

NUMERICAL ANALYSIS AND PARAMETRIC STUDIES OF THE BUCKLING OF COMPOSITE ORTHOTROPIC COMPRESSION AND SHEAR PANELS

Jerrold M. Housner and Manuel Stein
Langley Research Center
Hampton, Va. 23665

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. - OCTOBER 1975

[^0]
NUMERICAL ANALYSIS AND PARAMETRIC STUDIES OF THE BUCKLING OF COMPOSITE ORTHOTROPIC COMPRESSION AND SHEAR PANELS

Jerrold M. Housner and Manuel Stein
Langley Research Center

SUMMARY

A computer program has been developed for the combined compression and shear of stiffened variable thickness orthotropic composite panels on discrete springs; boundary conditions are general and include elastic boundary restraints. Buckling solutions are obtained by using a newly developed trigonometric finite-difference procedure which improves the solution convergence rate over conventional finite-difference methods. The trigonometric finite-difference procedure introduces two new parameters into the solution. These parameters can be computed by the program or selected by the user. The validity of the program has been substantiated by comparisons with existing solutions, and a proram listing, input description, and sample problem are provided.

The classical general shear-buckling results (in terms of universal orthotropic parameters), which exist only for simply supported panels over a limited range of orthoropic properties, have been extended to the complete range of these properties for simply supported panels and, in addition, to the complete range of orthotropic properties for clamped panels. The program has also been applied to parametric studies which examine the effect of filament orientation upon the buckling of graphite-epoxy panels. These studies included an examination of the filament orientations which yield maximum shear or compressive buckling strength for panels having all four edges simply supported or clamped over a wide range of aspect ratios. Panels with such orientations had higher buckling loads than comparable, equal-weight, thin-skinned aluminum panels. Also included among the parameter studies were examinations of combined axial compression and shear buckling and examinations of panels with rotational elastic-edge restraints.

INTRODUCTION

The use of filamentary composite materials in aircraft and space structures offers a potential for weight savings over conventional (all metal) construction. Also, composites introduce added versatility into the design process by allowing the structure to be better tailored to meet the design criteria. One such design criterion is the prevention of compressive and shear buckling in panels of laminated construction. In laminated
panels the stiffness properties can be tailored by controlling the filament orientation in each lamina.

A considerable amount of literature exists on the buckling of flat isotropic and orthotropic panels under various boundary conditions. (See refs. 1 to 6.) Few results exist, however, for finite aspect-ratio panels, especially for shear buckling of orthotropic panels. General results for shear buckling, in terms of universal orthotropic parameters, exist only for simply supported panels over a limited range of orthotropic parameters. (See ref. 6.) Several general-purpose computer programs exist which could be employed to obtain results for panels with general boundary conditions under general loading states (refs. 7 to 9). These programs, however, tend to be expensive to use in performing parameter studies; therefore, a program which is suitable for performing parametric buckling studies of orthotropic flat rectangular panels was developed and is employed in this paper.

The present computerized analysis is applicable to the combined compression and shear buckling of stiffened, variable-thickness, flat rectangular orthotropic panels on discrete springs; boundary conditions are general and include elastic boundary restraints. Calculation of the flexural stiffnesses of a laminate from the properties of filamentreinforced laminas is automatically performed. The analysis makes use of a newly developed trigonometric finite-difference procedure. In contrast to conventional (polynomial) finite differences, trigonometric differences take advantage of the sinusoidal form of the buckle pattern to achieve converged solutions with fewer degrees of freedom, hence reducing computer time. The analysis has been validated by many comparisons with solutions in the literature and has been used to produce a variety of additional orthotropic and some isotropic panel results.

The classical general results for the shear buckling of simply supported orthotropic panels are extended in this paper to cover the complete range of orthotropic parameters. Also, the general results for the shear buckling of clamped panels over the complete range of orthotropic parameters have been calculated and are presented herein. In addition, it is of practical interest to present results which consider the effects of filament orientation upon the buckling strength of laminated composite panels. Consequently, parameter studies are presented for graphite-epoxy panels of various aspect ratios, boundary conditions, and in-plane loadings over a wide range of filament orientations, and those orientations which led to maximum buckling loads are identified. Finally, results are presented for the shear buckling of simply supported isotropic panels, each with a central stiffener.
$a, b \quad$ dimensions of rectangular plate parallel to X - and Y-axes, respectively
$A^{(r)} \quad$ coefficients defined by equation (C3)
$\mathrm{C}_{\mathrm{x}}, \mathrm{C}_{\mathrm{yx}}$ correction factors defined in equations (B4) and (B5)

D isotropic plate flexural stiffness
$\mathrm{D}_{3} \quad=\mathrm{D}_{12}+2 \mathrm{D}_{66}$
$\mathrm{D}_{11}, \mathrm{D}_{22}, \mathrm{D}_{12}, \mathrm{D}_{66} \quad$ orthotropic plate flexural stiffnesses
$e_{i j}^{(r)} \quad$ elements of matrix defined by equation (C2)

EI flexural stiffness of discrete stiffener
$\mathrm{E}_{1}, \mathrm{E}_{2} \quad$ Young's moduli of fibrous reinforced material parallel to fibers and transverse to fibers, respectively
$\mathrm{G}_{12} \quad$ shear modulus of fibrous reinforced material
h core thickness of sandwich plate
$\mathrm{I}_{1}, \mathrm{I}_{3}$ row designations of boundaries (1) and (3) (see fig. 2(a))
$\mathrm{J}_{2}, \mathrm{~J}_{4}$ column designations of boundaries (2) and (4) (see fig. 2(a))
$\mathrm{k}_{\ell} \quad$ discrete lateral spring stiffness
$\mathrm{k}_{\mathrm{R}} \quad$ uniformly distributed rotational spring stiffness
$\mathrm{k}_{\mathrm{S}} \quad$ shear -buckling load coefficient $\frac{\mathrm{b}^{2} \mathrm{~N}_{\mathrm{Xy}}}{\pi^{2} \sqrt[4]{\mathrm{D}_{11} \mathrm{D}_{22}^{3}}}$
$\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}} \quad$ stiffness of rotational springs which resist moments acting about Y - and
X -axes, respectively
$\mathrm{K}_{\mathrm{ij}} \quad$ plate stiffness terms defined by equation (A13)

M,N total number of rows and columns of finite-difference stations, respectively
$\mathrm{M}_{\mathrm{e}}, \mathrm{N}_{\mathrm{e}} \quad$ total number of rows and columns of finite-difference stations at which equilib-
$\mathrm{M}_{\mathrm{X}}, \mathrm{M}_{\mathrm{y}}, \mathrm{M}_{\mathrm{Xy}} \quad$ bending moments in plate (see fig. 1)
$N_{X}, N_{y}, N_{x y} \quad$ in-plane loads (see fig. 1)
$\overline{\mathrm{N}}_{\mathrm{X}}, \overline{\mathrm{N}}_{\mathrm{y}}, \overline{\mathrm{N}}_{\mathrm{Xy}} \quad \begin{gathered}\text { shear-buckling stress coefficients } \\ \text { respectively }\end{gathered} \quad \frac{\mathrm{b}^{2} \mathrm{~N}_{\mathrm{x}}}{\pi^{2} \mathrm{D}_{11}}, \frac{\mathrm{~b}^{2} \mathrm{~N}_{\mathrm{y}}}{\pi^{2} \mathrm{D}_{11}}, \frac{\mathrm{~b}^{2} \mathrm{~N}_{\mathrm{xy}}}{\pi^{2} \mathrm{D}_{11}}$,

$\begin{gathered}\text { buckling parameters } \\ \begin{array}{c}\text { respectively }\end{array} \\ E_{1} t^{3}\left[1-\left(\frac{h}{t}\right)^{3}\right]\end{gathered}, \frac{b^{2} N_{X}}{E_{1} t^{3}\left[1-\left(\frac{h}{t}\right)^{3}\right]}, \frac{b^{2} N_{X y}}{E_{1} t^{3}\left[1-\left(\frac{h}{t}\right)^{3}\right]}$,
$\mathrm{N}_{\mathrm{X}_{\mathrm{O}}}, \mathrm{N}_{\mathrm{Xy}}^{\mathrm{o}}$
buckling loads for pure axial compression and pure shear, respectively
$\overline{\mathrm{p}} \quad$ buckling eigenvalue (see eq. (13))
$r_{x}, r_{y}, r_{x y}$ change of $\bar{N}_{x}, \quad \bar{N}_{y}, \bar{N}_{x y}$ with \bar{p}, respectively (see eq. (13))
$\mathrm{R}_{\mathrm{X}}, \mathrm{R}_{\mathrm{Xy}}$ ratio of $\mathrm{N}_{\mathrm{X}} / \mathrm{N}_{\mathrm{X}_{\mathrm{O}}}$ and $\mathrm{N}_{\mathrm{xy}} / \mathrm{N}_{\mathrm{Xy}}^{\mathrm{o}} \mathrm{o}$, respectively
$\mathrm{S}_{\mathrm{ij}} \quad$ spring-stiffness terms defined by equation (A17)
t total thickness of sandwich plate
$\bar{t}_{x}, \bar{t}_{y}, \bar{t}_{x y}$ values of $N_{x}, \quad N_{y}, \quad N_{x y}$ when $\bar{p}=0$
w displacement of panel in positive z-direction
$\mathrm{x}, \mathrm{y}, \mathrm{z}$ panel coordinates shown in figure 1

$\alpha_{\text {ij }}$	curvature terms defined in equation (A14)
β	ratio of panel width to buckle length in an infinitely long panel
$\gamma_{1}, \gamma_{2}, \gamma_{3}$	coefficients defined by equation (7) or (8)
$\delta \mathrm{U}$	internal virtual work
$\delta \mathrm{V}_{\mathrm{N}}$	virtual work of in-plane loads
δV_{S}	virtual work of discrete springs
Δ_{x}, Δ_{y}	finite-difference mesh spacings in x - and y -directions, respectively
$\hat{\Delta}_{\mathrm{x}}, \hat{\Delta}_{\mathrm{y}}$	trigonometric finite-difference coefficients as defined in equation (10)
$\Delta_{\mathrm{x}}^{*}, \Delta_{\mathrm{y}}^{*}$	trigonometric finite-difference terms defined in equation (A24)
θ	filament orientation (see fig. 2(a))
Θ, B	universal orthotropic parameters defined in equations (15) and (16)
${ }_{x}, \lambda_{y}$	trigonometric parameters defined through equation (10)
ν_{12}	major Poisson ratio relating contraction normal to filament direction to extension parallel to filament direction
$\xi_{\mathrm{x}}, \xi_{\mathrm{y}}, \eta_{\mathrm{x}}, \eta_{\mathrm{y}}$	functions defined by equations (A6) to (A9)
$\chi_{i j}$	twist terms defined in equation (A16)
ψ_{ij}	curvature terms defined in equation (A15)

> Comma preceding a subscript denotes differentiation with respect to the subscript.

ANALYSIS

Assumptions

The buckling analysis of linear elastic orthotropic plates has been carried out under the following assumptions:

1. Coupling between bending and extensional deformation is neglected. (In practice this assumption implies a midplane symmetric laminated panel.)
2. Coupling between bending and twisting deformation is neglected. (In practice this assumption implies a balanced laminate.)
3. The deformations of the panel obey the Kirchhoff hypothesis (see ref. 10).
4. The nonlinear strain-displacement relationships used to obtain (linear) buckling equations are

$$
\begin{aligned}
& e_{x}=u_{, x}+\frac{1}{2}(w, x)^{2} \\
& e_{y}=v, y+\frac{1}{2}(w, y)^{2} \\
& \gamma_{x y}=u_{, y}+v_{, x}+w_{, x} w, y
\end{aligned}
$$

where e_{x}, e_{y}, and $\gamma_{x y}$ are the strains and u, v, and w are the displacements in $\mathrm{x}-, \mathrm{y}-$, and z -directions, respectively.
5. The in-plane loads, $\mathrm{N}_{\mathrm{X}}, \mathrm{N}_{\mathrm{y}}$, and N_{xy}, are uniformly distributed along the appropriate edges of the plate.
6. Discrete stiffeners have no torsional stiffness and are symmetrically disposed with respect to the neutral surface of the panel.

Governing Equations

The internal virtual work of the panel during buckling may be expressed as

$$
\begin{equation*}
\delta \mathrm{U}=\int_{\dot{0}}^{\mathrm{b}} \int_{0}^{\mathrm{a}}\left(\mathrm{M}_{\mathrm{x}} \delta \mathrm{w}, \mathrm{xx}+\mathrm{M}_{\mathrm{y}} \delta \mathrm{w}, \mathrm{yy}+2 \mathrm{M}_{\mathrm{xy}} \delta \mathrm{w}, \mathrm{xy}\right) \mathrm{dx} d \mathrm{~d} \tag{1}
\end{equation*}
$$

where a and b are the dimensions of the panel parallel to the X - and Y-axes, respectively, and δ is the variational operator. Also,

$$
\left.\begin{array}{l}
M_{x}=D_{11^{w}, x x}+D_{12^{w}}, y y \tag{2}\\
M_{y}=D_{12^{w}}, x x+D_{22^{w}}, y y \\
M_{x y}=2 D_{66^{w}}, x y
\end{array}\right\}
$$

The sign conventions of the bending moments are given in figure 1, and the flexural stiffnesses, D_{11}, D_{12}, D_{22}, and D_{66}, given in reference 11 , are about a unique neutral plane which has the property that matrix [B], which represents coupling between bending and extension, is null with respect to this plane. As given by reference 12, the virtual work of the applied in-plane loads is given by

$$
\begin{equation*}
\delta \mathrm{V}_{\mathrm{N}}=\int_{0}^{\mathrm{a}} \int_{0}^{\mathrm{b}}\left(\mathrm{~N}_{\mathrm{x}} \mathrm{w}, \mathrm{x}^{\delta \mathrm{w}}, \mathrm{x}+\mathrm{N}_{\mathrm{y}} \mathrm{w}, \mathrm{y}^{\delta \mathrm{w}}, \mathrm{y}+\mathrm{N}_{\mathrm{xy}} \mathrm{w}, \mathrm{y}^{\delta \mathrm{w}}, \mathrm{x}+\mathrm{N}_{\mathrm{xy}} \mathrm{w}, \mathrm{x}^{\delta \mathrm{w}}, \mathrm{y}\right) d y \mathrm{dx} \tag{3}
\end{equation*}
$$

here the sign conventions for N_{x}, N_{y}, and $N_{x y}$ are shown in figure 1.
In appendix A , equations (A1) to (A3) are expressed in trigonometric finite-difference orm (see fig. 2 for finite-difference station layout) and are substituted into the statement the principle of virtual work, that is,

$$
\begin{equation*}
\delta \mathrm{U}=\delta \mathrm{V}_{\mathrm{N}}+\delta \mathrm{V}_{\mathrm{S}} \tag{4}
\end{equation*}
$$

where $\delta \mathrm{V}_{\mathrm{S}}$ is the virtual work of the discrete springs. (See appendix A, eq. (A11).) Equation (4) yields the governing equations which are of the following form:

$$
\begin{equation*}
K_{i j}+S_{i j}+N_{x} \alpha_{i j}+N_{y y} \psi_{i j}+2 N_{x y} \chi_{i j}=0 \quad\binom{i=1, \ldots, M}{j=1, \ldots, N} \tag{5}
\end{equation*}
$$

where $K_{i j}, S_{i j}, \alpha_{i j}, \quad \psi_{i j}$, and $\chi_{i j}$ are defined by equations (A13) to (A17) in appendix A.

The numerical technique of trigonometric finite differences and the numerical extraction of the buckling loads N_{X}, N_{y}, and $N_{x y}$ from equation (5) are different from those conventionally used and therefore require further discussion.

Numerical Techniques

Trigonometric finite differences.- Conventionally, the central difference approximation for the derivative of a function $f(x)$ at $x=x_{0}$ is approximated as

$$
\begin{equation*}
\frac{\mathrm{df}}{\mathrm{dx}}\left(\mathrm{x}_{0}\right) \approx \frac{1}{\Delta_{\mathrm{x}}}\left[\mathrm{f}\left(\mathrm{x}_{0}+\frac{\Delta_{\mathrm{x}}}{2}\right)-\mathrm{f}\left(\mathrm{x}_{0}-\frac{\Delta_{\mathrm{x}}}{2}\right)\right] \tag{6}
\end{equation*}
$$

The right-hand side of equation (6) is denoted as the conventional finite-difference approximation for the derivative. In the limit as the finite-difference mesh spacing $\Delta_{\mathbf{X}}$ approaches zero, the right-hand side of equation (6) expresses the definition of the derivative. If $f(x)$ is parabolic in the neighborhood of x_{0},

$$
\begin{equation*}
f(x)=\gamma_{1}+\gamma_{2}\left(x-x_{0}\right)+\gamma_{3}\left(x-x_{0}\right)^{2} \tag{7}
\end{equation*}
$$

and it may be readily shown that the approximate expression given by equation (6) becomes an equality. If, however, $f(x)$ is trigonometric about $x=x_{0}$,

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=\gamma_{1}+\gamma_{2} \sin \frac{\pi\left(\mathrm{x}-\mathrm{x}_{0}\right)}{\lambda_{\mathrm{x}}}+\gamma_{3} \cos \frac{\pi\left(\mathrm{x}-\mathrm{x}_{0}\right)}{\lambda_{\mathrm{x}}} \tag{8}
\end{equation*}
$$

where λ_{X} is a wavelength parameter. It may be readily shown that

$$
\begin{equation*}
\frac{\mathrm{df}}{\mathrm{dx}}\left(\mathrm{x}_{0}\right)=\frac{1}{\hat{\Delta}_{\mathrm{x}}}\left[\mathrm{f}\left(\mathrm{x}_{0}+\frac{\Delta_{\mathrm{x}}}{2}\right)-\mathrm{f}\left(\mathrm{x}_{0}-\frac{\Delta_{\mathrm{x}}}{2}\right)\right] \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{1}{\hat{\Delta}_{\mathrm{X}}}=\frac{\pi}{2 \lambda_{\mathrm{X}} \sin \left(\frac{\pi \Delta_{\mathrm{X}}}{2 \lambda_{\mathrm{X}}}\right)} \tag{10}
\end{equation*}
$$

The right-hand side of equation (9) is denoted as the trigonometric finite-difference approximation for the derivative. (In a two-dimensional problem a similar set of relationships would be derived for the y-direction, introducing the quantities Δ_{y}, λ_{y}, and λ_{y}.)

The only difference between the right-hand side of equation (9) and that of equation (6) is that in the trigonometric expression $1 / \hat{\Delta}_{X}$ replaces $1 / \Delta_{X}$ of the conventional expression. As λ_{X} approaches infinity, $\hat{\Delta}_{X}$ approaches Δ_{X} and, consequently, the trigonometric difference expression reduces to the conventional expression.

Convergence of trigonometric finite-difference solutions.- Inasmuch as the buckling mode shape is usually trigonometric in nature, the trigonometric finite-difference solution can be made to exhibit a much faster convergence rate than the conventional difference solution by appropriate selection of λ_{x} and λ_{y}. This advantage is demonstrated with several isotropic plate examples discussed in appendix B. The convergence rate can also be degraded, however, by an inappropriate choice of λ_{x} and λ_{y}. It should be emphasized though, that the selection of λ_{x} and λ_{y} does not constrain the buckle mode shape to have wavelengths given by λ_{x} and λ_{y}. Rather, the trigonometric solution will always converge to the exact solution if enough degrees of freedom (finite-difference stations) are used.

Selection of trigonometric parameters λ_{x} and λ_{y}. - Selecting appropriate values of λ_{X} and λ_{y} which improve the convergence rate of solutions is predominantly based upon engineering judgment and experience. One engineering approach which has proven useful is to select λ_{x} and λ_{y} based upon the buckle length of infinitely long panels; that is,

$$
\begin{align*}
& \frac{\lambda_{\mathrm{x}}}{\mathrm{a}}=\frac{\mathrm{b} / \mathrm{a}}{\beta} \tag{11}\\
& \frac{\lambda_{\mathrm{y}}}{\mathrm{~b}}=1 \tag{12}
\end{align*}
$$

where β is the wavelength parameter of an infinitely long panel, defined as the ratio of the panel width to the buckle length. The value of β for the combined compression and shear buckling of simply supported and clamped infinite panels may be determined from equations (B2) and (B3) in appendix B. Additional suggestions for the selection of λ_{X} and λ_{y} are given in appendix B.

Stability determinant evaluation and eigenvalue extraction.- In this analysis the order of the stability determinant is kept to a manageable size by using the twodimensional marching procedure outlined in appendix C. This procedure is basically an extension of the one-dimensional procedure used in reference 13. Briefly, the marching procedure successively operates on the equilibrium equations at each finite-difference station to achieve a relatively low-order stability determinant.

In searching for the combined load system which produces buckling, it is convenient to introduce dimensionless stress coefficients, $\bar{N}_{\mathrm{x}}, \overline{\mathrm{N}}_{\mathrm{y}}$, and $\overline{\mathrm{N}}_{\mathrm{xy}}$, which may be determined from the dimensional quantities, N_{x}, N_{y}, and $N_{x y}$ (fig. 1), by multiplying by the factor $\mathrm{b}^{2} \pi / \mathrm{D}_{11}$. It is assumed that $\overline{\mathrm{N}}_{\mathrm{X}}, \overline{\mathrm{N}}_{\mathrm{y}}$, and $\overline{\mathrm{N}}_{\mathrm{xy}}$ are linear functions of an eigenvalue $\overline{\mathrm{p}}$, that is,

$$
\left.\begin{array}{l}
\overline{\mathrm{N}}_{\mathrm{x}}=\overline{\mathrm{t}}_{\mathrm{x}}+\overline{\mathrm{p}} \mathrm{r}_{\mathrm{x}} \tag{13}\\
\overline{\mathrm{~N}}_{\mathrm{y}}=\overline{\mathrm{t}}_{\mathrm{y}}+\overline{\mathrm{p}} \mathrm{r}_{\mathrm{y}} \\
\overline{\mathrm{~N}}_{\mathrm{xy}}=\overline{\mathrm{t}}_{\mathrm{xy}}+\overline{\mathrm{p}} \mathrm{r}_{\mathrm{xy}}
\end{array}\right\}
$$

This assumption allows some loads to be held constant while others are increased to buckling, or it allows the loads to increase with a fixed proportionality.

To find the lowest value of \bar{p} which makes the stability determinant vanish, a determinant plotting technique is used. In order to increase the speed of the plotting technique, a variable step size is employed. This step size is based upon a numerical parabolic extrapolation of the stability determinant at each step of the determinant plotting procedure.

COMPUTER PROGRAM

A computer program denoted BOP (Buckling of Orthotropic Panels) has been developed for the buckling of flat rectangular orthotropic laminated panels. The program is applicable to panels with compression and/or shear loading, discrete lateral deflection and rotational springs, discrete stiffeners, and general boundary conditions.

The program utilizes trigonometric finite differences to improve the problem convergence and thus requires the selection of λ_{x} and λ_{y}. The user has the option of determining and supplying λ_{x} and λ_{y} (based upon the discussion in appendix B) or allowing the program to automatically calculate and use values based on equations (11) and (12).

In addition, the user has the option of either (1) supplying the bending stiffnesses of the panel or (2) supplying the elastic moduli, filament orientation, and thickness of each lamina in a laminated panel and allowing the program to calculate the bending stiffnesses. When the second option is chosen, the program prints the flexural stiffness matrix D, defined in reference 11, as well as the laminate Young's moduli, shear modulus, and Poisson's ratios. (The second option may be used independently of the buckling analysis.) A complete description of the program is provided in appendix D.

Results from the computer program have been compared with many classical results for unstiffened isotropic and orthotropic panels under various boundary conditions and with some classical results for stiffened isotropic panels. These comparisons which are discussed in subsequent sections were found to be excellent, thereby indicating the validity of the program.

Shear Buckling of General Orthotropic Panels

From the general fourth-order equation for the shear buckling of orthotropic panels the buckling load coefficient may be expressed as

$$
\begin{equation*}
\mathrm{k}_{\mathrm{S}}=\frac{\mathrm{b}^{2} \mathrm{~N}_{\mathrm{xy}}}{\pi^{2} \sqrt[4]{\mathrm{D}_{11^{\mathrm{D}} 22}^{3}}} \tag{14}
\end{equation*}
$$

This coefficient is a function of only two variables

$$
\begin{equation*}
\Theta=\frac{\sqrt{\mathrm{D}_{11} \mathrm{D}_{22}}}{\mathrm{D}_{3}} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
B=\frac{b}{a} \sqrt[4]{\frac{D_{11}}{D_{22}}} \tag{16}
\end{equation*}
$$

where $D_{3}=D_{12}+2 D_{66}$. (Note that an isotropic panel implies $\Theta=1$.)
Classically, general shear-buckling results for simply supported finite aspect-ratio panels have been obtained only for values of $\Theta \geqq 1$ (see ref. 6). In figure 3 numerical results for $\Theta<1$ have been presented. Also, for completeness and comparison purposes numerical results for $\Theta \geqq 1$ are presented. The good agreement between these curves and those of reference 6 indicates the validity of the numerical results from the computer program. General results for the shear buckling of clamped panels, furthermore, do not appear in the literature for any range of Θ with the exception of $\Theta=1$ (the isotropic case); consequently, numerical results for clamped panels are presented in figure 4.

Both the results for simply supported and clamped panels indicate that the percentage decline in buckling load from $B=1$ to $B=0$ decreases as Θ increases. Also, a comparison of figures 3 and 4 shows that the percentage increase in buckling load of clamped panels over simply supported panels increases with increasing Θ. The abrupt changes in slope appearing in these figures are due to changes in mode shape (from symmetric to antisymmetric modes). As anticipated from isotropic results (ref. 1), these abrupt changes are more predominant in clamped panels than in simply supported panels.

Tables 1 and 2 present the shear-buckling load coefficients used in obtaining the general orthotropic panel results of figures 3 and 4. Additionally, the trigonometric dif-
ference parameters (the mesh-spacing parameters a / Δ_{x} and b / Δ_{y} and the wavelength parameters $\lambda_{\mathrm{X}} / \mathrm{a}$ and $\lambda_{\mathrm{y}} / \mathrm{b}$) used in obtaining the buckling coefficients are presented in tables 1 and 2.

Shear Buckling of a Simply Supported Panel With a Central Stiffener
Figure 5 presents results for the shear buckling of simply supported isotropic panels each of which contains one central flexural stiffener parallel to either the longer or shorter edges of the panel. As anticipated, the use of a central stiffener always provides an increase in the shear-buckling stress coefficient over that of the unstiffened panels $\left(\frac{E I}{\mathrm{bD}}=0\right)$. The percentage increase over unstiffened panels is greater in square panels than in rectangular panels. In rectangular panels of the same aspect ratio, the percentage increase over unstiffened panels is greater when the stiffeners are parallel to the longer direction than when they are parallel to the shorter direction. The centralstiffener results of figure 5, moreover, are in reasonably good agreement with similar results given in reference 14 for slightly curved panels. This agreement indicates the validity of the computer program for the solution of stiffened panels.

Parametric Studies of Orthotropic Filament Reinforced Panels

Results are presented for the buckling of sandwich panels whose upper and lower skins are of laminated graphite-epoxy construction. Although some of the results in this section could be obtained from general orthotropic curves, such as those of figures 3 and 4 , it is of interest to examine the effect of filament orientation upon the buckling load. (The material properties for the graphite-epoxy skins are given in table 3, with their equivalent general orthotropic parameter values Θ and B at various filament orientations.)

In addition to the assumptions listed in the analysis section of this report, it is assumed in this section that

1. The panel is symmetric about the middle surface
2. Each lamina has the same filament orientation θ except for sign
3. The core carries no load and undergoes no transverse shear deformation

As a consequence of these assumptions, it may be shown that the buckling parameters $\hat{\mathrm{N}}_{\mathrm{X}}, \hat{\mathrm{N}}_{\mathrm{y}}$, and $\hat{\mathrm{N}}_{\mathrm{Xy}}$ defined as

$$
\begin{equation*}
\hat{N}_{x}=\frac{b^{2} N_{X}}{E_{1} t^{3}\left[1-\left(\frac{h}{t}\right)^{3}\right]} \tag{17a}
\end{equation*}
$$

$$
\begin{align*}
& \hat{N}_{y}=\frac{b^{2} N_{y}}{E_{1} t^{3}\left[1-\left(\frac{h}{t}\right)^{3}\right]} \tag{17b}\\
& \hat{N}_{x y}=\frac{b^{2} N_{x y}}{E_{1} t^{3}\left[1-\left(\frac{h}{t}\right)^{3}\right]} \tag{17c}
\end{align*}
$$

depend only on the magnitude of θ, the panel aspect ratio, and the boundary conditions. They do not depend on the thickness of each lamina, the number of laminas, or the core thickness. However, in order for assumption 2 of the analysis section to be reasonable that is, neglect of bending-twisting coupling - it may be necessary that the ratio of core thickness to total thickness h / t be nearly unity and that the amount of material in either cover oriented in the $+\theta$ and $-\theta$ directions be equal.

The variation of the buckling load with filament orientation for panels of various aspect ratios is presented in figure 6 for axial compression and in figure 7 for shear. The figures indicate that the buckling loads are highly dependent upon filament orientation and that optimum orientations (those which yield a maximum buckling load) may be determined for each aspect ratio. Also, the figures indicate that clamping has a greater effect on compressive buckling than on shear buckling.

An indication of the buckling strength of the epoxy panels as compared to equalweight aluminum panels is provided by a comparison of the discrete buckling loads appearing on the right-hand ordinate of figures 6 and 7 with the curves in the same figures. These comparable values are valid for thin-skinned sandwich panels which have the same core, of thickness h, as the graphite-epoxy panels, but which have aluminum skins. For all the cases considered, a range of filament orientations exists for which the buckling strength of the graphite-epoxy panels exceeds that of the comparable aluminum panel with the same aspect ratio and boundary conditions. In the case of a clamped square panel in shear, the buckling strength of the graphite-epoxy panel exceeds that of the aluminum panel at all filament orientations.

It should be noted that, if the restriction that each lamina have the same filament orientation $\pm \theta$ is removed, isotropic skins can be produced from groups of three or more laminas (for example, $0,+60$, and -60) which will have the same weight as the $\pm \theta$ skins but will yield a higher buckling load for each case shown in figures 6 and 7 and for many other shear and compression loadings. However, this is not necessarily true in all cases; for example, in the transverse compression of long panels (a / b approaching zero), an orthotropic panel with filaments running transversely ($\theta=0^{\circ}$) provides a higher
buckling load than an equivalent isotropic panel. Furthermore, there are many applications where for various reasons (for example, strength or fabrication criteria) orthotropic panels are preferable to isotropic ones.

In figures 8 to 11 optimum filament orientations are shown for all aspect ratios. The curve of figure 8 was determined from the exact closed-form relationship for the compression of simply supported plates (ref. 6), while the curves of figures 9 to 11 were determined using program BOP. The abrupt changes in the slopes of these curves are caused by changes in the buckling mode shape associated with the optimum filament orientation. Except for figure 8, the location of these abrupt changes has been approximated since it is difficult to determine exactly where they occur.

In the compressive buckling curves (figs. 8 and 9) the optimum filament orientation for small aspect ratio a / b is 0° (parallel to the X -axis or to the direction of compres sion). This orientation angle rapidly increases at about $a / b=0.56$ for simply supported panels and at about $a / b=1.05$ for clamped panels. However, a comparison of the aspect-ratio 1 and 1.1 curves for a clamped panel as shown in figure 6 indicates that the optimum buckling load does not exhibit such a rapid change but decreases slightly as the aspect ratio goes from 1 to 1.1. For higher aspect ratios the optimum orientation oscillates with decreasing excursion about $\pm 45^{\circ}$ and, in general, a practical filament orientation for $\mathrm{a} / \mathrm{b}>1$ is $\theta= \pm 45^{\circ}$.

In the case of shear buckling (figs. 10 and 11), the symmetry of the problem requires that the deviation of the optimum filament orientation from 45° for a panel of aspect ratio a / b be equal but opposite to that of a panel with aspect ratio b / a. Also, the peaks of figure 7 are quite flat; that is, they have a large radius of curvature associated with them. Consequently, it was difficult to determine precisely the optimum filament orientations in figures 10 and 11. However, it is reasonable to say from figures 10 and 11 that for large aspect ratios $\mathrm{a} / \mathrm{b}>2, \quad \theta= \pm 60^{\circ}$ to $\pm 62^{\circ}$ is a practical filament orientation.

Figures 12 and 13 present interaction curves for the buckling of simply supported and clamped panels in combined axial compression and shear for various filament orientations and aspect ratios. The optimum filament orientations (those that correspond to the highest values of the buckling parameters) change according to aspect ratio a / b and the ratio of $N_{\mathrm{xy}} / \mathrm{N}_{\mathrm{X}}$. For simply supported panels (fig. 12), when $\mathrm{a} / \mathrm{b}=1$, the optimum orientation for all combinations of N_{X} and $N_{X y}$ is $\theta= \pm 45^{\circ}$. When $\mathrm{a} / \mathrm{b}=2$ or 5 , the optimum filament orientation for predominantly shear loading is near $\pm 60^{\circ}$ and for predominantly compressive loading is near ± 450. For clamped panels (fig. 13) when $a / b=1$ the optimum orientation changes from $\theta= \pm 450$ for shear loading to $\theta=00$ for compression. When $\mathrm{a} / \mathrm{b}=2$ or 5 , the optimum orientation changes from $\theta= \pm 60^{\circ}$ for pure shear to $\theta= \pm 450$ for pure compression. This behavior was the same as that exhibited by simply supported panels.

A summary of the data from figures 12 and 13 is shown in figure 14 , which indicates the banded region in which all the results lie. For orthotropic panels it was found that the band is bounded from below by the following simple relationship given in reference 15 for isotropic panels:

$$
\begin{equation*}
R_{x}+R_{x y}^{2}=1 \tag{18}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
\mathrm{R}_{\mathrm{x}}=\frac{\mathrm{N}_{\mathrm{x}}}{\mathrm{~N}_{\mathrm{x}_{\mathrm{O}}}} \tag{19}\\
\mathrm{R}_{\mathrm{xy}}=\frac{\mathrm{N}_{\mathrm{xy}}}{\mathrm{~N}_{\mathrm{x} \mathrm{y}_{\mathrm{O}}}}
\end{array}\right\}
$$

In equations (19), $\mathrm{N}_{\mathrm{x}_{\mathrm{O}}}$ and $\mathrm{N}_{\mathrm{Xy}}^{\mathrm{O}}$ are the buckling loads for pure longitudinal compres sion and pure shear, respectively. Consequently, for the orthotropic cases considered, equation (18) is a reasonable conservative approximation for combined longitudinal compression and shear buckling of composite panels.

Figures 15 and 16 contain, respectively, compression and shear-buckling results for graphite-epoxy sandwich panels with nondéflecting edge supports and rotational edge springs for various filament orientations and aspect ratios. The associated boundary conditions are given by equations (A20) to (A22), and the rotational springs were assumed to be uniformly distributed about the panel edges. When the spring stiffness is zero, all four edges are simply supported and, when infinite, all four edges are clamped.

In general, the figures indicate that the buckling load increases sharply as the spring stiffness parameter $\mathrm{bk}_{\mathrm{R}} / \mathrm{E}_{1} \mathrm{t}^{3}$ increases from zero to one, the buckling loads obtaining at least 80 percent of their clamped value when the spring stiffness parameter is one. With further increase in the spring stiffness the buckling loads slowly approach the clamped value, increasing to within at least 10 percent of the clamped value when the spring stiffness parameter is three. Furthermore, the curves for the $\pm 45^{\circ}$ filament orientation generally approached the clamped values most rapidly.

CONCLUDING REMARKS.

A computerized analysis has been developed for the combined compression and shear buckling of stiffened orthotropic composite panels on discrete springs. Boundary
conditions are general and include elastic boundary restraints. Buckling solutions are obtained by using a newly developed trigonometric finite-difference procedure which increases the solution convergence rate over conventional finite-difference methods, thus allowing problems to be solved with the same accuracy as with conventional differences but with fewer degrees of freedom. The trigonometric finite-difference procedure introduces two new parameters into the solution. These parameters can be internally selected by the program during problem execution or can be selected by the user. The validity of the program has been substantiated by comparisons with many existing known solutions. A program listing, input description, and sample problem are provided.

Using the program, the classical general shear-buckling results (in terms of universal orthotropic parameters), which are available only for simply supported panels over a limited range of orthotropic properties, have been extended to the complete range of these properties for simply supported panels and clamped panels. Results for the shear buckling of isotropic panels with a central stiffener have also been obtained.

The program has been applied to parametric studies which examine the effect of filament orientation upon the buckling of graphite-epoxy sandwich panels. From these studies optimum filament orientations (those which yield maximum buckling loads) were determined within a class of graphite-epoxy sandwich panels for all aspect ratios. In particular, it was found that for shear buckling of high-aspect-ratio panels (greater than two) reasonable filament orientations are between $\pm 60^{\circ}$ and $\pm 62^{\circ}$ while, for axial compression of panels with aspect ratio greater than one, a reasonable filament orientation is $\pm 45^{\circ}$. In addition, interaction curves were determined for the combined axial compression and shear buckling of panels with varying filament orientations. A parabolic interaction relationship previously developed for isotropic infinite strips in combined axial compression and shear provided a reasonably accurate and conservative estimate for the buckling loads of the orthotropic panels considered herein.

Langley Research Center
National Aeronautics and Space Administration
Hampton, Va. 23665
August 1, 1975

APPENDIX A

DEVELOPMENT OF GOVERNING EQUATIONS

For completeness, equations (1) to (3) of the main text are repeated here:

$$
\begin{equation*}
\delta \mathrm{U}=\int_{0}^{\mathrm{b}} \int_{0}^{\mathrm{a}}\left(\mathrm{M}_{\mathrm{x}} \delta \mathrm{w}, \mathrm{xx}+\mathrm{M}_{\mathrm{y}} \delta \mathrm{w}, \mathrm{yy}+2 \mathrm{M}_{\mathrm{xy}} \delta \mathrm{w}, \mathrm{xy}\right) \mathrm{dx} d \mathrm{~d} \tag{A1}
\end{equation*}
$$

$$
\left.\begin{array}{l}
\mathrm{M}_{\mathrm{x}}=\mathrm{D}_{11^{\mathrm{w}}, \mathrm{xx}}+\mathrm{D}_{12^{\mathrm{w}}, \mathrm{yy}} \tag{A2}\\
\mathrm{M}_{\mathrm{y}}=\mathrm{D}_{12^{\mathrm{w}}, \mathrm{xx}}+\mathrm{D}_{22^{\mathrm{w}}, \mathrm{yy}} \\
\mathrm{M}_{\mathrm{xy}}=2 \mathrm{D}_{66} \mathrm{w}, \mathrm{xy}
\end{array}\right\}
$$

$\delta V_{N}=\int_{0}^{a} \int_{0}^{b}\left(N_{x} w, x^{\delta} w, x+N_{y} w, y^{\delta} w, y+N_{x y} w, y^{\delta} w, x+N_{x y} w, x^{\delta} w, y\right) d y d x$
Then, replacing the derivatives in equations (A2) by trigonometric central differences yields

$$
\left.\begin{array}{l}
(w, x x)_{i j}=\frac{1}{\hat{\Delta}_{x}^{2}}\left(w_{i+1, j}-2 w_{i j}+w_{i-1, j}\right) \\
\left(w_{, y y}\right)_{i j}=\frac{1}{\hat{\Delta}_{y}^{2}}\left(w_{i, j+1}-2 w_{i j}+w_{i, j-1}\right) \tag{A4}\\
(w, x y)_{i j}=\frac{1}{\hat{\Delta}_{x} \hat{\Delta}_{y}}\left(w_{i+1, j+1}-w_{i, j+1}-w_{i+1, j}+w_{i j}\right)
\end{array}\right\}
$$

where $\hat{\Delta}_{\mathrm{X}}$ and $\hat{\Delta}_{\mathrm{y}}$ are the trigonometric difference coefficients defined by equation (10). The terms $(\mathrm{w}, \mathrm{xx})_{\mathrm{ij}}$ and $(\mathrm{w}, \mathrm{yy})_{\mathrm{ij}}$ are defined at the full stations denoted by the circles in figure 2(b), while $(w, x y)_{i j}$ is defined at the half stations denoted by the

APPENDIX A

squares in figure 2(b). Consequently, the indices (\mathbf{i}, j) attached to a variable may refer to the variable being evaluated at either full or half stations, depending on the variable.

Introducing equations (A2) and (A4) into equation (A1) and replacing the double integral by a double sum yields

$$
\begin{align*}
\delta U= & \Delta_{x} \Delta_{y} \sum_{j=1}^{N} \sum_{i=1}^{M}\left\{\xi _ { x _ { i } } \xi _ { y _ { j } } \left[\frac{1}{\Delta_{x}{ }^{2}} M_{x_{i j}}\left(\delta w_{i+1, j}-2 \delta w_{i j}+\delta w_{i-1, j}\right)+\frac{1}{\hat{\Delta}_{y}{ }^{2}} M_{y_{i j}}\left(\delta w_{i, j+1}\right.\right.\right. \\
& \left.\left.\left.-2 \delta w_{i j}+\delta w_{i, j}-1\right)\right]+2 \eta_{x_{i}} \eta_{y_{j}} \frac{M_{x y_{i j}}}{\hat{\Delta}_{x} \hat{\Delta}_{y}}\left(\delta w_{i+1, j+1}-\delta w_{i, j+1}-\delta w_{i+1, j}+\delta w_{i j}\right)\right\} \tag{A5}
\end{align*}
$$

where N and M are the total number of finite-difference stations in the x - and y-directions, respectively, and $\quad \xi_{\mathrm{x}_{\mathrm{i}}}, \quad \xi_{\mathrm{y}_{\mathrm{j}}}, \quad \eta_{\mathrm{x}_{\mathrm{i}}}$, and $\eta_{\mathrm{y}_{\mathrm{j}}}$ have the following definitions:

$$
\xi_{X_{i}}=\left\{\begin{array}{ll}
0 & \left(\mathrm{i}<\mathrm{I}_{1} \text { or } \mathrm{i}>\mathrm{I}_{3}\right) \tag{A6}\\
1 / 2 & \left(\mathrm{i}=\mathrm{I}_{1} \text { or } \mathrm{i}=\mathrm{I}_{3}\right) \\
1 & \\
\left(\mathrm{I}_{1}<\mathrm{i}<\mathrm{I}_{3}\right)
\end{array}\right\}
$$

$$
\xi_{\mathrm{y}_{\mathrm{j}}}=\left\{\begin{array}{l}
0 \tag{A7}\\
1 / 2 \\
1
\end{array}\right.
$$

$$
\left.\begin{array}{ccc}
\left(j<J_{4}\right. & \text { or } & \left.j>J_{2}\right) \\
\left(j=J_{4}\right. & \text { or } & \left.j=J_{2}\right) \\
& \left(J_{4}<j<J_{2}\right)
\end{array}\right\}
$$

$$
\eta_{\mathbf{x}_{\mathrm{i}}}=\left\{\begin{array}{l}
0 \tag{A8}\\
1
\end{array}\right.
$$

$$
\left.\begin{array}{r}
\left(\mathrm{i}<\mathrm{I}_{1} \text { or } \mathrm{i} \geqq \mathrm{I}_{3}\right) \\
\left(\mathrm{I}_{1} \leqq \mathrm{i} \leqq \mathrm{I}_{3}\right)
\end{array}\right\}
$$

APPENDIX A

$$
\eta_{\mathrm{y}_{\mathrm{j}}}=\left\{\begin{array}{lc}
0 & \left(\mathrm{j}<\mathrm{J}_{4} \text { or } \mathrm{j} \geqq \mathrm{~J}_{2}\right) \tag{A9}\\
1 & \left(\mathrm{~J}_{4} \leqq \mathrm{j}<\mathrm{J}_{2}\right)
\end{array}\right\}
$$

In equations (A6) to (A9), I_{1} and I_{3} are the row designations of boundaries (1) and (3), respectively, and J_{2} and J_{4} are the column designations of boundaries (2) and (4), respectively. (See fig. 2(a).)

Replacing the derivatives in equation (A3) by central trigonometric differences and the double integral by a double sum yields

$$
\begin{align*}
\delta V_{N}= & -\Delta_{x} \Delta_{y} \sum_{i=1}^{M} \sum_{j=1}^{N}\left\{\xi_{y_{j}} \eta_{x_{i}} \frac{N_{x}}{\hat{\Delta}_{x}^{2}}\left(w_{i+1, j}-w_{i j}\right)\left(\delta w_{i+1, j}-\delta w_{i j}\right)+\xi_{x_{i}} \eta_{y_{j}} \frac{N_{y}}{\hat{\Delta}_{y} 2}\left(w_{i, j+1}\right.\right. \\
& \left.-w_{i j}\right)\left(\delta w_{i, j+1}-\delta w_{i j}\right)+\eta_{x_{i}} \eta_{y_{j}} \frac{N_{x y}}{4 \hat{\Delta}_{x} \hat{\Delta}_{y}}\left[(w _ { i + 1 , j } - w _ { i j } + w _ { i + 1 , j + 1 } - w _ { i , j + 1 }) \left(\delta w_{i, j+1}\right.\right. \\
& \left.-\delta w_{i j}+\delta w_{i+1, j+1}-\delta w_{i+1, j}\right)+\left(w_{i, j+1}-w_{i j}+w_{i+1, j+1}-w_{i+1, j}\right)\left(\delta w_{i+1, j}-\delta w_{i j}\right. \\
& \left.\left.\left.+\delta w_{i+1, j+1}-\delta w_{i, j+1}\right)\right]\right\} \tag{A10}
\end{align*}
$$

In deriving equation (A10), the first and second terms in the integrand of equation (A3) have been replaced by trigonometric differences evaluated at stations indicated by " x " and "y," respectively, in figure 2(b), while the third and fourth terms have been evaluated at half stations, indicated by squares in figure 2(b), by averaging the derivatives.

The external forces and moments on the panel are those coming from discrete lateral deflection and rotational springs. The virtual work of these forces and moments may be expressed as

$$
\begin{align*}
\delta V_{S}= & \sum_{i=1}^{M} \sum_{j=1}^{N} k_{l i j} w_{i j} \delta w_{i j}+\sum_{i=1}^{M} \sum_{j=1}^{N} \frac{k_{x_{i j}}}{\hat{\Delta}_{\mathbf{x}}^{2}}\left(w_{i+1, j}-w_{i j}\right)\left(\delta w_{i+1, j}-\delta w_{i j}\right) \\
& +\sum_{i=1}^{M} \sum_{j=1}^{N} \frac{k_{y_{i j}}}{\hat{\Delta}_{y} 2}\left(w_{i, j+1}-w_{i j}\right)\left(\delta w_{i, j+1}-\delta w_{i j}\right) \tag{A11}
\end{align*}
$$

where k_{ℓ} is the spring stiffness associated with a lateral deflection spring and k_{X} and k_{y} are stiffnesses associated with rotational springs which resist moments acting about the Y - and X -axes, respectively. The k_{ℓ} type springs act at full stations, indicated by circles in figure $2(\mathrm{~b})$, while the k_{X} and k_{y} type springs act at positions indicated by " x " and "'y," respectively, in figure 2(b).

Substituting equations (A5), (A10), and (A11) into the statement of the principle of virtual work, equation (4) yields

$$
\begin{equation*}
\sum_{i=1}^{M} \sum_{j=1}^{N}\left(K_{i j}+S_{i j}+N_{X} \alpha_{i j}+N_{y} \psi_{i j}+2 N_{X y} \chi_{i j}\right) \delta w_{i j}=0 \tag{A12}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{K}_{\mathrm{ij}}= \xi_{\mathrm{y}_{\mathrm{j}}} \frac{1}{\hat{\Delta}_{\mathrm{x}}} 2\left(\xi_{\mathrm{x}_{\mathrm{i}+1}} \mathrm{M}_{\mathrm{x}_{\mathrm{i}+1, j}}-2 \xi_{\mathrm{x}_{\mathrm{i}}} \mathrm{M}_{\mathrm{x}_{\mathrm{ij}}}+\xi_{\mathrm{x}_{\mathrm{i}-1}} \mathrm{M}_{\mathrm{x}_{\mathrm{i}-1, j}}\right)+\xi_{\mathrm{x}_{\mathrm{i}}} \frac{1}{\hat{\Delta}_{\mathrm{y}}^{2}}\left(\xi_{\mathrm{y}_{\mathrm{j}+1}} \mathrm{M}_{\mathrm{y}_{\mathrm{i}, \mathrm{j}+1}}-2 \xi_{\mathrm{y}_{\mathrm{j}}} \mathrm{M}_{\mathrm{y}_{\mathrm{ij}}}\right. \\
&\left.+\xi_{\mathrm{y}_{\mathrm{j}-1}} \mathrm{M}_{\mathrm{y}_{\mathrm{i}, \mathrm{j}-1}}\right)+\frac{1}{\hat{\Delta}_{\mathrm{x}} \hat{\Delta}_{\mathrm{y}}}\left(\eta_{\mathrm{x}_{\mathrm{i}-1}} \eta_{\mathrm{y}_{\mathrm{j}-1}} \mathrm{M}_{\mathrm{xy}_{\mathrm{i}-1, j-1}}-\eta_{\mathrm{x}_{\mathrm{i}-1}} \eta_{\mathrm{y}_{\mathrm{j}}} \mathrm{M}_{\mathrm{xy}_{\mathrm{i}-1, j}}\right. \\
&-\eta_{\mathrm{x}_{\mathrm{i}}} \eta_{\mathrm{y}_{\mathrm{j}-1}} \mathrm{M}_{\mathrm{xy}}^{\mathrm{i}, \mathrm{j}-1} \tag{A13}\\
&\left.+\eta_{\mathrm{x}_{\mathrm{i}}} \eta_{\mathrm{y}_{\mathrm{j}}} \mathrm{M}_{\mathrm{xy}_{\mathrm{i}}}\right)
\end{align*}
$$

$$
\begin{equation*}
\alpha_{\mathrm{ij}}=\frac{1}{\hat{\Delta}_{\mathrm{x}}^{2}}\left[\xi_{\mathrm{y}_{\mathrm{j}}} \eta_{\mathrm{x}_{\mathrm{i}}}\left(\mathrm{w}_{\mathrm{i}+1, \mathrm{j}}-\mathrm{w}_{\mathrm{ij}}\right)-\xi_{\mathrm{y}_{\mathrm{j}}} \eta_{\mathrm{x}_{\mathrm{i}-1}}\left(\mathrm{w}_{\mathrm{ij}}-\mathrm{w}_{\mathrm{i}-1, \mathrm{j}}\right)\right] \tag{A14}
\end{equation*}
$$

$$
\begin{equation*}
\psi_{\mathrm{ij}}=\frac{1}{\hat{\Delta}_{\mathrm{y}}^{2}}\left[\xi_{\mathrm{x}_{\mathrm{i}}} \eta_{\mathrm{y}_{\mathrm{j}}}\left(\mathrm{w}_{\mathrm{i}, \mathrm{j}+1}-\mathrm{w}_{\mathrm{ij}}\right)-\xi_{\mathrm{x}_{\mathrm{i}}} \eta_{\mathrm{y}_{\mathrm{j}-1}}\left(\mathrm{w}_{\mathrm{ij}}-\mathrm{w}_{\mathrm{i}, \mathrm{j}-1}\right)\right] \tag{A15}
\end{equation*}
$$

$$
\chi_{\mathrm{ij}}=\frac{1}{4 \hat{\Delta}_{\mathrm{x}} \hat{\Delta}_{\mathrm{y}}}\left[\left(\mathrm{w}_{\mathrm{i}+1, \mathrm{j}+1}-\mathrm{w}_{\mathrm{ij}}\right) \eta_{\mathrm{x}_{\mathrm{i}}} \eta_{\mathrm{y}_{\mathrm{j}}}-\left(\mathrm{w}_{\mathrm{i}+1, \mathrm{j}-1}-\mathrm{w}_{\mathrm{ij}}\right) \eta_{\mathrm{x}_{\mathrm{i}}} \eta_{\mathrm{y}_{\mathrm{j}-1}}\right.
$$

$$
\begin{equation*}
\left.-\left(\mathrm{w}_{\mathrm{ij}}-\mathrm{w}_{\mathrm{i}-1, \mathrm{j}-1}\right) \eta_{\mathrm{x}_{\mathrm{i}-1}} \eta_{\mathrm{y}_{\mathrm{j}-1}}+\left(\mathrm{w}_{\mathrm{ij}}-\mathrm{w}_{\mathrm{i}-1, \mathrm{j}+1}\right) \eta_{\mathrm{x}_{\mathrm{i}-1}} \dot{\eta}_{\mathrm{y}}\right] \tag{A16}
\end{equation*}
$$

APPENDIX A

$$
\begin{align*}
S_{i j}= & \frac{1}{\Delta_{x} \Delta_{y}} \mathrm{k}_{\ell_{i j}} w_{i j}+\frac{1}{\Delta_{x} \Delta_{y} \hat{\Delta}_{x}^{2}}\left[\mathrm{k}_{\mathrm{x}_{\mathrm{i}-1, j}}\left(\mathrm{w}_{\mathrm{ij}}-\mathrm{w}_{\mathrm{i}-1, j}\right)-\mathrm{k}_{\mathrm{x}_{\mathrm{ij}}}\left(\mathrm{w}_{\mathrm{i}+1, \mathrm{j}}-\mathrm{w}_{\mathrm{ij}}\right)\right] \\
& +\frac{1}{\Delta_{\mathrm{x}} \Delta_{\mathrm{y}} \hat{\Delta}_{\mathrm{y}}^{2}}\left[\mathrm{k}_{\mathrm{y}_{\mathrm{i}, \mathrm{j}-1}}\left(\mathrm{w}_{\mathrm{ij}}-\mathrm{w}_{\mathrm{i}, \mathrm{j}-1}\right)-\mathrm{k}_{\mathrm{y}_{\mathrm{ij}}}\left(\mathrm{w}_{\mathrm{i}, \mathrm{j}+1}-\mathrm{w}_{\mathrm{ij}}\right)\right] \tag{A17}
\end{align*}
$$

From equations (A2) and (A4), the moments are related to the displacements as follows:

$$
\begin{align*}
& \left(M_{x}\right)_{i j}=\left(D_{11}\right)_{i j}\left(w_{i+1, j}-2 w_{i j}+w_{i-1, j}\right) \frac{1}{\hat{\Delta}_{x}^{2}}+\left(D_{12}\right)_{i j}\left(w_{i, j+1}-2 w_{i j}+w_{i, j-1}\right) \frac{1}{\hat{\Delta}_{y}^{2}} \\
& \left.\left(M_{y}\right)_{i j}=\left(D_{22}\right)_{i j}\left(w_{i, j+1}-2 w_{i j}+w_{i, j-1}\right) \frac{1}{\hat{\Delta}_{y}{ }^{2}}+\left(D_{12}\right)_{i j}\left(w_{i+1, j}-2 w_{i j}+w_{i-1, j}\right) \frac{1}{\hat{\Delta}_{x}^{2}}\right\} \tag{A18}\\
& \left(M_{x y}\right)_{i j}=2\left(D_{66}\right)_{i j}\left(w_{i+1, j+1}-w_{i, j+1}-w_{i+1, j}+w_{i j}\right) \frac{1}{\hat{\Delta}_{x} \hat{\Delta}_{y}}
\end{align*}
$$

where $\left(M_{x}\right)_{i j}$ and $\left(M_{y}\right)_{i j}$ act at the full stations, indicated by circles in figure $2(b)$, and $\left(\mathrm{M}_{\mathrm{xy}}\right)_{\mathrm{ij}}$ acts at the half stations, indicated by squares in figure 2(b).

Boundary Conditions

All four boundaries free or spring-supported. - If on the plate boundaries no constraints exist on w or its derivatives normal to the boundary, equation (A12) must be valid for all virtual displacements $\delta w_{i j}$, thus yielding equation (5) which is repeated here:
$K_{i j}+S_{i j}+N_{x} \alpha_{i j}+N_{y} \psi_{i j}+2 N_{x y} \chi_{i j}=0 \quad\binom{i=1, \ldots, M}{j=1, \ldots, N}$
Equation (A19) represents equilibrium at each finite-difference station with each equilibrium equation containing an array of 13 values of w as depicted in figure 2(b). In solving these equations by the procedure discussed in appendix C, the terms $w_{i j}$ represent the unknowns and equations (A18) are used to determine the moments appearing in the relationship for K_{ij}, equation (A13).

APPENDIX A

When a difference station lies on the boundary of the plate (that is, $i=I_{1}$ or $i=I_{3}$ or $j=J_{4}$ or $j=J_{2}$), the corresponding equilibrium equation reduces to the natural boundary condition on the Kirchhoff shear, reference 6. Also, when a difference station lies one finite difference interval off the plate (that is, $i=I_{1}-1$ or $i=I_{3}+1$ or $j=J_{4}-1$ or $j=J_{2}+1$), the corresponding equilibrium equation reduces to the natural boundary condition on the bending moment. Furthermore, when a difference station lies two or more finite-difference intervals off the plate (that is, $\mathrm{i}<\mathrm{I}_{1}-1$ or $\mathrm{i}>\mathrm{I}_{3}+1$ or $\mathrm{j}<\mathrm{J}_{4}-1$ or $\mathrm{j}>\mathrm{J}_{2}+1$), the corresponding equilibrium equations reduce to the trivial equation $0=0$. Consequently, no equilibrium equations exist for these stations.

Edges with nondeflecting lateral supports and rotational springs. - Equation (A19) may be used in approximating the solution of problems with nondeflecting edges; for example, if $\mathrm{w}=0$ on an edge, equation (A19) may be used in conjunction with extremely stiff lateral springs placed along the edge. Alternatively, an edge which is restrained from lateral motion may be handled as a special case, and in so doing the number of computations required for the problem solution is reduced.

The boundary condition for a nondeflecting edge is

$$
\begin{equation*}
\mathrm{w}=0 \tag{A20}
\end{equation*}
$$

(on the edge)

If, in addition, uniformly distributed rotational springs act along boundaries (1) and (3) (see fig. 2(a)),

$$
\begin{equation*}
\mathrm{M}_{\mathrm{X}}=\mathrm{k}_{\mathrm{R}} \mathrm{w}_{, \mathrm{x}} \quad \text { (on the edge) } \tag{A21}
\end{equation*}
$$

or, if uniformly distributed rotational springs act along boundary (2) or (4),

$$
\begin{equation*}
\mathrm{M}_{\mathrm{y}}=\mathrm{k}_{\mathrm{R}} \mathrm{~W}, \mathrm{y} \quad \text { (on the edge) } \tag{A22}
\end{equation*}
$$

As a result of the foregoing, equation (A20) replaces the boundary condition on the Kirchhoff shear, while the difference form of equation (A21) or (A22) replaces the boundary condition on the edge moment. Furthermore, as an example, equation (A21) on boundary (1) becomes

$$
\begin{equation*}
\left.\left(\mathrm{M}_{\mathrm{X}}\right)_{\mathrm{I}_{1}, \mathrm{j}}=\frac{\mathrm{k}_{\mathrm{R}}\left({ }^{W_{\mathrm{I}}^{1}}\right.}{}{ }_{1,1, \mathrm{j}}-\mathrm{w}_{\left.\mathrm{I}_{1}-1, \mathrm{j}\right)}\right) \tag{A23}
\end{equation*}
$$

APPENDIX A

where

$$
\begin{equation*}
\frac{1}{\hat{\Delta}_{\mathrm{X}}^{*}}=\frac{\pi}{2 \lambda_{\mathrm{X}} \sin \frac{\pi \Delta_{\mathrm{X}}}{\lambda_{\mathrm{X}}}} \tag{A24}
\end{equation*}
$$

Substituting for M_{X} from equations (A18) and employing equation (A23) yields

$$
\begin{equation*}
\left(\mathrm{M}_{\mathrm{x}}\right)_{\mathrm{I}_{1}, \mathrm{j}}=\frac{\left(\mathrm{D}_{11}\right)_{\mathrm{I}_{1}, \mathrm{j}}}{\hat{\Delta}_{\mathrm{x}}^{2}}\left({ }_{\mathrm{w}_{\mathrm{I}_{1}+1, j}}+\mathrm{w}_{\mathrm{I}_{1}-1, \mathrm{j}}\right)=\frac{\mathrm{k}_{\mathrm{R}}}{\hat{\Delta}_{\mathrm{x}}^{*}}\left({ }_{\mathrm{w}_{\mathrm{I}_{1}+1, j}}-\mathrm{w}_{\mathrm{I}_{1-1, j}}\right) \tag{A25}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathrm{w}_{\mathrm{I}_{1}-1, \mathrm{j}}=\frac{\left[\frac{\mathrm{k}_{\mathrm{R}}}{\frac{\left(\mathrm{D}_{11}\right)_{\mathrm{I}_{1}, \mathrm{j}}^{*}}{}-\frac{\hat{\Delta}_{\mathrm{x}}^{2}}{\mathrm{~s}^{2}}}{ }^{\mathrm{w}_{\mathrm{I}_{1+1, j}}}\right.}{\frac{\mathrm{k}_{\mathrm{R}}}{\hat{\Delta}_{\mathrm{X}}^{*}}+\frac{\left(\mathrm{D}_{11}\right)_{\mathrm{I}_{1}, \mathrm{j}}}{\hat{\Delta}_{\mathrm{x}}^{2}}} \tag{A26}
\end{equation*}
$$

Th

Substituting into the first of equation (A25) yields

$$
\begin{equation*}
\left(M_{x}\right)_{I_{1}, j}=\frac{\left(D_{11}\right)_{I_{1}, j}}{\hat{\Delta}_{X}^{2}}\left[1+\frac{\frac{k_{R}}{\hat{\Delta}_{X}^{*}}-\frac{\left(D_{11}\right)_{I_{1}, j}}{\hat{\Delta}_{x}^{2}}}{\frac{k_{R}}{\hat{\Delta}_{X}^{*}}+\frac{\left(D_{11}\right)_{I_{1}, j}}{\hat{\Delta}_{x}^{2}}}\right] w_{I_{1+1, j}} \tag{A27}
\end{equation*}
$$

It is evident from an examination of the first of equation (A25) that equation (A23) is satisfied by setting $\mathrm{w}_{\mathrm{I}_{1}-1, \mathrm{j}}=0$ and $\left(\mathrm{D}_{11}\right)_{\mathrm{I}_{1}, \mathrm{j}}=\left(\mathrm{D}_{11}^{*}\right)_{\mathrm{I}_{1}, \mathrm{j}}$ where

$$
\begin{equation*}
\left(D_{11}^{*}\right)_{I_{1}, j}=\left[1+\frac{\frac{k_{R}}{\hat{\Delta}_{X}^{*}}-\frac{\left(D_{11}\right)_{I_{1}, j}}{\hat{\Delta}_{x}^{2}}}{\frac{k_{R}}{\hat{\Delta}_{X}^{*}}+\frac{\left(D_{11}\right)_{I_{1}, j}}{\hat{\Delta}_{X}{ }^{2}}}\right]\left(D_{11)_{I_{1}, j}}\right. \tag{A28}
\end{equation*}
$$

Similar relationships may be developed for boundaries (2), (3), and (4).

APPENDIX A

In summary, for a nondeflecting boundary with uniformly distributed rotational springs, equilibrium on the boundary and one station off the boundary are not used. Instead, in the remaining equilibrium equations, w on the boundary and one station off the boundary are set equal to zero and D_{11} on the boundary is set equal to D_{11}^{*} if the boundary is number (1) or (3), and D_{22} on the boundary is set equal to D_{22}^{*} if the boundary is number (2) or (4).

The limiting cases of simply supported or clamped boundaries are readily provided by letting k_{R} approach zero or infinity, respectively. Hence, for a simply supported boundary

$$
\begin{aligned}
& D_{11}^{*}=0 \text { if the boundary is (1) or (3) } \\
& D_{22}^{*}=0 \text { if the boundary is (2) or (4) }
\end{aligned}
$$

and for a clamped boundary

$$
\begin{aligned}
& D_{11}^{*}=2 D_{11} \text { if the boundary is (1) or (3) } \\
& D_{22}^{*}=2 D_{22} \text { if the boundary is (2) or (4) }
\end{aligned}
$$

Flexural Stiffeners

The effects of flexural stiffeners are accounted for in a manner similar to that used for nondeflecting supports. At each finite-difference station along the stiffener, $\left(D_{11}\right)_{\mathrm{ij}}$ is replaced by $\left(\bar{D}_{11}\right)_{i j}$ if the stiffener is parallel to the X-axis and $\left(D_{22}\right)_{i j}$ is replaced by $\left(\overline{\mathrm{D}}_{22}\right)_{\mathrm{ij}}$ if the stiffener is parallel to the Y -axis, where

$$
\left.\begin{array}{l}
\left(\bar{D}_{11}\right)_{\mathrm{ij}}=\left(\mathrm{D}_{11}\right)_{\mathrm{ij}}+\frac{E I}{\Delta_{\mathrm{y}}} \\
\left(\overline{\mathrm{D}}_{22}\right)_{\mathrm{ij}}=\left(\mathrm{D}_{22}\right)_{\mathrm{ij}}+\frac{E I}{\Delta_{\mathrm{x}}} \tag{A29}
\end{array}\right\}
$$

and EI is the lateral bending stiffness of the stiffener about the neutral plane of the panel.

APPENDIX A

Summary of Finite-Difference Stations at Which Equilibrium Is Enforced

As a result of the foregoing discussions on free or spring-supported edges and nondeflecting edges, the rows i and columns j at which equilibrium is enforced are, respectively,
$M_{e}=I_{3}-I_{1}+3-$ Twice the number of nondeflecting edges parallel to the Y-axis
$N_{e}=J_{2}-J_{4}+3-$ Twice the number of nondeflecting edges parallel to the X -axis

APPENDIX B

TRIGONOMETRIC FINITE DIFFERENCES

Trigonometric finite differences introduce the trigonometric parameters λ_{x} and λ_{y} which are not present in conventional finite differences. Consequently, the first pur pose of this appendix is to present and demonstrate some effective procedures for selecting values of λ_{x} and λ_{y} which results in an improved convergence rate over conventional differences. The second purpose is to point out some of the limitations of trigonometric finite differences.

$$
\text { Selection of } \lambda_{\mathrm{x}} \text { and } \lambda_{\mathrm{y}}
$$

Selection of values of λ_{X} and λ_{y} which improve the convergence rate of trigonometric finite-difference solutions over those of conventional finite-difference solutions is predominantly based on engineering considerations and experience. Experience has shown that it is often advantageous to select trigonometric parameters whose ratio is determined on the basis of the infinitely long panel solution as is done in equations (11) and (12), that is,

$$
\begin{equation*}
\frac{\lambda_{\mathrm{y}}}{\lambda_{\mathrm{x}}}=\beta \tag{B1}
\end{equation*}
$$

where β is the wavelength parameter of an infinitely long panel, defined as the ratio, of the panel width to the buckle length. Imposing equation (B1) on the parameter selection should be reasonable for panels which buckle with more than two half waves along their length.

The value of β may be determined to any degree of accuracy by extending the isotropic results of reference 16. For a panel with its long dimension parallel to the X-axis, first approximations of the buckling eigenvalue $\overline{\mathrm{p}}_{\infty}$ and wavelength parameter β satisfy the following two simultaneous equations for panels whose long sides are simply supported:

$$
\left.\begin{array}{l}
\left(\bar{t}_{x y}+\overline{\mathrm{p}}_{\infty} \mathrm{r}_{\mathrm{xy}}\right)^{2}-\frac{9}{4} \mathrm{M}_{1} \mathrm{M}_{2}=0 \tag{B2}\\
\frac{\partial}{\partial \beta}\left(\mathrm{M}_{1} \mathrm{M}_{2}\right)=0
\end{array}\right\}
$$

and, for panels whose long sides are clamped, $\overline{\mathrm{p}}_{\infty}$ and β satisfy the two simultaneous equations

$$
\left.\begin{array}{l}
\left(\mathrm{t}_{\mathrm{xy}}+\overline{\mathrm{p}}_{\infty} \mathrm{r}_{\mathrm{xy}}\right)^{2}-\frac{15}{32}\left(2 \mathrm{M}_{0}+\mathrm{M}_{2}\right)\left(\mathrm{M}_{1}+\mathrm{M}_{3}\right)=0 \tag{B3}\\
\frac{\partial}{\partial \beta}\left(\mathrm{M}_{0}+\mathrm{M}_{2}\right)\left(\mathrm{M}_{1}+\mathrm{M}_{3}\right)=0
\end{array}\right\}
$$

where
$M_{n}=\frac{\pi}{8 \beta}\left[\frac{D_{22}}{D_{11}} n^{4}+2 \frac{D_{3}}{D_{11}} n^{2} \beta^{2}+\beta^{4}-\beta^{2}\left(\bar{t}_{x}+\bar{p}_{\infty} r_{x}\right)-n^{2}\left(\bar{t}_{y}+\bar{p}_{\infty} r_{y}\right)\right] \quad(n=0,1,2,3)$

Convergence Behavior

Figures 17(a) to 17(f) illustrate the convergence of trigonometric finite-difference solutions when $\lambda_{\mathrm{y}} / \lambda_{\mathrm{x}}$ is fixed on the basis of equation (B1). Results for both simply supported and clamped isotropic panels under either axial compression or shear are shown in these figures. In each case the panel was modeled using an equal number of finite-difference stations in the x - and y-directions. Exact and approximate values for these cases are given in references $1,6,16$, and 17.

The dashed curve in each of figures 17(a) to 17(f) illustrates the convergence of the conventional difference solution - that is, λ_{x} and λ_{y} infinite - while the solid and dash-dot curves illustrate the convergence achieved with some finite values of λ_{x}. Comparison of the curves indicates that some values of $\lambda_{\mathbf{x}}$ increase the convergence rate over the conventional rate while other values decrease it. (In those special cases where the buckle shape is exactly a double sine wave, the trigonometric difference solution is exact when λ_{X} and λ_{y} are equal to the buckle half wavelength.) Consider though the dash-dot curve of each figure. These curves show the convergence when λ_{y} is simply taken equal to the panel width and λ_{x} is taken equal to the buckle length of the infinitely long panel; that is, equations (11) and (12) are applied. Comparison of the dash-dot curves and the dashed curves indicates that equations (11) and (12) provide reasonable values of λ_{x} and λ_{y} which improve the solution convergence. As figures 17(a) to 17(f) indicate, however, other values of λ_{X} / a could be selected which further improve the convergence rate. Such values may be found by making a condensed cross plot of each figure; for example, consider the case of the compression of a square isotropic clamped panel as shown in figure 17(c). For this case, equations (B3) predict $\beta=1.5$. Then, using program BOP with $\lambda_{y} / \lambda_{\mathrm{x}}=1.5, \quad \lambda_{\mathrm{x}} / \mathrm{a}$ is varied from 0.25 to 1 for mesh sizes of $\mathrm{a} / \Delta_{\mathrm{x}}=\mathrm{b} / \Delta_{\mathrm{y}}=5$ and $\mathrm{a} / \Delta_{\mathrm{x}}=\mathrm{b} / \Delta_{\mathrm{y}}=6$; these curves are shown in figure 18. As the

APPENDIX B

mesh spacing is decreased, the curves will approach the exact solution at all values of $\lambda_{X} /$ a. However, the two curves cross at $\lambda_{X} / a=0.35$ and $\bar{N}_{X}=9.75$, which implies that convergence is most rapid at this value of $\lambda_{\mathrm{x}} / \mathrm{a}$ since increasing the mesh size did not change the buckling stress coefficient. It is evident from figure 17(c) that, if such a choice of λ_{x} were used, convergence would be improved beyond that achieved by selecting λ_{x} from equation (11).

As further examples, consider the results in table 4 for the shear buckling of the orthotropic panels described in table 3. The values of λ_{X} and λ_{y} were determined by making the required cross plots. It is evident by comparing the conventional and trigonometric solutions given in the table that the selected values of λ_{x} and λ_{y} provided excellent results.

The additional effort involved in finding better values of λ_{x} may be justified in problems where convergence would otherwise be extremely slow. It may also be justified in the performance of parameter studies. In such studies some typical problems within the problem class to be studied are chosen; for these, improved values of λ_{x} are found and then interpolated to yield λ_{x} for other problems within the study class.

Correction Factors for Equations (11) and (12)

Equations (B2) and (B3) which provide β for equations (11) and (12) do not cover every case; the boundary conditions may not be simply supported or clamped, or it may be inappropriate to use β based on an infinitely long panel. Consequently, equations (11) and (12) must be used with engineering judgment. Some allowance is provided by introducing correction factors C_{x} and C_{yx} into equations (11) and (12), that is,

$$
\begin{align*}
& \frac{\lambda_{\mathrm{y}}}{\lambda_{\mathrm{x}}}=\mathrm{C}_{\mathrm{yx}} \beta \tag{B4}\\
& \frac{\lambda_{\mathrm{x}}}{\mathrm{a}}=\frac{\mathrm{b}}{\mathrm{a}} \frac{\mathrm{C}_{\mathrm{x}}}{\beta} \tag{B5}
\end{align*}
$$

A numerical routine which calculates β from equations (B2) or (B3), and then λ_{X} and λ_{y} from equations (11) and (12), is used in program BOP. This program is briefly discussed in the main text and is documented in appendix D.

Limitations of Trigonometric Finite Differences

In figure 19 a sketch of the variation with λ_{X} of the coefficient $1 / \hat{\Delta}_{\mathrm{X}}$ as defined by equation (10) is presented. The reader's attention is called to the singularities of

APPENDIX B

$1 / \hat{\Delta}_{X}$ at $\lambda_{X}=\frac{\Delta_{X}}{2}, \frac{\Delta_{X}}{4}, \frac{\Delta_{X}}{8}$, etc. In order to avoid these singularities and the rapidly varying behavior of $1 / \hat{\Delta}_{x}$ between them, λ_{x} and similarly λ_{y} must be chosen such that

$$
\left.\begin{array}{l}
\lambda_{\mathrm{x}}>\frac{\Delta_{\mathrm{x}}}{2} \tag{B6}\\
\lambda_{\mathrm{y}}>\frac{\Delta_{\mathrm{y}}}{2}
\end{array}\right\}
$$

Moreover, if uniformly distributed rotational springs are prescribed on the boundaries in the manner presented in equations (A20) to (A24), then to avoid singularities in $\hat{\Delta}_{X}^{*}$ and $\widehat{\Delta}_{\mathrm{y}}^{*}$ choose

$$
\left.\begin{array}{c}
\lambda_{\mathrm{x}}>\Delta_{\mathrm{x}} \tag{B7}\\
\lambda_{\mathrm{y}}>\Delta_{\mathrm{y}}
\end{array}\right\}
$$

APPENDIX C

STABILITY DETERMINANT EVALUATION

Since the total number of rows and columns at which equilibrium is enforced is M_{e} and N_{e}, respectively, a stability determinant of order $\mathrm{M}_{\mathrm{e}} \mathrm{N}_{\mathrm{e}} \times \mathrm{M}_{\mathrm{e}} \mathrm{N}_{e}$ would result. To produce a stability determinant of smaller size, a marching procedure is employed. This procedure, which is described herein, operates on the equilibrium equations to produce, by a process of successive elimination, a determinant of size $2 \mathrm{M}_{\mathrm{e}} \times 2 \mathrm{M}_{\mathrm{e}}$.

The marching procedure takes advantage of the fact that each of the difference equations of equilibrium, equations (5), is linear and homogeneous, with each one containing no more than 13 unknown deflections. For a station (\mathbf{i}, j) away from the plate edges

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{f}}+1<\mathrm{i}<\mathrm{I}_{\ell}-1 \\
& \mathrm{~J}_{\mathrm{f}}+1<\mathrm{j}<\mathrm{J}_{\ell}-1
\end{aligned}
$$

where I_{f} and I_{ℓ} are the first and last rows of finite-difference stations at which equilibrium is prescribed, and J_{f} and J_{ℓ} are the first and last columns of finitedifference stations at which equilibrium is prescribed, the 13 unknown deflections form the geometric pattern shown in figure 2(b). It is evident from this pattern that the deflections at stations in column $j+2$ can be determined by using equilibrium at stations in column j if the deflections in columns $\mathrm{j}-2, \mathrm{j}-1, \mathrm{j}$, and $\mathrm{j}+1$ are known or prescribed. For equilibrium at stations lying near the edges, however, the geometric pattern of figure 2(b) is reduced. Consequently, equilibrium at stations in the first column J_{f} may be used to determine the deflections at stations in column $J_{f}+2$ if the deflections only in columns J_{f} and $\mathrm{J}_{\mathrm{f}}+1$ are prescribed, since deflections in columns $J_{f}-1$ and $J_{f}-2$ do not appear in these equilibrium equations.

Having found the deflections in column $\mathrm{J}_{\mathrm{f}}+2$ from prescribed values in column J_{f} and $\mathrm{J}_{\mathrm{f}}+1$, equilibrium at stations in column $\mathrm{J}_{\mathrm{f}}+1$ can be used to obtain the deflections in column $J_{f}+3$; likewise, equilibrium at stations in column $J_{f}+2$ can provide deflections in column $J_{f}+4$, etc. Thus, a marching routine is developed from column to column which determines the deflections throughout the panel from prescribed values in the first two columns. It should be noted that equilibrium at stations in the last two columns, $J_{\ell}-1$ and J_{ℓ}, is not used at this stage of the marching procedure.

The evaluation of the stability determinant can now be performed numerically for a given value of the eigenvalue by choosing $2 \mathrm{M}_{\mathrm{e}}$ linearly independent sets of assumed
deflections for the first two columns. These assumed sets are taken as

$$
[\mathrm{w}(1)]=\left[\begin{array}{c}
1 \tag{C1}\\
0 \\
0 \\
0 \\
\cdot \\
\cdot \\
\cdot \\
0
\end{array}\right] \quad[\mathrm{w}(2)]=\left[\begin{array}{c}
0 \\
1 \\
0 \\
0 \\
\cdot \\
\cdot \\
\cdot \\
0
\end{array}\right] \quad\left[\mathrm{w}^{(3)}\right]=\left[\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
\cdot \\
\cdot \\
\cdot \\
0
\end{array}\right], \ldots,\left[\mathrm{w}\left(2 \mathrm{M}_{\mathrm{e}}\right)\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
\cdot \\
\cdot \\
\cdot \\
1
\end{array}\right]
$$

where each column contains $2 \mathrm{M}_{\mathrm{e}}$ values. By marching across the plate with the rth set of these assumed values, deflections throughout the plate $\mathrm{w}_{\mathrm{ij}}(\mathrm{r})$ are determined. However, the equilibrium equation at stations in the last two columns will not, in general, be satisfied by any of these assumed sets. Therefore, consider the column matrix

$$
\left\{\mathrm{e}^{(\mathrm{r})\}}=\left[\begin{array}{c}
\mathrm{e}_{\mathrm{I}_{\mathrm{f}}, \mathrm{~J},-1}^{(r)} \tag{C2}\\
\cdot \\
\cdot \\
\cdot \\
\mathrm{e}_{\mathrm{I}_{\ell}, \mathrm{J}_{\ell-1}}^{(\mathrm{r})} \\
\mathrm{e}_{\mathrm{I}_{\mathrm{f}}, \mathrm{~J}_{\ell}}^{(\mathrm{r})} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{e}_{\mathrm{I}_{\ell, \mathrm{J}}}^{(\mathrm{r})}
\end{array}\right]\right.
$$

where each element of the matrix represents the value of the left-hand side of an equilibrium equation at a station in columns $J_{\ell}-1$ or J_{ℓ} for the rth assumed set and would be identically zero if the assumed deflections were exact. The total solution is a linear superposition of all the assumed sets, that is,

$$
\begin{equation*}
w_{i j}=\sum_{r=1}^{2 M_{e}} A^{(r)} w_{i j}^{(r)} \quad\binom{I_{f} \leqq i \leqq I_{\ell}}{J_{f} \leqq j \leqq J_{\ell}} \tag{C3}
\end{equation*}
$$

APPENDIX C

Correspondingly, the total contribution to equilibrium at columns $\mathrm{J}_{\ell}-1$ and J_{ℓ} for all assumed sets of deflections is

$$
\begin{equation*}
[e]=\sum_{r=1}^{2 \mathrm{M}_{\mathrm{e}}} A^{(r)}\left\{e^{(r)}\right\} \tag{C4}
\end{equation*}
$$

The coefficients $A^{(r)}$ are determined by enforcing equilibrium at stations in the last two columns which leads to

$$
\begin{equation*}
[\mathrm{e}]=0 \tag{C5}
\end{equation*}
$$

or

$$
\left[\begin{array}{l:l:c}
e^{(1)} & e^{(2)} & \ldots \tag{C6}\\
e^{(r)} & \left.\ldots . e^{\left(2 M_{e}\right)}\right)
\end{array}\right]\left[\begin{array}{c}
A^{(1)} \\
A^{(2)} \\
\cdot \\
\cdot \\
\cdot \\
A^{(r)} \\
\cdot \\
\cdot \\
\cdot \\
A^{\left(2 M_{e}\right)}
\end{array}\right]=0
$$

For a nontrivial solution of equation (C6) the determinant of the coefficients must vanish, resulting in

$$
\begin{equation*}
|e|=0 \tag{C7}
\end{equation*}
$$

and it is clear from equation (C6) that $|\mathrm{e}|$ is of order $2 \mathrm{M}_{\mathrm{e}} \times 2 \mathrm{M}_{\mathrm{e}}$.

APPENDIX D

COMPUTER PROGRAM

The computer program BOP (Buckling of Orthotropic Panels) was written in FORTRAN IV on a SCOPE 3.1 system modified for Langley Research Center and executes and loads with a field length of 60000 octal locations. The program is applicable to the combined compression and shear of stiffened, variable-thickness, flat rectangular orthotropic panels on discrete springs; boundary conditions are general and include elastic boundary restraints. A description of the input, an example problem showing input and output, and a program listing are provided.

Input Description

For each case the input consists of a single identification card and a Namelist BUCKLE as follows:

ISTIFF,IST EP,IX,JX,MSHAPE,MA,NOMAT,TH,AT,MATYPE, E1, E2, U1,G12,IBC,AKR,D1, D2,D12,D66,DS1,XA, XB,AKL,AKX,AKY,NUPRIT, EI,IORIENT,LOC,TX,TY,TXY,RX,RY, RXY,P1,DELP,PFIN,TEST,MR,NC,X,Y,DS2,DS12,DS66

Many of the input variables have associated default values as will be indicated in the following descriptions:

Control parameters

ISTIFF = 1 no preprocessing of laminate properties - execute for buckling (only)
$=2$ preprocess and execute for buckling
$=3$ preprocess only - do not execute for buckling
DEFAULT:ISTIFF $=2$
ISTEP $=1 \quad$ program automatically varies the input step size, DELP
$=2$ step size fixed and equal to DELP
DEFAULT:ISTEP = 1
IX $=1 \quad$ output of intermediate results
$=2 \quad$ output of intermediate results suppressed
$J X=1 \quad$ output of flexural stiffnesses at each finite-difference station
$=2 \quad$ output of flexural stiffnesses suppressed
DEFAULT:IX = JX = 2

AKR	a one-dimensional array in which the ith element of the array corresponds to the uniformly distributed rotational spring stiffness per unit length of boundary on the ith boundary; required if any boundary has $I B C=1$
Laminate flexural stiffnesses (Required if ISTIFF = 1)	
D1	a two-dimensional array in which the (i, j)th element of the array corresponds to the value of $\left(\mathrm{D}_{11}\right)_{\mathrm{ij}}$
D2	similar to D1, but specifying ($\left.\mathrm{D}_{22}\right)_{\mathrm{ij}}$
D12	similar to D1, but specifying ($\left.\mathrm{D}_{12}\right)_{\mathrm{ij}}$
D66	similar to D 1 , but specifying $\left(\mathrm{D}_{66}\right)_{\mathrm{ij}}$
DS1	reference value of D_{11}
Plate geometry	
$X A=a$	dimension parallel to X -axis (fig. 2(a))
$X B=b$	dimension parallel to Y -axis (fig. 2(a))
Discrete springs	
AKL	a two-dimensional array in which the (i, j)th element corresponds to $\left(\mathrm{k}_{\ell}\right)_{\mathrm{ij}}$
AKX	similar to AKL but referring to $\left(\mathrm{k}_{\mathbf{X}}\right)_{\mathrm{ij}}$
AKY	similar to AKL but referring to $\left.(\mathrm{k})^{\prime}\right)_{\mathrm{ij}}$

Discrete flexural stiffeners

NUPRIT number of stiffeners

EI a one-dimensional array whose ith element specifies the flexural stiffness of the ith stiffener about the neutral plane of the panel

IORIENT
a one-dimensional array whose ith element specifies whether the stiffener is parallel to X - or Y -axis
$=1$ stiffener parallel to X -axis
$=2$ stiffener parallel to Y-axis
LOC
a one-dimensional array whose ith element gives the row or column location of the ith stiffener

DEFAULT:NUPRIT $=0$; EI, IORIENT and LOC need not be input

Applied in-plane loads

In-plane loads are assumed to be uniform over the boundary to which they are applied and are increased to buckling according to the relationships prescribed by equations (13); therefore, the user inputs
$T X=\bar{t}_{X}$
$T Y=\bar{t}_{y}$
$T X Y=\bar{t}_{X y}$
$R X=r_{x}$
$R Y=r_{y}$
$R X Y=r_{x y}$

Eigenvalue search parameters

P1 starting value of \bar{p}. If $P 1<0$., the program will calculate $P 1$ from equation (B2) or (B3) according to the relation,

$$
\begin{equation*}
\mathrm{P} 1=\mathrm{ABS}(\mathrm{P} 1) * \mathrm{PBAR} \tag{D1}
\end{equation*}
$$

where PBAR is $\overline{\mathrm{p}}_{\infty}$ from equation (B2) or (B3).
DEFAULT:P1 $=0.9 *$ PBAR
DELP increment of $(\overline{\mathrm{p}})$; if $\mathrm{P} 1<0 ., \operatorname{DELP}=0.1 * \operatorname{PBAR}$; if ISTEP $=1$, DELP is automatically varied during the eigenvalue search

PFIN maximum value of \bar{p} during the eigenvalue search
TEST eigenvalue accuracy
DEFAULT: $1 . \times 10^{-3}$
Trigonometric finite-difference data
MR number of rows of finite-difference stations interior to the plate - not including boundaries

NC number of columns of finite-difference stations interior to the plate not including boundaries

Note: The marching procedure requires $N C \geqq 4$
$X=\lambda_{x} / a$
$Y=\lambda_{y} / b$

APPENDIX D

Note: If the user inputs $X \leqq 0$, the program automatically calculates a new value of X and Y according to the relationship expressed by equations (B4) and (B5); that is,

$$
\begin{align*}
& \mathrm{X}=\mathrm{ABS}(\mathrm{X}) * \mathrm{XB} / \mathrm{BETA} / \mathrm{XA} \tag{D2}\\
& \mathrm{Y}=\mathrm{ABS}(\mathrm{Y}) \tag{D3}
\end{align*}
$$

where the input magnitudes of X and Y (that is, $\mathrm{ABS}(\mathrm{X})$ and $\mathrm{ABS}(\mathrm{Y})$) replace C_{X} and $C_{y x}$ in equations (B4) and (B5). Also, in equation (D1), BETA $=\beta$, and β is calculated from equation (B2) or (B3).

When ISTIFF = 1 and the evaluation of X and Y is chosen, the user must also input

DS2 average or typical value of D_{22}
DS12 average or typical value of D_{12}
DS66 average or typical value of D_{66}
DEFAULT: Calculation of X and Y using equations (D2) and (D3) where $A B S(X)$ and $\operatorname{ABS}(\mathrm{Y})$ are set equal to unity.

Example Problem

Consider the shear buckling of a 12 -inch by 3 -inch clamped sandwich panel which has as its lay-up, $45 /-45 / 45 /-45 /$ CORE $/-45 / 45 /-45 / 45$. The core thickness is 0.0605 inch and each lamina of the skins is graphite-epoxy with a thickness of 0.0055 inch.

Sample Input

```
this is a free field ldentification Garo
$BUCKLE TX=.0,TY=.0,TXY=.0,RX=.0,RY=.0,RXY=1.,
XA=12,XB=3.,MZ=12,NC=6, ABC=4*3,NUMAT=2,E1=2.10E7,1.,E2=2.33E6,1.,
Vi=,31,.2,G12=6.5E5,1.,MA=9,MATYPE=4*1,2,4*1,
AT=4*,0055,.0605,4*.0055,Tli*45., -45.,45., -45.,.0, -45.,45., -45.,45.
$
```


APPENDIX D

Sample Output

INPUT FOR CASE

THIS IS A FREE FIELD INDENTIFICATION CARD

APPENDIX D

LAMINATED PLATE PROPERTIES

APPENDIX D

D MATRIX

$5.31653046 E+02$	$4.32016589 E+02$	$4.69571561 E+01$
$4.32016589 E+02$	$5.31653046 E+02$	$4.69571561 E+01$
$4.69571561 E+01$	$4.69571561 E+01$	$4.24421785 E+02$

OVERALL LAMINATE PROPERTIES

```
EX=9.92156003E+05 EY=9.92156003E+05 GXY= 2.33162813E+06
NUXY= 8.12591100E-01 NUYX= 8.12591100E-01
```


PROGRAM WILL NOW CONTINUE WITH FINITE ASPECT RATIO SOLUTION

BOUNDARY NO. I IS CLAMPED

BOUNDARY NO. 2 IS CLAMPED

BOUNDARY NO. 3 IS CLAMPED

APPENDIX D

BOUNDARY NO. 4 IS CLAMPED


```
(XB**2)*EPSILDNX/(T**2)=-0.
TXB**\\ WEPSILDNY/ \T%*2)=-0.
(XB**2)*EPSILONXY/(T**2) = -1.19105540E+01
```

APPENDIX D

APPENDIX D

APPENDIX D | 12700000 |
| :--- |
| 12800000 |
| 12900000 |
| 13000000 |
| 13100000 |
| 13200000 |
| 13300000 |
| 13400000 |
| 13500001 |
| 13600000 |
| 13700000 |
| 13800000 |
| 13900000 |
| 14000000 |
| 14100000 |
| 14400000 |
| 14500000 |
| 14600000 |
| 14700000 |
| 14800000 |
| 14900000 |
| 15000000 |
| 15100000 |
| 15200000 |
| 15300000 |
| 15400000 |
| 15500000 |
| 15600000 |
| 158000000 |
| 15900000 |
| 15900001 |
| 15900002 |
| 16000000 |
| 16100000 |
| 162000000 |
| 164000000 |
| 165000000 |
| 166000000 |
| 168000000 |
| 16900000 |

 168 CUNTINUE

$E P S=X \dot{C} / b$
$E I(I)=E H / E O S / D S I$

CALL $\mathrm{QC}(X, Y, C L, 0, A K S, U S 1, O S 2, D S 12, D 1, D 2, D 12, D 66, M R, N C, I B C$,

$$
\left.\frac{\lambda A, \lambda 6)}{I+(J X}, 2,2\right) G 1 \text { TO } 125
$$

PRIMI $\operatorname{PRINT} 5015,((D 1(I, J), J=1, N C 1), I=1, M R 1)$
PRINT $5015,(102(I, J), J=1, N C 1), I=1, M R 1)$
PRINT $5 r 15,((0) 2(I, J), J=1, N C 1), I=1, M R 1)$
PRINT $5,15,(1066(I, J), J=1, N C 1), I=1, M R 1)$
125 CUMTINUE

APPENDIX D

APPENDIX D

UEITE17. $=14$ ITXS, TYS. TXYS

$$
\begin{aligned}
& \text { PHINT 5.31, EXT, EYT, EXYT } \\
& \text { PHINT 5032, }
\end{aligned}
$$

$$
\left[0.01010^{48} 0109\right.
$$

$$
\mu \perp 8=p 18+1212
$$

$$
\frac{61107702}{35}
$$

$$
\begin{gathered}
\text { UELP=OELPS } \\
\text { PEIN=PEIINS } \\
X=X S S \\
C \\
C \\
C
\end{gathered}
$$

$$
\frac{C}{C} \text { CQAPUTE MC.OE SHAPES }
$$

$$
001567 \text { CALL GELIH (56,MR2M1,A, I, B, IPIVOT, O,WK,IERR) }
$$

$$
Y S, M R, N C, X S X, E D L L, E D E,
$$

APPENDIX D | 29500000 |
| :--- |
| 29600000 |
| 29700000 |
| 29800000 |
| 29900000 |
| 30000000 |
| 30100000 |
| 30200000 |
| 30300000 |
| 30400000 |
| 30500000 |
| 30800000 |
| 30700000 |
| 30800000 |
| 30900000 |
| 31000000 |
| 31100000 |
| 31200000 |
| 31300000 |
| 31400000 |
| 31600001 |
| 31700000 |
| 31800000 |
| 31900000 |
| 32000000 |
| 32100000 |
| 32200000 |
| 32300000 |
| 32400000 |
| 32500000 |
| 32600000 |
| 32700000 |
| 32800000 |
| 32900000 |
| 33000000 |
| 33100000 |
| 33300001 |
| 33300002 |
| 33400000 |
| 3300000 |
| 33700001 |
| 33800000 | 33900000

34000000
34100000
3400000
34300000
34400001
34500000
3460000
34700000
34800000
3490000
35000000
35100000
3520000
35300000
35400000
3550000
3560000
3570000
3580000
35900000

APPENDIX D

APPENDIX D

APPENDIX D | 43100000 |
| :--- |
| 43200000 |
| 43300000 |
| 43400000 |
| 43500000 |
| 43600000 |
| 43700000 |
| 43800000 |
| 43900000 |
| 44000000 |
| 44100000 |
| 44200000 |
| 44300000 |
| 44400000 |
| 44500000 |
| 44600000 |
| 44700000 |
| 44800000 |
| 44900000 |
| 45000000 |
| 45100000 |
| 45200000 |
| 45300000 |
| 45400000 |
| 45500000 |
| 45600000 |
| 45700000 |
| 45800000 |
| 45900000 |
| 46000000 |
| 46100000 |
| 46200000 |
| 46300000 |
| 46400000 |
| 46500000 |
| 46600000 |
| 46700000 |
| 46800000 |
| 46900000 |
| 47000000 |
| 47100000 |
| 47200000 |

SUBROUTLUE DEUPPS(A,N,DEI, MAX)

47300000
47400000
47500000
47600000
47700000
47800000
47900000
48000000
48100000
48200000
48300000
$L=K, N$, $1-A(1,1) *$ SWA?
$0 \quad 5: 0 \quad 1=k .1$

000105	0
000107	50
002121	50
000124	550
000126	$56 C$
000131	C
000131	72
000132	05
000132	730
000136	750
000137	

APPENDIX D

CPTIUNS
IBC $=1$ WUTAT LUNAL SPRING SUPPCRT IBC=2 SINPLF SUPPORT
$\begin{array}{ll}I B C=3 & C L A A P E D \text { SUPPOR } \\ I B C=4 & \text { FRLE BOUNDARY }\end{array}$
DIMEISSIUN AKS(4),IBC $(4), D 1(32,32), D 2132,32), D 12(32,32), D 66(32,32)$ COAMON/SIZF/IBPUS1, IBPOS2.IBPCS3, IBPOS4, MRTOT,NCTOT, ZIX(32): $1 Z[Y(32), F T A X(32), E T A Y(32)$
$P I=3.14155265359$
$S X=S I N(P I / X / E L)$
$S 2 X=S I M(.5 * P I / X / E L)$

[F(M EQQe 3) GOTO 170

yusususus
$\begin{array}{ll}4 & 4 \\ 0 & n \\ 0 & 2 \\ 0 & 0 \\ 0 & 2 \\ 0 & 0\end{array}$

000024
000025
000034
000044
000055
000066
000070
000072
000073
000074
000076
000101
000112
000120
000141
002144
000150
$00016 i$
000162
002165
000172
00017,
000201
000206
000212
000216

APPENDIX D

IF $(M$. Eb. 4) 1
CA1 SFT (02, 1, IRPUS1, IBPGS3. 18PGS2,R)
$=0)^{\div} \div(1 .-(Y) / 051$.
CALL SETID2,1,1BPOS1,1BPCS3,1BPUS4,R1
GO TO 15 ?
PRINT $\quad ; 12+4$
$C X=C Y=1$

$C X=C Y=-1 . \quad$.
PKINT $5314, \mathrm{M}$

O1(IGPOS1, J) $=.0$

$$
\begin{aligned}
& 0 \quad 150 \\
& 251=1 \angle P 4 P 1,13 P 2 M 1 \\
& 212(53,1)=.5 \times 102(1 R P \\
& 2(13 P(53, J) / 0111 K P
\end{aligned}
$$

$$
\frac{C P U S O}{50} 1=141 \angle(L, 1 B P O S 2) * .5
$$

$$
\begin{aligned}
& 3,1) * 1 \\
& 3,1) 1
\end{aligned}
$$

GU TU 120
\square
ل1202ubens3.ل11

APPENDIX D

SUZRCUTINE PREP (D1,D2,D12,066,DS1,DS2,DS12,DS66,IX,JX,MR,NC,TT,EX,

IHLS SUBKUUILNE PREPRGCESSES THE ORTHOTROPIC PROPERTIES OF A LAMINATE
UIMF SICN $2(10,4),[1(10), E 2(10), U 1(10), G 12(10), 00(3,3), 18 C(4)$.

OO $105 \mathrm{~J}=1$, NCTOT
$16501(1, j)=02(1, J)=012(1, J)=066(1, J)=0$

IU $11 \cap K=1$, NOMAT
PRINT $5027, K, C 1(K), E 2(K), U 1(K), G 12(K)$
ARVXY $=U 1(K)$
ANVY $X=A N X Y \div F 2(K) / F 1(K)$
ANU $=1, /(1,-A N V X Y \div A N V Y X)$
$W(K, 1)=E 1(K) \div A N U$
$w(K, 2)=E-(K) * A N U$
$1 \mathrm{C} O\left(K_{2} 4\right)=01<(K)$
 $051=00(1,1)$
$052=100(2,26)$

000026
000026
000026
000026
000031
000049
000043
002051
000055
000067
000067
000072
000073
000074
000115
000116
030122
000126
000133
000150
000152
000155
000160
000163
00165
000170
000200
000203
000210
000223
000234
0010236
000255
0002262

APPENDIX D

$000263-0512=00(1,2)$

67000000
67100000
67200000
67300000
67400000
67500000
67600000

300511		67000000
	13Hi2XY)	00000
000511		67200000
000511		67300000 67400000
002511		67400000
000511	RETUEA	67600000
000512	Fiv)	6760000

APPENDIX D

$6 \quad 0 D(I V, J V)=0$.
$T H E T A=T H(J) * 3.14159265359 / 180$.
$A A(I V, J V)=A A(I V, J V)+Q B(I V, J V) \div I(J)$
$B E(I V, J V)=0 R(I V, J V)+O H(I V, J V) * H S O$
ZREF $11=B 3(1,1) / A A(1,1)$
$2 R 5 F 12=8 B(1,2) / A A(1,2)$
$2 K E F 33=B 6(3,3) / A A(3,3)$

-1
z_{2}^{2}
α_{1}

$+1 J=\angle L-T T$
$1 J P 1=H J-T(J)$
$H C H E=03 *(H J * 3-H J P 1 * * 3)$
$T T=T T+I(1)$
$\begin{array}{ll}\text { Du } & 1 V=1,3 \\ 30 & J V\end{array}$
APPENDIX D 71900000
72000000
72100000
72200000
72300000
72400000
72500000
72600000
72700000
72800000
72900000
73000000
73100000
73200000
73300000
73400000
73500000
73600000
73700000
73800000
73900000
74000000
74100000
74200000
74300000
74400000
74500000
APPENDIX D

74600000
74700000
74800000
74900000
75000000
75100000
75200000
75300000
75400000
75500000
75600000
75700000
75800000
75900000
76000000
76100000
76200000
76300000
76400000
76500000
76600000
76700000
76800000
76900000
77000000
77100000
77200000
77300000
77400000
77500000
77600000
77700000
77800000
77900000
78000000
78100000
78200000

000011
000011
000016
000024
000036
000050
000055
000061
000065
000071
000076
000100
000102
000106
000111
000122
003145
000170
000172
000173
000204
000205
000206
000207
000230
0000231
000232
001233
000254
000255
000262
000317
000346
000375
000375
000370

APPENDIX D

APPENDIX D

$A M 3=P 108 *(81 . * D S 2+18 . * D 12 S * B * B+B * * 4-B * B * C(X-9 * * C Y)$
 AM3 $33 B=P 108 *(12 . * B * B+36$. $* D 125-2 . * C X)$ $A M 3 P=P I D 8 *(-B * B * R X-9 . * R Y)$
$F=(C \times Y * B) * * 2-(.21972656) *(2 . * A M O+A M 2) *(A M 1+A M 3)$ $\mathcal{C}=2 . * C X Y * C X Y * B-(.21972656) *(12 . * A M O B+A M 2 B) *(A M 1+A M 31$ $1+12 . * A M O+A M 2) *(A M 1 B+A M 3 B 1)$ +12 . $A M O+A M 2) *(A M 1 P+A M 3 P) 1$
$F P=2 * * C Y * R X Y * B * B-(.21972656) *(2 . * A M O P+A M 2 P) *(A M 1+A M 3)$

$G P=-1.21972656) *(12 . * A M O B P+A M 2 B P) *(A M 1+A M 3)+(2 * A M O+A M 2) *$

$D P=(-F * G B+G * F B) / A J A C O S I$ $D B=(-F P * G+F * G P) / A J A C O B$
$P=P+D P$
$P=0+4 B$

$\frac{L C=L C+1}{\text { IFILC. GT. SOIRETURN }}$

URN
TURN
1062

GU NT $101, P, B, F, G$

101 FORMATI $5 X, *: P=*, E 16.8,2 x, * B=*, E 16,8,2 X, * F=*, E 16,8, * G=*, E 16.81$
IFIINCX . O. I RETURN $X=1.0$ (Y) $Y=A B S(Y)$

WRITE $(7,51) X, Y$
$C O E F=F I * P I * D S 1 /(X B * X B)$
$A N X=C X * C O E F$
$\triangle N X=C X: C O E F$
$A N Y=C Y: C O E F$
ANXY $=C X Y * C=(A N X / E X-E X Y * A N Y / E Y) / T T$ STRNY $=(A N Y / E Y-E X Y * A N X / E X) / T T$

STRNXY $=A N X Y / G X Y / L I$
RIRIIE 17,52$) C X, C Y, C X Y, S T R N X, S$ TRNY, STRNXY
PRINT $52 . C X, C Y, C X Y, S T R N X, S T R N Y, S T R N X Y$

000260 H2 020311 000316 000333 000352 000374

000420

REFERENCES

1. Gerard, George; and Becker, Herbert: Handbook of Structural Stability. Part I Buckling of Flat Plates. NACA TN 3781, 1957.
2. Becker, Herbert: Handbook of Structural Stability. Part II - Buckling of Composite Elements. NACA TN 3782, 1957.
3. Johns, D. J.: Shear Buckling of Isotropic and Orthotropic Plates - A Review. R. \& M. No. 3677, British A.R.C., 1971.
4. Lekhnitskii, S. G. (S. W. Tsai and T. Cheron, transl.): Anisotropic Plates. Gordon and Breach Sci. Publ., c. 1968.
5. Ashton, J. E.; and Whitney, J. M.: Theory of Laminated Plates. Progress in Materials Science Series, Volume IV, Technomic Pub. Co., Inc., c. 1970.
6. Timoshenko, Stephen P.; and Gere, James M.: Theory of Elastic Stability. Second ed. McGraw-Hill Book Co., Inc., c. 1961.
7. Almroth, B. O.; Brogan, F. A.; Meller, E.; and Petersen, H. T.: User's Manual for STAGS. LMSC-D358197, Lockheed Missiles \& Space Co., Jan. 1974.
8. McCormick, Caleb W., ed.: The NASTRAN User's Manual (Level 15). NASA SP-222(01), 1972.
9. Reed, D. L.: Laminated Sandwich Panel Analysis. FZM-5590, Convair Aerospace Div., General Dynamics, Oct. 1, 1971.
10. Fung, Y. C.: Foundations of Solid Mechanics. Prentice-Hall, Inc., c. 1965.
11. Ashton, J. E.; Halpin, J. C.; and Petit, P. H.: Primer on Composite Materials: Analysis. Technomic Pub. Co., Inc., c. 1969.
12. Libove, Charles; and Batdorf, S. B.: A General Small-Deflection Theory for Flat Sandwich Plates. NACA Rep. 899, 1948. (Supersedes NACA TN 1526.)
13. Housner, J. M.; and Stein, Manuel: Flutter Analysis of Swept-Wing Subsonic Aircraft With Parameter Studies of Composite Wings. NASA TN D-7539, 1974.
14. Stein, Manuel; and Yaeger, David J.: Critical Shear Stress of a Curved Rectangular Panel With a Central Stiffener. NACA TN 1972, 1949.
15. Stowell, Elbridge Z.; and Schwartz, Edward B.: Critical Stress for an Infinitely Long Flat Plate With Elastically Restrained Edges Under Combined Shear and Direct Stress. NACA WR L-340, 1943. (Formerly NACA ARR 3K13.)
16. Batdorf, S. B.; Schildcrout, Murry; and Stein, Manuel: Critical Combinations of Shear and Longitudinal Direct Stress for Long Plates With Transverse Curvature. NACA TN 1347, 1947.
17. Budiansky, Bernard; and Hu, Pai C.: The Lagrangian Multiplier Method of Finding Upper and Lower Limits to Critical Stresses of Clamped Plates. NACA Rep. 848, 1946. (Supersedes NACA TN 1103.)

TABLE 1. - SHEAR-BUCKLING LOAD COEFFICIENTS FOR RECTANGULAR ORTHOTROPIC PANELS WITH ALL EDGES SIMPLY SUPPORTED AND THE TRIGONOMETRIC DIFF ERENCE

PARAMETERS ON WHICH THEY ARE BASED

[^1]TABLE 1.- SHEAR-BUCKLING LOAD COEFFICIENTS FOR RECTANGULAR ORTHOTROPIC PANELS
WITH ALL EDGES SIMPLY SUPPORTED AND THE TRIGONOMETRIC DIFFERENCE
PARAMETERS ON WHICH THEY ARE BASED - Concluded

Stiffness parameter,$\Theta=\frac{\sqrt{D_{11} D_{22}}}{\mathrm{D}_{3}}$	Aspect-ratio parameter,$B=\frac{b}{a} \sqrt[4]{\frac{D_{11}}{D_{22}}}$	No. of mesh points in x - and y-directions		Wavelength ratios used in trigonometric differences		Shear-buckling load coefficient,$\mathrm{k}_{\mathrm{S}}=\frac{\mathrm{b}^{2} \mathrm{~N}_{\mathrm{xy}}}{\pi^{2} \sqrt[4]{\mathrm{D}_{11 \mathrm{D}_{22}}{ }^{3}}}$
		$\mathrm{a} / \Delta_{\mathbf{x}}$	$b / \Delta y$	λ_{x} / a	λ_{y} / b	
1.25	1.0	9	9	0.56	0.56	8.43
	. 8	9	9	. 56	. 60	7.08
	. 6	9	9	. 56	. 80	6.38
	. 4	11	11	. 50	1.00	5.75
	. 2	15	8	. 22	1.00	5.09
	. 1	25	9	. 13	1.00	5.05
	a_{0}	---	---	---	---	4.96
1.667	1.0	9	9	. 56	. 56	7.54
	. 8	9	9	. 56	. 60	6.37
	. 6	9	9	. 56	. 80	5.85
	. 4	11	11	. 50	1.00	5.26
	. 2	15	8	. 22	1.00	4.72
	. 1	22	8	. 13	1.00	4.68
	a_{0}	---	---	---	---	4.60
2.5	1.0	9	9	. 56	. 56	6.65
	. 8	9	9	. 56	. 60	5.66
	. 6	9	9	. 56	. 80	5.32
	. 4	11	11	. 50	1.00	4.77
	. 2	15	8	. 22	1.00	4.32
	. 1	22	8	. 13	1.00	4.33
	${ }^{a_{0}}$	---	--	-	---	4.17
5	1.0	9	9	. 56	. 56	5.74
	. 8	9	9	. 56	. 60	4.94
	. 6	9	9	. 56	. 80	4.78
	. 4	11	11	. 50	1.00	4.27
	. 2	15	8	. 22	1.00	3.90
	. 1	22	8	. 13	1.00	3.86
	a_{0}	---	---	---	---	3.75
\pm	1.0	9	9	. 56	. 56	4.83
	. 8	9	9	. 56	. 60	4.22
	. 6	9	9	. 56	. 80	4.25
	. 4	11	11	. 50	1.00	3.76
	. 2	15	8	. 22	1.00	3.47
	a_{0}	---	---	---	---	3.30

${ }^{\text {a For }} \mathrm{B}=0, \mathrm{k}_{\mathbf{s}}$ was calculated by using equations (B2).

TABLE 2.- SHEAR-BUCKLING LOAD COEFFICIENTS FOR RECTANGULAR ORTHOTROPIC PANELS WITH ALL EDGES CLAMPED AND THE TRIGONOMETRIC DIFFERENCE

PARAMETERS ON WHICH THEY ARE BASED

${ }^{\mathrm{a}}$ For $\mathrm{B}=0, \mathrm{k}_{\mathrm{S}}$ was calculated by using equations (B3).

TABLE 2.- SHEAR-BUCKLING LOAD COEFFICIENTS FOR RECTANGULAR ORTHOTROPIC PANELS WITH ALL EDGES CLAMPED AND THE TRIGONOMETRIC DIFF ERENCE

PARAMETERS ON WHICH THEY ARE BASED - Concluded

Stiffness parameter,$\Theta=\frac{\sqrt{D_{11} \mathrm{D}_{22}}}{\mathrm{D}_{3}}$	Aspect-ratio parameter,$\mathrm{B}=\frac{\mathrm{b}}{\mathrm{a}} \sqrt[4]{\frac{\mathrm{D}_{11}}{\mathrm{D}_{22}}}$	No. of mesh points in x - and y-directions		Wavelength ratios used in trigonometric differences		Shear -buckling load coefficient,$\mathrm{k}_{\mathrm{s}}=\frac{\mathrm{b}^{2} \mathrm{~N}_{\mathrm{xy}}}{\pi^{2} \sqrt[4]{\mathrm{D}_{11} \mathrm{D}_{22}^{3}}}$
		a / Δ_{x}	b / Δ_{y}	$\lambda_{\mathrm{x}} / \mathrm{a}$	$\lambda^{\prime} / \mathrm{b}$	
1.25	1.0	9	9	1.20	1.2	13.87
	. 8	9	9	1.00	1.0	11.68
	. 6	9	9	. 60	1.0	10.46
	. 4	9	9	. 40	1.0	9.39
	. 2	15	8	. 22	1.0	8.80
	. 1	22	8	. 12	1.0	8.98
	a_{0}	---	---	---	--	8.45
1.667	1.0	9	9	1.20	1.2	12.91
	. 8	9	9	1.00	1.0	10.90
	. 6	9	9	. 60	1.0	9.80
	. 4	9	9	. 40	1.0	8.86
	. 2	15	8	. 22	1.0	8.34
	. 1	22	8	. 12	1.0	8.58
	${ }^{\text {a }} 0$	---	---	---	--	7.93
2.511	1.0	9	9	1.20	1.2	11.93
	. 8	9	9	1.00	1.0	10.11
	. 6	9	9	. 60	1.0	9.07
	. 4	9	9	. 40	1.0	8.31
	. 2	15	8	. 22	1.0	7.84
	. 1	25	9	. 12	1.0	8.12
	a_{0}	---	---	---	--	7.32
5	1.0	9	9	1.20	1.2	10.94
	. 8	9	9	1.00	1.0	9.31
	. 6	9	9	. 60	1.0	8.33
	. 4	9	9	. 40	1.0	7.74
	. 2	15	8	. 22	1.0	7.33
	. 1	25	9	. 12	1.0	7.66
	${ }^{\text {a }} 0$	---	---	---	--	6.72
${ }^{\infty}$	1.0	9	9	1.20	1.2	9.92
	. 8	9	9	1.00	1.0	8.48
	. 6	9	9	. 60	1.0	7.57
	. 4	11	11	. 40	1.0	6.97
	. 2	15	8	. 22	1.0	6.79
	. 1	25	9	. 12	1.0	7.17
	${ }^{\text {a }} 0$	---	---	---	---	6.11

${ }^{\text {a }}$ For $B=0, k_{s}$ was calculated by using equations (B3).

TABLE 3.- MATERIAL PROPERTIES OF GRAPHITE-EPOXY SKINS WITH THEIR EQUIVALENT ORTHOTROPIC PARAMETERS AT VARIOUS FILAMENT ORIENTATIONS

$$
\begin{gathered}
{\left[\mathrm{E}_{1}=145 \mathrm{GN} / \mathrm{m}^{2}\left(21 \times 10^{6} \mathrm{psi}\right) ; \quad \mathrm{E}_{2} / \mathrm{E}_{1}=0.1138\right.} \\
\left.\mathrm{G}_{12} / \mathrm{E}_{1}=0.03095 ; \quad \nu_{12}=0.31\right]
\end{gathered}
$$

Filament orientation, $\pm \theta$, deg	$\Theta=\frac{\sqrt{D_{11} \mathrm{D}_{22}}}{\mathrm{D}_{3}}$	$\frac{\mathrm{a}}{\mathrm{b}} \mathrm{B}=\sqrt[4]{\frac{\mathrm{D}_{11}}{\mathrm{D}_{22}}}$
0	3.50	1.722
30	.511	1.389
45	.415	1.000
60	.511	.720
90	3.50	.581

TABLE 4.- COMPARISON OF CONVENTIONAL AND TRIGONOMETRIC FINITE DIFFERENCES

Problem description	Degrees of freedom		$\overline{\mathrm{N}}_{\mathrm{xy}}$		$\lambda_{\mathbf{x}} / \mathrm{a}$	$\lambda_{y} / \lambda_{x}$
	M_{e}	N_{e}	Conventional	Trigonometric		
Shear buckling of a clamped, square, graphite-epoxy panel	$\begin{array}{r} 4 \\ 6 \\ 8 \\ 12 \\ 20 \end{array}$	$\begin{array}{r} 4 \\ 6 \\ 8 \\ 12 \\ 20 \end{array}$	56.03 48.43 45.65 43.79 42.90	42.84 ---- -.-- ----	0.55	1 --- -.- -.-
Shear buckling of a simply supported 5×1 graphite -epoxy panel	20 29 40 50	$\begin{aligned} & 10 \\ & 13 \\ & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 20.40 \\ & 19.70 \\ & 19.39 \\ & 19.22 \end{aligned}$	$\begin{gathered} 19.17 \\ ---- \\ ---- \end{gathered}$	0.21	1

Figure 1.- Stress resultants acting upon an element of the plate.

Evaluation of ○ $w ; w_{, x x} ; w_{, y y} ; M_{x} ; M_{y}$ x w,x y w, y $w_{, x y} ; M_{x y}$

(a) Panel geometry and boundary designation.

(b) Finite-difference station layout and designation.

(c) Sandwich panel.

Figure 2.- Geometrical and numerical configurations.

Figure 3. - Shear-buckling load coefficients for rectangular orthotropic plates with all edges simply supported.

Figure 4. - Shear-buckling load coefficients for rectangular orthotropic plates with all edges clamped.

Figure 7.- Variation of shear buckling load with filament orientation for panels of various aspect ratios.

Figure 10.- Optimum filament orientation for the shear buckling of a simply supported panel.

Figure 11.- Optimum filament orientation for the shear buckling of a clamped panel.

Figure 14.- Summary of combined axial compression and shear-buckling results for simply supported and clamped panels.

Figure 15. - Variation of compressive buckling parameter with rotational edge spring stiffness.

$$
\begin{aligned}
& \text { (b) } a / b=2 \text {. } \\
& \text { Figure } 15 .- \text { Continued. }
\end{aligned}
$$

[^2]

(a) Convergence for the compressive buckling of simply supported isotropic square panels. $\lambda_{\mathrm{y}} / \lambda_{\mathrm{x}}=\beta=1$. From reference $6, \overline{\mathrm{~N}}_{\mathrm{x}}=4.0$.
Figure 17.- Convergence characteristics of trigonometric finite differences.

(b) Convergence for the compressive buckling of 5×1 simply supported isotropic panels.
$$
\lambda_{\mathrm{y}} / \lambda_{\mathrm{x}}=\beta=5 . \quad \text { From reference } 6, \quad \overline{\mathrm{~N}}_{\mathrm{x}}=4.0
$$

Figure 17.- Continued.

(c) Convergence for the compressive buckling of clamped square isotropic panels.

$$
\lambda_{\mathrm{y}} / \lambda_{\mathbf{x}}=\beta=1.5 . \quad \text { From reference } 17, \quad \overline{\mathrm{~N}}_{\mathbf{X}} \approx 10.074
$$

Figure 17.- Continued.

(d) Convergence for the compressive buckling of isotropic clamped 5×1 panels. $\lambda_{\mathrm{y}} / \lambda_{\mathrm{X}}=\beta=1.5$. From reference $16, \overline{\mathrm{~N}}_{\mathrm{X}} \approx 7.0$.

Figure 17.- Continued.

(e) Convergence for the shear buckling of isotropic simply supported 5×1 panels.
$\lambda_{y} / \lambda_{X}=\beta=0.8$. From reference $1, \bar{N}_{x y} \approx 5.55$.
Figure 17.- Continued.

(f) Convergence for the shear buckling of isotropic clamped 5×1 panels. $\lambda_{y} / \lambda_{\mathrm{x}}=\beta=1.2$. From reference $1, \overline{\mathrm{~N}}_{\mathrm{xy}} \approx 9.3$.

Figure 17.- Concluded. for the compression buckling of a clamped square isotropic panel.

Figure 19.- Variation of $1 / \hat{\Delta}_{\mathbf{X}}$ with trigonometric wavelength parameter $\lambda_{\mathbf{X}}$.

[^0]: *For sale by the National Technical Information Service, Springfield, Virginia 22161

[^1]: ${ }^{a^{2}}$ For $B=0, k_{S}$ was calculated by using equations (B2).

[^2]: Figure 16.- Variation of shear buckling parameter with rotational edge spring stiffness.

