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NUMERICAL ANALYSIS AND PARAMETRIC STUDIES OF THE BUCKLING
OF COMPOSITE ORTHOTROPIC COMPRESSION AND SHEAR PANELS

Jerrold M, Housner and Manuel Stein
Langley Research Center

SUMMARY

A computer program has been developed for the combined compression and shear
of stiffened variable thickness orthotropic composite panels on discrete springs; boundary
conditions are general and include elastic boundary restraints. Buckling solutions are
obtained by using a newly developed trigonometric finite -difference procedure which
improves the solution convergence rate over conventional finite-difference methods. The
trigonometric finite-difference procedure introduces two new parameters into the solution,
‘hese parameters can be computed by the program or selected by the user. The validity
f the program has been substantiated by comparisons with existing solutions, and a pro-
ram listing, input description, and sample problem are provided.

The classical general shear-buckling results (in terms of universal orthotropic
arameters), which exist only for simply supported panels over a limited range of ortho-
ropic properties, have been extended to the complete range of these properties for sim-
ly supported panels and, in addition, to the complete range of orthotropic properties for
lamped panels. The program has also been applied to parametric studies which exam-
ne the effect of filament orientation upon the buckling of graphite-epoxy panels. These

studies included an examination of the filament orientations which yield maximum shear
or compressive buckling strength for panels having all four edges simply supported or
clamped over a wide range of aspect ratios. Panels with such orientations had higher
buckling loads than comparable, equal-weight, thin-skinned aluminum panels, Also
included among the parameter studies were examinations of combined axial compression
and shear buckling and examinations of panels with rotational elastic-edge restraints.

INTRODUCTION

The use of filamentary composite materials in aircraft and space structures offers
a potential for weight savings over conventional (all metal) construction. Also, compos-
ites introduce added versatility into the design process by allowing the structure to be
better tailored to meet the design criteria. One such design criterion is the prevention
of compressive and shear buckling in panels of laminated construction. In laminated
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panels the stiffness properties can be tailored by controlling the filament orientation in
each lamina.

A considerable amount of literature exists on the buckling of flat isotropic and
orthotropic panels under various boundary conditions. (See refs. 1to 6.) Few results
exist, however, for finite aspect-ratio panels, especially for shear buckling of orthotropic
panels. General results for shear buckling, in terms of universal orthotropic parameters,

- exist only for simply supported panels over a limited range of orthotropic parameters.

(See ref. 6.) Several general-purpose computer programs exist which could be employed
to obtain results for panels with general boundary conditions under general loading states
(refs. 7 to 9). These programs, however, tend to be expensive to use in performing
parameter studies; therefore, a program which is suitable for performing parametric
buckling studies of orthotropic flat rectangular panels was developed and is employed in
this paper.

The present computerized analysis is applicable to the combined compression and
shear buckling of stiffened, variable-thickness, flat rectangular orthotropic panels on
discrete springs; boundary conditions are general and include elastic boundary restraints.
Calculation of the flexural stiffnesses of a laminate from the properties of filament-
reinforced laminas is automatically performed. The analysis makes use of a newly
developed trigonometric finite-difference procedure. In contrast to conventional (poly-
nomial) finite differences, trigonometric differences take advantage of the sinusoidal
form of the buckle pattern to achieve converged solutions with fewer degrees of freedom,
hence reducing computer time. The analysis has been validated by many comparisons
with solutions in the literature and has been used to produce a variety of additional ortho-
tropic and some isotropic panel results.

The classical general results for the shear buckling of simply supported orthotropic
panels are extended in this paper to cover the complete range of orthotropic parameters.
Also, the general results for the shear buckling of clamped panels over the complete
range of orthotropic parameters have been calculated and are presented herein. In addi-
tion, it is of practical interest to present results which consider the effects of filament
orientation upon the buckling strength of laminated composite panels. Consequently,
parameter studies are presented for graphite-epoxy panels of various aspect ratios,
boundary conditions, and in-plane loadings over a wide range of filament orientations, and
those orientations which led to maximum buckling loads are identified. Finally, results
are presented for the shear buckling of simply supported isotropic panels, each with a
central stiffener, |
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a,b/
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CX:CYX
D

D3

SYMBOLS

dimensions of rectangular plate parallel to X- and Y-axes, respectively

coefficients defined by equation (C3)

correction factors defined in equations (B4) and (B5)

isotropic plate flexural stiffness

= D19 + 2Dgg

D11,D99,D19,Dgg  Orthotropic plate flexural stiffnesses

(r)

El

El’EZ

G1g

11’13

J9,Jq

kx,Ky

elements of matrix defined by equation (C2)

flexural stiffness of discrete stiffener

Young's moduli of fibrous reinforced material parallel to fibers and trans-
verse to fibers, respectively

shear modulus of fibrous reinforced material

core thickness of sandwich plate

row designations of boundaries @) and 3 (see fig. 2(a))
column designations of boundaries @ and @ (see fig. 2(a))
discrete lateral spring stiffness

uniformly distributed rotational spring stiffness

shear -buckling load coefficient

stiffness of rotational springs which resist moments acting about Y- and
X-axes, respectively
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Kij
M,N

Me,Ne

MX) My: MXY

NX ’ Ny ’ NXY

ﬁx,ﬁy,ﬁxy

X’N ’NX

y Xy

XY,z

plate stiffness terms defined by equation (A13)

total number of rows and columns of finite-difference stations, respectively

total number of rows and columns of finite-difference stations at which equilib-
rium is satisfied

bending moments in plate (see fig. 1)
in-plane loads (see fig. 1)

2 b2N, b2N
shear-buckling stress coefficients b NX, y 2y

b 3
7r2D11 7T2D11 7TzD11

respectively

2 02N b2N
buckling parameters b % , Y = Xy
. 3 3
respectively E1t3 lil _ (i_lﬂ E1t3 [1 _ <tg> ] E1t3 [1 _ <11:_1> }

buckling loads for pure axial compression and pure shear, respectively

buckling eigenvalue (see eq. (13))
change of Ny, _I\fy, ny with p, respectively (see eq. (13))

ratio of NX/NXO and ny/ NXYo" respectively
spring-stiffness terms defined by equation (A17)

total thickness of sandwich plate

values of Ng, Ny, Nxy when p=0

displacement of panel in positive z-direction

panel coordinates shown in figure 1



TECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

ij

Y1:72,73

oU

oV

6Vg
Ax,Ay
\x,Ay

\X,A¥

gx,%y;ﬂx,ny

Xij

Vi

Comma preceding a subscript denotes differentiation with respect to the subscript.

curvature terms defined in equation (A14)
ratio of panel width to buckle length in an infinitely long panel

coefficients defined by equation (7) or (8)

internal virtual work

virtual work of in-plane loads

virtual work of discrete springs

finite -difference mesh spacings in x- and y-directions, respectively
trigonometric finite-difference coefficients as defined in equation (10)

trigonometric finite-difference terms defined in equation (A24)
filament orientation (see fig. 2(a))
universal orthotropic parameters defined in equations (15) and (16)

trigonometric parameters defined through equation (10)

major Poisson ratio relating contraction normal to filament direction to
extension parallel to filament direction

functions defined by equations (A6) to (A9)
twist terms defined in equation (A16)

curvature terms defined in equation (A15)
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ANALYSIS

Assumptions

The buckling analysis of linear elastic orthotropic plates has been carried out under
the following assumptions:

1. Coupling between bending and extensional deformation is neglected. (In practice
this assumption implies a midplane symmetric laminated panel.)

2. Coupling between bending and twisting deformation is neglected. (In practice
this assumption implies a balanced laminate.)

3. The deformations of the panel obey the Kirchhoff hypothesis (see ref. 10).

4, The nonlinear strain-displacement relationships used to obtain (linear) buckling
equations are

ex = Uy + %(w’x)z

where ex, ey, and Yxy are the strains and u, v, and w are the displacements in
x~-, y-, and z-directions, respectively.

5. The in-plane loads, Ny, Ny, and Nxy, are uniformly distributed along the
appropriate edges of the plate.

6. Discrete stiffeners have no torsional stiffness and are symmetrically disposed
with respect fo the neutral surface of the panel.

Governing Equations

The internal virtual work of the panel during buckling may be expressed as

b ra
6U = §O ‘Sﬂo (MXGW’XX + Myﬁw,yy + 2Mxy6w,xy> dx dy (1)

where a and b are the dimensions of the panel parallel to the X- and Y-axes, respec-
tively, and & is the variational operator. Also,
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The sign conventions of the bending moments are given in figure 1, and the flexural stiff-
nesses, D11, D19, D929, and Dgg, given in reference 11, are about a unique neutral

‘plane which has the property that matrix [B], which represents coupling between bending

ABBOTTAEROSPACE.COM

and extension, is null with respect to this plane. As given by reference 12, the virtual
work of the applied in-plane loads is given by

a pb
OV = go XO (NXW’X5W’X + Nyw,yﬁw’y + NgyW 0w x + nyw,xéw,y> dy dx (3)

here the sign conventions for Ny, Ny, and Ngy are shown in figure 1.

In appendix A, equations (A1) to (A3) are expressed in trigonometric finite-difference
rm (see fig. 2 for finite-difference station layout) and are substituted into the statement
' the principle of virtual work, that is,

6U = 8V + 6Vg (4)

here 0Vg is the virtual work of the discrete springs. (See appendix A, eq. (Al1).)
quation (4) yields the governing equations which are of the following form:

i=1,...,M
where Ky, 8j5, @, Yjj, and ;5 are defined by equations (A13) to (A17) in
appendix A.

The numerical technique of trigonometric finite differences and the numerical
extraction of the buckling loads Ny, Ny, and Nxy from equation (5) are different from
those conventionally used and therefore require further discussion.

Numerical Techniques

Trigonometric finite differences. - Conventionally, the central difference approxi-
mation for the derivative of a function f(x) at x =xg is approximated as




LIBRARY

H
Al

C

ABBOTTAEROSPACE.COM

i, 1 By\ o[ B
a‘x‘(xo)~z;f<xo+—g—> f(xo 7) (6)

kY

The right-hand side of equation (6) is denoted as the conventional finite-difference approx-
imation for the derivative. In the limit as the finite-difference mesh spacing Ax
approaches zero, the right-hand side of equation (6) expresses the definition of the deriv-
ative. If f£(x) is parabolic in the neighborhood of xg,

f(x) = y1 + vox - Xg) + vg(x - Xo)?‘ (1)

and it may be readily shown that the approximate expression given by equation (6) becomes
an equality. If, however, f(x) is trigonometric about x = X0>

mMX - X mX - X
f(X) = ')/1 +’)/2 Sin—(TX——O—)-i-')/S COS——(——A——X——QZ (8)

where Xy is a wavelength parameter. It may be readily shown that

df 1 Ax Ax
—(xg) = — f(xo + -——> - f(x - -—-> (9)
dx X 2 2
where
X 2Xxx sin <1T-—§>
2xx

The right-hand side of equation (9) is denoted as the trigonometric finite-difference
approximation for the derivative. (In a two-dimensional problem a similar set of rela-
tionships would be derived for the y-direction, introducing the quantities Ay, Zy,

and Ay.>

The only difference between the right-hand side of equation (9) and that of equa-
tion (6) is that in the trigonometric expression 1/ Ax replaces 1/Ax of the conventional
expression. As Ax approaches infinity, Ax approaches Ayx and, consequently, the
trigonometric difference expression reduces to the conventional expression.
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Convergence of trigonometric finite-difference solutions.~ Inasmuch as the buckling

mode shape is usually trigonometric in nature, the trigonometric finite-difference solu-
tion can be made to exhibit a much faster convergence rate than the conventional differ-
ence solution by appropriate selection of Ax and Ay. This advantage is demonstrated
with several isotropic plate examples discussed in appendix B. The convergence rate
can also be degraded, however, by an inappropriate choice of Ax and Ay. It should be
emphasized though, that the selection of Ax and Ay does not constrain the buckle mode
shape to have wavelengths given by Ax and Ay. Rather, the trigonometric solution will
always converge to the exact solution if enough degrees of freedom (finite-difference sta-
tions) are used.

Selection of trigonometric parameters Ax and Ay.- Selecting appropriate values

of X and Ay which improve the convergence rate of solutions is predominantly based
upon engineering judgment and experience. One engineering approach which has proven
useful is to select Ax and Ay based upon the buckle length of infinitely long panels;
that is,

|8

b/a
5 (11)

(12)

by
H
[y

where g is the wavelength parameter of an infinitely long panel, defined as the ratio of
the panel width to the buckle length. The value of 3 for the combined compression and
shear buckling of simply supported and clamped infinite panels may be determined from
equations (B2) and (B3) in appendix B. Additional suggestions for the selection of Xy
and Ay are given in appendix B.

Stability determinant evaluation and eigenvalue extraction.- In this analysis the

order of the stability determinant is kept to a manageable size by using the two-
dimensional marching procedure outlined in appendix C. This procedure is basically an
extension of the one-dimensional procedure used in reference 13. Briefly, the marching
procedure successively operates on the equilibrium equations at each finite-difference
station to achieve a relatively low-order stability determinant.

In searching for the combined load system which produces buckling, it is convenient
to introduce dimensionless stress coefficients, Ny, Ny, and Nxy, which may be deter-
mined from the dimensional quantities, Nx, Ny, and Nxy (fig. 1), by multiplying by the

factor bz'rr/Dll. It is assumed that Nx, ﬁy, and ﬁxy' are linear functions of an eigen-
value p, that is,
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NX=tx+er

—N-XY = {Xy + ﬁerJ

This assumption allows some loads to be held constant while others are increased to
buckiing, or it allows the loads to increase with a fixed proportionality. ‘

To find the lowest value of p which makes the stability determinant vanish, a
determinant plotting technique is used. In order to increase the speed of the plotting
technique, a variable step size is employed. This sfep size is based upon a numerical
parabolic extrapolation of the stability determinant at each step of the determinant plot-
ting procedure.

COMPUTER PROGRAM

A computer program denoted BOP (Buckling of Orthotropic Panels) has been devel-
oped for the buckling of flat rectangular orthotropic laminated panels. The program is
applicable to panels with compression and/or shear loading, discrete lateral deflection
and rotational springs, discrete stiffeners, and general boundary conditions.

The program utilizes trigonometric finite differences to improve the problem con-
vergence and thus requires the selection of Ay and Ay. The user has the option of
determining and supplying Xx and Ay (based upon the discussion in appendix B) or
allowing the program to automatically calculate and use values based on equations (11)

“and (12).

In addition, the user has the option of either (1) supplying the bending stiffnesses of
the panel or (2) supplying the elastic moduli, filament orientation, and thickness of each
lamina in a laminated panel and allowing the program to calculate the bending stiffnesses.
When the second option is chosen, the program prints the flexural stiffness matrix D,
defined in reference 11, as well as the laminate Young's moduli, shear modulus, and
Poisson's ratios. (The second option may be used independently of the buckling analysis.)
A complete description of the program is provided in appendix D.

Results from the computer program have been compared with many classical
results for unstiffened isotropic and orthotropic panels under various boundary conditions
and with some classical results for stiffened isotropic panels. These comparisons which
are discussed in subsequent sections were found to be excellent, thereby indicating the
validity of the program.

10
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RESULTS AND DISCUSSION

Shear Buckling of General Orthotropic Panels
From the general fourth-order equation for the shear buckling of orthotropic panels
the buckling load coefficient may be expressed as

bZN

kg = ___.Z__Xl'__é_ (14)
2\ |D11D32

This coefficient is a function of only two variables

o = !ZD].IDZZ 7 (15)

and

where Dg =Dqg + 2Dgg. (Note that an isotropic panel implies © = 1.)

Classically, general shear-buckling results for simply supported finite aspect-ratio
panels have been obtained only for values o'f ©z1 (seeref. 6). Infigure 3 numerical
results for © <1 have been presented. Also, for completeness and comparison pur-
poses numerical results for © 21 are presented. The good agreement between these
curves and those of reference 6 indicates the validity of the numerical results from the
computer program. General results for the shear buckling of clamped panels, further-.
more, do not appear in the literature for any range of © with the exceptionof 0 =1
(the isotropic case); consequently, numerical results for clamped panels are presented
in figure 4.

Both the results for simply supported and clamped panels indicate that the percent-
age decline in buckling load from B =1 to B=0 decreases as © increases. Also,
a comparison of figures 3 and 4 shows that the percentage increase in buckling load of
clamped panels over simply supported panels increases with increasing ©. The abrupt
changes in slope appearing in these figures are due to changes in mode shape (from sym-
metric to antisymmetric modes). As anticipated from isotropic results (ref. 1), these
abrupt changes are more predominant in clamped panels than in simply supported panels.

Tables 1 and 2 present the shear -buckling load coefficients used in obtaining the
general orthotropic panel results of figures 3 and 4. Additionally, the trigonometric dif-

11
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ference parameters (the mesh-spacing parameters a/Ax and b/Ay and the wavelength
parameters Ax/a and hy/b) used in obtaining the buckling coefficients are presented
in tables 1 and 2.

Shear Buckling of a Simply Supported Panel With a Central Stiffener

Figure 5 presents results for the shear buckling of simply supported isotropic
panels each of which contains one central flexural stiffener parallel to either the longer
or shorter edges of the panel. As anticipated, the use of a central stiffener always pro-
vides an increase in the shear-buckling stress coefficient over that of the unstiffened

panels <E-I— = ) The percentage increase over unstiffened panels is greater in square

bD
panels than in rectangular panels. In rectangular panels of the same aspect ratio, the
percentage increase over unstiffened panels is greater when the stiffeners are parallel
to the longer direction than when they are parallel to the shorter direction. The central-
stiffener results of figure 5, moreover, are in reasonably good agreement with similar
results given in reference 14 for slightly curved panels. This agreement indicates the
validity of the computer program for the solution of stiffened panels.

Parametric Studies of Orthotropic Filament Reinforced Panels

Results are presented for the buckling of sandwich panels whose upper and lower
skins are of laminated graphite-epoxy construction. Although some of the results in this
section could be obtained from general orthotropic curves, such as those of figures 3
and 4, it is of interest to examine the effect of filament orientation upon the buckling load.
(The material properties for the graphite-epoxy skins are given in table 3, with their
equivalent general orthotropic parameter values © and B at various filament
orientations.)

In addition to the assumptions listed in the analysis section of this report, it is
assumed in this section that

1. The panel is symmetric about the middle surface
2. Each lamina has the same filament orientation 6 except for sign
3. The core carries no load and undergoes no transverse shear deformation

As a consequence of these assumptions, it may be shown that the buckling param-
eters fsTX, ﬁy, and fIxy defined as

2
Ny = b Nx (17a)

Sa6)

12
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Ny = y (17v)
E 6’{1 (l—lﬂ
1 -
t
- b2N .
Nyy = Xy (17¢)

Elt{l - (i-‘ﬂ

depend only on the magnitude of 6, the panel aspect ratio, and the boundary conditions.
They do not depend on the thickness of each lamina, the number of laminas, or the core
thickness. However, in order for assumption 2 of the analysis section to be reasonable —
that is, neglect of bending-twisting coupling — it may be necessary that the ratio of core
thickness to total thickness h/t be nearly unity and that the amount of material in either
cover oriented in the +6 and -# directions be equal.

The variation of the buckling load with filament orientation for panels of various
aspect ratios is presented in figure 6 for axial compression and in figure 7 for shear.
The figures indicate that the buckling loads are highly dependent upon filament orientation
and that optimum orientations (those which yield a maximum buckling load) may be deter-
mined for each aspect ratio. Also, the figures indicate that clamping has a greater effect
on compressive buckling than on shear buckling.

An indication of the buckling strength of the epoxy panels as compared to equal-
weight aluminum panels is provided by a comparison of the discrete buckling loads
appearing on the right-hand ordinate of figures 6 and 7 with the curves in the same fig-
ures. These comparable values are valid for thin-skinned sandwich panels which have
the same core, of thickness h, as the graphite-epoxy panels, but which have aluminum
skins. For all the cases considered, a range of filament orientations exists for which
the buckling strength of the graphite-epoxy panels exceeds that of the comparable alumi-
num panel with the same aspect ratio and boundary conditions. In the case of a clamped
square panel in shear, the buckling strength of the graphite-epoxy panel exceeds that of
the aluminum panel at all filament orientations.

It should be noted that, if the restriction that each lamina have the same filament
orientation x60 1is removed, isotropic skins can be produced from groups of three or
more laminas (for example, 0, +60, and -60) which will have the same weight as the 0
skins but will yield a higher buckling load for each case shown in figures 6 and 7 and for
many other shear and compression loadings. However, this is not necessarily true in all
cases; for example, in the transverse compression of long panels (a/b approaching zero),
an orthotropic panel with filaments running transversely (8 = 0°) provides a higher

13
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buckling load than an equivalent isotropic panel. Furthermore, there are many applica-
tions where for various reasons (for example, strength or fabrication criteria) ortho-
tropic panels are preferable to isotropic ones.

In figures 8 to 11 optimum filament orientations are shown for all aspect ratios.
The curve of figure 8 was determined from the exact closed-form relationship for the
compression of simply supported plates (ref. 6), while the curves of figures 9 to 11 were
determined using program BOP, The abrupt changes in the slopes of these curves are
caused by changes in the buckling mode shape associated with the optimum filament ori-
entation., Except for figure 8, the location of these abrupt changes has been approximated
since it is difficult to determine exactly where they occur,

In the compressive buckling curves (figs. 8 and 9) the optimum filament orientation
for small aspect ratio a/b is 00 (parallel to the X-axis or to the direction of compres -
sion). This orientation angle rapidly increases at about a/b = 0.56 for simply supported
panels and at about a/b = 1.05 for clamped panels. However, a comparison of the
aspect-ratio 1 and 1.1 curves for a clamped panel as shown in figure 6 indicates that the
optimum buckling load does not exhibit such a rapid change but decreases slightly as the
aspect ratio goes from 1to 1.1, For higher aspect ratios the optimum orientation oscil-
lates with decreasing excursion about +459 and, in general, a practical filament orienta-
tion for a/b>1 is 6 = £450°,

In the case of shear buckling (figs. 10 and 11), the symmetry of the problem requires
that the deviation of the optimum filament orientation from 459 for a panel of aspect ratio
a/b be equal but opposite to that of a panel with aspect ratio b/a. Also, the peaks of
figure 7 are quite flat; that is, they have a large radius of curvature associated with them.
Consequently, it was difficult to determine precisely the optimum filament orientations in
figures 10 and 11. However, it is reasonable to say from figures 10 and 11 that for large
aspect ratios a/b> 2, 0 =600 to £620 is a practical filament orientation.

Figures 12 and 13 present interaction curves for the buckling of simply supported
and clamped panels in combined axial compression and shear for various filament orien-
tations and aspect ratios. The optimum filament orientations (those that correspond to
the highest values of the buckling parameters) change according to aspect ratio a/b and
the ratio of ny/ Nx. For simply supported panels (fig. 12), when a/b = 1, the optimum
orientation for all combinations of Nx and Nxy is 0 = +45°, When a/b =2 or 5,
the optimum filament orientation for predominantly shear loading is near +60° and for
predominantly compressive loading is near +450, For clamped panels (fig. 13) when
a/b =1 the optimum orientation changes from 0 = +450 for shear loading to 6 = 00
for compression. When a/b = 2 or 5, the optimum orientation changes from 6 = +600
for pure shear to 6 = 450 for pure compression, This behavior was the same as that
exhibited by simply supported panels,

14
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A summary of the data from figures 12 and 13 is shown in figure 14, which indi-
cates the banded region in which all the results lie. For orthotropic panels it was found
that the band is bounded from below by the following simple relationship given in refer-
ence 15 for isotropic panels:

Ry + R2y = 1 (18)
where
N N
o
(19)
ny
ny = R
xyoj

In equations (19), Nx o and NXyO are the buckling loads for pure longitudinal compres-
sion and pure shear, respectively. Consequently, for the orthotropic cases considered,
equation (18) is a reasonable conservative approximation for combined longitudinal com-
pression and shear buckling of composite panels.

Figures 15 and 16 contain, respectively, compression and shear-buckling results for
graphite -epoxy sandwich panels with nondeflecting edge supports and rotational edge
springs for various filament orientations and aspect ratios. The associated boundary
conditions are given by equations (A20) to (A22), and the rotational springs were assumed
to be uniformly distributed about the panel edges. When the spring stiffness is zero, all
four edges are simply supported and, when infinite, all four edges are clamped.

In general, the figures indicate that the buckling load increases sharply as the
spring stiffness parameter ka/E1t3 increases from zero to one, the buckling loads
obtaining at least 80 percent of their clamped value when the spring stiffness parameter
is one. With further increase in the spring stiffness the buckling loads slowly approach
the clamped value, increasing to within at least 10 percent of the clamped value when the
spring stiffness parameter is three. Furthermore, the curves for the £+45° filament
orientation generally approached the clamped values most rapidly.

CONCLUDING REMARKS.

A computerized analysis has been developed for the combined compression and
shear buckling of stiffened orthotropic composite panels on discrete springs. Boundary
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conditions are general and include elastic boundary restraints. Buckling solutions are
obtained by using a newly developed trigonometric finite -difference procedure which
increases the solution convergence rate over conventional finite-difference methods, thus
allowing problems to be solved with the same accuracy as with conventional differences
but with fewer degrees of freedom. The trigonometric finite-difference procedure intro-
duces two new parameters into the solution. These parameters can be internally selected
by the program during problem execution or can be selected by the user. The validity of
the program has been substantiated by comparisons with many existing known solutions.

A program listing, input description, and sample problem are provided.

Using the program, the classical general shear-buckling results (in terms of uni-
versal orthotropic parameters), which are available only for simply supported panels
over a limited range of orthotropic properties, have been extended to the complete range
of these properties for simply supported panels and clamped panels. Results for the
shear buckling of isotropic panels with a central stiffener have also been obtained.

The program has been applied to parametric studies which examine the effect of
filament orientation upon the buckling of graphite-epoxy sandwich panels. From these
studies optimum filament orientations (those which yield maximum buckling loads) were
determined within a class of graphite-epoxy sandwich panels for all aspect ratios. In
particular, it was found that for shear buckling of high-aspect-ratio panels (greater than
two) reasonable filament orientations are between +600 and +620 while, for axial compres-
sion of panels with aspect ratio greater than one, a reasonable filament orientation is
+450, In addition, interaction curves were determined for the combined axial compres-
sion and shear buckling of panels with varying filament orientations. A parabolic inter-
action relationship previously developed for isotropic infinite strips in combined axial
compression and shear provided a reasonably accurate and conservative estimate for the
buckling loads of the orthotropic panels considered herein.

Langley Research Center

National Aeronautics and Space Administration
Hampton, Va. 23665

August 1, 1975
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APPENDIX A
DEVELOPMENT OF GOVERNING EQUATIONS

For completeness, equations (1) to (3) of the main text are repeated here:

b ~a
oU = §0 SO (MXGW’XX + MyOw yy + ZMxyGw,xy) dx dy (A1)

My = D11w xx + D12W yy
My = DyoW xx + D22W yy (A2)

Mxy = 2DGGW,xy

> 3
o
<
% a ~b
7 : 6V = S.O go (NXW,Xﬁw,x + Nyw y0w y + Nxyw y0w x + nyw’xéw,y) dy dx (A3)
23
é <
~  Then, replacing the derivatives in equations (A2) by trigonometric central differences
i B .
T yields
Lud
" 1 )
(W,x) 35 = =5 (Wis1,j - 2Wij * Wi-1,j)
X
W - 1 W 3 - ZW" + W;
( ,yy)ij A 5 (Wi,i+1 ij + Wi,j-1) (A4)
y
w o= 1 W3 . - W3 3 - W3 s 4 Was
( X )ij A ( i+1,j+1 i,j+1 i+1,j 1])

X=Y

where Z\x and :sy are the trigonometric difference coefficients defined by equa -
tion (10). The terms (W’XX) i and (w’yy)ij are defined at the full stations denoted by

the circles in figure 2(b), while (W’Xy)__ is defined at the half stations denoted by the
1]
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squares in figure 2(b). Consequently, the indices (i,j) attached to a variable may refer to
the variable being evaluated at either full or half stations, depending on the variable.

Introducing equations (A2) and (A4) into equation (A1) and replacing the double inte -
gral by a double sum yields

1
0U = Ax Ay Zl Z Xl.gy{ qu (5w1+1 j - 20wy + 5Wi-1,j) + —“A—E Myi](5W1,3+1
j=1i=1 y

Mxy..
g
- 20wy + Owy 5 1@ 1Y R Ay BWiaja1 - OW 51 - OWia 5+ OWy) (45)

where N and M are the total number of finite-difference stations in the x- and
y-directions, respectively, and £Xi, f,yj, i and nyj have the following definitions:

> 2
I
=1
% 0 (i<Iy or i>13ﬂ
mE:
J
5 Ex, = (1/2 (i=1; or i=lIy) (A6)
74
BE ,
m e (I <i<13))
E
(0 <j<J4 or j>Jz)W
ng ={1/2 (i=J4 or j=Jg) P (A7)
Ll (J4 <i< J2>,)
0 (<1 or izIg)
My = (A8)
1 (1 si=Tg)
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0 (J <J4q or jz Jz)
N, =\ - ‘ (A9)
1 : (J4 £j< Jz)

In equations (A6) to (A9), I; and I3 are the row designations of boundaries @
and (@, respectively, and J9 and Js are the column designations of boundaries (2
and @, respectively. (See fig. 2(a).)

Replacing the derivatives in equation (A3) by central trigonometric differences and
the double integral by a double sum yields

M

O0Vy = -Ax A Z z n Nx Wi .~ Wss) (0w s = OWis) + £4.7 _I_\_T.y_w .

N x5y Y] Xi A 2( i+1,] 1])( i+1,j 1]) Xi'yj > 2( i,j+1
i=1 j=1 Ax Ay

Nx

: y
- i) (0w, j41 - Owyj) + i1y ZA_—y{(le,] Wij + Wit j+1 = Wi,j+1) (Wi, j+1

- OWij + OWig g4l - OWiy1 g) + (Wi jal - Wij + Wiad,j+1 - Wied,j) (OWiel,j - OWjj

+ OWitl j+1 - 5Wi,j+1)} (A10)

In deriving equation (A10), the first and second terms in the integrand of equation (A3)
have been replaced by trigonometric differences evaluated at stations indicated by "x"
and "y," respectively, in figure 2(b), while the third and fourth terms have been evaluated
at half stations, indicated by squares in figure 2(b), by averaging the derivatives.

The external forces and moments on the ’panel are those coming from discrete
lateral deflection and rotational springs. The virtual work of these forces and moments
may be expres sed as

i=1j= 1-1] 1 Ax
M N ky- ' .

+ z Z - %(’Wi’j.,.]_ - Wij) (5Wi,j+1 - Gwij) (A11)
i=1 ]=1 Ay
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where kj is the spring stiffness associated with a lateral deflection spring and kg
and ky are stiffnesses associated with rotational springs which resist moments acting
about the Y- and X-axes, respectively. The k; type springs act at full stations,
indicated by circles in figure 2(b), while the ky and ky type springs act at positions
indicated by "x'" and "y," respectively, in figure 2(b).

1

Substituting equations (A5), (A10), and (A1l) into the statement of the principle of
virtual work, equation (4) yields ' - '

where

u MZ

1
’ AY ] sJ ] ]

1
M
gYJ 1M-V1,J 1> Ag A y<77x1 17y -177%Yi.15-1 ~ i lnYJ XYi-1,

- Mxiyy 1 Mxyy g * ”Xi”ijXYij> (A13)
I | C g .. . c s
wij A2 Fxlnyj( i,j+1 = Wij) - gxi"yj_l(“’ij ‘Wi,j-,l)} (A15)
y

1 - > - 'Y: -
Xjj = 4Ax Ay{(wl+1,]+l - W1])77X177y ( i+1,j-1 le)nxiﬁyj—l

- (W - Wie1,j 1) _yy; g+ (W - wi_l,jﬂ)nxi_lﬁyj} (A16)
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I . oW 1 s) - Cq s - Wis
Sl] Ax Ay kﬁijwlj + kXi_l,j(WlJ Wl-l,]) kxij(wl“'l,] Wl])]

Ax Ay *AXZ(

r—sg ey (7 - ) - Ky (e - ) (a17)
X8y ~y )

From equations (A2) and (A4), the moments are related to the dispiacements as
follows:

N
A
2

(Mx)j; = (D11);5(Wis1,j - 2%y + Wi-l,j)gl—z + (D12)y5(Wi,ja1 - 2Wij + Wi 1)
y

X

>34

(My)ij = (D2g);;(Wi,j41 - 2wy + Wi,j-l)zl“z‘ + (P12)5(Wis1,j - 2wy + Wi—l,j)"l"z‘ > (A18)
y X

B>

(Mxy)ij = 2(Dgg)y; (Wis1,j+1 - Wi,j+1 - Wit Lj + Wij)3 L

where (Mx>ij and (My)ij act at the full stations, indicated by circles in figure 2(b),
and (Mxy> i acts at the half stations, indicated by squares in figure 2(b).

Boundary Conditions

All four boundaries free or spring-supported. - If on the plate boundaries no con-
straints exist on w or its derivatives normal to the boundary, equation (A12) must be

valid for all virtual displacements dwjj, thus yielding equation (5) which is repeated
here:

i=1,.. .M
Kjj + Syj + Nxaij + Nybjj + 2Nyyx;; = 0 (j -1 ’ N) (A19)
- , » . C,

Equation (A19) represents equilibrium at each finite-difference station with each equi-
librium equation containing an array of 13 values of w as depicted in figure 2(b). In
solving these equations by the procedure discussed in appendix C, the terms wjj repre-
sent the unknowns and equations (A18) are used to determine the moments appearing in the
relationship for Kjj, equation (A13).
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When a difference station lies on the boundary of the plate (that is, i=I1 or
i=I3 or j=Jg or j=d 2), the corresponding equilibrium equation reduces to the nat-
ural boundary condition on the Kirchhoff shear, reference 6. Also, when a difference
station lies one finite difference interval off the plate (that is, i=I1-1 or i=Ig3+1
or j=dg-1 or j=dJdg+ 1), the corresponding equilibrium equation reduces to the nat-
ural boundary condition on the bending moment, Furthermore, when a difference station
lies two or more finite-difference intervals off the plate (that is, i<I; -1 or i>Ig+1
or j<Jdg-1 or j>Jg9+ 1), the corresponding equilibrium equations reduce to the triv-
ial equation 0 = 0. Consequently, no equilibrium equations exist for these stations.

Edges with nondeflecting lateral supports and rotational springs.- Equation (A19)
may be used in approximating the solution of problems with nondeflecting edges; for
example, if w= 0 on an edge, equation (A19) may be used in conjunction with extremely
stiff lateral springs placed along the edge. Alternatively, an edge which is restrained
from lateral motion may be handled as a special case, and in so doing the number of com-
putations required for the problem solution is reduced,

The boundary condition for a nondeflecting edge is
w=0 (on the edge) (A20)

If, in addition, uniformly distributed rotational springs act along boundaries @) and
(see fig. 2(a)),

My = kpw x . (on the edge) - (A21)

or, if uniformly distributed rotational springs act along boundary @ or @,

My =kpwy , (on the edge) . (A22)

As a result of the foregoing, equation (A20) replaces the boundary condition on the
Kirchhoff shear, while the difference form of equation (A21) or (A22) replaces the bound-
ary condition on the edge moment, Furthermore, as an example, equation (A21) on
boundary (I) becomes

_ R4 T V1)

(M), Az

(A23)
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where

1 T
0 S S— (A24)
*
Ax 214 sin TAx
, Ax

Substituting for My from equations (A18) and employing equation (A23) yields

. (Dll)Il,j kR
(Mx>11,j - AXZ <W11+13j * WIl'l’j> - TA—;{‘(WII'*’I’:} B W11‘1’j> (A25)
Then
k (Dli)I ;
Rl
AA; ,\sz I1+1,j
WIl—l,j = (A26)
! (P11);
> 8 kR Iy]
: xT T
¥ Ax Ay
m
g
» jﬁj Substituting into the first of equation (A25) yields
3, _ -
7.4
iz kg (P11
I Piog 5| A7 a2
i M)y, 5= =5 |1+ WIi+1, (A27)
I_{_B,_ + I]_’]
A A2

It is evident from an examination of the first of equation (A25) that equation (A23) is
satisfied by setting WIy-1,j = 0 and (D11)

. = (D* h
Ip,i ( 11‘)1 4 where
i} S .
kg
A A2
D* =11+ X (D ) (A28)
1)1, 11)
( >I1,J Kk (Dll)I . I1,] x
R, LY
AT A2
L x Ax d

Similar relationships may be developed for boundaries @, ®, and @.
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In summary, for a nondeflecting boundary with uniformly distributed rotational
springs, equilibrium on the boundary and one station off the boundary are not used.
Instead, in the remaining equilibrium equations, w on the boundary and one station off
the boundary are set equal to zero and Dy on the boundary is set equal to Dh if the
boundary is number @ or ®, and D99 on the boundary is set equal to D§2 if the
boundary is number @ or @.

The limiting cases of simply supported or clamped boundaries are readily provided
by letting kg approach zero or infinity, respectively. Hence, for a simply supported
boundary

D%, =0 if the boundary is @D or®

D3, =0 if the boundary is @ or @

and for a ciamped boundary

D}, = 2Dq; if the boundary is @D or @
D§o = 2Dgy if the boundary is @ or @

Flexural Stiffeners

The effects of flexural stiffeners are accounted for in a manner similar to that used

- for nondeflecting supports. At each finite-difference station along the stiffener, (Dl 1) i

is replaced by (—ﬁll)ij if the stiffener is parallel to the X-axis and (Dgg).. is replaced

— ij
by (ng)ij if the stiffener is parallel to the Y-axis, where

= - El
(Dll)ij - (Dll)ij +'A_y'

(A29)

(Daa)y; = (Da2)y; + %

and EI is the lateral bending stiffness of the stiffener about the neutral plane of the
panel.
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Summary of Finite-Difference Stations at Which Equilibrium Is Enforced

As a result of the foregoing discussions on free or spring-supported edges and non-
deflecting edges, the rows i and columns j at which equilibrium is enforced are,
respectively,

Me =13 - I + 3 - Twice the number of nondeflecting edges parallel to the Y-axis

(A30)
Ng = J9 - J4 + 3 - Twice the number of nondeflecting edges parallel to the X-axis
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APPENDIX B
TRIGONOMETRIC FINITE DIFFERENCES

Trigonometric finite differences introduce the trigonometric parameters Ax and
Ay which are not present in conventional finite differences. Consequently, the first pur-
pose of this appendix is to present and demonstrate some effective procedures for
selecting values of Ax and Ay which results in an improved convergence rate over
conventional differences. The second purpose is to point out some of the limitations of
trigonometric finite differences.

Selection of Ax and Ay

Selection of values of Ax and Ay which improve the convergence rate of trigo-
nometric finite -difference solutions over those of conventional finite-difference solutions
is predominantly based on engineering considerations and experience. Experience has
shown that it is often advantageous to select trigonometric parameters whose ratio is
determined on the basis of the infinitely long panel solution as is done in equations (11)
and (12), that is,

J-3 | (B1)

where f is the wavelength parameter of an infinitely long panel, defined as the ratio
of the panel width to the buckle length, Imposing equation (Bl) on the parameter seleé—
tion should be reasonable for panels which buckle with more than two half waves along
their length,

The value of 8 may be determined to any degree of accuracy by extending the
isotropic results of reference 16, For a panel with its long dimension parallel to the
X-axis, first approximations of the buckling eigenvalue D, and wavelength parameter
B satisfy the following two simultaneous equations for panels whose long sides are sim-
ply supported:

~
(txy + ﬁoorxy)z - 2‘ MMy = 0

> (B2)

%(M1M2> =0
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and, for panels whose long sides are clamped, p and [ satisfy the two simultaneous

equations
~
(txy + ﬁoorxy>2 - %—ﬁ(ZMO + Mz)(Ml + M3> =0
? (B3)
-BQE(MO + Mz) (Ml + M3) =0

where

My =

Dog nd D3 n2g2 4 2 2 =
- - T =0,1, 2,3
83{1311 + 2 - D11 B4 + B B(t +p rx) n(y+p°°ry) (n , 1,2, 3)

Convergence Behavior

Figures 17(a) to 17(f) illustrate the convergence of trigonometric finite -difference
solutions when hy/hx is fixed on the basis of equation (B1). Results for both simply
supported and clamped isotropic panels under either axial compression or shear are
shown in these figures. In each case the panel was modeled using an equal number of
finite -difference stations in the x- and y-directions. Exact and approximate values for
these cases are given in references 1, 6, 16, and 17.

The dashed curve in each of figures 1"7(a) to 17(f) illustrates the convergence of the
conventional difference solution — that is, Ax and Ay infinite — while the solid and
dash-dot curves illustrate the convergence achieved with some finite values of 1. Com-
parison of the curves indicates that some values of Ax increase the convergence rate
over the conventional rate while other values decrease it. (In those special cases where
the buckle shape is exactly a double sine wave, the trigonometric difference solution is
exact when Ax and Ay are equal to the buckle half wavelength.) Consider though the
dash-dot curve of each figure. These curves show the convergence when Ay is simply
taken equal to the panel width and Ax is taken equal to the buckle length of the infinitely
long panel; that is, equations (11) and (12) are applied. Comparison of the dash-dot
curves and the dashed curves indicates that equations (11) and (12) provide reasonable
values of Ax and Ay which improve the solution convergence. As figures 17(a) to 17(f)
indicate, however, other values of Ax/a could be selected which further improve the
convergence rate. Such values may be found by making a condensed cross plot of each
figure; for example, consider the case of the compression of a square isotropic clamped
panel as shown in figure 17(c). For this case, equations (B3) predict 8= 1.5. Then,
using program BOP with ky/)\x = 1.5, kx/a. is varied from 0.25 to 1 for mesh sizes of
a/Ax =b/Ay=5 and a/Ax =Db/Ay = 6; these curves are shown in figure 18. As the
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mesh spacing is decreased, the curves will approach the exact solution at all values of
Kx/a. However, the two curves cross at Ay /a =0.35 and Nx=9.7 5, which implies
that convergence is most rapid at this value of kx/a since increasing the mesh size
did not change the buckling stress coefficient. It is evident from figure 17(c) that, if
such a choice of Ax were used, convergence would be improved beyond that achieved
by selecting Ay from equation (11).

As further examples, consider the results in table 4 for the shear buckling of the
orthotropic panels described in table 3. The values of Ax and Ay were determined
by making the required cross plots. It is evident by comparing the conventional and
trigonometric solutions given in the table that the selected values of Ax and Ay pro-
vided excellent results.

The additional effort involved in finding better values of Ay may be justified in
problems where convergence would otherwise be extremely slow. It may also be justi-
fied in the performance of parameter studies. In such studies some typical problems
within the problem class to be studied are chosen; for these, improved values of Ay are
found and then interpolated to yield Xy for other problems within the study class.

Correction Factors for Equations (11) and (12)

Equations (B2) and (B3) which provide B for equations (11) and (12) do not cover
every case; the boundary conditions may not be simply supported or clampéd, or it may
be inappropriate to use B based on an infinitely long panel. Consequently, equa - '
tions (11) and (12) must be used with engineering judgment. Some allowance is provided
by introducing correction factors Cy and Cyyx into equations (11) and (12), that is,

KY I | B4
5 = Cyx | (B4)
Ax - b Cx 7

a a'g (BS)

A numerical routine which calculates B from equations (B2) or (B3), and then Ayx.
and Ay from equations (11) and (12), is used in program BOP. This program is briefly
discussed in the main text and is documented in appendix D.

Limitations of Trigonometric Finite Differences

In figure 19 a sketch of the variation with Ax of the coefficient 1 /AAX as defined
by equation (10) is presented. The reader's attention is called to the singularities of
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Ax Ax By
213
varying behavior of l/lx between them, Ax and similarly Ay must be chosen such
that

1 /KX at Ax = etc. In order to avoid these singularities and the rapidly

N
Ax
Ay > X
X" g
» (B6)
A
y
A > 3
y 2

Moreover, if uniformly distributed rotational springs are prescribed on the boundaries in
the manner presented in equations (A20) to (A24), then to avoid singularities in 3§ and
Z&§ choose

Ax > Ax

(BT)
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STABILITY DETERMINANT EVALUATION

Since the total number of rows and columns at which equilibrium is enforced is
Me and Ng, respectively, a stability determinant of order MgNg X MgNe would result.
To produce a stability determinant of smaller size, a marching procedure is employed.
This procedure, which is described herein, operates on the equilibrium equations to pro-
duce, by a process of successive elimination, a determinant of size 2Mg X 2Mg.

The marching procedure takes advantage of the fact that each of the difference
equations of equilibrium, equations (5), is linear and homogeneous, with each one con-
taining no more than 13 unknown deflections. For a station (i,j) away from the plate
edges

I +1<i<Iy-1

Jp+1<j<J,) -1

where Iy and I, are the first and last rows of finite-difference stations at which
equilibrium is prescribed, and J; and J) are the first and last columns of finite-
difference stations at which equilibrium is prescribed, the 13 unknown deflections form
the geometric pattern shown in figure 2(b). It is evident from this pattern that the deflec-
tions at stations in column j + 2 can be determined by using equilibrium at stations in
column j if the deflections in columns j -2, j -1, j,and j+ 1 are known or pre-
scribed. For equilibrium at stations lying near the edges, however, the geometric pat- -
tern of figure 2(b) is reduced. Consequently, equilibrium at stations in the first column
J¢ may be used to determine the deflections at stations in column J¢ + 2 if the deflec-
tions only in columns Jf and Jgf+ 1 are prescribed, since deflections in columns

Jg -1 and Jg - 2 do not appear in these equilibrium equations.

Having found the deflections in column J¢+ 2 from prescribed values in column
Jg and Jg + 1, equilibrium at stations in column Jjf + 1 can be used to obtain the deflec-
tions in column Jy + 3; likewise, equilibrium at stations in column J¢ + 2 can provide
deflections in column Jf + 4, etc. Thus, a marching routine is developed from column
to column which determines the deflections throughout the panel from prescribed values
in the first two columns. It should be noted that equilibrium at stations in the last two
columns, Jy -1 and Jy, is not used at this stage of the marching procedure.

The evaluation of the stability determinant can now be performed numerically for a
given value of the eigenvalue by choosing 2Mg linearly independent sets of assumed
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deflections for the first two columns, These assumed sets are taken as

1] 0] 0] 0]
0 1 0 0
0 0 1 0
T I R ) I O O M T Bt
o o o 1

where each column contains 2Mg values. By marching across the plate with the rth set
of these assumed values, deflections throughout the plate W-u? are determined. How-
ever, the equilibrium equation at stations in the last two columns will not, in general, be
satisfied by any of these assumed sets. Therefore, consider the column matrix

®
L, d -1

o{r)
Ip,J-1
(r)y -

e } (r) (C2)
°I;,d

(r)
°1,3,

where each element of the matrix represents the value of the left-hand side of an equilib-
rium equation at a station in columns Jy -1 or Jy for the rth assumed set and would
be identically zero if the assumed deflections were exact. The total solution is a linear
superposition of all the assumed sets, that is, ’

(@), (r) Ei=ly
Z Arwllr (Jf—]' —Jﬂ> (C3)
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Correspondingly, the total contribution to equilibrium at columns Jg -1 and Jg for
all assumed sets of deflections is

[e]= ) a® {e) (ca)

r=1

The coefficients A(r ) are determined by enforcing equilibrium at stations in the last
two columns which leads to

[e]=0 | (Cs)
or
-
4@
R T Y R R ET ©0
A(ZMG)

For a nontrivial solution of equation (C6) the determinant of the coefficients must vanish,
resulting in

le] =0 (c)

and it is clear from equation (C6) that |e| is of order 2Mg X 2Mg.
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COMPUTER PROGRAM

The computer program BOP (Buckling of Orthotropic Panels) was written in
FORTRAN IV on a SCOPE 3.1 system modified for Langley Research Center and executes
and loads with a field length of 60000 octal locations. The program is applicable to the
combined compression and shear of stiffened, variable-thickness, flat rectangular ortho-
tropic panels on discrete springs; boundary conditions are general and include elastic
boundary restraints. A description of the input, an example problem showing input and
output, and a program listing are provided.

Input Description

For each case the input consists of a single identification card and a Namelist
BUCKLE as follows:

ISTIFF,ISTEP,IX,JX,MSHAPE,MA,NOMAT, TH,AT,MATYPE,E1,E2,U1,G12,IBC,AKR,D1,
D2,D12,D66,DS1,XA XB,AKL,AKX,AKY ,NUPRIT,EL, IORIENT,LOC,TX,TY, TXY,RX,RY,
RXY,P1,DELP,PFIN,TEST,MR,NC,X,Y,DS2,DS12,DS66

Many of the input variables have associated default values as will be indicated in the fol-
lowing descriptions:

Control parameters

ISTIFF =1 no preprocessing of laminate properties — execute for buckling (only)
=2 preprocess and execute for buckling
=3 preprocess only — do not execute for buckling

DEFAULT:ISTIFF = 2
ISTEP =1 - program automatically varies the input step size, DELP
=2 step size fixed and equal to DELP
DEFAULT:ISTEP = 1
X = output of intermediate results
= ) output of intermediate results suppressed
JX = output of flexural stiffnesses at each finite-difference station

= output of flexural stiffnesses suppressed

DEFAULT:IX = JX = 2
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compute mode shape

do not compute mode shape

DEFAULT:MSHAPE = 2

Laminate and lamina properties (Required if ISTIFF = 2 or 3)

MA
NOMAT
TH

AT

MATYPE

El

E2

U1

G12

number of laminas in the laminate
number of different materials comprising the laminate

a one-dimensional array in which the ith element of the array corre-
sponds to the filament orientation (as measured from the X-axis in
degrees) in the ith lamina

a one-dimensional array in which the ith element of the array corre-
sponds to the thickness of the ith lamina

a one-dimensional array in which the ith element is the number desig-
nation of the material in the ith lamina

a one-dimensional array in which the jth element of the array corre-
sponds to the Young's modules parallel to the fibers in the jth
material

a one -dimensional array specifying the Young's modulus transverse to
the fibers

a one-dimensional array specifying Poisson's ratio vy9 in each
lamina '

a one ~-dimensional array specifying the shear modulus in each material

Boundary conditions

34

IBC
IBC(I) = 1
=2
=3
=4
=5

a one -dimensional array of four elements in which the ith element
refers to the ith boundary (see fig. 2(a)); four options are available
at each boundary

nondeflecting lateral support with uniform rotational springs on edge I
simple support on edge I

clamped on edge I

free on edge I

other boundary conditions — set by user through appropriate input of
D1, D2, D12, and D66
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a one-dimensional array in which the ith element of the array corre-
sponds to the uniformly distributed rotational spring stiffness per
unit length of boundary on the ith boundary; required if any boundary
has IBC=1

Laminate flexural stiffnesses (Required if ISTIFF = 1)

D1

D2
D12

D66
DS1

Plate geometry
XA=a
XB=b

Discrete springs

AKL

AKX
AKY

Discrete flexural

a two-dimensional array in which the (i,j)th element of the array cor-
responds to the value of (Dyj) i

similar to D1, but specifying (D22>ij

similar to D1, but specifying (Dlg)ij
similar to D1, but specifying (D66>ij

reference value of D11

dimension parallel to X -axis (fig. 2(a))

dimension parallel to Y-axis (fig. 2(a))

a two-dimensional array in which the (i,j)th element corresponds to
(ke)y
similar to AKL but referring to <kx>ij

similar to AKL but referring to (ky) i

stiffeners

NUPRIT
ElI
IORIENT
=1
=2
LOC

number of stiffeners

a one-dimensional array whose ith element specifies the flexural stiff-
ness of the ith stiffener about the neutral plane of the panel

a one-dimensional array whose ith element specifies whether the stiff-
ener is parallel to X- or Y-axis

stiffener parallel to X-axis
stiffener parallel to Y-axis

a one-dimensional array whose ith element gives the row or column
location of the ith stiffener

DEFAULT:NUPRIT = 0; EI, IORIENT and LOC need not be input

35



ABBOTTAEROSPACE.COM

TECHNICAL LIBRARY

APPENDIX D

Applied in-plane loads

In-plane loads are assumed to be uniform over the boundary to which they are
applied and are increased to buckling according to the relationships prescribed by equa-
tions (13); therefore, the user inputs

TX = tx
TY = ty
TXY = t_xy
RX = ry
RY ='ry
RXY = rgy

Eigenvalue search parameters

P1 starting value of p. If P1<0,, the program will calculate P1 from
equation (B2) or (B3) according to the relation,

P1 = ABS(P1)*PBAR (D1)

where PBAR is p,, from equation (B2) or (B3).
DEFAULT:P1 = 0.9xPBAR

DELP increment of (p); if P1<0., DELP = 0.1*PBAR; if ISTEP =1,
DELP is automatically varied during the eigenvalue search

PFIN maximum value of p during the eigenvalue search

TEST eigenvalue accuracy

DEFAULT:1. X 10-3

Trigonometric finite-difference data

MR number of rows of finite-difference stations interior to the plate —« not
including boundaries

NC number of columns of finite-difference stations interior to the plate —
not including boundaries

Note: The marching procedure requires NC = 4
X = Kx/a
Y= Ay/b
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Note: If the user inputs X = 0, the program automatically calculates a new value of X
and Y according to the relationship expressed by equations (B4) and (B5); that is,

X = ABS(X)*XB/BETA/XA (D2)
Y = ABS(Y) (D3)

where the input magnitudes of X and Y (thatis, ABS(X) and ABS(Y)) replace Cy
and Cyx in equations (B4) and (B5). Also, in equation (D1), BETA =8, and B is cal-
culated from equation (B2) or (B3).

When ISTIFF =1 and the evaluation of X and Y is chosen, the user must also
input

DS2 average or typical value of Dgg
DS12 average or typical value of Djg
DS66 average or typical value of Dgg

DEFAULT: Calculation of X and Y using equations (D2) and (D3) where ABS(X)
and ABS(Y) are set equal to unity.

Example Problem

Consider the shear buckling of a 12-inch by 3-inch clamped sandwich panel which
has as its lay-up, 45/-45/45/-45/CORE/-45/45/-45/45, The core thickness is
0.0605 inch and each lamina of the skins is graphite-epoxy with a thickness of
0.0055 inch.

Sample Input
THi> 15 A FREE FIELD IOENTIFICATION CARD
$BUCKLE TX=,0,TY=.0,TXY=,0,RX=.0,RY=,0,RXY=1.,
XA=12,X8=5.,MR=12,NC=06,18C=4*3,NUMAT=2,E1=2.10E7,1.,£2=2.3%¢E6,1.,
Ui=.31,.2,612=6.5E5,1.,MA=9, MATYPE=4*1,2, 441,
AT=4%,0055,.00605,4%,0355, THi=el5, ,=45,,45,,-45.,,0,~-45,,45., =45, ,u45.

$
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Sample Output

INPUT FOR CASE

THIS IS A FREE FIELD INDENTIFICATION CARD

RS SASER RS RREE S22 2 ¢

4 2
4 2
e - 2
4 2
o 4 2
T 4 T2
333333333333
*
e . .
*
-
- - - -3
o X

ISTIFF=2  ISTEP=1

TTTTXAETTIL200000006401° 7 XB=

MR=12 NC= 6

TX= 0. S T¥= 0.

P1= -9,00000000E-01 DELP= 1.00000000E-01

"X="~1.00000000E+00 Y="1.00000000E+07

RX= 0. o RY=" 0.

38

TEST= 1.06G003003E-03

ASPECT RATIO= 4.00000000E+00

TXY= 0.
PFIN= 1.00000000E+02

RXY= 1.00000000E+00
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LAMINATED PLATE PROPERTIES

MATERIAL KIND El E2 Ul GXY
1 +10000000E +07 2.39000000E+06 3.10000000E~-01 6.50000000E+05
A ' 1.00000000E +00 1., 00000000E+00 2.00000000E-01 1.00000000E+00
TTAYERND.  MAT. KIND CTHICK ' THETA ~
1 1 5.50000000E-03 4.,50000000E+01
2 1 5.50000000E-03 -4.50000000E+01
3T 1 " 5.50000000€F-03 4.50000000E+01
4 1 5.50000000E-03 -4.50000000E+01
5 2 6.05000000E-02 0.
e T T "5.50000000E~03 ~4.50000000E+01
7 1 5.50000000E-03 4.50000000E+01
8 1 " 5.50000000E-03 -4.50000000E+01
Tt T T T T U5 S0000000E-03 T 4.50000000E+01

> % T o f e o o oA o Feok B Sk ok o 3k ok sk ok ok ek ok ok ok ok ok ok 3 ok 3k o s ok sk e A o ok o A o8k e e e e e ofe o ol e sk ok ok ok e ok o ol kol R ek Tk ko ok
I © :
<[§ e e ————— e e w m mae emama ey ime = . o —— e R . e . . - . - N e
%g CAUTION -~ COUPLING BETWEEN EXTENSION AND BENDING MAY BE SIGNIFICANT
IF THE FOLLOWING FOUR VALUES ARE NOT ALL EQUAL.
£ T TR THIS TS THE CASE, THE RESULTS SHOULD BE USED WITH DESCRETION -
0

-z
L < 4,7677T5528E-17 7.15163293E~17 8.80102296E~17 5.97234077E-17
0 St e7ocmi Qe BULVCLTIDET - - .
z R Aok ok ol o & ek ik ook sk Sk Kok ok ok ok s e i 3k ik o o o ok ok ok ok ol ok ok ok ook sk sk o ok ol e ok ek ok ok o ok oo e o ek ok e ki ok ok Rk
ik S e -
0
L
- o A MATRIX

3,05215229E+05 2.480151 T9E+05 0.

T 2YHBITSITIEFDS U U3.05215229E4057 T U, D
0. 0. 2.436551395405

1.45519152E-11

T2 IB2T8TZ8E-11 " ¢

T.27595761E-11

B MATRIX

2.18278728E~11

7.27595761E-11

“2.182787T28E-11""

8.00355338E~-11
T.27595761E-11
1.45519152E-11
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D MATRIX

5.31653046E+02 4.32016589€+02 ~ 4.69571561E+01 =
4.32016589E+02 5.31653046E+02 4.69571561E+01
4.69571561E+01 4.69571561E+01 4.24421785E+02

OVERALL LAMINATE PROPERTIES

EX=  9.92156003E+05 EY= 9.92156003E+05 GXY= 2.33162813E+06
NUXY= 8.12591100E-01 NUYX= 8.12591100E-01

e e s A e A e o ok A e e ke e o i S i o e ik kool e o 3 o kol i 9K ok ik ok s e sk e ool s ol o ke ok e e ke o o oK e

P= 1.30776204E+01 B= 9.57954000E-01 F= -1.83044904E-08G= 3.83577069E-03

PROGRAM HAS COMPUTED AND USED X= 2.60972865E-01

“AND Y= T 1.00000900E+20 BASED ON THE INFINI'TE PLATE WAVE LENGTH ~ ) T

BASED ON AN TNFINITELY LONG PLATE THE BUCKLING STRESS COEFFICIENTS ARE

NXBAR= 0.
NYBAR= 0.
TTUNXYBAR=E 1,30 T7T6Z204E40T T T
AND THF STRAINS ARE
STRNX= 0.
""""""" STRNY= 0.
STRNXY= 3,12923870E-02

PROGRAM WILL NOW CONTINUE WITH FINTTE ASPECT RATID SOLUTION

et e ko ke sk ok o koo sk ok ok sk e ok o e ook e oA sl ok ok ok ok ok sk dk sk skeskooke ok skl ki e sk ok ok ok e ok o ok ok ke ioke ok sk

_ . _BOUNDARY CONDITIONS =
BOUNDARY NO. 1 IS CLAMPED
BOUNDARY NO. 2 IS CLAMPED

BOUNDARY NO. 3 IS CLAMPED
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BOUNDARY NO. 4 IS CLAMPED

et RXBAR T CT 7 7777 NYBAF NXY BAR
0. 0. 1.17698583E+01
S s DU o PO - - “1.19006345E+01
0. : 0. 1.20314107E+01
0. 0. 1.20473676E401
L P 0. ‘ 1.20687996E+0T1
>z 0. 0. 1.207613695+01
14 7. 2. 1.20793082E+01
<I§ T T .
s
0 BUCKLING LOADS PER UNIT OF LENGTH ALONG BOUN
- g STNRE 0, T NY= 2. ' o : NXY =
15
<§
5 S
> [XB#%2) #NX/(PI%%2)/(T*%3) = 0O,
T [XBAK2)ANY/{PI%%2)/(T*%*3} = 0,
0] ~[XBREZVENXY/ (PTEE2T7UT®%3) "=~ 5,627577T6TE¥06
L
=
{XB*%2 ) *EPSILONX/ (T%%2) = -0.
S IXBRRZYFEPSTLONY/ [TR%72) = " =0, Co
(XB%%2) *EP STLONXY/{T*%2) = -1.19105540E+01

DARY EDGE
T.0&251216E+03

"DETERMINANT

6.54187653E+12

T 2.18161022E+12°

2.37244168E+11
1.33435159E+11
3.35545245E+10
9.37018457E+09
0.
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TABLE 1.- SHEAR-BUCKLING LOAD COEFFICIENTS FOR RECTANGULAR ORTHOTROPIC PANELS
WITH ALL EDGES SIMPLY SUPPORTED AND THE TRIGONOMETRIC DIFF ERENCE
PARAMETERS ON WHICH THEY ARE BASED

No. of mesh points

Wavelength ratios

Shear -buckling load

Stiffness parameter, | Aspect-ratio parameter, in x- and used in trigonometric coefficient,
o \/D11Da9 B 2\4/]%5 y-directions differences kg = b2Nyy
D a
’ » a/by | b/ay | Ax/a | Ay n2{D11D3;
0.2 1.0 9 9 0.56 0.56 26.28
.8 9 9 .56 .60 21.43
.6 9 9 .56 .80 17.33
.5 9 9 .50 .90 15.36
4 11 11 .50 1.00 13.77
2 13 13 .35 1.00 11.55
' ag - - - - 10.87
4 1.0 9 9 .56 .56 15.78
.8 9 9 .56 .60 12.98
.8 9 9 .56 .80 10.86
.5 9 9 .50 .90 9.93
A 11 11 .50 1.00 9.29
.2 15 8 .30 1.00 8.21
ap ——- —- - - 7.72
.6 1.0 9 9 .56 .56 12.21
.8 9 9 .56 .60 10.11
6 9 9 .56 .80 8.67
.5 9 9 .50 .90 8.09
4 11 11 .50 1.00 7.73
.2 15 8 .25 1.00 6.71
a9 - —-- . 6.53
.8 1.0 9 9 .56 .56 10.40
.8 9 9 .56 .60 8.66
.6 9 9 .56 .80 7.57
.5 9 9 .50 .90 7.10
4 11 11 /50 1.00 6.80
.2 15 8 .25 1.00 6.02
ag —-- ——- —-- — 5.79
1 1.0 9 9 .56 .56 9.31
.8 9 9 .56 .60 7.68
.6 9 .56 .80 6.91
4 11 11 .50 1.00 6.22
.2 15 8 .23 1.00 5.49
20 —— - - - 5,33

AFor B=0, kg was calculated by using equations (B2).
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TABLE 1.- SHEAR-BUCKLING LOAD COEFFICIENTS FOR RECTANGULAR ORTHOTROPIC PANELS

WITH ALL EDGES SIMPLY SUPPORTED AND THE TRIGONOMETRIC DIFFERENCE

PARAMETERS ON WHICH THEY ARE BASED -~ Concluded

No. of mesh points

Wavelength ratios

Shear -buckling load

Stiffness parameter, | Aspect-ratio parameter, in % and used in trigonometric coefficient,
- yDP11D22 B = 2(}? y-directions differences kg = szxy
D3 22 a/Ax | b/Ay Ax/a Ay/b 724D, D3,

1.25 1.0 9 9 0.56 0.56 8.43

.8 9 9- .56 .60 7.08

.6 9 9 .56 .80 6.38

4 11 11 .50 1.00 5.75

.2 15 8 .22 1.00 5.09

.1 25 9 .13 1.00 5.05

ap —— S —— —— 4.96

1.667 1.0 9 9 .56 .56 7.54

.8 9 9 .56 .60 6.37

.6 9 9 .56 .80 5.85

.4 11 11 .50 1.00 5.26

.2 15 8 .22 1.00 - 4,72

.1 22 8 .13 1.00 4.68

a0 - - —— ——- 4.60

2.5 1.0 9 9 .56 .56 6.65

.8 9 9 .56 .60 5.66

.6 9 9 .56 .80 5.32

.4 11 11 .50 1.00 4.77

2 15 8 .22 1.00 4,32

1 22 8 .13 1.00 4.33

ap 4,17

5 1.0 9 9 .56 .56 5.74

.8 9 9 .56 .60 4,94

.6 9 9 .56 .80 4,78

4 11 11 .50 1.00 4,27

.2 15 8 .22 1.00 3.90

.1 22 8 .13 1.00 3.86

a0 -—- - - - 3.75

o 1.0 9 9 .56 .56 4.83

.8 9 9 .56 .60 4,22

.6 9 9 .56 .80 4.25

4 11 11 .50 1.00 3.76

.2 15 8 .22 1.00 3.47

a0 ——- --- - en 3.30

2For B=0, kg was calculated by using equations (B2).
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TABLE 2. - SHEAR-BUCKLING LOAD COEFFICIENTS FOR RECTANGULAR ORTHOTROPIC PANELS

WITH ALL EDGES CLAMPED AND THE TRIGONOMETRIC DIFFERENCE

PARAMETERS ON WHICH THEY ARE BASED

Stiffness parameter, | Aspect-ratio parameter, | NO: oifnrngsglngoints uxzvf;igggngﬁgéi c Sheacroeb}lflictlfilelﬁtg, foad
_yP11DPag B = b4P11 y-directions differences o bZny
" Dy 2y Da2 s - _2—:——;

a/Ax | b/Ay Ax/a Ay/b n4{[D11D3y
0.2 1.0 9 9 1.00 1.0 32.56
.8 9 9 .80 1.0 26.31
6 9 9 .60 1.0 22,21
4 11 11 .40 1.0 18.91
.2 17 9 .31 1.0 - 17.34
.1 25 9 .15 1.0 17.31
ag . o . - 17.13
4 1.0 9 9 1,10 1.1 21.63
.8 9 9 .90 1.0 17.92
.6 9 9 .60 1.0 15.43
4 11 11 .40 1.0 13.62
.2 17 9 .25 1.0 12.64
A 25 9 .13 1.0 12.89
a0 - ——- - 12.51
.6 1.0 9 9 1.10 1.1 17.86
.8 9 9 .90 1.0 14,89
.6 9 9 .60 1.0 13.06
4 11 11 .40 1.0 11.60
.2 15 8 .22 1.0 10.64
.1 25 9 .13 1.0 10.95
a0 _— - 10.69
.8 1.0 g g 1.10 1.1 15,94
.8 9 9 .90 1.0 13.34
.6 9 9 .60 1.0 11.84
.4 11 11 .40 1.0 10,55
.2 17 9 .24 1.0 9.99
.1 25 9 .13 1.0 10.16
a0 - ——- - - 9.63
1 1.0 9 9 1.20 1.2 14.81
.8 9 9 1.00 1.0 12,44
6 9 9 .60 1.0 11,08
4 11 11 .40 1.0 9.89
2 17 9 .22 1.0 9.27
.1 25 9 .12 1.0 9.11
a9 - ——- ——- - 8.99

aror B=0, kg was calculated by using equations (B3).
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TABLE 2.- SHEAR-BUCKLING LOAD COEFFICIENTS FOR RECTANGULAR ORTHOTROPIC PANELS

WITH ALL EDGES CLAMPED AND THE TRIGONOMETRIC DIFFERENCE

PARAMETERS ON WHICH THEY ARE BASED -~ Concluded

No. of mesh points

Wavelength ratios

Shear -buckling load

Stiffness parameter, | Aspect-ratio parameter, in X- and used in trigonometric coefficient,
\/']3_11—52_2_ B Qﬂﬁ y-directions differences ~ b2 Ngy
0= —D3-—- a\/Dgo kg = *——‘—3‘“

a/Ax | b/Ay Ag/a Ay /o m2{/D1;D3,
1.25 1.0 9 9 1.20 1.2 13.87
.8 9 9 1.00 1.0 11.68
.6 9 9 .60 1.0 10.46
4 9 9 .40 1.0 9.39
2 15 8 .22 1.0 8.80
A1 22 8 .12 1.0 8.98
29 N - — — 8.45
1.667 1.0 9 9 1.20 1.2 12,91
.8 9 9 1.00 1.0 10.90
B 9 9 .60 1.0 9.80
4 9 9 .40 1.0 8.86
.2 15 8 .22 1,0 8.34
1 22 8 12 1.0 8.58
a0 —- —- - - 7.93
2.5 1.0 9 9 1.20 1.2 11.93
.8 9 9 1.00 1.0 10.11
.6 9 9 .60 1.0 9.07
A 9 9 .40 1.0 8.31
2 15 8 .22 1.0 7.84
.1 25 9 .12 1.0 8.12
a9 ——- ——- -e- 7.32
5 1.0 9 9 1.20 1.2 10.94
.8 9 9 1.00 1.0 9.31
.6 9 9 .60 1.0 8.33
4 9 9 .40 1.0 7.74
.2 15 8 .22 1.0 7.33
A1 25 9 12 1.0 7.66
20 . - - - 6.72
o 1.0 9 9 1.20 1,2 9.92
.8 9 | 9 1.00 1.0 8.48
.6 9 9 .60 1.0 7.57
4 11 11 .40 1.0 6.97
.2 15 8 .22 1.0 6.79
1 25 9 12 1.0 7.117
a0 ——- —— - - 6.11

AFor B=0, kg was calculated by using equations (B3).
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TABLE 3.- MATERIAL PROPERTIES OF GRAPHITE-EPOXY SKINS

WITH THEIR EQUIVALENT ORTHOTROPIC PARAMETERS

AT VARIOUS FILAMENT ORIENTATIONS

[El - 145 GN/m2 (21 x 108 psi); Eg/Eq = 0.1138;

Gy2/Eq = 0.03095; vig = 0.31]

Filament orientation, o = VD11D22 a g P11
+0, deg D3 b Doy

0 3.50 1.722

30 .511 1.389

45 415 1.’000

60 - 511 .720

90 3.50 .581
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Figure 1.- Stress resultants acting upon an
element of the plate.
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Figure 2. - Geometrical and numerical configurations.
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Figure 3. - Shear-buckling load coefficients for rectangular orthotropic plates
with all edges simply supported.
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Figure 4. - Shear-buckling load coefficients for rectangular orthotropic plates
with all edges clamped.

78



* JOUDJJIIS TBIJUDD B YA UOED stoued o1doajost pojroddns A1dwis Jo Suiryonq xeays - 'g aandtg
aa/1d ‘sseupmys TeInxald

1
0001 0071 01

10

| _ _

28pa j10ys 03 [9f[BIRd — — — Q ﬁ a
23pas Suot 03 1911BARd

J9USIINIS

WOO'30vdSOod3aviiogay

Advddg8ll TIvaINH3I3 L

(=]
-

— 001

AXN $JUSTOTJE0D §SAI)S JUITHONq-TedS ~

79



‘so1jex oodse Snoiaea Jo s[oued JOJ UOIJBJUSIIO JUSWIEIL] YIIM pPBO] SuI[song 9A18s01dWOD JO UOIIRIIBA -°Q 9InS1g

‘padwer)d OJ

pajxoddns Ajduiig O
stoued yotmpues
wnurunye

pouuTys-ury) Jy3rom renby

N

-

g F ‘UoIjBIULIIO JUBWRIIY

06 08 0L 09 0% 0¥ 0€ 09 01
| _ | _ ! | I I
pajxoddns Ajdwig c
o G
pedwe) — — —

Jadajuy

sadpa 11V

-
/////”/// \\\“ < —
S Z2N———
NN g -
/ N -~ (4
NWa. A7
”////l“\\\ e
N S -~ — ]
/0/. PR a:
X ////-!\\l\llll‘l.lllll
| NI I'T
/’I..l.,
9+10- L
e Q\N
A -
q

WOO'30vdSOod3aviiogay

Advd8gall TIvaINH33 L

80



TECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

-y
6 — a -
/’--‘\ Ao)
— // \\ \--;-9
Sl 5 / NF =-f
Bl a/ [/ N\
Nl / AN
= 1y —_ N\
o e —-N AN
I 4 a/b
) 3 17

Shear buckling parameter, N

Equal weight thin-skinned
9 | aluminum.

) sandwich panels
g | O Simply supported

- [dClamped

All edges
— — — Clamped

Simply supported

Filament orientation, + 6

Tigure 7.- Variation of shear buckling load with filament orientation for panels
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Figure 10, - Optimum filament orientation for the shear buckling
of a simply supported panel.
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Figure 14.- Summary of combined axial compression and shear-buckling
results for simply supported and clamped panels.
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TECHNICAL LIBRARY
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(a) Convergence for the compressive buckling of simply supported isotropic

square panels, hy/hx =B =1, From reference 6, Nx = 4.0,

Figure 17.- Convergence characteristics of trigonometric finite differences.



TECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

[ .‘____N
6 — °°\( g l«— X
|
0.6 !
\
4_
4 Conventional
9 - .15
—_—
Percent _ .2 _
error
-9 -
-4
-6 L
| | | | ] J
0 20 40 60 80 100

Degrees of freedom

(b) Convergence for the compressive buckling of 5 X 1 simply supported isotropic panels.

\y/Ax = B =5. From reference 6, Ny = 4.0.
Figure 17.- Continued.

96



TECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

A /a

16— X
0.25

12 -

s -

4_

Percent 0
error

T T I T

0 20 40 60 80 100
Degrees of freedom

(c) Convergence for the compressive buckling of clamped square isotropic panels.
Ay/Mx = B = 1.5. From reference 17, Nx ~ 10.074.

Figure 17.- Continued.
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(d) Convergence for the compressive buckling of isotropic clamped 5 X 1 panels.
Ay/Ax = B = 1.5, From reference 16, Nx ~ 17.0.

Figure 17.- Continued.
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(e) Convergence for the shear buckling of isotropic simply supported 5 X 1 panels.
Ay/Ax =B = 0.8. From reference 1, Nxy = 5.55.

Figure 17.- Continued.
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(f) Convergence for the shear buckling of isotropic clamped 5 X 1 panels.
hy/hx =fB =12, From reference 1, ﬁxy = 9.3.

Figure 17, - Concluded.
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