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Summary

An experimental study of the buckling and post-

buckling behavior of square and rectangular

compression-loaded almninmn plates with centrally

located circular, square, and elliptical cutouts is pre-

sented. Experimental results indicate that the plates
exhibit overall trends of increasing buckling strain

and decreasing initial postbuckling stiffness with in-

creasing cutout width. Corresponding plates with
circular and square cutouts of tile same width buckle

at approximately tile same strain level and exhibit

approximately the same initial postbuckling stiffness.
Results show that tile reduction in initial postbuck-

ling stiffness due to a cutout generally decreases as
the plate aspect ratio increases. Other results pre-

sented in this paper indicate that square plates with

elliptical cutouts and a large ratio of cutout width

to plate width generally lose prebuckling and initial

postbuckling stiffness as the cutout height increases.
However, the plates buckle at essentially the same
strain level. Results also indicate that postbuck-

ling stiffness is more sensitive t.o changes ill ellipti-

cal cutout height than are prebuckling stiffness and

truckling strain.

Introduction

An important structural coinponent used in prac-

tically all aerospace vehicles is the rectangular plate

with a centrally located cutout. Cutouts commonly

appear in plates as access ports for mechanical and

electrical systems or are included to reduce the struc-
tural weight in components such as wing ribs and

spars. Often during vehicle operation, these members

experience compression loads, and thus their buck-

ling and postbuckling behavior are important factors
that must be considered in their design.

Investigations of the buckling behavior of plates

with cutouts have appeared in the technical litera-
ture since 1943. A summary of these investigations,

for both isotropic and laminated composite plates,

is given in reference 1. In-depth parametric studies

of the buckling behavior of square and rectangular

plates with central circular cutouts are presented in
references 1 through 3. Analytical and experimental

results are presented in these studies that indicate

buckling behavior trends for a wide range of plate pa-
rameters. The results and physical insight presented
in these references indicate that the buckling behav-

ior of compression-loaded isotropic and orthotropic

plates with cutouts is well understood.
Substantially fewer studies of the postbuckling

behavior of plates with cutouts are available in the
technical literature. Some of the first studies are pre-

sented in references 4 through 7. The results pre-

sented ill references 4 and 6 address the postbuckling

collapse of steel beams, columns, and plate girder
structures with cutouts in their webs. The results

presented in references 5 and 7 focus specifically on
square and rectangular isotropie plates with central
circular cutouts. Buckling and postbuckling results

are also presented in reference 5 for square laminated

composite plates with central circular cutouts.

More recently, selected results for the postbuck-

ling and failure characteristics of conlpression-loaded
rectangular graphite-epoxy plates with central circu-
lar cutouts have been presented in reference 8. Ad-

ditional recent studies of the postbuckling collapse

of square isotropic plates with square and circular

cutouts are presented in references 9 and 10. A

study of the imperfection sensitivity and postbuck-

ling strength of compression-loaded square isotropic

and laminated composite plates with central circular

cutouts is presented in reference 11.

An experimental study of the postbuckling be-

havior of square compression-h)aded graphite-epoxy

and aluminum plates with central circular cutouts is

presented in reference 12. This study indicates tile

ow_rall postbuckling behavior trends of the plates as

a flmction of plate orthotropy and cutout size.
Review of the studies presented in references 4

through 12 indicates that the effects of cutout size,

plate aspect ratio, cutout shape, and laminate stack-

ing sequence on the postbuckling behavior of plates
are still not well understood. This paper examines

the behavior of selected isotropic compression-loaded

square and rectangular plates and attempts to es-
tablish overall trends indicating some of the effects

of cutout size, cutout shape, and plate aspect ratio

on plate postbuekling behavior. The paper focuses

on an experimental study of rectangular alumimml

plates with centrally located circular, square, and el-

liptical cutouts.
The author wishes to acknowledge Philip D.

Sydow for his help in conducting several of the labo-

ratory experiments and for providing some computer

assistance.

Symbols

a half-height of elliptical cutout (see fig. 10),

cm (in.)

b half-width of elliptical cutout (see fig. 10),

cm (ill.)

d cutout diameter (see fig. l(b)), cm (in.)

EA prebuckling stiffness of a plate, N (lb)

L plate length (see fig. l(b)), cm (in.)

L b plate length between ends of test fixture

(see fig. l(b)), em (in.)



P axial load (see fig. 2), N (lb)

Per axial load at buckling (see fig. 3), N (lb)

P(°r analytically obtained axial load at buckling

for plates without cutouts (see fig. 4),
N (lb)

s height and width of a square cutout (see
fig. 5), cm (in.)

t plate thickness, (:m (in.)

W plate width (see fig. l(b)), cm (in.)

I.l'), plate width between sides of test fixture

(see fig. l(b)), cm (in.)

A en(l-shortening (see fig. 2), cm (in.)

A° r analytically obtained end-shortening at

buckling for plates without cutouts (see

fig. 2), cm (in.)

Specimens, Apparatus, and Tests

The specinlens tested in this investigation were
machined out of 6061-T6 alumilmin sheets with a

nominal thickness of 1.59 mm (0.0625 in.). Spec-

imens were machined into rectangular plates with
plate aspect ratios L/tV of 1, 3, and 5, where L

is the plate length and W is the plate width. The

square plates had a nominal length and width of

25.40 cm (10.00 in.). The rectangular plates with

L/W = 3 and 5 had a nominal width of 10.160 cm

(4.00 in.) and nominal lengths of 30.480 cm and

50.800 cm (12.00 in. and 20.00 in.), rest)ectively. The

loaded edges of each specimen were machined flat

and parallel to permit uniform colnpressive loading.
Nominal material properties of each plate were as-

sumed to include a Young's modulus E of 76.0 GPa

(11.0 x 10 (i psi) and a Poisson's ratio v of 0.33.
Central circular cutouts were inachined into six of

tile square panels with a inilling machine. The circu-

lar cutout diameters ranged from 2.413 cm (0.95 in.)

to 14.478 cm (5.70 in.). Conti'al circular and square
cutouts were also machined into 16 of the rectan-

gular panels. The circular cutout diameters in the

rectangular panels ranged from 1.270 cm (0.50 in.)

to 7.620 ('m (3.00 in.). For each panel with a cir-

cular cutout, a panel was machined for a square

cutout with a cutout length and width equal to the

corresponding circular cutout diameter. The square
cutouts had reentrant corners with a corner radius

of 1.59 mm (0.0625 in.). Several thickness measure-

ments were made on each square and rectangular

specimen, an(t the average thickness for both groups

was 1.64 mm (0.0647 in.). Similarly, central ellipti-

cal cutouts w(q'e machined into seven of the square

panels with a six-axis mmmri(:ally controlled milling

machine. The widths of the elliptical cutouts (in

the same direction as the plate width) were kept

at a constant value of 14.480 cm (5.70 in.), and the

cutout heights ranged from 1.207 cm (0.475 in.) to
16.891 cm (6.65 in.). Several thickness measurements

were made on each square specimen with an ellipti-
cal cutout, and the average thickness was 1.59 mm

(0.0625 in.). A total of 34 specimens were tested.

The specimen designations and cutout dimensions

are given in tables 1 through 6.

The specimens were loaded gradually in axial

compression with a 0.53-MN-capacity (120-kip) hy-
draulic testing machine. Tile loaded ends of the

specimens were clamped by fixtures during testing,

and the unloaded edges were simply supported by re-

straints that prevent the specimen from buckling as a

wide cohmm. The specimens were loaded to approx-

imately twice the buckling load, and then the test

was stopped. One side of each speciinen was painted

white to reflect light so that a moire-fringe technique

could be used to monitor the out-of-plane deforma-
tions. A typical specimen mounted in the test fixture

is shown in figure l(a).
Electrical resistance strain gages were used to

measure strains, and direct-current differential trans-

formers were used to measure axial displacements

and displacements normal to the specimen surface.

Electrical signals from the instrmnentation and the

corresponding applied loads were recorded on mag-

netic tape at regular time intervals during the tests.

Results and Discussion

Results are presented for almninum plates with

several different plate aspect ratios, cutout sizes, and
cutout shapes. First, the procedures used to ob-

tain the experimental values of the prebuckling stiff-

nesscs, buckling loads, and initial postbuckling stiff-

ncsses are presented. Results are then presented in
separate subsections for the square plates with circu-

lar cutouts, the rectangular plates with circular and

square cutouts, and the square plates with elliptical

cutouts. After these subsections, results indicating
the overall behavior trends exhibite(t by the speci-
mens are presented.

Interpretation of Test Data

To illustrate the postbuckling behavior of plates
with cutouts, curves of nondimensional load versus

end-shortening are presented in this paper. The

curve of nondimensional load versus end-shortening
for each specimen was obtained by first performing a

least-squares fit of a straight line to the most lin-

ear part of the primary branch of the plot of ac-

tual load versus end-shortening recorded during the



test. With tile equationof the line obtainedfrom
theleast-squaresfit of thetestdata,theprebuckling
stiffnesswasobtaineddirectly,andtheinitial irregu-
larityin tileplotofactualloadversusend-shortening,
associatedwith initial slackin tile test fixture,was
elinfinated.Similarly,the initial postbucklingstiff-
hesswasobtaineddirectly by performinga least-
squaresfit of a straightlineto the mostlinear part
of the secondary branch of the plot of load versus

end-shortening recorded during testing. Tile experi-

mental buckling load and associated end-shortening
were then obtained by computing the intersection of

the two straight lines fitted to the primary and sec-

ondary branches of the test data for load versus end-

shortening.

Finally, the curves were nondimensionalized by

dividing the load and end-shortening of a given speci-

men by approximate analytical values of tile buckling

load Pc° and end-shortening At°r, respectively, of the

corresponding plate without a cutout. These approx-

iinate analytical values were obtained from solutions
of the standard boundary-value problem of a rectan-

gular region with boundary conditions specified on

the edges. The values are referred to herein as ap-

proximate, since this standard boundary-value prob-
lem does not exactly represent the boundary-value

problem of the experiments. In the experiments, the

prebuckling stiffness, deformations, and stresses in

the plate are influenced by the true length L and
width W of a given specimen. However, when the

plate buckles, the unsupported length Lb and un-
supported width _, shown in figure l(b) strongly
influence the buckling response. The approxi-

mate analytical values obtained from the standard

boundary-value problem were based on the nominal

material properties given previously and on a plate
thickness of 0.1643 cm (0.0647 in.). Moreover, tile

analytical values were based on a uniaxial loading
condition in which two opposite edges of the plate are

uniformly displaced toward one another. The loaded

edges were assumed to be clamped, and tile unloaded

edges were assumed to be simply supported. In the

calculations of P° r and A°r for the square plates, the

buckling load and corresponding end-shortening were
based on tile 24.130-cm (9.50-in.) unsupported width

_}rb between knife-edge supports of tile test fixture.
For the 30.480-cm long (12.00-in.) and 50.800-cm

long (20.00-in.) rectangular plates, buckling stress
resultants were computed based on Wb = 8.890 cm

(3.50 in.). The buckling loads were obtained by nml-

tiplying the buckling stress resultants by the true

1O.160-cm (4.00-in.) width of the plates. The true
width was used to compute the buckling load because

of the relatively small values of _Zb/_Iz and Lb/L for

the rectangular plates compared with those of the

square plates. Similarly, tile critical end-shortenings
of the rectangular plates are also based on the true

10.160-cm (4.00-in.) width of the true lengths of tile

plates.
The experimental results for the plates with very

large ratios of cutout width to plate width exhibited
nonlinear prebuckling deformations. This attribute
made it difficult to establish the experimental buck-

ling load in the manner previously described. For
these cases, the experimental buckling load was es-
timated from the data for load versus transverse de-

flection and from strain-gage data. The initial post-

buckling stiffness was taken to be the slope of a line

tangent to the secondary branch of the plot of load
versus end-shortening at the estimated buckling load.

For these cases, the value of the initial postbuckling
stiffness is sensitive to the estimate of the buckling

load.

Square Plates With Circular Cutouts

Experimental results were obtained for a square

plate without a cutout and for square plates with
six different, cutout sizes. Each plate has a ratio of

plate width to plate thickness Wit of approximately
155. The cutout size, buckling load, prebuckling

stiffness, and postbuckling stiffness of each plate are

presented in table 1. Curves of nondimensional load

P/P(?r versus nondimensional end-shortening A/A°r

are presented in figure 2, where P is tile axial load,
A is the end-shortening, and P_,. and A_r are the

analytically obtained buckling load and associated
end-shortening of the corresponding plate without a

cutout, respectively. Buckling is indicated by tile

filled circles in the figure. Results are presented in

this figure for ratios of cutout diameter to plate width

d/I_ from 0 to 0.6.
The results presented in table 1 and figure 2 in-

dicate that tile prebuckling stiffnesses of tile plates
decrease monotonically with increasing cutout size.

This trend is consistent with the fact that an in-

crease in cutout size gives rise to a decrease in

the cross-sectional area at the net section of the

plate. The maximum decrease in prebuckling stiff-
ness compared with the stiffness of the plate without

a cutout is approximately 42 percent for the plate

with d/Wb = 0.6.
The results in table 1 also indicate that the buck-

ling loads of the plates decrease at first and then
tend to increase with increasing cutout size. Analyt-

ical results indicating a similar trend for the buck-

ling loads are presented in references 1 and 7. Av-

erage buckling strains obtained analytically with the

computer program described in reference 13 and the

average buckling strains of the test specimens are

shown in figure 3. The average buckling strains
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shownin this figure are definedby the ratio of
bucklingloadto prebucklingstiffnessPcr/EA, and

are plotted as a fimction of the ratio of cutout di-

ameter to plate width d/Ii'_. Similar results are

shown in figure 3 for plates with square cutouts as a
function of the ratio of square-cutout width to plate

width s/i$),. These results indicate a similar trend
of increasing buckling strain with increasing cutout

size, and suggest that the increase in experimental

[tackling strain with increasing cutout size presented

herein is not due entirely to scatter in the test data.

The buckling mode shapes for all the plates, except

the one with d/I_ = 0.5, consisted of one half-wave
along both the length and width. The plate with

d/Wb = 0.5 buckled into a mode that was somewhat
off-centered compared with the buckle patterns of the

other plates.

Additional results presented in table 1 and fig-

ure 2 indicate that the initial postbuckling stiffnesses

of the plates decrease monotonically with increasing

cutout size. The largest decrease is approximately

43 percent for d/lVb = 0.6. Comparing the prebuck-

ling stiffness with the postbuckling stiffness given in
table 1 for each specimen indicates that, as the cutout
size increases, the reduction in axial stiffness due to

buckling varies between 35 and 40 percent for the full

range of cutout sizes.

Rectangular Plates With Circular and

Square Cutouts

Experimental results were obtained for two rect-

angular plates without a cutout and with plate as-

pect ratios L/W of 3, and for two plates without a

cutout and with L/W = 5. Results were also ob-
tained for similar rectangular plates (L/W = 3 and

5) with four different circular cutout sizes and four

different square-cutout sizes. Specifically, for each

plate with a given L/W and circular cutout of diam-

eter d, there is a corresponding plate with a square

cutout and a height and width s equal to d. Each

plate has a ratio of plate width to plate thickness

W/t of approximately 62. The cutout size, buckling

load, prebuckling stiffness, and postbuckling stiffness

of each plate with L/W = 3 and with a circular

cutout and each plate with L/VV = 3 and with a

square cutout are presented in tables 2 and 3, respec-

tively. Sinfilarly, the cutout, size, buckling load, pre-

buckling stiffness, and t)ostbuckling stiffness of each

plate with L/W = 5 and with a circular cutout and

each plate with L/W = 5 and with a square cutout
are presented in tables 4 and 5, respectively. Curves

of nondimensional load PIPer versus nondimensional
end-shortening A/A° r are presented in figures 4 and

5 for the plates with circular and square cutouts and

4

with L/VV = 3, respectively, and are presented in fig-

ures 6 and 7 for the plates with circular and square

cutouts and with L/W = 5, respectively. Buckling
is indicated by the filled circles on the figures. The

results shown in figures 4 and 6 for the plates with cir-

cular cutouts are presented as a function of the ratio

of cutout diameter to plate width d/W b. Similarly,
the results shown in figures 5 and 7 for the plates

with square cutouts are presented as a function of

the ratio of cutout width to plate width s/W b.

Plates with L/W = 3 and with circular
cutouts. The results presented in table 2 and fig-

ure 4 indicate that the prebuckling stiffnesses of the

plates with L/W = 3 and with circular cutouts

generally decrease with increasing cutout size. The

maximum decrease in prebuckling stiffness compared

with the average stiffnesses of the two plates without

a cutout is approximately 47 percent for the plate

with d/W b = 0.86. The plate with d/Wb = 0.57

exhibited approximately 20 percent less prebuckling

stiffness than the two plates without a cutout.

The results in table 2 and figure 4 also indicate
that the buckling loads of the plates decrease at first

and then tend to increase with increasing cutout size

in a manner similar to that exhibited by the square

plates. The buckling loads given in table 2 for the

plate with d/Wb = 0.86 were estimated from the data

that show the load versus out-of-plane deflection at

various points on the plate and from the strain-gage

data shown in figure 8. The results presented in

figure 8 show the axial strain as a flmction of the

nondimensional loading PIP'Jr obtained from back-

to-back strain gages mounted adjacent to the edge
of the cutout. Average buckling strains obtained

analytically with the computer program described

in reference 13 and the average buckling strains of

the test specimens are also shown in figure 3. These

analytically obtained buckling-strain trends and the

closeness of the results for the two plates tested

without cutouts (fig. 3) suggest that an increase in

experimental buckling strain with increasing cutout
size is not a manifestation of scatter in the test

data. The buckling mode shapes for all the plates

with L/W = 3 and with d/W b <_ 0.57 consisted
of three half-waves along the length and one half-

wave along the width. The strain-gage data shown

in figure 8 and other experimental data indicate that

the plate with d/l/V b = 0.86 buckled locally around
the cutout. The plate first buckled inelastically into

a mode shape with one axial half-wave along the

shaded region shown on the sketch in figure 8; it

then changed to a mode shape that consisted of two

axial half-waves. Both local mode shapes had very

small amplitudes compared with the amplitudes of



theglobalmodeshapesoftile otherplatesandcould
not bedetectedby tile moire-fringetechnique.

Resultspresentedin table2 andfigure4 alsoin-
dicatethat the initial postbucklingstiffnessesof tile
platesgenerallydecreasewith increasingcutoutsize.
Thelargest,decreaseis approximately78percentfor
d/Wb = 0.86. The experimental results indicate that
this plate exhibited nonlinear prebuckling deforma-
tions as a result of tile yielding of the material near

the net section of tile plate. Tile actual value of

the postbuckling stiffness given in table 2 is the tan-

gent stiffness at the estimated vahle of the buckling
load. The plate with d/Wb = 0.57 behaved elasti-

cally in tile initial part of the postbuekling range
and exhibited approximately 19 percent less initial

postbuckling stiffness than the two plates without a

cutout. Coinparing the prebuckling stiffness with the

postbuckling stiffness given in table 2 for each spec-
imen indicates that, as the cutout size increases up

to d/Wb = 0.57, the reduction in axial stiffness due

to buckling varies between 40 and 31 percent. For

the plate with d/Wb = 0.86, the reduction in axial

stiffness is approximately 82 percent..

Plates with L/W = 3 and with square
cutouts. The results presented in table 3 and fig-

ure 5 indicate that the prebuckling stiffnesses of the

plates with L/W = 3 and with square cutouts also

generally decrease with increasing cutout size. The
maximum decrease in prebuckling stiffness compared

with the average stiffnesses of tile two plates with-

out a cutout is approxinmtely 55 percent for the

plate with s/i'l"b = 0.86. Tile plate with s/IYb = 0.57
exhibited approximately 24 percent less prebuckling

stiffness than the two plates without a cutout.

The results presented ill table 3 and figure 5 also

indicate that the buckling loads of the plates decrease
at first and then increase with increasing cutout size.

Tile buckling load given in table 3 for tile plate with

s/W b = 0.86 was also estimated by using the data
that show the load versus out-of-plane deflection at

various points on the plate and by using the strain-

gage data. Average buckling strains obtained an-

alytically and the average buckling strains of the

test specimens are also shown in figure 3. These re-
sults show a trend of increasing experimental buck-

ling strain with increasing cutout size. The buckling

mode shapes for all the plates with L/W = 3 and

with s/Wb <_ 0.29 consisted of three half-waves along
the length and one half-wave along the width. The

buckling mode shape for tile plate with s/tl,_ = 0.57
consisted of four half-waves along the length and one

half-wave along the width. The buckle patterns for

the plates with s/Wb = 0.29 and 0.57 are shown in

figure 9 along with the buckle patterns for the cor-

responding plates with circular cutouts. The results

show that changing the cutout shape from circular

to square can lead to a change in buckle pattern in

the plates with the larger cutout sizes. Strain-gage
data and out-of-plane deflection data indicate that

the plate with s/I._}_ = 0.86 buckled inelastically and

locally around the cutout into a mode shape with
nine half-waves along the slender rectangular liga-

ment of the plate adjacent to the cutout. The perma-

nently set local mode shape also had a very small am-

plitude compared with the amplitudes of the global

mode shapes of the other plates. The local mode
could not be detected by the moire-fringe technique.

Other results presented in table 3 and figure 5
indicate that tile initial postbuckling stiffnesses of the

plates generally decrease with increasing cutout size.
The largest decrease in approximately 90 percent for

s/II.'),= 0.86 and includes the effects of material

yiehting. The plate with S/Wb = 0.57 behaved
elastically in the initial part. of the postbuckling range

and exhibited approximately 24 percent less initial

postbuckling stiffness than the two plates without
a cutout. Comparing the prebuckling stiffness to

tile postbuckling stiffness given in table 3 for each

specimen indicates that, as the cutout size increases

up to S/Wb = 0.57, the reduction in axial stiffness due

to buckling varies between 40 and 36 percent. For

the plate with s/tQ = 0.86, the reduction in axial

stiffness is approximately 86 percent.

Plates with L/W = 5 and with circular
cutouts. The results presented in table 4 and fig-

ure 6 indicate that the prelmckling stiffnesses of the

plates with L/W = 5 and with circular cutouts gen-

erally decrease with increasing cutout size. The max-
imum decrease in prebuckling stiffness (compared

with the average stiffnesses of the two plates with-

out a cutout) is approximately 35 percent for the

plate with d/Wb = 0.86 prior to yielding. The plate

with d/Wb = 0.57 exhibited approximately 10 per-
cent less prebuckling stiffness than the corresponding

two plates without a cutout.

The results in table 4 and figure 6 also indi-

cate that the truckling loads of the plates decrease

at first, and then tend to slightly increase with in-

creasing cutout size. Average buckling strains of the

test specimens exhibit a trend sinfilar to the trends

shown in figure 3 for the plates with L/W = 1 and
3. Tile buckling mode shapes for all the plates with

L/W = 5 and with d/Wb < 0.57 consisted of five
half-waves along the length and one half-wave along
the width. The strain-gage data and the out-of-

plane deflection data indicate that the plate with

d/Wb = 0.86 yielded in the net. section of the plate
and buckled into a small-amplitude global mode,

5



unlikethe corresponding plate with L/W = 3. The
buckling mode shape consisted of five half-waves

along the h,ngth and one half-wave along tile width.

However, the amplitude of the half-wave ill the cen-

tral region surrounding tile cutout, where yielding
occurred, exhibited a substantially smaller amplitude

than the other half-waves that made up the mode
shat)e.

Results presented in table 4 and figure 6 indicate

that the initial postbuekling stiffnesses of the plates
again generally decrease with increasing cutout size.

The largest decrease is approximately 74 percent for

the plate with d/_{_ = 0.86 and includes tile effects

of material yielding. The [)late with d/W b = 0.57 t)e-
haved elastically in the initial part of the postbuck-

ling range and exhibited approximately 5 percent less
initial postbuckling stiffness than the two without a

cutout. Comparing the prebuckling stiffness with the

postbuckling stiffness given in table 4 for each spec-

imen indicates that, as tile cutout size increases up
to d/B)_ = 0.57, tile reduction in axial stiffness due

to buckling varies between 44 and 40 percent. For
the plate with d/B'), = 0.86, the reduction in axial

stiffness is approximately 77 percent.

Plates with L/W = 5 and with square

cutouts. The results presented in table 5 and fig-
ure 7 indicate that the prebuekling stiffnesses of the

plates with L/II" = 5 and with square cutouts gener-
ally decrease with increasing cutout size. The max-

inmm decrease in prebuckling stiffness (compared
with the average stiffnesses of the two plates without

a cutout) is approxinlately 43 percent, for the plate

with ,s/I.I" b = 0.86 prior to yielding. The plate with

s/II'_ = 0.57 exhibited approximately 24 percent less

prebuckling stiffness than the two plates without a
cutout.

The results in table 5 and figure 7 also indicate

that the buckling loads of tile plates decrease at

first and then increase with increasing cutout size.
Aw_rage buckling strains of the test specimens ex-

hibit a trend similar to tile trends shown ill figure 3.
The buckling mode shapes for all the plates with

L/W= 5 and with .s/IV b _< 0.29 consisted of five

half-waves along the length and one half-wave along
the width. Tile buckling mode shape for tile plate

with s/IVb = 0.57 consisted of six half-waves along
the length and one half-wave along tile width. Tile

plate with s/If::), - 0.86 buckled inelastically and lo-

cally around tile cutout into a mode shape with six

half-waves along the slender rectangular ligament of
the plate adjaeent to tile cutout. However, tile waves

appeared to be unequally spaced along the length of

the ligament. The local mode shape also had a very

small amplitude compared with those of the global

mode shapes of the other plates, and could not be

detected by the moire-fringe technique.

Results presented in table 5 and figure 7 indi-

cate that the initial postbuckling stiffnesses of the

plates generally decrease with increasing cutout size.

The largest decrease is approximately 66 percent for
s/I.t')_ = 0.86 and again includes the effects of mate-

rim yielding. Tile plate with s/B)_ = 0.57 behaved

elastically in the initial part. of the postbuckling range
and exhibited approximately 1 percent less initial

postbuekling stiffness than the two plates without a
cutout. Comparing tile prebuekling stiffness with the

postbuckling stiffness given in table 5 for each spec-

imen indicatcs that, as the cutout size increases up
to s/Wb = 0.57, the reduction in axial stiffness due

to buckling varies between 44 and 35 percent. For

tile plate with s/B_ = 0.86, the reduction in axial

stiffness is approximately 67 percent.

Square Plates With Elliptical Cutouts

Experimental results were obtained for square

plates with eight different elliptical cutout sizes. The

ratio of elliptical cutout width to plate width for each

panel is constant and is given by 2b/H'_ = 0.6. The

ratio of cutout height to plate width 2a/_I)_ ranges
from 0.05 to 0.7. The original inotivation for exam-

ining this particular range of elliptieal cutout sizes

arose from previous studies of square plates with

circular cutouts that indicated increases in buckling

strain with increasing cutout size (e.g., see fig. 3).
The cutout size, buckling load, prebuckling stiff-

hess, and postbuckling stiffness of each plate are pre-
scntcd in table 6. The curves of nondinlensional load

P/Pc°r versus nondimensional end-shortening A/A°r
are presented in figure 10 as a flmction of the ratio

of cutout height to plate width 2a/W b. Tile analyt-

ical values of buckling load Pier and end-shortening
A° r used in figure 10 are the same as those used in

figure 3 for the square plates with circular cutouts.

Tile results presented in table 6 and figure 10 indi-

cate that the prebuekling stiffnesses of tile plates gen-

erally decrease slowly with increasing cutout height
(about 14-percent difference as 2a/W b increases from
0.05 to 0.7). This trend is consistent with the fact

that most of the in-plane stiffness of the plates is dic-
tated by the amount of cross-sectional area at the net

section of the plate. The maxinmm decrease in pre-
buekling stiffness, compared with tile stiffness of tile

plate without a cutout given in table 1, is approxi-

mately 44 percent for the plate with 2a/Wb = 0.7.
The results presented in table 6 also indicate that

the buckling loads of the plates generally decrease
with increasing cutout size, except for the plate with

2a/Wb = 0.3. A comparison of the results for the

plate with d/W b = 0 in table 1 with the results



in table6 indicatesthat the plateswith 2a/I,_}_=
0.05 0.1,and0.2buckleat loadsapproximately38
27 and 14percenthigherthan the corresponding
squareplatewithout a cutout,respectively.More-
over,thesevaluesareconservativecomparisons,since
the plateswith the ellipticalcutoutsarc, on the
average,about3.4percentthinner than the corre-
spondingplatewithout a cutout. A 3.4-percentin-
creasein thicknesscorrespondsto approximatelyan
1i-percentincreaseinbucklingloadfora platewith-
outacutout.Themoire-fringedataindicatethat the
platewith 2a/Wb= 0.3buckledintoa modeshape
that occupiedtherighthalfoftheplateandthenim-
mediatelyexhibitedachangein bucklepatternto the
usualcentrallylocatedmodeshapethat consistedof
onehalf-wavealongtileplatelengthandwidth. The
presenceofthisunusualbucklepatternappearsto be
theresultof anonuniformloadintroductioninto tile
platethat isassociatedwith impropermachiningof
the loadededges.

Averagebucklingstrainsfor theplateswith0.1<_
2a/Wb<_0.7obtainedfromtheapproximateanaly-
sisandtheaveragebucklingstrainsof thetestspec-
imensareshownin figure11.Theaveragebuckling
strainsshownin this figurearedefinedby the ra-
tio of bucklingloadto prebucklingstiffnessPcr/EA

and are plotted as a function of the ratio of cutout

height to plate width 2a/Wb. The analytical results
are based on nolninal plate dimensions and the av-

erage thickness previously presented. Accurate ana-
lytical results for the plate with 2a/Wb = 0.05 were
not obtained because of limitations of the approx-

imate analysis. These analytical and experimental
results indicate that the buckling strain is essentially

constant for 0.1 < 2a/Wb <_ 0.7, with the excep-

tions of the plate with 2a/tl_ = 0.3 that buckled
into the unusual mode as previously mentioned and

the plate with 2a/V_}_ = 0.05. The plate with 2a/Wb
= 0.05 exhibited tile largest buckling load of the

plates with elliptical cutouts and exhibited a some-

what smaller prebuckling stiffness than the plates

with 2a/Wb = 0.1 and 0.2. These attributes account
for the relatively large buckling strain of the plate

with 2a/Wb = 0.05 shown in figure 11. The generally
small variation in buckling strain with cutout height

suggests that there is not a great deal of scatter in
the experimental data. The buckling mode shapes

for all the plates, except the plate with 2a/Wb = 0.3,
consisted of one half-wave along both the plate length

and width.

Results presented in table 6 and figure 10 also
indicate that the initial postbuckling stiffnesses of

the plates generally decrease with increasing cutout

height. The largest decrease is exhibited by the plate

with 2a/Wb = 0.7 and approximately 45 percent

of tile stiffness of the corresponding plate without

a cutout. Tile initial posttmckling stiffness varies

by approximately 27 percent as the cutout height

changes. Comparison of the prebuekling stiffness
with the postbuckling stiffness given in table 6 for

each specimen indicates that, as the cutout height
increases, the reduction in axial stiffness due to buck-

ling varies from 25 to 40 percent for the full range of
cutout sizes.

Overall Behavior Trends

The experimental results presented in this paper
include a wide range of cutout sizes, three cutout

shapes, and three plate aspect ratios. Typically,

only one specimen was tested for each combination
of cutout size, cutout shape, and plate aspect ratio.
Because of the limited amount of testing on each

specimen type, the actual degree of scatter in tile

experimental data is not well-known. Tile buckling
strain data presented in this paper, however, does

suggest that the scatter is not large. Thus, the

experimental data presented in this paper are useful
in identifying overall behavior trends exhibited by

each family of plates studied.
Results showing a trend of generally increas-

ing buckling load with increa_sing circular cutout
size were reported for simply supported rectangu-

lar isotropic plates with plate aspect ratios of 1 and
2 in reference 7. The results presented in tables 1

through 5 and in figure 3 indicate a similar behav-

ior trend for square plates with circular cutouts and

for rectangular plates (L/W = 3 and 5) with cir-

cular and square cutouts. Also, the results indicate

that the plates with square cutouts buckle at approx-

imately the same strains ms the corresponding plates
with circular cutouts. For the plates in the present

study, the loaded edges are clamped, and the un-

loaded edges are simply supported.
To indicate the overall postbuckling behavior

trends of square and rectangular plates, results of

the change in initial postbuekling stiffness due to cir-
cular or square cutouts are presented in figure 12.

Specifically, tile results presented in this figure show
stiffness changes as a function of tile plate aspect ra-

tio L/W and tile ratio of cutout width to plate width

(d/Wb and s/Wb for plates with circular and square
cutouts, respectively). Tile stiffness changes shown

in this figure are with respect to tile initial postbuck-

ling stiffness of the corresponding plates without a

cutout. More specifically, results for each group of

plates with the same plate aspect, ratio are compared
with results for the plates of the same plate aspect

ratio and without a cutout.

The results presented in figure 12 indicate that

in all cases the initial postbuekling stiffness of a



plate generallydecreasesas cutout sizeincreases.
Theresultsalsoshowthat tile reductionin stiffness
becomessubstantiallylesspronouncedastile plate
a,spectratioincreases.Moreover,differencesin initial
postbucklingstiffnessdue to differencesin cutout
shapebecomemorepronouncedat the cutoutsize
increases,and is on tile orderof 10percent.The
resultspresentedin tables1through5indicatethat
the change in axial stiffness that a plate experiences

at a result of buckling ranges from 31 to 44 percent

for the fllll range of plate aspect ratios and square
and circular cutout sizes considered. The results in

figures 4 through 7 also indicate that the rectangular
plates with square cutouts generally exhibit smaller

segments of the load versus end-shortening curve,
in which tile initial postbuekling branch is linear,

than the plates with circular cutouts. Moreover,

the results indicate that ,at the plate aspect ratio

increases, tile linear posttmckling segment of the

curves tends to get longer. The square plates have

a much larger ratio of plate width to plate thickness

and do not exhit)it as much nlaterial yielding as tile

rectangular plates.

Results showing tile change in prebuckling stiff-

ness and the ('hange ill the initial postbuckling stiff-

hess due to changes in elliptical cutout height are
presented in figure 13. The results presented in this

figure show stiffness changes as a function of the

ratio of cutout height to plate width 2a/I4'_. Tile

stiffness changes shown in the figure are also with

respect to tile initial postbuckling stiffness of the

corresponding plate without a cutout. Tile results

shown in figures 11 and 13 indicate that the t)re-

buckling and initial postbuekling st.iffnesses generally
decrease with increasing cutout size, and that the

postbuckling stiffness is more sensitive than the pre-

buckling stiffness and the buckling strain to changes
in elliptical cutout height. The results indicate that

the plates with the smaller cutout heights have nearly

the same prebuckling stiffness and buckling strain as

the other plates and that the plates with the smaller

cutout heights have the most initial postbuckling

stiffness. This observation suggests that it may be

possible to tailor cutout shape to retain a high degree

of buckling resistance and have a substantial aInount

of initial postbuckling stiffness.

Concluding Remarks

An experimental study of the buckling and post-

truckling t)ehavior of square and rectangular

coinpression-loaded isotropie plates with centrally lo-

cated cutouts has been presented. A wide range of
cutout sizes, three different cutout shapes, and three

plate aspect ratios have t)een investigated. Specifi-

cally, results have been presented for square and rect-

angular plates with aspect ratios of 3 and 5 and with
circular or square cutouts. The ratios of cutout width

to plate width ranged from 0 to 0.86. Results have

also been presented for square plates with elliptical

cutouts that have a ratio of cutout width to plate

width of 0.60 and several cutout heights.

Experimental results have been presented that in-

dicate that the square and rectangular plates tested

exhibit trends of increasing buckling strain and de-

creasing initial postbuckling stiffness with increa,s-

ing circular and square cutout size. The rectangular

plates tested that have circular and square cutouts

with the same ratios of cutout width to plate width

_< 0.57 buckle at approximately the same strain level

and exhibit approximately tile same initial postbuck-

ling stiffness. The results presented for square plates

with circular cutouts and rectangular plates with cir-
cular and square cutouts also indicate that the re-

duction in initial postbuckling stiffness, with respect

to the postbuckling stiffnesses of the corresponding
plates without cutouts, decreases as the plate as-

pect ratio increases. The results also indicate that

the square and rectangular plates lose t)etween 30

and 45 percent of their axial stiffness as a result of
buckling.

Results have been presented in the paper that

show changes in cutout size and shape can cause a
change in buckle pattern. Results have also been

presented that indicate that plates with very large
ratios of cutout width to plate width buckle locally

in the two ligainents of tile plate adjacent to the

cutout. In each of these cases, substantial nonlinear

prebuckling deformations due to material yielding

were present. Also, the results show that a plate with

a very large ratio of cutout width to plate width can

exhibit, a change in local buckle pattern.

Other results have been presented that indicate
that square plates with elliptical cutouts that have a

large ratio of cutout width to plate width generally

have a decrease in prebuckling and initial postbuck-

ling stiffness as the cutout height increases. However,
the plates buckle at nearly the same strain level in

each case. The results also indicate that the post-

buckling stiffness is more sensitive to changes in el-

liptical cutout height, than the prebuckling stiffness
and the buckling strain. An important finding of this

experimental study is the indication that it may be

possible to tailor cutout shape and plate aspect ratio

to improve buckling resistance and initial postbuck-

ling stiffness.

NASA Langley Research Center
Hampton, VA 23665-5225
August 1, 1990



References

1. Nemeth, Michael Paul: Buckling Behavior of Orthotropic

Composite Plates With Centrally Located Cutouts. Ph.D.

Diss., Virginia Polytechnic Inst. & State Univ., May 1983.

2. Nemeth, Michael P.; Stein, Manuel; and Johnson, Eric:

R.: An Approximate Buckling Analysis for Rectangular

Orthotropic Plates With Centrally Located Cutouts.

NASA TP-2528. 1986.

3. Nemeth, Michael P.: Buckling Behavior of Compression-

Loaded Symmetrically Laminated Angle-Ply Plates With

Holes. AIAA J., vol. 26, no. 3, Mar. 1988, pp. 330 336.

4. Yu, Wei-Wen: and Davis, Charles S.: Buckling Be-

havior and P0st-Buckling Strength of Perforated Stiff-

ened Compression Elements. The First Specialty Con-

ference on Cold Formed Steel Structu_vs, Wei-Wen Yu,

ed., Civil Engineering Dept., Univ. of Missouri-Rolla 1971,

pp. 58 64.
5. Martin, ,lames: Buckling and Postbuckling of Laminaled

Composite Square Plates With Reinforced Central Circu-

lar Holes. Ph.D. Diss., Case Western Reserve Univ., 1972.

6. Yu, \_i-x,_k'n; and Davis, Charles S.: Cold-Formed Steel

Members With Perforated Elements. ,1. Struct. Div.,

American Soc. Civ. Eng., vol. 99, no. ST10, Oct. 1!)73,

pp. 2061 2077.
7. Ritchie, D.; and Rhodes, J.: Buckling and Post-Buckling

Behavior of Plates With Holes. Aeronaut. Q., vol. 26,

pt. 4, Nov. 1975, pp. 281 296.

8. Starnes, James H., Jr.; and Rouse. Marshall: Posttmck-

ling and Failure Characteristics of Selected Flat Rect-

angular Graphite-Epoxy Plates Loaded in Compression.

A CoUcction of Technical Papers AIAA/ASME/ASCE/

AHS 22nd Structures, Structural Dynamics _'4 Materials

Conference, Part i, Apr. 1981, pp. :123 43'1. (Available

as AIAA-81-0543.)

9. Roberts. T. M.; and Azizian, Z. G.: Strength of Perfo-

rated Plates Subjected to In-Plane Loading. Th*n- Walled

Structures, w)l. 2, no. 2, 1984, pp. 153 164.

10. Narayanan, R.; and Chow, R. Y.: Ultimate Capacity of

Uniaxially Compressed Perforated Plates. Thin-Walled

Structures, vol. 2, no. 3, 1984, pp. 2,11 264.

11. VandenBrink, Dmmis J.; and Kamat, Manohar P.: Post-

Buckling Response of Isotropic and Laminated Composite

Square Plates With Circular Holes. Fifth International

Conference on Composite Materials, W. C. Harrigan, ,h.,
J. St riR_, and A. K. Dhingra, eds., Metallurgical Soe., Inc.,

c.1985, pp. 139a 1409.

12. Nemeth, Michael P.: Buckling and Postbucklm.q Behav-

ior of Square Compression-Loaded Graphite-Epo.r'g Plates

With Circular Cutouts. NASA TP-3007, 1989.

13. Nemeth, Michael P.: A Buckling Analysis fin RectrmflU-

tar Orthotropic Plates With Ce_ltrally Located Cuto_lts.

NASA TM-86263, 1984.

9



Tat)le 1. Experimental Buckling Loads, Prebuckling Stiffnesses, and Initial Postbuckling Stiffnesses for
Square Plates With Circular Cutouts

All plates buckled into one half-wave along tile plate]length and width unless otherwise noted J

Specimen I
A1

A2

A3

A,1

A5

A6

A7

Uutout (iiameter

to plate width,

d/Wb
0

.1

.2

.3

.4

.5

.6

Buckling I
load,

kS (lb)

Prebuckling
stiffness,

kN/cm (lb/in.)
8.327 (1872)

8.131 (1828)

7.722 (1736)

7.366 (1656)

8.042 (1808)

"8.928 (2007)

8.874 (1995)

Initial postlmckling
stiffness,

kN/cm (lb/in.)
947.679 (541 139)

835.952 (477341)

813.096 (464 290)

746.819 (426445)

683.998 (390 573)

571.239 (326 186)

547.319 (312527)

576.519 (329 201)

541.305 (309 093)

527.971 (301 479)
486.353 (277 715)

428.777 (244 838)

358.590 (204 760)
330.788 (188 885)

"Mode shape consisted of a slightly off-centered pattern.

Table '2. Experimental Buckling Loads, Prehuckling Stiffnesses, and Initial Postbuckling Stiffnesses for
IReetangular Plates With Circular Cutouts

L/W = 3 for all plates; all plates buckled into one half-wave across the plate width ]
and three half-waves along the plate length unless otherwise noted J

St

] Initial

nlell

BF_---

B2

B3

B4

B5

B6

cutout diameter

to I)late width,

d/_t;
0

0

.14

.29

.57

.86

Buckling

load,

kN (lb)

15.057 (3385)

15.538 (3493)

15.404 (3463)

14.733 (3312)
17.054 (3834)

a13.647 (3068)

"14.132 (3177)

Prebuckling

stiffness,

kN/cm (lb/in.)

327.438 (186972)

329.571 (188 190)

329.846 (188 347)

294.772 (168 319)
263.477 (150 449)

173.139 (98865)

Initial postbuckling

stiffness,

kN/cn, (lb/in.)

203.086 (115 965)

198.949 (113 603)

198.869 (113 557)

204.159 (116578)
163.379 ( 93 292)

b43.295 ( 24 722)
b31.341 ( 178961

aLocal lmckling of plate ligament adjacent to cutout.
bTangent stiffness at truckling.

CSecond local buckling mode (see fig. 8).
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Table3. ExperimentalBucklingLoads,PrebucklingStiffnesses,andhfitial PosttmcklingStiffnessesfor
RectangularPlatesWith SquareCutouts

L/W = 3 for all plates; all plates truckled into one half-wave across the plate width 1and three half-waves along the plate length unless otherwise noted ]

Specimen
C1

C2
C3

C4

Cutout width

to plate width,

0.14

.29

.57

.86

Buckling

load,

kN (lb)

15.093 (3393)

14.519 (3264)
118.425 (4142)

b13.896 (3124)

Prebuckling

stiffness,

kN/cm (lb/in.)
331.412 (189241)

301.861 (172 367)

250.216 (142 877)

147.346 ( 84 137)

Initial postbuckling

stiffness,

kN/cm (lb/in.)

198.664 (113 440)

194.033 (110796)

152.665 (87174)

c20.229(11551)

"Mode shape consisted of four half-waves along plate length.
bLocal buckling of plate ligament adjacent to cutout.

CTangent stiffness at buckling.

Table 4. Experimental Buckling Loads, Prebuckling Stiffnesses, and Initial Postbuckling Stiffnesses for

Rectangular Plates With Circular Cutouts

L/W = 5 for all plates; all plates buckled into one half-wave across the plate]width and five half-waves along the plate length unless otherwise noted ]

Specimen
D1

D2

D3
D4

D5

D6

Cutout diameter

to plate width,

d/Wb
0

0

.14

.29

.57

.86

Buckling

load,

kN (lb)

Prebuckling

stiffness,

kN/cm (lb/in.)

15.106 (3396)

14.581 (3278)

14.973 (3366)

14.208 (3194)
15.222 (3422)

14.457 (3250)

212.464 (121 320)

206.834 (118 105)

209.951 (119885)

203.827 (116388)
187.788 (107230)

135.396(77313)

Initial postbuckling

stiffness,

kN/cm (lb/in.)

118.634 (67 742)

117.368 (67019)

118.545 (67691)

121.839 (69572)

111.680 (63771)
131.038 (17723)

aTangent stiffness at buckling.
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Table5. ExperimentalBucklingLoads,PrebucklingStiffnesses,andInitial PostbucklingStiffnesscsfor
RectangularPlatesWith SquareCutouts

L/W = 5 for all plates; all plates buckled into one half-wave across the plate]width and five half-waves ahmg the plate length unless otherwise noted ]

Specimen

E1

E2

E3

E4

Cutout width

to plate width,

0.14

.29

.57

.86

Buckling

load,

kN (lb)

15.146 (3405)

14.893 (3348)

_16.276 (3659)

b13.260 (2981)

Prebuckling

stiffness,

kN/em (lb/in.)

214.791 (122649)

205.863 (117551)

180.494 (103065)

118.948 (67921)

Initial postbuckling
stiffness,

kN/cm (lb/in.)

122.619 (70017)

118.247 (67521)
117.288 (66973)

c39.531 (22 573)

"Mode shape consisted of six half-waves along plate length.
bLocal buckling of plate ligament adjacent to cutout.

CTangent stiffness at buckling.

Table 6. Experimental Buckling Loads, Prebuckling Stiffnesses, and Initial Postbuckling Stiffnesses for
Square Plates With Elliptical Cutouts

2b/Wb = 0.6 for all plates; all plates buckled into one half-wave along the ]plate length and width unless otherwise noted J

Specimen
F1

F2

F3

F4

F5
F6

A7

F7

Cutout height Buckling
to plate width, load,

2a/Wb ki (lb)

0.05 11.481 (2581)

.1 10.565 (2375)

.2 9.515

.3 "11.250

.4 8.158

.5 8.794

.6 8.874

.7 7.829

(2139)

(2529)

(1834)

(1977)

(1995)

(1760)

Prebuckling

stiffness,

kN/cm (lb/in.)

609.250 (347891)

662.293 (378 179)

608.306 (347352)

592.622 (338396)

590.069 (336938)

539.932 (308309)

547.319 (312527)

532.988 (304344)

Initial postbuckling

stiffness,

kN/cm (lb/in.)

455.589 (260148)

470.377 (268592)
457.988 (261 518)

383.741 (219122)

377.724 (215686)

352.567 (201 321)

330.788 (188885)
316.610 (180789)

aMode shape consisted of an off-centered pattern.
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