Rs =x026.5+ {l--x0) 30.2,

The average molecular weight of evaporated air is equal to

848

Ri

The amount of mixture in kg-mol per kg of fuel, taking for gasoline a

molecular weight _gaso of 100, will be

t o I

M,mot--_+T_-

The amount of combustion products in kg-mol, obtained from 1 kg of fuel,

is equal to:

for H20_I

0.145 0.0725 tool;
2 2

for CO_ _,°l

for N 2 .,or

¢_.= 0.85,5 ==0.0712 tool;
12 12

(l--x°)/'° =[ -(l-x°)/'° ] rao1.
t,v 28.08
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Denoting the amount of molecules of combustion products per kg of fuel

by M2moz, we obtain

M2_.l = H20_o_ + CO:tool + N2_ol-----0.1437 + (I -- x0) to
28.08

The average molecular weight of the combustion products is

l+L0

It7 _--" Mima

The gas constant of the combustion products is

R2 = 8_8.
_2

The average heat capacity of the combustion products is:

for H20

0.0725 (6.67 + 15.2.10 -4r) =0.584 + I. 102 • 10 -4T;

for COa

0.0712(9.55 _-10.2 - I0-"T)--0.679+0.726 • IO-"T;

for the sum of H20+CO2

for N_

1.263+ 1.828. I0-4T;

N2 ,,oz(6.59 + 5.167.10-*T).

The total heat capacity of M2,,,ot of combustion products will be

A2 + BT= 1.263 + 1.828 10-4T+ N:m,, I (6.59 + 5.167.10-4T) =

=(2.163-{- N_mot6.59 ) +(1.828--_-N_,,ot5.167 ) 10-4T.

The heat contained in the combustion products is equal to

(A2 +B2Ti) T_.

Finally, we determine the heat contained in the mixture before combus-

tion at a temperature To of 288°K, taking an evaporation heat r of about

90cal/kg for gasoline, and obtain, similarly to the previous case, the ex-

pression

(A z +BtTo) ro--r=Afjmot (6.59+ 5.167.10 -_ 288) 288--90 =

= (1940Mj,,ot--90) eal/kg.

To determine the combustion temperature we have the equation

tt_, + (Aa + B i To) To--r= (A=+ B2T,) r,. (1)

Transforming it as follows:

T_ j_ A 2 I

'" a, r, --_-2 It/=+(A'+B'T°) Y°--r]=O" (la)
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andsolvingit with respectto thecombustiontemperatureT_, we obtain

7"_=- 2B_A-2+ vl/ (_2B,A_/_'÷'_2 IH_+(A'+B'r°)T*--r]" (2)

Figure 1 presents the values of T_ for the combustion of gasoline in air

containing different amounts of oxygen.

It can be seen from the figure that the combustion temperature for high

oxygen content in the enriched air is considerably higher than the tempera-

ture actually observed. This is due to the fact that we did not take into ac-

count the dissociation of the gases. Gas dissociation is accompanied byheat

absorption and, consequently, by a temperature decrease which is partic-

ularly noticeable at high temperatures.

}-o K __ __

_00

7
(,oooI

f 4--

3200 .... /2

Z_.TO

= !7
_o23.t3o 5o 70 _o%oz

FICUP, E 1, Combustion temperature of

gasoline (neglecting dissociation} as a

function of ox2/gen content in the air

The temperature reduction due to dissociation affects, however, the ex-

haust velocity only partially, since the temperature of the gases drops dur-

ing their expansion in the nozzle. We thus have association, a process oppo-

site to dissociation, which is accompanied by heat release and increases

the exhaust velocity.

Determination of the combustion temperature accounting

for gas dissociation

In the first approximation, we assume that instead of gasoline the initial

materials are carbon and hydrogen in proportions corresponding to the

chemical composition of gasoline. Furthermore, we shall neglect the de-

composition heat of gasoline. Then we may write

¢ h
qr=qco,-_ + q.=oT , (3)
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where Qco, is the heat of formation of CO2; and QB.o, the heat of formation

of H20.

In the general case, the calorific value Q at any temperature is given by
the formula

Q=Qo+ r(cl--c2), (4)

where Q0 is the calorific value at the absolute zero temperature; c, and c2

are the average heat capacities of the reacting materials before and after

combustion.

The heat of formation of carbon dioxide is equal to*

Qco== (67 300+27 600+3.4T--0.0036T _) cal/kg mol of CO2

= (94 900+3.4T--0.0036T _) call kg mol of CO2. (5)

The heat of formation of water vapor is**

2Qn.o = l [3 900+4.067T+3.5 • 10 -4 T_--4 • l0 -_° T4. (5a)

We obtain an equation for the combustion temperature, by comparing the

heat of reaction to the difference in the enthalpies of the combustion prod-

ucts and the combustion mixture, taking into account the latent heat of evap-

oration of gasoline r and its enthalpy at a temperature To, i. e.,

Q==Qco,--_2 + Q,.o --_=(A= + B,T,) T, -- (A, + B,To) 7"0+

+r--CgasoTo. (6)

To be precise, we should account for the change in composition of the

combustion products due to dissociation. To simplify matters, it may be

assumed that the enthalpy hardly varies due to this. Furthermore, the de-

gree of dissociation depends on the pressure in the combustion chamber, a

fact which we will neglect*'**. The previous equation for the combustion

temperature is solved graphically. For this purpose we determine initially

the calorific value of gasoline as a function of temperature. Then, we de-

termine the enthalpy of the combustion products as a function of tempera-

ture. The intersection point of the curves gives the combustion tempera-

ture.

As mentioned before, the calorific value is a function of temperature,

as given by (4)

Q = Qo + T(ct--c2).

* See hgaryshev.-KhimicheskaTa termodinamlka (Chemical Thermodynamics), pp. 90-94. 1927. This

book gives the heat of combustion of CO to CO2. We add to this the quantity 23"12 =27,600 cal/kg tool°C,
which we assume constant since the dissociation of CO may be neglected.

** According to Pit's formula, the heat capacity of water vapor is 2(ct--c_)=4.155+3.5. l0-4. T--4.10-1°_.
*** By neglecting the influence of the pressure on the degree of dissociation reduces the accuracy of the

calculation. Since higher pressuresreduce dissociation, the errors will be smaller at high pressures
than at low pressures. - Editor% note.
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From equation (6) we obtain for gasoline

Q = 0.0712 (94 900 + 3.4T + 0.0036T :)+ 0._2_.s(l13 900 + 4.07T +

+3.5.10-4T 2 --4-I 0-'°T4)= ]0 875+ 0.3897T--2.433. I0-47_=

-----2.433.I0-4T2-- 0.]45. ]0-'074. (7)

Figure 2 shows the calorific value of gasoline as a function of its ab-

solute temperature r.

The enthalpy of the mixture, taking for the heat capacity of gasoline

Cgaso=0.5cal]kg °C and assuming an initial temperature To of 288°K, is given

by

(A , + B, Zo) To--r + cgasoTo=

= 1940Ml,noz--90 + 0.50. 288 = 1940Mamol+ 54. (8)

The enthalpy of the combustion products is equal to

As+ B2T _) T_ = [l. 163 + 1.828-10-47"1 + N2moi(6.59 +

+ 5.167. lO-4Ti)] T i. (9)

Plotting the difference in the enthalpies calculated by these formulas

as a function of the temperature for given percentages of oxygen in the air,

and plotting also Q as in Figure I, we

8000 _ ....

000(7 _-----

2000----- ! : •

.... I

FIGURE 2. Calorific value of gasoline as a

function of its absolute temperature, T

obtain the required combustion temper-

ature at the intersection points (Figure 3).

Figure 4 gives the values of Ti obtained,

accounting for dissociation.

The highest temperature for the com-

bustion of gasoline in pure oxygen is

3650 ° abs, or approximately 3400 ° C.

This temperature is by 1440 ° lower than

the temperature obtained neglecting dis-

sociation. Thus, for an oxygen content

larger than 40-50%, dissociation of the

combustion products becomes so notice-

able that it cannot be neglected.

For an oxygen content of 23.1, 30 and

40%, the combustion temperature can be

calculated with adequate accuracy by the formula which does not account

for dissociation,

FORMULAS FOR DETERMINING THE EXPANSION LAW OF THE COMBUSTION PRODUCTS,

THE NOZZLE CROSS SECTION AREA AND THE EXHAUST VELOCITY

It has been shown above that part of the heat released in the combustion

chamber is spent on dissociating the combustion products. The dissocia-

tion phenomenon is more noticeable, the higher the combustion temperature.

In the expansion of the combustion products in the nozzle, however, their

temperature decreases and part of the beat spent on dissociation is re-

leased back and increases the expansion work of the gases.
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One obtains the expansion law in the nozzle, taking into account the heat

release due to the decrease in dissociation degree, from the energy equa-

tion; we shall write it in the form

A_ dm

--=dQ'--dQ,-di= -- AV dp-- AdR,. (10)
2g

with A, mechanical equivalent of heat;

w, gas velocity at given section of nozzle;

dO', amount of heat per kg released by changes in state of gas;

dQ,,, amount of heat escaping through walls;

di, increase in gas enthalpy;

V, specific volume;

dp, increment in gas pressure;

dR., friction work arising in expansion of gas per kg.

I_000

_,zooo.... T2...
d3 ,.

u _1 -- --

_ i_. 6ooo- --- /

i _ _ooo

_ _ooo-_ ---

= I_k_
_ o _ 1ooo 2--ooo

FIGURE 3. Determination

4 '_'__ _o 5000

,___ 50 _ 4000

70 =

?000

_i I\ o
3OOO

of the combustion

temperatures o$ gasoline in aiT enriched by

oxygen (accounting for dissociation)

_" _lissociation

20 _0 60 80 /00
Oxygen content in the liquid air

FIGURE 4. Heat release in the combustion

of gasoline. Combustion t emperature of gas-

ollne versus OXygen content in the air Ineg-

lecting dissociation as well as allowing for it)

The amount of heat dQ', spent in dissociating 1 kg of gasoline or (L0+l) kg

of combustion products, will be as before equal to

dQ' = dO (Q -- c=) dT. ( 1 l)
Lo+l

By substituting dQ _ in equation (10) and integrating, we obtain

(,_2 _ 'W"'% == 1

2&" o i, -Lo+--_(Q2-Q,)-

- (O,,-q,,)-(i=-i,). (12)

Replacing Q2--Q, in (12) by its value which is obtained by integrating (ii),
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weobtain
T_

a----(w_-- u_) = -_---2---S(c,--c,)dT-(Q,,-Q,,)-(i_-i,), (13)
2g Lo--_- l

T,

where the index i refers to the initial state, and the index 2-to the final

state.

If in the first approximation wc neglect the heat loss through the walls,

i.e., we assume Q_a-Q,l =0, then the exhaust velocity w will depend only

on the temperature.

Assuming that the enthalpy of the combustion products is related to the

true heat capacity c_ of the reacting materials after combustion by the ex-
pression

¢_dT

ai-=L--._l, (14)

which upon integration yields

T3

T,

(15)

then, after substituting in equation (13) the expression of (i2--i,) from (15)

and transforming it, this equation will have the form

"_ (wo2-- =,_)=Z-_- _ c, dT--(Q,,--Q,,).*2g
T,

(16)

It follows therefore that if we have dissociation, i.e., when heat is re-

leased in the process of gas expansion, as well as in the ordinary case

considered, the increment of the kinetic energy of the combustion products

is equal to the difference of two quantities: the enthalpy decrease of the

original gases of the working mixture (and not of the combustion products,

as is usually taken), taken at the initial and final temperatures, and the

amount of heat escaping through the walls.

Since the heat capacity of gasoline vapors at high temperatures is not

well known and since at high temperatures the dissociation of gasoline will

be associated with heat release or its absorption, which complicates the de-

rivation of the formulas, we may, as was done in the determination of the

combustion temperature, take carbon and hydrogen instead of gasoline as

the initial materials in a first approximation, thus neglecting the heat of

formation or of decomposition of gasoline.

Formulas for the enthalpy at high temperatures are also not well known

and may not be completely exact.

We may say that in formulas (10), (12) and (13), the quantity di, cortes-

ponding to the difference (i:--i,), should refer to the true heat capacities of

the combustion products, assuming that they are not dissociated. More

* [Here the author assumes implicitly ¢_ = C2.]
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exactly, the enthalpy variation, when accounting for the heat release due to

a decrease in dissociation, is equal to

i_-- t_ -- q -- t_q- = i I -- i 2+

/'j

c_ refers to the dissociated combustion products and, therefore, cal-

culations cannot be done directly by formulas (14) and (15).

Not insisting on a special investigation of this problem, in view of its

complexity and the lack of experimental data, we shall establish the law of

expansion of the gases in the nozzle. We shall assume that this process

takes place so that the heat which was spent on dissociation of the combus-

tion products is not released back during the expansion and the cooling of

the combustion products, sinCe it is difficult to establish what fraction of

this heat returns back in the expansion. Direct experiments with rocket

engines will allow improvement of the results. In the meantime we can find

a lower limit for the exhaust velocity by assuming that the formulas for the

heat capacity are applicable in all cases, and that the combustion tempera-

ture corresponds to the value determined by the methods examined above.

Thus, let us derive the formulas for the velocity of the combustion prod-

ucts in various sections of the nozzle. Instead of equation (10), we shall

start from the equation

A, a_, = _ di--dQ_,= -- A V dp -- A dR,. (18)
2g

Upon integration we obtain

-_-_-etw2--wl;=t,-,a +(Q,,-Q,,). (19)

From equation (18), i.e.,

di +dQ_-AV dp+ A dR, (20)

after substituting V from Clapeyron's equation

V= R-L (21)
P

and neglecting the heat loss through the walls (dQ,=O) and the friction work

(dR,=0), we obtain a second equation

ARap= d_2._.. (2 2)
p T

We shah use equations (18) and (22) for the determination of the quanti-

ties w, T, p.

Neglecting in equation (18) the friction forces dR,, we obtain

a_ = _ Vdp. (2 3)
_g
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ReplacingthespecificvolumeV by I we have
I

"--_= -_. (23a)
2g T

The whole work of expansion of the gases from p, to P2 is hence equal to

(24)

2g Vdp= dpT
P. P,

(25)

The relation between p and _ depends on the thermal process through

which the state of the particles varies in their motion. In the present case
we assume the process to be adiabatic.

For an adiabatic process we have

and, consequently,

hence

p=C'_ I' ,

dp=ck'I_-'d¥,

-- =- ck'i_-_'d'I=c _--1
P, I,

(26)

(26a)

_'-'. (27)

Substituting for c its expression from equation (26), we find

- =;=TL_-_, j
P_ Pt

Assuming in equation (25), u,_= 0, we have from (28)

(28)

From thermodynamics we have for an adiabatic process

(29)

k--1

(,, _ . =(v,_,-,=r,

Equation (29) can be written as

(30)

f A'-I
(29a)
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or

(29b)

The derivation of the formulas for the pressures, densities and temper-
atures in the nozzle critical section and in its exit section is not difficult

and may be found in any course of thermodynamics for an adiabatic process.

The cross sections of the nozzle are obtained from the equation of con-

tinuity of the jet

G-----'[_[xwx, (31)

where G, is the rate of flow of the combustion products;

y_, the specific weight of the gases;

f_, the nozzle cross section area;

w,, the velocity of the combustion products.

TEMPERATURE, PRESSURE AND VELOCITY OF THE COMBUSTION PRODUCTS

IN THE CRITICAL SECTION OF THE NOZZLE

Let us first determine the value of the adiabatic exponent }, neglecting

the variation of the gas constant due to dissociation. It is known from ther-

modynamics that

k = (c_-),: ] 4-_,aAR'-"-'_v"cv, (32)

where cp, and c., are the specific heats of the combustion products under

constant pressure and constant volume and AR,_t2 = 1.985. Substituting this
value we obtain

k=l_ 1.985. (32a)

To calculate it_c,,,, we have a formula which was used previously for the

determination of the combustion temperature

_,c_,= I__(A, + 2R2T,)--1.985.
t_

The critical temperature, i.e., the temperature in the critical section

of the nozzle, is determined by a formula known from thermodynamics

2
_ = T, -_--_. (33)

k is a variable, depending on To. We shall find an approximate value of

k, which we need for the determination of Tc. For this, let us take a crit-

ical temperature approximately equal to

Tc_0.90T I . (33a)
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Theaveragetemperaturebetweenthecombustiontemperatureandthe
critical oneis

Tc av--0.95Tl. (33b)

We calculate _2c_ and k, for this temperature, using the formulas given
above. Then we det_ermine the critical temperature T¢ from (33).

A more exact value of the average temperature Tc avor the expansion from

T, to T¢, for which we take a constant value of k, can be determined by the
formula

av=_. (33c1

Next, we determine more exact values of_zc,, and hand also of Tc and of

the actual ratio Tc : T_. Calculations show that Tc : T, is equal to 0.90 for air
containing approximately 23-40% of oxygen. By increasing the oxygen con-

tent, Tc : T, increases too and for pure oxygen it attains the value of 0.94.

In Figure 5, values of h for various temperatures and pressures are

given; Figure 6 shows Tc versus the oxygen percentage in air.

The critical pressure Pc, i.e., the pressure in the critical section of the

nozzle, and the ratio Pc/P_ are given by the formulas

and

1

_=/ro i'-'
m / r_/

(34)

JT _k-1

(34a)

Figure 7 shows the critical pressure as a function of the oxygen content

in liquid air with the combustion chamber pressure as parameter. The

ratio Pc/P_ is approximately 0.56 and varies insignificantly with the temper-

ature: from 0.556 for 7¢ =2000 ° (for 23% 02) to 0.579 for 7",.=3500 ° (for

100% O_), i.e., an increase of 2.3%.

The critical velocity, i. e., the velocity in the critical section of the noz-

zle, is determined by a formula, also known from thermodynamics

Wc_-V V 2g k-_l/_r/'c. (35)

Figure 8 gives values of we, calculated by the above formula for p_-- 6 atm,

as a function of oxygen content in the liquid air.

- TI_PERATURE AND EXHAUST VELOCITY OF THE COMBUSTION PRODUCTS AT

THE OUTLET FROM THE NOZZLE

The temperature of the combustion products at the outlet from the nozzle
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is determined, assuming an adiabatic process,

/,--I

by the formula

1,3 ]

I F'--_
%ooo _5oo _ooo 35oor:,_

FIGURE 5. Adiabatic exponent

versus temperature
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FIGURE 8. Critical velocity of combustion

products versus oxygen content in air

We take the pressure at the nozzle exit section p== latm. The calculation is

similar to that for the nozzle critical section. First, T= is determined

approximately for a value of k corresponding to Tc, i. e.,

r: = T, (_)',c: (36a)

and then the adiabatic exponent /_ is determined for a more exact value of

the average temperature, equal to

T, av__" r_ + T'=. ( 36 b)
2
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Finally, the temperature of the combustion products at the exit from the

nozzle will be equal to

It, -1

raav

T o = T, 77

Figure 9 shows T. versus the oxygen content in the air for different pres-

sures p_ in the combustion chamber, namely 3.5, 6, 8.5 and llatm.

The exhaust velocity of the combustion products can be delermined by

formula (29b)

w,,=_V 2g _ k__IRi(T,-- T,).

The factor tp, taken as 0.95, represents velocity losses due to friction.
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FIGURE 9. Combustion products tem-

perature at nozzle outlet versus oxygen

content in liquid air for various values

of combustion chamber pressure
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FIGURE 10. Combustion products

exhaust _ eloci_'versus o×ggen con-

tent in liquid air for various values

Of combustion chamber _ressure

The numerical values of the exhaust velocity of the combustion products

from the nozzle, calculated by formula (29b), are given in Figure 10.
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CONSIIMPTIONRATEOFWORKINGMIXTURE

The required fue] mixture consumption per second G is easily deter-

mined from the given reaction force P and the known exhaust velocity Wa

of the gases, using the expression for the, reaction force

p= G_._'_; (37)
g

the total consumption per second is therefor(" equal to

C ---pg . (38)
_t)a

The gasoline consumption per second is

O ___O_O (38a)
l--Lo+l

and the air consumption per second is

G2=G_G,____ aLo (38b)
Lo+l

DETERMINATION OF THE DIMENSIONS OF TIlE NOZZLE CRITICAI ANI)

EXIT SECTIONS

The dimensions of the nozzle critical and exit sections are determined

from the equation of continuity of the jet (31)

O=7,fx'wx

and from the equation of state of the gases

1 px
-[x_ --___-- .

v_ arx

From these equations we find

f _aRl". (39)

For the critical section of the nozzle we have

fc -=fiRrc . (40)
Pc_c

and for the exit section of the nozzle we have

fo=ORra (4 i)
Pa _a

The diameters of the corresponding sections of the nozzle are given by

dc ----1//-+ fc (40a)

and

d. =¢+ f.. (41 a)
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EFFECTIVE EFFICIENCY OF A ROCKET ENGINE

The effective efficiency of a rocket engine is equal to the ratio of the
2

kinetic energy of 1 kg of combustion products, i.e. _.._.£oto the thermal
' 2g

energy of 1 kg of fuel, which is equal to

l

/4= where A=4" _ •A(Lo+I)'

Thus, we have

w_(to+l)A (42)
Re_ 2gH_

Figure 11 presents curves of the effective efficiency of a rocket engine

as function of the oxygen content in the air for various combustion chamber

pressures.

CALCULATION OF THE COMBUSTION CHAMBER WALL TEMPERATURE

%
0A.

0.3

02

0.I

Let us assume that in a preliminary calculation we have already deter-

23./ _0 50 50 70 _0 9O/00_
Oxygen content in liquid air

FIGURE 11. Effective efficiency

of a rocket engine versus oxygen

content in air for various values of

combustion chamber pressure

mined by the above method the temperature,

density and pressure of the gases, the mixture

consumption and the velocity of the gases in-

side the engine. Let us also assume that the

temperature decrease due to heat losses through

the walls is insignificant. In this case, knowing

the initial temperature of the cooling liquid or

gas and its velocity, we can determine the tem-

perature of the walls and the heat exchange be-

tween the walls and the cooling medium.

Assume an engine in the shape of a cylindri-
cal combustion chamber with a nozzle sur-

rounded by an external envelope of the same

shape. The envelope is so mounted that between

it and the walls of the chamber there is a gap

for the passage of the cooling fluid.

The calculation has been carried out assure-

ing that the walls of the external envelope do not participate in the heat

transfer.

The oxidizer, i.e. air enriched by oxygen, is used for cooling the en-

gine. The air temperature before entering the chamber is taken as to = 15°C

or To = 288°K.

The coefficient of heat transfer through the walls is given by

k 1 , (43)

1+i
= 1 a2

with =2 and =,, heat transfer coefficients from gases to wall and from wall
to cool air; _, wall heat conductivity; 5, wall thickness.
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The coefficients a2 and a, are determined by Nusselt-Nernst's formula

and

with w_,

Is.9_,_, (,_,b, '_o.78+
a,=_214 _ --_--/ (44)

d, and d2,

(45)

air velocity in annular space between envelope and combustion
chamber;

w2, velocity of combustion products in combustion space;

b,, heat capacity of cool air in cal/ma;

b2, heat capacity of combustion products in eal/m3;

X,, heat conductivity of air at cool air temperature;

X,w, heat conductivity of air at chamber wall temperature;

_2, heat conductivity of combustion products at combustion tem-
perature;

X2w, heat conductivity of combustion products at chamber wa]l

temperature;

average calculated diameter of annular space (approximately

equal to the hydraulic radius) and diameter of combustion
chamber.

For awall thickness of _=2mm=0.002m and for

m2 hour °C

(the mean value for steel) we obtain

__ =0.002 __ 1
33 16500"

This is such a small quantity as compared with I/a,and I/a2, that it can

be neglected in the present calculation. The temperature difference be-

tween the external and internal surfaces of the combustion chamber walls
is small.

Therefore, we can neglect the term 8]_ in equation (43) and use the for-
mula

!
k=--

'-+-'1
a! • 2 /

, (43a)

for the determination of the mean temperature of the combustion chamber
wall.

The amount Q/Fz of heat, passing through 1 m_ of surface F of the walls

during 1 hour, can be expressed by

_v) _ _, (_-t)-k (t,- t0)=_- (o2- _,),(t, (46)
FZ _ 2

where _),, _)2 and _hv are respectively the external, internal and average
temperatures of the combustion chamber wall.
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From(46)weobtain

Oar=t, -- _(t, --/o)- (47)

In (44) and (45), only X.w and k2w are variable quantities for the sec-

tions considered. They grow linearly with the temperature _,v. We may
therefore write

and

a, =a,. (I + [,0_v)

a2 = Q_+(l + _20av) *,

where the index 0 denotes the initia] values of a_ and a2.

Substituting the expression of k from (43a) in formula (47), we obtain

(44a)

(45a)

(t,- oar) t (t,-to)--°'(t+-to)

-,('+¼) °'+°'
Substituting in this formula the expressions of a, and a2 from (44a) and

(45a), we obtain after some transformations

_a_v. tl%_'+l°='°B'--='°--% 0 t°='°+h=_° O. (48)
°,op=+ =2op2 av ",oB, + %_2

Denoting the coefficient of O_v by a, and the free term by b we obtain

hence

with

and

(49)

a _'°(I--_'/°)+ a_O(I+ P2/l) (50)
%h + =2o_

b= t°"°+t_==. (51)
=+o_,+ %_2

Using formula (48), the temperature Oa_ of the combustion chamber

walls can be easily determined, if the values of h, t0, _., _2 are given,

and those of a,. and a20 are calculated.

:_ _t and _z are the heat transfer temperature coefficients, - Editor's note.
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Determination of the heat transfer coefficient a:. and its

temperature coefficient _._ for the heat transfer from the

combustion products to the combustion chamber wall

The heat conductivity coefficients of the individual gases N2, CO 2 and

H20 are

_N,=0.0190(l +0.0035t), }
_.co, = 0.0119(1 + 0.00542/), (52)

J_,o = 0.01405 ( 1 + 0.00369t ).

In the present calculation we have used, as a first approximation, a

formula for the mixture which gives too high values for _.. More exact

values may be obtained by experiments.

The amounts of CO2 and H20, which are obtained by the complete com-

bustion of 1 kg of gasoline, were calculated previously and are respectively

equal to 3.145 and 1.305 kg.

The amount of N2 obtained by the combustion of 1 kg of gasoline is

N_ _ 3.44 (l -- x0)kg.
x0

According to the mixture rule the heat conductivity of a mixture of com-

bustion products is equal to

(N2 + CO2 + H20) _ = N2X N, + CO2X co, + H20_ ,,o. ( 5 3)

We may also write for the total weight of the combustion products obtained

from the combustion of 1 kg of fuel

N2-}- CO2+H20 = L0+ I. (54)

Thus, we have

X= N----t-2 0.0190(I -]-0.0035t) +
to+ I

+ _ [3.145.0.01 ]9 (1 + 0.00542t + ] ,305-0.01405)(1 + 0.00369t)] =

N20.0190 + 0.0557 . _, (54a)
£0+1 t (L0_]_ 1) 10_ _"

Using this formula we determine X2 and X2w in (45) for the respective

temperatures ti and Oar.

Next, (45) contains the heat capacity b2 of the combustion products at

the temperature t_. It is obtained from

b2, ' =-_M 2 (A, + 2B,tJ, (55)

where, as before

_2M_:/.oqUl and _I= pi .
/_2Yi

Then we have for the combustion chamber (taking an internal diameter d2 of

60mm = 0.06 m)

Ig d2°'_14 = 0.2141 lg 0.06 = --0.214. 1.2218 =--0.262 = l g 0.548,
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and consequently

d °.2'_ =0.548.

The combustion chamber cross section area is

f_=_L 0.06_= 28.27crr_.
4

The velocity of the combustion products in the chamber is obtained from.

the continuity equation of the jet

and hence using the equation of state of the gases, we obtain

G 6Rir_ (56)
_l l'if i pd,

Since, _¢i and b,r ,, as well as w_ are important independent quantities,

they have to be calculated and then introduced in (45).

a2, is obtained by substituting in (45) X2,, obtained for t = 0, and the tem-

perature coefficient 62 is obtained simply from (54a), by taking outside the
brackets the term free of t; we then obtain for the coefficient of t

We may also write

N_66.5 + 271 (5 7)
_]_ I0_(N20.0190 + 0.0557)

_2 N20'665 +2'71 (57a)
N21904- 557

Determination of the heat transfer coefficient _,0 and its

temperature coefficient 8, for the heat transfer from the

combustion chamber walls to the cold air moving in the

annular space between the external envelope and
the combustion chamber

The heat conductivity coefficient of the air produced from liquid air was

also calculated by the mixture rule. We have

_ =X0_o,+(l--x0) _,. (58)

The heat conductivity coefficient of nitrogen is given in (52); for oxygen

it may be calculated by

&o =0.0200(1 +0.0035t), (52a)

where t corresponds to Oar.

Substituting in (58) we obtain

_,, =x00.0200 ( l + 0.0035l) + ( I--x0) 0.0190 (1 + 0.0035t) =

= (I +0,00350 (0.0190 +0.00 lXo). (58a)

With the aid of this formula we determine the values of _, for the tem-

perature at which the air is assumed to enter the envelope, and also for

the temperature _, of the walls themselves.
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For to = 15°C we have

_, = (1 +0.0035- 15) (0.0190 +0.001xo. (58b)

Taking as the heat capacities of oxygen and nitrogen

¢po,=0.217 cal/kg_C and cpN=0.247cal]kg_C

the heat capacity for air (1 kg) at a temperature of t = 15 ° will be

(59)
c7,, =xo0.217 + (1--Xo)0.247.

The heat capacity of 1 mS of air at a temperature t_ is

b "foc_ 1.188,2g.?6pi[x0.0.217 + (1 -x0)0.247] (60)
I _ -_ Pi R_pu ,

where we have taken for the density that of atmospheric air which is in-

versely proportional to the gas constant, i. e.,

1.la8.29.26

"[°-'_ R,

For pipes of annular section there is no straightforward formula for the
heat transfer coefficient. Let us assume that the diameters of the section

are equal to d,_88mm and d, =64mm.

If we assume that in formula (44) the value of d, is equal to twice the

hydraulic radius, we obtain

d, _ da--d.

If we assume that d_ is equal to the distance between the external and

internal walls, then, introducing the symbol "prime", we obtain

so that

d, _ da _ d I

However, for formula (44), only the quantity _.2._ is important and,
therefore, we have for the ratio of the corresponding heat transfer coeffi-

cients

al = 2°m4 = 1.160.
dl

i. e., considering the first case, we obtain d_ smaller by 16 % only which

means a somewhat higher calculated temperature of the combustion cham-

ber walls.

Thus, taking

dj =d_--di. (61)

we obtain

dl=88--64=24mm,

151



and

d°, .2'4 =0.450.

The air velocity is determined by a formula analogous to (56), i. e.,

wl ___6airR,r0 , (62)
pJ_

with Gait air consumption in kg/sec; R,, gas constant of air for corres-

ponding oxygen content; To, air temperature at given section.

When determining the temperature of the combustion chamber walls, it

is necessary to give first the dimensions of the combustion chamber and

the consumption per second. After calculating all the auxil]iary quantities,

i.e.,a,._o, 6,, 62, etc., they have to be substituted in (48a), (50), and (51).

The value of _,, is calculated by formula (58a), in which we omit the

temperature-dependent terms, i.e., we assume that

_,, = (_.av)o.

Furthermore, we substitute in (44) _=_4=0.450. The temperature coef-
ficient 6, is taken equal to 0.0035 according to (58a).

APPROXIMATE DETERMINATION OF THE DIMENSIONS OF THE

REQUIRED COMBUSTION SPACE

The flame length is in general a function of many variables. It depends

on the following factors: the flow velocity of the gases; the pressure, the

temperature and the air surplus; the composition of the air of the kind of

oxidizer; the kind of fuel; the degree of mixing; the temperature* of the

air to be mixed; the temperature of the fuel; the degree of its spraying and

evaporation; the combustion chamber wall temperature; the presence of

extraneous bodies (fuel sprayers) and of incandescent parts in the chamber;

the direction, in which the fuel is injected into the combustion chamber;

eventual vortical motions or artificial mixing of the gases; and finally, the

fuel's preliminary partial carburation. The shape of the combustion cham-

ber itself plays also an important role.

Of particular importance at high temperatures is the dissociation of gases

especially that of carbon dioxide. The dissociation lengthens the flame appear-

ing inside the combustion chamber so much that its end comes out of the nozzle

where it is mixedwith atmospheric air. This lowers the combustion tempera-

ture and may even end the combustion. Inside the chamber, the combustion

process will approach asymptotically the theoretical one, i. e., for a smal-

ler combustion chamber, the fraction of unburned fuel will be larger.

We may approach the determination of the dimensions of the combustion

chamber in different ways. We may, as was done abroad (see the Journal

"Die Rakete", No. 3. 1929) take into account only the evaporation rate of

the drops determining the length of the path traversed by the drop until its

By increasing the pressure in the chamber the temperature of the chamber walls increases too due to the

increased velocity of the gases. This increase is _ small that the curves for the considered pressure in-

terval practically coincide.
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complete evaporation. However, it will be incorrect to assume that the

evaporated fuel burns out. This would take place only under the most per-

fect mixing.

It is therefore worthwhile to use experimental data and derive formulas

enabling one to pass from a successfully operating chamber to another one
of similar form.

The ratio of the flame length L to the internal diameter of the combus-

tion chamber d_ gives the first relation for determining the dimensions of

the combustion space

L x (63)
dl

The second relation is obtained from the continuity equation of the jet

---- ' (64)
4Rr_

To obtain a third equation we assume that the length of the flame for a
given temperature is approximately proportional to the gas flow velocity

independently of the combustion space cross section. This is plausible,

since for a given reaction rate, the individual particles of the burning mix-

ture will be carried during combustion to distances proportional to the gas

velocity in the combustion chamber.

Next, it is natural to assume that the flame length is inversely propor-

tional to the gas density, i.e. that it is inversely proportional to its pres-

sure for a given temperature. By increasing the pressure, the gas par-

ticles are situated closer one to another and the paths of individual mole-

cules are shorter. It may therefore be assumed that the combustion in-

tensity, i. e., the number of molecules combining per unit time in unit vol-

ume, is proportional to the gas pressure, whereas the combustion rate does

not increase noticeably, since the combustion temperature does not increase.

This means that for a given gas velocity, the volume in which the combus-

tion takes place will be inversely proportional to the pressure and directly

proportional to the working mixture consumption per unit time, i.e.,

PoGx (65)
P,=Go

Since the total volume of the combustion chamber will also be propor-

tional (for a constant pressure) to the gas velocity multiplied by the square

of the diameter, we obtain a new equation in which the index "0" refers to

the initial case and the volume of the combustion chamber is denoted by V.
Then

V=-L_- Lx (66)

and

"4
V0= _-Lo. (67)

We shall not consider here variations of the combustion temperature

since it is almost constant, assuming that the kind of fuel and oxidizer and

the degree of mixing do not vary.
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From expression (64) we find

Gx p.rd_ wx

o-7= p_ .----7" (68)

Ox

Substituting the expression of _ from (68) in (65), we obtain for iden-

tical chamber pressures

--_ -_'" d o _oPxPo d2oWo

For different experimental and designed chamber pressures we have

...v.v= w,poO_ , ( 7 0)
Vo _'oPxOo

and, making the substitution

vo-----7 L0,

we obtain the final expression for the volume

nd 2

V= "_po_', '-o Lo. (71)
woP...Oo 4

All the formulas derived above have an approximate character and re-

quire improving on the basis of theoretical studies and of results of tests

conducted directly on rocket engines.
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THERMAL CALCULATION OF A LIQUID PROPELLANT
ROCKET ENGINE

Paper Two _

THE THRUST OF A ROCKET

According to Newton's second law the total axial thrust on a rocket is

equal to the product of the mass of gases leaving it per unit time by their

exhaust velocity relative to the rocket.

Let us use the notation:

P, thrust on rocket (reaction force);

dM, mass of gases leaving rocket during time dr;

v, velocity of rocket;

O, absolute velocity of propellant before ejection;

c'_, absolute velocity of gases at nozzle inlet (positive in flight direction);

c_, absolute exit velocity of gases from rocket's nozzle (positive in flight
direction);

w,, relative velocity of propellant before ejection;

t_'_, velocity of gases relative to rocket at nozzle inlet (positive opposite

to flight direction);

w2, the same as wl but at nozzle exit.

When the velocity of the rocket increases, the propellant in the tanks is

also accelerated. Thus it acquires a certain amount of kinetic energy,

which is later partially used in the combustion and plays, therefore, a tre-

mendous role at high flight velocities. Before ejection the propellant ab-

solute velocity, ¢_, is always equal to the

flight velocity, v, and the corresponding rel-

¢t ative velocity, w1, is always zero for rockets

>- = which do not use atmospheric air but carry

loZ r'z along all the required fuel and oxygen.

FICtmE I When entering the rocket nozzle, the pro-
pellant has in general already produced a

certain small propulsive force correspond-

ing to the change in relative velocity from _, = 0 to w'z or to the equivalent

change in absolute velocity from c_ to c',.

In calculating the axial thrust P one must, therefore, take into account

the change in absolute gas velocity from cx=v to c2 or the equal change in

relative velocity from w,= 0 to w2. According to Figure 1

_2 = c,--c2: ( 1)

'* This article published in the Journal "Raket'aaya Tekhnika", No. 5. 1937.
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thechangeof momentumof themassdM will, therefore, be

w2dAl = (cl--c2)dM,

and since it is equal to the impulse of the force Pd[, we have

Pdl = w_dM

hence

(2)

P= 7_,,aM . (3)
dt

Dcnotingby G2 tile propellant consumption per unit time (in 1 sec) in kg

and by go -the gravitational acceleration at the Earth's surface, we have

dM G s

dt go '

hence

p=wo a" . (4)
"go

The velocity u_2 can be determined if we know the propellant's calorific

value, the gases' initial and final states, and the heat transfer coefficient
to the nozzle and the combustion chamber's walls.

Let us write the general energy equation

with m, molecular weight of combustion products;

it, propellant enthalpy per kg-mol of combustion products before

combustion in rocket;

i2, enthalpy of i kg-mol of combustion products after their com-

bustion;

i,--J2, so-called thermal head (a term analogous to hydraulic head);

L, work, in kg, usefully delivered by rocket engine per kg of pro-

pellant mixture;

A, 1:427 cal/kg -thermal equivalent of work;

Q,, heat transferred to rocket wails per kg of propellant mixture;

b, kinetic energy acquired by 1 kg of propellant when fed into com-
bustion chamber.

Equation (5) can be expressed in words as follows: enthaIpy change pIus

work performed by the external forces is equal to the sum of three quanti-
ties:

1) the thermal equivalent of the useful work AL;

2) the heat Q, given to the rocket walls;

3) the kinetic energy of the combustion products per kg of propellant

mixture,

4 4
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Friction lossesat thewallswereneglectedin (5). Thework G,L, per-

formed by the rocket in unit time, is equal to the work of the force P, act-

ing on the rocket at the velocity v, i.e.,

G,L = Pv.

By substituting P from equation (3) we obtain

hence

w_Gs

go

t=_. (6)
go

Substituting L from (6) and w2 from (1) into (5), we obtain

hence

_ Q_ _]_i,- t2+ Ab = A -2c,+A___(c2--c,)(c2-}-c,)=
rl go Zgo

=2_o [2_2Cj -- W, (C2+ C,) J = _g_ (C, -- C,) -_- Aw_2go ;

ak m q'+ " (7)

Introducing the exhaust coefficient % i.e., the ratio of the actual to the

theoretical exhaust velocity, we obtain

1
Inserting the numerical values of g.= 9.81 m/sec2 and of A = -_7,we have

w2=91.5_ |/ _-- Q, 4- Ab m/sec (9)

where i2 is taken from the iS diagram, plotted without allowance for fric-

tion.

The entire thermal head, divided by the molecular weight of the combus-

tion products 6--i_, is equal to the calorific value HQ=H/(I +x) of 1 kg of pro-
m

pellant mixture. H is the calorific value of 1 kg of fuel and x-the weight of

oxygen or air required for the combustion of 1 kg of fuel.

In particular, using the entire thermal head and taking 9 =1, Q,=O and

b-- 0, we obtain for the maximum exhaust velocity

w,_,,= 1/2gOA 6_ ''=91"5 ]_° rn/sec" (10)

Equation (9) shows that the relative exhaust velocity w2 depends only on

the calorific value of the propellant l_-i2, on the amount of heat Q_ escaping
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throughtherocketwalls, andona certaincoefficient_0whichis thecloser
to 1thesmallerthefriction in therocket.

Therocket'sthrust P is equal, according to (4), to the product of the

velocity z_2 by the mass of gas ejected from the rocket per unit time. For

a constant velocity w2, constant pressure in the combustion chamber and
constant area of the nozzle exit section this rate of mass flow is also con-

stant. The rocket is an apparatus, possessing for a given constant propel-

lant consumption rate a constant propulsive (pushing) force. Since the

power is equal to P_, it increases proportionally to flight velocity and may

be raised without limit. The efficiency, however, tends to zero at high

velocities (much higher than 11 km]sec) as we shall see in the next section.

EFFICIENCIES OF A ROCKET*

Let us denote by ,i,_ the ratio of the work G,Ldt received by the rocket

during time dt, to the heat transformed during that time interval into ki-

netic energy of the combustion products, i.e., to the quantity

We then obtain**

dt _go(Ts'u_ as___._(__il-- i2 Qs) ¢f dr.

c,Lat _ /..mA . (11)
h-- 52-- tnO_ (q -- I, -- mO,) _

._ ctt
A m

Substituting in (ll) the value of L from (6) and of _2 from (8), we have

2g0

or, finally

2c1
_ - --. (12)

Equation (II) shows that at the speed of our ordinary airplanes _m is

a very small quantity; a hydrogen-oxygen propellant, e.g., with Hu =

=29000cal]kg and x=8, gives Ho =29000:9 =3220cal[kg and w,ma,

= 91.5 3_ = 5200re]see for _P= I. Taking for _ a realistic value of

3000m[sec, we obtain, according to (12), for a flight velocity of v=_v,=
--45 m[sec (162 kin/hour)

2.45 0 03

It follows that at low altitudes over the Earth's surface and at the veloc-

ities of our ordinary airplanes, it is impossible to use a rocket which is un-

able to use additional air or does not have a very high acceleration.

* This section is a more comp]ete exposition of Chapter 7 of the book by Tsander F.A. "Problema poleta

pripornoshchireaktivnykhapparatov" (ProblemofFlightwiththeAidofJetPropulsionMachines}. In that

chapter, Tsander gives only final formulas for the efficiencies° Here, their detailed derivation is pre-

sented. - Editor's note.

** Here Tsander neglects the quantity Ab, i, e., the kinetic energy given to the propellant when it is fed

to the combustion chamber. This can be done since this energy is usually small. - Editor's note.
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The thermal efficiency _h of a rocket may be defined as the ratio of the

thermal head (i,--i2) theoretically transformed by adiabatic expansion into

energy corresponding to the velocity w to the full thermal head (i_--i0), i. e.,

%=i,--t,. (13)
i t -- t o

If by full thermal head we mean the upper calorific value, then i0 = 0.

However, in general one cannot hope for liquefaction of the water vapor con-

tained in the combustion products during expansion in the nozzle and there-

fore i0_0 is frequently assumed. The denominator (i_--io) in (13) is the

lower calorific value, and i0 - the thermal head just before liquefaction.

Denoting by _ the ratio of the energy transmitted to the rocket to the

work corresponding to the full thermal head at a given moment, we have

7,= _,?'_t. (14)

The total efficiency q_._ is defined as the ratio of the energy given to the

device during the time dt to the sum of two quantities: 1) the energy, cor-

responding to the entire heat contained in the propellant consumed during

dr, and 2) the absolute kinetic energy contained in the fuel before combus-

tion. The work capacity of 1 kg of propellant mixture is

Lo l,-- to4_ ,2

and the work given by the rocket engine is

(15)

therefore

2 2

L----- i,--l_--O.,m?,.__c,--c___.!. (16)
Am 2go

t .,- _-mo.)_,2go + (d- d) am
"ll+ _ ==--to= (ii -- to) 2go + t_ A., (17)

In (15) the first term is the full thermal head, the second term the ki-

netic energy of the propellant immediately before combustion, when still

in the tanks, q_+s cannot be larger than 1, whereas the other above-exam-

ined efficiencies _ and _lm have values larger than 1 for certain high ve-
locities and are not, therefore, true efficiencies.

Since

G,L = Pv = Pc,

and

L_._ P__el .__ Wtel ,

O# go

and also 2

il -- t'O_ _P2mlX

Am 2go

159



w_obtain
L £ 2goPcl

Lo ,,-,o _, _'(';m.*+d)
Am + _ggo

__ 2go£ _ 2_cl
-- .22 max "t- £21 -- _t_'m, x + C_ "

Next, from (14), we have

(i,--1_- mQ,)_

We therefore obtain

(18)

(i]--io--mO_) _ LAIn 2goL 2w2c1 2goPcl Ilnx
_" _ ";----7 =_ _.-T--- = _.--T_'_- _ "_ __ /

fl --10 _l -- I fW _ UsW0 2 max 2 m|x 2max

_+E =' _ = _._,_______L__2 _,_,,a _,

]+.,_,.. I+,,_,.,. ]+_-_,,_ _+_

(20)

The maximum value 'l,+e = 1 is obtained, as seen from (18) for w_=cl, with

_1,-- 1 and _= 1. From formula (19) we see that then '1_= 2, i. e., the useful

work is equal to twice the enthalpy of the fuel and, consequently, the useful

kinetic energy is equal to the fuel's enthalpy. The absolute exhaust velocity

of the gases is zero in this case; c2=c,--w,.

The coefficients '1,,, ,lt and ni.e give a clear picture of the efficiency of

flight at a given velocity v; the coefficient ,lt enables us to determine:

1) how usefully the thermal energy is exploited and 2) the effect of the

counter-pressure (the pressure at the end of expansion) on heat exploitation.

Assuming atmospheric pressure as the final pressure, we may construct

the curves Th as function of the altitude h over the Earth's surface for a

given combustion chamber pressure.

From formula (4), together with formulas (8) and (13) we can easily de-

termine the axial thrust P as a function of n,

go A Amg o Ag o

For example, for the combustion of hydrogen with oxygen we have

p=_o.V-_,i/_.32_.,_ sa0_o,gE,. (22)
9.81

(Curves, giving n, as function of h for the combustion of hydrogen with

oxygen, were given by the author in his book "Problems poletov pri po-

moshchi reaktivnykh apparatov" (Problems of Flight with the Aid of Jet

Propulsion Machines))*. In determining the coefficient 'h it was assumed that

the gases actually expanded to external pressure in the rocket by decreasing

the nozzle minimum cross section or by increasing its maximum cross
section.

The four coefficients _,,, ,1, 'h and 'l_+z together characterize the per-

formance of a rocket at a given moment of flight.

* The sentence in brackets was added in the editing. - Editor's note.
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Let us now look at'the work performed on the part of the rocket remain-

ing at the end of engine operation. Denoting its mass by MI =6-2-' where G,
go

is the weight which the mass Mz would have at the EaPth's surface, we find

that the work usefully spent during the time dt on lifting and accelerating

the mass M_ only is smaller than Gfl.dt. Let A! denote the mass of the en-

tire rocket at a given moment and dA, the air resistance work during the

time dr. Then G,Ldt--dA is the work required to lift and accelerate the en-

tire rocket, and

G,L dt -- dA) -_

is the same, for the mass Mr.

FIGURE 2

Consequently, for that part of the trajectory in which air resistance may

be neglected, the efficieneies introduced earlier must be multiplied by

M,/M, i. e.,

M_ Mi M, MI
_--, _,-_--; _,_--and %+e_--,

since, as before, these coefficients characterize the performance of the

rocket at a given moment of flight.

If we plot n_M,/M as the ordinate and the weight G_dt of the propellant con-

sumed as the abscissa, then the ordinate nay, i.e., the height of a rectangle

whose area is equal to that bound by the curve _IM,/M, represents the aver-

age efficiency for the entire flight (Figure 2). We have

f_ Mi_- o, at

_a_ ' _ Gs.dt

THERMAL CALCULATION OF A ROCKET

The nozzles of steam turbines are ]ittle rockets; therefore, a]l calcula-

tions of pressures, specific weights of the gases, velocities, temperatures,

friction 'with the walls, and enthalpy decrease for various sections
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perpendiculartothenozzle'slongitudinalaxiscanbecarriedout,asfor turbine
nozzleswith thedifference,however,thatin rocketsusingveryhotgases,
their coolingbythewallsmustalsobe takenintoaccount.
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i I
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FIGURE 3

We shall now make a somewhat generalized calculation of the processes

taking place inside the rocket, analogous to the calculation of steam turbine

nozzles. Since the motion of the gases in the engine is steady state, the

amount G, of gases passing through all sections of the nozzle perpendicular

to its axis in unit time will be constant. Denoting by f the area of a cross

section of the nozzle, by p, the absolute pressure of the gases, and by _,

their specific weight, we have

G_-._-.Ifw or f=G,. (23)

Next, we have for the enthalpy decrease

tl----l'--Aw2 _O (24)
m -- 2g 0 -- "_s"

Given the initial pressure p_ and enthalpy il, we find point A (Figure 3),

corresponding to the pressure p_ in the iS diagram (where S is the en-

tropy). A line parallel to the ordinate axis i corresponds then to adiabatic

expansion. If the final pressure in the nozzle po is given, and the corres-

ponding enthalpy for adiabatic motion is i_, we can determine the actual

final enthalpy ix for known friction losses with the walls (according to data

of Professor A. Stodola* their value ranges from 0.05 to 0.15 of the ther-

mal head i,--i_). To do this we move upwards along a line p= const up to

i2--_i'2 + [ (i , -- i'2), (25)

where [ is a coefficient taken from Stodola.

We shall first neglect the heat lost through the rocket walls. Down to

the critical pressure at point B we can take an adiabatic line and further,

* Stodola, A. Die Dampf- und Gasturbinem 6th Editiom

162



in a first calculation, a smooth curve connecting B to C. Thus, for each

point of the curve, p, _, and i are known. It is assumed that in the iS dia-

gram, p = const and "l =const curves are drawn. Determining w from

equation (24) as function of the pressure p, for a given consumption G, per

unit time, we may also obtain from (23) [ as a function of p. This function

has a minimum. The pressure at [,,o is called the critical pressure.

The final pressure p, determines the maximum final cross section of

the rocket nozzle, and the critical pressure determines its minimum cross

section. These two pressures determine the rocket nozzle. In designing

it, one should make a smooth transition near the narrow section of the noz-

zle and not expand it too steeply, in order to avoid separation of the jet from

the walls (this phenomenon occurs at large divergence angles). If the diver-

gence angle is too small, then the length becomes large increasing friction

losses considerably; generally a divergence angle of about 10 ° is used.

The temperature depends on i and may also be determined.

By means of the computed values of 7", w and "r one can determine the

amount of heat which must be removed through the nozzle walls in order to

avoid overheating. If the coefficient of gas friction with the walls is known,
one can also determine the total friction work with the walls.

Next, in a second, more exact calculation, we can draw on the /S dia-

gram a new curve ABD"C" (see Figure 3), which is required for the deter-

mination of the friction coefficient _ not only at the final point C but for any

point of the curve. For this purpose we measure for any pressure, p, i.e.,

for point D', the quantity _(i,--i') vertically upwards. We obtain point D.

Measuring then the thermal head, corresponding to the amount of heat re-

moved through the walls up to the moment considered, downwards along the

ordinate axis and moving horizontally till the intersection with the line

p= const, we obtain point D", i. e., the point of the required expansion

curve. Since

--dQ, + A R,=di--A Vdp,

and dp:O, then

di=--dQ, + A R,,

where R, is the friction work.

For each point of the new curve, p, _ and i will be known. In deter-

mining the cross sections I of the nozzle, we should use the values of "_
obtained from the curve ABD"C", and determine w from the difference ij--i

of the thermal heads at points A and D of the curve ABDC, since the heat

escaping through the walls does not accelerate the gases. The calculation

proceeds then as before; the temperature T" should be determined from i"

which corresponds to point D" lying on the curve ABD"C':

If friction with the walls and heat removal through the walls are already

noticeable before point B, then curves ADC and AD"C" diverge, of courge,

already near point A. However, in experiments with nozzles of Laval tur-

bines it has been found*, that friction losses down to the critical cross sec-

tion are practically insignificant. The same is also obtained theoretically

from the w :d diagram (see Section 5 on friction). It also follows from ex-

periments that if the counter-pressure at the nozzle exit is large, we have

* Zerkowitz, Thermodynamik der Turbomaschinen, p. 39. 1913.
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insidethenozzlefirst anexpansionof thegasesandfurther onacompres-
sion,associatedwitha shock,whilethetotalamountof gasespassingin
unittime throughthesectionremainsconstant. If thecounter-pressure
approachestheinitial pressure,reductionof thepropellantflow rate is ob-
served. Guthermuhtobservedin thiscasea suckingactionof thenozzles*.

PERFECT GASES

If we deal with perfect gases, then we obtain for Laval type nozzles, as

before,

0_= f_ , (26)
V.

where V =! is the specific volume of the gases at section f.

Let us further use the notation:

n, polytropic exponent;

k, adiabatic exponent;

p,. Vv T_, fi, pressure, specific volume and temperature of gases, and
area of chamber's cross section before nozzle;

Pa, V,. T,. fx, same for section f of nozzle;

p,. V a, _To, fa, same after expansion in final nozzle cross section;
P,, _, fk, pressure, gas velocity and nozzle area in critical cross

section;

U, work corresponding to energy increment by expansion from
P_ to P--.

We have

where

k--I

[ 2 _-' 1
.__ - ,/_,o, ,,/( "/'-(_t '/: (2_)
u,--?Jxy_L_ Pi I-- k Pl /--J

• 2 .k--1

j/ ,-
O,_,x'_?f, 2g°k--_ kpi/ V, ; (31)

Px / k--I k--!

e k T p'_i- )
Pl

1

c=p: Vi;

* Guthermuht, VDI. 1904.
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Tx_ f A iv7
% 2go' (33)

!

Pt -_" k--1 1

Nozzles calculated by these formulas have an exhaust velocity coeffi-
cient of

T= _ = 0.975 -- 0,92.
_theor

The above-mentioned formulas were given by Stodola* for adiabatic ex-

pansion and friction only was included in the calculation since in the nozzles

he neglected heat losses through the walls. However, these formulas

are also applicable for the calculation of rocket nozzles if we take a

polytropic expansion.
The calculation can be done by the following method. We give, for ex-

ample, the initial and final pressures p_ and Pa and determine the combus-

tion temperature by the general rules**, after which the specific volume of

the gases before expansion may be found from the equation

V_= RT' . (35)
Pl

Next, we choose the polytropic exponent**, of which one can say that

for rockets it will be closer to the adiabatic exponent and for small rock-

ets probably further from it, than in the case of internal combustion en-

gines.

* StodoIa, A. Die Dampf- und Oasturbinen. 6th Edition.

** To determine rt two methods may be used. In the first it is determined from the thermal balance of the

nozz] e flow:

Q=qz.-J-qz+q,,

where Q is the algebraic sum of the heats participating in the process;

qt, the combustion heat;

q2, the association heat;

qa, the heat removed through the walls.

n--k

Q = C,, n--2- T (r -- rt).

In the second method n is determined from the ratio of the theoretical to the real velocity. If in

equation (27) we replace k by n, we have

T 2go_ PtVi 1_ =
XP! / J

whereby n is determined. ISee the paper "Teplovoi raschet raketnogo dvigatelya" (Thermal Ca]cu]ation

of a Rocket Engine), first paper). -EditorVs note.
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From equations (4), (27) and (28), the thrust of the rocket will be equal

_l--I 1

To obtain this formula, the quantities Jx and p_ were replaced in for-

mula (28) by their values [a and Pa at the final nozzle cross section.

Prescribing the rocket's thrust P it is possible to determine [o from

(36); next we determine wa and Va by (27) and (34) and then the propellant

flow rate G, from (26). Equations (29), (30) and (31) give Pk, wk and [k

for the narrowest section of the nozzle. From (27), (28), (33) and (34) we

can also determine w_, f_, 7x and Vx for any pressure. Designing, as in

the previous case, the expanding section of the nozzle in the form of a cone,
we can determine the friction and heat loss through the nozzle walls for any

section, as will be shown late'r, and then the total friction loss and the total

amount of heat escaping through the walls up to a given section.
Between the coefficient ¢p and the relative kinetic energy loss _ due to

friction we have the relation

_--V'] -E, (37)

which may be derived from equations (25) and (8). Thus, for a second,

more exact calculation, we may determine (_ for any section; furthermore,

we can determine for any section the polytropic exponent*.

Dividing the expansion curve into sections, for which _ and n are almost

constant, we can determine more exactly the expansion curve. If neces-

sary, we may obtain similarly a third approximation.

FRICTION WITH THE WALLS

The heat, corresponding to the friction work in a rocket engine, is ex-

pressed by

z.=A S U_ _2-_-dlcal[kg41:2go (38)

with _, a coefficient varying from 0.02 to 0.03 for water vapor on smooth

walls;

U, perimeter of nozzle cross section;

F, cross section area;

dl, length differential measured along nozzle generator;

A = 1:427, thermal equivalent of work.

For a circular cross section we have

U 1
4F d

where d is the cross section diameter.

* See previous footnote.
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In this easeweobtain

z=A f_, _ dl= A¢ f_'2 dl. (39)
,) 2god 2g 0 ,) d

If the walls are very smooth, we obtain, taking _=0.02,

0.02 SW__ dl=2.39, lO_S j'w__ dl. (40)z= 2-9.81.42------_

If we compare two similar rockets of different dimensions, having iden-

tical state curves on the iS diagram, but different consumption rates a_,

the nozzle cross sections areas [ will be proportional to G,. The diameters

of tile nozzle cross sections of two such rockets will be in ratio V-f:l_h or

V-G3 :V'_,. Equation (39) shows that the friction work for the same length dl

will be in ratio d_ : d=V'-G-_ : Gs. For identical cone angles a for both rock-

ets, the total length of the nozzles of the two rockets will be in the ratio of

their cross section diameters, and, therefore, we have in this case

dll _ dl
dl d

and, consequently, for such nozzles the friction work per kg of propellant
will be the same.

We may therefore say that for large rockets the relative friction loss

will be in general the same as for small rockets if the initial and final states

of the gases are identical.

(A rough calculation of an example for a hydrogen-oxygen rocket follows

in the manuscript of Tsander. It has been carried out by the methods of

the present article, taking into account friction losses. The results of this

calculation were given by Tsander in his book vfProblema poleta pri po-

moshchi reaktivnykh apparatov 'f (Problems of Flight with the Aid of Jet-

Propulsion Machines), Chapter 5.)

RESULTS OF CALCULATIONS FOR HEAT FLOW RATE THROUGH THE

COMBUSTION CHAMBER'S WALLS

Let us assume that we have already calculated the temperature, density,

pressure, consumption rate and velocity of the gases for the case of com-

pletely heat-proof walls.

We also assume that the gas temperature decrease in the chamber due

to heat losses through the walls is not very significant. In this case we can

determine the temperature of the walls and the heat exchange with them, if

we know the initial temperature and velocity of the cooling liquid or, when

cooling by gases, their initial temperature, density, consumption and ve-

locity. If the calculated temperature decrease of the hot gases is consid-

erable we may say that due to the too large temperature difference between

the gases and the cooling medium, the actual temperature decrease will be

smaller than calculated. Starting from the results just obtained we must

perform a second calculation, which will give us new, more exact results;

these may be improved still further.

167



Whenchoosingthedesignof thecoolingsystem,thecoolingmethodis
of particular importance;thewallscanbecooledby lettingthccoolant
flowalongthewalls in thesamedirectionasthecombustionproductsor
oppositeto them. It canbepassedin aspiral aroundtheenginewalls, and
it is alsopossibleto coolthemostdangerousplacesby onemedium(e.g.,
a liquid)andotherplacesbyanothermedium(e.g., gases).

In order thatthecoolingliquid (or gas)shouldcomeintocontactwith the
wallsnearthecritical sectionof thenozzle,wherecoolingis mostre-
quired,wetakethedirectionof coolantflowcoincidentwith thatof gasflow
in thenozzle; thisalsosimplifiesthecalculation.

Next, weassumethat thevelocityof thecoolingmediumis constant.
This maybeachievedbya suitablegapbetweenthejacketandthecombus-
tionchamber.

At thebeginningof thethermalcalculationweneglectedtheamountQ_

of heat given to the rocket walls per kg of propellant mixture (see e. g.,

(24)). Let us now calculate it.

If the cooling medium is also a gas, it is possible to write for it a for-

mula, analogous to (24), where, however,- Q_ has to replace Qs and, fur-

thermore, theve]ocity w. of the cooling medium with respect to the rocket

cannot be neglected. Using subscript a for quantities referring to the gas-

eous coolant, we have

i,_- i_ & (w_--,v_) Q,. (4l)

In case we take liquid oxygen as the cooling medium, we could first

evaporate it holding it under a pressure of 20arm (temperature of 141_C),

then heat it in the gaseous state and finally, use it in the engine for com-

bustion. We can also cool by water, using its latent heat of evaporation,

and then recondense the water vapor by cooling it with liquid oxygen, liquid

hydrogen or any other propellant with low boiling temperature. To evaluate

the cooling effect attainable with liquid oxygen, we determine the number of

calories which can be taken away by 1 kg of liquid oxygen. It is equal to the

latent evaporation heat, i.e., 51cal/kg, if the oxygen is at atmospheric

pressure and is transformed into vapor by heating.

For water vapor, we easily obtain the number of calories from the iS

diagram; if the heating takes place under constant pressure, we follow the

curve p =const from the initial water temperature t. to the final tempera-

ture t_ chosen by us, and calculate from the diagram the enthalpy difference

i_--il*. Water vapor can, of course, be liquefied again, whereas oxygen and

hydrogen (or other materials) will best be used in the combustion process

after heating.
We determine the heat, passing through the walls of the rocket engine,

using Nusselt's formula

lw (__)0.7_ _^ _w /wcp\°'Ts6 _kg/m2hourO C

* $ch_ale, W. Technische Thermodynamik, 4th edition, Vols. 1 and 2. 1923. Tables III and IVa for

water vapor, Table IIa for atmospheric air and diatomic gases.
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with ),w,

Cp,

dj

heat conductivity of gas at temperature of pipe walls;

heat conductivity of gas at average temperature in pipe;

average velocity of gases, m/sec;

heat capacity of gas per m3 at constant pressUre and for given

state of gas in pipe;

pipe diameter, m;

O,, weight of gas passing through pipe per sec.

Let us determine the heat loss for the combustion chamber assuming

duraluminum wails. We shall take fast flowing water as coolant, an area of

F = 1.965m 2, aconsumption per second of G, =3.33kg/sec and hydrogen and

oxygen as propellants.

It should be noted that if the temperature of the walls' inner side is lower

than that of saturated steam (for P=20atm, fsat=211.33°C), partial liquefaction

of the gas may occur. In this case, a_ will probably be considerably lar-
get than the value obtained from Nusselt's formula.

Omitting all calculations and denoting by _ thepereentofheatlostthrough
the walls, i.e.,

100q

q0

where q0 is the enthalpy of the amount of propellant consumed per see, and

q, the amount of heat lost by the gases per see, we obtain for duraluminum

wails g=0.39%, and the wall temperature is found to be about +100°C.

Since strong mixing takes place in the combustion chamber, it is better

to assume that a_ increases towards the beginning of the pipe. For this

case g= 0.63%.

Let us now determine the heat transfer through the wails of the same

combustion chamber if they are made of steel and have an internal refrac-

tory lining of 2ram thick asbestos% The coolant will again be water. The

value of al will be inconsiderable in this case. Omitting as before all cal-

culations, we obtain the percentage of heat loss, g =0.97%, and for the in-

creased value of a_ at the beginning of the pipe, _= 1.207 %. The asbestos

will then reach a temperature of 2500°C, whereas it melts at 1500°C. One

must, therefore, use an insulation material with a large coefficient X (ac-

cording to H_tte for asbestos X =0.186 for 300°C and 0.180 for 200°C), or

decrease still further the thickness of the lining. Nonuniform thickness

resulting from the production process creates a danger of local overheating

and, eventually of melting the lining.

Thus, it is better to build the combustion chamber without a refractory

lining. However, in this case the temperature of the wails should be such

as to eliminate the possibility of liquefying the super-heated steam in the

combustion products, since otherwise it is very likely that the amount of

heat lost will increase considerably. This is particularly important for a

hydrogen-oxygen rocket. The layer of cooling water should be of such a

thickness that it becomes heated, as it traverses the pipe, from 0 to 100°C.

The higher the water velocity, the smaller the amount required. However,

* Asbestos cannot in general be considered a refractory for combustion chambers of rocket engines, since it

has a relativeIy low melting point; what is most important - it crumbles at 800°C. The results of

Tsander's calculations arc of relative interest; they show how low heat conductivity of the chamber's ma-

terial affects the walls' temperature. -Editor's note.
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at high water velocities, friction losses may attain such a magnitude that it

becomes necessary to feed it by means of a pump. For low velocities grav-

ity feeding may be sufficient. Calculations I performed show that quite

probably itwill be possible to use gravity feeding to start the water motion.
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CALCULATION OF THE EXPERIMENTAL ROCKET

ENGINE ER-I*

Tsander dealt not only with theoretical investigations of rocket engines

and their working processes. He also spent a good deal of time on pure

engineering work, including calculations of experimental engine models,

organization of tests with them and evaluation of the experimental data.

In order to give an idea of this aspect of Tsander's activity, we give be-

low the most characteristic extracts from his calculation of rocket engine

model ER-I (15 of the 145 pages of his manuscript), which he built in 1929.

The calculations were begun personally by Tsander in October 1929"*.

A range for testing jet engines was just started in these years and the

material possibilities were very poor. Therefore, according to present-

day scale, the dimensions of the engine chosen were very small (the rate

of consumption of fuel and oxidizer was 1.69 g/sec). For simplicity, at-

mospheric air was chosen as the oxidizer. Nevertheless, the diagram, the

method of calculation, and the testing of the engine are characteristic of

liquid rocket engines.

Subsequently, developing the idea of the use of atmospheric air for ira-

proving the thermodynamic cycle of liquid rocket engines, Tsander ar-

rived at an engine scheme with direct and inverted cones (see his article,

Problema poleta pri pomoshchi reaktivnykh apparatov (Problems of Flight

with the Aid of Reactive Devices)).

The ER-1 engine was constructed and more than 50 tests were car-

ried out with it. The following modifications of liquid rocket engines were

completed by Tsander's pupils after his death.

Editor

BASIC DATA OF THE ER-I ENGINE

The engine was based on a gasoline-air burner with the following para-

meters : Capacity of gasoline tank _ 1 liter;

Fuel consumption 350-400 g/hour

Air pump:

Piston diameter 16 ram;

Stroke 107 ram;
Outlet nozzle bore diameter 22 ram.

* This article was prepared for print by E. $. ghchetinkov, Dr. of Technical Sciences. - Editor's note.

** This date was taken from the manuscript. Formulas connected with the calculation of the engine ER-I

are met, however, in the stenographical records of Tsander of 1922-1929 (not yet deciphered). A more

exact date of the performance of this calculation will be established after deciphering his works.
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Thegasolinewasheatedin acoppertubewithanexternaldiameterof
8mm.

Thenozzlewaschanged: it was surrounded by an envelope into which

air was injected under pressure. Using a special pipe, a combustion

chamber was constructed within the envelope. An interchangeable nozzle,

giving flow velocities larger than the sound velocity, was mounted at the

end of this pipe. The copper tube for heating the gasoline was replaced by

a longer one, screwed into a new conical nozzle.

The tank was equipped with a manometer and a nipple to let out the air.

A thermometer for measuring the temperature of the tank cover was at-

tached to it by a special holder, and a safety wire was soldered to the tank

cover by its upper end. A valve for regulating the fuel consumption was

available.

For further calculations, we take, on basis of preliminary tests with the

burner :

_asoline consumption Q=4OOg/hour for an overpressure of

Pover = 2 atm ;

flame length, measured from the outlet orifice of the nozzle

L=14cm;

theoretical air consumption per kg of gasoline

Galr =14.2 kg;

capacity of gasoline tank 1 liter; specific weight of gasoline 0.720 kg/liter.

We then obtain:

gasoline consumption per second: O.Q_=0._0-103 !g/sec;
3600 3600 9

air consumption per second: Oair"-_]4.2 Q --14"2_].58 g/see;

air consumption per hour: 14.2.Q=14.2.0.4=5.69kg/hour;

duration of combustion:

1.720.9 = 108rain= I hour 48 min;
60

amount of combustion products, per second and per hour:

0.111 + 1.58 = 1.691g/sec or 0.4 + 5.69=6.09 kg/hour.

The power which an internal combustion engine would give for this rate Q

of gasoline consumption and for a specific consumption of 240 g/eft, hp-hr,

is

400 _].67 eff. hp.
240

The power of the propeller of an internal combustion engine for a propeller

efficiency of ,1p_op = 0.75 is

Nprop=_prop Heng=0.75 • ],67= 1.25eff, hp.
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Thedurationof operationof thecompressedair vesselwitha capacity
of 20liter at a pressureof 150atm,i.e., of 20.1______:3m3for anair pres-1000
sureof 760mmof mercury,a temperatureof t: 15 ° C and a specific air

weight of _0=l.23kg/m3, is

! '23"300!)- = 38.9 rain.
1.58-60

The number of compressed air vessels required for the consumption of

the gasoline in the tank of the rocket engine, is

I08=2.78, i.e. 3
38.9

and when oxygen is used: 2.78. 0.209 =0.58.

DETERMINATION OF THE COMBUSTION TEMPERATURE AT CONSTANT PRESSURE

The lower calorific value of gasoline is:

H,-- I0 400 cal/kg.

The composition of gasoline is:

hydrogen H= 14.5%;

carbon C=85.5%.

For complete combustion of I kg of gasoline the combustion products

are:

Water (H20) _-=O.0725mole=O.0725.18= 1.306 kg;

Nitrogen (N2) 0.79L0-----0.79 14.2 =0.79-0.490----0.388mole;
28.95

Carbon dioxide (CO2) -_-C =°'855=0.0712 mole
12 12

Altogether M2 = 0.5317 mole = 15.2 kg.

The number of kilogram-moles per kg of gasoline before combustion is

14 2 ]
M, = L0nL by = _ + _--_= 0.500 mole,

taking the molecular weight of gasoline equal to 100,

The coefficient of molecular variation is:

M= 0.5317
---_=_T-_-= 1.o_4.

The difference between the molecular specific heats at constant pressure

and constant volume is equal to

AR:._7 = 1.985 = _ (% -- c,_).
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The average molecular specific heats at constant pressure for gases

(see Professor Brilling, Teplovoi raschet aviatsionnogo dvigatelya (Ther-

mal Calculation of an Aviation Engine), pp. 39-40, 1927), are, for a tem-

perature T between 300 ° C and 750 ° abs:

for diatomic gases (l_cp),,= 1.985+4.605+5,167. I0-*T=6.590+ 5_167.10-4T;

for CO2 (pcp),,= 1.985_5.035-}-32.510-4T=7.020+32.5.10-4T;

for H20 (_cp) m= 1.985 + 6.08aL4.5 • I0-4T=8.065_-4.5 • 10-4T.

For temperatures 7 between 1600 ° and 2100 ° abs:

for diatomic gases (_c_),,= 1.985+4.605+5,167. I0-'T_6.590+5.167 • I0-'7;

for CO2(l_cp)_= 1.985+7.565+ I0.2. I0-4T=9.550 + I0.2.10-4T;

for H20(_c_),,= 1.985+4.685+ 15.2 • I0-_7=6.670+ 15.2. I0-'T.

The average heat capacity of the M2 mole after combustion is:

for N2 0.388(6.59+5.167. IO-*T) = 2.555 + 2.006 .10-_ Y ;

for CO2 0,0712. (9.55+ 10.2 • 10-4T) =0.679 +0.726- 10-_T;

for H20 0.0725 ..(6.67+ 15.2. t0-_T) =0.484 + 1.102 • 10-4/'.

Altogether A_-}-B2T=3.T18-}-3.834.10_T.

The average heat capacity of the Ml mole before combustion is:

for L0 0.490- (6.59+5.167.10-*T):3.23+2.535 • IO-4T=AI +B_T.

For T=ro=288 ° we obtain

A1 + B1T0= 3.23 + 2.535. 10_4288=3.303.

For comparison, for cp= 0.238 we obtain

A _+ B1To=Lo ' cp = 28.95 •0.490.0.238 = 3.38.

Since To<300 °, we shall adopt the latter value.

For the theoretical combustion temperature we have

H,,+ (A, + BITo) To= (A2+ B=T,) T,.

T2z+ 3.718.I0_.._ 4T,- 10400 + 3.38.288 = T_ -}-9698T,-- 2966. I04=0.3.834 3.834. I0- _

T_ = -- 4849 _- V 4849_n u 29.66. I 0_= -- 4819 + 7290 = 2441°.

Since, for complete combustion T_> 2100 °, let us repeat the calculation

for the specific heats in the range T=2000-3000 ° abs,

For diatomic gases (_c_)_=6.59+5.167.10-'7;

for CO2{_cp)_= 10.16+7.333.10-_T;

for H20 (ucp)_,=5.28 + 21.65 • 10-'T.

The average heat capacity of the M_ mole after combustion is:

for N2 0.388. (6.59+5.167.10-'T)=2.555+2.006.10-4T:

for COz 0.0712. (10.16+7.333. I0-4T)=0.723+0.522 . 10-'Y;

for HzO 0.0725. (5.28+27.65. I0-4T)=0,3825+1.57. I0-4T
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Altogether A_ + B2T=3.661 + 4.098 • 10-_T.

For the combustion temperature we have

T_ + 3'661. 104. T= ] ] 375' I04 =T _ ...}..8936. Tz _ 2775.10, = 0 .
4.O98 4.098

T,= -- 4468+ ]/44682+ 27.75. l0 _= -- 4468+6910= 2442 °.

As we see, the difference is negligible (2442°-2441 ° =1°). Since we

want to obtain a velocity close to the critical one at the outlet section of

nozzle No. 1, we obtain for the approximate value of the initial pressure p,,

assuming an adiabatic expansion with k= i. 3,

1_ 1.3

Po • 2 ._ " 2"°-3

lg _ = 1.3.1g __2 = 1.3.1g 0.8696 = _.3.0.06068 =
0.3 2.3 0.3 0.3

= --0.2629=]-.7371 =lg 0.5459;

P=_Po : 0.546.

For an adiabatic expansion, the temperature To at the exit section is

k-I

T O= T=_T = Tz_ = 2442 ..2..2 = 2123".
k+l 2.3

The average temperature of th.e gases in the nozzle is

7" TO+T z 2442 + 2123 =2283 o.a,,= --_ -=

The adiabatic exponent is

AR
k=L-_=l+--.

pC_

1 3.661 2.4.098 . ]0_4T _
_c, = _ (,% + 2B=T) =_-i7 + 0.5317

= 6.888+ 15.42. I0- _T.

k = l Jr 1.985 = 1 -I 1.985 = 1.236.
4.903+15.42.10 -4 7' 4.903 + 15.42.0.2283

By a second substitution we obtain

T 0= 2442- 2---_-=2184°,
2.236

1.985

k=1 -_ 4.903 + 15.42.0.2313

Therefore, finally

7,o== 2442.0.895 = 2185";

lg _= I "23"5. lg 0.895 ....
0.235

"aTv 2442 + 2t84 _23_ 3";
2

= 1.235.

k--I

_-_ =--L.-2 =0.895;
2.235

1.235 0.04818= i'.7469=1g 0.5583; 13=0.5583:
0.235
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The initial pressure for an adiabatic expansion is exactly

Pz=P° =l.033 =1.855ooI.86 kg/cm2.
p 0.5583

The thermal efficiency for constant heat capacities is

_= l _To=l --0.895=0.105.
Fz

The thermal efficiency, assuming variable heat capacities is

Ocp,),_Tz -- Ocpo)Jo_ 1 (_cpo)_ To.

(pc;z)mTz (Pcpz)mTz '

(pc_) m----6.888+ 7.7] • |O-_T;

(p.cpz) m=6.888 + 7.71 • 0.2442 =8.771;

(pcpo) ,.=6.888 + 7.71 - 0,2185 = 8.575;

= l -- 8.575.0.895 = l -- 0.979.0.895 = I -- 0.875 = 0.12&
8.771

The theoretical exhaust velocity is

the average molecular weight of the combustion products being

p_ 14,2-{-1 == 15.2 =28.59.
M_ 0.5317

The gas constant of the combustion products is

R2= 848 =2967kgm
28.59

The specific volume of the combustion products at the pressure Pz =

=l.86kg/m 3 and the temperature T_=2442 °abs is

Vz = R,r._._z= 29.67-2442 _-- 3.90m 3/kg.
Pz 1.86.104

Then, the theoretical exhaust velocity is equal to

=l/ 2-9.81.1"235.29 67.2442-- _=887m/sec.
F 2.235 "

Assuming that 5 % of the velocity or 10% of the kinetic energy is lost by

friction in the nozzle, the practical exhaust velocity is

w=q_wt, q_=0.95. _v=0.95- 887=843m/sec.

The axial thrust of the rocket engine is

Pa =._G; _ 1,69____II843= 145.2 gram,
g 9.81
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Thepower N at a velocity _¢c_ is

N=pa.__i .__ O.1452._...¢ 1.935c hp.
75 75 1000

The apparent mechanical efficiency referred to the kinetic energy of the

relative motion of the gases is

N N _s.=
"_K _ -_re[ ; tel-- 75.2g ;

Gws O.2 2c

The total efficiency is

Thor =lit" "fl_" 1p2.

Only at low velocities, the coefficient _1_ is the true efficiency, since at

high velocities a part of the kinetic energy that the fuel possesses by virtue

of its velocity c is transformed into useful work.

Velocity e m/see

Velocity e era/hour

Powcr N, hp

Apparent mechanical

efficiency _1_

Total efficiency _ltot

3.89 1 13.9 [

4

i4 1 5o I

0.0075 ] 0.027 l

27.8 55.6 843

100 200 3030

0.054 0.107 1.63

0060]0,32 20
0007 0226

The equipment is suitable for experiments for determining the combus-

tion temperature chamber and that of the nozzle. For practical purposes

it is required:

1) to increase the initial air pressure;

2) to construct a device for sucking in external air to reduce the aver-

age outlet velocity;

3) to increase the fuel consumption per unit time. For fast rockets

condition 1 has to be fulfilled; for motion on the Earth, on water, on snow

or ice and for airplane models - conditions 1 and 2; for attaining high

power - condition 3 too.

The present experimental equipment is also suitable, without modifica-

tions, for atomizing and burning molten metal alloys (for example, of Elek-

tron) in a jet of combustion products with a surplus of air, since the tem-

perature of the outgoing gases is very high.

THE NOZZLE OF THE EXPERIMENTAL ROCKET ENGINE ER-1

The nozzle is cooled by the pipe which serves for heating the gasoline

and heat escapes from it also by radiation and conduction by the air.

Let us calculate the amount of heat needed to heat the gasoline. We take

the specific heat of gasoline, as for kerosene, equal to c = 0.50 eal/kg degree;

the gasoline consumption Q = 400 g/hr; we calculate the temperature of the
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heated gasoline, approximately equal to the temperature of the saturated

vapors under the pressure prevailing in the gasoline tank, by the formula

In pz=lnp 2 pr (r,- r,).
2 T_Tl

where p, and T, are the required pressure and temperature;

P= and T,: the initial pressure and temperature;

r, the latent heat of evaporation;

_, the apparent molecular weight of the fuel.

p_--107; r=74; -- 100 =0136atm T2=273-{-51_324 °
P'= --738.5 "

For a pressure p= of 1.86atm, in the combustion chamber and for Pover =

= 2atm we have:

Pl = P= + Pover _3.86 at m.

We then obtain

and in our case

!In v---2= r=-r' ; T_--T, =(2r, in __/rl;
_r Pl T2TI \ }*r Pl I

T,= re --__ 7"= .

2r=ln P_ +! 4.605r, lg___L + ]
Fr ,Pt pr p!

T! 324 324 324
_--- 4.605.3241 3.86 _ =--=446°abs:I --0.1885.1.454 0.T26

t z--_ 446 ° -- 273" = 173" C

The rate of heat inflow, required to heat the gasoline from to = 25 ° C to

tl= 173 ° C during one hour is

qt=cQ(tt-to).=0.50 • 0.400- (173--25)=29.6 cal/hour.

The rate of heat inflow required to evaporate the gasoline during one hour is

q,=rQ=74 . 0.4=29.6 cal/hour.

Up to complete evaporation the total rate of heat inflow required is

q = qt + qr = 29.6 + 29.6=59.2 c al/hour.

The dimensions of the nozzle are:

Initial diameter d,= 2.2 cm;

Final diameter d_= 0.40cm;

Inclination angle of internal surface a = 10°31';

Nozzle length

l= d4-dS c_g "---_2"2-0''1 ctg 10°31'-_4.85cm.
2 2

We shall now calculate the coefficient of heat transfer from the gases to the

walls. For this purpose we shall use everywhere approximate average values.

* See Brilling. Issledovanie aviamotornykh topliv (Investigation of Aviation Fuels). 1922.
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The average temperature of the gases in the nozzle is

Tav __2442 + 2185 2314 ° C;
2

t = 2314°--273 _ = 2041 ° C.

The average velocity of the gases in the nozzle is

l_/av_ 17.3+843 =430m/sec.
2

The average pressure of the gases in the nozzle is

1.86+ 1.0 _1.43 atm.
P_v 2

The average internal diameter of the nozzle (along the span) is

day = 2'2__-f-+0'---_4= 1.3 c m.
2

The nozzle area is

F----2 (2.2+ 0.4) 4.85 = 19.81 cm2.

We therefore obtain the heat transfer coefficient at the temperature of

the gases

_,=0.01894 • (l+ 0.00228. 2041 )=0.1070 kcal /m hour °C,

the specific weight of the gases

T= p = 1.43.104 _0.208kg/m3
RT 29.67-2314

the heat content of the gases at constant pressure

b=_.(6.888+15.4_. 10-,r)=_.(6.888+
p. LO.D:_

_- 15.42.0.2314) =0.0761cal/m 3,

and

Ig d°-_"=0.2141g 0.013=--0.214 - 1.886= --0.404 = Ig 0.394:

a_._1_--0.394.

The coefficient of heat transfer from the gases to the nozzle walls is

a, = 15.9 0.01894.(10.394q" 0.002'28._,). ( ¢30-0.07610.107)o.7_ 0.786. lg 306=

=0.786.2.486 = 1.955-- lg 90;

_, =68.8 (! + o00228.%).

The amount of heat, passing through the nozzle walls per hour, taking
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a wall temperature equal to /1 = 173° =0_, is

ql = alF(t--tl) =

=68.8. (I +0.00228. 173) • t9.81 • 10 -4. (2041--173)=355 cal [hour.

We see that the amount of heat required for heating and evaporating the

gasoline is equal to 59.2.100 16.7% only of the total amount of heat passing
355

through the walls.

At the average nozzle wall temperature, the rate of radiation q, cal]hour

is

[(", (00 ' l
ql =

! 1 1
+

b I b_ b

where b = 4.61 is the radiative coefficient for an absolutely black body;

bl = 4.40, the radiative coefficient for iron with oxidized, dull surface;

b:_4.61, the radiative coefficient of the surrounding medium, as-

suming it is empty space.

Taking 00=288 °, we obtain

_.._, _= q, @(0o_4_ 355104 +288'=40700-_68=40770;
100] blF --MOO] 4.40.19.81

0=1420°; %=1420--273=1147 °.

Repeating this calculation for 0_=1147 ° , we obtain

hence

q_L= al (t -- ll) = 68.8. (1 -t-0.00228.1147). (2041 -- 1147) =
F

=68.8.3.62.894 = 222000 cal]hour m2

qa = 222 000-19.81 = 440 eal ]hour
104

!]4 = 222.lo3_+ 70=50570" O= 1500°;
100/ 4.411

O= 1500 °- 273°= 1227 °.

In the presence of radiation only the temperature would rise higher than

O= 1227°C.

Taking into account also heat transfer by the air, we have, according to

the experiments of Valiler and Ginlein on the transfer from a horizontal

pipe to quiet air

_, = 1.021"//_h _ to)
I, a

where d is the pipe diameter in meters,

..= ,.02
" 0.338 "
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For

02=%= 1227 ° we obtain:

a_= 3.02 _ 15 = 3.02.5.90= 17.8,

and the heat, carried away per m 2 per hour, is equal to

32(_2--10)=17.8. (1227--15) =21 600 cal/hour m2,

which constitutes approximately 0.1 of the radiated heat. The external sur-

face of the nozzle is somewhat larger than the internal surface and is equal
to

F, =-_- (2.71 +0 63). 4.85=25.4 cm 2,

Taking into account all three kinds of cooling, we obtain

q = 68.8 (l + 0.00228o) F (t -- 0) =

= q, + _oO,[(_+ 27a? ,o , ,t,-5_,-(_) ]+ 3.o2"_¢r=,oe.o- O.

q,---=68.8-19.81. I0-'. (2041 -- 0).(I + 0.00228 0)=

0 ,_ q-- 273 _-[(-w-)-zo]+
+ 25.4.10-,.3.02._0- 15);

q, = o. ! 362 (2041 - o) (l + 0.002280) =

,_ + 273 4 ]-t-=59.2 +0.01118-[(_) --70

+ 0.00766. _ 15 (0 -- 15) = q, + qcon+ qraa.

TABLE 1

Determination of the nozzle wall temperature

Temperature of the wails

9" C

2041--8

1-t-0.002289

ql cal/hour

9+273

_'+273V

-r_-) -7o
qrad

_--1,5

qcon

59.2+qrad-t-qcon

3 (qrad-t- qcon)

900 I I000 1100

1141 I 1041 941

3.05 I 3.28 3.51

474 I 465 451

1173 I 1273 1373

19800 I 26100 [ 35200

221 I 292 394

885 I 985 1085

5.46 t 5.60 5,75

37 I 42 48

317 I 393 501

774 I 1602 1326

1200

841

3.74

429

1473

46 800

523

800

1241

2.825

479

1073

13 130

146,9

1185 785

5.88 : 5.30

53 i 31.9635 238 I

1728 536,4

7O0

1341

2.596

475

973

8900

99.5

685

5.13

26.9

185.6

379.2
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The required temperature is equal to 0"._ = 1065°C.

The amount of heat, passing then through the walls per hour, is equal to

156.1_ _ 11% of the total amount of heat (Figure 1). If
qj = 456 cal/hour or 4160

the gasoline is heated by radiation and not by direct contact with the nozzle,

the wall temperature is increased to t),= 1085 ° .

The temperature may be reduced in various ways.

1) Cooling ribs may be added, increasing the radiation surface and the

heat transfer to the air.

2) Cooling by compressed air coming out of a high pressure pipe can be

arranged, the air current accelerating as the burning gases. For that pur-

pose it is possible to eliminate the external conical envelope over the nozzle

and to equip the internal nozzle with slots for balancing the pressures.

3) It is possible to arrange cooling by compressed air which then goes

into the combustion tube for burning the fuel.

4) It is possible to mount an external nozzle, in which atmospheric air

is sucked in for cooling the main nozzle.

5) It is possible to improve the performance of the rocket by sucking

external air into the low pressure space, up to the point where the veloci-

ties of tile air and the combustion products become equal, subsequently

increasing the pressure again ("Tsander's direct and inverted cone").

6) It is possible to design cooling by liquid metal or by fused salt and

to equip the metal tank with cooling ribs {using atmospheric air).

_'00 , ,

qt +qcon*qraG.

600

/
t

3UO fO00 IZO0O*

FIGURE 1. Rate of heat transfer through

the walls (without cooling ribs)

600

500

FIGURE 2, Rate of heat transferwith cool-

ing ribs which enlarge thre efold the he at ex-

change surface

7) It is possible to designforwatercoolingwithformationofwatervapor,

which can then serve for the burning of magnesium.

8) It is possible to reduce in the tests:

a) the initial pressure;
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b) the amount of fuel;

c) the ratio of the amount of fuel to the amount of air or inversely.

9. It is possible to build the nozzle with very thick walls in order to in-

crease the cooling surface and to have a uniform temperature along the

whole nozzle, reducing in this way the stresses from the internal pressure.

Figure 2 shows curves of ql, which has to be removed, and. of 3(qrad+qcon),

removed by radiation and convection when cooling ribs increasing threefold

the cooling surface are added.

We see from the figure that the wall temperature is then equa] to 0 = 770°.

The strength of wrought iron K, at different temperatures in relation to its

strength K,20 at t= 20°C (K,]Kz2o, %) is shown in Table 2 and Figure 3* (ac-

cording to HiJtte, ed. XI, page 537**):

TABLE 2

t 200 300 400 500 600 700 800 .

Kz : Kz20 I 104 [ 112 96 6 25 lS

1o0 [_

gO

oo

20

200 _00 600 800 lO00t"

FIGURE 3. Ratio of strength of wrought iron

toitsstrength at 20°C for various temperatures

By taking K,20=3300kg/cm2, we obtain K,770=0.18. 3300= 596 kg/cm2. At

the inlet, for d< =2.2cm and a,=60kg/cm2, the required nozzle wall thickness

is equal to

_=pd=(I.86 1).2.2 =0.016cm.
2o,_ 2.60

We take

_=27.1--22.0 =2.56 mm,
2

* [The tabulated and the graphic data are not in complete agreement. ]

** [Probably, Russian edition is meant. ]
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so that

o.o1,_ 37k-/o,=60- 0._= . g em 2.

The stress at the exit diameter is equal to zero, since the overpressure is

equal to zero.

If we assume the overpressure to be p=O.86atm, then the stress at the

exit diameter, equal to ds =4 ram, will be

o._--o.4 0,115cm;
2

0.86.0.4 1.5 kg/cm 2"
a, 2.0. ]15

To these stresses we have to add temperature stresses.

The difference between the external and internal temperatures is obtained

from

0 --I) --q'_-q-c----_-- (_,-- _=) or , =--_T"

In our case

q_=478 cal]hr, F_ 25"4+19"8 =22,6cm 2
2

k _ 33 for steel.

Then, the temperature difference at the entry to the nozzle is

{_i-- 0_ 478. I0( .0.255 =, 16.3" C,
22.6-33-I_

and at the outlet from the nozzle

478"104-0. [15 ___7.35o C.
_1--_2-_ 22.6.33.100

The stress due to the nonuniform expansion is equal to

Taking for steel: E= 2.2.106kg/cm2 and fl=11-10 -8 we obtain at the nozzle

inlet

a¢= 2.2. l0 _. I l • l0 -6- |6.3= 197kg] cm 2
2

i= _,_=, _197+3.7_ = ;
s k_ 596 3

and at the nozzle outlet

"t--'--_-7.35= 89 kg]cm 2

__1 ot+_t 89+ 1.5 == I__
s kt 596 6.6"

We therefore see that at the nozzte inl_t a decrease in the thickness 8 results

in a further decrease in the stress, but the ribs, whose external section is cold-

er, modify the stresses. A more exact calculation for different places in the

nozzle and for different wall temperatures gives more exact results.
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USEOF METAI.LICPROPEI_I_.ANTIN ROCKETENGINES*

In theinvestigationsof Tsanderonrocketenginesandtheir application
to cosmicflights, theideaof theuseof metalasapropellant,whichhe
proposedfor thefirst timealreadyin 1909,is stressedthroughoutthemany
yearsof hisactivity in this field.

Tsander'sideaof theuseof metallicpropellantfor rocketenginesis
basedontheassumptionthatit canbeexploitedin twoways: a) it increases
theexhaustvelocityof thecombustionproductsof liquidpropellantsbyburn-
ing themtogetherwithmetalshavinga highcalorific value(e.g., aluminum,
magnesium,lithium, berilium, andothers),in theform of a colloidalsolu-
tionof themetalin theliquid propellant;b) it increasesthemassfraction
of fuel in therocketsincethemetallicsectionsof thestructureareusedas
propellantswhentheyarenolongerrequiredfor flight or landing.

Theideaof usingsectionsof therocket'sstructureaspropellantsis ex-
tremely importantwithmodernpropellants;thesehavea relatively lowex-
haustvelocity, dueto their comparativelylowcalorific value,andtherefore
themassfractionof propellantrequiredin order to attainhighaltitudes,
evenwithin thelimits of theatmosphere,is sohighthatthepracticalreali-
zationof sucha rocketbecomesimpossible.

This ideaof TsanderTsconstitutesanoriginalsolutionto theproblemof
constructingrockets,in whichthetotalamountof propellantmayreachup
to 90%of the initial weightof therocket; thusflights to altitudesinacces-
sibleat thepresenttimewouldbefeasible.

Byusingstagerockets,in whichtherocketsectionswhichhavefinished
their job arediscarded,theratio of theinitial to thefinal masscanalsobe
increased.However,stagerocketslag far behindrocketswhichburnpart
of their structures,sincein thesetheenergystoredfor thesameinitial
weightis considerablylarger thanin stagerocketsdueto theadditional
burningof themetal.

Tsanderattributedtremendousimportanceto rocketswhichusepart of
their structureasfuel, andassumedthattheywouldbethefirst devicesto
succeedin overcomingtheEarth'sattractionandin flyingin cosmicspace.

However,theproblemof metallicpropellantshouldnotbeconsidered
onlyfrom thepointof viewof cosmicrockets. Theneedto lookfor the
mostefficientpropellantfor highaltituderocketsis clear andwasstressed
manytimesin thetechnicalliteratureonrockettechnology.

* Thisarticleof Tsander was prepared for print by L.S. Dushkin in the Journal "Raketnaya Tekhnlka",
No. 1. 1936. In the present edition, Dushkin's foreword and the article are published without modification. -
Editor's note.
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The use of metals with high calorific values as one of the fuel's consti-

tuents is a general problem of rocket technology. It is not astonishing,

therefore, that notwithstanding the tremendous difficulties connected with

the technical use of metallic propellant, Tsander was occupied with this

problem from the first days in which the possibility of practical work on

liquid propellant rockets appeared.

The untimely death of Tsander on 28 March 1933 prevented him from

fully developing his great talent and enriching rocket technology with new
ideas.

The present article by him is called in his manuscript "Rocket Engines,

Using Materials Which Give Not Only Volatile But Also Solid Combustion

Products" and is one of his many works in the field of rocket propulsion.

In this article, he examines the influence of solid combustion products mixed

with gaseous products on the reactive force.

In his considerations, Tsander aims at a rough evaluation of the possible

results and, therefore, the derivations of the formulas have an approximate

character and do not take into account a series of factors which, however,

cannot change the qualitative side of his results. In other manuscripts by

him there are references to more exact investigations he carried out, which,

unfortunately, have not yet been found.

No essential modifications have been introduced in the article; some

stylistic corrections have been introduced and rarely used notation has been

replaced.

Editor

INTRODUCTION

Let us examine rocket engines, in which, under normal operation con-

ditions, part of the combustion products is released as solid particles or

liquid drops. All solid propellant* and fireworks rockets can be included

in this type, Among them are those rocket engines which, in the author' s

opinion, will probably be the first to enable a complete escape from the

Earth and flight into cosmic space, due to the fact that part of their struc-

ture can be used as additional fuel for the rocket.

As material for building the rocket engine and its associated parts one

may use light metals and their alloys: aluminum, magnesium, berilium,

lithium and also a series of other elements, which may be used subsequently

as fuel.

When burning metals with oxygen (which is carried along) a tremendous

amount of heat is released per kg of combustion products, exceeding con-

siderably the amount obtained in the combustion of hydrogen with oxygen

(see table).

If we burn in a rocket some material giving solid combustion products

together with materials giving gaseous combustion products**, then the

"smoke" produced will become more and more nonuniform structurally as

* By this he means ordinary black powder rockets.

** The need to burn, togetherwith materials which give solid combustion products, others giving gaseous

combustion products is due to the fact that solid combustion products do not have molecular velocities

like gases and, therefore, they are incapable of delivering a reaction force. Coming out of the rocket's

nozzle, the gaseous combustion products will carry with them the solid particles. - L. $. Dushkln's note.

186



it is accelerated while approaching the rocket exit section. This is due to

the fact that the solid combustion products will be entrained by the gaseous

products only to a certain extent even for very small dimensions of the solid

particles as a result of the enormous accelerations in the nozzle. However,

since the difference between the velocities of the solid and gaseous combus-

tion products is large, the heat from the solid particles will be rapidly

transferred to the gases and the "smoke" will have an almost uniform tem-

perature.

Calorific value of certain metals, hydrogen and gasoline

Fu el

Lithium

Aluminum

Beryllium

Magnesium

Hydrogen

Gasoline

Calorific value of

the mixture,

cal/kg

4780

3700

5430

3600

3240

2350

Theoretical exhau_

velocity, m/see

6330

5560

6750

55O0

5170

4430

Note: The calorific values of the metals were taken from Landolt ,

In general the molecular weight of the solid particles will be considerably

larger than that of the gases and since the molecular heat capacity of com-

pounds of identical structure is approximately constant, the solid particles'

enthalpy will constitute, as a rule, only a small fraction of the gases' en-

thalpy. Therefore, almost the entire heat passes from the solid particles

to the gases still in the combustion chamber and the temperature of the gases

is raised considerably. Thus, the use of materials which give solid

combustion products gives favorable results, in particular, if we take

into account that our rockets are not yet capable of carrying with them

an amount of liquid fuel sufficient for the rocket's complete escape from the

Earth.

APPROXIMATE DETERMINATION OF THE REACTION FORCE FOR AN ENGINE

IN WHICH PARTICLES WITH TWO CONSIDERABLY DIFFERENT VELOCITIES

ARE SIMULTANEOUSLY EJECTED FROM THE NOZZLE

At different moments the gas molecules in the combustion chamber and

in the nozzle move with quite different velocities. The exhaust velocity is

an average of the molecules' velocities. Only when the final pressure is

very low with respect to the initial pressure, the temperature drop makes

the relative motions of the individual molecules, so small relative to the

flow velocity that one can speak about more or less equal velocities of all

the molecules.

If the flying particles are of different kinds, complete equalization of the

velocities is impossible, and in nonelastic collisions between the gas
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moleculesandtheparticlesof thesolidor liquid combustionproducts,part
of theenergyis alwaystransformedintoheat.

Thiswill alsohappen,althoughto a lesserextent,if theexhaustproducts
consistof gaseswithverydifferentatomicweights. As weshallseebelow,
thedifferentvelocitiesof theparticlescausea reductionof thereaction
forcefor agivenkineticenergyof all theparticles. A certaindecreasein
thereactionforce, in particularfor lowexcesspressuresin thecombustion
chamber,is observedalsoin thecaseof a homogeneousgas, sincetheim-
pulseperunit time is equalto theproductof themassof onemoleculeby
thearithmeticsumof all molecules'velocities,whereasthekineticenergy
of all themoleculestakentogether,whichservesfor thecalculationof the
averageexhaustvelocity, is equalto theproductofhalf themassof a mole-
culebythesumof thesquaresof all molecules'velocities.

Letusconsiderthecaseof twomaterialsystems,whoseparticlesfly
withdifferentmeanvelocities.

Let us use the following notation:
g, gravitationalaccelerationonEarth's surface;

m, and m2, mass of particles of first and second mediums (gases and

solid particles) leaving nozzle in unit time;

O, and G2, corresponding weights;

w, and w 2, particle velocities at nozzle outlet;

E_ and E 2, kinetic energies of masses rn_ and m2 at nozzle outlet;

Eo=Et+E=, sum of energies E, and E=;

w3, common velocity of masses m, and m2 after velocity equal-

ization, assuming conservation of momentum and heat re-

lease in impact;

E', kinetic energy of the whole mass ( m, plus m2) coming out of

nozzle with velocity w3;

at, approximate temperature increase of both systems due to

heat release by equalization velocity;

P, thrust (taking m, and m2 as consumptions per second);

A =! mechanical equivalent of heat;
427'

w,, common velocity of masses rn, and m2 after velocity equali-

zation when all heat, released by gradual velocity equaliza-

tion at nozzle outlet, is transformed into kinetic energy;

H, and H_, calorific values of material systems in calories per kg of

combustion products;

Pro,,, maximum thrust, attainable only by full use of thermal ef-

fect and for _, =w_;

Pm_n, minimum thrust, obtainable for one particular value q-=-w_/w,
(we shall indicate below the conditions in which the reaction

force has a minimum);

c, and c,, specific heats of systems in process of velocity equalization.

For the kinetic energy with respect to the rocket engine we may write:

and

mj_
E,=--_- (1)

m2W_

E_=--. (2)
2
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Consequent]y$,

Eo_ E, + E== 2 .... (3)

Let us assume that the faster particles entrain the slower particles in

such a way that only collisions between the particles take place but the

pressure on the nozzle walls does not vary. This phenomenon is associated

with energy losses of particle motion directed towards the nozzle outlet but

causes at the same time particle motion in all directions, thus producing a

certain amount of heat.

In this case we have a certain analogy with the nonelastic collision of two

spheres. Therefore, the velocities which the particles acquire will be the

minimum which may be expected.

The total momentum before velocity equalization is equal to m,w,+m2_:2.

and after equalization (,hi+m2) w3.

We obtain therefore

_3= _,w, + _,,w2 (4)
m| ar m=

The kinetic energy of the entire mass after velocity equalization is equal
to

F-----(,n,+,n,)=]T" (5)

Substituting the expression of w3 from (4) in (5) we obtain

E' = (,n,w,+ m_2)=
2(,n, + m,) (6)

The amount of kinetic energy transformed into heat is given by

--Fo -- E' ----- l
2(m, + "9 [(m,w_ +m,w_)(m, -Fm,) --

- (re,w,+ m2w2)']= ,_,m,(_,-_,_: (7)
2(m= + m2)

The problem of what amount of heat is transferred to each of the material

systems remains open. In the case of two gases, it could be assumed that

both gases are equally heated but in the present case, i.e., when we have in

addition to the gas molecules the relatively large and very hot particles of

the metal oxide, it is closer to the truth to assume that almost the entire

kinetic energy, released as heat, will be concentrated in the gas molecules.

For the sake of generality we write

rn,c lat , + m2c_t , = ( E o-- E') A =

Am'm2 (_e_--w,)_,
2(_, -F r_2)

* Equation (2) must be interpreted as a formal expression determining the amount of thermal energy con-

tained in the metallic fuel since in reality the metals' oxides do not possess kinetic energy like the gases.

- L.S. Dushkin's note.
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hence

AII
Am,m2 (wz-- w,)2

2(_,,+ m2)(m,c, + m2c2 _-_I/

(8)

In each individual case it is necessary to investigate what change in the

state of the gases was effected by the velocity equalization.

The calculated velocity a'3 represents that average velocity of the com-

bustion products which determines the thrust of the jet. Indeed, from the

momentum law for a unit time interval wc obtain

P = rrt, _, {-m2_,: (mr + m2} _. ('4 a)

We could obtain a highe_ average velocity if we succeeded in transform-

ing the heat, corresponding to Eo-E', into kinetic energy in the velocity

equalization process. However, this is possible only if the velocities w,

and w_ are attained not at the nozzle outlet but inside it. In this case, the

entire kinetic energy E would be transformed into kinetic energy* of the

homogeneous jet. We would then have

or

u,,= (9)
rnl+ m:_

The maximum thrust which is then obtained is equal to

P_: (m, + m2) w4. ( 1O)

Substituting in (10) the expression of w4 from (9), we obtain

For convenience, let us introduce the following notation:

and

m2

ml

Furthermore, let us denote the thrust, obtained from a mass m,, ejected

with a velocity _L by P,; then

P,=rn,w,. ( 1 1)

* In reality such a veloci W {formula (9)) cannot be achieved, since the oxides of the metals, not possessing

nlotion energy, will give their energy in the form of heat to the gaseous combustion products and at the

same time will absorb part of the kinetic energy of the gaseous particles when the latter collide with the

solid particles. This law was not taken into consideration here. - k S. Dushkin's note,
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Taking m_wi in formula (lOa) out of the square root, we obtain, after

substituting q, p and Pi

Pm.=P, V(I +pq_)(l -{-p). ( l 0h)

In a similar way we obtain from formula (4a) for the actual thrust

P=P_ (1 -t-Pq). (4b)

Dividing (4b) by (10b). we obtain an important formula which gives the

ratio of the actual thrust, obtained when the particles of one system lag

somewhat behind those of the other, to the theoretical thrust, which would

be available if the particles' velocities could be equalized and all the heat

transformed into exhaust energy. This formula has the form

p ! t-_ (12}
•Drnax _ _/(l -l-pq_Ill-l-p)

Let us examine this formula in more detail. For

we find

P
--=|t

Pm|x

i. e., if the velocities are equal, then the actual thrust is equal to the max-

imum thrust, as it should be.

Next, for

we obtain

P = _ (t3)
P.,ax g-I + p

This formula gives the magnitude of the actual thrust for the case when

the velocity of the particles of one system may be neglected (w2 =0) or when

one system serves only for heating the particles of the other system. From

equation (13) we see (remembering that p=mjmx) the rather fast decrease

of the axial thrust P relative to the maximum thrust Pm,x for a relatively

small amount of solid particles. FOr small p we have approximately, by

series expansion:

p
--=I --O.$p.
Pmax

For larger values of p we have a parabolic dependence of Pma_,/P, as can

be seen from equation (13). The thrust P, being small, decreases ex-

tremely slowly. For example, if the mass of the heating material is three

times larger than the mass of the outflowingparticles (p=3), then

P 1 l

=_=T'
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i.e., the actual thrust P is half the maximum thrust Pm_, which would be

obtained if both materials would come out of the nozzle with the same ve-

locity. If p= 100, then

P
-- _-0.10.

Pmlx

The curves in Figure 1 were drawn for various values ofq=w2]w_. The

abscissa gives the mas_ ratio and the ordinate - the thrust ratio. We see

that the curves

have certain minima, and also that for a small lag of particles of one ma-

terial behind those of the other one. the actual thrust P is almost equal to

the maximum force which would be obtained if the velocities were equalized

without energy loss. If the lag attains even 50% (q=50%), the loss in force

amounts, in this most unfavorable case, to 5.5 %.

The position of the minimum of P/Pm_, for a given q=:_,2/w, is easily de-

termined by equating to zero the first derivative of P/Pnl,_ with respect to

p. From (12) we obtain

d (p_,a_ ) qV'(l_cpq2)(l+P)(i _pq_)(1+p) -

i

(! +pq) _- [(1 + rq_)(! + p)l-_n 1@(1 +#)+(1 +9@)i

(I +pq_)(1 +p)

_O(] +pq2)(1 +p)--(] +/q)(l +q2-J-2pq2) _0. (14)
3

2[(I -I- pq2)(l -_.-p)l T.

P q-_

O8

a6

_ O.Ol

0.*

O.l _ ---.---. _0I

0

S/0 20 30 5: 75 _0o 150 P:-_m

FIGURE 1. Ratio of the" actual thrust of a jet to the theoretical maximum

thrust achieved for vc/oC}[} equali_ation, xs the mass ratio

We have p_ in the numerator and p3in the denominator. Therefore for

p=oo

P 0
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i.e., as seen from the figure, we have here a maximum. This result may
be formulated as follows.

If the mass of the solid particles which come out of the nozzle is many

times larger than that of the gas, i.e., if p='2 _oo then the thrust of the
ml

jet approaches the maximum possible thrust, occurring for velocity equali-
zation.

In this conneetionone should, however, remark that, in a real case, as

p-_oc a considerable amount of heat remains in the solid particles and is
not used, while in this formula we assumed that the sum of the kinetic ener-

gies of both materials is constant.

If the numerator of formula (14) is made equal to zero, we obtain

2q(I +pq2) (1 +p). - (1 +pq) (I +q_+2pq _) =0,

or, after opening the brackets:

p(q--2q2+q3)=l +q2--2q,

hence

pq=l. (15)

Introducing in this formula the values of p and q, we obtain

mlw,=m2w2, (15a)

For these values of q and p we obtain the minimum of P/Pm_,, shown in

Figure I.

This result may be formulated as follows. The thrust of a jet made up

of two kinds of particles, possessing different flow velocities, becomes a

minimum if the momenta of both kinds of particles are equal.

Substituting (15) in (12) we obtain the minimum value of the thrust ratio:

P_, _2_- 2_'7" (16)
Pm,x I+q l+p

Further, it is interesting to find for the general case the ratio of the

thrust P, obtained from the whole jet, to the thrust P. of the mass m,. We

see from (4b) that for given q, P/P, is a linear function of p, and for given p

it is a linear function of q. We may then prescribe constant values either

for p or for q.

If we look for the maximum theoretical thrust obtainable, we must use

the maximum exhaust velocities which would be obtained by transforming

all the heat, corresponding to the calorific value, into exhaust kinetic ener-

gy. For solid particles, which cannot acquire a velocity independently, this
value is arbitrary.

Denoting these velocities by m,,,_xand w_,_ax,we can write using expres-
sions (i) and (2):

E mlw_"a" --_ (17)
, =-.--7--- =gin, A "

hence

w,_._ = _= 91.5 V-_l. (17a)
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In a similar waywehavefor thevelocity w2m.x

hence

V/2gH2W_=.x = _ = 91"5 ]/_z"

(18)

(18a)

Dividing (18a) by (17a), we obtain

or, denoting

and remembering that,

we have

t_
--_qy
Ir I

2
q.,,*----x. (19)

SubsHtuting this value of qmar in (4b) we obtain for the actual thrust:

P=P, (l + px_'). (20)

and in the case of velocity equalization with full use of the heat corresponding
ing to the calorific value, we obtain by substituting qma, in (lOb):

P=,, = Pt "_(] + px) (I -4-P), (21)

where

Pt= mt_o,m,, = 91.5ml V-_l.

Substituting in (20) and (21) for x and p their expressions

(11a)

x_____//2'
H,

p== ml .
m]

and for P, - its expression from (lla), we find also

and

p= 9 .5(,,,,V-aT,+,,,, (20a)

Pro,,-----915V (rutH,"4-re,H2)tm, q-m,). (21a)
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Since

and

and also

we obtain for the thrust

and correspondingly

m, = O-L (22a)
g

62
m2=--, (22b)

g

p=91.51--L(olV--_t-_-o,V-_) (2Ob)
g

P_,x =91.5 1__ V (GIH_ + O_H2) (OL + 02). (2 lb)
¢

APPROXIMATE DETERMINATION OF THE DIFFERENCE IN THE VELOCITIES

OF GASEOUS AND SOLID COMBUSTION PRODUCTS AT NOZZLE OUTLET

Let us use the following notation:

w'=w_--w_, difference in velocity of gaseous and solid combustion

products at nozzle outlet, m/sec;

]_, average specific weight of gaseous products at nozzle out-

let, kg/m3;

r2, specific weight of solid products during their stay in the

nozzle, kg/m3;

F r, maximum (mid-particle) cross section of solid particles,

mm2;

d,, average diameter of solid particles, mm;

t, time, see;

Mr, average mass of a solid particle;

W, average aerodynamic resistance of a solid particle is given

by the formula*

W=_T, _g)2 F_, (23)

where _ is the coefficient of air resistance of solid particles.

In order to determine the shape and dimensions of the solid particles an

experiment was performed with magnesium fuel, which gives magnesium

oxide particles. A film of magnesium was burnt and the smoke produced

was deposited on a microscope glass. The microscopic examination showed

* This is a commonly used experimental formula for resistance to motion in air of bodies with sonic velocity.

It was not verified for the case considered, i.e. , for small particles of a diameter of the order of 0.001 ram. -

L.S. Dushkin's note.
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that the particles have oval and spherical shapes with a diameter from 0.001
to 0.0005 ram.

As the solid particles get further from the flame, their temperature de-

creases rapidly and their light dies out. This shows that the heat from the

oxide is indeed transferred rapidly to the surrounding air. The same re-

sult is obtained when burning magnesium powder, e.g., for photographic

purposes: the spark is short-lived and the heat is rapidly given away to the

surrounding medium. Experience justifies us in considering the particles

as spherical in first approximation.

Let us investigate the case when the acceleration of the oxide particles

is constant.

The acceleration t 2 is equal to aw_ and, if the velocity of the particles is
at

increased in the nozzle along its length I from zero to w2, then

t -_ (24)
_-- 21 "

Assuming that the oxide particles are accelerated by aerodynamic drag,
we find

W_M,_. (25)

The spherical oxide particles' mass and cross section are given by

and

M,= _ !_d_ (26)
g 6

F,=_. (27)
4

Eliminating W from (25) and (23) and substituting in the equation obtained

the expressions of M2. F2 and aw2 from (26), {27) and (24) we find
at

7_ I 3"_ (w')_ * _,_

or

(,,')_= 2T2a2 (28)
31,_I"

Remembering that w'-----w,--_,2, we finally obtain for the ratio of the oxide

particles' velocity to the velocity of the gaseous particles:

w22 = 1

Wl V 212a2I + 31_1

{29)

As an example we take the case of magnesium oxide particles entrained

by the combustion products of detonating gas. We take as the average dia-

meter of the oxide particles d2 =0.00075mm =0.75. 10-6m.

196



Thespecificweightoftheparticles,is, for magnesium,72--"3.2-103kg/m3.
For a spherewehave_0=0.60. As a first approximation we can use for an

oxygen-hydrogen rocket the theoretical curves for gas expansion that I gave

in 1932". These curves were calculated for a rocket with an initial gas

pressure of 20arm, a mixture consumption of 3.33kg]sec and an angle of

10 ° between the axis and the generator of the cone.

Let us assume that the amount of oxide is so small that the temperature

and, therefore, also the specific weight of the gases do not vary noticeably

for a given pressure. Then we find from the expansion diagram that for a

pressure ranging from lto0.01atm at the end of the nozzle, the average

product "f,l, appearing in the denominator of formula (29), takes values from

0.014 to 0.0073kg/m throughout the entire process of gas expansion. Sub-

stituting all the above-indicated numerical values in formula (29), we find

that the value of w2]w_ fluctuates between 0.70 and 0.62.

For these values of q=w2/w, we find from formula (12) a very important

result, namely: the actual thrust in these conditions constitutes about 97%

of the maximum thrust, which would be obtained if the velocity of the oxide

particles was equal to the velocity of the gaseous particles. For a small

amount of oxide (p<l.5) the loss will be smaller than 3%.

From formula (29) we see that the velocity ratio of the oxide particles to

the gas particles will be the closer to 1, the longer the nozzle and the

higher the specific weight of the gas, and also the lower the specific weight

and average diameter of the oxide particles. Consequently, in rockets with

high fuel consumption and small cone angle the lag of the oxide will be

small.

If the solid particles are of streamlined shape their relative lag will, of

course, be larger than that of spherical particles. If the oxide particles

have a crystalline structure, e.g. like snow-flakes, their relative lag will
be even smaller than that calculated above.

For oxide particles of nonspherical shape we find easily from formulas

(23), (24) and (25):

hence

_'F= M2_...g_g 6_ (30)
_ F2h_l r27t_,t'

where G2=M2g is the average weight of a solid particle.

We may introduce here also the ratio

_=a___ (31)

representing the specific load, due to the proper weight of the particle, per

unit area of the maximum cross section of the particle. Introducing again

the relative velocity _v'=w_--w2 between the solid and gaseous combustion

* See the article, Problerna poleta pri po_osbchi reakrivnykh apparatov (Problems of Flight with the Aid of

Jet Propulsion Machines). -Editor's note.
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products,weobtainfor w2/w,:

w 2 I

+'F%+,
By comparing (32) with (29), we see that for a sphere

(32)

_=__2 ._2d3. (33)
3

The accelerations which the solid particles undergo in the nozzle are

very large since the velocities increase very rapidly in a comparatively
short distance.

The values of all the quantities, which may be obtained on the basis of

the formulas derived above, represent only a first approximation, since

we neglected, on one hand, the influence of dissociation which lowers the

gas particles' velocity, and on the other hand - the increase of the coeffi-

cient _ in formula (23) which takes place at supersonic velocities. For a

large percentage of solid or liquid particles and a large counter-pressure

at the nozzle outlet, the relative velocity is not very high and, therefore,

it is better in first approximation not to start from the gas particles' ve-

locity, but from the velocity which would be obtained in the case of veloc-

ity equalization.

In addition to the acceleration of the solid particles, we must also cal-

culate the slowing down of the gas particles. Using the approximate results

which are obtained in a first calculation, it is possible to carry out a second
calculation more exactly.

The stay of the gaseous and solid particles in the rocket nozzle is deter-

mined in the general case by the formulas

and

I

t,..f _'
0

t -i'_
_-J_2 '

0

(34)

(35)

where a,j and _,_ vary in these formulas from zero to their maximum val-

ues. In the case of constant acceleration, we obtain:

and

2/

t,=-- (34a)
flyi

21

t+=--, (35a)
_2

where, in this case w_ and w2 are the magnitudes of the velocities at the

outlet from the nozzle. Calculations show that the stay of particles in the
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nozzleis extremelyshort. For thelargenozzleconsideredaboveits range
will bebetween115000and1/570secfor magnesiumoxideparticles.

TEMPERATURE DROP OF THE OXIDE PARTICLES DURING THEIR

STAY IN THE NOZZLE*

Due to the high temperature in the nozzle, radiation will predominate

over heat transfer by convective current. Therefore, to simplify matters,

let us first examine heat transfer by radiation.

Let us use the following notation:

T, and 72, the absolute temperature of gases and oxide at a given moment;

dQ, amount of heat released by one oxide particle during time dt;

c2, specific heat of solid (or liquid) particles;

C,, Stefan-Boltzmann radiation constant.

Let us consider a spherical oxide particle. In this case, the ratio of its

surface to volume is a minimum, and therefore, the particle will be cooled

less than particles with different forms.

The amount of heat lost by'the gas when the temperature is lowered by
dTT, is equal for one particle to

,4
dQ = -- c_ -._-dT,. ( 3 6)

On the other hand, the spherical surface ,,d_ radiates during the time dl
the amount of heat

dQ = c+na] (r_ -- T_) at. ( 37)

From (36) and (37) we obtain

or

"a,_ 2
-- c'7' T dD= C,_d2 (T_ -- T:) at

at= --_'J_ (38)

When T, is small relative to T2, we may take for it an average value
T1., and integrate. Then we obtain

T;
t= --_ _ aTe

+c, O, r_-_.'
r 2

(39)

where t is the time during which the oxide temperature decreases from

T; to T;.

* The writing of this section has not been completed, since Tsander intended to make a more exact and

final calculation after completing a series of experiments which he had planned. - L. S. Dushkin's note.
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The integral gives

_-In (T_+ r,_)(__r'2--r,=)] (39a)

(r;r,=)(r;+ r,.) J"

Knowing the, specific heat c2 of the solid particles, their density -_, the

radiation coefficient C,, the diameter d2, the average temperature of the

gas and the initial temperature of the solid particles T_ before their heat

is transferred to the gases, we can calculate the time t as function of T_

and then also T_ as function of the time t.

CONCLUSION

The previous discussion points to definite advantages obtained by using

metals as an additional fuel for a rocket engine. It is possible to burn a

metal in such proportions to the liquid fuel that no decrease in the thrust

will be observed. We do not take into account the fact that metal oxides

(as, for example, A1203, and MgO) will probably be in a gaseous state in

the chamber and partly in the nozzle, since the combustion temperature

exceeds the vaporization temperature of certain oxides. This problem re-

quires an additional investigation.

We did not touch at all on the problems of the dynamics of a rocket in

which part of the structure built of high calorific value metals is used as

fuel. If we take into consideration these possibilities, too, then the advantage

of using a metallic fuel will be even greater than shown in the present ar-

ticle.
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DESIGN PROBLEMS OF A ROCKET USING METAI,LIC FUEL*

METAL ALLOYS, USED AS CONSTRUCTION MATFRIALS AND AS FUEL

When the combustible metal constitutes part of the rockeUs structure,

before being melted, it must have the following qualities:

1) sufficiently low melting temperature;

2) sufficient strength at the,temperatures to which it is subjected before

falling into the melting chamber;

3) the heat required for heating and melting the metal should not be

too large, so that the time needed for melting will be as short as possible;

4) the calorific value of the metal should be as high as possible;

5) the ignition temperature of the metal should be as low as possible.

To condition 1) we may add that if the design contains lateral chambers

for melting the metals, then these chambers should also be melted in turn

in one or several central chambers**, and it is consequently expedient to

use metals with different melting temperatures:

a) for the liquid oxygen tanks, we may use alloys with melting temper-

atures between 50 ° and 200°C;

b) for the sections which are subjected to an approximate average

temperature of 28-50 °, alloys with melting temperatures between 200 ° and

500°;

e) for the chambers serving for melting sections indicated under a),

alloys with melting temperatures between 500 ° and 700°;

d) for the chambers intended for melting the sections mentioned in b),

alloys with melting temperatures between 500oand900°; these alloys may

also be used for intensely cooled rocket nozzle walls;

e) for chambers intended for melting the sections mentioned in c) and

d), alloys with melting temperatures between 900°and2000o; these alloys

may be used for rocket combustion chamber walls, and for weakly cooled

parts of rocket nozzles and also for the nose sections of rockets***.

For intensely heated sections of rockets which are not to be melted it is

possible to use refractory materials and very high-melting alloys. Struc-

tures which are fusible at low temperature may also contain high-melting

alloys if they do not disturb the melting. Subsequently these sections may

be melted together with the chambers into which they fell, or they may be

removed from the chamber by special automatic grids attached to levers.

* This article was published in the Journal "Raketnaya Teknika", No. S, 1937.

** For an example of such a design see the article, Pr0hlema poleta pri pomoshchi reaktivnykh apparatov

(Problems of Flight with the Aid of Jet Propulsion Machines). - Editor's note.

*** These sections may get intensely heated when flying at high velocities in the atmosphere. - Editor's note.
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To condition 4) the following should be added:

a) if the air for combustion is taken from the atmosphere, the calorific

value per kg of the fuel itself should be a maximum;

b) if pure liquid oxygen is taken in the rocket for combustion, the cal=

orific value per kg of metal oxide should be a maximum;

c) if a material containing oxygen only partially (for example, liquid air

which possesses 85 % of 02 or H20_ or AI(NO_)3), the calorific value should

be determined for all the combustion products taken together.

To condition 5) we should add that if it is intended to burn simultaneously

also gasoline or oil or, for example, celluloid, then the molten metal may

be sprayed by means of a burner, in which gasoline or oil burns with a large

surplus of oxygen.

DETERMINATION OF THE RELATION BETWEEN THE WEIGHTS OF METAL, HYDROGEN,

SOLID AND GASEOUS COMBUSTION PRODUCTS, SOLID AND LIQUID PROPELLANTS

(INCLUDING OXYGEN)

(Since we must burn together with a metal some other material, giving

gaseous combustion products, a rocket capable of burning its metallic sec-

tions must carry also some other fuel, either liquid (for example, liquid

hydrogen, gasoline, oil, etc.), or solid (for example, celluloid and others).

It is interesting and important to determine the weight ratios between the

individual components of the propellant in such a case).

As an example we take a rocket which is propelled by liquid-oxygen, liq-

uid hydrogen and aluminum.

Let us use the following notation:

Ao, A a, A^,, atomic weight of oxygen, hydrogen and aluminum (A o = 16,

A N=i.008, AA,=27.1);

aM, aA,, number of hydrogen and aluminum atoms combining with

one atom of oxygen (all= 2; a^_ = 23), according to the for-

mulas H_O and A1203;

Go, Go_, GoA ,, total and partial weight of oxygen, required for combus-

tion in kg;

G H, GA,, weight of hydrogen and aluminum, required for combus-

tion in kg;

G, Of, initial and final weight of a long-range rocket (before and

after obtaining the entire kinetic energy) in kg;

OH,o, G^,.o_, weight of water and aluminum oxide produced in kg;

Op, total weight of propellant, including oxygen.

We may then write Go_GoH+Go^h

G-Go q-G_ q-GAI+Gf'-GH,o "bG^l,o,"kG_,

Gp= G--Of = Uo + GM + G ^l,

GN,o _ Oon + GM.

Gxl,o_=GoAl+GAI,

GON..__.OH Ao
Alia H 1

U o -- -4o
ALCOA1 -4AlgAl +

(i)
(2)

(3)

(4)

(5)

(s)

-(7)
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Thecalorific valueof detonatinggasper kgof H20is 3230cal]kg,andof
aluminumoxide,AI203is 3690cal]kg(see"ChimikerKalender"). Assum-
inga somewhatsmallerutilizationfactorfor A1203thanfor hydrogen,since
theheathasto passfrom theA1203particlesto thegases,wemaytakein a
first approximationAI_O3andH20asequivalentfuels. Equivalentfuelswill
be thosewhichgivethesamevaluefor thevelocityacquiredbytherocket,
accordingto theformula

V_W][I G--_ .

Gf

In the present case we may assume this, since the variation of the exhaust

velocity a, of the gases and the solid combustion products with the percent-

age of A1203 is small. If G/Gf is given, then for a given w a definite v is
obtained.

Thus, when the amount of aluminum used varies, it is possible to assume,

for a given final weight Gf, that the weight of all the propellant (G--Gf) does

not vary, so that the initial weight G is also constant.

From equations (1), (2), (3), (6), and (7)we obtain

A o

G-- Gf_ Go -_- GH -}- Gxl _ OH (] -_- A-_H ) -{-

+ G^, (1 "40+ A_--fi_-,)' (8)

hence

GAI__ (G--Gf)--GHII Jr A_aH )

Ao (9)
1+_

"_AI4AI

(Further in the manuscript of Tsander we find a derivation of formulas

giving the cost of a rocket as a function of the amount of hydrogen, oxygen
and aluminum in it. Tsander writes:

"The prices and the amounts of liquid oxygen, liquid hydrogen or gaso-

line, aluminum or magnesium and other fuels required, are very different.
If we use as part of the fuel in a rocket molten metal or some other mate-

rial which before melting was in the form of bracings, longerons, airplane

ribs, engine parts, propellers and so on, the cost will be even higher and

a very serious problem arises: is the expenditure on such use of rocket
parts justified or not. Let us find therefore under what conditions it will

be economical to use metals as fuel in a rocket and how much the cost will

rise relative to the case in which only liquid fuel is used. "

The following calculation has no value today but its results are curious.

If the cost of liquid oxygen is 0.15 rubles per kg and that of machined alu-

minum parts for the rocket 10 rubles per kg, one finds that if 1 kg of liquid
hydrogen costs more than 46.8 rubles, then a rocket which uses as fuel alu-

minum sections of the structure will be cheaper than a pure hydrogen-

oxygen rocket. Otherwise the contrary is true. For a rocket with o.xygen
and aluminum with

0 2O

203



we obtain a cost of 5.6 rubles for J kg of rocket at the start. This includes

only the cost of the material, propellant and manufacturing.)

Let us denote by

V^ =OA, . VH=-_ ; Vo=_! Gp ' p

the ratios of the corresponding weights of aluminum, hydrogen and oxygen

to the total weight of propellant (including oxygen).

Denoting by

= O^l + Go..xf_---G.u,o,
G_ + OoH OH,o

the weight ratio of aluminum oxide to water vapor (the ratio of solid to gas-

eous combustion products) and, finally, by

{] ..___QO + GH ==Vo + YH

GAi IrA I

the ratio of the sum of weights of oxygen and hydrogen to that of combustible
aluminum (the weight ratio of liquid to solid propellants).

From (3) we obtain

% +-_'=Vo+V.+ v^,=i. (lO)
Op Gp Gp

Dividing both sides of equation (1) by Gp and introducing relations (6) and

(7), we obtain

Vo=Ao (VIi Jr V^! I" (ii)
AHa_I AAla ^! /

02"

Substituting in (10) we get

Vo= I -- V. -- VA, ---A° V. Jr Ao V^,
AHa H AAlaAI

\a.a. \A^,a^,

hence

1-- A° 1/v. + !
VA,=

A__p__o+i
AAlaAI

(12)

(13)

Next, dividing (6) and (7) by Gp, we have

(141

204



and

Go A__._L1= V^x "40 • (15)
Op AAl_At

Substituting in the expression for _ we obtain

v,,*%_' (1+ -_° Gp V^I Axta^t )
= = (16)

v.+ °°" % '+
Gp

Substituting V^, from (13) in (16), we obtain

_= t _]. (17)

Using this equation, we can determine VM, V^,, and V0 as functions of g.

We find immediately

V.= 1 (16)

Substituting V H in equation (13) we obtain

V_a----- _ (19)

+o(i+_(_ AxtaA1 )

Finally, we obtain Vo by substituting the expressions found for V_ and

V^, in equation (11):

AAIaA1 AAlaA! / AHaH (20)Vo=

A^tâ ,]\

Next, we have from (10):

Vo+ V.= 1- V^,;

substituting this equation in the expression for 13 we obtain

1-- V-I.

%,

Substituting VaL from (19) we have

+ 1) + _ --
!

A
(_+I).-7::9--+I

AhlaA_ (21)
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NowwecandetermineV. by (18), V^, by (19), Vo by (20) and _ as func-
tion of _ from {21). The weight ratio of aluminum oxide to water vapor,

which we denote by _, plays a decisive role in the calculation of the rocket

performance: the greater the amount of aluminum oxide mixed with water

vapor, the larger the amount of heat leaving the rocket with the oxide un=
used.

The weight ratio of the liquid to the solid propellant 6' plays a role in
choosing the stresses in the rocket's material: the more liquid propellant

we have, the greater the stresses in the material.

We shall denote by _ the ratio of the weight of liquid propellants, in-

cluding oxygen, to the initial weight of the rocket. It is equal to

. .
Ao

_ '+
(_+1) 1 + A,----A_n

(22)

Rearranging this equation we obtain for |:

Of

(y
_ 1. (23)

Knowing the mechanical properties of the material of which the rocket

has to be built, we find 8 from structural considerations and determine

by equation (23). Then, we find V_, VAI, Vo, and _ as shown above.

If we start from the rocket's design, it is better to express all the quart=

titles through 6" Then we have from equation (21)

A
I+ "'o

_ XazaAI

p_ ao
(24)

Therefore

¢4- I----- lq-_
Ao (25)

_AlaAi

Substituting the expressions of (_+1) and of _ in equations (18), (19) and
(20) we obtain

VN A^'aA' (26)

(' +')(] +a_) '

VA1 ==_--_+p, (27)
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Ao Ao
Vow_____ANa_-_+ AAta-----'t

Using (25) and (23), we can express _ as function of _:

(28)

hence

,,40
p- AAIaA,

Gf
0

AAIaA,I AAIaxl\

G

(29)

(30)

On the other hand,

_+_
(31)

Knowing the admissible limits for S, we find the limits for [_ from equa-

tion (30) and limits for V_, VA,, Vo and _ respectively from (26), (27), (28)

and (24).

Substituting numerical values, we may now determine all the quantities

indicated above and draw a diagram for all cases, since there is only one

independent variable.

In our example we used aluminum. If we take another metal, giving also

an oxide as a result of combustion, it is possible to replace AA, and a^, by

the corresponding quantities for this metal, leaving the formulas unchanged.

If hydrogen is replaced by gasoline or another fuel which gives only gas-
eous combustion products, we must transform the formulas correspond-

ingly*.
Let us assume from the beginning that we did not take any hydrogen in

the rocket. All the oxygen was used for the combustion of aluminum only.

It is simple to determine the values taken in this case by _, 8 and S.
To do this we take VM =0 in the formulas derived above and get _-----_.

From (26) we have:

from (31) we obtain

_ AO
AAIUAI

,_ Ao <=>
AA,aA,+ A0 0]

* It is necessary to take into consideration the other combustion products too. In the case of gasoline

CO2 is obtained in complete combustion in addition to H20. - Editor's note.
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Next, from (19) we have

VAI _ ]
•40

1-t-_
AAtaAI

(33)

and from (i0):

Vo=l- v,,.

In a similar way, when we have only oxygen and hydrogen, V,, : 0;

_=0.

In this case, we obtain from (18):

then,

and from (10):

Ao (34)
I+--

AHa H

Vo= l - v.
A._._.u_+l

A o

(35)

.L I',_, V,,, V o and 13 as functions of ,_;

come:

Furthermore, for this case _=oa. From (30) we find

g=l --G--L. (36)
G

All possible cases are situated between the limits Vn=0 and VAa=0.

If V_ >0 and V,. >0, then we obtain from (23), (18), (19), (20) and (21)

taking (_ = I these expressions be-G 2

= 1 I; V^l_ _ :
1,985_ --0.885 (_ -I- I) 1.885

V. =, I 1-- V,.--; Vo=I--V.--VA,,p=--
(} + I ) 8.% VAi

The numerical values of all these quantities are given in Table I.

TABLE 1

Go+GH
_-- 0.446 0.50 0.55 0.60 0.65 r 0.70 0.75

G

GAI,O_
fz_ _ 8.18 3.84 2.26 1.47 0.98 0.656

GH,o

I00VH M 0 1.22 2.31 3.42 4.52 5.64 6.74

100 I'A ff_i 53.0 47.4 42.0 36.8 31.6 26.2 21.05

100 Vo _ 47.0 51.78 55.7 59.8 63.9 68.2 72.2

jim G°-_GH 0,885 1.128 ] 1.380 1.717 2.16 2.82 3.75
Gxl I

] ___. _ __

o. 21102461o.11oI
7.851 8.951,0.05t

1570110'38 I s.2s I
7 .5i 0.018,7i

0.95

0

11.16

0

88.8
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If we wish to know the amount of hydrogen, aluminum or oxygen as a

percent of the initial weight G, then the numbers 100VH 100VAI and 100Vo

of the table have to be multiplied in our example by Gp/G = 0.95.
We should be interested here in the values of 8 and V0. We see that for

the combustion of aluminum an amount of oxygen, equal to 47% of the weight

of the aluminum oxide produced is required.

If the final weight of the rocket Of is 1/20 of the initial weight, then the

liquid material must amount to 44.6%of the initial weight; we see further

that for $>0.446, the rocket should contain more than 44.6% of liquid pro-

pellant, since in addition to the aluminum, we must burn hydrogen to get

gaseous combustion products.

In order to reduce the amount of liquid fuel, oxygen could of course be

taken in an amount insufficient for complete combustion, or we could make

partial use of other metals, for example steel, which do not require much

oxygen for combustion; furthermore, a light incombustible gas could be

used in part instead of hydrogen. All these reduce the performance of the

rocket; however, in view of the high calorific value of aluminum (or mag-

nesium, lithium and certain other metals) this method may find applications.

(The values of $ and $ are of extreme importance. The first, showing

the weight fraction of the liquid propellants, determines the technical fea-

sibility of the rocket.)

Airplanes may carry from 40 to 60% of liquid fuel, i.e., theirfullweight

may be by 1.67-2.5 times larger than the weight of the unfueled airplane.

Assuming that a rocket may carry up to 75 % of liquid propellant, we obtain

that its full weight may be 4 times the weight of the empty rocket.

(Therefore, we should consider as technically feasible in our example,

rockets using metallic fuel with $_<0.75. On the other hand, the value of

_, which gives the ratio between solid and gaseous combustion products,

also determines the choice of _. The value of $ may be determined only

experimentally. In case it is smaller than 0.856, the rocket on metallic

fuel with G_/O = 1/20, taken by us as an example, will be practically un-

accomplishable at the present state of aviation technology.)

EXPERIMENTS ON THE PRODUCTION AND COMBUSTION OF LIGHT ALLOYS
FOR HIGH ALTITUDE ROCKETS

Together with co-workers, Ihave carried out in the autumn of 1928 ex-

periments on the production of light alloys containing magnesium and tested

their combustibility in air. The motive for the experiments was my idea

to use metals as fuel for rockets, high altitude semi-rocket airplanes, and

spaceships in addition to liquid fuel, since liquid fuel only is not suffi-

cient for the attainment of extreme altitudes and flight velocities. The

most radical method - burning, as additional fuel, parts of the rocket (or

airplane), made e.g. of Magnallium or Elektron, specially for this purpose -

may give a mass ratio sufficiently high to achieve practically, with the ap-

propriate design, the launching of payloads and man into interplanetary

space and even to other planets.

It is therefore of paramount importance to demonstrate that alloys which

are suitable for rocket construction, burn well and give high efficiency in a

rocket. I have proved the last point theoretically.
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The thrust of a rocket is

P=ddM-_twg+_M°_ dt O_

where _M___g and riM__0 are the rates of ejection of the gas and solid particles
dt dt

(metal oxides); wg and w 0, the corresponding ejection velocities.

Since in collisions of gas particles with solid particles the total momen-

tum does not vary, i.e.,

dMgwg+dMowo = const,

then for a given consumption

P = const,

i.e., the rocket's thrust does not vary even if the solid particles have some

lag. It is then assumed that the particles of the gas and of the metal oxide

will behave like perfectly elastic bodies and that the rotation energy of the

solid particles about their axis can be neglected.

We give below a list of alloys which may be of interest for constructing

combustible parts of rockets {Table 2).

TABLE 2

Serial

No.

1

2

3

4

7

8

9

10

11

12

13

14

Alloy

65%Sn, 359t Pb

95% Zn, 5%Mg

60%Zn, 40%Mg

75%Mg, 20% AI, 1.7% Cu, 3.3% Zr

88%Mg, 8%A1, 2% Cu, 2% Zn

59% Sn, 32% Pb, 5% Zn, 4%M8

63% Sn, 349/ Pb, 3%Mg

80% AI, 20% Cu

50% AI, 50% Cu

92% AI, 8% Cu

59% AI, 41%Mg

87% Zn, I0%Mg, 3%A1

90.5% Zn, 4.75% Ms, 4.75% At

93.5% Zn, 3.2% A1, 3.3%Mg

Melting point,

%2

182

335

338

638

Remarks

Eutectic alloy

Eutectic aIloy _': 6.15

Eutectic alloy T= 2.85

Complete combustion of

aluminum

Complete combustion of

Elektron

Ignites but does not burn

completely

Burns only in powder form

Alloy

Brittle alloy; incomplete

combustion of aluminum

Brittle alloy; burns well

Bums only in thin sheets

Good mechanical qualities,

slightly brittle, burns

poorly

Difficulties in preparing the alloys

1. Since magnesium oxidizes readily, its mixtures must be prepared

either under a protective film of NaC1 and MgC12 ('l = 2.17 and 2.32, melting
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temperatures 800 ° and 708 o) or in an inert gas atmosphere. We succeeded

in preparing Elektron by removing the flame from the crucible each time

we introduced magnesium and subsequently added MgC12 to form a protec-

tive film of MgO.

F. Regelsberger* gives the following indications: "For the melting of

magnesium and of alloys with high magnesium content, iron crucibles are

used with tightly closing iron covers (it is recommended to use U-shaped

vessels for melting light alloys). Clay or graphite crucibles should be

avoided, since the magnesium may combine with the silicon contained in

them, forming magnesium silicide which the metallurgists consider un-

desirable. Furthermore, due to the separation of other silicon salts, a

variation of the metal's structure may occur and a danger of spoiling the

cast object appears".

However, in order to prepare the casting mold, very fine grain sand,

free from clay particles, and permanent molds consisting, for example, of

aluminum brass (62% Cu, 31% Zn, 5% A1, 2-3.25% Fe) are frequently used

in order to achieve rapid cooling or slow hardening if kept warm.

2. When magnesium, zinc and aluminum are melted, the oxides (e. g.,

MgO, ZnO) are always formed. It is interesting that the carbides of mag-

nesium, zinc and aluminum give acetylene, C_H 2, when water is poured

over them; when HC1 (_= 1,12) is poured over them more acetylene and hy-

drogen are evolved. Aluminum carbide gives methane, CH4.

3. By passing over molten zinc and also over an alloy of 60% Zn with

40 % Mg gasoline vapors, which are ignited in a crucible, we succeeded in

preventing the metal from burning, but at high temperatures carbide was

formed. It is better to use hydrogen as protection against burning.

4. In order to prevent overheating of the metal, we prepared crucibles,

enclosed one within the other, and filled the gap between them with molten

zinc; in this way we succeeded in keeping the slightly oxidized metal in a

crucible without cover.

5. By placing a cover over the crucible it was always possible to stop

the spontaneous combustion of the metal, even of magnesium.

Evaporation of metals

i. Experiments on the evaporation of magnesium, zinc and cadmium

have been contemplated but were not yet carried out. According to the in-

dications of Kerl and Stohman good results may be obtained with magne-

sium**.

2. The following information*** is interesting. In order to prepare

zinc oxide, it is heated in retorts to white heat; coming out of the retort

the zinc vapors meet with air heated to 300°C, and burn ZnO.

3. By burning the magnesium contained in an alloy, the other metals

are heated and after evaporation they burn too; this method leads to results

more easily than the previous one.

* Regelsberger. Chemische Technologie der Leichtmetalle, S. 307. 1926.

_o_ Kerl u. Stohman. Enziklop_/d. - Handbush d. Technischen Chemie, B. II, S. 1047-1057.

Partheil.- Lehrbuch d. Chernie, $. 403. 1903.
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Combustion of alloys in the solid state

1. It is well known that a film of magnesium burns readily. If it is

lubricated e. g., by Gargoyle, it can be fed through a stuffing box into a
high pressure chamber and used in a rocket.

There exist lamps for burning magnesium films for signaling at sea and
for fog lanterns. Thus, the film feed can be mechanized.

2. Many other alloys burn well in air; such are, for example, the al-

loysNos. 2, 3, 4 and 5 in Table 2.

It should be noted that by adding to alloys 5 % magnesium or more they

become combustible in many cases. The addition of zinc also increases the

combustibility, although with the addition of copper, tin, andlead, ithardly

changes. On the contrary, the addition of large amounts of aluminum hin-

ders combustion due to the formation of a protective film of A12C) 3.

3. The combustibility in pure oxygen or in heated air will be better than

in cold air due to the considerable heating and evaporation of the metal.

4. By melting together aluminum and a well burning alloy, it is possible

to achieve the burning of aluminum too. This method is applicable also to
other metals.

5. I have tested a perforated cone (a rocket nozzle), in which a film of

magnesium of some alloy was burned, by feeding gases from a bunsen burner
through the perforations from an external steel cone.*

A deposit of 23 % was obtained in the first model and one of 13 % in the

second model. Probably a design of a nozzle without a perforated cone is

possible since the evaporation temperature of magnesium is 2800 ° C and

its combustion temperature in air is 4500 ° C.

Spraying of liquid metal

(The spraying of liquid metal may be performed with an atomizer de-

signed so that the liquid metal, flowing in a pipe, meets on its way a high

velocity gas current which brings about the atomization. The correspond-

ing diameters of the outlet orifices of the sprayer pipes and the flow veloc-

ities of the liquid metal and the gas can be easily calculated.)

Let us use the following notation:

d, and d2, diameters of outlet orifices of pipes feeding oxygen (or air)

and molten metal to place of metal spraying;

hi and h2, excess pressures in mm of water at outlet orifices;

_fl and '/2, specific weights of oxygen (or air) and molten metal;

_ and _, coefficients of head toss due to resistance at outlet orifices

of pipes;

v_ and v2, outflow velocity in orifices of diameters d, and d2 respec-

tively;

V, and V_, volume of oxygen (or air) and liquid metal consumed per
unit time;

G, and G_, corresponding weights, consumed per unit time;

a=G,/G2, weight ratio of oxygen (or air) to liquid metal, sprayed by it.

* For more detailed data on the experiments with this cone see the article: Problema poleta prt pomoshchi
reaktivnykh apparatov (Problems of Flight with the Aid of Jet Propulsion Machinesl. -Editor's note.
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The velocities of the gas and the metal may be expressed by

%----V 2gh----!--'_" (37)11(I-t-h)'

f

I/ gh2 . (38)'o2_ V "h(1 -- _2)'

and since

then,

V, ----_-_%:

V_ _2-T d_'v,:

Gj ,=.h Vl =-_-d_ v,.$,, (39)

_,=_,v,--_ d;,,,_,, (4o)

dividing (39) by (40), we obtain

d_l vlTi

Substituting here ol and v2 from equations (37) and (38), we obtain

or

7_(1-b Ea) A! &171(I 4- 1_2)

a, -V-_ ,'/k.,(] +__ (41)

Next, by substituting the expressions of vl and v2 in (39) and (40) we

find:

x 2 V 2 gh,1! (42)(_=_- d, __ (l+h) '

@,-,_dli_. (43)
V (l+h)

d_ and d2 are therefore immediately found:

d, = V 4fi._L!_ (44)
I y _)omhl'f i "

1/_._. V t+}'---_ (45)d

(Air (for initial experiments) or oxygen should be taken as the atomizing

gas and the metal should be burned immediately as it comes out from the

atomizer. )

1. For the first experiments an alloy consisting of 65 % Sn and 35 % Pb

may be used. In this ease we should be able to obtain homogeneous melt-

ing, since this alloy constitutes approximately an eutectic alloy and is com-

pletely melted at 182 ° C. A different ratio of the metals would give only
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partial melting at a given temperature, which might either lead to obstruc-
tion of atomizers smaller than the outlet orifice of the tube, or cause the

metal with lower melting point to be consumed first, with possible un-

favorable consequences in the combustion of the atomized metal.

In Table 3 the physicochem2cal quantities, characterizing the constituent

elements of the alloy mentioned are listed.

Tin is oxidized on the surface when melted; in heating to white heat it

burns to tin oxide, emitting strong white light.

When lead is melted in open air it gets covered by lead "ash", consist-

ing of a mixture of lead monoxide and dioxide. By continuous melting in

open air, lead may be completely transformed into an oxide.

Tin vessels, covered by thick felt may be used successfully for storing

liquid oxygen. Since at the temperature of liquid oxygen, lead becomes

elastic and acquires the mechanical properties of silver, it could also be

used for this purpose. This refers also to the above-mentioned alloy

(65 % Sn+35 % Pb). By theoretical calculations we find that the amount of

oxygen required for the combustion of this alloy is 20.19 %. If it is burned

in air containing 23.1% of oxygen, 87.3 % of the air is required for complete

Tin

Lead

Material

combustion.

TABLE 3

Atomic

we ight

_ Boiling point,

118.7

207.2
f Calorific

value Combustion

cal/mole reaction

141.3 S n+ 02

50.8 Pb+O

In the experiments, we succeeded in atomizing 65 % Sn+35 % Pb alloy

by cold air and oxygen. Combustion was not achieved, but grains of dia-

meter 0.1-0.3mm shaped like threads and drops were formed. These re-

sults were obtained by microphotography. We did not obtain combustion

due to the cooling of the alloy in the cold air*.

(2. Further, Tsander mentions his experiments on the atomizing of the

60% Zn+40% Mg alloy, and then of pure zinc and of anti-friction metal. All

these experiments had the purpose of establishing the conditions for a satis-

factory atomizer design. They showed the need of heating the air and re-

ducing the path length of the molten metal from the crucible (or from another

vessel) to the atomizer**.

Tsander constructed a specialerucible with direct feeding of the liquid metal

to the atomiz er and with heating Of the air in a copper tube, surrounded by a tin

casing. With this instrument he conducted only preliminary experiments. )

* In Tsanderls manuscript there is a detailed comparison of a rocket using the 65 9t Sn + 35 % Pb alloy with one using

gasoline. Since the final conclusions are in complete agreement with those of section 3 ofthe present article,

this comparison has been omitted. - Editor's note.

** Since modem technology already has at its disposal satisfactory equipment for atomizing metals (for example, the

well-knownShoop apparatus), Tsander's ideas on the possibility of atomization are nowrealizable.

Thn subseque nt burning of the metal is also per fectly feasible. Here one may refer to the aluminum-oxygen

welding burner {see: Novosti Tekhniki, No. 232, item5555, 20November 1932; orTikhortravov. -Raketnaya

Tekhnika, p. 21, ONTI. 1935). This burner worked on aluminum dust. - Editor's note.
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3. Theatomizingof a metalwithair andwithammoniumnitrate, sulfur
or someothermaterialdevelopingsufficientheatis alsoof interest.

4. Furthermore,nietalsmaybeusedaspowdersor _spowdersdis-
tributedin someothermaterial: for example,magnesiumfilings in resin
or in celluloid.

(5. Tsanderalwayspaidmuchattentionto theeconomicalaspectof the
problemandthereforefurther in hismanuscripthegivesa summaryof the
pricesof themetals,whichmaybeusedasrocketfuels. At thepresent
timethis summaryis not interesting,since it was composed on the basis

of sources from 1900-1924 from the book of Regelsberger, Technologie d.
Leichtmetalle. S. 347.)

On the design of high-altitude rockets

(Here Tsander mentions rockets with lateral liquid propellant tanks.

First the liquid propellant is used and then the tanks burn in the main rocket

which is equipped with a meteorograph and a gyroscope*. Further on, he
presents two tables of the calorific values of certain metals and other

compounds for combustion in oxygen or fluorine. A selection from these

tables appears in the present book (see p. 97).

ROCKET ENGINES OPERATING ON METALLIC OR SOLID FUEL IN GENERAL

The design of such an engine should have the purpose of investigating the

application of a solid fuel, mainly metallic and plastic. Due to the impos-

sibility of reaching high altitudes and long ranges by means of liquid fuels

only, it is proposed to construct a rocket of special design, enabling the use

of a larger or smaller part of the rocket itself as fuel. This part should be

made either of a metal or of plastic. As was shown in more detail in my

book, Problem poleta pri pomoshchi reaktivnykh apparatov (Problems of

Flight with the Aid of Jet Propulsion Machines) pp. 43-51 and 71-72, designs in

which almost the entire mass of the jet propulsion machine serves a's fuel are

quite possible. The strength of materials does not restrict us any longer

in these devices, - all depends on the skill of the designer. In my opinion,
rockets which use a great part of their structure as fuel will be the

first to succeed practically in sending vehicles to enormous distances, over

the oceans and up to a complete escape from the Earth.

The importance of the experimental construction of rocket engines of the

above-mentioned type is therefore obvious. The first experimental engine,

should be adapted for mounting on a rocket. Possible fuels are, on one

hand, powders of magnesium, berillium, aluminum, coal, etc. On the other

hand, it is contemplated to melt their alloys, plastics, and, later, part

of the structure in order to increase the rocket's range. In order to prevent
clogging up of the combustion chamber and of the inlet section of the nozzle

* This section is, obviously, a conclusion of Tsander's lecture and referred to the immediate perspectives of

using metallic fuel. As can be seen from the list of points given above which Tsander considered, he had

in mind a stratospheric rocket with a gyroscope for maintaining stability. - Editor's note.
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bythesolid fuel, a certainamountof liquid fuel: gasoline,ethylalcohol,
kerosene,etc., shouldbeused.

As anoxidizerit is proposedto useliquid oxygenor nitrogentetroxide.
It is proposedto usethepowderedfuelpartlyas thermalinsulationfor the
hydrogentanks.

Accordingto theabovedescription,threetanksare required: one-
for liquidoxygenandits surroundingpowderedfuel, thesecond- for the
liquidfuelandthethird - for thelumpedsolid fuel. Thelatter tankshould
beprovidedwith fire-tubes for melting fuel lumps. The burning of the liq-

uid fuel also takes place in the fire-tubes; a combustion chamber, sur-

rounded by a jacket, inside which the melting of the solid fuel takes place,

may be indicated as an alternative; in this case special heating of the solid

fuel tank is not required.

It will probably be possible to feed the liquid fuel and the oxidizer into

the combustion chamber by centrifugal pumps, and the molten metal - by

an injector operated by the vaporized oxidizer. The centrifugal pumps may

be driven either by a wind-turbine or by a special gas turbine or, finally,

by using the nozzle jet to drive the turbine.

For better evaporation of the oxidizer it can be passed around the corn-

bustion chamber. It should be possible to replace the nozzle water cooling

system and the oxidizer water-system heating by a similar one, in which

the liquid fuel circulates instead of water.

The pipes should be provided with valves which will serve to control the

flow or to shut off parts of the engine.

The rear part of the combustion chamber and of the nozzle may have a

jacket designed to suck in external air which increases the reaction of the

jet, acting as an air-breathing rocket engine.
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COMPARISON OF FUEL CONSUMPTION BETWEEN A VEHICLE

USING ATMOSPHERIC OXYGEN AND ONE USING OXYGEN

STORED IN THE ROCKET*

It is possible to conceive a flying apparatus in the form of an airplane,

which is accelerated to an escape velocity in the Earth's atmosphere. At

a flight velocity of 8 kin/see, the centrifugal force which appears in orbital

flight is equal to the Earth's attraction force. Therefore, when flying at

velocities exceeding 8km/sec, the airplane should fly on its back so that

the force on its wings should be directed downward and not upward; other-

wise the apparatus will fly away from the terrestrial atmosphere and it will

be impossible to accelerate it further if its engines use atmospheric oxygen.

These engines may be piston engines, turbines or rockets, and also com-

binations of rockets with other engines in which .the first work as injectors

in steam-boilers. Furthermore, the engines can be used to feed the rocket

with liquid fuel and a certain amount of atmospheric air under pressure,
while the rest of the air can be drawn into the rocket from all sides. If a

sufficient velocity head is then formed in the rocket, it is possible to burn
in the rocket itself the fuel mixture and obtain in addition to the work of the

engines a large amount of work from the pressure and expansion of the

gases burned in the rocket.

An advantage of this method of flight is the low fuel consumption, com-

pared with the case in which the oxygen is stored in the rocket. However,

the weight of the engines and of the propellers, which at high flight veloc-

ities turn out to be large and rather heavy, are a great difficulty.

In combinations of engines with a rocket, in particular if the.latter burns

also solid structural material, we hav_ a flight method which may have

great importance.

Let us use the following notation:

go, gravitational acceleration at Earth's surface;

G,, total weight of device before take-off;

G,, weight of device at end of engine rocket operation, if weight

is determined for acceleration go;

Gt, weight of fuel required for flight (excluding oxygen);

Gox, weight of oxygen required for flight;

x= Gox/G_, weight ratio of oxygen to fuel;

H, calorific value per kg of fuel, in cal;

A, work performed in lifting weight O to given height;

R, Earth's radius.

In this notation, the work required to remove a load G, from the surface

* Thls article wa_ written by Tsander in 1925. - Editor's note.
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of the Earth to infinity will be

Ao=RG,,

and the work required in order to bring a load G, to orbital velocity will be

!
A_,it=TRG,.

If A is expressed in kgm, then

A =,qHGf. 427, (i)

where I1 is the average efficiency of the device, i. e., the ratio of the use-

ful work to the total energy contained in the fuel.

The required weight of fuel is

G= A
f _H.-'_77_--' (ia)

and the weight of oxygen

Gbx= xGf = xA (2)
_N.427 "

Therefore, the total weight of fuel and oxygen is

• _ (1 + x) A
of +Go_ (1 + x_ u_= %_._i ' (3)

If the oxygen is not carried along, we obtain for the total weight of the
device

Oo=Ol+O_=O, (1 + A I '__ ;_;v' (4)

if it is carried along,

--a, 4_#_,'" (5)

Let us determine the ratios of the total weight of the device to its final

weight, i.e., G,/G, and O'o/G, for the case in which the propellants are hydro-

gen and oxygen. Let us assume that we wish to overcome the attraction of the
Earth.

Then

R= 6370.10 a m

and

H=34 000 cal/kg

Gf 2

Substituting these values of R, H and

_o - i + e_7o.!o_
Gj 427.3400011

x in (4) and (5) we obtain

= 1 +0.__439
iI

(4a)
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and

GG.._o=l .j.(| +8)0.4,39 :| _}.3.95 (5a)

If we wish only to orbit the Earth, then, as was shown above, the re-

quired useful work will be

!
A=T-ROr

Cons equently

and

Go__. l + 0.4_...__ (4b)
Gj

0 ._ _.__l +3.95. (5b)
G, 2',1

The ratio of the fuel's weight to the total weight of the device will be in
the first case:

and in the second case

A

-GJ---_I _ G..j_= G,
Go Go A

G-';"Jr 427//,I

(s)

A

Go = Go A 4Z/H_I
O I +l+x

(7)

According to formulas (4)-(7) calculations were done of the ratios of the

initial to the final weight of the device and of the fuel weight to the initial

weight of the device in the cases when oxygen is carried along and when it

is taken from the atmosphere. In the two cases two calculations were

made, one for escape velocity, the other for orbital velocity.

All calculations were performed for various efficiencies of the apparatus.

The results are presented in Table 1.

This table gives a clear idea of the amount of fuel that must be carried

and of the ratio of the initial to the final weight of the device, if the average

efficiency of all the engines, including the rocket, is known. As is seen

from the table, it is possible to orbit the Earth for _ = 0.20, with Gf: Go =

= 0.523 in case I; this is very difficult to accomplish. Case II requires, as

can be seen from the table, an even larger consumption of fuel, since the

exclusive use of hydrogen and oxygen requires an amount of fuel plus oxidi-

zer constituting 90.8 % of the initial weight of the vehicle for orbiting the

Earth if ,] is 0.2.

It is seen from formulas (4) and (6) that case I requires a fuel whose

calorific value H is as great as possible. This may correspond to hydro-

gen. From formulas (5) and (7) it is seen that case II requires a fuel for

which H : (l +x), i.e., the calorific value per kg of mixture, is a maximum.
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Efficiency

"_ Ratio of inltlal

to final weight

u Ratio of fuel

.-'2 weight to ini-

tial weight of

(_ device 0f/00

Ratio of ini-

tim to final

c*"_ weight of de-

vice Go'/G,

"_ Ratio of fuel4

U _ u
oxygen weight

u_ to initial weight
of device

for + 6o:<)!o'_

TABLE I

Overcoming the entire gravitation of Orbiting the Earthr
the Earth AIG 1 = R I A[Gt = RI2

1.0 0.5 0.2 0.1 1.0 0.5 0.2

__ _ j -- _

1.439 1,878 8.19_ 5.39 1 220 1.439 2.098

I

0.305 I 0.467 0.68; 0.814 0.180 0.305 0.523

4.95

i -

0.798 0.8878

I

8.90 ' 20.75 40.5 2,98 4.95 10.89 ]

0.9518 0.9753 0.666

0.1

3.195

0.687

20.75

0.798 0.908 I 0,9518

TABLE 2

Name

Lithium oxlde

Bomn anhydride(amorphous)

Aluminum oxide

Magnesium oxide

Water (gaseous products)

Water (liquid product@

Components

Li2+ 0

B2+O 3

AI2+O 3

Mg÷O

H2+ O

H2+ O

Compound

Li20

B203

A] 203

MgO

H20

H20

Molecular

weight

30

70

102

40

18

18

Calorific value

per kg of

mixture

4710

8900

3 730

3 690

3 240

3 830

There are several mixtures of metals with oxygen, for which H: (l+x)

is larger than for hydrogen with oxygen. Using solid material, i.e., me-

tallic sections of the apparatus which are not required for further flight,

we will be in a position to overcome the gravitation of the Earth by con-

suming, for n= 0.2 (as is seen from Table 1), 95.2% of the initial weight of

the apparatus as fuel.

The final weight of the device will then be approximately 20.8 times

smaller than its initial weight.

Below we give a table of the calorific values of various metals and other

fuels (Table 2), which are distinguished either by a high calorific value per

unit weight of their mixture with oxygen or by the simplicity of their use.

If it will be possible to use ozone instead of oxygen, then the calorific

value is increased by 0.640cal per each gram of it in 1 kg of the compound.
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FLIGHTSTO OTHERPLANETS

!J

Paper One*

As a result of my long standing interest in the mathematical and design

aspects of the investigation of inter-planetary flights, I have performed de-

tailed calculations regarding this problem. My conclusion is that at the

level of present-day technology flights to other planets will become possible,

during the next years.

I have worked out the following principal points:

1. For flight in the upper layers of the atmosphere, and also for landing

on planets which possess an atmosphere, it will be advantageous to use an

airplane as the structure supporting the spaceship in the atmosphere.

Airplanes which are able to perform a glide landing in the case of en-

gine failure are much superior to a parachute which was proposed for

landing back on the Earth by Oberth in his book The Rocket to the Planets.

When using a parachute one is not free to choose the landing place and to

fly further in the case of temporary stoppage of the engine so that it should

be used only for unmanned flights. That part of the rocket which is con-

trolled by a man should be equipped with an airplane. For landing on a

planet which possesses a sufficient atmosphere the use of a rocket, as pro-

posed by K.E. Tsiolkovskii, will also be less advantageous than a glider or

a powered airplane, since a rocket consumes a large amount of propellant

on landing. Even a one-man rocket will cost tens of thousands of rubles,

whereas an airplane landing costs only several tens of rubles, and glide land-

ing costs nothing. The calculations carried eut show clearly the perfect

possibility of a slow safe glide landing on the Earth.

2. In the lower layers of the atmosphere the flight Velocities have to be

low and they can be increased continuously with increasing height over the

Earth's surface as the a_r density decreases.

3. The driving power in the lower layers of the atmosphere should be

supplied by a special high-pressure engine which operates on fuel and liquid

oxygen. The engine should drive propellers which may have either adjust-

able or ordinary blades. In the last case the engine should be so designed

that on the Earth it has a low number of r0tations and as the altitude in-

creases the number of rotations increases too. Instead of the propeller

group we may use a rocket which is capable of flying in the air and supply-

ing its thrust in the flight direction.

By "rocket" we mean a nozzle analogous to turbine nozzles: through its

narrow throat the combustion products proceed into the nozzle under high

pressure; the gases, repelled from the nozzle walls, expand rapidly and

* Published in the Journal "Tekhnika i Zhizn', " No. 13, 1924.
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acquirea highvelocity, equalto 4000-5000m/secin thedirectionof the
nozzle'saxis.

A rocketcapableof flying in air is onewhichsucksintothenozzleex-
ternalatmosphericair. Uponmixingwith thegases,a lowerejectionve-
locity is obtained but the ejected mass and the efficiency are larger than

for an ordinary rocket, whose efficiency at flight velocities up to 400 m/sec

is very small.

4. At flight velocities exceeding 400 m] sec, either a rocket capable of

flying i_l the air or an ordinary pure reactive rocket should be used to supply

the driving power.

5. During the flight of the rocket parts of the supporting surfaces (pro-

pellersj engine and other sections of the airplane) should be drawn into the

rocket and melted in a special chamber; the molten metal should then be

ejected to improve the rocket's performance. For this purpose the airplane

should be of suitable design, equipped with cables and devices to carry out

all the necessary displacements. According to the calculations performed,

the weight of the dismountableairplanewillbe only slightly larger than that

of an ordinary airplane.

6. At velocities close to 8 km/sec, it is advantageous to fly away from

the atmosphere under a small inclination to the horizon, since at this ve-

locity the centrifugal force, appearing as a result of orbiting the Earth, is

equal to the Earth's attractive force, i.e., the vehicle, left to itself, will

not fall back to the Earth and if it is situated already outside the atmosphere

it will orbit the Earth forever like the moon. The air, which served as a

support for the airplane would now only slow down the vehicle; in inter-

planetary space, the airplane is no longer necessary and serves again only

for landing in the atmosphere.

7. When we wish to fly to other planets, velocities of ll-18km/sec must

be attained. In this case it is possible to use a rocket but it will be probably

more advantageous to fly with the aid of mirrors or screens made of thin

sheets. The screens should rotate about their central axis in order to give

them rigidity. The mirrors do not require fuel and in case of need they

may be used as fuel in the rocket. These are the two advantages of the

mirrors; in addition they do not produce large stresses in the material of

the ship and have a smaller weight than that of a rocket together with the

propellant. However, the mirrors can be damaged by meteors more easily than
a rocket.

8. Instead of screens it will very likely be possible to use rings in which

an electric current will flow. Inside the ring there will be iron dust, held

close to the ring plane by the forces of the electric field. The dust specks

should be charged with static electricity so as to maintain a certain distance
from one another.

If sunlight falls on a mirror, screen or dust, it exerts a certain pres-

sure on them. At the immense distances of interplanetary spaces weak

forces give relatively high flight velocities.

9. If we built in interplanetary space huge concave mirrors which will

rotate together with astronomical sensors around the planets, then solar

light, concentrated by the mirrors and directed on the spaceship fly-

ing to another planet, would give velocities exceeding by many times the

space ships.
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10. Onthebasisof all theseconsiderationsit is possibleto constructa
seriesof spaceships.

Accordingto mycalculationsthefollowingresultsmaybeachieved.
Thehugedimensionsof thecarrier rocketcanbeeliminated. Tsiolkov-

skii proposedtousearocketfor interplanetarytrips, butnotin combination
withanairplane. In hisproposalthereactionforceof therocketsupports
the entire weightof the spaceshipandacceleratesit too. Suchrockets
are calledcarrier or lifting rockets. Accordingto my designthe rock-
et is locatedin the airplaneandits reactionforce shouldbe between
113to 117of theship'sweight. It is muchsimpler tobuildsucha rocket
thanTsiolkovskii'shugerocket. In my designthe stressesin the ma-
terial will be much smaller than in the carrier rocket.

Further, using the structural material of the airplane as fuel reduces

the stresses in the spaceship, since it enables partial replacement of

liquid fuel by solid structural material and this increase in the amount

of structural material makes it possible to distribute the acting forces over

larger beam cross sections.

The possibility of consuming 9500kg of a ship's weight of 10,000kg, so

that 500kg remain (the weight of small terrestrial airplanes) appears prac-

tical. This ensures completely the attainment of the immense velocities re-

quired for overcoming the attraction of the Earth. This large fuel consump-

tion eliminates the need of using very high-energy propellants.

The large acceleration produced by the lifting rocket is the reason for the

appearance of a large apparent weight which forces the pilot to lie in a bath

filled with liquid during the acceleration period. In my rocket design this

is eliminated, since its accelerations are much smaller and the period of

accelerated motion can be longer than in the case of a lifting rocket.

Since the engine and the rocket can be stopped and restarted during the

flight, it is very simple to conduct experiments with a spaceship of my

design, gradually increasing the altitude and the flight velocity.

The combination of rocket and airplane, and the use of the airplane's
structural material as fuel in the rocket eliminates the obstacle to in-

terplanetary flights, consisting of the lack of a propellant with suffi-

ciently high energy, mentioned by Ya. I. Perel'man.

In my design no very high-energy propellants are required. The very

heavy carrier rocket is replaced by a rocket which is lighter by a fac-

tor of 10 to 30 than the lifting rocket, mentioned by Perel'man, and

thus, the obstacles to interplanetary flights, also mentioned by him, are
eliminated.
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FLIGHTSTO OTHERPLANETS

Paper Two

Is there anyone who, looking at the sky on a clear spring night and see-

ing the twinkling stars, has not thought of the possibility that the distant

planets may be inhabited by intelligent creatures a thousand years more

culturally advanced than ourselves? What incalculable cultural wealth may

be brought back to Earth through science should man be capable of travel-

ling there, and how cheap is the cost of such a tremendously important

achievement in comparison to the vast amounts that are wasted by human-

ity? A million airplanes weighing 10,000kg each could be built with the

money spent on the last world war. It is very ]ike]y that the first space-

ships, which will carry only one person, will not be heavier than these
airplanes.

In what follows, the author of this article will attempt to acquaint a wide

circle of readers with the mathematical and engineering studies he has con-

ducted for many years in order to clarify alt problems related to space-
ships and space travel.

Till now only the booster rocket, with a thrust exceeding by a factor of

4 to 10 the weight of the entire spaceship, has a scientific basis for space

travel. Such a booster rocket can be compared to the helicopter, i.e., a

device which is driven by an engine with lifting propellers.

A booster rocket requires a tremendous thrust as compared with a rock-

et mounted on an airplane; the dimensions of the latter are therefore

smaller. As a new design this is simpler to build than the booster rocket

and the combination of a rocket with an airplane would enable us to exploit,
for space travel, the immense experimental material accumulated in avia-

tion.

The author proposes, to the best of his knowledge for the first time, to
use for space travel a rocket mounted in an airplane instead of an ordinary

rocket supporting the spaceship. The airplane would be accelerated, still

within the limits of the atmosphere, to the velocity required for orbiting

the Earth like a satellite (approximately 8km/sec). With the aid of such a

rocket it is easy to leave the terrestrial atmosphere and then fly to other

planets.

These rockets Should supply a thrust not larger than the propeller th/_u'st

of an ordinary airplane: They are therefore 10-30 times smaller thah

booster rockets. As to the amount of fuel which should be carried along,
the calculations show that it should constitute from 90-98 % of the entire

weight of the vehicle in order to overcome completely the Earth's attraction,

i.e., in order to attain a velocity of ll.18km/sec. The farther a body

having this velocity goes from Earth, the more it slows down, andwill reach
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zero velocity at infinity, never returning to Earth. This 90-98% is re-

quired if hydrogen and oxygen are used as propellants. For gasoline and

liquid oxygen, the above-mentioned fraction is sufficient only to achieve

orbital velocity.
The use of gasoline and oxygen for the experiments would be desirable.

This, however, gives rise to the following problem. Our present airplanes

may carry only 40-60% of liquid fuel, and 95 % propellant is needed if we

assume a low efficiency of the devices at the beginning. Otherwise we will

run short of fuel and be forced to return to the Earth, not having attained

that minimum velocity of 8 km/sec necessary to equilibrate gravity and orbit

the Earth out of the atmosphere. How are we, therefore, to prevent this

shortage of propellant? In designing the spaceship, I introduced a radical

step, which, to the best of my knowledge, has not yet been proposed by

anyone.
The cost of an airplane is in general insignificant. It is of even less con-

sequence when we are dealing with interplanetary travel and the conquest of

whole planets by the inhabitants of the Earth. Therefore, I propose the

following method. As the fuel is consumed and the weight is reduced, the

airplane wings should be pulled in or folded back, the frame should be pulled

into the fuselage where we set up a melting chamber which can be either

left open or closed and there we melt the retracted sections of the airplane

as well as its engine*. We assume that all parts are, as far as possible,

made of duraluminum or some similar alloy. Certain parts of the engine

should have steel, cast iron or bronze bushes, which, like other high-

melting metals, will remain in a special net in the melting chamber. After

melting, the liquid metal is fed by an injector or by a centrifugal pump into

the rocket and burns there with oxygen together with gasoline or hydrogen.

According to my calculations, the immense heat which is obtained by the

burning of aluminum in oxygen is transferred in great part to the volatile

combustion products of gasoline or hydrogen and only a small fraction of

the heat developed remains in the aluminum oxide. This is a result of the

fact that the specific heat of gases increases strongly with temperature while

the specific heat of solid or liquid bodies (of aluminum oxide) is small. In-

stead of aluminum it is also possible to use some alloy of magnesium, e. g.,

magnalium. At atmospheric pressure, aluminum boils at a temperature of

1800 °, and magnesium at only 1200°C. It is possible that even lower-

melting alloys of sufficient strength will be found. Aluminum and mag-

nesium release more heat than hydrogen per kg of fuel-oxygen mixture:

3730 cals against 3240 cals per kg for the lower calorific value of hydrogen.
Lithium releases 4710cais, i.e., 1.45 times more heat than hydrogen with

oxygen. My calculations in which I assumed that individual particles are

small diameter spheres (having thus minimum surface for a given volume), have

also established: a) the aluminum oxide particles have enough time to transfer

a large part of the heat while still in the rocket and b) the aluminum oxide parti-

cles flying out of the exhaust hardly lag behind the particles of the gaseous com-

bustion products consumed simultaneously in the rocket. It follows therefore

that the efficiency of a rocket using simultaneously materials with solid and gas-

eous combustion products is only slightly lower than if we used materials with

gaseous products only.

* The internal combustion engine with which the airplane is equipped in order to overcome the lower,
denser layers of the atmosphere is meant here. - Editor's note.
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The only objection, therefore, to the use of solid combustion products

is the possibility of the rocket's contamination by the metal oxide. On

one hand, our industrial pipes through which a huge amount of fuel flows

are not cleaned every day and, on the other hand, vibration of the rocket,

the very high particle velocities and the spaceship's acceleration during

flight, force the metal oxide particles to fall from the rocket's internal

walls. Furthermore, it is possible to let the gases flow near the walls

and the aluminum oxide nearer the rocket's axis.

In this way, i. e., by using sections of the airplane's structural mate-

rial, it will be possible, even with low efficiency, to achieve velocities

and altitudes sufficient to get beyond the terrestrial atmosphere and even

to fly to other planets already now, with present day technology. There

is nothing extravagant in this if we remember that larger airplanes of poor

manufacture, intended for a single flight only, were built already during

the First World War, Furthermore, in our case we should take into account

the large amount of heat evolved by aluminum-oxygen combustion, so that

the amount of fuel required will be small.

Taking an initial weight of i0,000 kg for the spaceship and 95 % propellant

(gasoline, oxygen and aluminum), the final weight would be 500 kg, i.e.,

the weight of our small terrestrial airplanes. Suppose we take off from

Earth either in an airplane driven by a rocket capable of operating in the

air, e. g., of the Melo design, or, as in the case I considered, in an air-

plane with a high pressure engine working on liquid oxygen instead of at-

mospheric air. Suppose also that we rise at a certain angle, adjusting the

flight velocity as a function of the altitude so that the air resistance remains

a minimum for a given lift force; the total air resistance will then not be

large. At a certain altitude over the Earth we can stop the engine and start

the rocket inst.ead, dismantling gradually sections of the apparatus so that

finally only the spaceship, weighing 500 kg, will remain.

At the comparatively low velocities at which one has to fly in order to

reduce the resistance up to an altitude of approximately 28 km, a rocket

which does not use external air has a low efficiency. Therefore, up to the

above-mentioned height, it is necessary to fly either by means of a rocket

drawing additional air, or by a propeller engine of special design.

If such an airplane will have a velocity of 30m/sec at the Earth's sur-

face, thenata height of 28 km, according to my calculations, it should fly,

as a result of the decrease in atmospheric density, with a velocity of ap-

proximately 400 m/sec. At such a velocity it is already possible to use a

pure rocket, and when flying higher, to regulate the thrust of the rocket so

that its velocity will increase in accordance with the height and with the

corresponding decrease in atmospheric density. Calculations have shown

that a velocity of iI. 18 km/sec will thus be attained at a height of approxi-

mately 85-90km above the Earth's surface, whereas a velocity of 8km/sec

is already sufficient to fly away from the terrestrial atmosphere and start

circling in the vacuum around the Earth.

In order to return to Earth, it is advantageous to give the remaining

small spaceship the shape of an airplane (second airplane) with lifting sur-

faces.

This combination of rocket and airplane and the use of the airplane's

structural material as fuel, eliminates, by the way, also the obstacle

to interplanetary flights mentioned by Ya. I. Perel'man in his book
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"Mezhplanetnyeputeshestviya"(InterplanetaryTravel). Onpage77(edi-
tion4-5, 1923)hesays: "Themain,perhapseventheonly, obstacleto
theimmediateaccomplishmentof a jet propelledspaceshipis thelackof
a sufficientlypowerfulpropellant. At thepresentstateof technologywe
arenotawareof a sourcewhichcoulddevelopaforcesufficientfor driving
ahugerocket".

In myproposedspaceship,however,no powerfulpropellantis neces-
sarysincethe95%of conventionalpropellantrequiredis obtainedbypulling
into thechamberpartsof theairplaneandusingthemasfuel; furthermore,
I replacedPerel'mansveryheavyrocketbyone10-30timessmaller,

It wouldbedesirableto conductsuitableexperimentswithseparatesec-
tionsof themechanismof sucha spaceship.In particular, institutesman-
ufacturingliquidhydrogencouldconductexperimentswithsmallrockets
workingonhydrogenandoxygenandalsoonlight metals, i. e., aluminum
or magnesium,asdescribedabove. Suchexperimentscouldleadto much
progress.

In addition,experimentsontheuseof alight-weightmeltingchamber
for light metalsareneeded.Theproblemof dismantlingtheairplaneand
theruddershasbeenalreadysolvedin principlebyaviationtechnologyand
thereexistnowadaysairplaneswhichpull in theframeandthewings. Due
to theuseof hingedconnections,gearsandmechanismsfor pullingin the
parts, theincreasein thestructure'sweight,accordingto mycalculations,
is small sincetherequiredforcesandmovementsaresmall. Further-
more, it shouldbenotedthatby increasingtheamountof solidcombustion
products,theamountof liquidfuel is reducedandat thesametimethepro-
portionin whichmagnesiumor someothermetalalloy is addedto thegas-
eouscombustionproductsis alsoreduced.

Nowadays,airplanesweighingmuchmorethan10,000kgarealready
built. Theycanbecontrolledby startingandshuttingoff auxiliaryengines
of simpleconstructionwhichcansubsequentlyserveasfuel. It follows
therefore,thatif weuseaspaceshipof30,000kginitialweight,whichreduces,
after leavingtheEarth's atmosphere,to 500kg,thentheefficiencyof all
theenginescouldbemuchlower thanin thecaseof aninitial weightof
10,000kg;therequiredfinal velocitywouldneverthelesshavebeenattained.

If wemountontheairplanelowerpowerenginesandsmaller rockets,
theflight will bemoregentlyslopingandtheworkneededto overcomethe
air resistancewill increaseascomparedwith theclimbingandacceleration
work. In this case,therocketshouldbestartedearlier, whenthevelocity
of thevehicle,andconsequently,theefficiencyof therocket,are still low.
In returnwehavethebig advantagethatthestressesin thematerialof the
engineswill besmaller thanin largeenginesandrockets. Thethrustof the
enginescanbereducedto thatof ourordinaryairplanepropellers. In these
conditionsflights tootherplanetswill besafeandwill heeasilyaccom-
plishedButtheinitial weightwill bevery likely somewhathigherthan
10,000kg.

Flightbymeansof a rocketis onlyadvantageousupto avelocityof
8km/sec,i.e., up to thatvelocityat whichit is possibleto orbit theEarth,
stoptheoperationof therocketandrest asona naturalstation. Thereis
nodangerof fallingbackto theEarth, sincethecentrifugalforceappearing
whenorbitingis equaltotheattractionforceof theEarth. If wewantto fly
to otherplanets,however,a velocitylarger thanii.18 kin/seeis required.
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To reach Mars, we need according to calculations, at least 2.7km]sec

more, so that altogether y11.182+2-7 _--ll.5km]sec is required. For the

closest planet - Venus - an additional velocity of 2.3 km]sec is required

or altogether ll.4km]sec. To reach other planets a Stil! greater velocity

is required.
Under these conditions, the rocket consumes unnecessarily huge amounts

of propellant in each flight. Even if it operates on hydrogen and oxygen, we

obtain the following figures: if the weight of the vehicle on Earth was

10,000kg, it will, due to propellant consumption, weigh about 1000kg when

it reaches avelocity of 8km]sec, and only 500kgat ll.18km]sec. For a

further increase in the velocity the weight is reduced in geometrical pro-

gression.
If, on the other hand, we calculate the weight of an aluminum mirror of

100,000m 2 area and 0.001 mm thickness which could supply a spaceship of

500 kg weight with a sufficient light force (even if the direction of this force

is unfavorable), we find that for flight, for example, to Mars, the weight

of this mirror will be approximately 300kg. In the mirror's design it is

assumed that it has a central axis and thin wires which maintain its form

and transfer the slow acceleration of the axis' rotation to the umbrella it-

self. The above-mentioned thickness of the aluminum sheet has a linear

tearing strength of 1.66 kg per cm and can withstand a rather large centri-

fugal force. Since the light pressure on such a mirror is not larger than

46 g]m 2, the entire mirror will maintain its form. There exist, for meas-

uring light pressure, aluminum sheets whose thickness is only 0.0004 mm

(see the article edited by Professor Lazarev in the journal "Uspekhi

Fizicheskikh Nauk", Vol. I, No. 2, p. 144. 1918). The thickness at which

silver sheets start passing light is still smaller (see the article in the

journal "Annalen der Physik", No. 14, pp. 763-790. 1915, about experiments

on the refraction index of thin metallic layers). Edison already prepared

nickel sheets of 0.001 mm thickness and 1600mx 2 m area (see Tsiolkovskii,

Gondola metallicheskogo dirizhablya, (The Gondola of the Metallic Dirigible)

p. 24). Had Edison been asked to prepare from these sheets the above-

mentioned type of mirror for a spaceship, it is very likely that he would

have solved this problem easily*.

If the mirrors are made larger, the duration of the flight is shortened.

In addition, they may be used for many flights, whereas the expensive pro-

pellant of a rocket is consumed in one flight. Further, by means of still

larger mirrors in permanent orbits around the planets and directed by

telescopes, it should be possible to concentrate the solar light and direct
it to a mirror which drives a spaceship to another planet. Flight time will

then be much shorter than it is possible to achieve with rockets since their

weight increases in geometrical progression when the velocity increases in

arithmetic progression, while the mirror's weight increases only propor-

tionally to the square of the vehicle's velocity. To attain a velocity of

100 km]sec one needs a mirror 100 times larger than that required to attain

10km]sec (the same path length in both cases), and the initial weight of a

rocket has to be 37,000million times larger than that required to attain

10km]sec.

We arrive at the conclusion that a rocket with its huge propellant con-

sumption and large thrust should be employed only to get out of the

* Goldsmiths hammer gold for plating to a thickness of 0.0001 ram. - Editor's note,
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terrestrial atmosphereandto accelerateupto 8km/sec,andeventually
onlyfor rapidvariationsof its trajectoryto avoidmeteoriccurrents. In
combinationwithanairplane,therocketproducesaccelerationalreadyin
thelowerlayersof theEarth'satmospherestartingfrom smallvelocities,
and,asthoughslidingslantwiseupwardsthroughtheair it reachesthere-
quiredvelocityalreadyin its upperlayers. In interplanetaryspacewith
its hugedistancesandthepossibilityof applyingsmall forces, it is much
better to uselight pressureor transmissionof light energyto distancesby
meansof very thinmirrors; theseshouldrotatein orderto gainrigidity
as do, for example,theflexiblepropellersof dirigiblesof the Parseval

system.
As regards the use of thin mirrors, Perel'man is mistaken when, in his

book "Mezhplanetnye puteshestviya" (Interplanetary Travel), he denies the

possibility of using them for interplanetary travel. It should be stressed
that mirrors cannot be used to escape from Earth (in the case considered

above, a light force of 500kgwould be needed for this, corresponding to a

mirror area of about 1000kin2, where lm 2weighs ling). Mirrors are per-

fectly applicable for flights in interplanetary space itself, however, if the

trajectory of the spaceship does not intersect a planet or its atmosphere

(1 m 2 should then weigh 10g, which is perfectly attainable in practice).
It is also worthwhile considering an airplane, with all its parts subject

to compression or bending, with hollow beams manufactured from pipes

containing gaseous or liquid propellant under high pressure. If these pipes

are fitted with valves for discharging the propellant at their ends, then they

can be compression loaded to half the stress admissible for wires, and

therefore, they will be much lighter than legs and longerons of ordinary

structures. If the beams are filled with liquid methane, ethane, methyl*

or some similar fuel, which does not have such a low boiling temperature

as liquid hydrogen, there is another possible advantage: by lowering the

temperature the strength of the materials increases considerably (the brit-

tleness, however, is also increased). If the temperature is suitably low-

ered so that the pipes become considerably stronger but not too brittle, it

will be possible to use very light ones. This would allow the amount of

liquid fuel to increase, and would make for economy in solid structural

material.

The use of a rocket drawing in air for combustion, should also be in-

vestigated. If it is mounted on an airplane, the flight up to a speed of

8km/see will take place in the Earth's atmosphere, and therefore at least

part of the oxygen for combustion will be taken from the atmosphere. In

this way a rocket containing only 60 %, or slightly more, fuel, might reach

a velocity of 8km]sec. Then it will be possible to use only a small amount
of metal for combustion, leaving the remaining parts of the airplane for

emergencies.

Some of our proposals have already been realized: airplanes with fold-

ing frames and wings are already being manufactured; airplanes are being
built of duraluminum; there are airships which are much larger than those

required for a spaceship; a rocket calSable of flying in air has been pro-

duced; liquid oxygen is taken along for high-altitude flights and was used

* [Methyl-alcohol is probably meant.]
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in an automobile engine in the Paris Exhibition already in 1900. We have

approached so very close to the possibility of flight beyond the terrestrial

atmosphere, that for the type of spaceship proposed, only some experi-

ments and a comparatively small expenditure are required to realize flight

to other planets.

The main experiments should be conducted in the use of molten metals

as rocket fuel, on the construction of the chamber for melting the metal,

and also on finding the most convenient design for dismantling the airplane

and feeding its sections to the melting chamber. Further, it is possible to

construct, for studying air resistance and the heating of airplane sections

at low pressures and very high velocities, a wind tunnel using two cones

joined at their broad ends, and a ventilator. It is essential that all scien-

tists and engineers interested in this problem should study the design prob-

lems and conduct as many experiments as possible in this direction; this

could push forward an extremely interesting field of science and technology,

most promising for the future.

In conclusion, the author considers it his duty to say that in his subse-

quent works he will present calculations confirming the assumptions made

in the present paper.
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DESCRIPTION OF TSANDER'S SPACESHIP't'

High-altitude rocket designs proposed till now have the following draw-
backs:

1. The rocket's huge size increases the explosion danger since fuel and

oxidizer constitute a great fraction of the entire rocketWs weight.

2. The huge amount of fuel needed for landing on Earth with the aid of a

reaction force increases the weight many times and makes the flight con-
siderably more expensive.

3. Dynamical support of the rocket by the gases ejected may lead, even

when usinga parachute, to a catastrophe in the case of accidental rocket
failure.

4. When landing in the atmosphere by means of a parachute, or by

operating the rocket, or by both methods together, one cannot Choose

the landing place freely and the consumption of an additional amount of fuel

is required.

5. To attain cosmic velocities one must use ,tremendous acceleratioris

which have a negative physiological effect on man's organism.

6. Finally, the need to have alow GflGo ratio, whe,re Gf is the struc-
ture's weight and Go is the initia] weight, makes all the proposals imprac-

tical from structural considerations.

In my design, the rocket is coupled structurally to two airplanes: a

large one for take-off, and a second, much smaller one, for landing. At

low altitudes the rocket is driven by a special kind of engine, since nor-

mally a rocket has low efficiency at low velocities.

Sections of the large airp]ane's structure are used as additional fuel

together with the liquid fuel, since the latter is not sufficient for reaching

cosmic velocities. It is proposed, therefore, to build the airplane of dura-

luminum, Elektron or some other similar alloy.

The proposed rocket (Figur.e 1} consists of a body, externally similar

to a projectile. The wings of a large folding airplane with retractable

frame and special kinds of engine driven propellers are attached to the body.

The large airplane's rudders are attached at the back of the body and they,

as well as the wings and the propellers, can be pulled into the body. Inside

the body there is a small airplane with rudders, frame, propeller and en-

gine. In addition it contains propellant tanks, a chamber for melting the

sections of the large airplane after pulling them in, and a rocket engine

operating on liquid propellant and metal. The combustion chamber is lo-

cated under the melting chamber. The liquid propellant coming out of the

* First published in the Journal"Raketnaya Tekhnika", No. 5. 1937. In the collection of Tsandcr_s articles

(Oborongiz, pp. 24-29, 1947) this paper was published tinder the name "Kons_ruktsi,_a dalcko letayushchei

rakety" (Design of a Long-Range Rocket}.
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tanks first cools the combustion chamber, is then injected into it and burns

to gases which melt the metal and then proceed to the rocket's throat. The

molten metal proceeds through a special pipe to the combustion chamber

either by an injector or by a special pump, being heated in that part of the

pipe entering into the combustion chamber. There the liquid metal is

sprayed, partly evaporated and mixed with oxygen, and burned in the

chamber. The combustion of a metal with high calorific value increases

the temperature of the gaseous products and therefore increases consider-

ably the rocket's efficiency. Sections of the airplane (propellers, frame

rudders, etc.,) are pulled into the body through openings in the vertical

lateral protrusions of the body.

_ Figure l
'_ "_ Figure 2

"Tt

Figure 3

.-"r"='T_. j-
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x___
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Spaceship of F.A. Tsander -

technological engineer

FIGURE 1. Tsander's spaceship(project)

If the quantity of fuel required for attaining cosmic velocities is very

large, the fuel tanks and the engine* can also be melted. The melting

chamber must then be provided with a special grid to prevent high-melting

materials from getting into the discharge pipe. Airplanes of various types

can be used and it is also possible to use the rocket's body as a supporting

surface.

The proposed rocket climbs as an ordinary airplane. A special high-

pressure engine using liquid oxygen, enables the airplane to climb to an

altitude of about 25-30km over the Earth's surface.

With decreasing air density, the flight velocity should be increased in

such away that the wings' angle of attack, required to support the airplane

* The author refers here to the large airpl:me's engine which drives its propellers. -Editor's note.
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at a given altitude, does not vary strongly. At an altitude of about 28km

over the surface of the Earth, a velocity of 350-450m/see is attained. Up

to this altitude, where the rocket should be started, the engine's exhaust

gases may be let through it to increase thrust. The airplane engine should

be stopped when starting the rocket (or slightly later), since the propellers

cannot stand too high peripheral velocities; at lower peripheral velocities

they will have a low efficiency.

The frame is pulled into the melting chamber, melted, and then used as

fuel for the rocket. The latter ascends higher and higher accelerating dur-

ing the flight, while with decrease of the rocket's weight, the wings are

pulled in. The two extreme external sections of the wings are symmetri-

cally pulled in first, followed after some time by the second section, then

the third one, and so on.

The sections may be retracted in various ways, e.g. as in shortening a

telescope; this is performed easily in monoplanes. The external sections

may be pulled into the melting chamber through all the remaining sections

of the wings and there is no particular need to strip off the wings. The

large airplane's rudders are next pulled in and melted. The engine and its

tanks are also i_trodueed into the melting chamber and the length of the

ship's body is shortened. Finally we melt the pulling in mechanisms them-

selves.

Towards the end of the acceleration period, when the ship reaches the

velocities required to fly beyond the limits of the terrestrial atmosphere,

to orbit the Earth or even to fly to other planets, it consists of a small air-

plane having a shortened body with wings, rudders, a melting chamber, a

propeller, an engine, a frame and the necessary internal equipment.

To move in space, starting with a velocity of 8km/sec (required for or-

biting the Earth), it is possible to use instead of a rocket special low-weight,

large area mirrors which change the flight veloefty and its direction by the

pressure of light falling on them*.

In order to land on the Earth or on a planet possessing an atmosphere,

the flight in the atmosphere has to be horizontal. In order to maintain a

constant altitude in the atmosphere at velocities larger than 8km/see, the

airplane should fly on its back so that a negative lift towards the Earth is

produced. At velocities lower than 8kin/see it is possible to fly in the

usual position, describing a curve for landing in the desired place; a small

engine with propellers may help.

The main advantages of the design proposed here, as compared with

previous proposals, are the following factors of technical and economical

nature (not taking into consideration the suggestion to use metallic fuel):

I. The use of a small winged airplane enables glide landing on the Earth

and on planets possessing an atmosphere. This reduces the spaceship's

total weight by a factor of 15 to 20 in comparison to one using rocket thrust

for landing (assuming the same landing weight in both cases).

2. The use of an airplane for take-off and landing on the Earth or on a

planet with an atmosphere guarantees the safety of the passengers to a

larger extent than the use of parachutes and lifting rockets. In case of ac-

cidental engine failure during take-off, it is possible to pass to safe glide

landing and to restart the engine. With a parachuted rocket it will be rather

* See Tsander's paper "The Use of Light-Pressure for Flight in Interplanetary Space", on pp, 303-321 of

this book. - Fxtitor's note,
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difficult to pull in the supporting parachute and restart the engine. In pre-

viously proposed designs, a failure of tile rocket's engine would force a

landing on Earth, and failure immediately after takc-off or even at high

velocities slightly lower than 8 km/sec, is very likely to be lethal to the

passengers. If the failure occurs immediately after take-off, the pare-

chute has no time to open, and ina high velocity descent the parachute may easily

tear off. This clanger is eliminated in my proposed combination of airplane

and rocket. Instead of being supported by the exhaust gases, the rocket is

supported in my scheme by the airplane's wings. At any moment, the roclc-

et rests safely on the airplane; this is not the ease in the booster rocket

with parachute. The high development of aviation technology and the ad-

vanced stage of airplane design, will enable us to overcome difficulties

which might be encountered in flight.

3. For returning to Earth we can use the huge amount of kinetic energy

acquired by the rocket in the ascent. With this store of energy for a glide

landing with a small airplane, we may circle half the globe and land at any

place.

4. The required rocket thrust in my design is equal to only one sixth to one

third of the whole ship's weight. The thrust required with booster rockets

is equal to 4 to 10 times the ship's initial weight.
5. Due to the smaller apparent gravity, the pilot may control the rock-

et freely, while in booster rockets he will be subjected to the harmful effect

of large accelerations during the initial period. Furthermore, these accel-

erations hamper the observation of the machine's operation.

6. Since the rocket proposed here is 10 to 60 times smaller than the

corresponding booster rocket, the servicing is much simpler. The danger to

the passengers in the event of damage or explosion of a small rocket is

smaller than in the explosion of a large rocket.

7. It is rather simple to conduct flight experiments using a ship of the

proposed design since one can stop and start the rocket's engine every

minute.

I have also solved the problems of take-off and landing of long-range

rockets of my system.

This rocket design may serve, in addition to interplanetary travel, also

for express flights transporiingloads and passengers on Earth, in the at-

mosphere's upper layers, and above.
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FLIGHTS TO OTHER PLANETS

(The theory of interplanetary travel)

The present paper, written by Tsander in 1924-1925", is indeed abasis

for the calculation of any cosmic flight. The paper consists of nine more

or less connected sections devoted to a series of problems which cosmo-

nauts will encounter when choosing flight trajectories to planets.

Tsander investigates in detail the motion of a spaceship in the gravita-

tional field of the Sun, and he gives a method for determining the magnitude and

direction of the additional velocity which should be given to a spaceship

moving together with the departure planet along its orbit in order that the

ship reaches the destination planet with minimum propellant consumption.

He investigates how the planets' gravitational fields modify the flight tra-

jectory and change thereby the spaceship's kinetic energy, producingaccel-
eration or deceleration. At the same time the author investigates the prob-

lem of correcting the flight trajectory when approaching the destination

planet. In this work Tsander shows the influence of the moment of depar-

ture to another planet on the magnitude of the additional velocity and on the

flight duration and gives also a very detailed calculation of a series of pos-

sible flight trajectories to Mars.

Editor

1. DETERMINATION OF AN INTERPLANETARY FLIGHT TRAJECTORY AND OF THE

MAGNITUDE OF THE ADDITIONAL VELOCITIES REQUIRED FOR ITS REALIZATION

The paths which are traversed by a spaceship in flying to other planets

may be divided into a number of domains, which are not too sharply out-

lined.

The first domain extends from the Earth's surface to the terres-

trial atmosphere's limits.

When the airplane ascends in the atmosphere, two forces act on it: lift

and drag. In the atmosphere's lower layers, when the velocity is still

small, it is possible to use either propeller engine of special design or a

rocket with small exhaust velocity for propulsion. In the higher layers of

* These dates (1924-1925) were given in Tsander's typewritten article. In his stenographical records of

1922 there are also formulas referring to this paper. The exact time at which the present paper was com-

piled will be established after deciphering the shorthand notes.

The paper was prepared for print by V.I. Sevast'yanov. - Editor's note.
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the atmosphere a rocket with a high exhaust velocity may be used since the

low air resistance allows high flight velocities, at which the efficiency

of such a rocket is already sufficient, to develop.

For a direct take-off from Earth by means of a rocket it is possible to

use a rocket with high exhaust velocity. This is advantageous, as shown by

Tsiolkovskii, if the acceleration is several times higher than the gravita-

tional acceleration.

The second domain extends from the atmosphere's upper layers

at about 70-100km over the Earth's surface, to the point where the Earth's

sphere of attraction ends and that of the Sun and the Moon begins. The

boundary of this sphere can be indicated only approximately.

The aerodynamic forces can be neglected in this domain but a centri-

fugal force appears when flying in a trajectory following the Earth's cur-

vature. At velocities of 5-6km/sec and more this force plays a decisive

role; it gives an apparent relative lifting force, helping flight in inter-

planetary space. Up to velocities of 8km/sec a rocket is needed for accel-

eration since there is still danger of falling back on the Earth. For a ve-

locity of 8km/sec in horizontal flight, the Earth's attraction is equal to the

centrifugal force and the spaceship describes a circle around the Earth's

center.

For a further velocity increase, the spaceship's trajectory may be cho-

sen so that it will not intersect the Earth's atmosphere. Here one can use

methods of accelerating the interplanetary flight essentially different from

those used for take-off from Earth. First, it is possible to use the pres-

sure of light or of other rays*, which give only negligible accelerations;

however, acting for a long time, these may accelerate the spaceship to con-

siderable velocities. Second, it is possible to unfold in interplanetary space

huge concave rotating mirrors which collect the solar rays and send out

almost parallel beams to the mirrors connected to the spaceships. After

the action of the rocket engine or of the rays is stopped, the trajectory will

be an ellipse, a parabola, or a hyperbola, one of whose foci is situated at

the Earth's center. If the velocity is increased above a certain limit, the

ship, getting further from the Earth, falls into the next domain (if it is not

upheld by the rocket engine's thrust, which in this case should be directed

towards the Earth).

The third domain differs essentially from the second one since

here the attraction of three celestial bodies: the Earth, the Sun and the

Moon acts on the spaceship. The trajectory can be modified by the same

methods as in the second domain. The ship, left to itself, describes a

complicated curve**.

The fourth domain is the one in which the attraction of the Sun pre-

dominates. In its extension in space this domain exceeds all the others and

extends over the entire solar system with the exclusion of the zones of in-

fluence of the planets, of their satellites, and also of the places occupied by

comets or meteor streams. Modification of the flight trajectory can be in-

troduced by the same methods as in the second and third domains, but in

this domain the trajectory of a ship left to itself (i. e., if the rocket engine

is not operating or the ship is not subjected to radiation pressure) will be

* A separate article of Tsander's is devotedto this problem (see pp. 303-321). - Editor's note.

** These curves have been partly studied during the past 12 years by StriSrngren in Copenhagen using mechani-

cal integration.
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an ellipse, a parabola or a hyperbola with a focus at the center of the Sun.

The first three domains (if there is no atmosphere - the second and third

only) surround each celestial body.

Motion of spaceship in the zone of action of the Sun's

gravitational field

To determine the time, path, and the flight velocity, we shall concen-

trate on a flight to another planet and examine the phenomena which take

place in the fourth domain since the flight through this domain takes the

longest time. In the first three domains it will be simple to obtain the di-

rection and velocity of flight required so that at the moment of leaving the

third domain and entering the fourth, we are sure that the destination planet

will be reached by the desired path. If the trajectories are determined

assuming the fourth domain occupies the whole solar system, the sections

lying in the first three domains should be replaced by curves; for these a

special calculation is made.

For simplicity, we shall assume that the Earth and tile destination planet

move in circles having the center of the Sun as common center. It is thus

possible in many cases to obtain average values for the flight range, the

additional velocity and the flight duration.

Various considerations will be important when choosing a flight tra-

jectory. Let us first consider a flight by means of a rocket which gives

the necessary initial velocity in the immediate neighborhood of the Earth.

We require the following:

a) To minimize the amount of propellant consumed, i.e., the additional

velocity imparted by the rocket*.

b) To shorten the flight time in order to reduce the danger of meeting

meteors, and generally to shorten the flight duration.

c) To shorten the trajectory's length, thus also reducing the danger of

meeting meteors.

d) In addition to individual sporadic meteors, the spaceship may meet

on its way whole swarms of meteors which are as yet unknown to us since

they do not cross the Earth's orbit. In such a case it would be necessary

to avoid as far as possible the whole swarm of meteors. Another possibility

is to irradiate the meteors by low velocity cathode rays. If the spaceship

itself is placed in an electrically charged sphere, the meteors charged by

the rays (electrons) will be deflected by the electric forces of the ship with-

out reaching it. This problem is examined in more detail below (seep. 365).

It will also be possible to protect the spaceship against sporadic meteors.

This can be done by using sufficiently tough material for the external walls,

by building separate compartments with automatically operating devices

which close the passages between them in case of air pressure drop, and

also by building moving internal walls. In each individual case it is neces-

sary to determine the flight trajectory in such a way that the danger of

meeting meteors will be as small as possible, Using data on the number of

"falling stars" observed, I have found that a spaceship encounters on the

* The carrier rocket is meant here. - Editor's note.
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average(unlessit meetsa meteorstream)approximatelyonemeteorevery
10yearsof anaverageweightof 6grams.

e) Inaccurateinjectionof a spaceshipintoorbit mayleadeitherto es-

cape from the solar system or to falling into a zone near the Sun due to

trajectory changes caused by the destination planet. If the spaceship will

get to the intersection point of the flight path with the planet's orbit later

than the latter, its trajectory will be deflected in a counter-clockwise di-

rection. If it arrives at this point earlier than the planet, the deflection

will be in the opposite direction. I investigated the magnitude of the de-

flection by various planets and will discuss this below.

In choosing a flight trajectory, it is always necessary to find whether

a given planet is in a position to deflect the flight trajectory so much that

one of the above-mentioned cases will take place. Such trajectories should

be avoided as far as possible as it will be difficult to catch up with a vehicle

having already flown far from the Sun and one may not succeed in rescuing

a vehicle flying towards the Sun.

A natural trajectory seems one in which the aphelion (the point of the

trajectory furthest from the Sun) is not situated further than required, i.e.,

making the spaceship's orbit tangent to the orbit of the destination planet.

Calculations show, however, that this is advantageous only close to the

minimum possible additional velocity.

f) The trajectory in the form of an ellipse, a parabola, or a hyperbola

is convenient since all the velocity required for attaining a given planet is

given at the beginning of the flight. However, such a flight trajectory will

not be the shortest for a given fuel consumption: it requires also a longer

flight time than the optimum trajectory. The optimum trajectory can be

determined by variational calculus. It is then necessary, however, to as-

sume that the engine works during the entire flight time. In this case

damage to the rocket engine (caused for example by meteor piercing) may

prevent the spaceship from reaching the destination planet.

If we use as driving force light pressure, which produces only extremely

small accelerations, the choice of the optimum trajectory (from the point

of view of flight duration) is of paramount importance.

Turning to the calculation of flight trajectories of spaceships from one

planet to another or in interplanetary space in general, let us first consider

trajectories having the destination planet at the aphelion of the elliptical

flight trajectory, The formulas will have then a more general value. In

the general case, the velocities for reaching a given aphelion, and their

directions, are not changed, but the planet will be reached before or after

passing through the aphelion.

Let us introduce the following notation (Figure I):

r0 and r_, perihelion and aphelion radii of flight trajectory;

r,, radius of departure planet's (Earth) orbit;

a, flight trajectory semimajor axis;

b, flight trajectory semiminor axis;

e, flight trajectory linear eccentricity;

Y., flight trajectory relative eccentricity;

V, absolute flight velocity at take-off moment;

V,. V2, orbital velocities of departure and destination planets;

V,, relative velocity of spaceship with respect to Earth at take-off

moment; the spaceship should possess this additional velocity

after leaving the Earth's sphere of attraction;
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_J

_j

Tj

Th "C2_

angle between V and V, at moment of take-off from Earth's orbit;

angle between V, and V, at moment of take-off from the Earth's

orbit;

angle between_ellipse major axis, measured _ro_ perihelion, and

radius-vector at moment of take-off from Earth (spaceship's true

anomaly);

angle between major axis and normal to ellipse at moment of take-

off from Earth;

spaceship's semirotation period around Sun;

semirotation periods of departure and destination planets in

cireles of radii r, and r2;

B _p

FIGURE 1

m, spaceship's mass;

M, mass of Sun;

k, Newton's gravitational constant;

K, force of attraction between Sun and spaceship;

p =rJa; "I=r2/r_;

xo=ro/r_; u= V_/V_ ;

Vp, V.. spaceship's velocities at perihelion and aphelion of flight tra-

jectory;

l, time required for spaceship's flight from trajeetory's perihelion

to point of intersection with Earth's orbit;

/s, time required to fly to another planet;

E, spaceship's eccentric anomaly.

For uniform motion of the planets in circular orbits (using the above

notation), we have:

_l =_ -rl ; ( 1 )
Vi

_r2 ( 2 )
v2

and, according to Kepler's third law:

(,, ?=(,,
•E2/ \r_/

(3)
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Hence

V_ rl

V21_ r2 "

We may write, in analogy to expression (3),

For an ellipse we have

(4)

a+e=r_, (6)

b-_Vr_(2a--r=). (8)

From the law of areas, according to which the radius-vector describes

equal areas in equal time intervals, we find

ab

rlVcos_= _ , (O)

and from AAEF (see Figure I) we obtain

Vcos _=V,+V, cos _, (i0)

V____Lz__ V
sial3 sln_ (ii)

Eliminating V from these two equations we find

and

V= sin _ ctg _ = V, + V: cos

V,: v, ___ (12)
sin _ctg_ --cos_ sin(E--p)

Substituting the expression of V cos_ from (10) in (9) and introducing

or

for b and T in (9) their expressions found from (8), (5) and (1), we find:

or

ab

r,(V,+ v, cos _)=.--7-=

.._.,_a_r_ _ ViVrlr2(2a--r _)

_1a3/2 ]/r_ ,

,). (13)
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By eliminating V, from (12) and (13), we obtain a relation between

angles _ and _:

( ) ,,4,tg_=tg_ I + ,/r2l`2.-_-_-.,_ "

It is then possible to derive the following formula from the basic prop-

erties of the ellipse:

ig}=_/y=a2-(a--r,)2
(l - y,') ,,

(15)

or, using (7),

and

tg [_= ¢ (r2--rl) (r2 "{"rl --2a)r2(2a_ r=) (16)

cos [3= / r2 (2a -- r2) . (17)r=(2= -- r3

From equations (14) and (16) we have

and, therefore

"Vq'r2 --r I) (r_ .4- r I -- 2a)

tg_----- ¢" _-- V'r'_ '

V" r2 (2a-- rO --

cos t = V-a.r, - d-2 l/.2r,, l`2.- _)

(18)

(19)

Upon substituting (19) in equation (13) we finally obtain

By substituting cos_ from (17) and V, cosg from (13) in expression (10)
we obtain

V, l//'2 - r-A-' (21)V---
a: "F

Next, we are interested in the angle 0 (see Figure 1),

spaceship's true anomaly at the start.

From the equation of the ellipse in polar coordinates

i.e.. in the

a--_e
r,= 1+ _cos _ ' (22)

and using expression (7) we obtain

.(2r2-n)-

rl (r2 -- =)
(23)
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Let us return to the additional velocity V, which is determined by (20).

For given radii r_ and r_, we have here only one independent variable - a.

Let us find the condition for the minimum additional velocity V, by finding

the minimum of

v_

 24>
V_ a _-- r I

u becomes a minimum, if d_u
da = O;

or

_,, I dv,_-=-= 2v, ,
da

d V, _ V_ du

da 2V. da

da
Consequently. if _a = O. we have also dV, : O.da

A special investigation is required only in the case when V, = O. In this

case the spaceship will, obviously, remain in Earth's orbit, i. e., a--r_ and

r2ffir,, as can be easily shown by substituting these values in equation (20).

We can, therefore, omit the case V, = 0.

If V, _ 0, we obtain by differentiating equation {24) with respect to a:

d_u_u= r..AL- rl//'-_-_ r2
da a2

,(r r. ).
From this equation we find that when a_, duma = 0 and, consequently,

dV,/da ; O.

From equation (b), however, it follows that a<r2 since e>O, i.e., the

case a_ drops out for finite r_.

We are left therefore with the equation

rl -- r_r _ rz _ 0

a
or

a ---- rz (26)

2 __(L_2 _'

By substituting in equation {20) we find:

v=v,l/_',+_',(',,, ,,, -ft.,
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which is always an imaginary quantity.

It follows therefore that in the entire domain considered, du/da, and

therefore also ,fV,/da, do not change sign, i.e., whtm a increases V, either

increases or decreases monotonically. Let us show that the latter happens.

Since the radius-vector r0 at the perihelion is a minimum, re is smaller

than r_. In the limit for 0 =0, we obtain ro .... _r_, and in the general case

to=a--e, (27)

and the smallest value of & is r0m_--0.

From equations (27) and (6) we have

which gives for ro_.._=rj

and for ro,_j, = 0

ro+ra=2a; a= ro+rz , (28)
2

a=,,= rl + r............_2; (29)
2

r2

am,a = -7" ( 30)

Then for the first case (r0m.=r0 we obtain, substituting ama_ from ex-

pression (29) in equation (25) and using the notation

1---- r2 , (31)
TI

d-_- a-am. z = 1 -- I ;, (1 + l)2rl

and for the second case (r0_,,----0)

For "f>l we obtain l<-f "I(l+j.__), which means that _-a _.°m,x<O, hence
du

_-a <0, i.e. if a decreases, the values of u and V, increase monotonically;

the minimum of V, is obtained for

= / (r I .}.area, r_).

For this case we obtain from equations (16) and (18)

tg _=0; _--0; ig [=0; [=0.

From equation (23) we obtain:

cos @= I; _=0;

from expression (8)
b_ rVrtr_;
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from expression(7)

r2 ÷ rl

and from equations (20) or (13):

V_,,,,.----- v,(V/ 2r.r I -_- r2
---- l). (33)

Thus we have the following law:

In order to reach another planet with the minimum

additional velocity (V=)or with the minimum expenditure

of energy, it is necessary to take-off from the orbit of

the departure planet parallel to its direction of motion

around the Sun (8=0,_=0) with the additional velocity:

the trajectory will then be tangent to the orbit of the

departure planet at the perihelion, and to the orbit of

the destination planet at the aphelion: it will be half an
ellipse.

This law refers only to circular planetary orbits. For elliptic orbits

it is possible to find mutual positions of the planets for which the trajec-
tory's length and the flight duration will be somewhat shortened. The in-

clination of the planets' orbital planes with respect to one another requires

that the rocket be given some additional velocity perpendicular to the or-

bital plane of the departure planet.

The formulas have been derived for a flight to an external planet but they

can be easily adapted for a flight to an internal planet. The additional ve-

locity V= will then be in a direction opposite to the motion of the departure

planet.

From the condition du/da # 0 it follows that the corresponding variations

of u and a are of the same order. Let us now determine the quantities

dfl/da and d_/da. Differentiating (23) with respect to a, we obtain

or

-- r_sin _}d_ (2r2 -- r]) (r2 -- a) + a (2r2 -- rl) -- _ da,

(r 2 -- a)2

d8 r2 (r2 -- r,)
r, --= (34)

da ('2 -- a) _ sin 8

In the same way we obtain from (17):

-- 2 cos _ sin [3dl3 r212(2a -- rD -- 2 (_a -- r,)l
da r I (2a -- rl)=

or

rx d_ _.__ 2r2 (r2 -- r l)
da sin 2_ (ga -- r 0 :_"

(35)
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For 0=0and 6=0, weobtain da/dO=O and dald_=O, i.e., near V,,,,, _)
and 6 vary much more rapidly than a.

We also have

d. au aa all I--=----; .,=0.
d8 da d8 dO [D_-O

The angle O is proportional to the times it takes the Earth to move in

its orbit. We see that u, and consequently also V,, vary rather little near

V_m,,. The angle 6, on the contrary, varies quite rapidly.

Mathematically V, will be a true minimum with respect to the variable

_), but only a smallest value with respect to the variable a.

Let us calculate the spaceship's velocity at its perihelion and at its

aphelion. Denoting them by Vp and V, we obtain from the law of areas:

' r Voo,p=+,,V.=--},oV,.
Hence, we obtain easily, using (17) for cos 6, (21) for V and (28) for r_:

(36)

and

[/I V r'r2Vp-- --. (37)
a (2a--rz)

Let us find the interesting quantities for two cases:

l) For a.,.= rz/2 we obtain:

tg_=oo; _--90"; tg}=--l_; (38)
V ra

cosa----l; _=180"; V,---V,I/3--2r'; (39)
V r2

b=O; _=l; V--_VtV2(I--r-_,); (40)

v.=0; vp=_.

This case corresponds to the shortest flight path: the spaceship flies

along a radius-vector from one planet to another, getting further from the

Sun. The ellipse is transformed into a segment of a straight line, with

the destination planet at one end and the Sun at the other. The angle _, be-

tween the direction of the velocity Vz and the velocity of the Earth V, is

larger than a right angle. The velocity V, is considerably larger than V,m,,.

The resultant velocity V is pointing radially from the Sun.

2) For some intermediate case, when the velocity V, is in a direction

pointing away from the Sun, we have _= 90 °, i.e., tg_= _, and from equa-
tion (18) we find:

4
2r 2 -- r!
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Fromequation(23)wehave
cosI}= 0;

from equation(16)

from equation (20)

from equation (8)

_= 90";

tgp= 1-- r--L;
r2

b=" 1 _--_;
" V 2(r2-rl)

FIGURE 2

from equation (7)

Z=] r_l ;r2

from equation (21)

from equation (36)

from equation (37)
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from equation(28)
ro _ fir2 .

2 (r_--r;)

Figure 2 shows the flight paths and also the triangles of the velocities

V_, V, and V at the take-off moment from Earth orbit for a flight from the

Earth to Mars, assuming that Mars is at an average distance from the Sun

corresponding to "_= 1.52.

Determination of the flight duration

Let us consider right away the general case, assuming that the destina-

tion planet is situated at an arbitrary point of the ellipse.

The flight duration is determined in this case by Kepler's equation which

is easily derived. Let us express the radius-vector r and the angle _ in

the equation of the ellipse

a--e_
r= (22)

l+:Zcos_

by the angle E, shown in Figure 3, which is customarily called the eccentric

anomaly of the trajectory.

From point 4 on the ellipse we draw a perpendicular to the major axis

OD and continue it through point A till its intersection M with a circle of

radius OD= a and center O. Connecting points M and O by a straight line
we have ZMOD=E.

For the ellipse we have

and expressing the segment SN by the angles _ and E, we find from

Figure 3

SN=r cos O--a cos E--a_..

Together with equation (22) this expression gives:

a--aY2 = r + Xr cos 0 = r + Za cos E--aX 2,

or

r=a(l--Z cos E). (41)

In order to obtain E as a function of _) we find from equations (41) and

(22):

I --Z cos e =1 +_,cos_ ° (42)

or

cosE_ '_' +cos8

] + _ cos_" (43)
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Using the trigonometric identities:

/_ _/-] -- cos

tg-2-=l/ l+cosE

and

we get:

•_- -/1 -- cos

tg -_-= _/ _ nL cos

j//,+Eco,_-Z-co, s ./-i--z, o'g_= ,+_;co,_+Z+_o,_= V _ gT (44)

FIGURE 3

If we now denote by t the time required to fly from the perihelion of the

elliptical path to a point on the ellipse corresponding to a given angle O,

and by • the semirotation period of the Sun along the ellipse, we have from

the law of areas:

6

2 _ r_ d_ (45)
7= .=--;-j-{- '

0

where ,cab is the area of the ellipse, and .f_-d_
5

radius-vector during time t.

To calculate the integral we express dO by dE.

(42), we obtain

is the area swept by the

Differentiating equation

(1- _b(- 1)(- _ sln _ do)

__jsinEdE= (i-i- _cos _),

or

d8 sI.E (I + _ cos_)_ (46)
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Expressing 0 in equation (42) in terms of E, we find:

cos 8 = cos E-- _ (47)

hence

slnO= Vo-_co_e),-(co_e-_)_= V_i- Y?s,.e (48)
1-- _:_COS£ l--:_coII E '

and consequently:

sine 1 _ _'_cosE

s|na

Substituting this expression and the one for cos O found in (47), in equa-

tion (46), we have:

do V_-Y?
d-'-_"= 1--_cos£ " (49)

0

Substituting now • from (41) and dB from (49) in StUdS, we obtain:

,_o ,f(,-Z¢o,e_,I/_----_._

= a_I/1 - _' [(e- _ stne)- (eo- _ sineo)].

For t 0=0we have _o =0, In this case we see from (44) that Eo=O, so
that we can write:

r' d_--'=| ]/-_-- Z' (e--E$[" E).

Substituting this expression in (45), we obtain:

t = (E- _ s_nE).
wab

Remembering that b=a]/"T--_ 2, we find finally that

(50)

For the case considered above, when the destination planet is at the

aphelion of the elliptical path of the spaceship at the moment of arrival

there, it is convenient to express all quantities in terms of the constant

y =r,/rl and the variable

p=LJ-----r-_-L_-=-_- . (51)
a r= = 7a
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For _),[l,_,V_, V, V_, Vp, ro, a,b,Z,E, 3, t, 6 and t} we obtain the following

expressions:

cos 0=21-- 1__2p ; (52)
lP- 1

c°s_=_ -_(2-_P)2-P," (53)

t _ ./(.r--1)(_p+p--2).
g"=Y ;_-_,i ' (54)

V(_- l)(_p+ p-2); (55)
tg_= _-]p)--1

V, = V, l/3--p-- 2_): (56)

V= VJ72=zz (57)

V2--1p.vo= v, --, (58)
.r

lip= V,pV

m

l_j__. (59)
2 --'[p'

V, (60)
V,=W;,

ro=!__.[; (61)
rl P

a----r, ; (62)
P

b=h_; (63)

E=IP-- 1; (64)

]-_ =2-.rp; (65)
I+E _P

-- E --1_ 8

tg_--- V "re tg --ff ; (66)

-- "-..L; (67)
'_-- pa#

t -= --_- [E-- ('_p-- 1) sin E]; (68)

t1=,-t; (69)

tt----_-i-t. (70)

The formulas for V, and _ are somewhat modified if angles 0, lying

between 180 ° and 360 ° , are considered. In the range 0<0_!80 °, the addi-

tional velocity, V,, which the rocket should give the spaceship, is relatively

small, in particular near _= 0. In the range 180°<t}<360 ° it increases,

since in this case the flight around the Sun has to be done more or less

against the Earth's direction of motion.

From Figure 4 it follows that the velocity V does not change if we start,

instead of from A, from point C on the Earthts orbit, which is symmetrical

to A with respect to the major axis for a given form of elliptical trajectory.
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The ellipse elements ro,a,b, _, E, remain the same. This is also true for

the magnitudes of the velocities Va and Vp which change only their direction,

and the times _ and t are unchanged too. Only the quantities _),_, _ and V,

take new values.

FIGURE 4

If we denote by a "prime" the values of the quantities for point C, we

see from Figure 4 that:

0"= 360°--0; lY= 180°--I}.

Because the square root may have a positive as well as a negative value, we

obtain from equations (20) and (18) expressions for _ and V,

v,=
r, x "I (71)_ a v

i V (r;--rO(r_+r;--2=)
tg_= __= r_'_a ' (72)

the upper sign referring to the case 0<_< ]80 °, and the lower sign - to the

case 180°<_<360 _.

Instead of flying from point A or C straight to point B (as assumed till

now), it is possible to fly from these points to point B through the peri-

helion D. By symmetry we then obtain velocity triangles analogous to those

considered above (see Figure 4), except that the angles _ and _ will be

directed towards the Sun (measuring from the velocity vector V,), while in

the case considered before they were directed away from it. Along the

shorter path CB, the flight time will be

tl--_,--t=_l,--E + (Tp--l)stnE]: (73)

and along the path CDB:

t)= • + t =i[--I-E--('_p--l) sin El. (74)

Instead of (68) we can use the formula:

which is obtained after a simple transformation.

(75)

Instead of (52) we have:

tg-2-= V _: V('I--I)(2--1"P) '
(76)
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andinsteadof expression(66)

E 1/e(l +'0--2
,gT=y g---_ " (77)

If we take for the flight from the Earth to Mars, "[= 1.52, we obtain:

Vs = VI¢ 3 --p-T-3.04 _i-_252--p . (78)

For small values of the angle 0, (78) gives inaccurate values of Vz, we

shall give two more accurate expressions. From equations (ii) and (12)

we find:

VI sln_ Vsinl9 (79)
V,= sin(_-- p) sln(

By calculating _ and _ initially as functions of b, or of P, V, can be

easily determined. Formula (53) for _ can then be transformed by re-

placing p by _. For _)= 0, we have from (76)

(8o)po=IPl,-o=
0+T)

J

We had 2gp----]/.(_-- I)1(_+ I)e--21 (54)
Y (2 -- _e) "

In this formula

(_+ 0 p--2=(_+ 1)Ip--21(_+ I)I=1_+ I)(p--p01;

and by substituting p from (76), we obtain:

L_+ l)(p--p0)----(_- I)(I--cose) ,
"C(cos_ + T)

(81)

and 2--'fp 14-cosO
cos6+'_

After reduction, equation (54) takes the form

tgp=L_tg ¢. (82)

This formula is accurate for small angles O. and it can be used success-

fully for the calculation of Vz by (79).

In the second method we can determine V, by the formula (see Figure i)

or

v2,=v_+ v'-2vv, cosfl=(v- v,)'+

+2VV, (1 --cos_)-----(V--V,)'+4VV, sl,'_---"
2 '

2p
4VVI sin -_-

V,=(V--V,) I + (v-v,)------7
(83)
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The velocity V--V, is calculated by a series expansion• From (57) we

have:

VI

. . . _-(--l)"-' 1.3-5..-(2n--3) (l--p)'-{- . . .
2 n- n'

For the case of flight from Earth to Mars (_ =1.52), we have

P = Po='-_-2 =0.7938;
2.52

1 -- Po=0.2062;

and the series gives

v---:-YA-=O.1031 -0.005315 + 0.000548- 0.000071 -}-0.000010 ==
V,

==0.09827.

Therefore, since V=,,,= V--V1, we find

V= =,.=0.09827V1 =0.09827 • 29.77=2.927 km/sec.

The value of V; is found in a similar way by the formula (see Figure 4)

V_ = V1 sin [3/sin ([3+ _' -- 180 °) -_- V sin _/sln ['• (84)

E
In equation (55), tg [ and tg -_- in (77) contain the quantity

2

Since for small 0 this is a very small quantity which cannot be deter-

mined accurately from the calculated values of p and P0, we find it directly.

From equation (81) we have

('I -- I) 2 sln=-_-

p-- po=
(t+l) "1(cosO+ "r)

(85)

The denominator of expression (55) for tg _ contains the quantity

F 2-_ ---P-I= (2--_p)-1,
T

which is rather difficult to determine since the first term is only slightly

larger than 1. Denoting this quantity by y,

y= V._12- tp)- 1,
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and introducing another variable _(,defined by the equation

sinX= _ (2--'fp)--l,

we obtain

-_-' (86)

Substitution of the value of p from equation (76) in the expression for

sin X yields:

sinx----2_--I---_2T--!+¢os_ cost(it--l) (87)
cos6-t-'f cos_ + 1

Therefore,

tgt= v'(]- ,)(p-_) (88)

Flight to Mars

We now investigate the flight to the planet Mars, assuming it to be situ-

ated at an average distance from the Sun corresponding to _,=1.52.

The results of the calculations are given in Table 1 and the basic rela-

tions of the kinematic parameters of the flight trajectory are given in Fig-
ure 5.

We note that since we required the aphelions of the flight trajectories

to be on the orbit of Mars, the value of p had to lie between the two limits

determined by formulas (29) and (30):

a (r__, (29)
mix _ 2

r (30)_min_ +2 •2

From these two equations we obtain

Pmi.= r, = 2r, = 2 (89)
a_,x (q + r2) (l+ lr)

and

as the limiting values of p.

In our case we have:

Pm,*_--- r, = 2 (90)
4m| n '/

p_,_,=0.7938; p.,= 1.316.

The angle _) was chosen as the independent variable for the interval

0<{)<90 _ and the quantity p for the range 90°<9<180 °. This choice was

required since in the interval 0°<_}<90 ° the value of p hardly varies so

that determining _} from a given p would give inaccurate results.
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From (52) we obtain:

P 2"z--1 +cos_ (91)
"/(cos _ + "I)

The values of p obtained by this formula, served for the calculation of

the corresponding part of the table.
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Figure 5

The curve of ro/r_ shows how close the spaceship approaches the Sun at

the perihelion (if it flies through it).

The velocity of Mars in its orbit (assumed clrcu]ar) is determined by

(60) and is equal to V2 = 24.15 km/sec (the Earth's average velocity is

V]= 29.77 km]sec).

The curve of (V2--V_) gives the difference between the velocity of Mars

and that of the spaceship in its neighborhood. It can be seen from the table

that in the case considered we always have V:--Vo> 0, i.e., Mars moves

faster than the spaceship which is about land. This means that the space-

ship approaches Mars from that part of space into which the latter is

moving. The relative velocity is equal, in the most favorable case, to

2.63 km]sec (see Table 1). The resultant of this velocity and the velocity

due to the attraction of Mars itself, must be cancelled by gliding descent

on the planet or by using a parachute or a rocket for braking.

Table 1 gives values of the fo]lowing quantities, calculated by formulas

(52)-(70) for V_ =29.77km/sec and _=1.52:

p=r_/a, ratio of Earth)s orbit radius to semimajor axis of flight trajectory;

V,, required additional velocity, km/sec;

p, angle between resulting velocity V and Earth velocity Yt, degrees;

257



_0 angle between additional velocity V: and Earth velocity VI, degrees;

_, spaceship's true anomaly at take-off moment, degrees;

air1, ratio of semimajor axis of flight trajectory to Earth orbit radius;

b/rj, ratio of semiminor axis of flight trajectory to Earth orbit radius;

ro/r_, ratio of radius-vector of flight trajectory perihelion to Earth orbit
radius;

Z, eccentricity of elliptical flight trajectory;

V_, additional velocity required when flying against the Earth's direction
of motion, km/sec;

180--_; angle'between additional velocity V_ and the Earth's direction of

motion, degrees;

V, absolute velocity at moment of take-off from Earth, km]sec;

Va, flight velocity at elliptical trajectory aphelion, km/sec;

Vp, flight velocity at perihelion, km/sec;

VrVo, difference between Mars velocity and spaceship velocity in the

planet's neighborhood (not accounting for attraction of Mars);

E, eccentric anomaly of spaceship at moment of take-off from Earth,

degrees;

:, semirotation period of spaceship around the Sun, days;

t, time required by spaceship to fly from perihelion to flight trajec-

tory's point of intersection with Earth orbit, days;

T--/, flight time of spaceship from Earth to Mars (take-off from nearest

point), days;

:+t, flight time of spaceship from Earth to Mars (take-off from more

distant point), days.

If the spaceship's rocket engine is switched on once more shortly before

arriving at Mars, it is then possible to reach it somewhat faster. Similarly

it is possible to switch on the rocket engine again sometime after take-off

from the Earth in order to shorten the time and path of the flight. This will

be true, of course, for similar flight to other planets.

Turning to Figure 5, we see that when angle 13 increases, the flight time

/1 first decreases rapidly and then remains almost constant for I_ between

55 ° and 125 °, while the additional velocity Vz increases continuously and

with it the propellant mass ratio required for the flight.

The maximum absolute flight velocity V is attained for /3= 0, where

V=I.IOV_; for l_=90 ° the velocity decreases to V =0.83y, and for I3=180 °

it increases again to V = 1.10V,. This shows the advantage of flying with a

low additional velocity if the required propellant mass ratio plays an im-

portant role.

It can also be seen from Figure 5 that when flying from A to B through

C, the maximum flight time is equal to tf._293 days only, while for t3= 0 it

is equal to 258.4 days, and for It = 90 °, i.e., when flying directly opposite

to the Sun, the flight time attains a minimum equal to approximately 85 days,
i. e., about 3 months.

The angle _ of the relative velocity Vz increases rapidly with I_.
For [_=0, we have: V,_,,o_2.93km/sec; _=0; _=0; V.-_V,+2.93._

32.7km/sec; VQ=21.5km]sec; V_32.7km/sec; a_.l.26r,; b_1.23 r, and

2_0.21.

Comparing a and b, we see that in the present case the ellipse is almost
a circle.
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For large 5, such high velocities V, are required that the rocket will

hardly be able to develop them. In particular, for 180°<0<360 ° it will be

more advantageous to take the longer-path from C to B through A, if in

this case the proximity of the Sun at the perihelion does not disturb

the flight and if the date of arrival permits an increased flight duration.

In general, however, already for 0<180 ° , it will be more advantageous,

from the point of view of propellant consumption for a given flight time, to

choose for tile trajectory an ellipse whose aphelion lies farther than the

given planet. This refers in particular to the case when we want to reach

a given planet in the shortest time for a given propellant consumption, i. e.,

for a given V,.

For comparison with the case considered we will determine the addition-

al velocity V, and the flight duration tl for the case when the aphelion of the

trajectory is at infinity and the flight begins in the direction of the Earth's

motion around the Sun. From formula (33) we obtain:

(/ ,)1Vs-----V_ rjlr 2 + I r2_ _

---- V, (l/'2 - 1) = 0.416.29.77= 12.3 km/sec.

The time required to fly from the Earth to Mars is obtained from a for-

mula given in astronomy books. Using the equation of the parabola in polar

coot dinates

r = 2--Zr--_- (92)
1+cos8

and Kepler's second law, we obtain the expression

(93)

In our case r= 1.52r0 and ro=r. (the flight starts at the trajectoryperi-

helion). From (92) we obtain:

cos0= 7rl --1=_-2 --1=0.318; 8:71°28 '.
r 1.52

From (93) we find:

f 365"26?/'_2_ (tg35°44'+ 1_gS35"44') =69"5 days.

We see that an additional velocity of 12.30km/sec gives us a flight time

of 69.5 days for this trajectory, while the same additional velocity gave a

flight time of approximately 146 days in the case considered before. If,

however, the rocket engine is damaged, or if the flight trajectory is not

chosen accurately, it may happen that a vehicle flying along a parabolic

trajectory will escape forever from the solar system, as explained before.
Attention should also be drawn to the fact that in the cases considered, each

flight trajectory corresponds to a perfectly determined moment of arrival

at the other planet.

The relations given in Figure 5, refer also to a flight from Mars to

Earth. In this case (V2--Vo) is the additional velocity which has to be
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imparted to the spaceship near Mars in a direction opposite to the direction

of motion of Mars around the Sun. The velocity V, and the velocity due to

the Earth's attraction must be cancelled for landing on the Earth. Theflight

trajectories themselves represent a mirror reflection of the trajectories

along which the spaceship flew to Mars, and the velocities at the Earth point

in the opposite direction.

The total velocity c which must be given to the rocket when it takes-off
from the Earth (or cancelled when it returns), is found from conservation

of energy:

2 2 2

c=V_o+V_, (94)

where ¢0; ll.16km/sec is the initial velocity which must be given to a body

at the Earth's surface if its veIocity at infinity is zero.

If the velocity c is given to the vehicle in the immediate vicinity of the

Earth and the rocket acceleration is n times the gravitational acceleration,

then the ratio of the initial mass M0 to the final empty mass M of the rock-

et, for a vertical take-off, should be according to Tsiolkovskii:

¢ n

.t4o _ 8_ n--t

where _. is the exhaust velocity of the combustion products.

Taking the values n=lO and n=3, for which w= 4000 m/sec, w=
= 3000m/sec, we obtain 4 cases for which Table 2 was calculated.

We can see from this table that it is very difficult to attain velocities

c_ 22 km/sec by means of a rocket due to the huge initial weight required.

If we limit the initial weight to 1000times the final weight, we obtain for
the maximum values of 0:

1. For w=4km/sec and n=lO, we have 0_u_146°.
2. For w=4km/sec and n=3, we have 0_,._114 °.

3. A slightly larger angle is obtained for w = 3 km/sec and n = 10.
4. For w =3km/sec and n=3, we have 0._ =73 °

If we do not fly through the perihelion then 0m+, = 0; the minimum initial

weights will then be 24.6, 76 and 320ton. In the case of trajectories which

do pass through the perihelion, the time interval during which it is possible

to take-off for Mars is doubled; in this case 0_,°_-146°,-114 ° and -73°.

The period between two oppositions of Mars, in which it is possible to

cross by these trajectories can be determined as follows. Let us denote

by h and 12 the rotation times of the planets about the Sun and by G the

time between two oppositions of the external planet or, the so-called syn-

odical rotation time.

The angular veIocity of the internal planet is 360°/t,, and that of the

external planet 360°/t2. Their relative angular velocity is 36°° 360°, and
tl t2

the angle between the radius-vectors varies by 360 ° during time t,, where

f2 /
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or

_x= tit2 ,
t2--t,

For Mars and the Earth, /,_365.3 days, t_684.5 days, and therefore,

tx_ 783 days*. Thus, in the conditions indicated, the communication with

Mars would always be interrupted for 783-209 = 574 days and only in the
course of 209/783 = 0.268 = 26.8% of the whole time would it be possible to

despatch the spaceship. It would be possible to arrive at Mars only in the

course of 110 days or during 1101783 = 0.141 = 14.1% of the whole time.

2. DETERMINATION OF TAKE-OFF MOMENT TO ANOTHER PLANET

ENSURING ADDITIONAL VELOCITY CLOSE TO MINIMUM

We will now determine the mutual position of the planets in their orbits

at the time of take-off and arrival of the spaceship, the time interval be-

tween two take-offs and between the corresponding moments of arrival for

flights in various trajectories, and the time interval during which flights to

other planets are possible.

We will use the notation (Figure 6):

Ate, time between two rake-offs considered;

Ate, time between two arrivals considered;

t_, period of revolution of internal planet around Sun;

t2, period of revolution of external planet around Sun;
A'AE'E, orbit of destination planet;

CC'G'G, orbit of departure planet;

AE, direction of semimajor axis of flight trajectory ellipse for minimum

additional velocity (in this case CtE is the flight trajectory and C

and E are the perihelion and aphelion respectively);

WE" direction of semimajor axis of flight trajectory ellipse for flight

from internal planet along C't'E" (in this case E' is the aphelion of

the flight trajectory);

_=ZA'OA;

n = ZA OC';

_=ZA'OC=n+_.

We will assume for simplicity that the planetary orbits are circles with

the Sun at the center, that the external planet is at point B (B') at the moment of

take-off from the internal planet, that the internal planet is at point G (G') at the

moment of arrival of the spaceship, and we willwrite

ZAOB=a; /AOB'=a'; _COG=i; _COG'=i'.

Assuming the orbital motion of the planets to be uniform, we obtain

t, (a -- _) _ &(." -- o) (95)

At=t,{i--/')= t_* , (96)
360 360

* A more exact figure for Mars is 779 days on the average,
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since the planets describe the following angles during the time between two

take-off s: the internal planet angle COC'_-_,] 8; the external one, angle

BOB'=a'--a; similarly between two arrivals: the internal planet describes

angle G'OG==i--i'; and the external one, angle E'OE=8. If we start meas-

uring time from the moment the internal planet is at point C, then it will be

at point C' at the moment Ate, the spaceship flying along the trajectory C'E'

arrives at the other planet at the momcnt Atc+t', and the external planet

will be at point E at the moment Mc+f4-M,. However, this last time in-

terval should be equal to the flight time along the path CE, i. e., to I. Thus,

we have the equation:

t_--Atc+/'+ A/_; (97)

f

r

FIGURE 6

or substituting the expressions for Ate and Ate from equations (95) and (96),

we obtain:

t=_+t' + t2_-5-_"

Hence, ZErOE is determined:

___ (t--t')36o--t,o (98)
t2--I I

It is then simple to find the angles described by the planets during the

time interval Ate:

_COC'=_--_'_; /BOB'=a'--a= _t_.360 ; (99)

_G,OG=i_i'= t_ _; (100)
Q

/ E'OE= _,,

and from equations (95), (96) and (98) the values of AI_ and M,, if the flight

times t and t', the angle 0 and the revolution times of the planets t2 and

l_ are given.
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We see that the external planet describes the angle BOE= t---360 during
t2

the flight time t, and the internal planet - the angle

i= _ COG = t-.(-360. (101)
tl

Similarly during the flight time f

_.B,OE,= t" .360, _ C'OQ= r . 360,
t_ tl

therefore,

a= ZAOB= 180--Z BOE;

(z= 180-- t 360; (102)

or

a'= ZAOB'= 180°-- / BOE--8;

a'_ 180-- t-_'. 360--_;
tz

(103)

and

or

i'= Z COG'=ll + Z C'OG';

i'=_+ t' 360.
t2

(104)

The quantity Mc is particularly important since it determines the time

interval during which it is possible to take-off with an additional velocity

close to the minimum, i. e., to fly with minimum propellant consumption.

The time hie, which shows how many days earlier it is possible to arrive

at the other planet if the additional velocity is increased, is also important.

For a flight from point C" to point E' through point C' the formulas are

somewhat modified: in this case (+_} should be replaced everywhere by

(--o).

Thus, we have in the general case:

(t--t').36o t: h_ . (105)
)

12 --l I

Ale tL( 4-_--&)-- ; (106)
36o

M,= tr_ ; (107)
36o

_=+___; i= t---360;, (108)
Q

i'=_ + r 360; (109)
tl

a = 180-- t___360; (102)
t,
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a'--.-- 180 -j' 360 --_; (103)
f_

where the upper sign refers to flight from point C', and the lower sign to

flight from point C".

The curves for flight to Mars (see Figure 5) based on the formulas de-

rived above, show interesting results. It should be noted that in view of

the elliptical orbit of Mars, these results represent only average values.

For each new revolution of Mars around the Sun, the angles, times, and

other quantities will vary, but their average values will coincide with those

calculated. The inclination of the orbital planes with respect to one another

hardly changes the results.

It can be seen from Figure 5 that for flights from point C', the flight

time decreases rapidly for an increase of the additional velocities; for an

additional velocity of 8 km/sec it becomes only 172 days, whereas for the

minimum additional velocity of V, = 2.73 km/sec it is equal to 257 days. In

the first case it is possible to take-off Ate = 74 days later than for V, =

= 2.73 km/sec, although the arrival on Mars is then only 19 days earlier than

for the additional velocity V, = 2.73 km/sec.

For an additional velocity V, = 8km/sec and take-off from point C", the

flight time is 290 days. If it is required to arrive as early as possible on

Mars, then people will very probably fly from point C" notwithstanding the

long flight time. If the time of stay on the way has to be shortened, then

it is better to start the flight from point C. For flight from point C", the

perihelion lies at a distance of 0.81 tlmes the Earth's orbital radius from

the Sun and the ship's velocity at the perihelion is 35 km/sec which exceeds

only slightly the Earth's orbital velocity (29.8 km/sec).

The first flights will very likely be accomplished with an additional ve-

locity close to the minimum of V,_2.Tkm/sec. To reduce the flight dura-

tion it carl be started from some point C' which leads, however, to in-

creased propellant consumption.

if the aphelion of the trajectory lies on the orbit of Mars, and if we as-

sume a maximum Vz of 8km/sec, then take-off to Mars is possible only

during 74+135 =209 days. Then we have a period during which communica-

tion with Mars must be interrupted. This requirement is important. For

example, if correction of the trajectory becomes impossible due to damage

to the rocket by meteors, or if the control system fails, then the deviation

caused by the attraction of Mars (if the spaceship flies near it) may modify

the flight trajectory in such a way that the vehicle will escape from the Sun

forever. It will be very hard to overtake such a vehicle with another space-

ship.

However, some shifting of the aphelion of the spaceship's trajectory far-

ther behind the orbit of the external planet lengthens somewhat the take-off

period and shortens the flight time.

3. TRAJECTORY CORRECTION ON APPROACH TO PLANETS TO ACHIEVE SAFE

LANDING IN DESIRED PLACE

When a spaceship approaches a planet, the flight velocity is in general

hyperbolic (if it is not reduced by means of the rocket engine near the
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planet); we shall therefore assume that the trajectory of the spaceship is

a hyperbola, with the given planet as one of its foei (Figure 7). We shall

assume for this purpose that the distance from the vehicle to the given

planet is so small that the attraction of the Sun and of the planet's satellites

can be neglected. If the relative velocity V_ near the destination planet is

found by calculation, then the velocity at the planet's surface can be easily

obtained by using conservation of energy:

mVl 2 + ,,,gon= ,,,_o, (11o)
2 2

where m is the spaceship's mass;

R, the planet's radius;

go, the gravitational acceleration at the planet's surface;

g0R, the surface potential of the planet per unit mass;

V0, the velocity at a distance R from the planet's center.

From equation (110) we obtain

Vo= V v?+ 2goR. (1 1 1)

Since the sum of the kinetic and potential energies of a body is constant,

it is also possible to determine the velocity at any distance from the planet.

FIGURE 7

The potential energy of a body with mass m, situated at infinity, with re-

spect to a sphere of radius r, is equal to:

A =mEt', (112)

where g is the planet's gravitational acceleration at a distance r from its

center:

R_
g = -_- go. (113)

Substituting this expression in formula (112), we obtain:

A = mgo--_--.
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If the body has reached the sphere of radius r, its kinetic energy mV2[2

is equal to the sum of its initial kinetic energy m_]2 and to the variation A

in its potential energy, i.e.,

or

v_ 2
m m V_ R 2

2 2 r

V= ]/V_ + 2g°_2 (114)
¥ r

For correction of the flight we are interested in three curves: two hy-

perbolas (before and after correction) and the flight trajectory during the

correction.

Let us determine the elements of the hyperbolic trajectory, the velocity

and the flight time.

Let the spaceship be at point A at a given moment, let • be the distance

between the point A and the center F of the planet, V, the spaceship's velocity

with respect to the planet and _, the angle between AFand V (see Figure 7).

Let us introduce the following notation:

Z, hyperbola's relative eccentricity;

a, hyperbola's real semi-axis;

b, hyperbola's imaginary semi-axis;

2p, hyperbola's parameter;

0. _0, angles between radius-vectors r, R and line OF(Ois the hyperbola's

center);

T, angle between tangent and real axis;

a, angle between asymptote and real axis;

R, planet's radius;

r,=FC, radius-vector to the hyperbola's vertex (point C).

In polar coordinates the hyperbola's equation has the form:

where

Therefore,

P (115)
r-_-_I -f- _COS_ '

(2')p=--a l-- =--. (116)

r= "(Z:--i) (117)

or

For the vertex of the hyperbola, b = 0, and, consequently,

a (Z 2- l)

r r, ,+_

r,=a(Y.--I). (118)
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For r=_ we find, for the angle 00:

Z

If we take the hyperbola's equation in Cartesian coordinates

_2 y2

a2 b 2
------_],

and differentiate it, we obtain

or, since

Z_dx 2ydZ=O,
a _ b 2

then

dx y a2

However, it follows from Figure 7 that

x=_ b2-- r cos _;

y=r. sin 8;

so that

tg

OF= _ b_,

(r"_T _---rcos@ b2
rsin _ a2

Eliminating b in this expression with the aid of the formula

or

io e, •

= _+ b2 ,
Q

b_

we obtain

(X-,).

(119)

(120)

(121)

(122)

(123)

(124)

269



Eliminating r from equations (117) and (124), we have

cos {) +

tg • = sin_

From Figure 7 we have

(125)

tg;=_-=/_ _- 1. (126)

The velocity at the vertex of the hyperbola is obtained from equation (114)

for r=rs:

From the law of areas we obtain the value .rVsin$dt/2 for the area swept

during the time dt at point A and r,V, dU2 at the vertex of the hyperbola.
Therefore:

r_V, = rV sin _; ( 128)

r,V, = RVo sin _0. ( 129)

From the triangle FAE (see Figure 7) we obtain

180°=S+_+O. (130)

hence

tg _-----tg (180" -- _ --0)= --tg (_q- _)= -- --tgx + tg_ .. (131)
I -- tg_ tg_

Substituting in (131)tg_ from equation (125)and _)from (117), weobtain:

!

cosO -I-N
tg&= --

sln_

(132)

or

.(_'--I) (133)
Ig_= r_sz.o

From the condition that the centripetal acceleration at the vertex of the

hyperbola is due to the planet's attraction, we obtain one more equation.

The radius of curvature of the hyperbola at its vertex is b:--=p, there-

fore, the centripetal acceleration is equal to

v_ V_a

p b2 "

However, the acceleration due to the planet's attraction is equal to
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and,therefore
V2 =____ R_

b2 --g0 7,,

Hence i_troducing Z according to equation (121) and substituting for a its
expression from {118} we obtain

V_= gOR2r,(_-J +I)" (134)

In this problem we are interested in the quantities:

VI. Vo, V,,a.b._,a,r. V,G. _. 0o. a, _o. r.

To determine these 15 quantities we have 12 equations: (111), (114),

(117), {118), (119), (123), (125), (126), (127}, (128), (129), (134), and,

therefore, given any three of the quantities, we can determine all the

others. This is obvious. Since the general equation of the hyperbola con-

tains five arbitrary constants and our quantities refer to the focus of the

hyperbola, two of the constants are determined and only three arbitrary

constants, which we are free to choose, remain. The interplanetary travel-

lers can determine the distance r from the planet by measuring its angular

diameter, the velocity V- by measuring the rate of variation of the plan-

et's angular diameter, and the angle 8- by using some measuring instru-
ment.

Assuming that r, _, and V are given, let us determine the remaining
quantities. From equation (114) we find

V_---- / V2-_ "r (135)

Then from equation (III) we obtain:

(136)

Eliminating the product r,V, from equations (128) and (129) and intro-

ducing V0 from equation (136), we obtain:

Sin _o_--- rVsln._...___ = rVsin _ (137)

....... •

_vo 1 i
R v, + 2e0R, (-_-- 7)

Eliminating then V,, from equations (127) and (128), we obtain an equa-
tion for r,:

V2 (r Vsin |)2 - 2

,= r----_r------ V, + r, (138)

which gives

eom . l/eo'mj. (rvsi. _)_
r,--------_ -t- y yt . _ , (139)
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whereV, is given by (135).

From equation (128) we obtain

V_ rVsin

Instead of equation (138) we can also write

2goR2 l V_

(rVs[n _)2 rs (rVsin _) 2

/.r; (rVsin _) _- (rVsin _)4 _" (r Vsl. _)_ "

From equation (134) we find the relative eccentricity

(140)

(141)

(142)

and from equation (127)

Substituting this expression in equation (142), we have

_._ V_r,4-1 =_ I| rVsin_V, i+(y-),V (143)

where we have used the value of r, found from equation (138).

From equation (118) we obtain

then, using equation (143) we have

(144)

a _ g---_--_= g°l_

V_ V_-- 2g°R_ "

r

(145)

By substituting in equation (119) a from equation (145) and "-" from equa-

tion (143), we obtain:

B --[ g°R2 rVsin_V, )2 l] l

rVsln_Vj z

goR 3 . /_-- /rVsin_V l \2

(146)

From equation (117) we obtain for cos(} the same formula as for

cost)0, with the only difference that now rR _ replaces R 3 in the denominator

of the first term:

cos _=[ (rVsin_)'goI_r I] !
(147)

i//l _ (,.v,i,_v, _2
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T is found from equation (130):

x=180°--8--0, (148)

or, if we want to express • through the basic quantities, we substitute 0

from equation (147) and Z from equation (143) in equation (125), obtaining:

tg't=
_ioR_r goR 2

V I lrVsin_ICt\2 I (rVsin_) 2 _1] 2+ (_-72_-) -t

V(rVsJn_VI,)_I-_ -_(rVSin_)2_0--_ _oR2E (r V$iN _)4g_Rl¥ 2

Substituting in this equation the expression of V, from (135), we get

or

tg ":=

rVsln_ _2(V 2 go R_

----[_-J \ -- ---;--1

Vslnll|/ r2 ( V2 __ _) Jr 2rgoR2 _ r,t ( V sin b _fl
goR_ y

= Vsin 6goR2_2g2--r2V2stn2_ '

tg'_= rV=sin_cosbgom -- g ['g-_-- l).
(149)

Finally, by substituting a from (145) and Y_ from (143) we obtain the

value of the semi-axis b from equation (123);

V Z -1= g°/_ rVsin[,Vib = a V_ ¢oR:

or

rVstnb rVsin li

vI /
2g0_

l/v_--
V

(150)

and

tg¢=_=VZ__l=_ tVsin6V_=gdln

rV i/ V2-- 2g°Ra sln_

eom
(151)

If we introduce in this formula the velocity V_ required to escape from

the surface of the planet to infinity, then the formulas are simpiified.
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Putting V,=0, we obtain from equation (III) for V®

V2.= 2goR.

The case r,=R, when the vertex of the

the planet, is particularly important.

Then, V,=Vo and we obtain from equation (128):

r_V.=RVo= rV sin S. (153)

In this case equations (135) and (136) remain unchanged.

From equation (137) we have _=90 °, sin_0=l, and from equations (143)
and (152)

( RVoV,_, ,/, +(2_V=2 +,7, =v , v.,

1/,' l 2v_ , 2v; 2v;nL-_(V,+V_)=_/_!+--_4 V_ ' (154)

The value of the semi-axis a is calculated by (145). For #0 we obtain

from equation (146):

(152)

hyperbola touches

imv_
!) Rv v, ,

V \ goR2 /

v_-e_
_];

p g_'_,+ _ - 2_o_v_
i.e., {_o: 0.

From equation (147), we have

!
w

or

( _v'o ,I ,o_
cos_= ,,g'_yT- / Vo'-go--'--'-k=

-- --+ go
COS0 _ f

vo'
-- "_- + go

(155)

Next, we obtain • from equation (148), or directly from equation (149):

lg,=tg_(rv2 _II= RVoV --tgS= VoV tg_ (156)
\ g_ ] goR2-cos b g0R cos

From equation (150) we find

b_--- RV°= RV'-_I +2goR :R 1 nL(-_) ;
Vi Vl

(157)

and from equation (151)

vn+ (158)
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For r=oo we should have

T®=a, 0_= 180°--a, _,,=0.

From equation (155) we have for this point of the hyperbola

cos % = go goR
. _-_--

but, from equation (111)

v,.

so that

2 2 2Vo= V, + V.,

COS _). --'--

tgl). = + ] I-----t- 1 =
-- COS 2 8. V-_

_--+___ 4Vj+dVIV.=

=-t-2_.' 1 _-_-I =+__.lga. (see formula (158)).

(159)

4. DETERMINATION OF ADDITIONAL VELOCITY REQUIRED FOR CORRECTING

FLIGHT TRAJECTORY

Let us examine the two hyperbolas before and after the trajectory modi-

fication, assuming initially for simplicity that the modification takes place

instantly. It is then simple to determine the required additional velocity.

Since a hyperbola which touches the surface of the planet with its vertex

(Figure 8) corresponds to the normal landing case, we shall first assume

that our hyperbola, after the trajectory modification, is precisely such a

one. Let us denote the quantities which refer to the modified trajectory by

a "prime". If the hyperbolas intersect at the radius r_=r" 2, if r_, V2 and

are given and V; and _ have to be determined, we have the equations:

_,=R;
2

V; -= V_ + V;=-- 2 V= V; cos (P., -- _;). ( 16 O)

Furthermore, we have still the 12 equations indicated in the previous

section. Since 3 of the 15 quantities which interest us must be given, and

only two, r_ and r=r_ are determined, we introduce the condition for mini-

mum V,, i.e.,:

_v, =0. (161)
d V 2
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We have introduced a new variable Vz and obtained two new equations

(160) and (161), so that we can solve the problem completely. From the

remaining equations we have to deduee initially a relation between _ and

G.
For r,=R we obtain from equation (128)

RV, =r; V'2 sin _;, (162)

where V,=Vo.

From equation (136) we have

Vo=/ V'22_2goR +_, (163)
r 2

and from equations (162) and (163) we find

• .. RVo R ]/
Slrl % =-'r--r-,="7--=-_, l� V'2_ -- 2goR + 2g°R2r2V2 r2 V2 r2

or

v'==
(164)

M

FIGURE 8

Differentiating equations (160) and (164) with respect to V_, we obtain

dg 2

I/'. ev,2eV"-----W'_.-- V, cos (_2 -- _1;)+ V 2V_ sin (_z -- _; ) _--_-_ ; ( 16 5)

O 1 (166)
e_'2

v;' -7;)
aVz_

For Vz,., . we have -d-_2 - 0 and from equations (165) and (166) we obtain

G -- V, cos (8,-- _;) = - Vy_ sin (_-- _;) e_; sin (h- _;)
= - V, cos q x

X _ 2goR 1. R (167)
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Let us introduce the notation:

(168)

then

(169)

(170)

and

(171)

Equation (167) takes the form

/_ R ! -- x2 sin (h - _)i-_ - v, cos02- 8;)= - v2 ,.-_ .¢ °o_b;
(172)

and equation (164) can be written in the form

sln 8_ R_--- -==7- X.

r2
(173)

$'2and x can be determined from equations (172) and (173), and then W2

from equation (171).

These formulas are, however, inconvenient for calculations. It is much

simpler to plot a series of curves which would enable the interplanetary

travellers to determine graphically the required additional velocity Vz and

the angle 8_ between the direction of the velocity Vz and the radius-vector.

It is then possible to give the velocity V0 for the radius R, to determine

V'2 for the radius r_ by formula (163), to find 8'2 from equation (164) and

to determine then V2 as a function of 82 and r_ from equation (167). For

this purpose we find from equation (164)

,2

• 28' r2

2g°----_R(1 ---_2 ) = l -- sin 2"_-. (174)
V_2

Substituting (174) and (164) in equation (167) we obtain

,2

, r 2
s)n ('_-- _) _ ) (175),.,

or

v_

V+= sin (',--'_)[_--_-_] Jr.\2_ sin, ,,2] (176)cos (++-- +'2)-- cos +_$io
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Given the value of _2, we determine V= and then V,, from equation (160).

For the angle [ between V, and r'2 (Figure 9) we have

where

_= 180°--_--_ (177)

sinC sin(_-- _} (178)

V'2 Vz

Wewill first determine the angle _ from (178) and then the angle _ from

(177).

5

FIGURE 9

Thus, it is simple to obtain the additional energy required for correcting

the flight trajectory at a given distance from the planet. Similarly the most

favorable way of modifying a trajectory can be calculated when the correc-

tion is done far from the planet, when only the attraction of the Sun has to be

taken into consideration. R is then the radius of the orbit of the destination

planet and g, the acceleration due to the attraction of the Sun.

The problem is, however, more complicated due to the fact that the or-

bital motion of the destination planet has to be taken into consideration.

5. MODIFICATION OF FLIGHT TRAJECTORY AROUND SUN B'Y PLANETS'

GRAVITATIONAL FIEI.DS

Let Vz be the absolute velocity of the spaceship near some planet, calcu-

lated taking into account the attraction of the Sun only, S being the center of the

Sunand A, the center of the planet (Figure 10). Assuming in a first approx-

imation that the radius of the sphere of influence of the planet's gravitational

field is so small that the trajectory modification can be assumed to take

place at one point, we obtain for the moment before the trajectory modifica-

tion a triangle of the velocities V2, V,. V_ where V_ is the velocity of the plan-

et, and V,, the relative velocity with respect to this planet.

If V,, Vp and the angle at between them are given we have from this tri-

angle (Figure 11)

v_= v_+ v _,- 2v, v, _os,,.. (179)
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Similarly, after passing the planet we obtain

2
V,= V_ + V_-- 2V_Vp cos %, (180)

where V= is the absolute velocity and %, the angle between the absolute ve-

locity and the planet's velocity.

The velocity of the planet and the relative velocity V2 can be considered

as unchanged, although the angle a,, is changed by a given angle _, so that

,',,.= _,.----I-_; (181)

the upper sign referring to the case when the ship passed the planet on its

%, 5_v,

FIGURE 10 FIGURE 11

left, and the lower sign, when it did so on its right.

the velocity triangles

sin azl sln a t

V! Vz

and

We also have from

(182)

sin a_ sin a 2
=-- (183)

v_ v,,

If V,,V_, (,,and the relation between the deflection angle (3ahd V,*,

I]=/(V,), (184)

are given, then the values of V,, am a,2, 13, and V= must be calculated.

From equation (179) we find V,_ directly and then we determine from

equation (182):

sin%,= V, sin,,,. (185)
V,

From equation (184) we determine 8=[(V,), and from equation (181), _,2.

Instead of equation (180) we can use:

v_=v_+ v,-_ 2v.V, cos08o'-_.=). (186)

* The method for finding the function _=/(V,)is described in the following sectlon.-Edltor's note.
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From equation(183)weobtain

Vz
sin _2 _ Sill _,F_'

V2

(187)

6. KINETIC ENERGY INCREMENT OF SPACESHIP FLYING AROUND PLANET

It is simple to determine all the quantities required from the velocity

triangles before and after"the trajectory modification, and from the hyper-

bola representing the flight trajectory near the planet (Figure 12, a).

b Vp

ve
c

FIGURE t2

Formula (186) can be written in the form (12, b)

Y,+ V p+ 2V, Vpcos%2,

while from the triangle for V_ (Figure 12, c) we obtain

v_,---v_ + v_,+ 2v, v, cos_,,.

The energy increment per unit mass is

v_- v,_
_E= _ = V, Vp !cos %2- cos %0.

(188)

(189)

(190)

Taking into consideration that

we obtain

o,_--_,I_--±[_;a,2+a,1=2a. 4- IL (191)

(192)

For given values of _ and V,, &E has a maximum for sln(%,++)=il, or

%t =4-90°-{.. 2_--- (193)
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We obtain then from equation (181)

-- _ -- ° _L (194)
%_=-+'- 90°_+T=-*-90 +- 2 "

Drawing the velocity triangles with Vp as base (Figure 13, a), and de-

termining fl from the general equation

#=180°--2a. (195)

a

V//

FIGURE 13

we find

a,_=-T- 90°-T - (90°--a) - _ (180°--_);

an= :F 90°i (9(P--a) - _ a:

or, adding in the first case 380%

a,,= 180"__+ a,

we obtain for the lower sign (the solid lines) the same path as for the upper

sign (the dotted lines) only in the opposite direction. In this case the prin-

cipal axis of the hyperbola (Figure 13, b) has the direction of the planet's

orbit. Formula (192) takes the form

',£,.=,=2V, Vp sin ---_2" (196)

It is easy to determine the value of t_ which gives the absolute maximum

of AE.

From formula (195) we have

sin _-- sin (90" -- =) = cos _. ( 19 7)

I

Noting that cosa=-_- and using (154) we obtain

I
COS " --_-_

1+7+ ,--;;g-V.

(198)

281



where in this case Y_ is the velocity wbich a body acquires at a distance

r= from the planet if its velocity at infinity is zero and r, is the distance

of the hyperbola's vertex from the planet's center.

From (196), (197) and (198) we obtain

2V,_

2v; 2v_,
,,E°.= V, +__. + .._"

(199)

Let us determine the value of V_ which gives the maximum of aEmjx:

Hence

or

= ( 2v: 2v:_ _,--'+-_-. + v-Z.-
,+

sv_' 4v, \
-ZV, v'., + v'. _--o,

2 ,/ 2v; 2v,; ]V '+-_. + _Y.

2v;
--_.- = !

v.
Vz = -_---= 0.841V..

(200)

(20Z)

For this value of V, we have

(AE=.,),,,= ==.
2v.vp 2v.vp

_J'-_2/ _ V2lV'_+,)1+1+_

=ogw. v,, (202)

and

Z +
COS = ] _ 1 l--.--_ =0.541.,

= I(A_=,,),,, x = 57"18'.

(203}

Therefore: =,,,=180°±57°18'; =,== +57°18'; 13=65°42'.
These values refer to the absolute maximum of &E, since AE may be

as a function of (%, +¢) and of V, (see (192)).regarded
m

We have

==0 for =,.=W90"=I = p--

o(..,,-}1
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#hE V
(see (193)) and %';3"-,:0 for Vz=-- _ (see (201)), i.e., we obtain our for-

mulas (196) andS''(202).

abe
If we only substitute the condition 7,--0, and %1-4----P- 6,, +on is left2 2

unchanged, then by multiplying (202) by sin *'_q'_'----------_(see (192)) we obtain
2

AE a*_ o=(AEm,x),.,_ sin ='I+_=

2

Y2 IC-if+ 1)
(204)

This formula shows that for a given average direction "*("L__'-------!)of the

relative velocities there exists a certain velocity V,---- v-T'---, for which the

energy increase is a maximum.

By interchanging the indices 2 and 1 in all formulas, we obtain the max-

imum decrease in the energy; this follows from the symmetry of the cor-

responding formulas and drawings with respect to quantities with indices
2 and 1.

In order to determine the value of (AEmax)m,x for individual planets we
calculate first

v.=V-2zJ_ =v., 1// _oR (2o5)
gotRi '¥

where the index 1 refers to the Earth.

ing g.! and R
t_ R--_' we determine V® by formula (205) (see Table 3).

The velocity corresponding to the energy variation per unit mass

(AFmax}ma,, is determined by

V= V 2(aE=,,)...

In reality, for a,l = 180°±57°18 _, we shall have according to (189):

I/_= V:-t- V_p+2V, V, cos (180° -1- 57"18') --

----V2,+V,--2 2 V, Vp cos57o18, ---- V'_z+ V,--2

--2.0.541V,V_=,, V_qL Vp-2 (AEm,x)m,," (206)

Similarly we have from (188):

v'_= _ + v_,+ 2VzV,¢o_Srls'-_ v:+ 'VjJr(aE..,) .... (207)

or from (190):
2 2

V2= V, + 2 (aE..J,.,_. (208)

Taking V.I= 11.18 km/sec and know-

We can see from Table 3 that the energy increase per unit mass (AE,,_) ....

is equal, for the Earth, to 283km2/sec 2, which is smaller only than the

value for Venus (315km2/sec 2) and for Jupiter (661km2]sec2). It is in-

teresting to make a comparison of the maximum distances from the Sun
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whichmaybeattainedwithvelocitiesV_ and V_ for various planets. The

velocity difference V2--Vlis equal for the Earth to 9.7kin/see, for Saturn

9.Skm/sec and for Jupiter 13.65kin/see; for the rest of the planets it is

smaller.

If it is required to determine the conditions under which the difference

V2--V_ attained by flying around a planet is a maximum, it is possible to

proceed as follows. We join the ends of the vectors I/z (Figure 14) by

the line CB. Then CB=V', is the velocity which has to be added geometri-

cally to the velocity V_ in order to obtain the velocity V_. Since for a given

velocity V, the deflection angle _=180°--2Q and the velocity V' t will have

maximum values if the vertex of the hyperbola is situated near the planet's

surface, and since fora given V_ the difference V2--V: will be a maximum

for m--a2, we obtain:

V 2- Vj =, g.. (209/

Let us find the velocity V, which gives the maximum of V',. From Fig-

ure 14 we have:

I/z= 2Vz sin ----_= 2V_ sin (90°-- a) = 2V.cos _. (210)
2

B,
v,

¢gZ z V0

FIGURE 14

Substituting cos a from equation (198) we obtain

v;= _v, (211)

V/ 2v; 2v:1+ _-_--+ v'.

We find the maximum value of Vt for a given V,_ from the equation

_v___;=o. (212)
dVz

Differentiating (211), we obtain

d V_ 2 :":
/ 4 2 3/22v_ 2v_ / 2v_ 2v,_ x

,v. 1/

x +7.)=

2Vz, 2 z 4Vt

+ _2 +-_. - -O2--_Cj
_-0.

+7_+7-_)
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Hence

or

'2v:
_],

v'.

VI

V,= _ =0.841V,. (213)

This value of V, is, therefore, the same as the value obtained for

(hE.,i,)ma, (see (201)).

From (198) we have again a =57°1B ', and

13= 180°--2a = 65°42 '.

_2'Az

FIGURE 15

From (211) we obtain

2V, ¢__+ ! 0,910V." (214)

Let us now determine the velocities VL and V2 and the angles a,---a_, a,,

and a,_. First of all we see from Figure 15 that for Vp<V, the velocities
V, and V, cannot now lie on the same line.

This case requires a special investigation. Assuming for the meantime

that Vp>V,, we obtain from Figure 15:

_ v;. (215)v,= _- V'=c°s'2 2 '

v;
v,= ¢ v'_- v,,¢oe _-+- T ,

and

sin al_ _.. co s P_-.

For Vp= V z, we have Vl = 0, V_ V_, and as_-%---_90°--_,

we obtain from triangle ADB (see Figure 16):

(216)

(217)

If Vp< V,, then

VI_V 2 2Vp+ V,-2V, V,cosT, (218)
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andfrom triangle ACB:

v,=l/ v_,+ v:-2v_v,:o_(p+ _).

We have therefore:

(219)

v,- V,= vr V_+ v:-2v, v,¢os(p+_)-

-1/v_+ v;- 2vpV,¢osT. (220)

Let us determine now the angle X for which V=--VI attains a maximum

for V,-const, and consequently, also for I$=const.

C

D

F

FIGURE 16

The condition that has to be satisfied is:

d(V2--v,) =0. (22 i)
d7

Differentiating equation (220) with respect to "[we obtain

2v,v.s,.o+_)-_ 2VpV.,,°,=o.
or

v2 __-- s]n(p +1') (222)
V I sin _,

From Figure 16 we see that

V, sin¥=Vl sin al; (223)

Vt sin ([_+ "f) = I/2 sin a2; (224)

therefore

sin(_ + _') V_sln.j

sin] _ V1$111¢11 '

which, together with equation (222), gives sina_=sin aj.

We obtain therefore,

a,_'_a2or a,= lS0°--a,. (225)
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The condition aL=a2 can be satisfied only for V,_Vp when the point B lies

outside a circle of radius V, and center A; this is the first case which

we have already investigated. For V,>Vp we have _,=]80°--a2. Producing

AB and CB until they intersect with the circle of radius V, and center A,

we obtain two intersecting lines FG and CD'. The angle Q2 between them

is of course equal to half the sum of the central angles corresponding to

the arcs FC and D'G, i.e.,

1

%=-_-(/CAF+ZQAD),but _ CAF---- ]80°--(p+_) ,

since LDB0--]80°--%=a2 and /+OBD'=_ 2. The point D'is symmetrical

to D with respect to the line FQ, i.e., /OAD'=LDAO=_. Hence we have

which gives

I [t80*_(_+_)+d=90o. * (226)
a2=-_ 2 '

(227)

Therefore

_ CBD=%--_=p. (228)

From triangle ADB we obtain

v',= ,/f + v;- 2v,v,,co__,,

and from triangle ACB

v;= v_+ v;-2v, v, co_,.

Solving these equations with respect to V l and V_, we get

(229)

(230)

v,= v, co_,, + V % ¢os'_,- v_+ '__ Vz

•= + I/ V,-- Vp sin a¢V_COS _l "-- 2 2 2

v,= v, ¢o__,+_1/-v_," V__n'a,.

(231)

(232)

We have therefore

V,- V,= Vp(cos%-cos,,,)=

--2Vpsln_a2--az sin_,_+=l
(233)

and since

then

,2+ ", = 180+=90" and "_t.___=_ 13;
2 2 2 2

V 2- V, = 2V. sin -_.
(234)
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Obviously, when V, varies, we obtain the maximum of V2--V J at the

maximum of sin --_-_. From equations (195) and (198) we have:
2

_=90°--e and sin _--, I (235)

V '+7.+ v_

The maximum value of sin _-- is obtained for the minimum value of V_
2

which is equal for the case considered to Vp, i.e.,

sin Bma___x== i ,

2 .jr 2v_ 2v_,
V '+ -P_-.+ v'.

(236)

and therefore

V_-- _J'l=2VpS|ll _mlx ._ _Vp (237)

2 2v_ ___
¢' + -_i-+ v_.

v

The velocity V2------/zr--is larger than Vp for large external planets, as

can be seen from Table 3. In this case, formulas (209) and (214) are in-

applicable since they refer to the case Vs< Vp, and formulas (236) and (237)

should be used.

To determine V, and V 2 for this case, we turn to formulas (231) and

(232). For a,=90°nu+ and a,=90°-- 2_---, we obtain

(238)

(239)

Omitting the lower sign which corresponds to the maximum decrease of the

velocity, we obtain for V,=Vp:

V, =0;

I/2--2 Vp sin p'_
2

If we wish to acquire an additional velocity when flying around large planets,

we must approach them with zero initial absolute velocity (V,=O).
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7. FLIGHT AROUND PLANET'S SATELLITE FOR ACCELERATING OR

DECELERATING SPACESHIP

Let T be the planet's center, L, the center of its satellite, Vr, the ve-

locity of the planet around the Sun and VL, the velocity of the satellite

around the planet (Figure 17).

The satellite's absolute velocity around the Sun is obtained by geometri-

cal addition of the velocities V r and Vt (Figure 18). Let us denote the re-

sultant velocity by V. To find the maximum of the difference (V_--Vi)rna_ we

can proceed as in the case Vp>V,. From (209) and (214) we obtain:

V,-- V, = Vz=O.91OV. (240)

where V. is the velocity a body acquires by falling on the satellite from

infinity.

Denoting by I/3 the velocity of the spaceship relative to the planet, we

see that one must distinguish between the maximum increase of the absolute

Sate/liters orbit

FIGURE 17

velocity, i.e., (V2-Vl)max and the maximum

difference V2--(Vr+ V3}.

Taking-off from the planet and consuming

a certain amount of propellant, we reach a

certain velocity Vs after overcoming approx-

imately the entire pull of the planet. The

question arises as to which course is the best.

Either we could direct V3 along Vr with-

out flying around the satellite (in this case

the final velocity is V3+V r) or fly around the

satellite and direct V3 to obtain a maximum

absolute velocity V_ after going around the
satellite.

In order to solve this problem and to de-

termine the maximum advantage which can

be obtained by flying around a satellite, we

determine the maximum of the velocity:

W=V2--(V3+Vr). This calculation, as well as the calculation made above of

the variation of the spaceship's kinetic energy in flying around planets, is

not quite exact. Firstly, the action of the Sun on the planet, on the satellite

and on the spaceship is not quite the same. Secondly, due to the orbital mo-

tion of the planet, the velocity Vr after flying around the satellite is inclined

by some small angle with respect to the velocity Vr before. Thirdly, the

velocities Vt, V_, V3. V, and V', are completely attained in magnitude and di-

rection only at art infinitely large distance from the planet and from the sat-
ellite. The error in the direction of Vr will be rather small due to the

shortness of the time taken to fly around the satellite. Furthermore, the

distance to the Sun is large compared to the distance between the spaceship

and the planet or the satellite, so that the action of the Sun on all the three

bodies is almost identical. The greatest inaccuracy in the case of flying

around a satellite is caused by the third of the above-mentioned reasons.

The approximate value of this error may be estimated by determining the

"residual potentials" of the planet and of the satellite at the distances at

which the beginning and end of the fly-by is assumed in the calculation.
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In Figure 19, BAG is the velocity triangle after the fly-by, BAD, the one

before the fly-by, triangle BEA gives the geometrical sum of the velocities

Vr and VL and finally, in triangle BED, the side DE represents the space-

ship's velocity relative to the planet before flying around the satellite.

From triangles CDB and DEB we see that BC--BD _< DC or V 2- V,_< V,;

andthat for V,>Vr,BE+ED>_BD or VT+V3>_V ,. Adding both inequalities,

we obtain V2_V',nUVr-I-Va or V;_V,--Vr--V j or V',_W. For a given V,

the maximum value of _V, W=V_, is obtained if the points D and E lie on

the line CB, since then V_--VI-_V', and V.---_Vr+V s.

E

c , v_' D v,

A
FIGURE 18 FIGURE 19

If V,<V T, thenV_--V,_ V;. Replacing in this inequality V, by Vr, we
obtain V_--V T< V; and, subtracting Va from both sides, we obtain

v=- v_- v_<v',- v3or w< V;- V_.
If the points E and D lie on the line CB, then V2--V,=V_ and V,--Vr--V,.

Therefore,

_= V,-- Vr-- V_=(V,-- V,) +(V,-- V,)- V_=V;-- 2V,.

Therefore, for a given V',, i. e., for given V, and _ (see equations (210)
and (235)).we obtain the maximum value of W if the points D and E lie on

CB, and E lies between D and B (Figure 20).

In the case of maximum V_ we also obtain the maximum of W, W=V;.
But

P • (210)V'z=2V, sin _-,

Since

slnP---= ! (235)
2 ./ 2v; 2v;

V l +-p-:.

V..,._=0.841V.; V:,,,,,=O.91OV.

and V', first increases with V, and then decreases, for Vt>Vz=,,, i.e., for

VL>0.841 V., we obtain

W,.,.= Vz,.=.= 0.910V..

where V_ is the velocity which a body acquires by falling on the satellite if

it had zero velocity relative to it at infinity.
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If VL_0.841 V_, then we obtain V_,_ for the maximum value of V. equal

to VL, i. e., when the points D and E coincide.

In this case

P (241)Vz= V z IF_ V'z= 2V t sin -_-.

A- vp

FIGURE 20

8. ADVANTAGES OF ACCELERATING SPACESHIP BY ROCKET ENGINE AT

HIGH FI_ICHT VELOCITY

If we examine the flight of a rocket relative to a body whose attraction

it must overcome, it turns out that in order to obtain a high final flight ve-

locity it is rather advantageous to accelerate the vehicle at high flight ve-

locity. In flying around celestial bodies, the maximum flight velocity is

obtained at the minimum distance from them. It can be easily shown that

the best result for flight around the Sun is obtained if we accelerate the

vehicle near the perihelion; for flight around planets or their moons, we

should accelerate at locations nearest to their surface.

Let us examine flight around the Sun.

We shall use the following notation:

r,, radius-vector to point of elliptical, parabolic or hyperbolic trajec-

tory at which rocket was accelerated for comparison with effect of

acceleration given at perihelion;

r0, radius-vector of perihelion of initial trajectory;

V,, flight velocity at distance r, from Sun before acceleration;

V,, flight velocity at perihelion at distance r0 from Sun before acceler-

ation;

V,, additional velocity imparted to vehicle for consumption of given

amount of propellant (this velocity increment does not depend on

vehicle velocity) ;

P,, potential of Sun per unit mass at distance r, from Sun's center;

P0, same at distance r0 from Sun's center;

V', flight velocity at distance r, from Sun after accelerating vehicle at

perihelion (at distance r0 from Sun);

V", same when vehicle was accelerated at distance rL from Sun;

V", flight velocity at distance ro from Sun when vehicle was accelerated

at this point.
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The maximum flight velocity after acceleration is obtained if the direc-

tion of the additional velocity V, coincides with the direction of the flight

velocity before the acceleration, since in this case the velocities are added

algebraically.

For acceleration at a distance r, from the Sun we have

V"=V_+ V_, (242)

and for acceleration at a distance r0 from the Sun

V'"=V,+Vo. (243)

The increment of kinetic energy per unit mass is equal to the variation

of the solar potential, so that

Pl-- P0, (244)
2

(V°+V'_--(V')_-- PI-- Pc. (245)
2

Equation (244) refers to flight from A to B before acceleration (Fig-

ure 21), and equation (245) - to flight from B to C' after acceleration at ro.

\\

>
FIGURE 21

cceleration

give n at

perihelion

From equations (244) and (245) we obtain

Hence

vg- v_= (Vo+ v,),- (vT:

v'=l/ v;+ 2V,Vo+ V_,. (246)

This formula may also be written in the form

( V')_= (V _,+ V_ + 2V, Vz) -- 2V, V, + 2VoW z=

= ( v.+ v,), + 2v, ( Vo- v,) = ( v,,)2 + 2v. (Vo- v,).

Then we have

(V')2--(V")2= 2V,(Vo--VO. (247)
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We see that the velocity V' obtained after acceleration at tile perihelion,

will be larger than the velocity I/" obtained after acceleration at a distance

r, from the Sun, both velocities V' and I/" referring to the same distance rr

from the Sun. In formula (247), we always have V0>V_.

Assuming, for example, that

V_=30 km/sec, V0_70 kin/see and V,_ 10 kmlsee,

we obtain from (242):

V"= 10+30=40 kin/see,

and from (246)

V' _ y3tj 2+ 2.10.70+ 10_=49km]sec.

The additional velocity V_, obtained at a distance r, from the Sun and re-

sulting from acceleration given at the perihelion, is equal to

V_= V'-- 1,'1. (248)

In our example

V_=49-- 30= 19 km]see,

whereas direct acceleration at a distance r. from the Sun would give only

V,=10 km/sec.

If we denote by x the relative gain obtained from acceleration at the

perihelion:

V_-- Vz
x= _, (249)

vz

then

v; 1/v] + 2V,Vo_v_- v,
Ix_

V, V,

=;/ V." 2Vo++wt--

(250)

Let us determine the values of the additional velocity V, for which the

value of x will be a minimum or a maximum if the velocities V and Vn are

given.

From (250) we obtain

[(x+ 1)v,+ V,l_=V_,+ 2V, Vo+ v_,_(x + l), v/+
+2(x+l) v,v, + v_,

or, after simplification:

(x+ U"V,-- V,-I-2(x + 1)V,- 2vo=o.

Further
x _ V, + 2xV,-l-2x V_+ 2 V_-- 2Vo -- O,
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Hence

or

V =?(v0- v,-xv,) (251)
.t(x+2)

Using the notation:

VO--_ x

V. v,

2VI x(x+2)
(252)

and

(252) takes the form:

E----v, (253)
2 Vt

",1--_ , (254)
vj

• x(x + 2) " (255)

From (249) we obtain

and from (253)

V',=(x-}-I) V, (256)

Thus, we have

V,=.2V,_. (257)

v',=(x+])2v,, (_-x) (258)
x (x + 2) '

V,= 2V,(_-- x) (259)
x (x+ 2)

These formulas may be used if the velocities Vo and V, and the relative

gain x are given. From equation (259) we see thatx_-,i, if V,_O.
In other words, for Vz = 0

Vo--VI
xm,,=_ (260)

vi

and for x= 0 we obtain V,=oo.

Thus, the maximum relative gain in the case of acceleration at the peri-

helion is obtained for an infinitely small additional velocity V,, if the veloc-

ity V_ at the distance r, from the Sun and the velocity Va at the perihelion are

given before the acceleration. This maximum relative gain is equal to

Xmzx___ VO-- 171 .

Vl

There is no relative gain (x=O) if the additional velocity is equal to infinity
(V,=oo).

The maximum relative gain increases with the ratio V0 : Vl. If the Sun

was concentrated at one point, then the maximum value of Vo, as well as the
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correspondingxma,wouldbeequalto infinity; thelimit is thepossibilityto
approachtheSun.

As an example, let Vo=7Okm/sec and V_=Tkm/sec. Then we obtain

Calculating L V't and Vz by (255), (256) and (257), we obtain for the

present example the following table of additional velocities V, and V',. They
are obtained at a distance r, from the Sun's center if the acceleration was

given at point C" (velocity V,) or at the perihelion (point B, velocity V_) for

the same propellant mass ratio in both cases.

x 9 8 I 6 S 4 3 1

_ ..... L_ io
Vz, krn/sec 0 0.175 I o , 0 875 1.60 2.92 s.60 12,25 I 37.3

V',,km/sec 0 1.577 3156 ] _i_2' 9.60 14.60 22.4 56.7]74.6

o I  .oo

For the absolute gain'(V'_--VD from acceleration at the perihelion, we

obtain from (258) and (259) the equation

_mjf

v;-v,=2v, _$_.

The maximum absolute gain is obtained for x = 0 and Y,=oo.
we have

(V'z--V,)_ax= VI_= Vo--V .

(261)

In this case

(262)

In our example

(V'_--V,)_, =63 km/sec.

This gain increases with the additional velocity V,. In the best case it

is possible, as we see from equation (262), to gain the whole difference

between the velocity V0 at the perihelion and the velocity V, at a distance

r, from the Sun.

For planets the ease when they are first at practically infinite distance

(r,_o_) and then at the nearest distance from the spaceship (r, denotes

the distance between the spaceship and the planet considered) is of in-

terest. All the formulas derived above are applicable to this case, only

the velocities should be taken relative to the given planet. How the veloc-

ities relative to the Sun then vary, will be investigated in a special article.

It is always better to fly in trajectories which pass near the Sun or the

planets when travelling in a spaceship from one planet to another and de-

siring to increase the flight velocity, since they may give a considerable

decrease to flight duration. However, white the maximum increase in
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kinetic energy is obtained for acceleration at the perihelion, the minimum

flight duration is obtained if the vehicle is accelerated somewhat earlier,

on section ABof the flight trajectory.

9. DETERMINATION OF FLIGHT TRAJECTORIES IN COSNIIC SPACE WITH RETURN

TO EARTH AFTER INTEGRAL NUMBER OF YEARS

Let us introduce the ratios of an arbitrary radius-vector to the radius-

vectors at the perihelion and at the aphelion as variables.

Denoting (see Figure 22) the radius-vector to the perihelion by r,, and
r_

that to the aphelion by r2, and putting ro/r=To; -_-------T2, we can give the

formulas derived above a particularly symmetric form.

We have

ro + r_

2

Or
rl 2

-------p-----_. (263)
a 70 ÷ T2

FIGURE 22

Above, we have introduced the quantity T--r,/r,, where r._ was the radius-

vector at the aphelion (in the previous calculation it coincided with the ra-

dius of the orbit of the destination planet) and r, was an arbitrary radius-

vector (in the previous calculation it coincided with the radius of the Earth's

orbit). Therefore, we have now to replace T by y= and p by 2 Sub-
70 4- 72

stituting these expressions in the corresponding equations we obtain:

V' = t"' _/3 -- 2"--_--" -T 2_//7o+ 7, "_o21°7';+], (264)

_// To'[2cos_= "/o+_--1 ; (265)

---- l/ (I - 7,) (T_ - b. ( 266 )lg
Y "/o'ft

tg_= d'(I -- ].) (_,_-- 1) ; (267)

cos _= T° (2T2- t)- _= 2T072- TO--T2 (268)
72--To 72--7o
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a _0+_f_k.
r 2

r

re
7--1o;

E-- __L__.

V, = V, V f _ro ."_2(1o + _) '

v = v, v/ .. 27., ,"go(Io + "r2)
V

V2=_;
r' "a

E _,/" I
tg y-r-__i;,/

,_ ,.t1 _ ;

till'='--'(T°.t 2+T2/1%t- _,+,oY'---JJ",i, _).

(269)

(270)

(27z)

(272)

(273)

(274)

(275)'

(276)

(277)

(278)

(279)

In addition, we also have

L_---+ T°+-9--_"'_-'1' 2 (T'-- l'

and using (272) we have from equation (44)

(280)

tg-_-= tg-'E" = "_o(_'_- 1) " (281)

From (272) we obtain:

z____. I+_
"to 1---_' (282)

and from equations (274) and (275)

V, = V l IF JE° (283)
V _a '

Vp= V, V _. (284)

Let us determine the trajectories from which it is possible to return to

Earth after m years ( m being an integer) and n complete revolutions around

the Sun if the Earth served as the departure planet.

The formulas will have a general form.

Taking
•=-_ _,, (285)
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we obtain from (278)

or

21 m \%
To+T,= L-Z) •

(286)

In order that the Earth's orbit of radius r should intersect the ellipse, we

must have 0<10<1.

We therefore obtain for _2 the condition:

Since -f,>/1, then

m I m_ !

(287)

Therefore, nm=x--< 2.8284 m.

For a given value of m we obtain from Table 4 the maximum number of

revolutions of the spaceship around the Sun.

TABLE 4

_o

85

Let us first consider the case when only one revolution of the spaceship

around the Sun during m years is desired, Then n= 1, and we obtain from

equation (287):

2.t'l,>/-h>/2m'/, --t. (288)

In this case the radius-vector at the aphelion will lie between the limits

_..in = 2r/i.%-- !; (289)

12,,,,,,= 2re'l,, (29 O)

and the minimum distances from the Sun will be Y0 = 1 and Y0 = 0. In the

second case the ellipse is transformed into a straight line segment with the
Sun at one end. This follows also from formula (270) for the semiminor

axis of the ellipse.

For 70 =1 we have b/r= V_2, and for _0 =0 we have bJr=O.

From equation (268) it follows that for y0 = 1, we have cos0= 1, i. e. ,

0=0, and for y0 = 0wehave cos0:-l, i.e., #=180 °. For $0=1 weobtain

the minimum required additional velocity Vz, and for "_0= 0 we obtain the

maximum additional velocity. Correspondingly, we obtain in both cases

the minimum and maximum propellant consumption for the flight.
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The form of the flight trajectory and the required velocities are charac-

terized by the quantities, given in Table 5, where for a given m the velocity

V----VJ_//2-( ! 7o+1 72 )

is constant, since

We have

"[o+ "[2 =20 is a constant.

v=v,l/2(+,-'.__ -') v,}// .Y "l'2r,,ax T_mi. -I- I

For To = 1 we have:

For To= 0 we have:

E= "r2m+.-1; [i=0; _=0;
"[2min + [

V,= V- V,;

V,,= V; I//
2 V

"[2rni. (T2rnln + l) 72rainIV

p=90°; Vo=O; vp=oo;

V.= V, _// 3- 2-2-;
72m,x

tg_= --l/2 (32re'x-I+ )= _._V_V
]2max Vj

Xo = 0 is interesting only as a limit case; in reality it is impossible to

approach the Sun closer than, say, y0 = 0.3, i. e. , to a distance somewhat

shorter than that of Mercury.

For ?o=0.3 we have:

"I_= 2rn'/, --0.3;

air =,n';.: bJr = ]/-0-_.372;

to/r-= 0.3;

cos I_= 1/_ 0,;372..
V 2r. "-- 1 '

. 1/0 7(_2-- I) 0.3_2--m '/,

tg_=___,_-; cos_= m';,--0.3'

0.7
__ ,,,_'+-o__3,,,,;,; tg--_.=_; ,I:---_-(_--Esin_):

V/ 0.3v,= vs'"------L"V.- V, ----_,;
sin _ ' "r2m &

V. = V, V t
32

The quantities calculated by these formulas are given in Table 5.

Let us now consider the radius-vectors at the aphelion for the case when

the number, n, of revolutions around the Sun till return to Earth is larger

than 1.
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For _0 = 1, (287)gives

and for _0-- 0

2 ! m _'l,_'-'"ffi _T/ -!, (291)

_,= _-_) . (292)

It should be noted that if m and n have a common factor, cancellation

is possible so that the flight around the Sun with return to Earth is made

in a shorter period. This means that for m> 1, we need not perform the

calculations for all integral values 0<n<23/2 m. The results of the calcu-

lations are also given in Table 5.
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THE USEOF LIGHTPRESSUREFORFLIGHTIN
INTERPLANETARYSPACE

FROM THE EDITORIAL STAFF

The present article consists of two of Tsander's manuscripts: "The Use

of Very Thin Sheets for Flight in Interplanetary Space" and "Light Pressure

on Multiple Mirrors". The first comprises sections 1-4, the second sec-

tion 5. Both manuscripts are unfinished. The first manuscript was pre-

pared for print personally by Tsander, as can be seen by his notes; the

date "18 July 1924" appears near Table 1. The second manuscript bears

the date 1925. The article was prepared for print by M.K. Tikhonravov,

Doctor of Technical Sciences. Figure 4 was redrawn.

In his book "Mezhplanetnye puteshestviya" (Interplanetary Travel) (1923

edition) Ya. E. Perel'man investigates the possibility of flight to other plan-

ets with the aid of very thin mirrors. Unfortunately, he does not distin-

guish between take-off from Earth until orbital velocity is attained and flight

in interplanetary space itself, where it is possible to change the velocity by
means of mirrors.

It is, however, necessary to establish the radical difference between the

requirements which these two sections of the flight path impose on the driv-

ing force. The force required to attain orbital velocity of 8 km] sec varies

between 1/6 of the spaceship's weight on Earth (if wings are used as on air-

planes) and 10 times its weight (for a vehicle without wings). It is then de-

sirable that the acceleration period should be as short as possible. On the

other hand, rather small forces are sufficient to accelerate the flight after

attaining orbital velocity, as will be shown presently. If the accelerating

force P is perpendicular to the direction of the Earth's attraction, the

smallest force will produce a velocity increment, since in the absence of P

the counteracting force of the solar attraction together with the Earth's

attraction would return the ship to the point "A" with its previous velocity

(Figure 1). One can also say that the work of an arbitrary small force P,

which is equaI to P S cos _ ds, increases the energy level of the orbit of the

spaceship, where a is the angle between the flight direction and the force

P, and ds is a path element. At the same time, this small force changes

the flight trajectory. The same is true for flight around the Sun in inter-

planetary space far from any planet.

There is only one case in which it is impossible to use small forces.

This happens when the spaceship enters a zone near a planet or near the

Sun along its path, notwithstanding the action of the small force. It is then

necessary to use a large thrust rocket near the dangerous places. These

cases are rare, however, since the planets and the Sun occupy only a small

part of the solar system's huge volume, so that for almost all motions there
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it is possible to use rather small forces, carrying along a high thrust rock-

et only for emergencies and for correcting the path near a planet.

The possibility of using smal] forces over prolonged periods also

speaks in their favor, since flights to other planets will take a long time.

This will be shown in a special article. Furthermore, the use of light

pressure does not require propellant consumption and therefore this kind

of flight will be particularly cheap compared with rocket flight. It will be

shown below that very high velocities can be attained with the aid of mir-

rors for considerably lower total weights of the spaceship's entire struc-

ture than is possible by means of rockets.

_ Spaceship

Direction of solar rays

FIGURE 1

The light pressure on sheets is extremely small, but the length of the

paths along which this pressure may act, i.e., the distances between the

planets, is immense. Therefore, it is interesting to examine what size

a mirror should have in order to develop along these immense distances

velocities similar to those achieved by rockets. The weight of the sheets,

their manufacture, the stresses arising in them and the economic aspects

of such a flight are also important topics.

I. LIGHT PRESSURE INTENSITY

Let us use the following notation:

p, specific light pressure, g/m2;

[, sheet area, m2;

P, total light force on surface f, g;

E, amount of radiant energy falling on entire sheet per unit time if

direction of rays is perpendicular to sheet surface, g.m]see;

E', amount of reflected radiant energy;

E, amount of radiant energy contained in unit volume before falling on

sheet, kg.m]m3;

E', same after reflection;

V, light velocity;

v, mirror velocity (positive in direction of light beam), m/sec.

Let us deal first with the case of a beam perpendicular to the surface.

We have then for the incident beam:

E=fE(V--v), (1)
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andfor thereflectedbeam(for perfectreflection)

It canbeshownthat:
E'=fE'(V+ v} {2)

ET =\_--v-v ] " (3)

On the other hand, the useful work per unit time is equal to [p_, and this

is equal to the energy lost in the reflection

Hence

.fpv=E- E'=/[E( V--v)--E'( V+ v) =rE l(V--v) --

(v --v)_ |_. 2,fEv (v -- v)
v+v J v 4-v

P= 2£ (v -- v) (4)
v+v

For nonreflecting sheets the light pressure p is equal to half this amount,

i.e,,

p'=E v--_ =pp_ (5)
v+v 2

If the rays fall on the surface at an angle a<90 ° the perpendicular com-

ponent of the pressure is

p .... _P,_.x sin__; (6)

p: =p" sin_ a. (7)

If the reflection is not perfect, the light pressure will be between po and

P:.
Since the flight velocities will very probably be lower than 100km]sec,

and therefore,

v 100 l

V 300000 3000 '

we can neglect v relative to V and we then obtain with sufficient accuracy*

p,.,_ = 2E; (8)

p'=E, (9)

i. e., for nonreflecting surfaces, the specific light pressure on a surface

perpendicular to the light rays is practically equal to the radiant energy

contained in unit volume, and for totally reflecting surfaces it is twice as

large.

The solar constant, i.e., the amount of radiant energy falling in

1 minute on 1 cm 2 of surface perpendicular to the rays** is equal to

* Tsander based this derivation on Newtonian mechanics. The same result is obtained from the law of

momentum in the special theory of relativity. - Editor's note.

** According to Abbot the average value is I = 1.938 cal/rnin.cm 2. For this value of I we find p" = 0.46

and Pm*x = 0.92mg/m 2. (Russell ct. al, "Stars and Their Spectra", 1927; "Fundamental Problems of

Cosmic Physics", 1934.}- Editor's note.
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/s 1.91 eal/min.cm2,

ond is

but since

then

The amount of radiant energy falling on i m2 per sec-

L=427 104 /=136000 g.m/sec.m2
60

L=_-==EV,

p,=E= L__.= 136°°°=0.453 mg/m 2
V 3. lOS

p=.=0,906 mg/m 2.

2. SHEET THICKNESS

Edison produced very thin sheets* of 0.001 mm thickness, 2 m width and

1000m length by electrolysis of nickel on a slowly rotating shaft.

"Metod izmereniya davleniya sveta pri pomoshchi tonkogo metalliches-

kogo listka" (A Method for Measuring Light Pressure with Thin Metallic

Sheets), which appeared in "Uspekhi fizicheskikh nauk" Vol. I, No. 2, p. 144.

1918, described the following experiment. The light of an electric bulb

fell on an aluminum sheet, of length I--7.43cm and surface weight

q--" 1.16.10-4g]cm 2, placed at various distances, The energy of the bulb at a

distance of 10.5cm was E=1.95.10 -serg/cm s.

The following deflections were obtained:

Distance of the sheet

from the lamp

10.S cm

II.S cm

12.S cm

Deflections of the sheet

me,tared

a0 = 2,S.i0-3cm

2.0

1.5

calculated

a = 2.6'I0-3cm

2,3

2.0

Taking _ = 2.8 g/cm 3, for the specific weight of aluminum we found that

the thickness of the sheet was

_=1"16 10-4= 4,14.10-4ram ,
2.8

To check, let us deterr_.ine the sheet's thickness from the moment it is

deflected. For a perfectly reflecting surface, the light pressure on the

* Tsi01kovskii, K.E. Gondola metalticheakogo dirizhablya (The Gondola of the Metallic Dirigible).

Kaluga. 1918,
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sheet is theoretically equal to

p 2E' 2"1"95" lO-i
,,,.x--'-- = _ =3.98.10 -s g/cm2.

The moment of the light force with respect to the sheet's rotation axis
it

P,,,_- is equal to the moment of the gravitational force: ql _, where I is

the sheet's length and a its deflection.
Since

and since

we obtain

qfa p it
:2 _ minx_ t

q= "]r_,

8 =_=PmtxI 3.98-10-¢.7 "_3--_4"06 Crr_fl-[-- ram.
'ya 2.8.2.6.10-_ lOS 2460

Both values of the sheet thickness are approximately the same. It fol-

lows therefore that the calculations of the sheet deflection (see table) were

done for a perfectly reflecting surface. Let us calculate the ratio ao/a, i. e.,
the ratio of the actual force to the theoretical one. We obtain:

2.5 : 2.6=0.962

2,0 : 2.3 = 0.87

1.5 : 2.0=0.75 I average- 0.86.

This calculation shows that aluminum sheets of _4.10-4mm thickness

give light pressure values which are closer to the pressure p for a per-

fectly reflecting surface than to the pressure p' = 0.5p of a nonreflecting
surface.

The same very important result is obtained in experiments with metal

films illuminated through* .....

It can be concluded that sheets of 0.001 mm thickness can be manufac-

tured** and that their opacity will be admissible.

A new problem, however, appears: is their strength sufficient?

Assuming for pure aluminum a yield point k, of 1500kg]cm _ and an ad-

missible stress of 350kg/cm 2, we find that for a thickness of 0.001 mm a

force of 35 g on 1 cm width is allowed; for a thickness of 0.01 mm a force

of 350gper centimeter is allowed. Assuming that thewidths of sheets used

for interplanetary flights will be rather large, and the light force rather

small, we may conclude that the stresses in the mirrors cannot be con-

siderable; they will be determined later after calculating the surface re-

quired.

* In Tsander*s manuscript there is a blank space here. - Editor's note.
** Goldsmiths prepare even thinner sheets. They brought the thickness of gold sheets clown to 6 = 0.0001 ram.
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3. SHEET SURFACE ARE% REQUIRED FOR FLICIqT IN INTERPLANETARY SPACE

In this section we shall determine the forces acting on the sheets, the sur-

face required, and the magnitude of the possible velocities.

Let us consider first the simplest case, i.e., tile action of a force in

the absence of gravity. We shall use the following notation:
t, acceleration time;

s, path length;

c, acceleration magnitude;

go, gravitational acceleration at Earth's surface:

M, mass of spaceship including mirror;

G, weight of spaceship including mirror.

g_, gravitational acceleration of Sun measured at distance of Earth

from Sun;

R, spaceship's distance from Sun;

R,, Earth's distance from Sun;

V,, Earth's velocity around Sun;

T,, Earth's period of revolution around Sun;

Orn, mirror weight measured at Earth's surface.

Then, at an average distance equal to the distance of the Earth from the

Sun, if the direction of tile light rays coincides with the flight direction, the

work spent on accelerating the ship will be equal to

Ps = pfs,

On the other hand, this work is equal to

_-(v _- v_,

where V0 and V are the initial and final flight velocities.

Consequently

_(M V, - v_)=pfs. (lO)

In order to obtain an increase in kinetic energy due to light pressure,

when orbiting the Earth (Figure 2), we shoulduse the mirror in each revolu-

tion from point B, through C. to B',, while along the path B'_D,_B,+, the mir-

ror should be inclined so that the rays slide by it without performing work.

In this way the attraction force of the Sun may be much larger than the force

P. Since point B, will lie higher than point B,, relative to the Earth's cen-

ter, apartof the useful work will be transformed into potential energy

M_ gdh,

where Mg is the Earth's force of attraction, and h_ and h2 are the vehicle's

initial and final heights, i. e., the distance of B, and B, from the Earth's

surfac e.

The exact formula for the energy acquired by the vehicle is

/I

A=M gab+ --_-(V],- V_)=pf(s.-s,), (11)
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where indexes 1 and n refer to points Bt and B,. and the difference s,--s_

is the sum of the differences of tile distances of points B_ and B, from the

Sun*.

The total work which has to be done to overcome eomp]etely the Earth's

attraction is equal to Mgor, where r =6370km is the Earth's radius.

FIGURE 2

In order to orbit the Earth it is necessary to expend half this amount of

work. In order to escape to infinity from a circular orbit, it is therefore

required to expend the work Mgorl2. Let us consider this ease. We have

A = Mgor =pf(s,-- s,)
2

As an example we take G=Mgo =1000kg, p=0.75pm,_ =0.75.0.906--0.68mg]m 2.

Then

_(s,--sl) =4.69. l0 Is m3.

If the mirror area is equalto 100,000m2=0.1km2 we obtain s,,--s_:

= 4.69.101°m = 46.9"106km.

If the thickness of the mirror is 0.001ram it weighs 6m =280kg. We

shall approximately determine the time during which the work A is per-

formed. For an average velocity of Vt=8km/see, a path of 46.9.10Skin

will be traversed during

s_--s-.-.....-_l _- 46"9"106 5.85.10_see.-----67.7 days.
V_ 8

Since the length of time during which the mirror will be in action will

constitute approximately 40 % of the entire orbiting time, the total time will

be equal to 169.0 days**.

* (s.--s0 is numerically equal to the sum of the distances be_,veen the points Bi and B_ for all loops of the

orbit, where i= 1, 2,...n. - Editor's note,

** Notwithstanding the fact that the average value of V, is overestimated, the total time will be larger,

since the plane of the mirror is assumed to be perpendicular to the direction of the solar rays during the

entire orbiting time.
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We note that if larger mirrors with an area 100 times greater, say, will

be in orbit around the Earth, and if their light will be directed to the spaceship' s

mirror with the aid of guiding astronomical tubes*, then the time may be

shortened to approximately 1.69 days, depending on the degree of reflection
from the mirror.

Let us consider the case when the plane of the mirror attached to the

spaceship is perpendicular to the direction of the solar rays incident on it.

For a constant area the light pressure is inversely proportional to the

square of the distance. The Sun's attraction follows the same law so that

their ratio is constant.

Let use use the following notation:

K, the force of attraction between the Sun and the spaceship;

K,, the same, minus the light pressure on the mirror;

M,, the Sun's mass;

k, the Newtonian gravitational constant.

Then, we may write

k MM,
K= --_--, (12)

and

Kt=K--P. (13)

The force P can be expressed by

where C is a constant.

We then have

p=__C (14)
R'

_mM, --C (I5)
K, ----- R2

Introducing a new constant

we obtain

},=_- c-.--q--, (16)
MMj

K, = kIMM, (17)
R'J

Comparing (12) and (17) we see that the action of the mirror reduces the
resultant attraction force K, relative to the Sun's attraction in the ratio:

-_L=I C _ kt (18)
K kMMs k

Since (17) has the same form as the attraction law (12), a spaceship with

a mirror will move around the Sun along the same curves as those of celes-

tial bodies, i.e., along a circle, an ellipse, a parabola, or a hyperbola.

We must, however, take the reduced value k, in place of the gravitational

constant. Thus, an apparent weakening of the solar attraction is obtained.

* In other words, the solar radiation density will be increased.
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After overcoming the Earth's attraction, the spaceship still possesses

the velocity of the Earth around the Sun, but it will not remain in the Earth's

orbit, as it would without a mirror. Due to the weakening of the solar at-

traction it will move instead in an orbit whose aphelion lies farther from the

Sun than the Earth's orbit. This allows it to reach other planets.

In order to determine the extent of weakening of the solar attraction we

calculate the spaceship's attraction by the Sun at the Earth's distance and

compare it with the light pressure on the mirror.

TheEarth's mean orbitalvelocity is Ve = 29.2 km/sec, and the rotation peri-

od around the Sun is To =365.25 days. The average distance of the Earth

from the Sun is R, =147.108km. The spaceship's centrifugal force, equal
to the Sun's attraction is

MV_
K,=-- =5.9. I0-' (L (19)

R

Therefore, the force of attraction of any mass by the Sun at the distance
of the Earth's orbit is in the ratio

K__,= 0.00659.
G

to the weight of this mass on the Earth's surface.

FIGU'P-.E3

We see that the attraction of the Sun is rather weak. A spaceship weigh-

ing 1000kg is attracted to the Sun by a force of

K,=0.59 kg.

The total light force on a mirror with an area of 105m 2, assuming as

above that the pressure is only 0.75 of the value for a perfectly reflecting

mirror, is equal to P=68g. Therefore

----P=o.115.
K,

Thus, the mirror reduces the Sun's attraction force by 11.5 percent.
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Furthermore, we have

Kj kl ! P....... ! --0.115=0.886.
K /t Kc

Let us turn now to the determination of flight orbits and flight times.

Let use use the notation (Figure 3):

S, the Sun;

E, a point on the Earth's orbit serving as the departure point for the

elliptic trajectory EBN;

N, the aphelion of the trajectory which determines the radius R_ of

the orbit of the planet farthest from the Sun which can still be

reached by a given mirror if the mirror's surface is perpendicular

to the solar rays. For simplicity the orbits of the Earth and of the

planet are assumed circular.
Also the notation:

V e, the velocity with which the spaceship with a mirror would revolve

in the Earth's orbit (under a reduced solar attraction);

U_, the velocity at point E for motion along the ellipse EBA r using the

coefficient k of solar attraction (without a mirror);

U',, the same, using the coefficinet k' of solar attraction (with a mir-
ror);

Uav, the average velocity for motion along the ellipse EBN (without a

mirror);

Uav, the average velocity for motion along the ellipse EBN (with a
mirror);

Tel, the time of flight from E to N along the semiellipse (without a

mirror);

T_l, the time of flight from E to N along the semiellipse (with a mirror);

Z the eccentricity of the ellipse EBN;

R_, the radius of the orbit of the farthest planet that may be reached;

Re, the radius of the Earth's orbit;

a, the semimajor _xis of the flight trajectory, i. e. , of the ellipse EBN.

Then, from equations (12), (15) and (19) we have:

Ke M v _, kMM_
= _--;= '_--U'

hence

kM, .2= I,,/_,.

Similarly

, M V'e2 kMM s --C

Re R_

(2O)

kM_c .,=v,R,. (2_)

hence

From (20) and (21) we obtain

2 ,2 C
V,-- V, =

MR,,

312



For elliptical motion of celestial bodies we have

U _ I/Y-_-%-
u,= _vV __-y:

U_v--_,

(22)

(23)

where

d_ Re + Rm ;
2

Therefore

_ = R,,--R__._._._. (24)Rm + Re

V _---2"R.____e. (26)
Te

Also, from Kepler's third law,

r_, _'_ (27)
T_el a_ "

Dividing equation (25) by equation (26), and using equations (27) and (24)

we obtain

U, a__ 7", i//r_+ _g a [Rtyl, /1+ Y.v-:-,_, ro_V l----i-T=_-,xT/ l-_=

( :'. Y,.,F+_=_+s.

hence

u, = v, I/'i-'_-_. (28)

We assumed that the mirror starts to act when the Earth's attraction has

been overcome completely. In this cane we shall have t)_-V_, and, there-

fore, we obtain U,----UIi_. If the attraction is reduced by the light pres-

sure, we obtain, instead of (28), a similar formula

U;-_- V; I/'I-t-- _, (29)

and also

V,= V: V-[ + Y. (30)

The elliptical rotation periods are inversely proportional to the corres-

ponding velocities

r;l u, =VT-_.
"T_,=_ ",

hence

' F 2R_ (31)r_, =r_ll/-i+X=r¢l nm+R,"
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The time Fel is determined from (27):

--r (R_ + R, yI, r,

Determining V from equation (30) and C from equation (21) we obtain:

£ (33)v;, +

From (14), however, we have, putting R=:Re

p=e=M v2, Y, . (34)

R_ R, I +E

If E and M are given it is easy to determine the required mirror area.
It is equal to

f = ;TE,F;--£ (ss)

For G = 1000kg and P = 0.68 mg]m 2 we have

m 2
/=s 7 10_F4T .

RraIRe

E

I--£

(1--,£)-s12

Tel years

Tel day_.__._s
years

E

I+Z

/,km 2

Gm,kg(_=10-_ ram)

Gm,kg(_,=4.10-4 ram)

r2=IVT_-,
tt rain -_ (kz--350 kg/cm 2)

Mars

1.5237

O. 2075

0.7925

1.419

259

0.710

1.097

284

0,780

0.172

O. 1496

389

156

0,218

7.90

TABLE 1

j[upi{er

5.203 9,539

0,677 0.810

0.823 0.190

5.45 12.10

995 2210

2.72 d.35

1.291 1.342

1284 2970

3.52 8.13

0.404 0.447

0.351 0.389

912 1013

365 405

0.334 0,351

5,12 4.86

Saturn Uranus Neptune

19.183

0.901

0.099

32.2

5880

16.1

1,379

8100

22.2

0,474

0.412

1075

430

O. 362

4.72

30,055

0.935

0,065

60.4

11020

30.2

1.390

15310

42.0

0.483

0.420

1090

437

0.366

4.67
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The mirror's weight is given by

For chemically pure aluminum "/ = 2.6 g/eroS.

Taking 8 = 10 -3 mm we obtain

6,_=2.6. l0 -3 [ kg.

The foregoing table was prepared for the external planets. For compar-

ison, times of flight from the Earth to a planet are given both with a mir-
ror and without it.

4. STRESSES IN REVOLVING MIRRORS

According to Professor Stodola's book "Dampf- und Gasturbinen" (6th

Edition) one can determine the radial and tangential stresses in turbine

wheels of constant thickness. ]By these formulas one can also calculate the

stresses in revolving thin mirrors since in this case we have only expansion
forces. We have

t---- --Ax3 + blx +8 _; (38)

where

A --- (] _ ,,2)_,,,,_ (39)

We have used the following notation:

gr, the radial stress;

gt, the tangential stress;

E, the material's modulus of elasticity;

v, the transverse compression coefficient;

x, the distance of the section considered from the rotation axis;

b, and b2, constants which should be determined from the mirror's boundary
conditions;

_, the specific weight of the mirror's material;

_, the angular rotation velocity;

It= _..L the mass density of the mirror's material;
g

_, the elongation.

If the mirror does not have a central hole, then for x -- 0 we obtain _-- 0

since the linear elongation at the sheet's center is zero.

This condition gives b2=0, b2/x'-=O since near the sheet's center ar=a,
should hold. If the external edge of the sheet is not loaded, as it may be,

e. g., by an enclosed wire, then here too Or= 0. From equalion (36) we find

b _a+_ At2 where r2 is the radius of the mirror.
i l-b. 8 2'
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Substitutingthevaluesof bj, b_ and A in equations (37) and (38) we obtain

34-v _.
for x=0 o,-_-%=_.,

for x=r 2 %=0, at=_a.,

E

where %=I_r[ is the stress which would appear in a freely rotating ring
of radius r_.

Taking _=350kg/cm2, _=0.0026kg/cmS, E=981cm/sec2 and v=0.3we
can calculate _ and from it the number n of rotations per minute which is

given in Table 1.

5. LIGHT PRESSURE ON MULTIPLE MIRRORS

Light pressure in the direction of the light source

If a beam of parallel light rays (the same holds for any kind of waves)

fails on a surface A, is reflected under a certain angle, fails on a second

surface B and is reflected again, then the light force will have a compo-

nent in the initial direction of the rays (surface A) and a component in the

opposite direction (surface 8). The question arises: is it possible to find
such an inclination of the mirrors that the difference of the above mentioned

components will be directed towards the light source?

Let us use the following notation:

P_ and PL, the components of the resultant of the light forces on both

mirrors in the direction of, and perpendicular to, the source;

P, the light force on mirror A when it is perpendicular to the

rays;

a, the light's incidence angle on mirror A;

fl, the light's incidence angle on mirror B;

8, the angle between the normal to the plane of mirror B and a

pIane normal to the initial direction of the light rays (Figure 4).

Let us consider the case when both mirrors are perfectly reflecting. The

normal forces on the mirrors A and B are equal to

Pa =P sinZ a;

P_=P sin 2 t_.

The components in the direction of the light source and perpendicular to

it are equal, for the two mirrors together, to

P,=P4 sin a--P 8 sin _; (40)

Pt=P A cos a--P B cos,_, (41)

It follows from the diagram that ZSAB= 180°--2a. Let us draw a perpen-

dicular from B to AS, intersecting AS at F; then

Z FBA ,.90°- (180°--_a)= 2Q--90°.
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By definition ZGBA-_,, and, therefore, ZGBF-,_--(2_--90 °)

As can be easily seen, 8=90°--ZGBF=90°--fS+(2a--9&j=2a--f_. Substituting

this value of and those of PA and PB in equations (40) and (41), we obtain

P_= P[sin 3 a--sin' 13sin (2a--[31]; (42)

P,----P[sin 2 a cos a--sin _ [_c0s(2a--13}]. (43)

The direction of P, coincides with the initial direction of the light rays,

i. e., from the light source to the mirror. As long as Pr is positive, the

light pressure will tend to remove the mirror farther from the light source.

The question arises: is it possible to choose such angles a and _ that P,

will become negative? In this case the light pressure will tend to bring the

mirror nearer to the light source.

e. e

FIGURE 4

To find the minimum of the force Pr we equate the first order derivatives

of P_ with respect to the angles a and /3 to zero:

flPr 2 C--_-P[3 sin el os _ -- 2 sin 2_ cos (2,, -- 1_)]_ O: (44)

OP'=Pl--2sinpcos_sin(2a-_)+cos(2_--_)sin'p,],=O. (45)
08

From equation (45) we obtain

tg/l=2tg(2a--/_) ; (46)

and from equation (44)

x=3 sin 2 ct cos it--2 sin _[3 cos (2a--_)-- 0. (47)

Since the solution of these equations is cumbersome, we proceed as

follows: we give the angle _ and determine the angle a by (46); with these

values of a and 1_ we calculate the value of x by (47). Substituting in equa-

irons (42) and (43) the values a0 and [_, which give .x = 0, we obtain (P,)_,

and the corresponding value of Pt. Calculations are given in Table 2.
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The table shows that Pr has a minimum for _0 = 60 ° and a0 = 50°27 ' .

Substitution of these angles in equations (42) and (43) yields:

(Pr) =,,=--0.0334P;

Pt=--O.189P.

Thus, 3.34 % of the maximum light force P on the mirror A can be ob-

tained as a force directed toward the light source, e. g., towards the Sun.

The force P_ constitutes 18.9% of P. If we place another pair of mirrors

symmetrically with respect to the Sun's direction we can balance the force

Pt and we have only a force 2(Pr)m_. pointing straight to the light source.

If we place two mirrors C and D at a very small angle to the direction of

the rays from the light source so that the component of the force acting on

them, in the direction of the light source, is smaller than (P,)m_., then, of

course, the force resulting from the mirror system will also be pointing

in the light source's direction.

TABLE 2

Determination of (Pr) rain

20 o 40 ° 60 °

Og _)12 o 0.1828

2a---_ 0 10_18 '

a 0 15009 '

sin2 a 0 0,0680

cos ¢ 1 0,964

sln_ [3 0 0.1175

COS (_a--_) 1 0.986

3 s|n_ a cos a 0 O. t965

2 sin_ [l cos (2z--p) 0 0.232

X 0 -0,0357

0.4195

22045 `

31o23 ,

0.270

0.853

0.415

0.924

0.691

0.766

-0.075

0,8660

40°54 ,

50*27 ,

0.596

0.638

0.752

0,757

1.14

1.14

0

80 ° 90 °

2.836

70032 ' 90 °

75016 ' 90 °

0.940 1

O.255 0

0.972 1

0.883 0

0.719 0

0.646 0

+0.073 0

If we denote the width of mirror A by a, that of mirror B by b and those

of mirrors C and D, placed at equal angles _ to the light rays, by c and d,

then the width of the light beam falling on A and reflected from it is _qual

to a sin a. Since this width shoiald be equal to b sin [_ we have:

b= a si"---L . (48)
sin I_

Let us determine c and d. In the triangle IGH we have

L IGH=I80°_7--$;

We obtain therefore

/[HG= 180"-- 7--(180°--_) =8--_/.

c b

sin (&--)) sin'2 7

c=b sin(_--1) .

sin 2T '

(49)
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and similarly,

d_ b si, (_ + 7) (50)
sin 2"i

The maximum value of _ is obtained from the condition that the com-

ponent of the light force on both mirrors C and D in the direction of IB is

equal to (PD_,o. Denoting this component by Pco, we have

Pco=P-_-stn_,f-bP .-_-dsinZ,/,
a

hence

P(c+a) " (51)

Substituting the values of a, c, and d from (48), (49) and (50) and per-
forming some trigonometric transformations we obtain

or

sin3.r= Pcu sln "i'|in {}

P sin(2J--i_)slna

sin_ Pcu slnp (52)
P sin(2a--{8)slni

In our case, for (PeP)ma,_(Pr)mm = 0.0334P, we have sin_ ?m,,= 0.0575;

_,_,=13°511 , and since 8----2a--B=40°54 ' then

d= 1.758 b, c=0.977 b.

Light force on two inclined mirrors

Let AB and AC be two mirrors (Figure 5) on which light rays fall from

the direction SD. The angle of incidence of the rays and the angle of reflection,
EDA, are equal to a.

From the triangle DEA we see that the angle of incidence on the second
mirror is

Z DEC.= Z EDA + LDAE_anL2u =3a.

The angle of reflection from this mirror is also equal to 3a. From the tri-

angle EFA we see that /_AFE, i. e., She new angle of incidence on the first

mirror, is again larger by 2a than the previous angle of incidence, i. e.,
is equal to

3a-t-2a--Sa.

In the general case, the incidence and reflection angles at the m-th con-

tact of the rays with the mirrors are equal to

a,,,----a,,, ,-t-2a=a4- (m--l)2a==

=(2m--l)cz. (53)
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The pressure component, normal to the surface, obtained by m reflec-

tions is P sin 2 a,,=P sin_(2m--1)a,

and the force eornponent in a direction parallel to SD is

Psin _ a,,, sin a=Psin2(2m -])e sin a

The sum of these forces is

Q- Plsin 2 a+sin _ 3a+...+sinT(2m--l)a4-sin2(2n-1)a]sm eL (54)

If we choose the angle a so that after the last reflection the rays have

D

3=

A

FIGURE 5

a direction exactly opposite to the direction of the source rays, then

(2n--1)a = 180°--(z,

or

90°
n=--, (55)

i. e., the angle _ should be contained in 90 ° an integral number of times.

We also see that the sum of the first and last terms in the expression for Q

is equal to sin_e+sin2(180°-_)=2sin _a. The same can be said of the following

pair of terms equally distant from the ends of the expression, i.e.,

sin _ 3_ + sin _ ( 180°--3M =2 sin _ 3a and so on.

Thus

Q = 2P (sin 2 _ + sin 2 3a +...) sin Q. ( 56)

_ Equation (54) contains n terms. If n is an even number we shall have

M2 terms in equation (56). Remembering that each term in equation (56)
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is equal to twice the corresponding term in equation (54) and making use

of formula (55) we may represent (54) in the form:

Q=2P[sin 2 a+sin 2 3a+...+ sin2(90--3a) +sin_(90--a)] sin u. (57)

The sum of the first and last terms in the square brackets of this ex-

pression is equal to
sin 2 a + sin _(90°--u) = I,

and the sum of each pair of terms equally distant from the ends is also
equal to 1, so that

Q = / Pnsin,,,
2

and since

n=_= -_ (58)
¢I° 2a '

then
It sjn_

Q=--p.
4_

If the angle a is very small, sin a_a, and we obtain

Q =_-- P=0.786 P.
4

If the number of terms n in equation (54) is odd, then one term is left in

the middle; it is obviously equal to sin_90 ° = 1, since the equally distant

lateral terms, which differ by 2_L from the middle one, are equal ;to one

another only if they have the values sin-"(90 ° 2.D and sin2(90°+2a).

(At this point Tsander's manuscript is interrupted. Yet, already from

the investigation of the case with even n, the conclusion may be drawn that

in certain cases, for small angles a a corner arrangement of the two mir-

rors (see Figure 5) is better than putting them separately under the same

angle to the direction of the rays from the light source. This should be

taken into account in designing the equipment. )
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CALCULATIONS OF SPACESHIP FLIGHT IN THE

EARTH'S ATMOSPHERE (DESCENT)

Tsander paid much attention to the problem of the return of a spaceship

to Earth. He stated clearly that the problem of the descent of a spaceship

from interplanetary space to Earth is, figuratively speaking, the threshold

through which man will directly enter the cosmos.

Listing in his autobiography what he considers his principal proposals,

Tsander writes: "Equipping a rocket with wings ... for a gliding de-

scent from interplanetary space to Earth and to other planets possessing

an atmosphere ...".

The published article is dated 28 October 1927' and is devoted to ballistic

and aerodynamic problems connected with the landing of a spaceship from

interplanetary space to Earth.

In the first part of the article a glide landing of a spaceship on Earth is

considered. Tsander was the first to propose the use of the lift of the

spaceship's wings in the return to Earth. The spaceship reduces its ve-

locity when flying in the less dense layers of the atmosphere, and thus the

surface temperature due to aerodynamic heating is lower. The author gives

an estimate of the maximum flight velocities for which the centrifugal force

can be neglected and gives an approximate method for calculating the tra-

jectory of a glide landing for an isothermal atmosphere in the cases:

1) flight at constant altitude; 2) constant drag of the vehicle; 3) constant

lift to drag ratio of the vehicle. The second part of the article deals with

some problems of ballistic landing - zero lift flight of a spaceship in the

Earth' s atmosphere.

Now, when the conquest of the cosmos has made great steps forward,

the requirements for choosing the optimum landing trajectory of a spaceship

on Earth, which Tsander indicated but did not examine in detail in his ar-

ticle, come to the forefront. These are the limitations of the maximum

overloads acting on the vehicle, the limitation of the maximum surface tem-

peratures and also the maximum reduction of the total heat flux received by

the vehicle during the landing which determined the weight of its thermal in-

sulation.

Notwithstanding this, the article is of unquestionable interest even at the

present time.

Editor

* It will be possible to establish the exact date after deciphering Tsander's stenographic records. The cal-
culation was undoubtedly performed earlier than this date since the calculation of the ascent is dated 1924.
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1, GLIDE LANDING OF A SPACESHIP FROM INTERPLANETARY SPACE ON F_kRTH

From the general equation of motion of a rocket

GdV

p=Q- asin o+--i_-, (1)

(where g is the gravitational acceleration at an altitude h over the Earth's

surface), we obtain for P = O, i.e., in the ease of glide landing

or

G dV
--------GsinO--Q;
g dt

dv =g (sin 8 ---_-). (la)dt k

The components of the forces in a direction perpendicular to the motion

FIGURE 1

(Figure 1) give:

where
C+Y=G cos O, (2)

C= v2 a (3)

r g

is the centrifugal force which appears as a result of the curvature of the

trajectory ( r is the radius of curvature).

Determination of the maximum limit of flight velocities for which

the centrifugal force can be neglected

If we take into consideration that in a gently sloping glide landing the

radius of curvature r of the flight trajectory is relatively large, it becomes
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clear that at flight velocities much lower than 8 km]sec (a velocity at which

the centrifugal force is equal to the Earth's gravitational attraction and a

gliding descent is transformed into a flight at constant altitude over the

Earth's surface) C can be neglected as compared with the vehicle's weight G.

Then instead of (2) we obtain the expression

Y=G cos 0. (2a)

Values of • and V, obtained from (3) for n=G/C=9.81 and 98.1" are given

in Table 1. From (3) we obtain

or, in our example

and

V2= r--g, (3a)
tl

V[m/sec]=_

V l mJsec]= _.

The values of r and V are given for various values of the flight altitude h

which are obtained when the inclination angle of the trajectory varies from 0 = 0 °

to 8 = 7°08 ' along a circular arc of radius r.

TABLE 1

00
l',,,,/,ec,for"=_'"1"_'_ I _" t _ I _0! "_ 1 _° I _=°

12 810

In order to estimate the trajectory curvature's influence on the resulting

drop in altitude (if we take initially the Earth's radius as infinitely large) we

calculate the drop in height h.

In lowering the velocity, the kinetic energy of the f]ying rocket plane acts

like an engine, reducing the inclination angle of the gliding trajectory. For
dV

steady-state motion, when _ = 0, we obtain from (la)

Q=Gsine. (lb)

From (lb) and (2a) we obtain

sinO_,= =o--_o_-c°s Oma,'G Y

* The value of n characterizes the so-called "centrifugal load% i.e., it shows what fraction of the vehicle's

weight is balanced by the centrifugal force. -Editor's note.
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or

tge =_
mlz _ "

Introducing the notation*

we obtain

which for tg 1_ = 0. 125 gives

lg_ .....=tg 8; 0m,,=l_;

6 = 6,_= 7"08'

Therefore, in the flight 0<7°08 '.

P=0

P x

FIGURE 2

Assuming that in continuous landing** we have always 0>0, it is easy

to determine the drop in height for a variation of the angle from O = 0 ° to

O = 7°08 ', if the flight is along a gently sloping arc of a circle. Since (see

Figure 2),

and

AB=s=2r sin o,_,_,
2

h =S sift 8,n,x,
2

we obtain

h = 2rsin 2 em,_, (4)
2

and in our example
h--2r sin s 3°34'--0.00778 r. (4a)

* Q/Y is the reciprocal of the lift to drag ratio of the rocket plane. Taking tg 1} = 0.125, the author con-

siders a rocket plane with a lift to drag ratio of 8.- Editor's note.

** The author had in mind a so-called "smooth" landing trajectory which diffen from a wavy trajectory by

the absence of waves, L e., the angle of inclination of the landing trajectory does not change sigm

Angles of inclination of the trajectory are considered here positive if measured downwards from the local

horizon at the initial point of the landing trajectory. It is now usual to regard 0 >0 upwards and 0 <_0

downwards, from the local horizon.
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From (3a) and (4) we also obtain

(5)

or in the example with n = 9.81

l/[m/sec]= II.32 I//_-= 3.58 Vh[ml.
F Iv

for n = 98.1

(5a)

V[m/sec] _]__h ! = I].32V_[m]; (5a')
V 2 sla3034'

From (4a) we have:

r= ]o_a-----128.7h. (4b)
7.78

V and r can be calculated as functions of h by using (5a), (5a') and (4b)

C l
(see Table 1). If we neglect C, accept an error not larger than -_--==_-_---=

-. _ _ 10 %, take the radius of curvature not smaller than r=R/lO = 637 km
9.81

(R--6370 km being the Earth's radius), and neglect the centrifugal force

(in the present case < 0]9.81), then it is possible to attain a velocity

V_796m/sec. Ifwe increase n and decrease rby afactorof ten, then V=
= 79.6 m]sec.

In the first case h=4950m and in the second case h=495m. We see,

therefore, that atflight velocities up to 800m]sec the centrifugal force can

be neglected in lift to withi_n an error of 10%,

If we determine by a more exact calculation the angle of inclination 0 of

the gliding trajectory for velocities from 800 to 1500m/sec (0>0), the cen-

trifugal force can be neglected for these flight velocities, due to the still

larger radius of curvature. In this case we must take into account the

Earth's radius of curvature which we took equal to infinity when calculating

the drop in height.

If we neglect the centrifugal force and assume cos0_l (actually cos6m,x=

=cos7°08 ' = 0.9923, so that the error is _0.8 %), we have one more equation

expressing the lift of the incident stream on the rocket plane's wings

£y Gr 2
Y=Ocose___--_,O-----_.fFV , (6)

7o

where 0, C_c r, %, and F are constants. Hence

_V___ OTo (6a)
FC_cr

is also a constant*.

Therefore, knowing h as a function of $, it is easy to determine by (5)

the average value of I,for landing on Earth from a given height h. We then

The author does not take into account the lift of the rocket plane's body. At hypersonic velocities the

vehicle's body creates a significant part of the lift.

Cycr_0 (kg.sec2]m 4} is a constant coefficient proportional to the aerodynamic wing lift coefficient,C;cr=-T-"
where cy cr is the aerodynamic wing-section lift coefficient, and % is the atmospheric density at sea

level. - Editor's note.
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calculate V from (fia) for a given value of _, and determine from (5) the

quantity

17 _ gh I

2 V2 sin_emax

2

assuming in first approximation a range of variation of the angle of inclina-

tion of the trajectory from e = 0 to 0m_,.
After calculating the angle 0 for the maximum velocity we obtain a more

exact value of n.

Approximate calculation of gliding descent

neglecting the centrifugal force

If the velocities in gliding descent are so high that we cannot neglect the

Earth's curvature since it produces a centrifugal force reducing the gliding

angle, we can still obtain a lower curve for the flight trajectory by neglect-

ing the Earth's curvature and the centrifugal force perpendicular to flight

direction. The angle B will then be too high since the centrifugal force in-

creases the lift of the rocket plane. After determining the trajectory cur-

vature it is easy to determine the centrifugal force and with the new results

to calculate a new trajectory which will lie higher than the real one. De-

termining the curvature of the new trajectory we can finally find a landing

trajectory close to the one required.

For velocities higher than 8km/sec, even for constant altitude flight, the

centrifugal force is larger than the weight of the rocket plane and the gliding

descent is transformed into gliding ascent for which the centrifugal force

cannot be neglected in a first calculation.

Equation (la) shows that the maximum deceleration is obtained when the

gravitational force is not accelerating the vehicle and the air drag Q decel-

erates it. Therefore, neglecting initially the quantity G sin 0, we obtain too

fast a landing and also too curved a landing trajectory.

G sinB_0 can be assumed only at relatively high flight velocities when the

rocket plane possesses a large amount of kinetic energy. If we then assume

a constant angle of attack of the rocket plane wings we have Q=cons|*, and
from (la)

,/V ---- (2 tg[_**.
dl G

Hence we find by integration

V--Vo= (to--O tg [k (7)

We also have equation (6a) and

. a'h____"= _ Vsin B. (8)
dl

* This is true for fixed trajectories of equiHbrlurn gliding if we neglect the dependence of the lift coef-

ficient on the flight Mach number hi.

** In this case the author neglects the centrifugal force C in equation (2) and assumes eosO_l, since the

O O
trajeetow's angle of inclination is small, and then F = O and tg _'_- "7 _ -'_-. - Editor's note.
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Substituting in (6a) the expression for V from (7), and knowing h' as

function of 7, we obtain h' as function of t. This means that we can deter-

mine dh'/dt, and from (8) also sin 0, as functions of t.

Taking into account the term G cos 0 in (lb), allowing for the Earth's cur-

vature, and neglecting only C in (2), the calculation may be carried out as

follows.

Let h' be the height over the Earth's surface at the given point (the

Earth's surface is assumed plane);

h, the same for a spherical surface of the Earth;

r', the flight trajectory's radius of curvature;

r, the distance to the Earth's center.

Formula (8) can be written in the form

V=-- I dh' , (Sa)
sin 0 dt

or, differentiatin.g V with respect to t,

av d2h" 1 { tth' do cose (9)
-_ _ dt2 sin8 dt dt sin 2 e

We see from Figure 3 that dh'=r'sinSdS, and hence the trajectory's radius

of curvature is

dk" dt l
r'-- (10)

dt d8 sin O

The centrifugal acceleration is found from (Sa) and (10)

r" sin 2 O_ dt ] dt dh" dt dl sin 0

dh= dh' Horizon

Center of the Earth

FIGURE 3

I "

r 'l /

I
I_'O-

I
I

I

Oot Center of the Earth

FIGURE 4

We obtain the same result from

V_ dh' dO I

r' dt dt sin 8

We find, therefore, from (9)

--_-- 0) l
.v _(d_h' +V, cos
dt \ d12 -- r" S'_n6 "

(11')

(11)
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FromFigure4it follows that

_ V2d_k' -- dV sin 6 -- -- cos 0;
dt _ dt r"

hence we obtain the same formula as (11).

From the formulas of mechanics, however, we have

d2h' dgh 1.'2

dt_ dr2 r

d_h"

Substituting _ from this formula in (11) we get

dV d2h 1 . 172 / 1 ¢osO\

--ffi +dt dr= sin 0

and since cos0 _1 and r._-r', we obtain in first approximation

d Vffi= d2h I

dt dr2 sin 0

From (la) and (lid) we obtain for Q/G=tg[J

dW ,d_h I =g(slnO--tgp);
dt dt 2 sin O

or

-th -at-g (sin =8 --sin Otg p) = O.

Furthermore, from (6) and (Sa) we have

'TO _ dt ]

dh dh"

since -_-,-_, or, if we introduce the constant*

then

Eliminating the angle 8 from (12) and (14) we obtain

Denoting

azh , k dh 2_7;t,-_ _e d-;= "

dis _V$ ,

(lla)

(llb)

(llc)

(11d)

(12)

(6')

(13)

(14)

(15)

(16)

* k is the reciprocal of the so-called effective specific wing load, - Editor's note.
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which gives

dt_ Y dl_ '

equation (15) assumes the form

(17)

or

v,L_ + k_gy_- g tg _V'-_'v, = o,

d Vy

d--h"+ k'_g Vy -- g tg p ]/"_--- O.

Introducing in the last equation new dependent variables u and q, so that

V,=uq. (18")

we obtain*

,_h .. __,fT,h[gPr_tg_SV.._e,,Ddhdh+C,]. (19)d--7_ Vy_---e

Knowing I as a function of h, we find d.h_hand
dt

and then the gliding angle from (14)

sin O--_t V_'_- (14a)

The velocities dh/dt and dh'/dt are equal, as follows from Figure 5, at

the point A at which the heights h and h' are equal (the vertical variations

of the heights dh and dh' are identical).

Consequently, (8a) can be written in the form

which, using (14), gives

I dh (8b)V---
sin6 dt

I
v= _;>TT . (8c)

The same is obtained from (6) by substituting expression (13), and from

(8c) we determine the flight velocity V.

If we take cose _1, the horizontal component of the path is approximately

equal to

s= 5 Vdt. (21)

From (19) we have

* Ci and Cz are integration constants which are determined from the initial conditions. - Editor's note.
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so that

S Vdh
s_ ; (21a)

Vy

where V and Vy may be regarded as given functions of h. By plotting V/V_

as the ordinate and h as the abscissa, we obtain a diagram whose integra-

tion between the limits hl and h2 gives s.

dh' h'=0 dh

Center of the Earth

FIGURE S

The trajectory's radius of curvature r' is obtained from (10) where dO/dt

can be determined from (14a):

or

-dO d2h - _ dh yf k d_[ dh

c°su-gT=a-_-Vk_'4 at 2¢_dh at'

a8 a_h _ t- ¢-_ (ah _2 a__L (22)
7i'= dt_ _o_e 5-_'1,'97) dh"

Differentiating the equation "f=f(h) we obtain d_/dh, and if 7 is given in

the form of a curve, we obtain a curve d_i/dh=[(h).

a0
Substituting expression (22) for _-/ into equation (10), the expression for

the trajectory_s radius of curvature takes the form

dh

r' = at I (10a)

sine d2^ _ + , _ , [dh _, a_L
at_ ,o_--_ V TT_-_/ah

Having calculated r: it is possible to calculate the term V 2 { ! ¢o,e_
(7 -- --7--]

omitted in (lld). Then, replacing (lld) by(llc) in (la), we obtain

g(sinS--tg_) = ---'-'sin---_[ at, \ r r' '

or

d2h "Fgs[nl}(sin@ . .. / 1 coso,,, -'g _-1,-7--7-) v, =o. (12a)
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Usingequation(22)andassumingdh/dt=dh'/dt, we obtain from (11') an

expression for the centrifugal acceleration

| k dh 3dT ]
(lla)

Instead of equation (6') we use now the corresponding equation obtained

by using equations (2), (3), (8a), and (6) and assuming cos6_l:

,,=0,, =+ 7o (6")

Calculating the correction terms

in equation (6") and

_, (v,)---s_.'o v' ]
K g

,,_ / I cosO'_V2

in equation (12a) as functions of Vy or h, we are able to solve a more gen-

eral equation instead of equation (15).

Using k from (13), and the remarks made above, (6") can be written in
the form

(_'/' ,,,,e-,,(w) (14')

and (12a) - in the form

dVh
a--_ + g sin O (sln O--tg I_)--_,(V,)=0. (12a')

Eliminating the angle O from (14') and (12a'), we obtain:

(-z)+,,(v,)-,,(v,)=o,_ 7-_g _ \ at l

or, using (16) and (17)

dV_ _

Vy --_--[-k-_gV ;, + g_, (1,I,) --

-- Vygtg_V-_-/ l + _'(V')k-T_-,-%(v,)=O.

We have finally

-_dVY+lHgVy+g1'l(YX)vy --g tg I_V'_ F I + r] (vY)k,{--.--_y2- _-- ._ (vY) -0 (18')

Assuming that V found from (19) for a given altitude h or a given den-

sity _ differs only slightly from the more exact value found from (18'), and
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replacing Vy

418), we can calculate V'y--Vy:

,,(v.:- v,)
dh Vy

_gtg p]/_[_/! +_,(v,____)- 1]=0.
47 (V_)2

Assuming V_ to be a given function of _ or h, we have

in (18') by V'y, i.e., taking Vy_V'_ and subtracting 418') from

(23)

d(V;--g,) =754h), (23')
dh

hence V'y-- V_= S _,(h)dh. (23a)

With the aid of 420) and replacing Vz by l,ry, we now determine the landing
time t. We then obtain from (14'):

Instead of 48b) we have

(14')

and instead of (213)

V'----- V)' ; 48b')
sin 6

V'dA

Taking the results of the second approximation for a third, even more

accurate calculation, we obtain a more accurate landing trajectory. By

successive approximation any degree of accuracy can be obtained.

It is now also simple to determine at what velocities and attitude the

centrifugal force can be neglected in formula (2).

Calculation of gliding descent for an isothermal atmosphere

For an isothermal atmosphere, which exists at high altitudes ( h> 11 km),

we have

h

---__P----=e-W', (24)
To

where H--const is the altitude of the uniform atmosphere.
In this case

.[dh=.f, e-_-dh_--_ _.toHe-W', (25)

e- *'-[' 4h = e*¢r, #'- W'---- e_, (25a)
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where we have introduced a new variable z, which, using (24), can be
written in the form

zn= -- kg y "1dh = kgTH. (26)
If we put

'_= S _ e'gf' aadh, (27)

we can introduce the variable z in equation (19) too. From (26) we obtain

dz=-- kg'f dh= z dh. (26a)
2z 2H

Substituting this expression in (27) we obtain

_......_.L__e_ _ (--2t0 dz=_2l/_e f_'= J. _ ----F-- e-,' az. (27a)

The value of ;e-z'dz can be found by a series expansion.

Substituting z from (26) and 9 from (27a) in (19) we obtain

c0 (19a)

The integration constant C, is determined from the initial conditions.

The velocity V is given by formula (8c). It can also be expressed by z.
From (8c) and (26) we obtain

V----_, (8d)
z

and then Vv can be represented as a function of V.

Differentiating (8d) we obtain

dz=-- _ dV (8d')
V---q- .

Substituting (8d) and (8d') in (19a), we find

¢-
Vy=e ( +2gHtg _ _e- _'c_---_2 -b C, ). (19b)

For convenience it is possible to introduce a new variable

V_ 1
p ..... (28)

gH z 2 '

Finally we have

dz = dp (28a)
2ps/_ •

t I d

(19c)
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To determine the constant of integration CI, the vertical velocity of de-

scent V_ is given for a given altitude h.
Then we find from (19a)

or from (19c)

hence

Vy =e-K. Ig_ alp+C,,

P,

(29)

(29a)

or

c, = v.o_-"_+ 2V-[Ytg _'_e-" d.,
Zl

p !

' ,_te--F dp"C, = Vy, e--7 -- t/t-_ tg _ p3----_"
lh

(29')

(29a)

Substituting CL in (19a) and (19c) we get

Vy=e" -- 2 gl/_tg_ e-_'dz-- e-"dz + Vyoe -_° =
\Zl Zt

= -2g_Htgpe,*ie-edz+ Vyoe ,
zo

(19a')

or

V_=eT tg_ e o a; -- e--_dp + Vyoe-J-p.
p*l_ •

L "_Pa P,

v P
-- _ e-_'dP -L ! l

V_e'_-_=_tgpe "J p_,2 --
P,

(19c')

We see that, as expected, the arbitrary quantities zt and p, indeed

disappear.

Spaceship flight at constant altitude and

high flight velocity

For constant altitude (O==O), throttled engine (P=O) flight, the general

equation of motion (1) takes the form

_2 3--[-v = Q, (le)
g dt
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or

c_ cr
Q = y _ + CxpaFM- [ V _, ( I d)

¢y cr

where the total drag Q is decomposed into the drag of the lifting surfaces

V e'cr and the parasitic drag of the remaining sections of the rocket plane*
cy cr

CxpaFMyV _. Here, FM is the cross section area of a plate perpendicular to

the incident stream and having the same drag as the whole vehicle. From

(2) and (3) we obtain:

C+Y=G= v. Go.+],, (2b)
r g

where r is the distance from the center of the Earth to the point considered

on the flight trajectory.

Furthermore, we have also

Y= e_er "fFV 2. (6)
7o

In these formulas _,, Y0, FM, F, g, r, cx pat, G are constant quantities at a

fixed moment of time. The lift and drag coefficients C_c r and C_c r of the
carrying surfaces are functions of the angle of attack a, so that one can
write

C;cr----f, (_) and dcr =I20)'

¢*It is also possible to regard C:c r as a function of C_cr, i. e. , ¢°,cr =_ ( ycr)"
If the airfoil profile is given, these three functions may also be regarded

as known*.

a, Y and V are still unknown as functions of time. Eliminating the lift Y

of the carrying surfaces from (6) and (2b) we obtain:

or

r g "(FV_G

V2= o . (2e)

cr 'Io

Eliminating Q, Y and V from (lc), (ld), (6) and (2c) we have

G d_ = C_cr t--'F V'+ c_a.F,_'TV_;
g dt "(o

° = excrTO (kg sec2/m) is a constant coefficient proportional to the aerodynamic wing section drag
* Cx cr 2

coefficient;

ex cr is the aerodynamic wing section drag coefficient;

Cxpa

Cxpa! _-'_ is half the aerodynamic parasitic drag coefficient of the apparatus.- Editor's note,

** The author does not take into consideration the dependence of the aerodynamic coefficients on the

flight Math number. 1:or very large Mach numbers this is admissible in first approximation,
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or

G dV

g dt

" J-'F+¢xpaF,_l)G
cx,cr 19 (le)

Differentiating (2c) with respect to t we obtain

2v dv =--oi C-_-+_'¢ FY'_F ff_"
dt \ rg 10 Y ] 'To dt '

or using (2c)

.v ,m( o +4 ,__FT___p f__. (2d)Y=---_- _ ,o / 'To dl "

Substituting (2d) in (le) we have:

]

__1 2¢ .... F ,\(a_ "r r ,
at ---_---_(%¢rr+c.p_, MToJ)( rg Tc'_c r _o F) =?(Czcr). (2e)

If we substitute this equation c*,cr=_(C'_cr), the right-hand side becomes

a function of C_c r and we get:

¢I

t= ac'_c' (20a)
V(¢_cr) "

(_cr)°

From (20a) we determine C;c r as function of the flight time t and from

c_,c, =r,(a) we obtain the angle of inclination of the carrying surfaces of the
rocket plane to its direction of motion, i. e., the angle of attack e of the
wing for constant altitude flight of the rocket plane.

From (2c) we obtain now the velocity V, and from (2d) - the decelera-

tion dV/dt.

V 1

FIGURE 6

The path traversed by the rocket plane in time t is

t

s=_ Vdt,
o

(21)
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and the central angle _ (measured at the Earth's center), defined by the
arc of the flight path (Figure 6) is

E°= s180" . (21')
¥ x

If c_cr=_(c*cr) is given analytically for small angles of attack a, t cany
also be expressed in final form.

In general, the time t can be found graphically by measuring the area

under the calculated function l]_(C_cr) between the limits (C_cr) 0 and C_c r.

In order to determine the velocities at the points of the trajectory be-

tween which flight at a given altitude is possible, it is best to use expres-
sion (2c).

If we denote by (C_er) ' the initial* value of c_c r corresponding to the max-

imum angle of attack of the wings m fhght on the back , and by (c ¢r)2 the
final value corresponding to flight in the usual position, we obtain

¢" C °I( ,cr),l=l( ,crhl"

Flight "on the back" is required at velocities larger than 8 km]sec in

order that the rocket plane should not fly back into interpladetary space.

The resultant force of the incident stream on the wings of the rocket

C* C °plane should be directed towards the Earth's center. Then ( yc_).<01 { ,cr)l
¢ °corresponds to V_.., and { ycr):' to V,t.. From (2c) we obtain

and

2 G
Vmax o ' (2c')

tflmi.__ G

-- + (¢;cr)2 F
rg

(2c")

If here (C_cr}2 is the maximum attainable value of the lift coefficient lying

near the maximum of the curve C_cr= / (C_cr) , it is possible to construct
curves of Vm. _ and Vmj . as functions of the density _. Obviously, the greater

is, i.e., the nearer the flight is to the Earth's surface, the higher Vm,

and the lower Vm_,. For high flight velocities wehave, however, stillanother

limitation - apparent gravity.

If we take (C_c_)_ = 0 in (2c'), we obtain V=V_. This is the velocity at

which the centrifugal force is equal to the gravitational attraction. At this

instantaneous velocity the vehicle flies freely as a satellite of the Earth,

remaining at constant distance from the Earth's center. The apparent grav-
ity is equal to zero in this case.

Let us denote by a the ratio of the apparent gravity to the Earth's attrac-

tion*. If the horizontal component of the apparent gravity due to flight de-
dv

celeration -_- by drag can be neglected, then

a-- Y --C" V_ T F

----_---y ...... 7o G (6b)

* During constant-altitude flight. - Editor's note.

** I. e. , the "g"-loading. - Editor's note.
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If, on the other hand, the rocket plane flies "on the back" at a constant

distance from the Earth's center, the centrifugal acceleration is equal to

the sum of the gravitational acceleration g and the apparent gravitational

acceleration, ag, i. e. ,

g + ag = vT"'-----_"

hence
V_=x -----rg (1 + a). (6c)

We see, that if a is constant, fro=, is also constant. In this case, c_c r

is inversely proportional to "r (see (6b)).

To determine the value l, we obtain from (6b) Cycr* = (c cr}2," " in this case

aloG (6b')
"f_= " 1

(_ cr)=Frg ( + a)"

If l_>Tz, then C_c r _(C_cr),, i.e., the density is larger than 7,, and we

have from (6c) Vc.,,=tonst; for air density lower than _,, formula (2c') wili

hold, and Vm,x will decrease with I.

At high densities "f there are still the following three limitations to high

velocity flight:

1) apparent gravity in the horizontal direction due to the flight decelera-

tion*;

2) vehicle heating in the atmosphere's dense layers;

3) high drag which may cause vehicle failure. The deceleration is ob-

tained from (2d) and the two other limitations will be considered sep-

arately.

Gliding descent for c= er:const

If we take the wing section drag coefficient c_c _ as constant for a certain

range of small angles of attack a of the carrying surfaces, then introducing

the quantities

x =--q-O -t- c_ cr -! F; (a)
rg lo

70 g-d ; (b)

we obtain from (2e)

d/ "fF

Differentiating expression (a)with respect to t, we obtain

d___ =_L F dr;_ ,
d/ _o dt

* I.e. , the maximum admissible value of the longitudinal "g" - loading. - I_ditor's note.
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consequently,

or

Hence

fl.._...x___--2A xus"
ot

-_-= _ (v'_- v'-g),
z a

Substituting x from (c') in (a) we obtain:

7F

(a')

(c)

(c')

Substituting (a)' in (2c) we obtain

or

V _ (2c')

The path is

! I

_+_-_ '
0 o

or

s--_ln/---A-A + 1).- a _¢-go
(21a)

Finally from (le) and (b) we obtain for the deceleration

or

--g/=-5- C-_o

dV .4V'_
dt (At 4- _"_)_' "

(le)

We can also determine the resultant apparent gravity in the vehicle

• dV 2 V_ S <d,
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Gliding descent for constant lift to drag ratio of the wing

If we consider the domain of the curve c]¢rlc_cr, in which the quantity*

C_ Cr

¢;cr '

can be considered constant (instead of e'er as before), then we obtain from
(2e):

d¢_cr ____ 2g_o i ] _1" I
at FX _ _u¢,vcr lo F+¢'pa'FMT

×
I

I

×/_--+c" _F_ _ (2e')
\ rg _,cr 10 J

or using (a)

4C_'cr _ 297o ,

Differentiating (a) with respect to t, we have

(2e")

Using the notation:

d_
=_,_--=:_. (a")

dt ]o dt

_ 2g
C,-0 # (f)

and

C2 w ¢xpatFM'f a (g)
u rg

and then substituting dq, cr[dt from (2e") in (a"), we obtain

or

l

/...t= C, (,,+ C_)Q-, (a''')
dt

C/=i. '£" r.

3(:,+c2),, 2
xe

(aIV)

Introducing

y = ,'_ (h)

and, therefore

d i dx
Y=T--Ta, (h')

!
* a- the reciprocal of the llft to drag ratio ot' the w/ng; kaer_''_:evcr/¢xcr.-Edltor's note,
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we obtain, on substituting in (aIV),

Or

C,,=2Sy2+C= _-_2 arclg +C3=

2
="_T'2 arc tg V/-_ + C3,

Cit =-_C2 (arc l-g ]/_- -- arc lg "]/_ ).
(a V)

Using the notation

_=arc tgV_, (i)

or

tg 5=V'_; (i')

tg_o=l_ -_ (i")
Y C2 '

then

C, _ t=_--Eo (a VI)
2

and

,--c,,g,_=C,,g,(_o+c,¢'¢,_)=_+ •CYcr -- _,
2 I rg 1o

or

Determining initially the values of C_, C= and _ by formulas (f), (g), (i"),

and (a), it is possible to find the dependence of c_c r on the time t by for-

mula (k). Then we can determine from c_¢ r the angle of attack a of the
wings, and the drag coefficient c_c r.

From (2c) we find

l/_ _v= _,_(_o._,)__ _°"'_
and from (21)

t

lg +o+ t)

o o

---_ C11,/-"_2 tg _ "

E,

(21b)
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Thevalueof theintegralin (21b)is

sothat

s;n _o

S _ _ in sin _0
(21c)

From formula (21') the central angle is equal to

s 180°

¥ x

Finally, differentiating (2c"') with respect to t, we obtain an expression

for the deceleration:

or

dV

dt

2

dv = C, _ (2cIV)

dV
To calculate V, s and -_ it is more convenient to calculate initially |

with the aid of formula (aVI).

Calculation of gliding descent with allowance for the

centrifugal force

As in the calculation of constant altitude flight we take into account the

flight trajectory's radius of curvature not only in formula (la) (and corres-

pondingly (llc) or (lld)) but also in formula (2). In a first approximation

we take this radius equal to the distance r to the Earth's center for some

average flight altitude, and we calculate the flight trajectory.

Taking (as above) the trajectory found as a first approximation, we may

say that due to the increase in the angle 0 during the descent, the radius of

curvature will actually be smaller than r. This means that the centrifugal

force for the same velocity will be larger than assumed, i.e., that the

actual trajectory will lie higher than the one found.

Making an approximate determination of the real radius of curvature

from the first calculation, we can determine the flight trajectory more ac-

curately in a second calculation. The second trajectory found will lie higher

than the real one but will be already very close to it. Similarly we can find

a third approximation.
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The corresponding trajectory will lie between the two first and will be

even closer to the true one. The true one will be situated between the flight

trajectories found in the second and third approximations.

We obtained above the relations " "

d_h -= -- dV sin6; (lld)
dt 2 dt

dt g sinO-- ; (la)

Q _ Y _i cr --I- CzpatFMY V2, ( 1 d)
Cy Cr

Furthermore, from (2) and (3) we have

G V_ -_Y=Ocos0; (3a)
g r

y= Cycr ___7FV _. (6)
1o

Since the trajectory is very gently sloping we can take cos 0_ 1. Then

substituting (6) in (3a) we obtain

V2 _ G

__ l "f

<2 + Cycr'_-o Frg

(2c)

and from (la) and (Id) we obtain a formula analogous to formula (le)

O dV =C" fl-L-FV'_+C_paFaTV'--QsinO.
g dt xcr 70

(22)

From (22) we find

I dV (. F +CzpatFM)__0sln0=--/--E/-+_' c.cr _o

and (lld) takes the form

(22a)

d2h I /'dV'_2 (* F- ) V= dVdt'---_=--T("-_ -) --'I(C'rcr--_o-'f'cPa'Fa O dt
(23)

From (2c) we obtain

3

av ¢-'e' ( _ &F_-T ';,cJ' s+ (2ev)

Next, knowing how the air density varies with altitude, i.e., h=](_), we

obtain

_h df d_ =f, d_. (24a)

dt _ d] \at/ ---- dt 2 -- _dt J ---- at2

(24b)
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Substituting expressions (24b) and (2c) in (23) we obtain the differential

equation

d-_ "( "c,_ _--1F'o+_P_<*" J_L(c_D_z__=O,

,o
or

d2"/ .1_(___/)[/ .)¢ G [ G (C;c r 12F,] ]_a \T/ JT;--

_ a_ZLv o%,_,_p k-7_ +

dt _-, ( G , V'ycrlF
,,I_°_ _0 )_

This equation has the form

(25)

a2_aaF_'{])(d_-) 2-F_2{9 ata-L=O" (25a)

By introducing the new variable

(26)

so that
dz I d27 ]

d T dt_ z I

(26a)

equation (25a) assumes the form

dzl 2

z,--_-r+,h z, + _2z,= O, (25b)

where _ and _2 are functions of "1':

n(9= V-_'Vo _j[T+ (25d_

If equation (25b) is divided by z,, it can be solved like equation (2b) (here

we introduced the independent variable h instead of -f).

We have

- dz I

a--T+ _,z, + _2=0, (2 5e)

Putting

zt=u.q (26)
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we obtain

z --d__ e-_,,a_ +C_]'-- at -- [S ,,e3""'_ d'f
(27)

and

t =j" dTz,+ C,. (28)

Thus, as in the previous case, we find _ as a function of t. From equa-

tion (24) we find -h, from (2c) the velocity V then, from (2c IV) the deceler-

dv
ation -_, and from (22a) sin 0 as function of t.

It is possible to plot all the quantities on the same diagram and also to

determine by integration the path traversed

s_ Vdt+C. (28a)

as well as its projection on the Earth's surface and the central angle defined

by it (Figure 7):

L=SVcosO_dt; (29)

L
=-#-. (30)

In this calculation the angle of attack of the wings is taken constant, i. e.,

a constant position of the rudder is assumed*. The trajectory's inclination

FIGURE 7

angle can then be such that the flight will be

sloping most gently when the wing drag and

the parasitic drag are approximately equal.

Such a flight is possible at velocities lower

than 8kin/see, since at this velocity the cen-

trifugal force is equal to the airplane' S weight

and a positive angle of attack would lead to

ascent and not to descent of the rocket plane.

At high velocities flight "on the back" is

possible, descending to a certain altitude. In

this case the wing lift will be negative, i.e.,

Y<0. In order not to get buried in the atmos-

phere in this case and not to fall into too low

layers, a mechanical lift limiter must be used.

For example, the wings should automatically

let through air when the lift becomes larger

than a certain value Y1, a multiple of the ship's weight. This is required

also because of possible wing failure.

Gliding descent "on the back" may be required if in approaching the Earth

the spaceship goes too far from the EarthTs center and must drop from the

highest layers of the terrestrial atmosphere to the lower ones, where it can

fly "on the back" at a constant altitude, decelerating slowly for the landing.

* The assumption that the angIe of inclination of the altitude rudder has to be constaat in order to keep

the vehicle balanced at a constant angle of attack is true only if the dependence of the aerodynamic coef-

ficients on the flight Math number is disregarded.- Editor's note.
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For flight velocities lower than 8 km/sec such lift limitations are also

required bu t in this case only to prevent wing failure. As can be easily

seen, the rocket plane in its usual attitude remains at almost constant al-

titude. If we give it too large an angle of attack a, it rises slightly higher,

but because it reaches more rarefied air, further ascent is stopped. If the

angle of attack is chosen too small, the rocket plane falls into denser lay-

ers of the atmosphere and a balance is again rapidly achieved.

When flying "on the back" the opposite situation prevails. If the angle

of attack _ is too large, the rocket plane plunges into the lower, denser

layers of the atmosphere where the force Y increases even more and, with-

out the limitation due to wing lift, the rocket plane may crash to the Earth.

The centrifugal force increases indeed due to the larger curvature of the

trajectory, but a twofold reduction of tile trajectory's radius of curvature

corresponds at a velocity of llkm]sec to a doubling of Y. Since the at-

mospheric density varies sharply, Y grows faster; this means that the de-

scent will be unstable. If variable surface wings are used, e.g., laminated

wings, or if the rudders are reset at large values of Y, the force Y can be

kept small and the vehicle is stabilized to some extent. The radius of cur-

vature F of the trajectory, corresponding to a given Yma,, can be calculated

by the formula

y_.__ c v_L_o cos0,
g ,"

hence

r'= GV_ . (31)
g (Y,,,=,, -- G cos O)

Instead of achieving stability in descent by the action of the wings, it is

also possible to place a special surface, on w}_ich the air pressure acts

from one side and a spring* from the other side, perpendicular to the in-

cident stream. When the air pressure varies, such a surface moves and

may easily set the rudders so that the machine will be kept steady at a suit-

able height. If the vehicle enters the Earth's atmosphere from interplan-

etary space, these control surfaces can be operated when an atmospheric

density normal for the given velocity is reached.

As long as the atmospheric density is smaller than the normal one for

the given flight velocity, the angle of attack and also flight "on the back" or

in the usual attitude should be chosen, depending on the shortest distance

from the Earth's surface which the vehicle would pass without the action of

wing lift.

We have not yet investigated the section of the descent from interplane-

tary space to that height at which, due to the action of the aerodynamic

forces, the flight trajectory's radius of curvature is approximately equal

to the Earth's radius. This section extends into the high layers of the at-

mosphere. Although in this section of the landing trajectory we can fly in

a great number of trajectories, controlling the flight by inclination of the

rudders so that a convenient landing will be achieved, we have first to study

free landing. Here an additional lift would reduce the danger of falling to

* Due to the strong aerodynamic heating all surfaces of the landing device will have a high temperature, and

therefore a metallic spring will not function, In this c_e a gaseous cushion or any other similar device can

be used as a spring, - Editor's note.
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the Earth and an additional negative lift would give a closer approach to the

Earth if we fly "on the back" because of too high an altitude.

2. BALLISTIC LANDING OF A SPACT.SHIP ON EARTH

Ballistic landing taking into account the curvature
of the Earth's surface

The drag of the wing sections (with zero lift), as well as that of all other

external surfaces of the rocket airplane, decelerate it, and the gravitational

force G sin 0, accelerates it, so that we have

G aV =c.pa,F_TV=_Gsln=, (32)
g dt

where cxm,F,,IV2 is the parasitic drag of the wing sections and all other

parts taken together. Furthermore, for a small angle of inclination of the

trajectory to the horizon, the centrifugal force is approximately equal to

the vehicle's weight. In the general case we have

C=-_ G v'_=O cos9'
g r'

or

V2=gr' cosO. (33)

There are great theoretical difficulties in making an exact calculation.

A graphical solution, however, can give us the flight trajectory approxi-

mately and also all the interesting quantities. Given the initial velocity V0

and the initial inclination angle 00 of the trajectory (Figure 8), we determine

the initial radius of curvature r0 by (33).

Knowing the dependence of the atmospheric density on the altitude over

the Earth's surface, we determine the deceleration dYo/dt from (32).

For motion along an arc of a circle, the velocity of a spaceship after a

time interval at, and also the path traversed, are given by the formulas

• _v0
v,= Vo÷--_ u;

&s = V o&t._ r' Ax.

For the point AI reached we determine from Figure 8 the height h, over

the Earth's surface, we calculate the corresponding density y,, and the new

angle of inclination e, of the trajectory. From (33) we calculate the new

radius of curvature

r"
] KCOS $| '

and also AV./At from (32). We repeat this calculation until we reach the

desired final height hh.

We proceed similarly in other cases. If, for example, the height at

which the landing should pass into a constant altitude flight is given, then
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hh and 8_----0are given. If in this case the velocity V0 is given instead of Vh,

we must construct a series of curves. Choosing an arbitrary V_, we deter-

mine r',by (33), - dV_/dt by (32), and then construct the flight trajectory in

the reverse order.

e __I
r_

_f

4T

FIGURE 8

Ballistic landing neglecting the curvature

of the Earth's surface

Considering the accelerations in the vertical and horizontal directions

(Figure 9), we obtain the following equations of motion*:

G d_x -Q cosO; (34)
g dl 2

G _h _-_QsinS--O. (35)
g dt 2

Since

then

or

Q =c, palFM_ V _, (36)

d2x _- g¢_PaIFMTV_ COS_,

dtz o

d2x ____klT V_co s O, (34a)
dr2

where

gCxpaFM
k, ---- . (3 7)

O

* The author disregards the centrifugal forces. - Editor's note,
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For the horizontal and vertical components of the accelerations dV/dt

and V2/r' we obtain

dVV cos0-- V2 sJn0_ d2x
--; (38)

dt r' dt 2

dV slnOnL V_cosB: d2h (39)
dt 1"' dt2

If the velocity V is not too large or the ang+e 0 is not too small, we can

!
r,

G dzh

C dzx

'a

FIGURE 9

assume that v_____sin6_0. In this case equation (38) assumes the form
F _

dV d2x

dt d[,2
(38a)

If next we neglect the quantiEy Q sinO in equation (35), we obtain

and hence

d2h

dr2

h= ---_-+C/+C,.
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CALCULATIONS OF SPACESHIP FLIGHT IN THE EARTH'S

ATMOSPHERE (ASCENT)*

fl,

G=Mgo,

M,

go,

v,
R/A,

w,
Q,

Further,

Let us use the following notation:

P, force produced by propellers or rocket engine in the direction of

vehicle axis which coincides with flight direction;

angle of inclination of vehicle axis with respect to horizon;

spaceship's weight at Earth's surface;

spaceship' s mass;

gravitational acceleration at Earth's surface;

flight velocity;

ratio of drag of airplane's lifting surfaces in flight direction to

their lift perpendicular to flight direction;

F_, area of plate perpendicular to flight direction, having a drag equiv-

alent to that of all parts of the vehicle exclusive of lifting surfaces;

k, drag coefficient per unit area of a plate perpendicular to stream,

for unit air density and unit velocity;

air density at altitude h above Earth's surface;

vehicle's total drag;

lift of lifting surfaces perpendicular to flight direction.

let $ be a coefficient defined by the formula:

_ _V_
t -- --_--. (i)

Then the total drag will be equal to

(2)

where Q R is the drag of the wing sections and kF_:fV 2 is the drag of the
A

plate Fw.

Neglecting the centrifugal force due to the flight trajectory's curvature

we can also write

O=a cos a. (3)

The propellers thrust P should overcome the drag W, and the component of

the ship's weight O sin a, and should supply in addition an accelerating force

* A manuscript dealing with the problem of ascen L "Calculations of Space Vehicle Flight in the Atmos-

phere", was discovered in Tsander's archives. The calculation is dated 1924. The end of this manu-

script has not been found, and the editors, therefore, undertook its completion, enclosing the end in

brackets. - Editor's note.
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G av i.e.:
go dl

dV
P=W+Gstna-F" = •

go dl

go dl

(4)

Hence, we find the useful power of the engines or of the rocket

N=PV=(-_+ kF_Q OVc°s_'+oVsina+ Ggo VdVd, (5)

For simplicity it has been assumed in this calculation that the gravita-

tional acceleration is constant within the atmosphere. In reality it varies

with the altitude h as

R2

g = go (_ + h)-------_'

where R =6370km is the Earth's radius.

Therefore, for h=100km we have

g -----go I =O. 97g o.

O+ '_)'

and the ship's acceleration will end less than lOOkm above the Earth's sur-

face.

For the rocket thrust we have

p= v,_=- v.___a_._a, (6)
go go dt

where V2 is the relative exhaust velocity of the gases from the rocket, and

B is the propellant consumption per unit time.

The rate of propellant consumption B is equal to the rate of decrease in
dO

the ship's weight dt"

Substituting (6) in (4) we obtain

(__+ (;cos= ,,_.o--=dr --go 1 dO V_-- kFv.._)-----_go--Gsln
dl G go dl G

or

d__V=_ dG.... V2 [R._.FkFw_'_go¢OS¢_gosin,," (7)
dt G d/

It is known that when flying in conditions of maximum lift to drag ratio,

the wing sections' drag and the parasitic drag of the vehicle are approxi-

mately equal. This takes place if

Introducing the notation

_---= kFvL (8)
A

tg p=_+k&,¢, (9)
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and assuming the most favorable conditions:

tg_=2-_. (i0)

we have

or

0
d In--

d_VV= ao V__go(tg[_cosa+sina) '
dt dl

dV

dt

0
d In--

oo V,_go_3. (, + p) (11)
dt cos

This equation can be integrated for constant V2 if the dependence of the

angle a on time is known.

In the general case we have

t

ro

and if ,,=const, and p=const, then

V_Vo=V21 n Oo (l_to) sm(._-_)
-_- - go cos

(t2)

(13)

It follows therefore that the shorter the acceleration time, the higher the

velocity V attained for a given weight ratio GJG (i. e., propellant consump-

tion) and for given V2, a and _.

A constant rate of propellant consumption B gives also a constant thrust

P= V_ BB__. We then have from the relation d6 B
go dt

Oo--O----B(t-to). (14)

Substituting this expression in (13) we obtain

Go-- O sln(=+_)
V--V o= V 2In G° --go-- --=

O B cos p

=V,[In 0o0 G°--GP s,n(.+fl)]cos/3" (15)

It follows from (12) that if the angle of ascent a is increased, the rock-

et's thrust must also increase, because in equation (4) the term Gsina in-

creases, and because the acceleration time should be made much shorter

in order that the second term in equation (12) should remain small. At the

same time it can be seen from (I) and (2) that the drag also varies,

It is possible to find the maximum angle a which would give V--V0=0.

From equation (15) we obtain

Oo
1. _ Pcos

sin (am'x+ _)'_-- Go--G (16)
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In order that at a given moment of the flight the velocity should not de-

crease, we determine a,nax from (7), (Ii) and (6) for dV/dl =0, i.e., for the

case of constant flight velocity. We have

or

or

dO VI tg _go COS==. -- go sin "t.a, = O,
O dt

sln(a,.,x + O) lz_ dO _ Pgo
go cos fl = G dt " G '

stn (=_.+p)= p cos 13. (17)

If we fl_} at an angle a for which

sin (a + _)]sin(am_x + B) = e, (18)

then for e<l, the ship will be accelerating all the time.

As an example, let us take the vehicle's total weight at the moment the

rocket starts as Go =500kg (it is then assumed that 19 % of the vehicle's

total weight has already been consumed by the engines), the rocket thrust

P=1500kg, R/A =0.0624. We obtain from (I0):

tg 13= O. 1248; _-----7°08': cos fl= cos 7008 '=0.992

Equation (12) can now be easily integrated for constant P and B.

Taking to--0 at the start of the rocket flight we obtain

O = Oo--Bt. (19)

For the integral on the right-hand side of (12) we have

t . t t

0 o cos_ _ O

f t

= g°_P G_-- Bt _Pgo a Go- Bt = -- _ Go
0 0

and the equation takes the form

V-- Vo= V2ln Go . P _ ,_ Oo--Bt (In In O°--Btl--6--+._o,.---6-g-o =v, -_-+, --_--g-o/=

o a_ / o'-'=

or

In order to make

V0= V2(Z- _)ln-_.V-

e=const we could choose a flight angle a for which

(20)

sin= I

sin _ma x /Z

with n>l.
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It is also possible to obtain a solution by finding am,x as a function of [

from equations (17) and (19), and then integrating graphically the second

term on the right-hand side of equation (12). However, formula (20)gives

the result quicker. In order to have a>0 always, _ mugt be positive at the

beginning of the rocket's flight; then G has a maximum and the angle a

therefore a minimum.

From equations (17) and (18) we have

sin (_ + _) -----_ pcos_ (21)
G

and taking u=0 at the beginning of the flight we obtain

E _ Oo tg [3"J"---F-- ' (22)

which is the minimum admissible value of r. In our example

5000.0.1248 =0.416.
Zmin _ I500

Let us take V_ = 4130 m/see for hydrogen plus oxygen and assume that the

rocket starts at a velocity-V0 = 0.400 kin/see which increases to V= 0.8 km/sec

(see equation 20). We then have

Oo V-- Iio == 8.0--0.4 0.799
Ig--o---_2.303V_(I--Q 2.303.4.13(I--E) -----"I"-_--E "

For _=0we find Go/G=6.30 and for e =0.5 we }lave 6o/G =6.302 =39.5. This

unfavorable ratio was obtained because we took r = 0.5 for the entire flight,

whereas t can in fact be reduced with the decrease in weight 6.

If we take Goe/G=V=const (and not _-=const) then we obtain for the integral

on the right-hand side of equation (12)

sin (=,.ax q,- [_) dt=sin_ia+_) dl.__.g ° E
go cos _ cos p

$a t*_

2= eo__Vg0 _ at = (l- to),
Go G

It

and if to = 0, then

or

V-- Vo=' V21n 6o g_PP t= V_ln O0
O GO G

goVP Oo--6 =V2[In__V(_}(_o B

V-- VolVo[In GoG--'-V( I- G'_o)J'
(23)

In our case P'=_,=_m,, = 0.416. Taking P'=_, = 0.5, and omitting in an ap-

proximate calculation, the last term of equation (12), i.e., the small
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quantity G--_V,G -- we obtain

or

V-- Vo 4- P-V, _In Go ,
V2 G

(24)

Ig_- = 1 (8.0--0.4+0.5.4.13)=1.018,2.303-4.13
i.e.,

fi-/-o = I0.43.
O

For a velocity V = 11.3 km/sec we find

(25)

.__ l (I 1.3--0.4 +0.5.4.13) = 1.365;lg = 2.303.4.13

Go =23.2.
G

In the limit,

any losses

for V-----Vine. = 0.416, we would have --6- = 21.4,

10.9 = 1.146; °° =lg = 2.3o3.4.13 y 14.0.

and without

(*This formula is valid as longas sin(_3r_)<l, i.e., as long as (see (17)

P cos_t..< 1, or O>/_Pcos_. In our e_cample this would take placefor
and (18)) -_

O _P cos _ _ 0.5. 1500,0.99'2 I \

o--T= o--Y-- = ')

If we write equation (15) in the form:

V--VO_ln O0_ Go--O (tg_'cos,,Tsin=), (26)
V2 G P

then we can calculate the flight time average of the angle a.,_x for which

V--Vo = O. If we assume cos a_l, then for large a, corresponding to small G,

we overestimate somewhat the air friction. Then

In 6-'qz° 60-6; le_

sin =:,,x__ 6 P (27)
Oo -- O

P

If we fly at an angle ui for which sin a/sin a',,n,=l/n, then we obtain from

equation (26)

v--vo _,In o° Oo--O tg_ Oo--0 s_na,
V= O P P

(since cos=_l), hence

.)l," 7. a* n "

* If we neglect the altitude andvClocity already attainedwiththe aid of the engine (h = 28kin, V0 = 400 m/see).
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or

v - v0 = a0- a .- l sin _'=.,. (28)
v2 P n

If Go, 6, P, V=, Vo and n are given, it is simple to calculate from equa-
tions (27) and (28) the velocity V and the angle a as functions of G. The

larger the decrease in weight Go--G, the larger is the angle a.

It is then possible to determine by (14) the time that has elapsed since

the beginning of the rocket's operation:

l Oo--G (29)
B

We can now determine the altitude suitable for flight with velocity V. To

do this we use formula (1}:

O Oco_= G

If we denote by F the area of the wings' supporting surface, we canwrite
for the lift

Q=O0 Acos :=-- "_FV'. (30)
.t0

where A is the lift of unit wing surface for unit flight velocity; Q0= AF V_, _,o=

_oY_ "fo

:_-o :'A-F' are the values of Q and _ at the Earth's surface.

The parasitic drag of all the sections of the vehicle is equal to

kFwI In=kF_AQ=kQ "to F_,
A ¥ '

and from formula (2) we obtain the total drag

(Here Tsander's manuscript is interrupted.)
(The altitude suitable for flight with velocity V can be calculated if we

remember that
1o _ I V2

_=_- = -'E-"

The quantity _']_'o, which characterizes the flight altitude, can be ex-

pressed as: ]__= 0.__.
"1o AFV_

The flight velocity is determined from (28)

V=V2 Go--O n--],o ,, sin:',..,+ Vo

and then

lo

AF[ V 2 Oo--_GPn -- I sin %'*x-l-%In

Thus, the altitude is a function of the rocket's weight.)
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SPACESHIP'S TEMPERATURE IN GLIDE LANDING ON EARTH

Tsander devoted a series of theoretical works to problems of the return

of spaceships to Earth. He showed that in order to realize interplanetary

flight with subsequent return to Earth one must solve a series of complex

scientific-technical problems. One of them is to protect the vehicle's body

against aerodynamic heating when it moves through the atmosphere at high

supersonic velocities. This is dealt with in the present article.

Some of his estimates of the body temperatures and of the weight of the

vehicle's thermal protection in gliding descent, which were obtained on a

concrete example, are close to the values obtained by modern heat exchange

calculations. It should be noted that problems of spaceship thermal protec-

tion during landing are mostly unsolved even now and require many theoret-

ical and experimental investigations of heat exchange at supersonic veloc-

ities, The studies conducted by Tsander already in 1925, on the thermal

conditions of spaceships, are therefore still of great interest. The article

was prepared for print by B.P. Plotnikov, Candidate of Technical Sciences.

Editor

A vehicle entering the Earth's atmosphere from interplanetary space

possesses a large amount of kinetic energy which it must lose by decelera-

tion in the atmosphere. If the re-entry velocity is ll.2km/see we must, in

order to make a gliding descent possible, create a negative lift by an ap-

propriate angle of attack. This is because at this velocity the centrifugal

force C_ which appears in orbiting the Earth is twice the vehicle's weight,

At V=Skm/sec, Cs=G, and since 11.2/8= _ and C=V_/R (R being the

Earth's radius}, then at Y=ll.2km]see we obtain

Cjl._ C8 (_)_---_2Cs=2G.

The airplane has to be subjected to a force C_I_--G---G in the direction of

the Earth. Only because of the large drag coefficient at high velocities can

one use a somewhat smaller angle of attack, thus reducing the total drag.

Let us assume a total drag W at a velocity of 11.2 km/sec equal to l/n of

the vehicle's weight, i.e., W=G/n (with n_6)*.

The work performed by the drag in unit time is equal to

L= WV= av ,
II

When the velocity of the spaeeshzp decreases to 8km/sec the drag drops

since at this velocity the ship can orbit freely and the wings' angle of attack

* The coefficient n : 6 was probably choset_ by the author on the basis of data on airplane drag existing at

the time.
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canbe reducedto zero. Thereforeat V=,x the power L and tbe rate of

temperature increase will be maxima.

Let us find the temperature which the spaceship would reach for constant

total power. The actual heating will be smaller due to the gradual decrease

in power brought about by vehicle deceleration. The power L corresponds

to a thermal energy AL, where A = 11427kcal]kg is the thermal equivalent of

work. At high altitudes the air is quite rarefied and the heat transferred

from the air to the vehicle can be neglected. The amount of heat Q which is

radiated in unit time (in 1 hour) is equal to

Q=cF(T4--T,4),

where F is the area of the spaceshipls heat radiating surface in m2;

1", the temperature of the spaceship's heated surface;

1"o, the temperature of the surrounding medium;

¢, the radiation coefficient for a perfect black body, where

c=4A0, l0 _ kcal/m 2hour

(we can take c_4.10-a).

Assuming that the vehicle's surface is in thermal equilibrium, we can

write the equation of heat balance

Q = _AL = ? -_-_ cF (T' -- T_),

where _ is some coefficient.

_] since a part of the energy L is spent in creating vortices in the air'*.

G should be expressed in kg, and V in m]hr.

Let us take as an example G = 1000kg, a wing surface {sum of the upper

and lower sides) equal to 2×40=80m 2, anda body surface of 94.3m 2{as-

suming a length of 15 m and an average diameter of 2 m). The total surface

is equal to

F, =80+94.3_170 m2.

If on the average 1 of this area will be heated, then
m

t/$
We then obtain

AG Vm

r. = T:+_ .-_-FC,'

and taking for To its probable upper limit of To = 273°K, we obtain

7_=273_q 1000.11.2.10_m_108.3.6.103 _.55.8.10,@23 100.10Srn_"
6.427-4.0.170

|
If we take _p= 7"Y as the most probable value (this value was found for

meteors which enter the terrestrial atmosphere at high velocity)**, and

* The coefficient q_ gives the part of the kinetic energy which is transformed into heat and reaches the

vehicle's surface.

** At the time of Tsander's worI_ on this article there existed no fundamental research on the heat exchange

of bod_es moving with high supersonic velocities in the Earth's atmosphere, on which the true value of the

coefficient _ could be based, Research conducted recently on beat exchange in supersonic flows has

shown that the value ¢p : 1170 adopted by Tsander is close to the actual value.
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m=20, i.e., that only the leading sections of the body and of the wings are

heated, then

1-_-8--55.8+ 23100--_-0 _--6656; T--902"K;

t = 902 -- 273 _ 629 ° C.

Even if all the braking energy was given to 1/20 of the ship's surface,

we would have _= 1, m =20 and

T4 ----55.8 + 23 ] 00.20,-- 462 056;
108

T"2610 ° K; t_2610--273----2337 _ C.

If we build the moving surface in such a way that all its sections are uni-

I
formly heated, we can take _=_-_ and m = 1, i. e,,

r+ =55.8 -k 23 Too -----386;
108 70

T=444 °K; I=444--273=171 °C.

We can also remove all the heat absorbed by the spaceship by water

which is converted into steam. If we take the water in the form of ice, then

1 kg of water under a pressure of 1 arm can remove q = 80+ 637 = 717 kcal/kg.

The entire energy which the spaceship uses is equal to E=GV2J2g, andthe

heat which has to be removed is equal to

R=TEA= _ V2AO
2g

Therefore, the weight of water Ow which is required to remove all the heat

is equal to

G_,___ = +v2A_____!°
q 2gq

and, therefore,

Gw =? V_A
G 2gq

]
Substituting the numerical values V = 11.2 km/sec, _ =-_, q = 717 kcal/kg,

and g=9.81m/sec , we obtain

Ow ] ! .2_. 10s = 0.299,
O 70.427.2.7.81.717

i.e., the water constitutes 30% of the vehiclefs weight.

We now have the question of what should be the area of the heated sur-

face needed to evaporate the amount of water required to cool the ship. Ref-

erence books give the amount of coal burned per m 2 of boiler heating sur-

face and the plant efficiency; from these it is simple to determine the num-

ber of calories transferred in 1 hour from 1 m 2 of surface to the water. It

turns out that for passenger locomotives, the latter figure is approximately

37,000cal/hour m_ or 37,000= 10.3cal/sec m 2.
3600
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The maximum rate of heat removal is

Q=A.y.J___ callsec or in our example:
Ix

Q_ 10o0.11.2.10a =62.5 calJsec;
70-427.6

which means that only 625/10.3 = 6.06_6 m 2 of surface are required to re-

move the amount of heat which arrives at the vehicleVs surface. It can be

shown that the temperature of the vehicle's external wall will not be too

high.

Taking, for example, the wall thickness of the copper water cooling

jacket equal to 2ram (copper's coefficient of thermal conductivity X is

300 cal/m hour°C}, and assuming that the water is boiling all the time, we

can take its heat transfer coefficient as

= 10 000 cal/m _hour °C.

We then obtain for the total heat transfer coefficient

1 I

I _ I 2
";-+_ 10000 + 300.100O

=9390 callm2hour °C.

Taking the cooling water's temperature t as 100°C, the formula

Q=kF{lk--t) gives for the cooling jacket's external wall a temperature

I,_I4--_F ----_100 " 62.5.3600 .... 24+--=_t 7.93_F

24
If F=6.06m _, we obtain t=lO0+_-_=104°C, and for F =lm 2, we obtain

= 124°C.

We see that it is very easy to cool a spaceship during landing, even if

only the leading edges, i.e., only a small surface receives the heat. The

temperature of the cooled walls will not be high.
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DEFLECTIONAND REPULSION OF METEORS BY EI,ECTROSTATIC

CHARGES EMITTED BY TttE SPACESHIP*

In the present article we shall investigate the problem of protecting a

spaceship from collisions with meteors during its travel in interplanetary

space. The following method is proposed. The spaceship is connected to

a negatively charged sphere built of very thin metallic sheets. The space-

ship itself can be placed either inside the sphere or behind it, so that the

meteors cannot reach it. A beam of electrons, for example, in the form

of cathode rays, is emitted towards the meteors. The electrons chargethe

meteors which are repelled from the charged sphere by electrostatic forces.

As a result the number of meteor hits on the spaceship may become zero.

The smaller the meteors, the easier it will be to hold them back. Protec-

tion against meteor dust is the easiest task.

Let us use the following notation:

m, meteor mass;

V®, meteor velocity at an infinitely large distance from spaceship;

R, meteor distance from spaceship at a given moment;

R_, radius of sphere attached to spaceship;

K and Ko, forces with which meteor is repelled from spaceship at dis-

tances R and Re;

P. I_,, amounts of charge situated at a given moment on meteor and

on spaceship;

g0, amount of charge on meteor when distance between it and space-

ship is Ro;

U, U,, Uo, potentials of meteor and of spaceship corresponding to charges

P, P.o and p,;

"l/g, meteor mass density;

r, meteor radius;

R,, minimum distance between meteor and center of sphere attached

to spaceship;

_, amount of charge emitted by spaceship in unit solid angle per

see;

_, solid angle into which charge is emitted.
mV 2

We can write that the meteor's energy at infinity is equal to E=--_. If

we assume that already at _ the meteor has a potential U0, then the inter-

action force between the meteor and the spaceship at a distance R is equal

to /(_-/(0_-. If we also assume that the spaceship moves along the meteor's

line of motion and is not noticeably slowed down by it, either due to itslarge

* The article was written in the period from 26 June to 6 July 1925. It was prepared for print by LV.

Letuchikh. - Editor's note.
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=

mass or due to the fact thai it emits rays in other directions too and so is

repelled also by other meteors, we can write for the potentialwork of the
force K

E, = "ffA"dR= kot?2o2 d-_ = KoRo. (1)
R0 R°

If the meteor's velocity relative to the sphere is zero and, in particular,

when they touch each other, we have

m 2 mg_V.

E=e,, i. e. ---7--=K0_?0 or K0=-3-_0. (2)

where V_ is ihe velocity of the meteor with respect to the spaceship.

By Coulomb's law we have

K0 = "'-'-_, (3)
Re'

where _=RoU , and re----rUe, Re and • being the capacities of the two spheres.
We have assumed here that the meteor has a spherical shape. For other

shapes these quantities are larger, but the amount of charge falling on a

meteor of given mass per unit time will not differ considerably from the

figure given above, since the projection of an object on a plane perpendic-

ular to the cathode rays wili have on the average approximately the same

cross section as a sphere. For bodies of different shapes this willbe ex-

amined later*.

If at its nearest position from the center of the spaceship's sphere the

meteor touches the spaceship, and if their potentials are equal, i.e., U_=Uo,

then
R;=Ro-r; p,=(O0--r)Ul; t*o=2Vi.

Substituting this in (3) we obtain

1% fro- r) rU_

or in (2)

Hence

rmy:
2Ro R0

u,_= vL "

The mass of a sphere is equal to m=47tr _J--L so that
3 g

U_= VLr 2 2._ (4)

* All Tsander's studies were for spherical meteors. Studies of different shapes of meteors are not included

in the present article and have not yet been found in Tsanderrs archive.
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We see, therefore, that the potentials required for stopping the meteors

at the surface of the spaceship's sphere are proportional to the meteor's

velocity, to its radius, and to the square root of its density. If we take a

meteor of radius r= l crn consisting of iron with specific weight 'f= 7.86 kg/dm3
and having a velocity V of 25km/sec=25.10Scm/sec, relative to the

spaceship, we obtain in the CGS system of units:

2..7.86U]=U°=-300"25"lOS'l'O 3(1 __0)'

or for r/Ro_O, we have U1=Uo= 3.04.109 volts.

According to the theory of Maxwell and Exner, the potential of the Earth

is equal to 1.9.109 volts. This potential can stop meteors whose radius is

equal to r=1.0.19/30.4=0.625cm, which corresponds to aweight of

4 _r3. _=___mg=--_ _-0.6253.7.86 _- 8 g.

Meteors whose trajectory does not pass through the center of the space-

ship's sphere, will be deflected with greater ease.

If we take r<<R, i.e. r-!-_0 then it follows from (4} that the potential

required to stop meteors does not depend on the radius of the spaceshipWs

sphere. If R_R0, then K0_, e°U----L i.e. the interaction force between the
RO '

meteor and the sphere under contact is inversely proportional to the radius

of the spaceship's sphere.

Meteors will not in general have the Earth's potential. This is demon-

strated by the fall of meteoric interplanetary dust on the Earth. It can also

be said that meteors possessing sharp edges and corners will lose their

charge easily. Therefore, the spaceship should in general emit negative
charges.

We can collect solar energy by large convex mirrors attached to the
spaceship, using this heat to evaporate water in a steam boiler. With the

steam we drive a steam engine and by it a dynamo feeding an instrument

which emits cathode rays. In this way we can continuously throw large

amounts of negative electricity into space. The principal energy carriers

are cathode rays which contain high velocity electrons. Let us, therefore,

examine in detail the electron ejection, and the process of charging and
discharging of meteors.

An amount of electricity of _dadt coulombs is ejected into a solid angle da

during time dr, At a distance R from the spaceship, a spherical meteor

xr 2

of radius • will be seen at an angle Of --_-=A=. During time dt an amount

of electricity equal to , ,r2 dt falls on the meteor. At the moment consid-
R_

ered the meteor contains a charge of i,=ru coulombs and the interaction

force is equal to K-- ___L where _:=R_Z]I. From the laws of mechanics we
-- R2 ,

dV dR
have also K=--m-- where V= We take the velocity of the meteor

dt dt

at a given moment as negative since we are considering an approach of the
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meteor to the spaceship. We obtain, therefore

K_ _--L1-_--m d_V_V,
I_z dt

or

dV u_l__ ptr fJ

dt mR 2 m R 2 "

On the other hand the charge increase on the meteor is equal to

(5)

d}_ = _ _r.____'dr,

hence

d_ dU ,_t ¢

dt dt R 2

(6)

Introducing the constants

K,= D--f'-eand K_=,_r,
m

we obtain two differential equations

av =K O'.
dt R z '

(5a)

¢tU Ks=--. (6a)
d/ R 2

Dividing them by one another we obtain

a__v=_ Kz,U,
dO" Kt

or

hence

or also

dV= -- K.--LUdU,
K,

v- v. = _ (u:. - u,),
g,.'_. |

V------_ U'+ b,, C7)

where U,o is the potential which the meteor possessed at an infinitely large

distance from the spaceship and b,= g-_!-U_.+V is a constant.

dR

If we substitute V =ffi--_, equations (5a) and (7) become

d2g--K U dR . I<I Ut_b,.
tit---_- i R2 ' dt 2Kz

Eliminating U from these equations we obtain

dR K, {a'_), R+
dt 2K= \"_'-] "_-i2 +b'=0'
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or
I

._ d_ __--± _ I/t,,+ dR'
dr2 _/ dt

We introduce the constant

/
vb_=T 2KIK2=I/

m "i¢

Since m= _-Z-_r3flL-, we have
3 g

We now obtain

or by substituting

l/ 3g¢_

at--F=-- R--FV _,t a--F'

we obtain

_D d V d2R
V---- -- _'" and =

dt dl dl _

Sinc e

a v + b2 I/-_I_ V"
dt R 7

then

or after integration

dV dV dR VdV

-TF =-7_-7F = do

VdV brdR

V

Vao

To calculate the integral on the right-hand side we introduce a new

variable

z=b,--V. (9)

Then dz=--dV, and the right-hand side of equation (8) takes the form

(b_--z)(--ctz) b, S dz¢¥ =- -G;+

+Svzaz=IV -'-¢71+ff(=3°-<')"

Substituting this in equation (8) and introducing the notation
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we obtain

or

b_= _ b, -- 2b, V-_+ -_ V-_.R

R---_ -- bi

-b3 + 2b, _- a2-- V_ "

Returning to the variable V (using (9)) we have finally

-- b 3 -_ 2b I (b| -- V_If2---_ (b -- V) sl2

This expression enables us to examine the behavior of a meteor in the

spaceship's electrostatic field. In particular it enables us to determine the

specific velocities V for each distance R between the meteor and the sphere

in the electrostatic field characterized by the parameters I,i and v.

If the meteors are stopped at the surface of the sphere, which means that

the meteor' s relative velocity V is 0 for /_=_0, the equation takes the form

_)0_ - -- b2
4

- b_+ "T _

By means of this expression, which represents a complex functional re-

lation between the parameters R0, bq, v,r, U_. V®, we can determine the amount

of electricity v which should be ejected by the sphere in unit time in order

to stop the meteors at the spacehip's surface.

To determine the actual electric parameters of the sphere which will

provide a reliable protection of the spaceship against bombardment by me-

teors, it is necessary in future calculations to choose the most probable

values for r, U®, V_.
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PROBLEMS OF SUPER-AVIATION AND IMMEDIATE OBJECTIVES

OF SPACE RESEARCH*

The paper considers first the influence of pressure, temperature, den-

sity, and composition of the atmosphere on spaceflight. Methods for in-

creasing the power of aeroengines at high altitudes are then described. The

author's innovations consist in replacing compressor pumps by special ther-

mal injectors, and in introducing high-pressure motors operating on liquid

oxygen and fuel, as well as special motor-rocket combinations. Results of

calculations of a jet engine having an axial thrust of 1500 kg are presented.

Various jet engines, new working cycles and their conditions of operation,

combustion of metal fuels and their advantages are discussed. Designs of

rockets and airplanes utilizing solid fuel which constituted part of the struc-

ture before combustion, are presented. Results of calculations of the as-

cent of an airplane with a rocket, and of range curvature of rockets flying

over the greater part of the globe are also given. The principal problems

of super-aviation are listed and the projects which should be undertaken im-

mediately in preparation for space travel are reviewed.

Let us summarize briefly the problems of super-aviation. The goal of

super-aviation, i.e., the ascent to the upper atmospheric layers with tem-

porary exit from the atmosphere, requires that a flight velocity of 7.9 km/sec

be attained, since this is the value of the orbital velocity necessary to

eliminate completely the possibility of failing back to Earth. Making allow-

ance for the Earth's rotation, this velocity can be lowered to 7.9-0.46=

= 7.44 km/sec if the rocket is launched on the equator in the west-east di-

rection. Flight velocities of 3 - 3.5 km/sec at an altitude of about 60km are

satisfactory for super-aviation provided that high-altitude atmospheric hy-

drogen can be used.

To achieve super-aviation the following points should be investigated.

1. In the field of aircraft power-plants: centrifugal compressors with

enhanced cooling and more than two stages, with the carburetor betweenthe

stages; large-size engines utilizing oxygen-enriched fuel mixtures and

operating on an increased compression ratio; high-pressure engines uti-

lizing liquid oxygen and operating on the principle of internal and external

combustion, and their components; jet compressors {thermal injectors) re-

placing compressor pumps; ordinary engines being combined with jet en-

gines, either placed at the propeller's tips or fixed rigidly inside the air-

plane; engines made of combustible metals and designed for a single run.

2. In the field of jet engines; engines operating on the principle of direct

action with constant exhaust velocity and utilizing various kinds of fuel; en-

gines with an inverted cone to increase the exhaust velocity by cooling {with

* This article is the summary of a paper written by the author on this subject. It includes the last pages of

the manuscript which give a general r6sum$ of the problems of super-aviation. - Editor's note.
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air, liquid fuel, or water); engines utilizing the atmospheric heat by cooling

the ambient air to extremely low temperatures; jet engines with prelimi-

nary compression and direct exhaust or inverted cone to increase the ex-

haust velocity; engines with air intake either accompanied by a shock wave

or shockless; engines in which the combustible air is compressed by a jet

compressor; combustion of the 2H 2 +O 2 mixture which supposedly exists at

an altitude of 60kin, at pressures from about 10 -4 to latin; rockets opera-

ting in combination with airplane models.

3. In the field of fuels and materials: solid fuels, including metals, and

their use in jet engines and aeroengines; the applicability of gases with low

liquefaction point as fuels and coolants; solid fuels of high hardness andvis-

cosity, their melting and solubility; containers for melting metals and com-

pounds; low temperature properties of materials; methods for heating

cooled parts of the spaceship.

4. Heating of frontal components at high flight velocities; blowing of

cold air on these components from the low-pressure pocket in the inverted

cone.

5. In the field of construction of rockets and airplanes: one-stage rock-

ets, rockets equipped with lateral rockets and vessels, compound rockets,

rocket trains; construction of airplanes with combustible parts and devices

for moving parts of the airplane.

6. In the field of investigation of high-altitude atmospheric layers:

launching of rockets and airplanes; radio reception of rocket reports.

7. In the field of pilot hygiene: development of apparatus for generation

of oxygen and absorption of carbon dioxide; cabin design; methods for

cleaning the observation ports.

8. Theoretical studies of the flight trajectory, development of apparatus

for indicating stresses in materials.

Research projects following this outline will prepare us not only for a

temporary exit from the terrestrial atmosphere, but also for full-scale in-

terplanetary travel. For the last objective, the problem should be formu-

lated in a wider sense. We shall therefore consider those points not related

with super-aviation, and refer exclusively to preparatory studies for inter-

planetary travel.

The main attention should be given to experiments on the purification of

air in closed quarters where human beings will be confined for several

months rather than for a few hours. To a certain extent this problem can

be solved on Earth. A human being, or some experimental animals at first,

should be placed in sealed quarters equipped with apparatus for air regen-

eration. It is possible to design chemical cyclic processes in which carbon

dioxide is absorbed by some reagent and is then released elsewhere; oxygen

can be supplied in high-pressure containers. These problems are obviously

the concern of our chemists and doctors. The low temperatures of inter-

planetary space may be possibly used for the purification of air from all un-

desirable gases. This can be tested on Earth under laboratory conditions.

Apparatus for the control of fresh oxygen supply is also necessary.

Experiments on protection from meteors could also be devised. The me-

teoric velocities are very high: 40 to 50km/sec on the average. These ve-

locities are obviously unattainable under experimental conditions, so that the

actual research should be done at low velocities and the results extended by

analogy. The best way would be to design an apparatus which sweeps the
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fast-movingmeteorsawayfromthespaceship.My proposalis to deflect
themeteorsby anelectronbeamof so-calledlow-velocitycathoderays
emittedby a spherechargedwithnegativeelectricity. Insidethis sphere
thespaceshipwill besafefrom meteors. Thelowerthe_K_s'velocity,the
higherthepressuretheyproducefor a givenenergy. Theserayswill
chargethemeteorswhichapproachthesphere,andhavingacquiredacharge
of thesamesignthemeteorswill berepelled. Calculations have shownthat

fine dust and meteors up to lcm in diameter can be deflected by this method

provided that the ejection of electrons from their sharp points is not exces-

sive. It is highly desirable to carry out some experiments in a very high

vacuum. Large meteors are encountered very seldom, and they may punc-

ture spaceships with a frequency not higher than once in 10-60 years.

As regards the food supply, it can be brought along for the initial

part of the journey: but since unexpected delays may occur, it is absolutely

necessary to make some experiments with greenhouses of suitably light

space-borne design. I carried out the first experiments in 1915-1917, in

which I succeeded in growing peas, cabbage, and some other vegetables in

charcoal, which is 3-4 times as light as ordinary soil. The experiments

showed that charcoal fertilized by human refuse is perfectly suitable. Char-

coal is highly absorbent, and can therefore be used to keep the air in the

greenhouse fairly clean. In 1926 I grew beans in a glass of water fertilized
with refuse in a ratio of 1:200.

From this elementary type of hydroponics we may pass to direct sprin-

kling of nutrient liquids on the plants' roots. Here the plants will grow with-

out any soil. The method of aeration is suitable for converting all refuses

into useful fertilizers within 24 hours. At the high temperatures attainable

in interplanetary space, very rich crops can be expected in these green-

houses in an atmosphere of pure oxygen mixed with carbon dioxide.

Tsiolkovskii calculated that a greenhouse of bananas, the most prolific of

plants, can feed one person from an overall area of lm 2. Even if 100m 2.

are necessary, the area is still less than the craft's surface*. Plants can

be grown in empty quarters where liquid is sprinkled, the quarters being

enlarged as the plants grow so that maximum economy in the greenhouse

area is attained. The weight of the device is very low. The greenhouse will

also supply pure oxygen and utilize the carbon dioxide exhaled by man. The

energy is derived from the Sun, and man can live together with the plants

without requiring either additional air or additional food.

The provision of interplanetary stations near the Earth and other planets

is very important. Crafts and rockets launched from the Earth may stay

here so that the pilots may rest after the hardship of the climb. Interplan-

etary travel will become much cheaper if these stations are available, since

they can store all the articles necessary for further flight to another planet.

These stations may also transmit signals over large distances. The erec-

tion of a suitable building on the Moon or some other planet is highly desir-

able, since soon after the first conquest of interplanetary space, i.e., after

leaving the terrestrial atmosphere, it will become more expedient to build

spaceships not o_l Earth, but on some lesser celestial body, where the ener-

gy required for launching a vehicle is considerably smaller. Moreover, any

work in the widest sense of this word is more easily carried out on small

* Here, and in what follows_ craft is taken to indicate a spaceship designed after an aircraft. -Editor's note.
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celestial bodies. It can, therefore, be maintained that life will be cheaper

on small celestial bodies than on Earth.

The most difficultproblem in interplanetary travel is how to attain the

first interplanetary velocity equal to about 8 km/sec. After reaching this

velocity we shall be able to go on to other projects, Further acceleration

of the flight velocity is possible by means of forces 100 to i000 times smal-

ler than the forces required for launching. Moreover, in interplanetary

space there are some sources of energy which can be tapped quite free of

charge.
In conclusion I stillwish to enumerate briefly those methods which will

be suitable for traversing interplanetary space.

Departing from an interplanetary station on a long-range vehicle, we

may use the following means of propulsion:

I. Rockets of very small size which occupy only a limited space in the

vehicle.

2, Light rays falling on large rotating disks or mirrors, Over the enor-

mous interplanetary distances, the radiant energy may increase the flight

velocity substantially, since the Sun's attraction at a distance equal to the
distance of the Earth from the Sun is i]1700 of the terrestrial attraction on

the Earth's surface.

3. My investigations show that it is possible to design compound mir-

rors which would give an attraction, rather than repulsion, towards the Sun.

4. It is possible to design a system of mirrors with one prism from

which light, once having entered, will not emerge. This system can gener-

ate very large forces and can also be used in solar power engines.

5. Rockets may be designed whose action is boosted by concentrated

solar light.

6. It is possible to find ways to transmit the energy of concentrated

solar rays over large distances and combine this energy with a rocket

boosted by the action of concentrated solar rays. At present this is the only

possible way to reach high flight velocities; we hope that these methods may

be suitable for journeys to other solar systems.

7. My studies show that it we build a current-carrying solenoid and put

inside it iron dust charged with static electricity, the pressure of Sun rays

on this dust propels the interp]anetary structure.

8. The flight trajectories may sometimes by chosen so that the vehicle

travels round planets or outside their atmosphere. In this case the flight

velocity can be increased. Revolution about the Moon may raise the flight

velocity by about 2 km/sec. A ship traveling around the Earth outside the

atmosphere will gain about 10km/sec, and inside the atmosphere, 50-

55km]sec. A ship traveling round Jupiter outside its atmosphere may in-

crease its flight velocity by 24 kmisec.

9. It is generally advisable to accelerate the flight near the points at

which the flight velocity is high, i.e., near planets.

10. Journeys in interplanetary space proper, and also directly over the

surface of minor planets, can be carried out in a charged, very light, hol-

low sphere, provided the planets or the asteroids are electrically charged.

In this case the sphere will be repelled by the planet if it is charged by elec-

tricity of the same sign (obtained, for instance, by bringing the sphere into

contact with the surface of the celestial body), and it will be attracted if it

is charged with electricity of opposite sign.
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11. There are certain indications that the fairly powerful magnetic

fields of the planets and of the Sun can be utilized for the same purpose.

Traversing a magnetic field with a very high velocity and putting an elec-

tric current through a conductor closed in the space outsld_ the vehicle,

we may obtain a force acting on the conductor in a definite direction. This

can be used for changing the course of the vehicle and for lifting it from the

surface of a minor planet, particularly if the low temperatures are suitable

for using the superconducting properties of the metals.

In the very near future, intensive research on problems of interplanetary

travel, with the participation of workers from other related fields, should

enable humanity to enter interplanetary space and travel to other planets.

375





Appendix 1

SUMMARY OF THE LECTURE

ON MY SPACESHIP, DELIVERED AT THE THEORETICAL SECTION OF THE MOSCOW

SOCIETY OF AMATEUR ASTRONOMERS, 20 JANUARY _924

A. Introduction: outline of lecture: the fundamental propositions,

operation and advantages of my design, and the relevant calcula-

tions.

B. Lecture about the spaceship.

I) Read the article from "Samolet '' and show the drawings.

II) Calculations for the rocket of a spaceship:

a) rocket force;

b) velocity of rocket gases;

c) efficiency and performance;

d) rocket cross sections, velocities, pressures, specific

weights, and temperatures;

e) friction at the rocket walls;

f) heat transmitted by the walls and the wall thickness;

g) actual example of calculations of the magnitudes quoted

in a)-f) and of the thermal efficiency as a function of
altitude.

III) Calculation of a voyage in a rocket and the overall consumption
of fuel.

IV) Calculation of a voyage in terms of the engine and the engine

power.

V) Velocities required to reach other planets. Calculation of

trajectory, duration of journey, least-velocity trajectories

for given duration of voyage.
VI) Use of mirrors and screens instead of rockets in inter-

planetary space. Calculation and advantages.

VII) List of danger spots and list of possible and interesting cal-
culations.

C. Conclusion: a detailed study of the design is required; it is desirable

to organize a society of amateur investigators of interplanetary
travel.
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Appendix 2

REPORT OF F.A. TSANDER

ON THE PROPOSED PROJECTS OF THE SCIENTIFIC RESEARCH SECTION OF THE

SOCIETY OF INTERPLANETARY COMMUNICATION

Delivered 15 ffuly 1924

My Friends'

We all are united by a common idea: The necessity to investigate the

field of Interplanetary Travel:

This is a vast project and many fervently wish to advance it. However,

there are problems: how are we to conduct the research, where are we to

start, and how are we to unfold our activities?

Our Scientific Research Section is obviously now in a position to pene-

tratethe heart of the matter. On the one hand we shall study the phenomena

theoretically, sketch their trend, and develop, partly in joint projects, the

necessary designs, and on the other hand we shall test, under actual condi-

tions, models and small rockets for investigating upper atmospheric layers;

we shall strive for immediate success. We shall thus verifyby experiment the

validity of the theoretical conclusions, the quality of fuels, etc.

Our problem thus consists in:

1) laboratory work;

2) draftsmanship;

3) theoretical scientific work,

taking care that all three projects are intimately linked with one another.

It appears that in the more distant future we shall also add by con-

certed work:

4) the construction of large machines for carrying people to the upper

atmospheric layers and to interplanetary space; we hope that we shall be

able to shake hands on other planets.

Laboratory and practical work

1. The most intensive work in the laboratory is obviously conducted in
the field of:

A) Investigation of small rockets operated by various fuels. After

the first successful experiments we should already be able to

launch such rockets and thus test our gyroscopic devices. The

competition for inventing small rockets to be used in investigations

of the upper-atmospheric layers will be highly conducive to this

end. It will be necessary to test: 1) the influence of the initial

and final pressure of the gases; 2) the influence of wall smothness;

3) the transmission 0f heat through the walls; 4) the determination

of the propelling force for all cases; 5) various fuels including

metals; 6) materials for rockets with reference to the wail tem-

perature and the internal pressure; 7) various gyroscopic devices;
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8) the injector rocket operating on atmospheric air; 9) compound

multistage rockets inserted one into another; I0) the determina-

tion of designs capable of carrying the highest percentage of liquid

fuel.

Then we have:

B) Construction and testing of collapsible and noncollapsible airplane

models of different designs propelled by rockets and engines or by

rockets only.

C) Testing of the influence of high accelerations in specially designed

centrifugal machines.

D) Construction and design of engines operating on liquid oxygen or

on solar energy.

E) Testing of a diving suit for high-altitude and space flight and of

suitable protective devices.

F) Testing of apparatus for regenerating the exhaled air, etc.

G) Investigations towards a greenhouse light enough to be carried by
a rocket.

H) Testing of television for rockets.

I) Testing of components of spaceships at low pressures and high

accelerations in a wind tunnel made of two rockets brought into

contact at their widest parts; determination of resistance, lift,

and heating.

K) Investigation of the upper atmospheric layers with rockets, bal-

loon sondes, and photometric observations of twilight and instru-

ments for these.

L) Testing very thin sheets for screens.

M) Testing of coils carrying an electric current with an iron dust core.

17 October 1926
Appendix 3

TABLE OF CONTENTS (summary)

of the book by F.A. Tsander proposed for publication under the title

"FLIGHTS TO OTHER PLANETS: THE FIRST STEP INT0 THE

VAST UNIVERSE"

(Theory of interplanetary flight)

I,

II.

III.

IV.

Preface. The way of the investigator and the inventor.
Table of contents.

Introduction. Subject of the book. Outline of the problem.

Calculations for the design of rockets for spaceships.

1) Determination of axial pressure of a rocket (P) for a given ex-

haust velocity of the gases (w_) and a given rate of consumption

of fuel per unit time (B).
2) Determination of the exhaust velocity of the gases (w2) for a

given calorific capacity of the fuel (H=il--io) and a given exhaust
coefficient (_).
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3)Efficiencyof a rocket:

a) ratio of work done by ship in time dt to the heat converted

into kinetic energy (_,,};

b) thermal efficiency (_,);

c) total thermal efficiency (_=_,,._-_,). Graph of its depen-

dence on flight velocity;

d) total efficiency of a rocket (_j+g), equal to the ratio of work

transmitted to the spaceship in time dt to the sum of the ki-

netic and the thermal energy of the fuel consumed. Graph of

its dependence on flight velocity;

e) average efficiency for a given period of time. Graph of its

dependence on fuel consumption.

4} Thermal calculation of a rocket following Professor Stodol's

method for exhaust nozzles generalized by the introduction of

heat transmitted through the rocket walls. Sample calculations

and drawings. Calculations based on the iS diagram, where i

is the heat content, and S the entropy of the combustion prod-

ucts.

5) Calculations of exhaust velocity, fuel consumption, and axial

thrust of a rocket using perfect gas equations.

6) Determination of friction losses on rocket walls. The effect

of friction in rockets of various sizes. Plot of gas friction on

rocket walls.

7) Heat tvansmitted through rocket walls. Quantity of cooling

liquid l'equired. Temperature of rocket walls at various points.

Difficulties involved in cooling small rockets in comparison to

large ones.

8) Determination of thickness of rocket walls*.

9) Numerical examples:

a) hydrogen-oxygen rocket for an axial thrust P of 1500kg.

Diagrams of axial thrust and thermal efficiency for various

final diameters of the rocket. Pressure, temperature, den-

sity, and gas velocity for various cross sections of the rock-

et. Limiting (maximum) and actual values of these quanti-

ties, taking into consideration gas friction and heat trans-
mission;

b) gasoline-oxygen rocket.

Calculation of rockets where the fuel and the oxygen for corn-

bust/on are heated by some means, e.g. :

a) by another component of the fuel, giving either gaseous or

solid combustion products;

b) by cooling the rocket walls with the fuel;

c) by the economizer mounted in the exhaust nozzle of the rocket

near the inlet;

d) by concave mirrors which collect solar rays inside the

spaceship, heating the fuel to combustion or heating the gases

in the combustion space, increasing the temperature and thus

the exhaust velocity of the gases, and improving the operation

of the rocket.

io)

_' Here, _s in points 4-7, rocket mean_ rocket engine. - Editor's note.
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V°

11) Calculation for rockets that simultaneously eject gaseous and

solid combustion products:
a) axial thrust in the case when the heat from the solid com-

bustion products is partly transferred to the gases and the

solid particles lag behind the gases;

b) approximate determination of the velocity difference between

the gaseous and the solid combustion products for different

gas densities;

c) approximate and precise determination of the time that gases

and solid combustion products stay in the rocket;

d) approximate determination of the temperature drop of the

solid particles with their time of stay in the rocket;

e} exact calculations for this rocket; differential equations for

the determination of density, temperature, pressure, and ve-

locity of the gases, temperature and velocity of the solid par-

ticles, temperature of the walls and of the cooling liquid for

various cross sections of the rocket nozzle. Solution of this

system of differential equations;

f) composition of combustion products for a given relative con-

tent of metal in the fuel;

g) change in the cost of spaceships for different amounts of

solid combustion products and, in general, for different types

of fuel;

h) calculations of rockets for fireworks;

i) numerical examples:

a) rocket operating on hydrogen, magnesium, and oxygen;

8) rocket operating on gasoline, magnesium, and oxygen.

12) Consumption of fuel in a rocket for different efficiencies with a

given flight velocity if:

a) oxygen is taken along;

b) oxygen is supplied by the atmosphere.

13) Calculation of rockets operating on atmospheric air and on some

fuel, Rocket with a piston or turbine compressor. Rocket with

injector (MSlot's system):

a) theoretical calculation;

b) numerical examples:

a) tlydrogen rocket;

8) gasoline rocket.
14) Calculation of two-or multi-stage rockets according to Professor

Oberth's design.

15) On the results of Professor Goddard's experiments and compari-

son of his results with theory.

Theory of interplanetary flight

1) Methods applicable to travel in interplanetary space:

a) rocket-propelled flight;

b) flight with the aid of a rocket mounted in combination with

an engine actuating an airplane propeller. Method of Tsander;

e) other methods.

2) Methods applicable to travel from one planet to another starting

from a position in interplanetary space:

a) rocket-propelled flight;
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3)

4)

5)

6)

b) flight with the aid of mirrors moved by light pressure;

c) flight with the aid of a rocket linked with a concave mirror

which increases the rocket propulsion;

d) flight with the aid of the devices described in V2b and V2c,

where the effect of the mirrors is increased by large concave

mirrors transmitting a beam of concentrated, almost paral-

lel, solar rays from outside onto the mirror of the space-

ship;

e) flight with the aid of combined mirrors;

f) flight with the aid of a system of mirrors and prisms from

which light cannot re-emerge;

g) application of an apparatus converting solar rays into low-

velocity cathode rays:

u) flight made possible by pressure of cathode rays emitted

by the spaceship;

(_) flight under pressure of cathode rays transmitted from

outside in a parallel beam;

h) flight with the aid of solenoids containing iron dust; elec-

trical current flows through the solenoids; a beam of con-

densed rays from outside or direct solar light falls on the

dust; light pressure propels the solenoid connected to the

spaceship;

i) flight with the aid of spheres charged with static electricity

and repelled by the celestial bodies (Sun, planets, their

moons, etc.), provided they are charged. Ditto in case of

attraction;

j) flight by other methods.

Interplanetary stations; their significance, position for various

purposes, probable design.

On the results of calculations of rocket flight by K. E. Tsiolkovskii

and Professor H. Oberth. Studies of Professor V.P. Vetehinkin

and W'. Hohmann.

Calculation and practical density curves; pressure and composi-

tion of the Earth's atmosphere; atmospheric temperature:

a) derivation of formulas;

b) adiabatic variation of atmospheric temperature;

e) case when the temperature at high altitudes is almost ab-

solute zero;

d) case when the temperature is equal to 180 _ abs from an al-

titude of about 33km;

e) case intermediate to c) and d);

f) from observations of Professor Fesenkov;

g) after Wegener.

Calculation of the ascent of a spaceship in the atmosphere (flight

velocity _Skm/sec). Theory:

a) engine-propelled flight;

b) rocket-propelled flight;

c) flight with the aid of an engine and a rocket simultaneously;

d) numerical examples:

_)ascent with a constant-power engine, diagrams;

/_) ascent with an engine whose power may increase strongly

for a short time;
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_)ascent with a rocket, diagrams.

7) Calculation of the descent of a spaceship from interplanetary

space to the Earth:

a) nature of descent; _:

b) determination of maximum limiting flight velocities for which

the centrifugal force is negligible;

c) calculation of gliding descent neglecting in the first approxi-

mation the centrifugal force in the liftequation, subsequent

more exact calculation;

d) calculation of the gliding descent in c) in the case when the

temperature of the upper atmospheric layers is constant;

c) calculation of gliding descent allowing in the equation of lift

for the centrifugal force on the airplane;

f) flight at constant altitude at the expense of the kinetic energy

of the flying machine at high flight velocities:

a) general case;

8)case when the wing-resistance coefficient R is constant;

•f)case when R:A is constant (where ,4 is the liftcoefficient

of the airplane);

g) flight at constant altitude over any circle at the expense of the

kinetic energy of the airplane;

h) fall in the atmosphere, allowing for the Earth's curvature, at

a small angle to the horizontal;

i) fall in the atmosphere neglecting the Earth's curvature,

sloping flight.

j) constant-velocity motion over a circular are;

k) approximate determination of the zone surrounding the ter-

restrial globe which allows safe re-entry at high velocities

(_Skm);

l) other cases of descent to Earth:

a) straight-line gliding descent;

8) combined and other descents.

m) numerical examples to points c) to k);

n) the temperature of a spaceship during a gliding descent on
Earth.

8) Calculations of flight trajectories, additional velocities and

times required for trips to other planets:

a) case when the planet of destination is at the aphelion of the

• trajectory. Determination of the minimum additional veloc-

ity at which it is at all possible to reach the given planet,

transformation of the formula for exact calculations;

b) case when the terrestrial globe is at the perihelion of the

flight trajectory;

c) general case;

d) determination of trajectory elements ensuring minimum flight

time for a given additional velocity;

e) numerical examples to points a) and b). Flights to all planets

and to some asteroids;

f) numerical examples to points a) to d), flights to Mars, Venus,

Neptune, and Mercury.

9) Choice of time of departure from Earth, time of arrival on

another planet allowing for the use of economically feasible velocity:
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VI.

VII.

10)

Ii)

12)

13)

14)

15)

16)

17)

a) theoretical calculation;

b) numerical examples: flights to Mars and Venus.

Determination of time required to reach a given small distance

from a given planet:

a) theoretical calculation;

b) numerical example.

Determination of the distance from a given planet at which the

attraction of the Sun and attraction of the planet are in a given

ratio:

a) theoretical calculation;

b) numerical examples for all the planets, the Moon, and some

asteroids.

Correction of trajectory when approaching the planet with the

purpose of ensuring landing at a desired spot. Determination of

magnitude and direction of the most economical additional veloc-

ity:

a) theoretical calculation;

b) numerical example.

Change of flight trajectory about the Sun under the influence of

the planets. The advantage in increasing or decreasing the flight

velocity:

a) velocity triangles before and after the completion ofarevolu-

tion;

b) increment or decrement in kinetic energy of the spaceship

after revolution about a planet;

c) maximum change in the spaceship's kinetic energy;

d) maximum change in the spaceship's velocity;

e) numerical examples for all planets.

Orbiting the Moon with the purpose of accelerating or decelera-

ting the spaceship. Maximum change in velocity.

On the advisability of accelerating the flight by a rocket at the

moment when the flight velocity is high, numerical example,

acceleration near the trajectory perihelion.

Determination of flight trajectories in space ensuring return to

the Earth after n revolutions of the spaceship about the Sun:

a) after a whole number of years;

b) after a fractional number of years;

c) numerical data.

Determination of flight trajectories before and after orbiting a

given planet. Numerical example: revolution about Mars, Par-

ticular case: returning to Earth after orbiting Mars.

Calculations for rocket flights, through outer space around a

larger part of the terrestrial globe. Minimum velocities to be

given to a rocket to ensure a given range of flight. Numerical data.

Calculations for flights in outer space with the aid of light pres-

sure:

1) magnitude of light pressure;

2) thickness of sheets admissible in flight in comparison with the

practicable thickness;

3) surface extent of the sheets required in flight:

a) flight to another planet with the aid of a disk made of very
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VIII.

IX.

X.

thin sheets catching the solar rays normal to its surface.

Flight trajectory - a conic trajectory. Flight paths and

times, attainable velocities, weight of disks;

b) flights to other planets along spiral trajectories, with the

solar rays falling obliquely onto the rotating disk connected

with the spaceship. Trajectories and flight times, attainable.

velocities, weight of disks;

c) orbiting planets along spiral trajectories with the purpose of

gradually increasing the flight velocity by the pressure of

solar rays falling on the rotating disks connected with the

spaceship;

d) stresses in the rotating disks under the influence of centri-

fugal force and light pressure. Numerical example;

e) numerical example to points a), b) and c).

4) Calculation of pressure exerted by light on a combined mirror:

a) case when light falls first on one mirror, then on another

which is protected from the side of light by an obliquely fixed

mirror. Generation of light pressure directed to a light

source. Numerical example. Use of this design for flights

to other planets along spiral trajectories;

b) case when light passes through a prism into a system of three

or more reflecting surfaces and cannot re-emerge from it.

Direction and magnitude of the resulting light pressure. On

the use or this design in flight and in solar engines. Numer-

teal example.

5) Calculation of large concave mirrors transmitting a beam of

concentrated, almost parallel, solar rays to the structures de-

scribed in points 3 and 4; times and velocities of flight attain-

abIe with the given design. Travel to other solar systems.

6) Calculation of solenoids containing a cloud of iron dust; direct

or alternating currents flow through the solenoid, and solar

rays fall on the dust, propelling, together with dust, the solenoid

which is connected to the spaceship.

Apparatus for the conversion of solar rays into low-velocity

cathode rays. Flight with the aid of cathode-ray pressure.

Calculations of charged spheres repelled by the planets and the

Sun (which are assumed charged) or attracted by them. Stresses

in the material of these spheres. Forces of repulsion or attraction.

Attainable velocities. Methods of charging the spheres.

1) Extraction of electricity from the near-planetary medium.

2) Charging by solar rays (analogy with polar auroras).

3) Charging by electrical machines.

Design and calculation of a spaceship and of its engine,
1) Design of an engine actuating the propeller of a spaceship.

Oxygen-petrol engine with variable filling and adjustable max-

imum pressure of gases, High working pressure of gases

(200atm). High variability of power. Engine operation inde-

pendent of atmospheric pressure. Connection between weight

and working pressure. Cylinder cooling. Detonation.

Variant: use of the combustion chamber of a rocket for gen-

erating combustible gases for the engine.
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2)
3)
4)

5)

6)

7)

8)

XI.

2)

3)

4)

5)
8)

Size of propellers for high-speed flight in rarefied air.

Design and weight of the rocket of a spaceship.

Design and weight of the container for the molten combustible
metal.

Apparatus for spraying metallic components to be used as

rocket fuel. Analogy with compression of coal dust in boilers.

Design of airplane components to be melted or sprayed and of

the actuating mechanism:

a) drums with generators of various shapes spinning cables

which move airplane components, and the method of their

actuation;

b) connections ensuring automatic disconnection of the moving
cables;

e) design of mobile wings;

d) design of mobile rudders;

e) design for moving the engine;

f) design for moving parts of the airplane body;

g) design for raising the undercarriage;

b) jointed fuel containers;

i) partially jointed rocket;

j) cooling system for the components of the design.

Guidance and control of the spaceship in interplanetary space:

a) smalllateral rockets controlled by a gyroscope, or flipping

over of special steering rockets;

b) displacement of gyroscope-controlled masses;

c) gyroscopes;

d) other methods.

General outline of the calculations for a spaceship; initial and

finalweight; size of engine, rocket, and container; wing area;

specific features in the calculation of wings and body under-

carriage; mechanisms for drawing-in of components. Cooting

of small wings and other parts of a small airplane for landing.

Greenhouses light enough to be carried by a rocket and the closed

cycle necessary to sustain life in airtight quarters in a spaceship,

in an interplanetary station, on the Moon, and on another planet

possessing an atmosphere.

1) Amount of oxygen indispensable for breathing, amount of ex-

haled carbon dioxide, production of oxygen by a greenhouse,

utilization of carbon dioxide by the greenhouse, designs for

botb partitioning and connecting the greenhouse with the living

quarters,

Amount and composition of the daily food.

Growing plants in pure oxygen and
a) in fertilized, crushed charcoal;

b) in nutrient liquid;

e) in quarters where nutrient liquid is sprayed with an atomizer;

d) in ease when nutrient liquid is drop-fed to the roots.

Preparation of fertilizers and nutrient solutions; application of

the method of aeration of sewage.

Experiments carried out until now.

First experiments carried out by the author.
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XII.

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

7) Design and calculation of airtight suits.

8) Utilization of wastes for feeding domestic fowl, fish, and ani-

mals.

Approximate outline of theoretical and experirhe_{al investiga-

tions of materials and structures suitable for interplanetary travel,

Conditions for new life in interplanetary space.

1) Investigations bearing on the engine; pumping of oxygen into

high-pressure container (200 and more atmospheres); con-

struction of a small experimental engine (approximately 20hp)*.

Testing metals and other materials of high calorific capacity and

high strength, adequate specific elongation, and (for metals) low

melting point, which are easily powdered. High, average, and

low temperature, also very low temperatures.

Investigations bearing on the rocket: safe combustion of fuel in

pure oxygen, application of compound fuel giving both gaseous

and solid combustion products, measurement of the propelling

force, temperature, pressure, and velocity of gases and solid

particles, rockets utilizing external atmospheric air for com-

bustion, and rockets with artificial heating of fuel and combus-

tion products, experimental lifting dismountable rockets.

Investigation of the design of spaceships, construction and

launching of airplane models which can be put together in the air.

Testing of respiration apparatus and of airtight suits. Pro-
longed use of latter.

Investigation of greenhouses light enough to be carried by a
rocket.

Mounting engines and rockets in airplanes, ensuring higher

ceiling for airplanes, increasing flight velocity at high alti-
tudes, escape to space.

Scientific investigations of the atmosphere, cosmic rays, cos-

mic dust, electrostatic charge of the Earth, etc.

Investigations bearing on the production of very thin sheets of

various materials, and on their rotation about an axis perpen-

dicular to their plane; on light pressure on simple and combined

mirrors, on a system of prisms and mirrors.

Investigations bearing on solenoids containing a cloud of iron
dust.

Investigations bearing on the design of apparatus emitting low-

velocity cathode rays and on the deflection of dust jets by this

apparatus, also on the penetrating power of small particles

moving with very large velocities.

Preparation of a system of concave mirrors or lenses convert-

ing slightly divergent (0.5 °) solar light into a concentrated beam

of more parallel light.

Investigations on the usefulness of apparatus for conversion of

solar energy into other types of energy for interplanetary pur-
poses.

Theoretical investigation of enormous telescopes to be mounted

in interplanetary space or on the Moon.

* Tsander called this engine "Astron". - Editor's note.
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XIII.
XIV.

15)Investigationsandtestsof variousmeasuringapparatusand
devicesnecessaryina spaceshipandonotherplanets.

16)Investigationof methodssuitablefor extractionof waterand
oxygenfrom thesoil of theMoonunderdifferentassumptions.

17)Theoreticalinvestigationof theadvantagesandthedisadvantages
of thelife:
a) in aninterplanetarystation;
b)ontheMoon,moonsof otherplanets,asteroids,or Mercury

(all of whichhavenoatmosphere);
c) onotherplanetspossessingatmospheres,underdifferent

assumptions.
18)A moreexactanalysisof flight trajectories, additionalveloc-

ities, andinitial weightof spaceships:
a)assumingtheorbitsof bothplanetsto beellipses;
b)undertheinfluenceof twocelestialbodies.

19)Otherinvestigations.
Brief surveyof resultsachieved.
Prospectsfor thefuture:
1) thenearfuture;
2) thedistantfuture.

F.A, Tsander

Appendix 4

OUTLINE OF THE BOOK

"CALCULATIONS OF JET ENGINES AND THEIR COMBINATIONS WITH OTHER ENGINES"

A. Preface.

B. Introduction.

C. Jet engines for which the combustible oxygen is carried along.

I. Determination of the combustion temperature with-varying oxygen

content:

a) with varying heat capacities and neglecting dissociation;

b) with varying heat capacities and allowing for dissociation.

II. Determination of nozzle cross section, velocity, pressure, den-

sity, and temperature at various points of the nozzle; thrust for

a given consumption of mixture, thermal efficiency, using either

iS and TS diagrams, or perfect gas formulas.

III, Determination of the quantity of heat transmitted through the walls,

wal] temperature:
a) for the combustion chamber;

b) for the nozzle;

c) for the liquid-oxygen container;

d) for the liquid-oxygen evaporator.

IV. Determination of the increase in temperature and decrease in

pressure of gases as the result of their friction at the walls.
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V. Efficiencyof jet engines.
VI. Costof fuel andoxygen. Theeconomicaspectsof theuseof jet

engines.
Determinationof thecombustionchamber'ssize.
Constructive design of simple liquid-jet engines for various pur-

poses.

IX. Powder rockets, specific calculations.

X. Use of cyclic processes in jet engines for increasing their effi-

ciency:

a) practical calculation of direct and inverse cone (double cone);

b) multistage cycles of double cones;

c) cone shapes for various circular cycles;

d) determination of the most expedient cycle for a given pur-

pose;

e) controlling and triggering devices for jet engines;

f) structural data for various purposes;

g) use of double (direct and inverse) cones in the capacity of:
1. wind tunnels;

2. jet pumps.

Jet engines utilizing the atmospheric air and jet compressors.

I. Types of jet engines utilizing the atmospheric air.

II. Calculation of a jet engine utilizing atmospheric air and of a jet

compressor in which the low pressure of gases inside the appa-

ratus is maintained by a special method and the combustion

products do not mix with air;

a) without secondary utilization of heat for cooling the inverse

cone;

b) with secondary utilization of this heat.

III. Calculation of a jet engine utilizing atmospheric air in which the

combustion products mix with air without producing a shock or
with a small shock:

a) without secondary utilization of heat;

b) with secondary utilization of heat.

IV. Calculation of multistage jet engines.

E. Calculation of jet engines emitting simultaneously solid and gaseous
combustion products (Jet engines operating partially or entirely on

metallic fuel, powder, and chemical engines).

I. Axial thrust and thermal efficiency as a function of the ratio of

solid to gaseous particles.

II. Heat transfer from solid oxides to the gaseous products of their

combustion.

III. General thermodynamic calculations.

IV. Determination of resistance to flight of compound rockets made up

of a central one and a cluster of lateral rockets.

V. Structural design of metallic-fuel rockets.

VI. Air rockets with metallic or chemical fuel.

VII. Powder air rockets and jet engines.

F. Combination of jet engines with ordinary ones, and the use of jet

compressors instead of centrifugal compressors.

G. Combination of turbines with jet engines.

H. Jet-propulsion flight.

VII.

VIII.

Do
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I°

J.

I. Flight of jet airplanes:

a) with rockets whose combustible oxygen is carried along;

b) with jet engines utilizing atmospheric air;

c) with jet engines partially utilizing metallic fuel;

d) with jet engines which operate on atmospheric air only near

the Earth and feed progressively on liquid oxygen at higher

altitudes;

e) combination of aircraft power-plants with jet engines.

II. Ascent of rockets.

Collection of tables relevant to the calculation of jet engines

Conclusion.
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