

NUMERICAL ANALYSIS AND PARAMETRIC STUDIES OF THE BUCKLING OF COMPOSITE ORTHOTROPIC COMPRESSION AND SHEAR PANELS

Jerrold M. Housner and Manuel Stein Langley Research Center Hampton, Va. 23665

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION · WASHINGTON, D. C. · OCTOBER 1975

1. Report No. NASA TN D-7996	2. Government Accession No.	3. Recipient's Catalog No.	
4. Title and Subtitle NUMERICAL ANALYSIS AND PARAMETRIC STUDIES OF THE BUCKLING OF COMPOSITE ORTHOTROPIC COMPRESSION AND SHEAR PANELS		5. Report Date October 1975	
		6. Performing Organization Code	
7. Author(s)		8. Performing Organization Report No. L-10083	
Jerrold M. Housner and Manuel Stein		10. Work Unit No.	
9. Performing Organization Name and Address		505-02-51-01	
NASA Langley Research Center		11. Contract or Grant No.	
Hampton, Va. 23665			
nije na slaven provinskom na se stali i slaven se se stali		13. Type of Report and Period Covered	
12. Sponsoring Agency Name and Address		Technical Note	
National Aeronautics and Space Administration		14. Sponsoring Agency Code	
Washington, D.C. 20546			
15. Supplementary Notes	an a		

16. Abstract

A computer program is presented which has been developed for the combined compression and shear of stiffened variable thickness orthotropic composite panels on discrete springs; boundary conditions are general and include elastic boundary restraints. Buckling solutions are obtained by using a newly developed trigonometric finite -difference procedure which improves the solution convergence rate over conventional finite-difference methods. The classical general shear-buckling results (in terms of universal orthotropic parameters), which exist only for simply supported panels over a limited range of orthotropic properties, have been extended to the complete range of these properties for simply supported panels and, in addition, to the complete range of orthotropic properties for clamped panels. The program has also been applied to parametric studies which examine the effect of filament orientation upon the buckling of graphiteepoxy panels. These studies included an examination of the filament orientations which yield maximum shear or compressive buckling strength for panels having all four edges simply supported or clamped over a wide range of aspect ratios. Panels with such orientations had higher buckling loads than comparable, equal-weight, thin-skinned aluminum panels. Also included among the parameter studies were examinations of combined axial compression and shear buckling and examinations of panels with rotational elastic-edge restraints.

17. Key Words (Suggested by Author(s))		18. Distribut	ion Statement	an a
Buckling		Uncla	ssified - Unlim	ited
Orthotropic plates				
Finite differences				
Filamentary composite plat	es			Subject Category 39
19. Security Classif. (of this report)	20. Security Classif. (of this	page)	21. No. of Pages	22. Price*
Unclassified	Unclassified		102	\$ 5.25

^{*} For sale by the National Technical Information Service, Springfield, Virginia 22161

NUMERICAL ANALYSIS AND PARAMETRIC STUDIES OF THE BUCKLING OF COMPOSITE ORTHOTROPIC COMPRESSION AND SHEAR PANELS

Jerrold M. Housner and Manuel Stein Langley Research Center

SUMMARY

A computer program has been developed for the combined compression and shear of stiffened variable thickness orthotropic composite panels on discrete springs; boundary conditions are general and include elastic boundary restraints. Buckling solutions are obtained by using a newly developed trigonometric finite-difference procedure which improves the solution convergence rate over conventional finite-difference methods. The trigonometric finite-difference procedure introduces two new parameters into the solution. These parameters can be computed by the program or selected by the user. The validity of the program has been substantiated by comparisons with existing solutions, and a program listing, input description, and sample problem are provided.

The classical general shear-buckling results (in terms of universal orthotropic parameters), which exist only for simply supported panels over a limited range of orthotropic properties, have been extended to the complete range of these properties for simply supported panels and, in addition, to the complete range of orthotropic properties for clamped panels. The program has also been applied to parametric studies which examine the effect of filament orientation upon the buckling of graphite-epoxy panels. These studies included an examination of the filament orientations which yield maximum shear or compressive buckling strength for panels having all four edges simply supported or clamped over a wide range of aspect ratios. Panels with such orientations had higher buckling loads than comparable, equal-weight, thin-skinned aluminum panels. Also included among the parameter studies were examinations of combined axial compression and shear buckling and examinations of panels with rotational elastic-edge restraints.

INTRODUCTION

The use of filamentary composite materials in aircraft and space structures offers a potential for weight savings over conventional (all metal) construction. Also, composites introduce added versatility into the design process by allowing the structure to be better tailored to meet the design criteria. One such design criterion is the prevention of compressive and **s**hear buckling in panels of laminated construction. In laminated panels the stiffness properties can be tailored by controlling the filament orientation in each lamina.

A considerable amount of literature exists on the buckling of flat isotropic and orthotropic panels under various boundary conditions. (See refs. 1 to 6.) Few results exist, however, for finite aspect-ratio panels, especially for shear buckling of orthotropic panels. General results for shear buckling, in terms of universal orthotropic parameters, exist only for simply supported panels over a limited range of orthotropic parameters. (See ref. 6.) Several general-purpose computer programs exist which could be employed to obtain results for panels with general boundary conditions under general loading states (refs. 7 to 9). These programs, however, tend to be expensive to use in performing parameter studies; therefore, a program which is suitable for performing parametric buckling studies of orthotropic flat rectangular panels was developed and is employed in this paper.

The present computerized analysis is applicable to the combined compression and shear buckling of stiffened, variable-thickness, flat rectangular orthotropic panels on discrete springs; boundary conditions are general and include elastic boundary restraints. Calculation of the flexural stiffnesses of a laminate from the properties of filamentreinforced laminas is automatically performed. The analysis makes use of a newly developed trigonometric finite-difference procedure. In contrast to conventional (polynomial) finite differences, trigonometric differences take advantage of the sinusoidal form of the buckle pattern to achieve converged solutions with fewer degrees of freedom, hence reducing computer time. The analysis has been validated by many comparisons with solutions in the literature and has been used to produce a variety of additional orthotropic and some isotropic panel results.

The classical general results for the shear buckling of simply supported orthotropic panels are extended in this paper to cover the complete range of orthotropic parameters. Also, the general results for the shear buckling of clamped panels over the complete range of orthotropic parameters have been calculated and are presented herein. In addition, it is of practical interest to present results which consider the effects of filament orientation upon the buckling strength of laminated composite panels. Consequently, parameter studies are presented for graphite-epoxy panels of various aspect ratios, boundary conditions, and in-plane loadings over a wide range of filament orientations, and those orientations which led to maximum buckling loads are identified. Finally, results are presented for the shear buckling of simply supported isotropic panels, each with a central stiffener.

SYMBOLS

	a,b	dimensions of rectangular plate parallel to X- and Y-axes, respectively
	A ^(r)	coefficients defined by equation (C3)
	C _x ,C _{yx}	correction factors defined in equations (B4) and (B5)
	D	isotropic plate flexural stiffness
•	D3	$= D_{12} + 2D_{66}$
	D ₁₁ ,D ₂₂ ,D ₁	2,D ₆₆ orthotropic plate flexural stiffnesses
	$e_{ij}^{(r)}$	elements of matrix defined by equation (C2)
	EI	flexural stiffness of discrete stiffener
	E_{1}, E_{2}	Young's moduli of fibrous reinforced material parallel to fibers and trans- verse to fibers, respectively
	G ₁₂	shear modulus of fibrous reinforced material
	h	core thickness of sandwich plate
	I_{1}, I_{3}	row designations of boundaries (1) and (3) (see fig. $2(a)$)
	J ₂ ,J ₄	column designations of boundaries (2) and (4) (see fig. 2(a))
	kĮ	discrete lateral spring stiffness
	^k R	uniformly distributed rotational spring stiffness
	k _s	shear-buckling load coefficient $\frac{b^2 N_{xy}}{\pi^2 \sqrt[4]{D_{11}D_{22}^3}}$
	k _x ,k _y	stiffness of rotational springs which resist moments acting about Y- and

X-axes, respectively

TECHNICAL LIBRARY ABBOTT AEROSPACE ABBOTTAEROSPACE

3

K_{ij} plate stiffness terms defined by equation (A13)

M,N total number of rows and columns of finite-difference stations, respectively

- M_e,N_e total number of rows and columns of finite-difference stations at which equilibrium is satisfied
- M_X, M_V, M_{XV} bending moments in plate (see fig. 1)
- N_X, N_V, N_{XV} in-plane loads (see fig. 1)

 $\overline{N}_{x}, \overline{N}_{y}, \overline{N}_{xy}$ shear-buckling stress coefficients $\frac{b^2 N_x}{\pi^2 D_{11}}, \frac{b^2 N_y}{\pi^2 D_{11}}, \frac{b^2 N_{xy}}{\pi^2 D_{11}},$

 $\hat{N}_{X}, \hat{N}_{y}, \hat{N}_{Xy}$ buckling parameters $\frac{b^2 N_X}{E_1 t^3 \left[1 - \left(\frac{h}{t}\right)^3\right]}, \frac{b^2 N_y}{E_1 t^3 \left[1 - \left(\frac{h}{t}\right)^3\right]}, \frac{b^2 N_{Xy}}{E_1 t^3 \left[1 - \left(\frac{h}{t}\right)^3\right]},$

 $N_{X_{O}}, N_{X_{V_{O}}}$ buckling loads for pure axial compression and pure shear, respectively

 \overline{p} buckling eigenvalue (see eq. (13))

 r_x, r_y, r_{xy} change of \overline{N}_x , \overline{N}_y , \overline{N}_{xy} with \overline{p} , respectively (see eq. (13))

 $R_{\rm X}, R_{\rm X}y$ ratio of $N_{\rm X}/N_{\rm X_O}$ and $N_{\rm X}y/N_{\rm X}y_{\rm O},$ respectively

 S_{ij} spring-stiffness terms defined by equation (A17)

- total thickness of sandwich plate
- $\overline{t}_{x}, \overline{t}_{y}, \overline{t}_{xy}$ values of N_{x}, N_{y}, N_{xy} when $\overline{p} = 0$

w displacement of panel in positive z-direction

x,y,z panel coordinates shown in figure 1

4

t

	α_{ij} curvature terms defined in equation (A14)	
	β	ratio of panel width to buckle length in an infinitely long panel
THIS ODCUMENT FRONDED BY THE ABBOTT AEROSPACE TECHNICAL LIBRARY ABBOTTAEROSPACE.COM	$\gamma_{1},\gamma_{2},\gamma_{3}$	coefficients defined by equation (7) or (8)
	δU	internal virtual work
	δV_N	virtual work of in-plane loads
	δV_S	virtual work of discrete springs
	$\Delta_{\rm X}, \Delta_{\rm Y}$	finite-difference mesh spacings in x- and y-directions, respectively
	$\hat{\Delta}_{\mathbf{x}}, \hat{\boldsymbol{\Delta}}_{\mathbf{y}}$	trigonometric finite-difference coefficients as defined in equation (10)
	$\Delta_{\mathbf{X}}^{*}, \Delta_{\mathbf{y}}^{*}$	trigonometric finite-difference terms defined in equation (A24)
	θ	filament orientation (see fig. 2(a))
	Э, В	universal orthotropic parameters defined in equations (15) and (16)
	λ_{x},λ_{y}	trigonometric parameters defined through equation (10)
	^ν 12	major Poisson ratio relating contraction normal to filament direction to extension parallel to filament direction
	$\xi_{\mathbf{X}}, \xi_{\mathbf{y}}, \eta_{\mathbf{X}}, \eta_{\mathbf{y}}$	functions defined by equations (A6) to (A9)
	χ _{ij}	twist terms defined in equation (A16)
	$\psi_{\mathbf{ij}}$	curvature terms defined in equation (A15)

Comma preceding a subscript denotes differentiation with respect to the subscript.

5

ANALYSIS

Assumptions

The buckling analysis of linear elastic orthotropic plates has been carried out under the following assumptions:

1. Coupling between bending and extensional deformation is neglected. (In practice this assumption implies a midplane symmetric laminated panel.)

2. Coupling between bending and twisting deformation is neglected. (In practice this assumption implies a balanced laminate.)

3. The deformations of the panel obey the Kirchhoff hypothesis (see ref. 10).

4. The nonlinear strain-displacement relationships used to obtain (linear) buckling equations are

$$e_{x} = u_{,x} + \frac{1}{2}(w_{,x})^{2}$$

$$\mathbf{e}_{y} = \mathbf{v}_{,y} + \frac{1}{2} (\mathbf{w}_{,y})^{2}$$

 $\gamma_{xy} = u_{,y} + v_{,x} + w_{,x}w_{,y}$

where e_x , e_y , and γ_{xy} are the strains and u, v, and w are the displacements in x-, y-, and z-directions, respectively.

5. The in-plane loads, N_x , N_y , and N_{xy} , are uniformly distributed along the appropriate edges of the plate.

6. Discrete stiffeners have no torsional stiffness and are symmetrically disposed with respect to the neutral surface of the panel.

Governing Equations

The internal virtual work of the panel during buckling may be expressed as

$$\delta U = \int_0^b \int_0^a \left(M_X \delta w_{,XX} + M_y \delta w_{,yy} + 2M_{Xy} \delta w_{,Xy} \right) dx dy$$
(1)

where a and b are the dimensions of the panel parallel to the X- and Y-axes, respectively, and δ is the variational operator. Also,

ECHNICAL LIBRARY

$$M_{x} = D_{11}w_{,xx} + D_{12}w_{,yy}$$
$$M_{y} = D_{12}w_{,xx} + D_{22}w_{,yy}$$
$$M_{xy} = 2D_{66}w_{,xy}$$

The sign conventions of the bending moments are given in figure 1, and the flexural stiffnesses, D₁₁, D₁₂, D₂₂, and D₆₆, given in reference 11, are about a unique neutral plane which has the property that matrix [B], which represents coupling between bending and extension, is null with respect to this plane. As given by reference 12, the virtual work of the applied in-plane loads is given by

$$\delta \mathbf{V}_{\mathbf{N}} = \int_{0}^{a} \int_{0}^{b} \left(\mathbf{N}_{\mathbf{X}} \mathbf{w}_{,\mathbf{X}} \delta \mathbf{w}_{,\mathbf{X}} + \mathbf{N}_{\mathbf{y}} \mathbf{w}_{,\mathbf{y}} \delta \mathbf{w}_{,\mathbf{y}} + \mathbf{N}_{\mathbf{X}\mathbf{y}} \mathbf{w}_{,\mathbf{y}} \delta \mathbf{w}_{,\mathbf{X}} + \mathbf{N}_{\mathbf{X}\mathbf{y}} \mathbf{w}_{,\mathbf{x}} \delta \mathbf{w}_{,\mathbf{y}} \right) d\mathbf{y} d\mathbf{x} \quad (3)$$

 $\int_0 \int_0 (\mathrm{}^{14} \mathrm{x}^W, \mathrm{x}^{\delta W}, \mathrm{x} + \mathrm{N}_y \mathrm{W}, \mathrm{y}^{\delta W}, \mathrm{y} + \mathrm{N}_x \mathrm{y}^W, \mathrm{y}^{\delta W}, \mathrm{x} + \mathrm{N}_x \mathrm{y}^W, \mathrm{x}^\delta \mathrm{W}, \mathrm{w}, \mathrm{x}^\delta \mathrm{W}, \mathrm{w}, \mathrm{x}^\delta \mathrm{W}, \mathrm{x}^\delta$ In appendix A, equations (A1) to (A3) are expressed in trigonometric finite-difference form (see fig. 2 for finite-difference station layout) and are substituted into the statement

$$\delta \mathbf{U} = \delta \mathbf{V}_{\mathbf{N}} + \delta \mathbf{V}_{\mathbf{S}} \tag{4}$$

where δV_S is the virtual work of the discrete springs. (See appendix A, eq. (A11).) Equation (4) yields the governing equations which are of the following form:

$$K_{ij} + S_{ij} + N_{x}\alpha_{ij} + N_{y}\psi_{ij} + 2N_{xy}\chi_{ij} = 0 \qquad \begin{pmatrix} i = 1, ..., M \\ j = 1, ..., N \end{pmatrix}$$
(5)

where K_{ij} , S_{ij} , α_{ij} , ψ_{ij} , and χ_{ij} are defined by equations (A13) to (A17) in appendix A.

The numerical technique of trigonometric finite differences and the numerical extraction of the buckling loads N_x , N_y , and N_{xy} from equation (5) are different from those conventionally used and therefore require further discussion.

Numerical Techniques

Trigonometric finite differences. - Conventionally, the central difference approximation for the derivative of a function f(x) at $x = x_0$ is approximated as

$$\frac{\mathrm{df}}{\mathrm{dx}}(\mathbf{x}_0) \approx \frac{1}{\Delta_{\mathbf{x}}} \left[f\left(\mathbf{x}_0 + \frac{\Delta_{\mathbf{x}}}{2} \right) - f\left(\mathbf{x}_0 - \frac{\Delta_{\mathbf{x}}}{2} \right) \right]$$
(6)

The right-hand side of equation (6) is denoted as the conventional finite-difference approximation for the derivative. In the limit as the finite-difference mesh spacing $\Delta_{\rm X}$ approaches zero, the right-hand side of equation (6) expresses the definition of the derivative. If f(x) is parabolic in the neighborhood of x_0 ,

$$f(x) = \gamma_1 + \gamma_2 (x - x_0) + \gamma_3 (x - x_0)^2$$
(7)

and it may be readily shown that the approximate expression given by equation (6) becomes an equality. If, however, f(x) is trigonometric about $x = x_0$,

$$f(x) = \gamma_1 + \gamma_2 \sin \frac{\pi(x - x_0)}{\lambda_x} + \gamma_3 \cos \frac{\pi(x - x_0)}{\lambda_x}$$
(8)

where $\lambda_{\mathbf{X}}$ is a wavelength parameter. It may be readily shown that

$$\frac{\mathrm{df}}{\mathrm{dx}}(\mathbf{x}_0) = \frac{1}{\hat{\Delta}_{\mathbf{X}}} \left[f\left(\mathbf{x}_0 + \frac{\Delta_{\mathbf{X}}}{2}\right) - f\left(\mathbf{x}_0 - \frac{\Delta_{\mathbf{X}}}{2}\right) \right]$$
(9)

where

TECHNICAL LIBRARY

$$\frac{1}{\hat{\Delta}_{\rm X}} = \frac{\pi}{2\lambda_{\rm X}\,\sin\left(\frac{\pi\Delta_{\rm X}}{2\lambda_{\rm X}}\right)} \tag{10}$$

The right-hand side of equation (9) is denoted as the trigonometric finite-difference approximation for the derivative. (In a two-dimensional problem a similar set of relationships would be derived for the y-direction, introducing the quantities Δ_y , $\hat{\Delta}_y$, and λ_y .)

The only difference between the right-hand side of equation (9) and that of equation (6) is that in the trigonometric expression $1/\hat{\Delta}_X$ replaces $1/\Delta_X$ of the conventional expression. As λ_X approaches infinity, $\hat{\Delta}_X$ approaches Δ_X and, consequently, the trigonometric difference expression reduces to the conventional expression.

Convergence of trigonometric finite-difference solutions.- Inasmuch as the buckling mode shape is usually trigonometric in nature, the trigonometric finite-difference solution can be made to exhibit a much faster convergence rate than the conventional difference solution by appropriate selection of λ_x and λ_y . This advantage is demonstrated with several isotropic plate examples discussed in appendix B. The convergence rate can also be degraded, however, by an inappropriate choice of λ_x and λ_y . It should be emphasized though, that the selection of λ_x and λ_y does not constrain the buckle mode shape to have wavelengths given by λ_x and λ_y . Rather, the trigonometric solution will always converge to the exact solution if enough degrees of freedom (finite-difference stations) are used.

Selection of trigonometric parameters λ_x and λ_y . Selecting appropriate values of λ_x and λ_y which improve the convergence rate of solutions is predominantly based upon engineering judgment and experience. One engineering approach which has proven useful is to select λ_x and λ_y based upon the buckle length of infinitely long panels; that is,

$$\frac{\lambda_{\rm X}}{\rm a} = \frac{\rm b/a}{\beta} \tag{11}$$

$$\frac{\lambda_{\rm Y}}{\rm b} = 1 \tag{12}$$

where β is the wavelength parameter of an infinitely long panel, defined as the ratio of the panel width to the buckle length. The value of β for the combined compression and shear buckling of simply supported and clamped infinite panels may be determined from equations (B2) and (B3) in appendix B. Additional suggestions for the selection of $\lambda_{\rm X}$ and $\lambda_{\rm V}$ are given in appendix B.

<u>Stability determinant evaluation and eigenvalue extraction</u>.- In this analysis the order of the stability determinant is kept to a manageable size by using the two-dimensional marching procedure outlined in appendix C. This procedure is basically an extension of the one-dimensional procedure used in reference 13. Briefly, the marching procedure successively operates on the equilibrium equations at each finite-difference station to achieve a relatively low-order stability determinant.

In searching for the combined load system which produces buckling, it is convenient to introduce dimensionless stress coefficients, \overline{N}_x , \overline{N}_y , and \overline{N}_{xy} , which may be determined from the dimensional quantities, N_x , N_y , and N_{xy} (fig. 1), by multiplying by the factor $b^2 \pi / D_{11}$. It is assumed that \overline{N}_x , \overline{N}_y , and \overline{N}_{xy} are linear functions of an eigenvalue \tilde{p} , that is,

$$\left. \begin{array}{l} \overline{\mathbf{N}}_{\mathbf{X}} = \overline{\mathbf{t}}_{\mathbf{X}} + \overline{\mathbf{p}}\mathbf{r}_{\mathbf{X}} \\ \overline{\mathbf{N}}_{\mathbf{y}} = \overline{\mathbf{t}}_{\mathbf{y}} + \overline{\mathbf{p}}\mathbf{r}_{\mathbf{y}} \\ \overline{\mathbf{N}}_{\mathbf{x}\mathbf{y}} = \overline{\mathbf{t}}_{\mathbf{x}\mathbf{y}} + \overline{\mathbf{p}}\mathbf{r}_{\mathbf{x}\mathbf{y}} \end{array} \right\}$$

This assumption allows some loads to be held constant while others are increased to buckling, or it allows the loads to increase with a fixed proportionality.

(13)

To find the lowest value of \bar{p} which makes the stability determinant vanish, a determinant plotting technique is used. In order to increase the speed of the plotting technique, a variable step size is employed. This step size is based upon a numerical parabolic extrapolation of the stability determinant at each step of the determinant plotting procedure.

COMPUTER PROGRAM

A computer program denoted BOP (Buckling of Orthotropic Panels) has been developed for the buckling of flat rectangular orthotropic laminated panels. The program is applicable to panels with compression and/or shear loading, discrete lateral deflection and rotational springs, discrete stiffeners, and general boundary conditions.

The program utilizes trigonometric finite differences to improve the problem convergence and thus requires the selection of λ_x and λ_y . The user has the option of determining and supplying λ_x and λ_y (based upon the discussion in appendix B) or allowing the program to automatically calculate and use values based on equations (11) and (12).

In addition, the user has the option of either (1) supplying the bending stiffnesses of the panel or (2) supplying the elastic moduli, filament orientation, and thickness of each lamina in a laminated panel and allowing the program to calculate the bending stiffnesses. When the second option is chosen, the program prints the flexural stiffness matrix D, defined in reference 11, as well as the laminate Young's moduli, shear modulus, and Poisson's ratios. (The second option may be used independently of the buckling analysis.) A complete description of the program is provided in appendix D.

Results from the computer program have been compared with many classical results for unstiffened isotropic and orthotropic panels under various boundary conditions and with some classical results for stiffened isotropic panels. These comparisons which are discussed in subsequent sections were found to be excellent, thereby indicating the validity of the program.

Shear Buckling of General Orthotropic Panels

From the general fourth-order equation for the shear buckling of orthotropic panels the buckling load coefficient may be expressed as

$$k_{s} = \frac{b^{2} N_{xy}}{\pi^{2} \sqrt[4]{D_{11} D_{22}^{3}}}$$
(14)

This coefficient is a function of only two variables

$$\Theta = \frac{\sqrt{D_{11}D_{22}}}{D_3} \tag{15}$$

and

$$B = \frac{b}{a} \sqrt[4]{\frac{D_{11}}{D_{22}}}$$

where $D_3 = D_{12} + 2D_{66}$. (Note that an isotropic panel implies $\Theta = 1$.)

Classically, general shear-buckling results for simply supported finite aspect-ratio panels have been obtained only for values of $\Theta \ge 1$ (see ref. 6). In figure 3 numerical results for $\Theta < 1$ have been presented. Also, for completeness and comparison purposes numerical results for $\Theta \ge 1$ are presented. The good agreement between these curves and those of reference 6 indicates the validity of the numerical results from the computer program. General results for the shear buckling of clamped panels, furthermore, do not appear in the literature for any range of Θ with the exception of $\Theta = 1$ (the isotropic case); consequently, numerical results for clamped panels are presented in figure 4.

Both the results for simply supported and clamped panels indicate that the percentage decline in buckling load from B = 1 to B = 0 decreases as Θ increases. Also, a comparison of figures 3 and 4 shows that the percentage increase in buckling load of clamped panels over simply supported panels increases with increasing Θ . The abrupt changes in slope appearing in these figures are due to changes in mode shape (from symmetric to antisymmetric modes). As anticipated from isotropic results (ref. 1), these abrupt changes are more predominant in clamped panels than in simply supported panels.

Tables 1 and 2 present the shear-buckling load coefficients used in obtaining the general orthotropic panel results of figures 3 and 4. Additionally, the trigonometric dif-

(16)

ference parameters (the mesh-spacing parameters a/Δ_x and b/Δ_y and the wavelength parameters λ_x/a and λ_y/b) used in obtaining the buckling coefficients are presented in tables 1 and 2.

Shear Buckling of a Simply Supported Panel With a Central Stiffener

Figure 5 presents results for the shear buckling of simply supported isotropic panels each of which contains one central flexural stiffener parallel to either the longer or shorter edges of the panel. As anticipated, the use of a central stiffener always provides an increase in the shear-buckling stress coefficient over that of the unstiffened panels $\left(\frac{\text{EI}}{\text{bD}} = 0\right)$. The percentage increase over unstiffened panels is greater in square panels than in rectangular panels. In rectangular panels of the same aspect ratio, the percentage increase over unstiffened panels is greater when the stiffeners are parallel to the longer direction than when they are parallel to the shorter direction. The central-stiffener results of figure 5, moreover, are in reasonably good agreement with similar results given in reference 14 for slightly curved panels. This agreement indicates the validity of the computer program for the solution of stiffened panels.

Parametric Studies of Orthotropic Filament Reinforced Panels

Results are presented for the buckling of sandwich panels whose upper and lower skins are of laminated graphite-epoxy construction. Although some of the results in this section could be obtained from general orthotropic curves, such as those of figures 3 and 4, it is of interest to examine the effect of filament orientation upon the buckling load. (The material properties for the graphite-epoxy skins are given in table 3, with their equivalent general orthotropic parameter values Θ and B at various filament orientations.)

In addition to the assumptions listed in the analysis section of this report, it is assumed in this section that

1. The panel is symmetric about the middle surface

2. Each lamina has the same filament orientation θ except for sign

3. The core carries no load and undergoes no transverse shear deformation

As a consequence of these assumptions, it may be shown that the buckling parameters \hat{N}_x , \hat{N}_y , and \hat{N}_{xy} defined as

$$\hat{\mathbf{N}}_{\mathbf{X}} = \frac{\mathbf{b}^{2} \mathbf{N}_{\mathbf{X}}}{\mathbf{E}_{1} t^{3} \left[1 - \left(\frac{\mathbf{h}}{t}\right)^{3} \right]}$$

(17a)

$$\hat{\mathbf{N}}_{y} = \frac{\mathbf{b}^{2}\mathbf{N}_{y}}{\mathbf{E}_{1}\mathbf{t}^{3}\left[1 - \left(\frac{\mathbf{h}}{\mathbf{t}}\right)^{3}\right]}$$

$$\hat{\mathbf{N}}_{\mathbf{X}\mathbf{y}} = \frac{\mathbf{b}^2 \mathbf{N}_{\mathbf{X}\mathbf{y}}}{\mathbf{E}_1 t^3 \left[1 - \left(\frac{\mathbf{h}}{t}\right)^3\right]}$$

depend only on the magnitude of θ , the panel aspect ratio, and the boundary conditions. They do not depend on the thickness of each lamina, the number of laminas, or the core thickness. However, in order for assumption 2 of the analysis section to be reasonable – that is, neglect of bending-twisting coupling – it may be necessary that the ratio of core thickness to total thickness h/t be nearly unity and that the amount of material in either cover oriented in the $+\theta$ and $-\theta$ directions be equal.

The variation of the buckling load with filament orientation for panels of various aspect ratios is presented in figure 6 for axial compression and in figure 7 for shear. The figures indicate that the buckling loads are highly dependent upon filament orientation and that optimum orientations (those which yield a maximum buckling load) may be determined for each aspect ratio. Also, the figures indicate that clamping has a greater effect on compressive buckling than on shear buckling.

An indication of the buckling strength of the epoxy panels as compared to equalweight aluminum panels is provided by a comparison of the discrete buckling loads appearing on the right-hand ordinate of figures 6 and 7 with the curves in the same figures. These comparable values are valid for thin-skinned sandwich panels which have the same core, of thickness h, as the graphite-epoxy panels, but which have aluminum skins. For all the cases considered, a range of filament orientations exists for which the buckling strength of the graphite-epoxy panels exceeds that of the comparable aluminum panel with the same aspect ratio and boundary conditions. In the case of a clamped square panel in shear, the buckling strength of the graphite-epoxy panel exceeds that of the aluminum panel at all filament orientations.

It should be noted that, if the restriction that each lamina have the same filament orientation $\pm \theta$ is removed, isotropic skins can be produced from groups of three or more laminas (for example, 0, +60, and -60) which will have the same weight as the $\pm \theta$ skins but will yield a higher buckling load for each case shown in figures 6 and 7 and for many other shear and compression loadings. However, this is not necessarily true in all cases; for example, in the transverse compression of long panels (a/b approaching zero), an orthotropic panel with filaments running transversely ($\theta = 0^{\circ}$) provides a higher

(17b)

buckling load than an equivalent isotropic panel. Furthermore, there are many applications where for various reasons (for example, strength or fabrication criteria) orthotropic panels are preferable to isotropic ones.

In figures 8 to 11 optimum filament orientations are shown for all aspect ratios. The curve of figure 8 was determined from the exact closed-form relationship for the compression of simply supported plates (ref. 6), while the curves of figures 9 to 11 were determined using program BOP. The abrupt changes in the slopes of these curves are caused by changes in the buckling mode shape associated with the optimum filament orientation. Except for figure 8, the location of these abrupt changes has been approximated since it is difficult to determine exactly where they occur.

In the compressive buckling curves (figs. 8 and 9) the optimum filament orientation for small aspect ratio a/b is 0° (parallel to the X-axis or to the direction of compression). This orientation angle rapidly increases at about a/b = 0.56 for simply supported panels and at about a/b = 1.05 for clamped panels. However, a comparison of the aspect-ratio 1 and 1.1 curves for a clamped panel as shown in figure 6 indicates that the optimum buckling load does not exhibit such a rapid change but decreases slightly as the aspect ratio goes from 1 to 1.1. For higher aspect ratios the optimum orientation oscillates with decreasing excursion about $\pm 45^{\circ}$ and, in general, a practical filament orientation for a/b > 1 is $\theta = \pm 45^{\circ}$.

In the case of shear buckling (figs. 10 and 11), the symmetry of the problem requires that the deviation of the optimum filament orientation from 45° for a panel of aspect ratio a/b be equal but opposite to that of a panel with aspect ratio b/a. Also, the peaks of figure 7 are quite flat; that is, they have a large radius of curvature associated with them. Consequently, it was difficult to determine precisely the optimum filament orientations in figures 10 and 11. However, it is reasonable to say from figures 10 and 11 that for large aspect ratios a/b > 2, $\theta = \pm 60^{\circ}$ to $\pm 62^{\circ}$ is a practical filament orientation.

Figures 12 and 13 present interaction curves for the buckling of simply supported and clamped panels in combined axial compression and shear for various filament orientations and aspect ratios. The optimum filament orientations (those that correspond to the highest values of the buckling parameters) change according to aspect ratio a/b and the ratio of N_{XY}/N_X . For simply supported panels (fig. 12), when a/b = 1, the optimum orientation for all combinations of N_X and N_{XY} is $\theta = \pm 45^\circ$. When a/b = 2 or 5, the optimum filament orientation for predominantly shear loading is near $\pm 60^\circ$ and for predominantly compressive loading is near $\pm 45^\circ$. For clamped panels (fig. 13) when a/b = 1 the optimum orientation changes from $\theta = \pm 45^\circ$ for shear loading to $\theta = 0^\circ$ for compression. When a/b = 2 or 5, the optimum orientation changes from $\theta = \pm 60^\circ$ for pure shear to $\theta = \pm 45^\circ$ for pure compression. This behavior was the same as that exhibited by simply supported panels. A summary of the data from figures 12 and 13 is shown in figure 14, which indicates the banded region in which all the results lie. For orthotropic panels it was found that the band is bounded from below by the following simple relationship given in reference 15 for isotropic panels:

$$R_{x} + R_{xy}^{2} = 1$$

where

$$R_{x} = \frac{N_{x}}{N_{x_{0}}}$$
$$R_{xy} = \frac{N_{xy}}{N_{xy_{0}}}$$

In equations (19), N_{X_0} and N_{XY_0} are the buckling loads for pure longitudinal compression and pure shear, respectively. Consequently, for the orthotropic cases considered, equation (18) is a reasonable conservative approximation for combined longitudinal compression and shear buckling of composite panels.

Figures 15 and 16 contain, respectively, compression and shear-buckling results for graphite-epoxy sandwich panels with nondeflecting edge supports and rotational edge springs for various filament orientations and aspect ratios. The associated boundary conditions are given by equations (A20) to (A22), and the rotational springs were assumed to be uniformly distributed about the panel edges. When the spring stiffness is zero, all four edges are simply supported and, when infinite, all four edges are clamped.

In general, the figures indicate that the buckling load increases sharply as the spring stiffness parameter bk_R/E_1t^3 increases from zero to one, the buckling loads obtaining at least 80 percent of their clamped value when the spring stiffness parameter is one. With further increase in the spring stiffness the buckling loads slowly approach the clamped value, increasing to within at least 10 percent of the clamped value when the spring stiffness parameter is three. Furthermore, the curves for the ±45^o filament orientation generally approached the clamped values most rapidly.

CONCLUDING REMARKS.

A computerized analysis has been developed for the combined compression and shear buckling of stiffened orthotropic composite panels on discrete springs. Boundary

(18)

(19)

conditions are general and include elastic boundary restraints. Buckling solutions are obtained by using a newly developed trigonometric finite-difference procedure which increases the solution convergence rate over conventional finite-difference methods, thus allowing problems to be solved with the same accuracy as with conventional differences but with fewer degrees of freedom. The trigonometric finite-difference procedure introduces two new parameters into the solution. These parameters can be internally selected by the program during problem execution or can be selected by the user. The validity of the program has been substantiated by comparisons with many existing known solutions. A program listing, input description, and sample problem are provided.

Using the program, the classical general shear-buckling results (in terms of universal orthotropic parameters), which are available only for simply supported panels over a limited range of orthotropic properties, have been extended to the complete range of these properties for simply supported panels and clamped panels. Results for the shear buckling of isotropic panels with a central stiffener have also been obtained.

The program has been applied to parametric studies which examine the effect of filament orientation upon the buckling of graphite-epoxy sandwich panels. From these studies optimum filament orientations (those which yield maximum buckling loads) were determined within a class of graphite-epoxy sandwich panels for all aspect ratios. In particular, it was found that for shear buckling of high-aspect-ratio panels (greater than two) reasonable filament orientations are between $\pm 60^{\circ}$ and $\pm 62^{\circ}$ while, for axial compression of panels with aspect ratio greater than one, a reasonable filament orientation is $\pm 45^{\circ}$. In addition, interaction curves were determined for the combined axial compression and shear buckling of panels with varying filament orientations. A parabolic interaction relationship previously developed for isotropic infinite strips in combined axial compression and shear provided a reasonably accurate and conservative estimate for the buckling loads of the orthotropic panels considered herein.

Langley Research Center National Aeronautics and Space Administration Hampton, Va. 23665 August 1, 1975

DEVELOPMENT OF GOVERNING EQUATIONS

For completeness, equations (1) to (3) of the main text are repeated here:

$$\delta U = \int_0^b \int_0^a \left(M_X \delta w_{,XX} + M_y \delta w_{,yy} + 2M_{Xy} \delta w_{,Xy} \right) dx dy$$
(A1)

$$M_{x} = D_{11}w_{,xx} + D_{12}w_{,yy}$$

$$M_{y} = D_{12}w_{,xx} + D_{22}w_{,yy}$$

$$M_{xy} = 2D_{66}w_{,xy}$$
(A2)

$$\delta V_{N} = \int_{0}^{a} \int_{0}^{b} \left(N_{X} w_{,X} \delta w_{,X} + N_{y} w_{,y} \delta w_{,y} + N_{Xy} w_{,y} \delta w_{,X} + N_{Xy} w_{,X} \delta w_{,y} \right) dy dx$$
(A3)

Then, replacing the derivatives in equations (A2) by trigonometric central differences yields

ECHNICAL LIBRARY BECHNICAL LIBRARY ABBOTTAEROSPACE.COM

$$(w,xx)_{ij} = \frac{1}{\hat{\Delta}_{x}^{2}} (w_{i+1,j} - 2w_{ij} + w_{i-1,j})$$

$$(w,yy)_{ij} = \frac{1}{\hat{\Delta}_{y}^{2}} (w_{i,j+1} - 2w_{ij} + w_{i,j-1})$$

$$(A4)$$

$$(w,xy)_{ij} = \frac{1}{\hat{\Delta}_{x}\hat{\Delta}_{y}} (w_{i+1,j+1} - w_{i,j+1} - w_{i+1,j} + w_{ij})$$

where $\hat{\Delta}_{\mathbf{X}}$ and $\hat{\Delta}_{\mathbf{y}}$ are the trigonometric difference coefficients defined by equation (10). The terms $(\mathbf{w},\mathbf{xx})_{ij}$ and $(\mathbf{w},\mathbf{yy})_{ij}$ are defined at the full stations denoted by the circles in figure 2(b), while $(\mathbf{w},\mathbf{xy})_{ij}$ is defined at the half stations denoted by the

17

squares in figure 2(b). Consequently, the indices (i,j) attached to a variable may refer to the variable being evaluated at either full or half stations, depending on the variable.

Introducing equations (A2) and (A4) into equation (A1) and replacing the double integral by a double sum yields

$$\delta \mathbf{U} = \Delta_{\mathbf{X}} \Delta_{\mathbf{y}} \sum_{j=1}^{\mathbf{N}} \sum_{i=1}^{\mathbf{M}} \left\{ \xi_{\mathbf{x}_{i}} \xi_{\mathbf{y}_{j}} \left[\frac{1}{\hat{\boldsymbol{\Delta}}_{\mathbf{X}}^{2}} \mathbf{M}_{\mathbf{x}_{ij}} \left(\delta \mathbf{w}_{i+1,j} - 2\delta \mathbf{w}_{ij} + \delta \mathbf{w}_{i-1,j} \right) + \frac{1}{\hat{\boldsymbol{\Delta}}_{\mathbf{y}}^{2}} \mathbf{M}_{\mathbf{y}_{ij}} \left(\delta \mathbf{w}_{i,j+1} - 2\delta \mathbf{w}_{ij} + \delta \mathbf{w}_{i-1,j} \right) \right\}$$

$$-2\delta \mathbf{w}_{ij} + \delta \mathbf{w}_{i,j-1} = \frac{2\eta_{x_i}\eta_{y_j}}{\hat{\Delta}_x \hat{\Delta}_y} \left(\delta \mathbf{w}_{i+1,j+1} - \delta \mathbf{w}_{i,j+1} - \delta \mathbf{w}_{i+1,j} + \delta \mathbf{w}_{ij} \right)$$
(A5)

where N and M are the total number of finite-difference stations in the x- and y-directions, respectively, and ξ_{x_i} , ξ_{y_j} , η_{x_i} , and η_{y_j} have the following definitions:

$$\xi_{\mathbf{X}_{i}} = \begin{cases} 0 & (i < I_{1} \text{ or } i > I_{3}) \\ 1/2 & (i = I_{1} \text{ or } i = I_{3}) \\ 1 & (I_{1} < i < I_{3}) \end{cases}$$
(A6)

$$\xi_{\mathbf{y}_{\mathbf{j}}} = \begin{cases} 0 & (\mathbf{j} < \mathbf{J}_{\mathbf{4}} \quad \text{or} \quad \mathbf{j} > \mathbf{J}_{\mathbf{2}}) \\ 1 & (\mathbf{j} = \mathbf{J}_{\mathbf{4}} \quad \text{or} \quad \mathbf{j} = \mathbf{J}_{\mathbf{2}}) \\ 1 & (\mathbf{J}_{\mathbf{4}} < \mathbf{j} < \mathbf{J}_{\mathbf{2}}) \end{cases}$$
(A7)
$$(\mathbf{J}_{\mathbf{4}} < \mathbf{j} < \mathbf{J}_{\mathbf{2}}) \end{cases}$$
(A7)
$$(\mathbf{I}_{\mathbf{1}} \quad \text{or} \quad \mathbf{i} \ge \mathbf{I}_{\mathbf{3}}) \\ 1 & (\mathbf{I}_{\mathbf{1}} \le \mathbf{i} \le \mathbf{I}_{\mathbf{3}}) \end{cases}$$
(A8)

$$\eta_{\mathbf{y}_{j}} = \begin{cases} 0 & (\mathbf{j} < \mathbf{J}_{4} \quad \text{or} \quad \mathbf{j} \ge \mathbf{J}_{2}) \\ 1 & (\mathbf{J}_{4} \le \mathbf{j} < \mathbf{J}_{2}) \end{cases}$$
(A9)

In equations (A6) to (A9), I_1 and I_3 are the row designations of boundaries (1) and (3), respectively, and J_2 and J_4 are the column designations of boundaries (2) and (4), respectively. (See fig. 2(a).)

Replacing the derivatives in equation (A3) by central trigonometric differences and the double integral by a double sum yields

$$\delta \mathbf{V}_{\mathbf{N}} = -\Delta_{\mathbf{X}} \Delta_{\mathbf{y}} \sum_{i=1}^{\mathbf{M}} \sum_{j=1}^{\mathbf{N}} \left\{ \xi_{\mathbf{y}j} \eta_{\mathbf{X}_{i}} \frac{\mathbf{N}_{\mathbf{X}}}{\hat{\Delta}_{\mathbf{X}}^{2}} (\mathbf{w}_{i+1,j} - \mathbf{w}_{ij}) (\delta \mathbf{w}_{i+1,j} - \delta \mathbf{w}_{ij}) + \xi_{\mathbf{X}_{i}} \eta_{\mathbf{y}_{j}} \frac{\mathbf{N}_{\mathbf{y}}}{\hat{\Delta}_{\mathbf{y}}^{2}} (\mathbf{w}_{i,j+1} - \mathbf{w}_{i,j}) \right\}$$
$$- \mathbf{w}_{ij} (\delta \mathbf{w}_{i,j+1} - \delta \mathbf{w}_{ij}) + \eta_{\mathbf{X}_{i}} \eta_{\mathbf{y}_{j}} \frac{\mathbf{N}_{\mathbf{X}\mathbf{y}}}{4\hat{\Delta}_{\mathbf{X}} \hat{\Delta}_{\mathbf{y}}} \Big[(\mathbf{w}_{i+1,j} - \mathbf{w}_{ij} + \mathbf{w}_{i+1,j+1} - \mathbf{w}_{i,j+1}) (\delta \mathbf{w}_{i,j+1} - \delta \mathbf{w}_{i,j+1}) - \delta \mathbf{w}_{i,j+1} - \delta \mathbf{w}_{i,j+1} - \delta \mathbf{w}_{i+1,j} + (\mathbf{w}_{i,j+1} - \mathbf{w}_{ij} + \mathbf{w}_{i+1,j+1} - \mathbf{w}_{i+1,j}) (\delta \mathbf{w}_{i+1,j} - \delta \mathbf{w}_{i,j+1}) \Big]$$

In deriving equation (A10), the first and second terms in the integrand of equation (A3) have been replaced by trigonometric differences evaluated at stations indicated by "x" and "y," respectively, in figure 2(b), while the third and fourth terms have been evaluated at half stations, indicated by squares in figure 2(b), by averaging the derivatives.

The external forces and moments on the panel are those coming from discrete lateral deflection and rotational springs. The virtual work of these forces and moments may be expressed as

$$\delta \mathbf{V}_{\mathbf{S}} = \sum_{i=1}^{\mathbf{M}} \sum_{j=1}^{\mathbf{N}} \mathbf{k}_{\ell_{ij}} \mathbf{w}_{ij} \delta \mathbf{w}_{ij} + \sum_{i=1}^{\mathbf{M}} \sum_{j=1}^{\mathbf{N}} \frac{\mathbf{k}_{\mathbf{x}_{ij}}}{\hat{\boldsymbol{\Delta}}_{\mathbf{x}}^2} (\mathbf{w}_{i+1,j} - \mathbf{w}_{ij}) (\delta \mathbf{w}_{i+1,j} - \delta \mathbf{w}_{ij})$$

+
$$\sum_{i=1}^{M} \sum_{j=1}^{N} \frac{k_{y_{ij}}}{\hat{\Delta}_{y}^{2}} (w_{i,j+1} - w_{ij}) (\delta w_{i,j+1} - \delta w_{ij})$$

+ $\delta w_{i+1,j+1} - \delta w_{i,j+1}$

(A11)

19

(A10)

where k_{ℓ} is the spring stiffness associated with a lateral deflection spring and k_{x} and k_{y} are stiffnesses associated with rotational springs which resist moments acting about the Y- and X-axes, respectively. The k_{ℓ} type springs act at full stations, indicated by circles in figure 2(b), while the k_{x} and k_{y} type springs act at positions indicated by "x" and "y," respectively, in figure 2(b).

Substituting equations (A5), (A10), and (A11) into the statement of the principle of virtual work, equation (4) yields

$$\sum_{i=1}^{M} \sum_{j=1}^{N} \left(K_{ij} + S_{ij} + N_x \alpha_{ij} + N_y \psi_{ij} + 2N_{xy} \chi_{ij} \right) \delta w_{ij} = 0$$
(A12)

where

$$K_{ij} = \xi_{y_{j}} \frac{1}{\hat{\Delta}_{x}^{2}} \left(\xi_{x_{i+1}} M_{x_{i+1},j} - 2\xi_{x_{i}} M_{x_{ij}} + \xi_{x_{i-1}} M_{x_{i-1},j} \right) + \xi_{x_{i}} \frac{1}{\hat{\Delta}_{y}^{2}} \left(\xi_{y_{j+1}} M_{y_{i,j+1}} - 2\xi_{y_{j}} M_{y_{ij}} + \xi_{y_{j-1}} M_{y_{j-1},j-1} \right) + \frac{1}{\hat{\Delta}_{x}} \hat{\Delta}_{y} \left(\eta_{x_{i-1}} \eta_{y_{j-1}} M_{xy_{i-1},j-1} - \eta_{x_{i-1}} \eta_{y_{j}} M_{xy_{i-1},j} - \eta_{x_{i-1}} \eta_{y_{j}} M_{xy_{i-1},j} \right)$$

$$- \eta_{x_{i}} \eta_{y_{j-1}} M_{xy_{i,j-1}} + \eta_{x_{i}} \eta_{y_{j}} M_{xy_{ij}} \right)$$
(A13)

$$\alpha_{ij} = \frac{1}{\hat{\Delta}_{\mathbf{X}}^2} \left[\xi_{\mathbf{y}_j} \eta_{\mathbf{x}_i} (\mathbf{w}_{i+1,j} - \mathbf{w}_{ij}) - \xi_{\mathbf{y}_j} \eta_{\mathbf{x}_{i-1}} (\mathbf{w}_{ij} - \mathbf{w}_{i-1,j}) \right]$$
(A14)

$$\psi_{ij} = \frac{1}{\hat{\Delta}_{y}^{2}} \left[\xi_{x_{i}} \eta_{y_{j}} (w_{i,j+1} - w_{ij}) - \xi_{x_{i}} \eta_{y_{j-1}} (w_{ij} - w_{i,j-1}) \right]$$
(A15)

(A16)

$$\begin{aligned} \chi_{ij} &= \frac{1}{4\hat{\Delta}_{\mathbf{x}} \hat{\Delta}_{\mathbf{y}}} \Big[(w_{i+1,j+1} - w_{ij}) \eta_{\mathbf{x}_{i}} \eta_{\mathbf{y}_{j}} - (w_{i+1,j-1} - w_{ij}) \eta_{\mathbf{x}_{i}} \eta_{\mathbf{y}_{j-1}} \\ &- (w_{ij} - w_{i-1,j-1}) \eta_{\mathbf{x}_{i-1}} \eta_{\mathbf{y}_{j-1}} + (w_{ij} - w_{i-1,j+1}) \eta_{\mathbf{x}_{i-1}} \eta_{\mathbf{y}_{j}} \Big] \end{aligned}$$

IIS DOCUMENT PROVIED BY THE ABBOTT AEROSPACE TECHNICAL LIBRARY ABBOTTAEROSPACE.COD

$$S_{ij} = \frac{1}{\Delta_{x} \Delta_{y}} k_{\ell ij} w_{ij} + \frac{1}{\Delta_{x} \Delta_{y} \hat{\Delta}_{x}^{2}} \left[k_{x_{i-1,j}} (w_{ij} - w_{i-1,j}) - k_{x_{ij}} (w_{i+1,j} - w_{ij}) \right] + \frac{1}{\Delta_{x} \Delta_{y} \hat{\Delta}_{y}^{2}} \left[k_{y_{i,j-1}} (w_{ij} - w_{i,j-1}) - k_{y_{ij}} (w_{i,j+1} - w_{ij}) \right]$$
(A17)

From equations (A2) and (A4), the moments are related to the displacements as follows:

$$\left(M_{x} \right)_{ij} = \left(D_{11} \right)_{ij} \left(w_{i+1,j} - 2w_{ij} + w_{i-1,j} \right) \frac{1}{\hat{\Delta}_{x}^{2}} + \left(D_{12} \right)_{ij} \left(w_{i,j+1} - 2w_{ij} + w_{i,j-1} \right) \frac{1}{\hat{\Delta}_{y}^{2}} \right)$$

$$\left(M_{y} \right)_{ij} = \left(D_{22} \right)_{ij} \left(w_{i,j+1} - 2w_{ij} + w_{i,j-1} \right) \frac{1}{\hat{\Delta}_{y}^{2}} + \left(D_{12} \right)_{ij} \left(w_{i+1,j} - 2w_{ij} + w_{i-1,j} \right) \frac{1}{\hat{\Delta}_{x}^{2}} \right)$$

$$\left(M_{xy} \right)_{ij} = 2 \left(D_{66} \right)_{ij} \left(w_{i+1,j+1} - w_{i,j+1} - w_{i+1,j} + w_{ij} \right) \frac{1}{\hat{\Delta}_{x} \hat{\Delta}_{y}}$$

$$(A18)$$

where $(M_x)_{ij}$ and $(M_y)_{ij}$ act at the full stations, indicated by circles in figure 2(b), and $(M_{xy})_{ij}$ acts at the half stations, indicated by squares in figure 2(b).

Boundary Conditions

<u>All four boundaries free or spring-supported</u>. - If on the plate boundaries no constraints exist on w or its derivatives normal to the boundary, equation (A12) must be valid for all virtual displacements δw_{ij} , thus yielding equation (5) which is repeated here:

$$K_{ij} + S_{ij} + N_{x}\alpha_{ij} + N_{y}\psi_{ij} + 2N_{xy}\chi_{ij} = 0 \qquad (i = 1, ..., M) j = 1, ..., N$$
(A19)

Equation (A19) represents equilibrium at each finite-difference station with each equilibrium equation containing an array of 13 values of w as depicted in figure 2(b). In solving these equations by the procedure discussed in appendix C, the terms w_{ij} represent the unknowns and equations (A18) are used to determine the moments appearing in the relationship for K_{ij} , equation (A13).

When a difference station lies on the boundary of the plate (that is, $i = I_1$ or $i = I_3$ or $j = J_4$ or $j = J_2$), the corresponding equilibrium equation reduces to the natural boundary condition on the Kirchhoff shear, reference 6. Also, when a difference station lies one finite difference interval off the plate (that is, $i = I_1 - 1$ or $i = I_3 + 1$ or $j = J_4 - 1$ or $j = J_2 + 1$, the corresponding equilibrium equation reduces to the natural boundary condition on the bending moment. Furthermore, when a difference station lies two or more finite-difference intervals off the plate (that is, $i \le I_1 - 1$ or $i \ge I_3 + 1$ or $j < J_4 - 1$ or $j > J_2 + 1$, the corresponding equilibrium equations reduce to the trivial equation 0 = 0. Consequently, no equilibrium equations exist for these stations.

Edges with nondeflecting lateral supports and rotational springs. - Equation (A19) may be used in approximating the solution of problems with nondeflecting edges; for example, if w = 0 on an edge, equation (A19) may be used in conjunction with extremely stiff lateral springs placed along the edge. Alternatively, an edge which is restrained from lateral motion may be handled as a special case, and in so doing the number of computations required for the problem solution is reduced.

The boundary condition for a nondeflecting edge is

w = 0	(on	the edge)	(A20)
If, in addition, uniformly distri (see fig. 2(a)),		ng boundaries (1) and	1 (3)
$M_x = k_R w_{,x}$	(on		(A21)

or, if uniformly distributed rotational springs act along boundary (2) or (4),

$$M_{\rm V} = k_{\rm B} W_{\rm V}$$
 (on the edge) (A22)

As a result of the foregoing, equation (A20) replaces the boundary condition on the Kirchhoff shear, while the difference form of equation (A21) or (A22) replaces the boundary condition on the edge moment. Furthermore, as an example, equation (A21) on boundary (1) becomes

$$(M_{\mathbf{X}})_{\mathbf{I}_{1},j} = \frac{k_{\mathbf{R}}(w_{\mathbf{I}_{1}+1,j} - w_{\mathbf{I}_{1}-1,j})}{\hat{\Delta}_{\mathbf{X}}^{*}}$$
 (A23)

where

$$\frac{1}{\hat{\Delta}_{\mathbf{X}}^{*}} = \frac{\pi}{2\lambda_{\mathbf{X}} \sin \frac{\pi \Delta_{\mathbf{X}}}{\lambda_{\mathbf{X}}}}$$
(A24)

Substituting for M_X from equations (A18) and employing equation (A23) yields

$$(M_{x})_{I_{1},j} = \frac{(D_{11})_{I_{1},j}}{\hat{\Delta}_{x}^{2}} (w_{I_{1}+1,j} + w_{I_{1}-1,j}) = \frac{k_{R}}{\hat{\Delta}_{x}^{*}} (w_{I_{1}+1,j} - w_{I_{1}-1,j})$$
(A25)

Then

$$w_{I_{1}-1,j} = \frac{\left[\frac{k_{R}}{\hat{\Delta}_{x}^{*}} - \frac{(D_{11})_{I_{1},j}}{\hat{\Delta}_{x}^{2}}\right] w_{I_{1}+1,j}}{\frac{k_{R}}{\hat{\Delta}_{x}^{*}} + \frac{(D_{11})_{I_{1},j}}{\hat{\Delta}_{x}^{2}}}$$
(A26)

Substituting into the first of equation (A25) yields

$$(M_{x})_{I_{1},j} = \frac{(D_{11})_{I_{1},j}}{\hat{\Delta}_{x}^{2}} \begin{bmatrix} 1 + \frac{\frac{k_{R}}{\hat{\Delta}_{x}^{*}} - \frac{(D_{11})_{I_{1},j}}{\hat{\Delta}_{x}^{2}}}{\frac{k_{R}}{\hat{\Delta}_{x}^{*}} + \frac{(D_{11})_{I_{1},j}}{\hat{\Delta}_{x}^{2}}} \end{bmatrix} w_{I_{1}+1,j}$$
(A27)

It is evident from an examination of the first of equation (A25) that equation (A23) is satisfied by setting $w_{I_1-1,j} = 0$ and $(D_{11})_{I_1,j} = (D^*_{11})_{I_1,j}$ where

$$(D_{11}^{*})_{I_{1},j} = \begin{bmatrix} 1 + \frac{\frac{k_{R}}{\hat{\Delta}_{x}^{*}} - \frac{(D_{11})_{I_{1},j}}{\hat{\Delta}_{x}^{2}}}{\frac{k_{R}}{\hat{\Delta}_{x}^{*}} + \frac{(D_{11})_{I_{1},j}}{\hat{\Delta}_{x}^{2}}} \end{bmatrix} (D_{11})_{I_{1},j}$$
(A28)

Similar relationships may be developed for boundaries (2), (3), and (4).

23

In summary, for a nondeflecting boundary with uniformly distributed rotational springs, equilibrium on the boundary and one station off the boundary are not used. Instead, in the remaining equilibrium equations, w on the boundary and one station off the boundary are set equal to zero and D_{11} on the boundary is set equal to D_{11}^* if the boundary is number (1) or (3), and D_{22} on the boundary is set equal to D_{22}^* if the boundary is number (2) or (4).

The limiting cases of simply supported or clamped boundaries are readily provided by letting ${\bf k}_{\bf R}$ approach zero or infinity, respectively. Hence, for a simply supported boundary

$$D_{11}^* = 0$$
 if the boundary is (1) or (3)

$$D_{22}^* = 0$$
 if the boundary is (2) or (4)

and for a clamped boundary

 $D_{11}^* = 2D_{11}$ if the boundary is (1) or (3)

 $D_{22}^* = 2D_{22}$ if the boundary is (2) or (4)

Flexural Stiffeners

The effects of flexural stiffeners are accounted for in a manner similar to that used for nondeflecting supports. At each finite-difference station along the stiffener, $(D_{11})_{ij}$ is replaced by $(\overline{D}_{11})_{ij}$ if the stiffener is parallel to the X-axis and $(D_{22})_{ij}$ is replaced by $(\overline{D}_{22})_{ij}$ if the stiffener is parallel to the Y-axis, where

$\left(\overline{D}_{11}\right)_{ij} = \left(D_{11}\right)_{ij} + \frac{EI}{\Delta_y}$	
$\left(\overline{D}_{22}\right)_{ij} = \left(D_{22}\right)_{ij} + \frac{EI}{\Delta_x}$	(A29)

and EI is the lateral bending stiffness of the stiffener about the neutral plane of the panel.

Summary of Finite-Difference Stations at Which Equilibrium Is Enforced

As a result of the foregoing discussions on free or spring-supported edges and nondeflecting edges, the rows i and columns j at which equilibrium is enforced are, respectively,

 $M_e = I_3 - I_1 + 3$ - Twice the number of nondeflecting edges parallel to the Y-axis

 $N_e = J_2 - J_4 + 3$ - Twice the number of nondeflecting edges parallel to the X-axis

25

(A30)

APPENDIX B

TRIGONOMETRIC FINITE DIFFERENCES

Trigonometric finite differences introduce the trigonometric parameters λ_x and λ_y which are not present in conventional finite differences. Consequently, the first purpose of this appendix is to present and demonstrate some effective procedures for selecting values of λ_x and λ_y which results in an improved convergence rate over conventional differences. The second purpose is to point out some of the limitations of trigonometric finite differences.

Selection of λ_X and λ_V

Selection of values of λ_x and λ_y which improve the convergence rate of trigonometric finite-difference solutions over those of conventional finite-difference solutions is predominantly based on engineering considerations and experience. Experience has shown that it is often advantageous to select trigonometric parameters whose ratio is determined on the basis of the infinitely long panel solution as is done in equations (11) and (12), that is,

$$\frac{\lambda \mathbf{y}}{\lambda \mathbf{x}} = \beta \tag{B1}$$

where β is the wavelength parameter of an infinitely long panel, defined as the ratio of the panel width to the buckle length. Imposing equation (B1) on the parameter selection should be reasonable for panels which buckle with more than two half waves along their length.

The value of β may be determined to any degree of accuracy by extending the isotropic results of reference 16. For a panel with its long dimension parallel to the X-axis, first approximations of the buckling eigenvalue \overline{p}_{∞} and wavelength parameter β satisfy the following two simultaneous equations for panels whose long sides are simply supported:

$$\left(\overline{\mathbf{t}}_{\mathbf{x}\mathbf{y}} + \overline{\mathbf{p}}_{\infty} \mathbf{r}_{\mathbf{x}\mathbf{y}}\right)^{2} - \frac{9}{4} \mathbf{M}_{1} \mathbf{M}_{2} = 0$$

$$\left. \begin{array}{c} \frac{\partial}{\partial \beta} (\mathbf{M}_{1} \mathbf{M}_{2}) = 0 \end{array} \right\}$$
(B2)

and, for panels whose long sides are clamped, \overline{p}_{∞} and β satisfy the two simultaneous equations

$$\left(t_{\mathbf{x}\mathbf{y}} + \overline{\mathbf{p}}_{\infty} \mathbf{r}_{\mathbf{x}\mathbf{y}} \right)^{2} - \frac{15}{32} (2\mathbf{M}_{0} + \mathbf{M}_{2}) (\mathbf{M}_{1} + \mathbf{M}_{3}) = 0$$

$$\left. \frac{\partial}{\partial \beta} (\mathbf{M}_{0} + \mathbf{M}_{2}) (\mathbf{M}_{1} + \mathbf{M}_{3}) = 0 \right\}$$
(B3)

where

TECHNICAL LIBRARY ABBOTTAEROSPACE.COM

$$M_{n} = \frac{\pi}{8\beta} \left[\frac{D_{22}}{D_{11}} n^{4} + 2 \frac{D_{3}}{D_{11}} n^{2}\beta^{2} + \beta^{4} - \beta^{2} (\overline{t}_{x} + \overline{p}_{\infty}r_{x}) - n^{2} (\overline{t}_{y} + \overline{p}_{\infty}r_{y}) \right] \quad (n = 0, 1, 2, 3)$$

Convergence Behavior

Figures 17(a) to 17(f) illustrate the convergence of trigonometric finite-difference solutions when λ_y/λ_x is fixed on the basis of equation (B1). Results for both simply supported and clamped isotropic panels under either axial compression or shear are shown in these figures. In each case the panel was modeled using an equal number of finite-difference stations in the x- and y-directions. Exact and approximate values for these cases are given in references 1, 6, 16, and 17.

The dashed curve in each of figures 17(a) to 17(f) illustrates the convergence of the conventional difference solution – that is, λ_x and λ_y infinite – while the solid and dash-dot curves illustrate the convergence achieved with some finite values of λ_x . Comparison of the curves indicates that some values of $\lambda_{\mathbf{X}}$ increase the convergence rate over the conventional rate while other values decrease it. (In those special cases where the buckle shape is exactly a double sine wave, the trigonometric difference solution is exact when λ_x and λ_y are equal to the buckle half wavelength.) Consider though the dash-dot curve of each figure. These curves show the convergence when λ_{V} is simply taken equal to the panel width and $\lambda_{\mathbf{X}}$ is taken equal to the buckle length of the infinitely long panel; that is, equations (11) and (12) are applied. Comparison of the dash-dot curves and the dashed curves indicates that equations (11) and (12) provide reasonable values of λ_x and λ_y which improve the solution convergence. As figures 17(a) to 17(f) indicate, however, other values of $\lambda_{\mathbf{X}}/a$ could be selected which further improve the convergence rate. Such values may be found by making a condensed cross plot of each figure; for example, consider the case of the compression of a square isotropic clamped panel as shown in figure 17(c). For this case, equations (B3) predict $\beta = 1.5$. Then, using program BOP with $\lambda_V/\lambda_X = 1.5$, λ_X/a is varied from 0.25 to 1 for mesh sizes of $a/\Delta_x = b/\Delta_y = 5$ and $a/\Delta_x = b/\Delta_y = 6$; these curves are shown in figure 18. As the

APPENDIX B

mesh spacing is decreased, the curves will approach the exact solution at all values of $\lambda_{\rm X}/{\rm a}$. However, the two curves cross at $\lambda_{\rm X}/{\rm a}$ = 0.35 and $\overline{\rm N}_{\rm X}$ = 9.75, which implies that convergence is most rapid at this value of $\lambda_{\rm X}/a$ since increasing the mesh size did not change the buckling stress coefficient. It is evident from figure 17(c) that, if such a choice of λ_{X} were used, convergence would be improved beyond that achieved by selecting $\lambda_{\mathbf{x}}$ from equation (11).

As further examples, consider the results in table 4 for the shear buckling of the orthotropic panels described in table 3. The values of $\lambda_{\mathbf{X}}$ and $\lambda_{\mathbf{V}}$ were determined by making the required cross plots. It is evident by comparing the conventional and trigonometric solutions given in the table that the selected values of λ_x and λ_y provided excellent results.

The additional effort involved in finding better values of λ_x may be justified in problems where convergence would otherwise be extremely slow. It may also be justified in the performance of parameter studies. In such studies some typical problems within the problem class to be studied are chosen; for these, improved values of λ_X are found and then interpolated to yield $\lambda_{\mathbf{X}}$ for other problems within the study class.

Correction Factors for Equations (11) and (12)

Equations (B2) and (B3) which provide β for equations (11) and (12) do not cover every case; the boundary conditions may not be simply supported or clamped, or it may be inappropriate to use β based on an infinitely long panel. Consequently, equations (11) and (12) must be used with engineering judgment. Some allowance is provided by introducing correction factors C_x and C_{vx} into equations (11) and (12), that is,

$$\frac{\lambda_{y}}{\lambda_{x}} = C_{yx}\beta$$
(B4)
$$\frac{\lambda_{x}}{a} = \frac{b}{a}\frac{C_{x}}{\beta}$$
(B5)

(B5)

A numerical routine which calculates β from equations (B2) or (B3), and then λ_x and $\lambda_{\rm V}$ from equations (11) and (12), is used in program BOP. This program is briefly discussed in the main text and is documented in appendix D.

Limitations of Trigonometric Finite Differences

In figure 19 a sketch of the variation with $\lambda_{\rm X}$ of the coefficient $1/\Delta_{\rm X}$ as defined by equation (10) is presented. The reader's attention is called to the singularities of

APPENDIX B

 $1/\hat{\Delta}_{\mathbf{X}}$ at $\lambda_{\mathbf{X}} = \frac{\Delta_{\mathbf{X}}}{2}, \frac{\Delta_{\mathbf{X}}}{4}, \frac{\Delta_{\mathbf{X}}}{8}$, etc. In order to avoid these singularities and the rapidly varying behavior of $1/\hat{\Delta}_{\mathbf{X}}$ between them, $\lambda_{\mathbf{X}}$ and similarly $\lambda_{\mathbf{Y}}$ must be chosen such that

$$\lambda_{\mathbf{X}} > \frac{\Delta_{\mathbf{X}}}{2}$$

$$\lambda_{\mathbf{y}} > \frac{\Delta_{\mathbf{y}}}{2}$$

 $\begin{array}{c} \lambda_{\mathbf{X}} > \Delta_{\mathbf{X}} \\ \\ \lambda_{\mathbf{y}} > \Delta_{\mathbf{y}} \end{array}$

Moreover, if uniformly distributed rotational springs are prescribed on the boundaries in the manner presented in equations (A20) to (A24), then to avoid singularities in $\hat{\Delta}_{\mathbf{X}}^*$ and $\hat{\Delta}_{\mathbf{Y}}^*$ choose

(B6)

APPENDIX C

STABILITY DETERMINANT EVALUATION

Since the total number of rows and columns at which equilibrium is enforced is M_e and N_e , respectively, a stability determinant of order $M_eN_e \times M_eN_e$ would result. To produce a stability determinant of smaller size, a marching procedure is employed. This procedure, which is described herein, operates on the equilibrium equations to produce, by a process of successive elimination, a determinant of size $2M_e \times 2M_e$.

The marching procedure takes advantage of the fact that each of the difference equations of equilibrium, equations (5), is linear and homogeneous, with each one containing no more than 13 unknown deflections. For a station (i,j) away from the plate edges

$$l_{f} + 1 < i < l_{\ell} - 1$$

$$J_f + 1 \le j \le J_\ell - 1$$

where I_f and I_ℓ are the first and last rows of finite-difference stations at which equilibrium is prescribed, and J_f and J_ℓ are the first and last columns of finitedifference stations at which equilibrium is prescribed, the 13 unknown deflections form the geometric pattern shown in figure 2(b). It is evident from this pattern that the deflections at stations in column j + 2 can be determined by using equilibrium at stations in column j if the deflections in columns j - 2, j - 1, j, and j + 1 are known or prescribed. For equilibrium at stations lying near the edges, however, the geometric pattern of figure 2(b) is reduced. Consequently, equilibrium at stations in the first column J_f may be used to determine the deflections at stations in column $J_f + 2$ if the deflections only in columns J_f and $J_f + 1$ are prescribed, since deflections in columns $J_f - 1$ and $J_f - 2$ do not appear in these equilibrium equations.

Having found the deflections in column $J_f + 2$ from prescribed values in column J_f and $J_f + 1$, equilibrium at stations in column $J_f + 1$ can be used to obtain the deflections in column $J_f + 3$; likewise, equilibrium at stations in column $J_f + 2$ can provide deflections in column $J_f + 4$, etc. Thus, a marching routine is developed from column to column which determines the deflections throughout the panel from prescribed values in the first two columns. It should be noted that equilibrium at stations in the last two columns, $J_f - 1$ and J_f , is not used at this stage of the marching procedure.

The evaluation of the stability determinant can now be performed numerically for a given value of the eigenvalue by choosing $2M_e$ linearly independent sets of assumed

APPENDIX C

deflections for the first two columns. These assumed sets are taken as

$$\begin{bmatrix} \mathbf{w}^{(1)} \end{bmatrix} = \begin{bmatrix} 1\\0\\0\\0\\\cdot\\\cdot\\\cdot\\0 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{w}^{(2)} \end{bmatrix} = \begin{bmatrix} 0\\1\\0\\0\\\cdot\\\cdot\\0 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{w}^{(3)} \end{bmatrix} = \begin{bmatrix} 0\\0\\1\\0\\\cdot\\\cdot\\\cdot\\0 \end{bmatrix}, \dots, \begin{bmatrix} \mathbf{w}^{(2\mathbf{M}_{\mathbf{e}})} \end{bmatrix} = \begin{bmatrix} 0\\0\\0\\\cdot\\\cdot\\\cdot\\1 \end{bmatrix} \qquad (C1)$$

where each column contains $2M_e$ values. By marching across the plate with the rth set of these assumed values, deflections throughout the plate $w_{ij}^{(r)}$ are determined. However, the equilibrium equation at stations in the last two columns will not, in general, be satisfied by any of these assumed sets. Therefore, consider the column matrix

 $\left\{ e^{(\mathbf{r})} \right\} = \begin{cases} e_{\mathbf{I}_{f}, \mathbf{J}_{\ell} - 1} \\ \vdots \\ e_{\mathbf{I}_{\ell}, \mathbf{J}_{\ell} - 1} \\ e_{\mathbf{I}_{\ell}, \mathbf{J}_{\ell} - 1} \\ e_{\mathbf{I}_{f}, \mathbf{J}_{\ell}}^{(\mathbf{r})} \\ \vdots \\ \vdots \\ e_{\mathbf{I}_{f}, \mathbf{J}_{\ell}}^{(\mathbf{r})} \\ \vdots \\ e_{\mathbf{I}_{\ell}, \mathbf{J}_{\ell}}^{(\mathbf{r})} \end{cases}$

(C2)

where each element of the matrix represents the value of the left-hand side of an equilibrium equation at a station in columns $J_{\ell} - 1$ or J_{ℓ} for the rth assumed set and would be identically zero if the assumed deflections were exact. The total solution is a linear superposition of all the assumed sets, that is,

$$w_{ij} = \sum_{r=1}^{2M_e} A^{(r)} w_{ij}^{(r)} \qquad \begin{pmatrix} I_f \leq i \leq I_{\ell} \\ J_f \leq j \leq J_{\ell} \end{pmatrix}$$
(C3)

31

Correspondingly, the total contribution to equilibrium at columns J_ℓ - 1 and J_ℓ for all assumed sets of deflections is

$$[\mathbf{e}] = \sum_{\mathbf{r}=1}^{2\mathbf{M}_{\mathbf{e}}} \mathbf{A}^{(\mathbf{r})} \left\{ \mathbf{e}^{(\mathbf{r})} \right\}$$
(C4)

The coefficients $A^{(r)}$ are determined by enforcing equilibrium at stations in the last two columns which leads to

$$[\mathbf{e}] = \mathbf{0} \tag{C5}$$

or

For a nontrivial solution of equation (C6) the determinant of the coefficients must vanish, resulting in

$$|\mathbf{e}| = 0 \tag{C7}$$

and it is clear from equation (C6) that |e| is of order $2M_e \times 2M_e$.

APPENDIX D

COMPUTER PROGRAM

The computer program BOP (Buckling of Orthotropic Panels) was written in FORTRAN IV on a SCOPE 3.1 system modified for Langley Research Center and executes and loads with a field length of 60000 octal locations. The program is applicable to the combined compression and shear of stiffened, variable-thickness, flat rectangular orthotropic panels on discrete springs; boundary conditions are general and include elastic boundary restraints. A description of the input, an example problem showing input and output, and a program listing are provided.

Input Description

For each case the input consists of a single <u>identification card</u> and a Namelist BUCKLE as follows:

ISTIFF,ISTEP,IX,JX,MSHAPE,MA,NOMAT,TH,AT,MATYPE,E1,E2,U1,G12,IBC,AKR,D1, D2,D12,D66,DS1,XA,XB,AKL,AKX,AKY,NUPRIT,EI,IORIENT,LOC,TX,TY,TXY,RX,RY, RXY,P1,DELP,PFIN,TEST,MR,NC,X,Y,DS2,DS12,DS66

Many of the input variables have associated default values as will be indicated in the following descriptions:

Control parameters

ISTIFF = 1 no preprocessing of laminate properties – execute for buckling (only)

= 2 preprocess and execute for buckling

= 3 preprocess only – do not execute for buckling

DEFAULT:ISTIFF = 2

ISTEP = 1 program automatically varies the input step size, DELP

= 2 step size fixed and equal to DELP

DEFAULT:ISTEP = 1

IX = 1 output of intermediate results

= 2 output of intermediate results suppressed

JX = 1 output of flexural stiffnesses at each finite-difference station

= 2 output of flexural stiffnesses suppressed

DEFAULT:IX = JX = 2

MSHAPE = 1 compute mode shape

= 2 do not compute mode shape

DEFAULT:MSHAPE = 2

Laminate and lamina properties (Required if ISTIFF = 2 or 3)

MA	number of laminas in the laminate	
NOMAT	number of different materials comprising the laminate	
TH	a one-dimensional array in which the ith element of the array corre- sponds to the filament orientation (as measured from the X-axis in degrees) in the ith lamina	
АТ	a one-dimensional array in which the ith element of the array corre- sponds to the thickness of the ith lamina	
MATYPE	a one-dimensional array in which the ith element is the number desig- nation of the material in the ith lamina	
E1	a one-dimensional array in which the jth element of the array corre- sponds to the Young's modules parallel to the fibers in the jth material	
E2	a one-dimensional array specifying the Young's modulus transverse to the fibers	
U1	a one-dimensional array specifying Poisson's ratio ν_{12} in each lamina	
G12	a one-dimensional array specifying the shear modulus in each material	
Boundary conditions		
IBC	a one-dimensional array of four elements in which the ith element refers to the ith boundary (see fig. 2(a)); four options are available at each boundary	
IBC(I) = 1	nondeflecting lateral support with uniform rotational springs on edge ${\bf I}$	
= 2	simple support on edge I	
= 3	clamped on edge I	
= 4	free on edge I	

so ther boundary conditions - set by user through appropriate input of D1, D2, D12, and D66

AKR	a one-dimensional array in which the ith element of the array corre- sponds to the uniformly distributed rotational spring stiffness per unit length of boundary on the ith boundary; required if any boundary has IBC = 1								
Laminate flexura	1 stiffnesses (Required if ISTIFF = 1)								
D1	a two-dimensional array in which the (i,j)th element of the array corresponds to the value of $\ {\rm (D_{11})}_{ij}$								
D2	similar to D1, but specifying $(D_{22})_{ij}$								
D12	similar to D1, but specifying $(D_{12})_{ij}$								
D66	similar to D1, but specifying $(D_{66})_{ij}$								
DS1	reference value of D ₁₁								
Plate geometry									
XA = a	dimension parallel to X-axis (fig. $2(a)$)								
XB = b	dimension parallel to Y-axis (fig. 2(a))								
Discrete springs									
AKL	a two-dimensional array in which the (i,j)th element corresponds to $\left({{^k}_\ell} \right)_{ij}$								
AKX	similar to AKL but referring to $(k_x)_{ij}$								
AKY	similar to AKL but referring to $(k_y)_{ij}$								
Discrete flexural	stiffeners								
NUPRIT	number of stiffeners								
EI	a one-dimensional array whose ith element specifies the flexural stiff- ness of the ith stiffener about the neutral plane of the panel								
IORIENT	a one-dimensional array whose ith element specifies whether the stiff- ener is parallel to X- or Y-axis								

= 1 stiffener parallel to X-axis

= 2 stiffener parallel to Y-axis

LOC a one-dimensional array whose ith element gives the row or column location of the ith stiffener

DEFAULT:NUPRIT = 0; EI, IORIENT and LOC need not be input

Applied in-plane loads

In-plane loads are assumed to be uniform over the boundary to which they are applied and are increased to buckling according to the relationships prescribed by equations (13); therefore, the user inputs

 $TX = \overline{t}_{X}$ $TY = \overline{t}_{y}$ $TXY = \overline{t}_{Xy}$ $RX = r_{X}$ $RY = r_{y}$ $RXY = r_{Xy}$

Eigenvalue search parameters

P1

starting value of \overline{p} . If P1 < 0., the program will calculate P1 from equation (B2) or (B3) according to the relation,

$$P1 = ABS(P1) * PBAR$$
(D1)

where PBAR is \overline{p}_{∞} from equation (B2) or (B3).

DEFAULT:P1 = 0.9*PBAR

DELP increment of (\overline{p}) ; if P1 < 0., DELP = 0.1*PBAR; if ISTEP = 1, DELP is automatically varied during the eigenvalue search

PFIN maximum value of \overline{p} during the eigenvalue search

TEST eigenvalue accuracy

DEFAULT:1. \times 10⁻³

Trigonometric finite-difference data

MR number of rows of finite-difference stations interior to the plate - not including boundaries

NC number of columns of finite-difference stations interior to the plate – not including boundaries

Note: The marching procedure requires $NC \ge 4$

 $X = \lambda_X / a$

$$Y = \lambda y/b$$

Note: If the user inputs $X \leq 0$, the program automatically calculates a new value of X and Y according to the relationship expressed by equations (B4) and (B5); that is,

$$X = ABS(X) * XB/BETA/XA$$
(D2)

$$\mathbf{Y} = \mathbf{ABS}(\mathbf{Y}) \tag{D3}$$

where the input magnitudes of X and Y (that is, ABS(X) and ABS(Y)) replace C_X and C_{yX} in equations (B4) and (B5). Also, in equation (D1), BETA = β , and β is calculated from equation (B2) or (B3).

When ISTIFF = 1 and the evaluation of X and Y is chosen, the user must also input

DS2 average or typical value of D_{22}

DS12 average or typical value of D_{12}

DS66 average or typical value of D₆₆

DEFAULT: Calculation of X and Y using equations (D2) and (D3) where ABS(X) and ABS(Y) are set equal to unity.

Example Problem

Consider the shear buckling of a 12-inch by 3-inch clamped sandwich panel which has as its lay-up, 45/-45/45/-45/CORE/-45/45/-45/45. The core thickness is 0.0605 inch and each lamina of the skins is graphite-epoxy with a thickness of 0.0055 inch.

Sample Input

THIS IS A FREE FIELD IDENTIFICATION CARD

\$BUCKLE TX=.0, TY=.0, TXY=.0, RX=.0, RY=.0, RXY=1.,

XA=12,XB=3.,MR=12,NC=6,IBC=4*3,NUMAT=2,E1=2.10E7,1.,E2=2.39E6,1.,

U1=.31,.2,G12=6.5E5,1.,MA=9,MATYPE=4*1,2,4*1,

AT=4*,0055,0605,4*,0056,TH=45,,-45,,45,,-45,,0,-45,,45,,-45,,45.

\$

<u>, - −/</u>

INPUT FOR CASE		
THIS IS A FREE FIELD INDE	TIFICATION CARD	
in the second		
	, ματροποιομού το	 The second se
	111111111111***** Y 4 2 4 2	
· · · · · · · · · · · · · · · · · · ·	4 2 4 2 4 2	- · · · · · · · · · · · · · · · · · · ·
	4 2 333333333333	n na serie de la company. La company
	* * * * * * * * * * * * * * * * * * *	
	*	· · · · · · · · · · · · · · · · · · ·
		····· // • • •••
ISTIFF=2 ISTEP=1	IX=2 JX=2	TEST= 1.00000000E-03
XA= 1.20000000E+01	XB= 3.00000000F+00	ASPECT RATIO= 4.00000000E+00
MR=12 NC:	= 6	
TX= 0.	TY= 0.	TXY= 0.
P1 = -9.0000000E-01	DELP= 1.0000000E-01	PFIN= 1.0000000E+02
X= -1.00000000E+00	Y= 1.0000000E+00	n a series a series de la serie de la s
RX= 0.	RY= 0.	RXY= 1.0000000E+00

Sample Output

38 ⁻

LAMINATED PLATE PROPERTIES

ATERIAL KIND	El	E2	U1	GXY
1	2.1000000E+07	2.3900000E+06	3.1000000E-01	6.5000000E+0
2	1.0000000E+00	1.0000000E+00	2.0000000E-01	1.0000000E+0
AYER NO. MAT	. KIND THICK	THETA	- 	•
1	1 5.500000	00E-03 4.500000	00E+01	
2	1 5.5000000	DDE-03 -4.500000	00E+01	
	5.500000	0F-03 4.500000	00E+01	a di Angela
4	1 5.500000		00E+01	
5	2 6.050000			
	I 5.500000		00F+01	- ,
. 7	1 5.5000000	··· ·· ··· ··· ··· ···		
8	1 5.5000000			
	1 5.500000			
	****			****
****		1. An ale an de de de la ale a contra de la c		
IF THE FOLL	OWING FOUR VALUES THE CASE, THE RESI	ULTS SHOULD BE US	L. ED WITH DESCRETION	אכ
IF THE FOLL	OWING FOUR VALUES THE CASE, THE RESI	ARE NOT ALL EQUA ULTS SHOULD BE US	L. ED WITH DESCRETION	אכ
IF THE FOLL IF THIS IS 4.76775528E-	OWING FOUR VALUES THE CASE, THE RESI	ARE NOT ALL EQUA ULTS SHOULD BE US -17 8-80102296	L. ED WITH DESCRETION E-17 5.972340	JN
IF THE FOLL IF THIS IS 4.76775528E-	OWING FOUR VALUES THE CASE, THE RESI 17 7.15163293E	ARE NOT ALL EQUA ULTS SHOULD BE US -17 8-80102296	L. ED WITH DESCRETION E-17 5.972340	JN 77E-17
IF THE FOLL IF THIS IS 4.76775528E-	OWING FOUR VALUES THE CASE, THE RESI 17 7.15163293E	ARE NOT ALL EQUA ULTS SHOULD BE US -17 8.80102296	L. ED WITH DESCRETION E-17 5.972340	JN
IF THE FOLL IF THIS IS 4.76775528E-	OWING FOUR VALUES THE CASE, THE RESI 17 7.15163293E	ARE NOT ALL EQUA ULTS SHOULD BE US -17 8.80102296	L. ED WITH DESCRETION E-17 5.972340	JN
IF THE FOLL IF THIS IS 4.76775528E-	OWING FOUR VALUES THE CASE, THE RESI 17 7.15163293E	ARE NOT ALL EQUA ULTS SHOULD BE US -17 8.80102296	L. ED WITH DESCRETION E-17 5.972340	JN
IF THE FOLL IF THIS IS 4.76775528E-	OWING FOUR VALUES THE CASE, THE RESI 17 7.15163293E	ARE NOT ALL EQUA ULTS SHOULD BE US -17 8.80102296	L. ED WITH DESCRETION E-17 5.972340	JN
IF THE FOLL IF THIS IS 4.76775528E- ************************************	OWING FOUR VALUES THE CASE, THE RESI 17 7.15163293E ************************************	ARE NOT ALL EQUA ULTS SHOULD BE US -17 8.80102296 ***********************************	L. ED WITH DESCRETION E-17 5.972340	JN
IF THE FOLL IF THIS IS 4.76775528E- ************************************	OWING FOUR VALUES THE CASE, THE RESI 17 7.15163293E A MATRIX 05 2.48015179E+ 05 3.05215229E+	ARE NOT ALL EQUA ULTS SHOULD BE US -17 8.80102296 ***********************************	L. ED WITH DESCRETIO	JN
IF THE FOLL IF THIS IS 4.76775528E- ************************************	OWING FOUR VALUES THE CASE, THE RESI 17 7.15163293E ************************************	ARE NOT ALL EQUA ULTS SHOULD BE US -17 8.80102296 ***********************************	L. ED WITH DESCRETIO	JN 77E-17
IF THE FOLL IF THIS IS 4.76775528E- ************************************	OWING FOUR VALUES THE CASE, THE RESI 17 7.15163293E A MATRIX 05 2.48015179E+ 05 3.05215229E+	ARE NOT ALL EQUA ULTS SHOULD BE US -17 8.80102296 ***********************************	L. ED WITH DESCRETIO	JN
IF THE FOLL IF THIS IS 4.76775528E- ************************************	OWING FOUR VALUES THE CASE, THE RESI 17 7.15163293E A MATRIX 05 2.48015179E+ 05 3.05215229E+	ARE NOT ALL EQUA ULTS SHOULD BE US -17 8.80102296 ***********************************	L. ED WITH DESCRETIO	JN
IF THE FOLL IF THIS IS 4.76775528E- ************************************	OWING FOUR VALUES THE CASE, THE RESI 17 7.15163293E ************************************	ARE NOT ALL EQUA ULTS SHOULD BE US -17 8.80102296 ***********************************	L. ED WITH DESCRETIO	JN
IF THE FOLL IF THIS IS 4.76775528E- ************************************	OWING FOUR VALUES THE CASE, THE RESI 17 7.15163293E A MATRIX 05 2.48015179E+ 05 3.05215229E+	ARE NOT ALL EQUA ULTS SHOULD BE US -17 8.80102296 ***********************************	L. ED WITH DESCRETIO	JN
IF THE FOLL IF THIS IS 4.76775528E- ************************************	OWING FOUR VALUES THE CASE, THE RESI 17 7.15163293E ************************************	ARE NOT ALL EQUA ULTS SHOULD BE US -17 8.80102296 ***********************************	L. ED WITH DESCRETIO	JN
IF THE FOLL IF THIS IS 4.76775528E- ************************************	OWING FOUR VALUES THE CASE, THE RESI 17 7.15163293E ************************************	ARE NOT ALL EQUA ULTS SHOULD BE US -17 8.80102296 ***********************************	L. ED WITH DESCRETION E-17 5.972340	JN
IF THE FOLL IF THIS IS 4.76775528E- ************************************	OWING FOUR VALUES THE CASE, THE RESI 17 7.15163293E ************************************	ARE NOT ALL EQUA ULTS SHOULD BE US -17 8.80102296 ************************************	L. ED WITH DESCRETION E-17 5.972340 ************************************	JN
IF THE FOLL IF THIS IS 4.76775528E- ************************************	OWING FOUR VALUES THE CASE, THE RESI 17 7.15163293E ************************************	ARE NOT ALL EQUA ULTS SHOULD BE US -17 8.80102296 ************************************	L. ED WITH DESCRETION E-17 5.972340 ************************************	JN

D MATRIX

5.31653046E+02	4.32016589E+02	4.69571561E+01	
4.32016589E+02	5.31653046E+02	4.69571561E+01	
4.69571561E+01	4.69571561E+01	4.24421785E+02	
		and a second	
OVER	ALL LAMINATE PROPE	RTIES	
EX= 9.92156003E+0	5 EY= 9.92156003	E+05 GXY= 2.33162813E+06	
	-01 NUYX= 8.1259		
****	****	****	
P= 1.30776204	E+01 B= 9.579540	00E-01 F= -1.83044904E-08G=	3.83577069E-03
	MPUTED AND USED X=		
AND Y= 1.0000	0000E+00 BASED ON	THE INFINITE PLATE WAVE LENG	TH
BASED ON AN IN	FINITELY LONG PLAT	E THE BUCKLING STRESS COEFFIC	CIENTS ARE
NXBAR= 0.			
NYBAR= 0.	72 2 4 7 1 4 1 4 1		
NXYBAR= 1.307 AND THE STRAIN			
STRNX= 0.			•
STRNY= 0.		anne an	y managen a managen ar son a managen ar son a sea da a
STRNXY= 3.129	23870E-02		
PROGRAM WILL NOW C	ONTINUE WITH FINIT	E ASPECT RATIO SOLUTION	
			· · · · · · · · · · · · · · · · · · ·
***	****	****	
		na na series a series a series and a series and a series and a series and a series of the series of the series	
	DOUNDION CONDITIO	NG	
	BOUNDARY CONDITIO		
BOUNDA	RY NO. 1 IS CLAMPE	D	
RUINDA	RY NO. 2 IS CLAMPE	ология <u>ния и ка</u> лания и калания и	
DOUNDA	NT NO. 2 13 CLAMPE		
an a			
BOUNDA	RY NO. 3 IS CLAMPE	D	

DOCUMENT PROVIDED BY THE ABBOTT AEROSPACE TECHNICAL LIBRARY ABBOTTAEROSPACE.COM

BOUNDARY NO. 4 IS CLAMPED

0.	0.	1.17698583E+01	6.54187653E+1
	····· 0.	1.19006345E+01	2.18161022E+1
0.	0.	1.20314107E+01	2.37244168E+1
0.	0.	1.20473676E+01	1.33435159E+1
		1.20687996E+01	3.35545245E+1
	0.	1.207613695+01	9.37018457E+0
0.	0.	1.20793082E+01	0.
a series and the series of the	 A set of the set of		
NX= 0.	CKLING LOADS PER U NY= 3	NIT OF LENGTH ALONG BOUNDARY NXY= 7.04	EDGE +251216E+03
NX= 0. XB**2)*NX/(PI*	NY = 0 *2)/(T**3) = 0.		
NX= 0. (B**2)*NX/(PI* (B**2)*NY/(PI*	NY= 0 *2)/(T**3) = 0. *2)/(T**3) = 0.	• NXY= 7.02	
NX= 0. (B**2)*NX/(PI* (B**2)*NY/(PI*	NY= 0 *2)/(T**3) = 0. *2)/(T**3) = 0.		
NX= 0. (B**2) *NX/(PI* (B**2) *NY/(PI*	NY= 0 *2)/(T**3) = 0. *2)/(T**3) = 0.	• NXY= 7.02	
NX= 0. (B**2) *NX/(PI* (B**2) *NY/(PI*	NY= 0 *2)/(T**3) = 0. *2)/(T**3) = 0.	• NXY= 7.02	
NX= 0. (B**2) *NX/(PI* (B**2) *NY/(PI*	NY= 0 *2)/(T**3) = 0. *2)/(T**3) = 0.	• NXY= 7.02	

.

.

 LLAPE / = ZULIJ NASA - LANGLEY RESEARCH CENTER - PROGRAM THE PROGRAM FINDS THE BUCKLING LOADS (COMPRESSIVE OR SHEAR) OF ORTHOTROPIC THE PROGRAM FINDS THE BUCKLING LOADS (COMPRESSIVE OR SHEAR) OF ORTHOTROPIC PANELS WHOSE BOUNDARY CONDITIONS ON EACH EDGE MAY BE EITHER SIMPLY SUPPURTED, CLAMPED-OR FLASTICALLY CONSTRAINED BY ROTATIONAL SPRINGS_ THE URTHOTROPIC FLASTIC PROPERTIES OF THE PANEL MAY BE EITHER DIRECTLY SUPPLIED BY THE USER OR MAY BE INTERNALLY PREPROCESSED BY THE PROGRAM 	nnnnz
- LANGLEY RESEARCH CENTER - PROGRAM HE PROGRAM FINDS THE BUCKLING LOADS (COMPRESSIVE OR SHEAR) ANELS WHOSE EDUNDARY CONDITIONS ON EACH EDGE MAY BE EITHER UPPURTED. CLAMPED.OR ELASTICALLY CONSTRAINED BY ROTATIONAL HE URTHOTKUPIC FLASTIC PROPERTIES OF THE PANEL MAY BE EITHE UPPLIED BY THE USER OR MAY BE INTERNALLY PREPROCESSED BY TH	300000
HE PROGRAM FINDS THE BUCKLING LOADS (COMPRESSIVE DR SHEAR) ANELS WHOSE EDUNDARY CONDITIONS ON EACH EDGE MAY BE EITHER JPPURTED. CLAMPED.OR FLASTICALLY CONSTRAINED BY ROTATIONAL HE ORTHOTKOPIC FLASTIC PROPERTIES OF THE PANEL MAY BE EITHE UPPLIED BY THE USER OR MAY BE INTERNALLY PREPROCESSED BY TH	000004
PROGRAM FINDS THE BUCKLING LOADS (COMPRESSIVE DR SHEAR) ELS WHOSE EQUNDARY CONDITIONS ON EACH EDGE MAY BE EITHER PURTED. CLAMPED-OR ELASTICALLY CONSTRAINED BY ROTATIONAL URTHOTKOPIC ELASTIC PROPERTIES OF THE PANEL MAY BE EITHE PLIED BY THE USER OR MAY BE INTERNALLY PREPROCESSED BY TH	500000
ELS WHOSE EQUNDARY CONDITIONS ON EACH EDGE MAY BE EITHER PURTED. CLAMPED-OR ELASTICALLY CONSTRAINED BY ROTATIONAL URTHOTKOPIC ELASTIC PROPERTIES OF THE PANEL MAY BE EITHE PLIED BY THE USER OR MAY BE INTERNALLY PREPROCESSED BY TH	
PURIED, CLAMP ORTHOTKOPIC PLIED BY THE	
ORTHOTKOPIC DILED BY THE	800000
PLIED BY THE	000006
	1 000000
FOR LAMINATED PANELS.	1100000
	120000
LAMINATE DEFINITIONS	1300000
C ***************	1400000
	1500000
L AM I NAS	1600000
ERENT TYPES OF MATERIAL	1700000
LENTATION (IN DEGREES	1800000
MATYPE=TYPE UF MATERIAL IN EACH LAMINA	1900000
	200000
BUUNDARY CUNDITIONS	2100000
*****	2200000
	230000
RUTATIO	240000
IBC=2. SIMPLE SUPPORT	2500000
	250001
	260000
ED THRU D	2 700000
AKRERUTATIONAL SPRING STIFFNESS PER UNIT LENGTH OF BOUNDARY	280000
	290000
CONTROL OPTIONS	3000000
*****	3100000
	3200000
ISTIFF=1. UN NUT PREPRICESS. BUT EXECUTE FÜR BUCKLING	330000
ISTIFF=2. PREPRUCESS AND EXECUTE FOR BUCKLING (DEFUALT)	340000
ISTIFF=3. PREPRICESS UNLY. DO NOT EXECUTE FOR BUCKLING	350000
MSHAPE=1. EXECUTE FOR BUCKLING AND EXECUTE MODE SHAPE OPTION	3 600000
DO NUT	370000
DU NJT EXE	·
PRUGRAM AUTUMATICALLY VAR	
ISTEP=2. STEP SIZE FIXED AND FOUAL TO DELP	4000000

42

TECHNICAL LIBRARY ABBOTT AEROSPACE ABBOTTAEROSPACE COM

IMENT PROVIDED BY THE ABBOTT AEROSPACE	CHNICAL LIBRARY	ABBOTTAEROSPACE.COM	
IIS DOCUT	Ш Н		

	000000
<u> </u>	4500000
AT(100).MATYPE(100).E1(10).E2(10).U1(10).61	4600000
OR LENT (5) .L	4 700000
, AKR(4), kK(56)	4800001
EDUIVALENCE (AKB.AKS)	4900000
	5000000
	5100000
	5200000
COMMUN/LAYER/NOMAT,E1,E2,U1,G12,MA,MATYPE,AT,TH	5300000
/SIZE/IBPOSI.	5403000
~4	5500000
COMMCN/SPRING/AKL(32,32),AKX(32,32),AKY(32,32)	5600000
	5700000
	5800000
	5900000
1	6000001
	6100000
	6200000
	6300000
2,0512	6400000
<pre>、Y2,Y1)=X3+((Y1*Y3-Y2*Y3)*(X3-X1)*(X2-X3))/(Y1*</pre>	6600000
	6700000
	6800000
DEFAUL TS	0000001
NUPRIT=0	7100000
	7200000
	7300000
MSHAPE=2	7400000
ISTIFF=2	7500000
[X = J X = 2	7600000
ISTEP=1	7700000
AKS(2)=.0	7800000
Pl=9	1000062
PFIN=100.	8000000
C = X J N I	8100000
ICNT=1	8200000
DEL P= .1	8300000
	830001
TEST=1, E-3	8300002

ABBOTT AEROSPACE		BOTTAEROSPACE.COM	
MENT PROVIDED BY THE		ABE	
THIS DOCUN	-		

																A	\mathbf{P}	PE	IN	D	Χ	D																		
8500000 8600000 8700000	880000	8 900000	0000006	910000	9200000	9300000	9400001	9400002	9500000	0000096	0000026	9800000	0000066	1000000	10100000	10200000	10300000	00000401	1050000	10600000	10700000	10800000	10900000	11000001	11100000	11200000	11302000	11400000	11500000	11 600000	00000211	11800000	11900000	12000000	12100000	12200000	12300000	1240000	12500000	12600000
56 DD 9 J=1.32 57 9 AKL (1.J)=AKY(1.J)=.0 C FNL DFUALT LIST		70 1 FFICMT .GT. 1)GD TD 2	74 7 READ(5,5001) CASE	IF(E0F.5) 4.5	4 PRINT 8997	STOP	יי		ARTTE (7.50.00)	PRINT 5025				ADR.= X 1 / X A		HEADT (/ EX. *TH() =*	ADs2=ADJ*ADB								1F(1ST1FF • FU• 3	PEINT 5022.XA.X6.ADB.MR.NC	PRINT	GU 10 97	01 93 PRINT 5038	9.7 CUMITAUE		1.6XY.16C.1STIFF)	ART = ARTOT		105					41 IF(INCX .EQ. 5)GU TO 249
000056		070000	000074	000102	000102	111000	000113	211000	461000	221000	761000	000142	000155	000156	091000	021000	000170	221000	0.00174	021000	002000	020201	0.002.03	0.0002.04	000222	0.00.231	000246	005000	000301	000302	000305	-	000330	28. E U C C	000333	0003333	000335	010336	000337	000341

ABBOTT AEROSPACE	- LIBRARY	BOTTAEROSPACE.COM
ШН	7	AB
BY TI	X	
VIDE	=	
	4	
Ë	Т	
Ę	11	
Ш	ы	
1DO	ш	
ď	H	
U) T		
Ê		

	APPENDIX D	
12702000 12800000 12800000 13000000 13100000 13500000 13500000 13500000 13800000 13800000 14000000 14000000	1410000 14500000 14500000 14600000 14600000 14600000 14600000 15100000 15200000 15500000 15500000 15500000 15500000 15500000 15500000	15700000 15800000 15900000 15900000 15900000 16100000 16200000 16600000 16600000 16600000 16800000 16800000 16800000 16800000
24 4 168 168	SY=SIN(PI/Y/H) IF(NUPEIT .E0. 0)G0 T0 113 PRINT 5027 UL 112 I=1.40UPRIT UL 112 I=1.40UPRIT UL 112 I=1.40UPRIT IF(IORIENT(I) .EQ. 2)G0 T0 114 EPS=XA/EL EI(I)=EH/EPS/DS1 R=1.4FI(I) CALL SET(F1,1,18POS1,18POS3,L0C(I),R) GU TL 112 I14 EPS=Xu/b EI(I)=EH/EPS/DS1 CALL SET(F1,1,18POS1,18PUS3,L0C(I),R) GU TL 112 I14 EPS=Xu/b EI(I)=EH/EPS/DS1	112 * 113
000352 000352 000352 000357 000357 000357 000357 000415 0004157 0004157 0004157 0004157 0004157 0004157 0004157	000454 000465 000465 000465 000471 000502 000502 000502 000502	0005612 0005612 0005612 0006567 0006612 0006612 0006612 0006612 0006612 0006612 0006612 0006612 0006612 0006612 0006612 0006612 0006612 0006612 0006612 00006612 00006612 0006612 0006612 0006612 0006612 0006612 0006612 0006612 0006612 0006612 000006612 00006612 00006612 00006612 0000000000

Ц	>		Σ	
Ā	D	1	ö	
S	<	ĺ	DA	
AER	Ľ	2	SPA	
F	Ľ]		
	-	ī.	ΞV.	
	-	1	E	
<	_	l	BB	
Ï	<	[Ā	
BY THE	1	ì		
	Ξ			
ROVID	Ζ			
Ц	I			
ΗNE	Ľ)		
UNI	L.			
	H			
THIS				

000703	mana an	
	r Retering And VSTS	1720000
	ULVIII DUCILIIIU ANALIJI	17300000
000705	IF(X .GE. 100. OK. Y .GE. 100.)GO TO 122	1740000
	FHATX/EHATY*ADB	17500000
000716	SX=SIN(•5*PI/EL/X)	17600000
0 20 7 24	x S X = 2 • * X* S X / P I	17700000
000727	$EUL = \lambda/\gamma * ADB * SX/S IN(.5*PI/B/\gamma)$	1780000
000737	E0L1=2.*X/Y*A0b*SX/SIN(PI/B/Y)	1790000
000751	EDE=2.*SX/SIN(PI/EL/X)	1800000
000760		18100000
000760	122 EDE=1.	1820000
000762	XSX=1./Ft	1830000
030764	FOL=EDL1=ADB*B/FL	18400000
000767	123 MR2=2*(MR1-4)	1850000
000771	P[EL=P[***2	18600000
000773	TXSS=TX*PIEL	1870000
000774	TYSS=TY*PIEL	1880000
000776	TXY SS=TXY*PIEL	1890000
000777	IF(MSHAPE .EQ. 3)GO TO 84	1900000
100100	ц Ш	1910000
001003	DELP=UELPS*PIEL	1920000
001005	PFIN=PFINS*PIEL	19300000
00100	IF(P1 .GT.U.)GO TO 129	19300001
110100	p1=ABS(p1)*p	1930002
001012	DEL P=.01*P*PIEL	19300003
001015	129 CONTINUE	1930004
001015	P18=P1	1940000
210100	PRINT 61	1950000
001022	7700 L=0	1960000
201023	LC=1	19700000
001024	7702 CGNTINUE	00000108 19800000
001024	P1=P16*A062	1990000
001026	TXS=TXSS*ADR2+RX*P1	2000000
001032	TYS=TYSS*ADb2+RY*P1	20100000
001035	TXYS=TXYSS*ADB2+RXY*P1	2020000
001041	77 CALL ARPAYID1.02.D12.D66.EDL.W.A.TXS.TYS.TXS.MR.NC.XSX.EDL1.EDE.	2030000
	1 2,180)	20400000
001062	4002 l = l + l	2050000
001064	CALL DEUPPS(A,MR2,CDET.56)	2060000
201067	DET (L) = CDÈ T	2070000

JENT PROVIDED BY THE ABBOTT AEROSPACE	CHNICAL LIBRARY		
Docur	F		
U.S.			

20900000 21000000 21200000 21200000 21300000 21400000	21500000 21600001 21700000 21800000	21,900,000 22,000,000 22,200,000 22,200,000 22,40,000 22,40,000 22,40,000	1 1 1 1 1	23000000 23100000 23200000 23300000 23500000 23500000 23500000 23500000	23700000 23800000 23900000 24000000 24100000 24300000 24300000	24400000 24500000 24600000 24800000 24800000 24900000 25000000 25000000
2122222	212	22 22 22 22 22 22 22 22 22 22 22 22 22	22 22 22 22 22	23 23 23 23 23 23 23 23 23 23 23 23 23 2	233 244 244 244 244 244	254 254 254 254 254 254 254 254 255 254 255 254 255 254 255 255
TXS=TXS/PTEL/ADb2 TYS=TYS/PTEL/ADb2 TXYS=TXYS/PTEL/ADb2 80 PKINT 6.TXS.TYS.DET(L) 1F(L.TT.3)GD T0 90 AD1=DET(L)*DET(L-L)	P.(L.)*TE TO 154 155)*UELP/(D T. 6. AN T. 10. AN (L-1)-PP(15)6U TU		DELP=-UFT(L)/FN - FDU%(DET(L)*#2)/(8.*FD*#3) IF(A8S(DELP) .LT. PP(L)*L.E-0.00 T0 155 LC=LC+1 GU T0 154 GU T0 154 LC=LC+1 LC=LC+1 GU T0 154 LC=LC+1 LC=LC+1	IFAL 001 0F 0 04 IF(AD1 0F 0 04 CONTINUE CONTINUE P=UISSA DD= 0 TXS=TXSS/PIGL+RX* TYS=TYSS/PIGL+RY*	IXYS=TXYSS/PIEL+RXY*P Phint 6,TXS,TYS,TXS,DD WRITE(7,6)TXS,TYS,DD WRITE(7,6) P,00 TXS=TYS*PI*PI*0S1/(X8*X3) TYS=TYS*PI*PI*0S1/(X8*X9) TXYS=TYS*PI*PI*0S1/(K8*X6) PRINT 5014,TYS,TYS,TYS
001073 001076 001077 001101 001115 001115	001122 001124 001131 001133	001135 001152 001157 001157 001174 001176	001202 001204 001206 001213	001225 001225 001241 001243 001243 001245	001254 001254 001263 001263 001270 001271 001272	001300 001304 001317 001317 001351 001354 001354 001354

ABBOTT AEROSPACE	- LIBRARY	SOTTAEROSPACE.COM	
ENT PROVIDED BY THE	CHNICAL	ABE	
HIS DOCUME	Ē		

4		
001365	65 WEITEIZ.5. 14 JTXS.TXS.	2520000
		25300000
	Č CUMPUTATILA UF USEFUL BUCKLING PARAMETERS	25400000
		2550000
001377		2560000
001401	$FA = X_0 * X_B / F 12 / (1$	2570000
c04100	1 X 1 = 1 X 5 * F A	2580000
001400		2590000
014100		2600000
001411	11 PEINI 503C, TXT,TYT,TXYT	2610000
001423	23 FA=X8+X6/([[[***3]	2620000
001426		26300000
001434	34 EYT=FA*(1./EY)*(TYS-EXY/EX*TXS)	2640000
001442	42 FXYT= .5*FA*TXYS/GXY	26500000
001446	$\frac{1}{2} \frac{1}{2} \frac{1}$	2660000
201447	47 cYT=-EYT	2670000
001450	50 FXYT=-EXYT	2680000
0 0 1 4 5 1		2690000
001462	PRINT 5032	2700000
001460	60 130 IF (MSHAPE . FU. 11GC TC 87	27100000
001470	70 60 10 85	27202000
001471	71 90 IF(P13 .61. PFIN)G0 T0 85	27300000
001475	P18=P18	2740000
001470	76 GU TU 7702	27500000
274100	77 85 PL=P1S	27600000
001501	01 UELP=DELPS	27700000
001 502		27800000
001504	04 X=X 55	2790000
001505	i5 G(i Th 1	28000000
		2810000
	C COMPUTE MODE SHAPES	28200000
		2830000
001500	34 P=P1	28400000
001510	IF (MSHAPE . LU. 2)G	2850000
001512	12 87 TXS=(TXSS+FX*PIEL*P)*ADb2	2860000
001517	TYS=(TYSS+RY*PILL*	2870000
001524	24 TXYS=(TXY5S+RXY*P*PIEL)*AD82	2880000
001530	30 CALL ARRAY (01, 02, 012, 066, FOL, M, A, TXS, TYS, TXYS, MR, NC, XSX, EDL1, EDE,	2890300
	1 2,16C,4KL,L0CY,NK)	2900000
001554	00 115 I=1.	29100000
001556	56 115 B(1.1)=-A(1.682)	29200000
001565	MR2M1=MR2-1	29300000
001567	67 CALL GELIM(56.MR2ML,A.1.8.IPI VOT,0.WK.IERR)	29400001

29500000 29600000	29700000	29800000	29900000	3000000	30100000	30200000	30300000	30400000	30500000	30600000	30700000	30800000	30900000	31000000	31100000	31200000	31300000 Þ	31400000		31700000	31800000 5		32000000 U	32100000	32200000	32300000	32400000	32500000	32600000	32700000	32800000	32900000	33000000	33100000	33300001	33300002	33400000	33500000	33600001	33700000	33800001
8(MK2,1)=1. DU 115 I=1.MR	+2,3	116 W(I+2,4)=b(I+MR)	CALL ARRAY(D1.02.D12.D66.EDL.W.A.TXS.TYS.TXYS.MR.NC.XSX.EDL1.EDE.	1 1,180)	PRINT 5328	wM=0.	00 170 I=3, M6P2	00 170 J=3,NCP2	w1=A35(w(1,J))	170 WM=AMAX1(W1,WM)	w // [=] • / w/	00 171 I=2,MKP3	D0 172 J=2+HCP3	$172 \text{ w}(1, J) = \text{w}(1, J) * \text{w}_{1}$	PRINT 5025, (W(1,J),J=2,NCP3)	5033	6t. Tû 35	<pre>v FORMAT(2X,E16.3, 3X,E16.8,4X,E16.8,10X,E16.8)</pre>		50C0 FORMAT(////15H INPUT FUR CASE///IX8A1)////)	5001 FCPMAT(8A13) 00330387		5010 FURMAT(//,20X,194BGUNDARY CONDITIONS)	5'II FORMAT(/,5'X,*RGUNDARY NC. *,II,* HAS A ROTATIONAL SPRING SUPPORT O	IF MAGNITUDE *,FI6.8/)	5:12 FURMAT(/,13X,*6CUNDARY NC. *,11,* IS SIMPLY SUPPORTED*,/)	3 FURMAT(/,13A,*ROUNDARY NO. *,11,* IS CLAMPED*,/)	3	l0E*,/,5X,*~X=*,El6.8,5X,*NY=*,El6.8,5X,*NY)	5015 FCEMAT(/.(3E20.8))	FURMAT(//	FORMAT(//	5013 FCRMAT(//,30X,*D12*)	FURMAT(//,30X,*D66*	5.21 FURMAT(5x,*ISTIFF=*,11,3X,*ISTEP=*,11,13X,*IX=*,11,3X,*JX=*,11,	* 9X,*TEST=*,FI6.3//)	- · • 1	1,15X,*WR=*,12,5X,*N	5:23 FUR WAT (5x,*TX=*, E16.8,5X,*TY=*,F16.8,7X,*TXY=*,E16.8//	•5X•*Pl=*•Elo•8•5X•*DELP=*•El6•	* ,5X,*X=*,El6.3,6X,*Y=*,Fl6.8//,5X,*RX=*,Fl6.8//,5X,*RY=*,El6.8,5X,*RY=*,El6.8,7X,
0016C1	001603	001605	001611		001631	0.01635	001636	001640	001641	001645	001654	001656	001657	001660	001666	001702	112100	117100	001711	112 100	117100	117100	001711	001711		112100	112 100	001711		112160	112100	112100	001711	112100	001711		117100		117100		

ABBOTT AEROSPACE	L LIBRARY	BOTTAEROSPACE.COM
THE	∢	AB
D BY	C	
Ш	7	
PROVI	Í	
1ENT	U	
	Ш	
Ō		
THIS		

33900000 34000000 34100000 34200000	34400001 34500000 34600000	34700000 34800000 34900000 35000000	35100000 35200000 35300000 35400000	35500000 35600000 35700000 35800000 35900000
4.10X.1H2./1.30X.	ENT*,2X,*LOC*,10X,	6.8/. 6.8/. 16.8//)	8/. 8/. . 8/)	E BEEN SKIPPED*./) 0NLY*.//) 00000032 *)
3*RXY=*,Flc.b//) 5024 FURMAT(/.lx.L00(1H*)) 5025 FURMAT(//.50X.1211H1).5(1H*).1X .1HY./.b(30X.1H4.10X.1H2./).30X.	5020 FURMATIA.L2.3X.11.3X.L2.4X.FI0.8.2X.F16.8) 5027 FURMATIA.L2.3X.11.3X.L2.4X.FI0.8.2X.F10.8.2X.*LURIENT*,2X.*LUC*.10X. 5027 FURMAT(//5X.*E1/FPS/D1*./) 1 *E1*.12X.*E1/FPS/D1*./)	5020 FURMAT(//.41X.*MODE SHAPE*./) 5029 FURMAT(IX.41E15.7.1X1) 5031 FURMAT(//.2X.23H(XU**2)*hX/(PI**2)/(T**3) = .E16.8/. 5031 FURMAT(//.2X.20H(XD**2)*hY/(PI**2)/(T**3) = .E16.8/.	2 2X 29H(XP**2)*NXY/(P1**2) = .E16.8/. 5031 FCKMAT(//.2X.26H(XB**2)*EPSILCNX/(T**2) = .E16.8/. 1 2X.25H(XB**2)*EPSILCNY/(T**2) = .E16.8/. 2X.27H(XB**2)*EPSILONX/(T**2) = .E16.8/)	5032 FURMAT(1H1) 5C33 FORMAT(//) 5035 FURMAT(//2X,*wA?NING, A BUCKLING VALUE MAY HAVE BEEN SKIPPED*,/) 5035 FURMAT(//2X,*kISTEP=3 OR LSTIFF=3 - PREPROCESS ONLY*,//) 5038 FURMAT(//.10X,*ISTEP=3 OR LSTIFF=3 - PREPROCESS ONLY*,//) 8997 FURMAT(//* *) 6997 FURMAT(//*
3*RXY=*,Elc.B//) 5024 FURMAT(/.1X.100(1H*)) 5025 FURMAT(//.50X.12(1H1).5(1H*).1X.1HY.//	5026 FURMAT(1A.12.3X.11.3X.12 5027 FURMAT(//)X.*STIFFENEK 1 *E1*,12X.*E1/FPS/D1*./)	5028 FURMAT(//.41X.*MODE_SH 5029 FURMAT(1X.4115.7.1X1) 5031 FURMAT(//.2X.23H(XU**2 1 4X.23H(XD**2	2 2X,29H(XE*) 5031 FORMAT(//,2X,26H(XB*) 1 2X,26H(XB*) 2X,27H(XB*)	5032 FURMAT(1H1) 5033 FORMAT(//) 5035 FURMAT(/,2X,*wA2NING 5038 FURMAT(//.10X,*ISTEP 3997 FURMAT(//* 8997 FURMAT(//*
112100	112 100	112100 112100 112100	112 100	112100 112100 112100 112100 112100

é.

ABBOTT AEROSPACE	- LIBRARY	BOTTAEROSPACE.COM
THE	Ā	ABI
Ы	r î	
G	Ξ	
VIDED	7	
Ряо	Ī	
Ł	11	
ME	ы	
Dact	Ĕ	
Ш		

		000000
	SUBROUTINE ARRAY (D1, D2, D12, D66, EDL, W, A, IX, IY, IXY, MK, NL, X3X, EULL.	00000122
	1 EDE,MS,IFC)	2010000
000024	DIMENSION IBC(4)	36200000
000024		36300000
000024	W(32,32) .4	36400000
000024	ZE/IBPUS1.	3650000
	AY(32)	36600000
90000		36700000
10000	UVX X . 1 = X X + 1 - 1 - 2 . #W (K - 1) + W (K - 1 - 1)	36800000
00004		36900000
000067	<u>1 = 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × </u>	3700000
10000	1	37100000
000112		37200000
001127		37300000
13400	-	37400000
		37500000
000173	Tu(K_1)=(Tx*(WX(K_1	37600000
00010	X V & W X V V X X + X X X & X X X X X X X X X X X X X	37700000
and the second se	*	4
	ANALATE (4.1.1.4.1.4.1.1.4.1.1.4.1.1.4.1.1.4.1.4	38000000
70000		
000000	× × × × × × ×	
266000		
000000	1=(\ N K - +]	38500000
000413		38600000
144000		38700000
000411		38800000
000800		3890000
000 20	TOUMEMRTHT-2	3900000
000533	T 01 ± NC T 01 ±	39100000
000525	TF(MS_ED_1)G() T() 35	39200000
000527		39300000
		39400000
		3950000
000542		39600000
00000		39700000
0.000 6 6 0	14	39800000
000555		39900000
00055.	111 4.1 N=3.4	4000000
		401020204
ICCUNU	7 T	

HIS DOLIVENT PROVISE BY THE ABBOTT AFRICEPACE TECHNICAL LIBRARY ABBOTTAERDSPACE.COM

52	000560		4020000
2	000561	$\mathbb{M}[\mathbb{M} \times \mathbb{M} \times \mathbb{M} \times \mathbb{M}]$	4030000
	000563	0.0 49 1=3.1RMW	4040000
	000564	.3)	40500000
	0.00572	∠ (M + N) ≡ 1 • ∩	4060000
			40 700000
		C MARCHING PROCEDURE	4080000
	-		4090000
	002576	35 D(L 3), J=3, LCDL	4100000
	000000	CO 30 I=3, IRUM	41100000
	000601	YEAH=-XXA(I.,J)-2.*XYXYA(I.J)-Tw(I.J)	41200000
	000621	YMUM=YEM/EDLS+2.**YM(I,J)-YM(I,J-L)	41300000
	000636	YK = (YMUM-D12(I,J+1)*WXX(I,J+1))/D2(I,J+1)	4140000
	000653	IF(I .FQ. IBPOSI .OR. I .EQ. IBPOS3) YK=YMOM/D2(I.J+1)	4150000
	000665	7	4160000
	000676	30 CONTINUE	41 700000
	000703	1 FURMAI(/,2(1X,7E18.3/1)	41800000
	000703	IF(MS .EU. 1)RETURN	4190000
	000706	00 20 J=Wrt,NCC	4200000
	000710	DJ 21 I=3, IKUW	42100000
	000711	$MN = M_1 M + 1$	42200000
	000713	$hU_{ij} = h_{ij}/2$	4230000
	000715	CF=10.***NUM	4240000
	000720	A (MN, MMN) = EKE(I, J) /CF	4250000
	000732	20 CONTINUE	4260000
	000737	40 CUNTINUE	42700000
	C41000	2 FURMAT(/,4(1X,5E20.8/))	4280000
	000743	RETURN	4290000
	000744	QN -	4300000
	-		

APPENDIX D

S DOCUMENT PROVIDED BY THE ABOUT AFROSPACE TECHNICAL LIBRARY ABBOTTAEROSPACE.COM

	SUBSOUTINE DEUDDS(A.N.DET.MAX)	4310000
and the second se		43200000
200000	DIMENSION A(MAX.N)	4330000
200000		43400000
		4350000
A VVV I		4360000
	C DIVUT SEARCH	4370000
		4380000
010000	DO 560 T=1.NN	4390000
000013	CAVM = N	44000000
000014		44100000
000015	N. 135	44200000
000016		44300600
000022	1.1	44400000
40000	IFICAVM.GF.CAVA) GU TU 105	44500000
00007		44600000
		44 700000
120000	INI	44800000
750000	1	44900000
		45000000
	C RIW INTERCHANGE	45100000
		45200000
000035	TETTROM.E0.11) 60 TO 203	45300000
280000		1
00000	0	1
170000	$S_{MAP} = \Lambda(IRNW, I)$	J
SYCOOL	3	45700000
000052	N.S.	4580000
00000	L.	4590000
000000	4	4600000
0.00.064		46100000
		4620900C
	C NURMALLYF PLVET ROW	4630000
		46400000
000065	X. H. [+]	46500000
000047	DC 25.0 1=k.N	46600000
020000		46700000
		46800000
	ELIMINATION	46900000
		47000000
000077	00 550 L ≡K . 1	47100000
005101	4 P =	47200000

APPENDIX D

THIS DOCUMENT PROVIDED BY THE ABBOTT AFROSPACE THE CHNICAL LIBRARY ABBOTTAEROSPACE.COM

A(1,1,1) = A(1,1,1) - A(11,1) * SWAP730 DET = DET*A(N,N)DC 520 L=K.N GU TH 730 GU TO 750 500 CONTINUE 56C CUNTINUE 550 CONTINUE 720 DET=2. RETURN END

ABBOTT AEROSPACE	- LIBRARY	BOTTAEROSPACE.CON	
JOCUMENT PROVIDED BY THE	TECHNICAL	ABB	
ŋ			

	SUBROUTINE BCIX,Y.EL.B.AKS.DS1.DS2.DS12.D1.D2.D166.MR.NC.IBC.	4840000 4850000
	I XA, XB)	48600000
		48700000
	CUMPULES VALUES UP	48800000
	PUUNDART LUNITITUN	4890000
	SIMULTION.	4900000
		49100000
		49200000
		49300000
	TRC=4 CLATER 3011	49400000
		49500000
		49600000
000024	DIMENSION AKS(4), IBC	4970000
0.00.024	COMMON/SIZE/IBPOS1.IBPOS2.IBPCS3.IBPOS4.MRTOT.NCTOT.ZIX(32).	4980000
	12[Y(32),ETAX(32),ETAY(32)	4 4 9 0 0 0 0
000024	PI=3.14159265359	0000004
000025	SX=SIN(PI/X/EL)	50100000
000034	SY = SIN(PL/Y/b)	1
000044	S2X=51N(.5*P1/X/EL)	1
000055	S2Y=SIN(.5*PI/Y/B)	I
000066	BP053-1	T
000070	[BP2M]=[3E0]S2-1	
000072	1 kp4 p1 = 1 kp1 S4+1	
000073	16P2M1=18PUS2+1	50800000
720000	Dil 150 M= 1.4	1
000075	1 = 1 bC (M)	51000000
101000	G0 T0(151,152,153,154,150)L	5110000
000112	INT FOLL, M. AKS(M)	51200000
000126	IF(M	51300000
000141	AX=AKS(M)*XA/DS1	51400000
000144	FHATX=4.*X*S2X**2/PI/SX	51500000
000150	CX=(15*GAMMAX*EHATX)/(1+.5*GAMMAX*EHATX)	51600000
040160	.E0. 3) GC TO	51700000
000162	1 * (1 - CX) / US 1	51800000
000165	CALL SET(C	5190000
000170	CU 150	52909600
000175		52100000
100000	CALL SET	52203000
102000	0.150	52300000
000212	1 5	52400000
000316		52500000

ABBOTT AEROSPACE	- LIBRARY	30TTAEROSPACE.COM
THE	V	ABE
H	ò	
DVIDED	z	
R	Ι	
JMENT		
Doci	Ĥ	
THIS		

000233	JE(M • EG• 4)GC TU 180	52 700000
000235	183 K=US2*(1CY1/DS1	52800000
000241	CALL SFT(D2.1.18P0S1.18P0S3.18P0S2.R)	5290000
000245		5300000
000251	130 R=052*(1CY)/DS1	53100000
000255		5320000
000261		5330000
000265	152 PRINT 5012.A	53400000
000273	- 111	5350000
000276	GG TG(181, 183,170,180)M	5360000
118000	153 PRINT 5013.M	5370000
0.00317	CX=CY=+1.	5380000
00322	GÜ TD(181.133.170.180)M	5390000
000335	154 PKINT 5J14.M	5400000
000343	GU TU (201,202,203,204)M	54100000
000357	201 00 221 J=IBP054.IBP052	5420000
000361	D2(16P0S1, J) =. 5*D2(18PCS1, J)*(1D12(18P0S1, J)/D1(18P0S1, J)	5430000
	1 *012(IBP0.S1, J)/01(IBP0.S1, J))	54400000
000377	01(1820S1.J)=.0	5450000
000403	221 D12(TBPDS1,J)=.0	5460000
000407	60 TU 150	54 70000
000410	202 DC 223 1=18PuS1 • 18PCS3	5480000
000412	D1(1,IBPCS2)=.5*D1(1,IBPOS2)	5490000
000416	P2(1,1RPDS2)=.5*D2(1,1BPDS2)	5500000
000421	223 D12(I.I.BPUS2)=D12(I.I.BPDS2)*.5	55100000
000427	GO TO 150	5520000
0.00427	203 DU 225 J=IHP4P1.IBP2MI	5530000
000431	D2(IBPCS3.1)=.5*D2(IBPCS3.J)*(1D12(IBPCS3.J)/D2(IBPCS3.J)	5540000
	1 *D12(I8PC53,J)/D1(IBPDS3,J))	5550000
000447		5560000
200452	225 012(IBPE\$3,J)=.0	55700000
000456	Gù Từ 150	5580000
000457	234 DU 227 I=IBPUS1,IBPOS3	5590000
000461	D1(1.1BPUS4)=.5*D1(1.1BPOS4)	5600000
000465	D2(I,[BPUS4)=,5*D2(I,IBPDS4)	56100000
000470	227 D12(I.IBPUS4)=.5*012(I.IBP0S4)	5620000
003475	15) CONTINUE	5630000
000477	DO 260 I=1.MRTOT	5640000
00/1501	LIX(I) = ETAX(I) = I.	5650000
003505	260 FELT .LT. T8PDS1 .OR. L .GT. T8PDS3)71X(I)=FTAX(I)=.0	56600000
000525	ZIX(İBPÜSI)=.5	5670000
1.1.1.1.1		

TECHNICAL LIBRARY ABBOTTAEROSPACE

56900000	57000000	57100000	57200000	57 300000	57400000	57500000	57600000	57700000	57800000	57900000	58000000	58100000	58200000		
	ETAX(LBP(IS3)=.0	DU 201 J=1.NCIUI		261 [F(J .LT.]3P()54 .UK. J .64. 19PU221211191=E1ALAVE-V	21Y(1BP0S4)=.5	ZIY(I5PCS2)=.5	FTAY(IBPUS2)=.0	5011 FORMAT(/,13X,*BOUNDARY NU. *11,* HAS A AUTALIUNAL SEATING SULLEN: Y	IF MAUNITUDE *, FI6.8/1	5012 FORMAT(//13X,*BOUNDARY NU. */1.* IS SUMELT SUFFUNCTORY	5C13 FURMAT(/,13X,*300NDARY NU. *11,* 15 LLAMPEU*//	5014 FURMAT(/.13X.*BCUNDARY NO. *LI.* IS FKEEF.//	RETUEN	END	
	000530	0.00531	000533	000537	000557	000561	000562	003563		000563	000563	000563	000563	000564	

ABBOTT AEROSPACE	- LIBRARY	30TTAEROSPACE.COM	
ВҮ ТНЕ	Ā	ABE	
0 BY	U		
ROVIDED	Z		
Ľ,	T		
DOCUMENT	С Ш Н		
5 T			

							,		,		,							AI	P	E	NI)Ľ	X J	D .																
58400000	58500000	58600000	5870000	5880000	5890000	5900000	59100000	5920000	59300000	59400000	59500000	59600000	59700000	59800000	59900000	60200000	60300000	60400000	60503000	60600000	6070000	60800000	60900000	6100000	00000119	61200000	61300000	61400000	61500000	61600000	61700000	61 800000	90000619	62 000000	62100000	62200000	62300000	62400000	62500000	6260000
SUGRUTINE PREPINT.UZ.UIZ.UGG.USI.USZ.USIZ.USGG.IÄ.JÄ.MKINGITTEAT IEY.EXY.GXY.IBC.ISTIFF)		C THIS SUBROUTINE PREPROCESSES THE ORTHOTROPIC PROPERTIES OF A LAMINATE		DIMENSION Q(10,4), E1(10), E2(10), U1(10), G12(10), DD(3,3), IBC(4).	IAT(100).TF(100).MATYPE(100).D1(32.32).D2(32.32).D12(32.32).	2066(32,32)	COAMUN/LAYER/NUMAT.E1.E2.U1.G12.MA.MATYPE.AT.TH	CUMMCN/SIZE/IBPOS1.IBPOS2.IBPOS3.IBPOS4.MRTOT.NCTOT.ZIX(32).	12IY(32),FTAX(32),ETAY(32)	IBPOS1=2+IBC(11//4	IBP052=NC+3+IBC(4)/4*2	IBPCS3=IBPCS1+MR+1	[P D S 4= 2+ I oC (4) / 4* 2	MKTCT=MR+4+IbC(1)/4 +1bC(3)/4	NCTCT=NC+4+IPC(2)/4*2+IBC(4)/4*2	I FCRMAT(//,1015//)	IF(ISTIFF .EQ. 1)60 TO 160	Du 105 I=1,MKTUT	165 J=1	$165 \ 91(1, J) = 92(1, J) = 012(1, J) = 066(1, J) = .0$		100 PKINT 5003	PRINT 5006	DC 110 K=1, NOMAT	PRIMT 5007,K,E1(K),E2(K),U1(K),G12(K)	ANVXY=UI(K)	ANVYX=ANVXY*F2(K)/F1(K)	AMU=1./(1ANVXY*ANVYX)	∿(K,1)=E1(K)*ANU	u(K, 2) = E2(K) * ANU	0(K.S)=ANVXY*E2(K)*ANU	11C Q(K.4)=612(K)	PKI VT 5008	00 115 J=1.MA	PRINT 5009, J. AATYPE(J), AT(J), TH(J)	+AT(J)	ZL=, 5×1T	CALL EVAL(AT,TH,MATYPE,ZL,MA,Q,DD,IX,JX,EX,EY,EXY,GXY)	DS1=UD(1.1)	
				0 00026	1		000026	000026		920000	000031	000040	0 0 0 0 4 3	000051	000055	0000067	000067	000072	000013	000074	000115	000116	0.00122	000126	000133	000150	001152	000155	000160	000163	00/165	000170	000200	000203	000210	000223	000234	020236	000255	0,00,00

ABBUTT AEROSPACE	- LIBRARY	30TTAEROSPACE.COM
Ш	7	ΔBE
ΥT	2	4
í		
	=	
DVIDE	Ζ	
РКО	Т	
ţ	1	
JME		
	ш	
DOC	H	
UN T		
E		

62800000 62900000 63000000	63200000	63300000 63400000	6350000	6360000	6380000	00000689	64000000		6430000	64400000	6450000	i	ł	1	ı	6500000 XI		6420000		6550000	6560000	[]]=.] 65700000		6590000	66 000000	00000000000000000000000000000000000000		66300000	66400000	0.		1	SURFACE)	6690000	
DSL2=DD(L+21 CS66=CD(3+3) DD 14C KK=EBPLS1+EPCS3 DD 14C KK=EBPLS1+EPCS3	00 [40 KC=18F134,10F02 01(KR,KC)=00(1,11/0S1	02(KA+KCJ=0012+21/051 140 012(KR+KCJ=00(1+21/051	162M1=16P(52-1 183M1=16P(53-1	KR=13P0S1,1B3	DU 150 KC=18PUS4+182M1 160 344149 KC1-0014-31/0S1		./DS1	170 I=13PCS1.18PC	$00 170 J = 18POS4 \cdot 18POS2$					15101≈101131-1 1×201≈1301 52+1	TR3D1=1RD(53+1	[B4M1 ≈ LAPUS4-1	DO 180 I=1.181MI	- 1		UNIT	DU UU IUI LEIUSPIEMKIUI	=0211.11=0661				D1(I)=D12(I)=D2(I)=D66(I)=	182 CONTINUE			_		1 1	FURMAT(//		
000264	000270	000276 000301	000310	000313	000315	000317	000331	000333	000335	000337	005343	000346	000355	175000	000363	000364	000365	000367	000370	000405	000411	000413	000414	000435	000437	000441	0.00456	000463	000465	000447	000504	000511	000511	000511	

S DOCUMENT PROVIDED BY THE ABBOTT AEROSPACE TECHNICAL LIBRARY ABBOTTAEROSPACE.COM

67000000 67000000	67200000	6/30000	00000000000000000000000000000000000000		000000
X.13HMATERIAL KIND.8X.3H E1.15X.3H E2.13X.5H UL .12X.	2,7X,E16.8,3(1X,E16.8))	X,9HLAYER NU3X,9HMAT. KIND.6X,5HTHICK.12X,5HTHEIA1	2,9X,I2.5X,F16.8.1X,F16.81		
5006 FURMAT(//.1X.13HMA) 13H6XY)	5007 FORMAT(7X,12,7X,E1	5003 FURMAT (/ / , 1X, 9HL AYE	5009 FÜRMAII5X,12,9X,12	RETUPN	ÊND
006511	000511	000511	002511	000511	000512
60					

•

.

DECUMENT PROVIDED BY THE ABBOTT AEROSPACE TECHNICAL LIBRARY ABBOTTAEROSPACE.COM

	SUBRUUTINE EVAL(T.TH.IL.ZL.NL.0.0D.IX.JX.EX.EY.EXY.GXY)	67700000
0 00 0 2 0	UIMENSION T(100).TH(100).IL(100).DD(3.3).O(10.4).AA(3.3).BB(3.3).	67800000
	206[3,3]	67900000
000000	(13=1.73-	6800000
000022		68100000
000033		68200000
		68300000
000035		68400000
020200		68500000
000022	$\epsilon = 0.011 \text{ V} \cdot 1 \text{ V} = 0$	68600000
20000		6870000
000040		68800000
20000	THFTA=TH/11# 3 14159265356/180.	68900000
7.0000	HFTA	00000069
		69100000
10000		69200000
000045	HCDH 6%(H-K%)-H-D1%%2)	69300000
000000	TT=TT+T(1)	69400000
000073	010 20 TV=1.3	69500000
210000	o ¢	69600000
		4 0000004 94
c1 0000	AALIV-UVI-AALIV-UVITWOLIV-UVITAULU SEVIU UVI-SPITU UVILABITU UVIAHSO	69800000
000111		
	-	
07100		١
77100		70200000
471000	ZEFIZ=D011/21/AA1121	70300000
021000	DITAT OUTLIFT	7040000
<u>10000</u>		70500000
0001/33	DI LEELLIGEDE	7060000
000150	11	7070000
		7080000
000161	DI1 30 1=1 - M	7090000
10100	-	7100000
541000	THEIN=TH(1)*3.141592653597180.	71100000
00120		71200000
000175	-TT	71300000
000003	H [D] = H [-T (1)	71400000
000206	HOL (F = 0.2% [H] ** 3 - H - [D] * * 3)	7150000
00000		71600000
000015	()) 30 [V=1.3	71700000
000 315	3 (1 1 V = 1	71800000
77777		

7200000 72000000	7210000	7220000	7230000	7240000	7250000	7260000	7270000	7280000	72 90000	7300000	7310000	7320000	7330000	7340000	7350000	7360000	3. 7370000	15.8//) 73800000	VD ING MA 7390000	DT ALL E 7400000	ED WITH 7410000	7420000	7430000	7440000	7450000
3.00(IV.JV)=00(IV.JV)+08(IV.JV)*HCUBE PRIMT 3	PKINT 2.((AA(IV.JV).IV=1.3).JV=1.3)	PRIMT 4	PR[iv1 2, ((sB([V,JV),IV=1,3),.JV=1,3)	PKINT 5	PRINT 2.(100(1V.JV).1V=1.3).JV=1.3)	ANUXY=AA(1,2)/AA(2,2)	AMUYX=AA(1,2)/AA(1,1)	EX=AA(1,1)*(1,-AWUXY*ANUYX)/TT	rY=AA(2,2)*(1,-ANUXY*ANUYX)/II	F XY=ANUXY*EY	(;XY=0A(3,3)/TT	PRINT 7.FX.EY.GXY.ANUXY.ANUYX	2 FURMAT(//.3(1X.FI6.8.2X.F16.8.2X.F16.8.2))	3 FGRMAT(7/•25X•8HA MATKIX)	4 FCRMAT(//.25%.AHB MATRIX)	5 FURMATIZZ.SK.SHD MATRIXI	7 FORMAT(//.15X.*UVERALL LAMINATE PROPERTLES*.//.* EX=*.El6.8.	<pre>1 * EY=*,El6.8.* GXY=*,El6.8./.* NUXY=*,El6.8.* NUYX=*,El6.8//)</pre>	II	IY BE SIGNIFICAMT*./.5X.*IE THE FOLLOWING FOUR VALUES ARE NOT ALL E	20041.**./*5X.*1F THIS IS THE CASE. THE RESULTS SHOULD BE USED WITH	1 2 X	9 FURMAT(IX,76(1H*)./)	RETURN	END
000217	000241	000257	000263	000301	000305	003324	000326	000330	000335	0.00342	0.00344	000346	000364	000364	000364	0.003.64	000364		00C364				000364	000364	000365

6**2**

TECHNICAL LIBRARY ABBOTTAEROSPACE ABBOTTAEROSPACE DECUMENT PROVIDED BY THE ABBOTT AFRESPACE TECHNICAL LIBRARY ABBOTTAEROSPACE.COM

	SUBROUTINE TRANS (D.THETA.OB.K.IX.JX)	74600000
110000	T(3.3).T	7470000
110000		74800000
000016	CS=CDS(THLTA)	7490000
000024	T(1, 1) = T(1, 1) = T(2, 2) = T(2, 2) = CS + 2	75000000
000036	$ \sim$	75100000
000050	×	75200000
000055	(3.2)=-SN	75300000
000061	(~~	75400000
000045	(} • 1) = - T (7550000
000071	(5 , 3) = C S*	75600000
000076	(K.I)	75700000
00100	05(2:2)=0[k-2]	75800000
000102		7590000
000106	3.3)=2.*0(K.4)	76000000
111000	1	76100000
000122	EJ. LIPRINT	76200000
0.00145	. FO. 1) WRITE(76300000
000170	[M=1+3	76400000
000172	D0 5 IS=1,3	76500000
000173	5 ST(M. S)=0B([M.IS)=0.	76600000
000204	Di 10 IM=1.3	76700000
000205	1 S=	76800000
000206	2	76 900000
000207	. M I	77000000
000230		00000111
000231	5	77200000
000232	Di: 2û IM=1.3	77300000
000233	2.0 . un(I.R.I.S)=.0b(I.R.I.S)+TI(I.R.I.M)*ST(I.M.I.S)	77400000
000254	00 30 IM=1.3	77 500000
000255	I M .	77600000
000262	IF(IX EQ.	77700000
000317	.E9. 1) PAINT 1. (OB(I.) (= 1, 3). I=1.	77800000
000346		7790000
000375	1 FURMAT(3(3X,E16.8))	78000000
000375	kf tukn	78120200
000376	ÊND	78200000

ABBOTT AEROSPACE	LIBRARY	BOTTAEROSPACE.COM	
NT PROVIDED BY THE	THNICAL	ABE	
HIS DOCUMEN	Ē		

64	SUBROUTINE AUTUXY(X,Y, b, INCX,P)	78300001
010000	COMMON/XY/TX.TY.TXY.RX.RY.RXY.PI.AUB.DSI.DS2S.DS12.DS66.	78400000
010000	IIbC2+AKS2+XB+EX+EXY+GXY+II opint 53	7850001
000013	1 ~	7860000
000012		7870000
000000	236-12563/ 031 [1]	78300000
000021		7890000
000026		79000000
000027	()P=()H=] _	7910000
000031	0108=0178.	79200000
		7930000
	STAPLE SUPPORTS. TK=1	79400000
	•	7950000
U		79600000
000032	IF(IbC2 .FU. 3 .OK. AKS2*XB/DS2 .GI. 100.)IK=2	00000161
000047	*,	7980000
000052	CY≡TY+P*RY	79900000
000055	CXY=TXY+P*iXY	80 2002 08
000000	AM1=P1D8*(052+2.*0125*b*8+B**4-B*84CX-CY)	80100000
000072	-25 *	80202000
000102	AM185=P108*(12.*3*8-2.*CX+4.*D12S)	8030000
0110		8042000
000113	AM1 BP=-P1 * . 25*3X*B	80500000
000117	AM?=P[D3*(16.*0S2+8.*0]25*B*B+B**4-B*B*CX-4.*CY]	20000908
000132	AM2H=P1i)3*(16.*f)125*B+4.**B**3-2.*KCX*B)	80700000
000142	AM233=P1D8*(12.**B*b+16.*D125-2.*CX)	80800000
000150	AM2P=PID8*(-B*B*AX-4.*RY)	8090000
030154	AM23P=-PI*.25*RX*B	8100000
000160	IF(IK .Fu. 2)GO TD 20	8110000
000162	F=(CXY*3)**2-2.25*AM]*AM2	81200000
000167	G=2。*CXY*CXY*5-25*(AM18*AM2+AM2B*AM1)	8130000
000175	F3=G	31400000
000177	FP=2。*CXY*FXY*B*B-2。25*(AM1P*AM2+AM2P*AM1)	8150000
000207	GH=2.*CXY*CXY-2.25*(AM1BB*AM2+AM2BB*AM1+2.*AM1B*AM2B)	81600000
000221	GP=-2.25%(AM1 DP*AM2+AM2BP*AN1+AM1 b*AM2P+AM2B*AM1P)+4.*CXY*B*RXY	8170000
000235	G0 I0 25	00000818
000235	2. AMO=PID3*(B**4-6*6*CX)	8190000
000241	AMÙ B= P I D8 * (4 • * 8* #3-2 • * CX * B)	8200000
000246	AMOBB=PIDB#(1/.**B#S-2.*CX)	82100000
000252	AM) P=-P106 *B*P*KX	8220200
000255	AMOBP=25*P1*RX*B	8230000

	APP	ENDIX D	
82400000 82500000 82500000 82700000 82700000 82900000 83000000 83100000 83200000 83400000 83500000 83500000	83600000 83700000 83700000 83900000 84000000 84100000 84200000 84200000 84400000 84400000	84500000 84600000 84700000 84900000 85000000 85100000 85200000 85200000	85500001 85500002 85500003 85500003 85500000 85600000 85600000 85600000 85600000 864000000 86500000 86500000 86500000
AM3=PIDB*(81.*DS2+18.*D125*B+B+B**4-B*B*CX-9.*CY) AM3B=PIDB*(36.*D125*B+4.*B**3-2.*B*CX) AM3B=PIDB*(12.*B*8+36.*D125-2.*CX) AM3P=PIDB*(-b*B*RX-9.*RY) AM3P=PIDB*(12.*B*B-1.2972656)*(2.*AM0+AM2)*(AM1+AM3) F=(CXY*B)**2-(.21972656)*(2.*AM0B+AM2B)*(AM1+AM3) G=2.*CXY*CXY*B-(.21972656)*(12.*AM0B+AM2B)*(AM1+AM3) 1+(2.*AM0+AM2)*(AM1B+AM3B)) Fh=G FP=2.*CXY*RXY*B*H-(.21972656)*(12.*AM0P+AM2P)*(AM1+AM3) 1+(2.*AM0+AM2)*(AM1P+AM3P)) CH=-1.201075654.*(12.*AM0BAAM2B)*(AM1+AM3)+2.*CXY*CXY		<pre>b=B+DB IC=LC+1 IF(LC .GT. 5G)RETURN GU TU 1 C.D TU 1 D PKINT 101.P.B.F.G WRITE(7.101) P.6.F.G NRAT(5X,*P=*,E16.8,2X,*B=*,E16.8,2X,*F=*,E16.8,*G=*,E16.8) IC1 FORMAT(5X,*P=*,E16.3,2X,*B=*,E16.8,2X,*F=*,E16.8) IF(NCX .EQ 1)RETURN IF(X .GT. 0.160 TO 60 X=1./F/ADB*ABS(X) X=1./F/ADB*ABS(X)</pre>	Y=ABS(Y) PRINT 51,X,Y WRITE(7,51) X,Y & COEF=P1*P1*DS12(XB*XB) & NX=CX*COEF ANX=CX*COEF ANX=CX*COEF ANXY=CX*COEF ANXY=CX*COEF STENX=(ANX/EX-EXY*ANX/EX1/TT STENX=(ANY/EX-EXY*ANX/EX1/TT STENX=ANX/CXYLTT WRITE(7,52) CX+CY+STENX+STENY+STENXY PRINT 52+CX+CY+STENX+STENY+STENXY
000260 000273 000303 000316 000321 000333 000333	000420 000455 000455 000467 000472 000476	000557 0005546 000512 000546 000546 000546 000557	000563 000563 000606 000615 000615 000615 000624 000624 000624 000624

TECHNICAL LIBRARY ABBOTTAEROSPACE ABBOTTAEROSPACE.COM SH

66	SUBBRIETINE SET(S.N.II.III.FE.B)	87 90000
000011	DIMENSIGN S(32,32)	8800000
000011	IFIN . E0. 2160 TU 10	8810000
000013	DU 20 IR=LL+LU	88200000
000014	20 S(IR,IF)=K	8830000
000022	RETUPN	88400000
000023	10 DO 30 IC=LL+LU	8850000
000025	39 S([F,[C)=R	8860000
000033	RETURN	8870000
000034	END	8880000

REFERENCES

- 1. Gerard, George; and Becker, Herbert: Handbook of Structural Stability. Part I Buckling of Flat Plates. NACA TN 3781, 1957.
- 2. Becker, Herbert: Handbook of Structural Stability. Part II Buckling of Composite Elements. NACA TN 3782, 1957.
- Johns, D. J.: Shear Buckling of Isotropic and Orthotropic Plates A Review.
 R. & M. No. 3677, British A.R.C., 1971.
- 4. Lekhnitskii, S. G. (S. W. Tsai and T. Cheron, transl.): Anisotropic Plates. Gordon and Breach Sci. Publ., c.1968.
- 5. Ashton, J. E.; and Whitney, J. M.: Theory of Laminated Plates. Progress in Materials Science Series, Volume IV, Technomic Pub. Co., Inc., c.1970.
- Timoshenko, Stephen P.; and Gere, James M.: Theory of Elastic Stability. Second ed. McGraw-Hill Book Co., Inc., c.1961.
- 7. Almroth, B. O.; Brogan, F. A.; Meller, E.; and Petersen, H. T.: User's Manual for STAGS. LMSC-D358197, Lockheed Missiles & Space Co., Jan. 1974.
- 8. McCormick, Caleb W., ed.: The NASTRAN User's Manual (Level 15). NASA SP-222(01), 1972.
- 9. Reed, D. L.: Laminated Sandwich Panel Analysis. FZM-5590, Convair Aerospace Div., General Dynamics, Oct. 1, 1971.
- 10. Fung, Y. C.: Foundations of Solid Mechanics. Prentice-Hall, Inc., c.1965.
- 11. Ashton, J. E.; Halpin, J. C.; and Petit, P. H.: Primer on Composite Materials: Analysis. Technomic Pub. Co., Inc., c.1969.
- 12. Libove, Charles; and Batdorf, S. B.: A General Small-Deflection Theory for Flat Sandwich Plates. NACA Rep. 899, 1948. (Supersedes NACA TN 1526.)
- Housner, J. M.; and Stein, Manuel: Flutter Analysis of Swept-Wing Subsonic Aircraft With Parameter Studies of Composite Wings. NASA TN D-7539, 1974.
- 14. Stein, Manuel; and Yaeger, David J.: Critical Shear Stress of a Curved Rectangular Panel With a Central Stiffener. NACA TN 1972, 1949.
- 15. Stowell, Elbridge Z.; and Schwartz, Edward B.: Critical Stress for an Infinitely Long Flat Plate With Elastically Restrained Edges Under Combined Shear and Direct Stress. NACA WR L-340, 1943. (Formerly NACA ARR 3K13.)

- 16. Batdorf, S. B.; Schildcrout, Murry; and Stein, Manuel: Critical Combinations of Shear and Longitudinal Direct Stress for Long Plates With Transverse Curvature. NACA TN 1347, 1947.
- 17. Budiansky, Bernard; and Hu, Pai C.: The Lagrangian Multiplier Method of Finding Upper and Lower Limits to Critical Stresses of Clamped Plates. NACA Rep. 848, 1946. (Supersedes NACA TN 1103.)

TABLE 1. - SHEAR-BUCKLING LOAD COEFFICIENTS FOR RECTANGULAR ORTHOTROPIC PANELS WITH ALL EDGES SIMPLY SUPPORTED AND THE TRIGONOMETRIC DIFFERENCE PARAMETERS ON WHICH THEY ARE BASED

Stiffness parameter, $\Theta = \frac{\sqrt{D_{11}D_{22}}}{\sqrt{D_{11}D_{22}}}$	Aspect-ratio parameter, $B = \frac{b}{a} \sqrt[4]{\frac{D_{11}}{D_{22}}}$	No. of me in x y-dire	esh points - and ections	Waveleng used in tri differ	th ratios gonometric ences	Shear-buckling load coefficient, $k_s = \frac{b^2 N_{xy}}{b^2 N_{xy}}$
D ₃	a \ D22	a/Δ_X	b∕∆y	$\lambda_{\rm X}/a$	λ _y /b	$\pi^{2}\sqrt[4]{D_{11}D_{22}^{3}}$
0.2	1.0	9	9	0.56	0.56	26.28
1	.8	9	9	.56	.60	21.43
	.6	9	. 9	.56	.80	17.33
	.5	9	9	.50	.90	15.36
	.4	11	11	.50	1.00	13.77
	.2	13	13	.35	1.00	11.55
ł	a ₀					10.87
.4	1,0	9	9	.56	.56	15.78
1	.8	9	.9	.56	.60	12.98
	.6	9	9	.56	.80	10.86
	.5	9	.9	.50	.90	9.93
	.4	11	11	,50	1.00	9.29
	.2	15	8	.30	1.00	8.21
*	a ₀					7.72
.6	1.0	9	9	.56	.56	12.21
1	.8	9	9	.56	.60	10.11
	.6	9	9	.56	.80	8.67
	.5	9	9	.50	.90	8.09
	.4	11	11	.50	1.00	7.73
	.2	15	8	.25	1.00	6.71
	a ₀					6.53
.8	1.0	9	9	.56	.56	10.40
1	.8	9	9	.56	.60	8.66
	.6	9	9	.56	.80	7,57
	.5	9	9	.50	.90	7.10
	.4	11	11	.50	1.00	6.80
	.2	15	8	.25	1,00	6.02
Ļ	a ₀					5.79
· 1	1.0	9	9	.56	.56	9.31
-	.8	9	9	.56	.60	7.68
	.6	9	9	.56	.80	6.91
	.4	11	11	.50	1.00	6.22
	.2	15	8	.30	1.00	5.49
Ļ	a ₀			.20		5,33

^a For B = 0, k_s was calculated by using equations (B2).

TECHNICAL LIBRARY ABBOTT AFROSPACE ABBOTTAEROSPACE.COM

TABLE 1.- SHEAR-BUCKLING LOAD COEFFICIENTS FOR RECTANGULAR ORTHOTROPIC PANELS WITH ALL EDGES SIMPLY SUPPORTED AND THE TRIGONOMETRIC DIFFERENCE

Stiffness parameter, $\Theta = \frac{\sqrt{D_{11}D_{22}}}{\sqrt{D_{11}D_{22}}}$	Aspect-ratio parameter, B = $\frac{b}{2}\sqrt[4]{\frac{D_{11}}{D_{11}}}$	in x-	esh points - and ections	Waveleng used in tri differ	th ratios gonometric ences	Shear-buckling load coefficient, $k_{s} = \frac{b^2 N_{xy}}{b^2 N_{xy}}$
D ₃	a \/D ₂₂	a∕∆ _x	b∕∆y	$\lambda_{\mathbf{X}}/\mathbf{a}$	λ _y /b	$\pi^{2}\sqrt[4]{D_{11}D_{22}^{3}}$
1.25	1.0	.9	9	0.56	0.56	8.43
	.8	9	9 ·	.56	.60	7.08
	.6	9	9	.56	.80	6.38
	.4	11	11	.50	1.00	5.75
	.2	15	8	.22	1.00	5.09
	.1	25	9	.13	1.00	5.05
*	^a .0					4.96
1.667	1.0	9	9	.56	.56	7.54
1	.8	9	9	.56	.60	6.37
	.6	9	9	.56	.80	5.85
	.4	11	11	.50	1.00	5.26
	.2	15	8	.22	1.00	· 4.72
	.1	22	8	.13	1.00	4.68
.	a ₀					4.60
2.5	1.0	9	9	.56	.56	6.65
	.8	9	9	.56	.60	5.66
	.6	9	9	.56	.80	5.32
	.4	11	11	.50	1.00	4.77
	.2	15	8	.22	1.00	4.32
3	.1	22	8	.13	1.00	4.33
	a ₀					4.17
5	1.0	9	9	.56	.56	5.74
U	.8	9	9	.56	.60	4.94
	.6	9	9	.56	.80	4.78
	.4	11	11	.50	1.00	4.27
	.1	15	8	.22	1.00	3.90
	.1	22	8	.13	1.00	3.86
Ļ	a ₀		0	.10	1.00	3.75
~				=0	F 0	
ν.	1.0	9	9	.56	.56	4.83
	.8	9	9	.56	.60	4.22
	.6	9	9	.56	.80	4.25
	.4	11	11	.50	1.00	3.76
	.2 a ₀	15	8	.22	1.00	3.47
Y	~ U					3.30

PARAMETERS ON WHICH THEY ARE BASED - Concluded

^a For B = 0, k_s was calculated by using equations (B2).

TECHNICAL LIBRARY ABBOTTAEROSPACE ABBOTTAEROSPACE.COM

TABLE 2. - SHEAR-BUCKLING LOAD COEFFICIENTS FOR RECTANGULAR ORTHOTROPIC PANELS WITH ALL EDGES CLAMPED AND THE TRIGONOMETRIC DIFFERENCE

	Stiffness parameter, $\Theta = \frac{\sqrt{D_{11}D_{22}}}{2}$	Aspect-ratio parameter, B = $\frac{b/4}{D} \sqrt{\frac{D_{11}}{D_{11}}}$	No. of me in x- y-dire	and	Waveleng used in tri differ	th ratios gonometric ences	Shear-buckling load coefficient, $k_{s} = \frac{b^{2}N_{xy}}{2}$
	0 D ₃	a ≬ D22	a∕∆ _X	b∕∆y	$\lambda_{\mathbf{X}}/\mathbf{a}$	λ _y /b	$\pi^{2}\sqrt[4]{D_{11}D_{22}^{3}}$
	0.2	1.0	9	9	1.00	1.0	32.56
	1	.8	9	9	.80	1,0	26.31
		.6	9	9	.60	1.0	22.21
		.4	11	11	.40	1.0	18.91
		.2	17	9	.31	1.0	17.34
1		.1	25	9	.15	1.0	17.31
		^a 0					17.13
	.4	1.0	9	9	1.10	1.1	21.63
	1	.8	9	9	.90	1.0	17.92
		.6	9	9	.60	1.0	15.43
		.4	11	11	.40	1.0	13.62
		.2	17	9	.25	1.0	12.64
		.1	25	9	.13	1.0	12.89
		a ₀					12.51
	.6	1.0	9	9	1.10	1.1	17.86
		.8	9	9	.90	1.0	14.89
		.6	.9	9	.60	1.0	13.06
		.4	11	11	.40	1.0	11.60
		.2	15	8	.22	1.0	10.64
		.1	25	9	.13	1.0	10.95
μ		^a 0					10,69
	.8	1.0	9	9	1.10	1.1	15,94
		.8	9	9	.90	1.0	13.34
		.6	9	9	.60	1.0	11.84
		.4	11	11	.40	1.0	10.55
		.2	17	9	.24	1.0	9,99
		.1	25	9	.13	1.0	10.16
		^a 0				· ·	9.63
	1	1.0	9	9	1,20	1.2	14.81
	-	.8	9	9	1.00	1.0	12.44
		.6	9	9	.60	1.0	11.08
		.4	11	11	.40	1.0	9,89
		.2	17	9	.22	1.0	9.27
		.1	25	9	.12	1.0	9.11
		a ₀					8,99

PARAMETERS ON WHICH THEY ARE BASED

^a For B = 0, k_s was calculated by using equations (B3).

DECUMENT PROVIDED BY THE ABBOTT AFROSPACE

TABLE 2. - SHEAR-BUCKLING LOAD COEFFICIENTS FOR RECTANGULAR ORTHOTROPIC PANELS

WITH ALL EDGES CLAMPED AND THE TRIGONOMETRIC DIFFERENCE

Stiffness parameter, $\Theta = \frac{\sqrt{D_{11}D_{22}}}{2}$	Aspect-ratio parameter, B = $\frac{b}{2}\sqrt[4]{\frac{D_{11}}{D_{11}}}$	No. of me in x- y-dire	esh points and ctions	Waveleng used in tri differ	th ratios gonometric ences	Shear -buckling load coefficient, $k_{s} = \frac{b^2 N_{xy}}{2}$
D3	a \/D22	a/Δ_X	b/Δ_y	$\lambda_{\mathbf{X}}/\mathbf{a}$	λ _y /b	$\pi^{2} \sqrt[4]{D_{11}D_{22}^3}$
1.25	1.0	9	9	1.20	1.2	13.87
1	.8	9	9	1.00	1.0	11.68
	.6	9	9	.60	1.0	10.46
	.4	9	9	.40	1.0	9,39
	.2	15	8	.22	1.0	8.80
	.1	22	8	.12	1,0	8.98
¥	^a 0					8.45
1.667	1.0	9	9	1.20	1.2	12.91
1	.8	9	9	1.00	1.0	10.90
	.6	9	9	.60	1.0	9.80
	.4	9	9	.40	1.0	8.86
	.2	15	8	.22	1,0	8.34
	.1	22	8	.12	1.0	8,58
₽	^a 0					7.93
2,5	1.0	9	9	1,20	1.2	11.93
1	.8	9	9	1.00	1.0	10.11
	.6	.9	9	.60	1.0	9.07
s	.4	9	9	.40	1.0	8.31
	.2	15	8	.22	1.0	7.84
	.1	25	9	.12	1,0	8.12
ł	^a 0					7.32
5	1.0	9	9	1.20	1.2	10.94
I	.8	9	9	1.00	1.0	9.31
	.6	9	9	.60	1.0	8.33
·	.4	9	9	.40	1.0	7.74
	.2	15	8	.22	1.0	7.33
	.1	25	9	.12	1,0	7.66
	a ₀ .				·	6.72
œ	1.0	9	9	1.20	1.2	9.92
	.8	.9	9	1,00	1.0	8.48
	.6	9	9	.60	1.0	7.57
	.4	11	11	.40	1.0	6.97
	.2	15	8	.22	1.0	6.79
	.1	25	9	.12	1,0	7.17
ł	^a 0					6.11

PARAMETERS ON WHICH THEY ARE BASED - Concluded

^a For B = 0, k_s was calculated by using equations (B3).

TECHNICAL LIBRARY ABBUTTAEROSPACE

TABLE 3.- MATERIAL PROPERTIES OF GRAPHITE-EPOXY SKINS WITH THEIR EQUIVALENT ORTHOTROPIC PARAMETERS AT VARIOUS FILAMENT ORIENTATIONS

 $\begin{bmatrix} E_1 = 145 \text{ GN/m}^2 & (21 \times 10^6 \text{ psi}); & E_2/E_1 = 0.1138; \\ G_{12}/E_1 = 0.03095; & \nu_{12} = 0.31 \end{bmatrix}$

Filament orientation, $\pm \theta$, deg	$\Theta = \frac{\sqrt{D_{11}D_{22}}}{D_3}$	$\frac{a}{b} B = \sqrt[4]{\frac{D_{11}}{D_{22}}}$
0	3.50	1.722
30	.511	1.389
45	.415	1.000
60	.511	.720
90	3.50	.581

THE DOUMENT PROVIDED BY THE ABBOTT AFROSPACE TECHNICAL LIBRARY ABBOTTAEROSPACE.COM

74

TABLE 4.- COMPARISON OF CONVENTIONAL AND TRIGONOMETRIC FINITE DIFFERENCES

FOR ORTHOTROPIC PANELS

	Degrees of freedom	f freedom		N _{xy}		1
Problem description	Me	Ne	Conventional	Trigonometric	$\lambda_{\mathbf{X}}/a$	λy/λ x
Shear buckling of a clamped, square,	4	4	56.03	1	8	8
graphite-epoxy panel	ŷ	9	48.43	42.84	0.55	1
	8	œ	45.65	1	1	1
	12	12	43.79	1 1 1	1	1 1 1
200 = A	20	20	42.90	1	1	1
				.*		
×						
Shear buckling of a simply supported	20	10	20.40	19.17	0.21	1
5×1 graphite -epoxy panel	29	13	19,70	1	 	1
$A = \frac{1}{200} \times \frac{1}{200} \times \frac{1}{200}$	40	15	19.39	l l l l		1
	50	20	19.22	1	1 1 1	1
×		•				

. . . .

DECUMENT PROVIDED BY THE ABBOTT AEROSPACE TECHNICAL LIBRARY ABBOTTAEROSPACE.COM

Figure 1.- Stress resultants acting upon an element of the plate.

Evaluation of

(a) Panel geometry and boundary designation.

(b) Finite-difference station layout and designation.

(c) Sandwich panel.

Figure 2. - Geometrical and numerical configurations.

TECHNICAL LIBRARY ABOTT AEROSPACE ABBOTT AEROSPACE

Figure 3. - Shear-buckling load coefficients for rectangular orthotropic plates with all edges simply supported.

Figure 4. - Shear-buckling load coefficients for rectangular orthotropic plates with all edges clamped.

THE DOCUMENT PROVIDED BY THE ABBOTT ALKUSTAUL TECHNICAL LIBRARY ABBOTTAEROSPACE.COM

Figure 7.- Variation of shear buckling load with filament orientation for panels of various aspect ratios.

Figure 8. - Optimum filament orientation for the compressive buckling of a simply supported panel.

ΩH

Figure 10.- Optimum filament orientation for the shear buckling of a simply supported panel.

TECHNICAL LIBRARY ABOTTAEROSPACE ABBOTTAEROSPACE.COM

TECHNICAL LIBRARY ABOTTAEROSPACE

Figure 11. - Optimum filament orientation for the shear buckling of a clamped panel.

Figure 12. - Combined axial compression and shear of simply supported panels.

Ċ.

86

TECHNICAL LIBRARY ABOTT AFROSPACE ABBOTTAFROSPACE.COM

THIS DOCUMENT PROVIDED BY THE ABBOTT AEROSPACE TECHNICAL LIBRARY ABBOTTAEROSPACE. DOM Figure 13. - Combined axial compression and shear of clamped panels.

Figure 14.- Summary of combined axial compression and shear-buckling results for simply supported and clamped panels.

DECHNENT PROVIDED BY THE ABBOTT AEROSPACE

THE DOCUMENT PROVIDED BY THE ABBOTT AEROSPACE TECHNICAL LIBRARY ABBOTTAEROSPACE.COM

Clamped 1) က Spring stiffness parameter, ${\rm bk}_R/{\rm E_1t}^3$ 2 (c) a/b = 5. $\pm \theta$, deg 45 0 60 06 30 2 Ò ŝ - $= \frac{\mathbf{E}^{\mathbf{I}_{\mathbf{f}_3}}\left[\mathbf{I} - \left(\frac{\mathbf{f}}{\mathbf{V}}\right)_3\right]}{\mathbf{P}_{\mathbf{S}} \mathbf{N}^{\mathbf{X}}}$ Compressive buckling parameter, \tilde{N}_x

TECHNICAL LIBRARY ABOTT AFROSPACE ABBOTT AFROSPACE

Figure 15. - Concluded.

THIS DOCUMENT PROVIDED BY THE ABBOTT AFROSPACE THE CHNICAL LIBRARY ABBOTTAEROSPACE.COM

THIS DOCUMENT PROVIDED BY THE ABBOTT AFROSPACE THE CHNICAL LIBRARY ABBOTTAEROSPACE.COM

93

(a) Convergence for the compressive buckling of simply supported isotropic square panels. $\lambda_y/\lambda_x = \beta = 1$. From reference 6, $\overline{N}_x = 4.0$. Figure 17.- Convergence characteristics of trigonometric finite differences.

TECHNICAL LIBRARY ABBUTTAEROSPACE ABBUTTAEROSPACE.COM

Figure 17.- Continued.

(d) Convergence for the compressive buckling of isotropic clamped 5×1 panels. $\lambda_y/\lambda_x = \beta = 1.5$. From reference 16, $\overline{N}_x \approx 7.0$.

Figure 17. - Continued.

Figure 17.- Continued.

(f) Convergence for the shear buckling of isotropic clamped 5×1 panels. $\lambda_y/\lambda_x = \beta = 1.2$. From reference 1, $\overline{N}_{xy} \approx 9.3$.

Figure 17. - Concluded.

THIS DOCUMENT PROVIDED BY THE ABBOTT AEROSPACE TECHNICAL LIBRARY ABBOTTAEROSPACE.COM

TECHNICAL LIBRARY ABOTT AFROSPACE ABBOTT AFROSPACE

101

ビードへへつ

Trigonometric finite-difference coefficient, $1 \sqrt{x}$

THIS DOCUMENT PROVIDED BY THE ABBOTT AFROSPACE TECHNICAL LIBRARY ABBOTTAFEROSPACE.COM