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ANALYSIS OF BONDED JOINTS 

S. Srinivas* 

Langley Research Center 

SUMMARY 

A refined elastic analysis of bonded joints which accounts for transverse shear 

deformation and transverse normal stress was developed to obtain the stresses and dis- 

placements in the adherends and in the bond.    The displacements were expanded in terms 

of polynomials in the thicknesswise coordinate; the coefficients of these polynomials were 

functions of the axial coordinate.    The stress distribution was obtained in terms of these 

coefficients by using strain-displacement and stress-strain relations.    The governing dif- 

ferential equations were obtained by integrating the equations of equilibrium.   These dif- 

ferential equations were solved, and the boundary conditions (interface or support) were 

satisfied to complete the analysis. 

Single-lap, flush, and double-lap joints were analyzed.    The effects of adhesive 

properties, plate thicknesses, material properties, and plate taper on maximum peel and 

shear stresses in the bond were studied.   Also, the results obtained by using the thin- 

beam analysis available in the literature were compared with the results obtained by using 

the refined analysis.   In general, thin-beam analysis yielded reasonably accurate results, 

but in certain cases the errors were high.   Numerical investigations showed that the maxi- 

mum peel and shear stresses in the bond can be reduced by (1) using a combination of 

flexible and stiff bonds, (2) using suffer lap plates, and (3) tapering the plates.   Of the 

three joints considered, for a given total adhesive thickness and joint volume, the double- 

lap joint had the smallest maximum peel and shear stresses in the bond, whereas the flush 

joint had the highest. 

INTRODUCTION 

Bonded joints in primary structures are becoming increasingly common.   In these 

joints, the adhesive which transfers the load from one member to another is subjected to 

a shear stress and a normal stress in the thickness direction (called peel stress).    The 

joint, when subjected to static or fatigue loads, can fail from excessive shear or peel 

stresses in the bond.    Thus, for a proper design of bonded joints, reasonably accurate 

estimates of the maximum peel and shear stresses in the bond are needed.    Several papers 
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in the literature deal with the stress analysis of bonded joints.   De Bruyne (ref. 1) ana- 

lyzed single-lap joints but ignored the bending effects.   Goland and Reissner (ref. 2) ana- 

lyzed single-lap joints, taking into account large deflections.   Erdogan and Ratwani 

(ref. 3) have analyzed the problem of a stepped joint but ignored the variation of stresses 

across the thickness (i.e., the bending effects).   Wah (ref. 4) analyzed single-lap joints of 

anisotropic materials.   Hart-Smith (ref. 5) has obtained the static failure loads for single- 

lap, double-lap, and scarf joints, taking into account plastic deformations in the adhesive. 

In all these references, the adherends were assumed to be thin beams; consequently, the 

transverse shear deformation and transverse normal stress were neglected.   Neglecting 

these strains and stresses can cause errors in the stresses and displacements obtained 

by using thin-beam analysis. 

In this paper a refined elastic analysis is developed in which the transverse shear 

deformation and the transverse normal stress are not neglected.   The adhesive is assumed 

to be elastic.   The accuracy of thin-beam analysis is assessed by comparing the bond 

stresses calculated from the thin-beam analysis with bond stresses calculated from the 

refined analysis.   In addition, methods of reducing the maximum peel and shear stresses 

in the bond are studied.    The configurations considered for analysis are double-lap, flush, 

and single-lap joints.    The plates can be stepped or tapered and can be of composite mate- 

rial.    Effects on maximum peel and shear stresses of thickness, modulus, and plate taper 

and of different adhesives along the length of the bond are studied. 

SYMBOLS 

a*(n) x-distance from origin to outer end of nth element (fig. 2) 

b*(j) x-distance from origin to plate supports (fig. 2) 

1X ü      \ elastic constants of jth plate 
C22(j),C33(j)J 

c*(n) thickness of nth element of plate 1 (fig. 2(a)) in single-lap joint 

generalized rigidities (see eqs. (20)) 
2'u33 ] 

d*(s) thickness of sth segment of plate 1 (see appendix A) 

D11'D12' 

D22'D33 



e*(s) distance from neutral axis of compound beam to top surface of sth segment 

of plate 1 

E?(j) longitudinal Young's modulus of fiber in fiber-reinforced composite plates 

E* adhesive Young's modulus in thickness direction 
g 

F arbitrary constant 

f*(s) thickness of sth segment of plate 2 (see appendix A) 

G* adhesive shear modulus 
g 

B.* thickness of plate 2 at inner end B in a double-lap joint (fig. 8(c)) 

H* thickness at ends A and B of plates 1 and 2 in single-lap joint (fig. 8(a)); 

thickness of plate 2 at A in double-lap joint (fig. 8(c)) 

h*(n) thickness of nth element of plate 2 (fig. 2) 

K*(s) bending stiffness of sth segment (appendix A) 

k power of   Z   in weighting function   Zk   (see eq. (15)) 

kx,kz spring constants of bond in x- and z-direction, respectively 

kx = kxt 

kz = kzt* 

L* total length of joint,   b*(l) + b*(2)    (fig. 2) 

I* length of lap region (fig. 1) 

I* length of stiff adhesive (fig. 7) 
s 

M bending moment 

m number of steps 



N integral of direct stress   ax 

P applied load on joint at end C per unit width (fig. 1) 

p applied stress at end C,   P/t 

Q integral of shear stress   axz 

R vertical reaction at supports (fig. 9) 

r number of elements in lap region (r = m) 

S shear force 

t* thickness of overhang 1 in single-lap and flush joints or half-thickness of 

overhang 1 in double-lap joints (fig. 1) 

u(j) displacement in x-direction of jth plate 

V integral of direct stress    az 

w(j) displacement in z-direction of jth plate 

X = x/t* 

x,z coordinates 

Z - z/t* 

ex,ez,exz strains in plates 

£* deflection, measured from neutral axis in large deflection analysis of single- 

lap joints (fig. 9) 

V * adhesive thickness 

/j,*(s) distance from neutral axis to reference axis in large deflection analysis of 

single-lap joints (fig. 9) 



£* axial coordinate used in large deflection analysis (fig. 9) 

a direct stress in thickness direction in bond; referred to as peel stress when 

it is tensile 

°x'az'°xz stresses in plates 

T shear stress in bond 

<p functions of   x   occurring in expansion of u-displacement in z-coordinate 

\fs functions of   x   occurring in expansion of w-displacement in z-coordinate 

Indices: 

i used in expansion of displacements in z-direction (see eqs. (1) and (2)) 

j plate, where   j = 1, 2 

n element, where   n = 1, 2, .  .  ., r 

s segment (see appendix A), where   s = l,2,.  .  ., m + 2 

An asterisk denotes a dimensional quantity. 

All linear dimensions are nondimensionalized by dividing by   t*   and are then 

written without the asterisk; for example,   a*(n)/t   = a(n). 
•X; 

All elastic moduli are nondimensionalized by dividing by   Ef(l), the Young's mod- 

ulus of the fiber in plate 1, and are then written without the asterisk; for example, 

E*(2)/E*(l) = Ef(2). 

A prime denotes differentiation with respect to   X. 

Numbers in parentheses are indices. 

ANALYSIS 

The three types of joints considered are single lap, flush, and double lap.    (See 

fig. 1.)   In a single-lap joint, the two main plates, which are constant, tapered, or stepped 

in thickness, are joined by bonding them directly.   In a flush joint, the two main plates 

are joined by bonding a lap plate on one side only.   In a double-lap joint, the two main 



plates are joined by bonding two plates - one on each side.   In double-lap and flush joints 

the main plates are of constant thickness, whereas the lap plate or plates are constant, 

tapered, or stepped in thickness. 

For the purpose of this analysis, tapered plates are idealized as stepped plates. 

The analysis is applicable for cases in which there are debonds.   In the analysis, the 

joints are split into two regions, lap and overhang (see fig. 2).   The lap region is further 

split into a number of smaller elements, depending on the number of steps and presence 

of debond.   Plate thickness and material properties are assumed to be constant within 

each element.    For example, in figure 2, where the joint has four steps, the lap region is 

treated as four bonded elements (1, 2, 5, and 6) and two unbonded elements (3 and 4) for 

plates 1 and 2.   The governing differential equations for each element are solved sepa- 

rately.   At the ends of each element the appropriate boundary conditions are satisfied. 

In a double-lap joint, because of symmetry about the x-axis, the lateral deflections 

of the joint are small compared with the joint thickness and, therefore, there is no need 

to consider the effects of large deflections in the analysis.    The overhang regions are 

treated as unbonded elements.    At the support ends of the overhang (C and D) support 

conditions are satisfied and at the junctions of overhangs and lap region (A and B) inter- 

face conditions are satisfied. 

In a single-lap joint, the deflections can be of the order of the joint thickness, 

depending on the overall length of the joint and the applied load.   Therefore, the effect of 

large deflections should be taken into account in the analysis.    This is done approximately 

by carrying out the analysis in two stages:    (1) the forces and displacements at the two 

ends of the lap region (A and B) are obtained by accounting for large deflections in an 

approximate way (see appendix A) and (2) the forces and displacements thus obtained are 

imposed on the lap region at the junctions A and B. 

A flush joint, in which the overhang region 2 is very small, is analyzed much like a 

single-lap joint except that the boundary conditions at D are different for the two cases 

(see appendix A). 

GOVERNING DIFFERENTIAL EQUATIONS 

Bonded Elements 

The governing differential equations were derived for the nth element.   However, 

in equations (1) to (23) the index   n   is dropped for the sake of simplicity.   In this deriva- 

tion, the joints are assumed to be in a state of either plane stress or plane strain in the 

xz-plane.    A unit width is chosen. 



The displacements   u   and   w   in each plate are expanded in terms of polynomials 

in the z-direction; the coefficients of these polynomials are functions of   x   only.    Enough 

terms are retained in the expansion to obtain a good approximation of the transverse shear 

strain   exz   and transverse normal stress    az   in the plates.    For double-lap joints, sym- 

metry about the x-axis is taken into account in the expressions for plate 1, and only the 

portion   z = 0   is considered.   The expressions for displacements follow. 

For single-lap and flush joints: 

u(j)=t*  2 <MLi)ZX 

i=0 
> 

2 

I 
i=0 

w(j)=t*^ ^Dz1 

(j = 1, 2) (1) 

In the thin-beam analysis, 

0(j,2) = j//(j,l) = ^(j,2) = O 

■ 9 Hi, o) 
<MM) 9x 

(j = 1, 2) 

For double-lap joints: 

>v 

u(i) = f I <*>(i,i)z' 
i=0 

w 

j. 

(1) = t* ^ ^(l,i)Z2i+1 

i=0 

(2) 

and   u(2)   and   w(2)   are given by equations (1).   In the thin-beam analysis, 

0(1,1) = <M1,0) = !//(l,l) = 0(2,2) = !//(2,l) = ^(2,2) = 0 

0(2,1) 
8x 



In equations (1) and (2)    <fi   and   ip   are functions of   x   only. 

Strains are obtained by differentiating equations (1) for single-lap and flush joints 

to give 

ex(j) =   >   ^'(j^Z1 

L-J 

i=0 

ez(j)= 2 Mi>i)i7'i~1 

i=0 

exzO) = 2   Hj,i)iZi-1 + r(i,^i 

i=0 

/ ' (j = 1,2) (3) 

and by differentiating equations (2) for double-lap joints to give 

and 

<*<!) ,'(l,i)Z2i 

i=0 

1 

ez(l) =  J (2i + l)i//(l,i)Z2i 

i=0 

exz(l)=   >   2i^(l,i)Z2i-1 + ^,(l,i)Z ,2i+l 

i=0 

ex(2),   e7(2), and   exz(2)   are given by equations (3). 

The stress-strain relations for plane stress or plane strain are given by 

(4) 

\<j)' cn(j) c12(j) 0 \(j) 

°z® = c12(j) C22Ö) 0 ez(i) 

_CTxz^ 0 0 c33(j)_ ^(i) 

(5) 



Substitution of equations (3) and (4) into equation (5) yields the following expressions for 

stresses in terms of displacements. 

For single-lap and flush joints: 

2 
ax(J) =  I 

i=0 

Cn(j) ^(L^Z1 + C12(j) <MJ,i)iZ1_1 

2   r 

az^ = I   CuWQ'titiZ1 +C22ti)xls'(S,i)iZ1~1 } (j = 1, 2) (6) 

i=0 

axz(J) =  /. C«(J) '33v <Mj ,1Hz1    + ^'(i ,1)2' 
i=0 

For double-lap joints: 

1 

axd) = 
i=0 

,2i Cn(l) ^'(l,i)Zzl + C12(l) i//(l,i) (2i + 1)Z 
2i 

^z(i) = i C19(l) 0'(l,i)ZZl + C?9(l) i^(l,i) (2i + 1)Z 2i 
12 22v 

i=0 

^(i) = £ C33(l)|2i0(l,i)Z2i"1 + ^'(l,i)Z2i+1 

i=0 

(7) 

and   o- (2),   a (2), and   a    (2)   are given by equations (6). xv "     zv 

The adhesive layer at the bond surface is represented by equivalent linear springs 
in the x-and z-directions.    The spring constants   kx   and   kz   are given by the equations 

x       * 

*     E 
k„ = (8) 



Thus, the shear stress r   and the transverse normal stress a   in the bond are 

given by 

k-*i 

1 * a = k. 

■> 

u(2) - ■u(l) 
Z=l 

> 

w(2) -w(l) 
■Z = l 

j 

Substituting equations (1) and (2) into equations (9) yields 

For single-lap and flush joints: 

(9) 

T = K 

i=0 

2 

a = k„ 

i=0 

0(2,i) - 0(1,i) 

^(2,i) - tf/(l,i) 

(10) 

For double-lap joints: 

T = k X 

"N 

a = kr 

2 1 

2 <4(2,i) -   ^ 0(l,i) 
i=0 i=0 

2 ^(2,i) "  ^ <MM) 
i=l i=0 

(11) 

The equations of equilibrium of two-dimensional linear elasticity are 

3ax(j)     8axz(j) 
— + — = 0 

8x 9z 

9CTXZ(J)      8(Tz(j) _ 
8x 3z 

-\ 

(j = 1, 2) (12) 

10 



The equilibrium conditions at the bond surface are 

<W1) = CTxz(2) = T 

az(l) = az(2) = a 

(13) 

The stress-free conditions on the outer surfaces are 

axz(l) = az(l) = 0 

axz(l) = az(l) = 0 

axz(2) = az(2) = 0 

(Z = 1 - c   for single-lap joints) 

(Z = 0   for flush joints) 

(Z = 1 + h   for all joints) 

A 

> (14) 

Equations (12) are multiplied by    Zk   and integrated by parts through the thick- 

ness for each plate.   During integration the equilibrium conditions at the bond surface 

(eqs. (13)) and stress-free conditions at the outer surfaces (eqs. (14)) are satisfied.    This 

process yields 

N'(j,k) - kQ(j,k-l) - (-l)jr = 0 

Q'(j,k) -kV(j,k-l)- (-i)3cr = 0 

(15a) 

(15b) 

The values of   k   in equations (15a) and (15b) are the same as the powers of   Z   used in 

the expansions of   u   and   w, respectively (see eqs. (1) and (2)).   That is, for single-lap 

and flush joints:   k = 0, 1, 2   for both equations (15a) and (15b); for double-lap joints: 

k = 0, 2   for equation (15a) and   k = 1, 3   for equation (15b). 

In equations (15),   N,   Q, and   V   are integrals of stress given by 

|NÜ,k); V(j,k); Q(j,k)J = fj   fax(j); az(j); axz(j)J Zk dZ (16) 

o(l) = 1 - c 

a(l) = 0 

(Single-lap joints) 

(Double-lap and flush joints) 
(17a) 

11 



a(2) = /3(l) = l |3(2) = l+h (17b) 

Substituting equations (6) and (7) into equation (16), the integrals of stresses are 

obtained in terms of displacements and are written as follows. 

For single-lap and flush joints: 

2 

N(j,k) = 2   D1]L(j,k+i) 0'(j,i) + iD12(j,k+i-l) ^/(j,i) 
i=0 

2 

V(j,k) 

i=0 

Q(j,k) = 2 
i=0 

D12(j,k+i) </>'(j,i) + iD22(j,k+i-l) i//(j,i) 

iD„(j,k+i-l) 0(j,i) + Do„(j,k+i) i//(j,i) 

> (j - 1, 2)        (18) 

'33 33v 

For double-lap joints: 

N(l,k) - ^ rD11(l,k+2i)^>,(l,i) + (2i + l)D12(l,k+2i)»//(l,i) 

i=0 

1 

V(l,k) = 

i=0 

D12(l,k+2i)0'(l,i) + (2i + l)D22(l,k+2i)^/(l,i) > 

J 

(19) 

Q(l,k) = ^   2iD33(l,k+2i-l)0(l,i) +D33(l,k+2i+l)i//(l,i) 

i=0 

and   N(2,k),   V(2,k), and   Q(2,k)   are given by equations (18). 

In equations (18) and (19) 

Dn(j,g); D12(j,g); D22(j,g); D33(j,gH = J   3   (cn(j); C12(j); C22(j); Cg3(j)jzg dZ      (20) 

12 



when   g   is a dummy variable and   a   and   ß   are obtained from equations (17).   If the 

material properties are constant through the thickness, equation (20) becomes 

Dn(j,g); .  . Cn(j,g); . 
/3(j)g+1 - a(j)g+1 

g + 1 
(21) 

Substituting equations (18) and (19) into equations (15) yields the following governing 

differential equations. 

For single-lap and flush joints: 

£ <D11(j,k+i)0"(j,i) - MD33(j,k+i-2)4>(j,i) 

i=0  I 

iD19(j,k+i-l) - kD„(j,k+i-l) '12 *'(j,i) 

(-1)\ ^ 
i=0 

0(2,i) - tf>(l,i) = 0 (22a) 

2 ) iD33(j,k+i-l) - kD12(j,k+i-l) 
i=o \L 

)'(j,i) 

+ D„(j,k+i)tf/"(j,i) - MD99(j,k+i-2)^(j,i) 

(-l)Jkz  2 k(2,i) - >MM) 
i^O 

(22b) 

For equations (22a) and (22b)   j = 1, 2   and   k = 0,l,2. 

13 



For double-lap joints: 

lD11(l,k+2i)0"(l,i) - 2kiD33(l,k+2i-2) 0(1,1) 'ir 
i=0 

(2i+l)D12(l,k+2i) - kD33(l,k+2i) ^'(l,i) 

+ k ■x £ </>(2,i) -  £ 0(1,1) 
=0 1=0 

(23a) 

W 2iD33(l,k+2i-l) - kD12(l,k+2i-l) 

1=0 \L 

)'(l,i) 

+ D„(l,k+2i+l)^/"(l,i) - k(2i+l)D?9(l,k+2i-l)^(l,i) '33 

+ k, 

2 1 

<M2,i) " 
i=0 i=0 
^ <//(2,i) -   ^ tf/(M) (23b) 

2, r 
^ <Dn(2,k+i)0"(2,i) - kiD33(2,k+i-2)(^(2,i) 

i=0 I 

iD19(2,k+i-l) - kD««(2,k+i-l) '12 ^'(2,i) 

"kx 

2, i 
^ 0(2,1) -   \ 0(l,i) 

i'^6 i=0 

(23c) 

14 



^ J iD33(2,k+i-l) - kD12(2,k+i-l) 
.oil 

>'(2,i) 

+ D33(2,k+i) i//"(2,i) - MD22(2,k+i-2) i//(2,i) 

2 

> 
i=0 
£ tf/(2,i) - 2 ^1»i) 

i=0 

(23 d) 

For equation (23a),   k = 0, 2; for equation (23b),   k = 1, 3; and for equations (23c) 

and (23d),   k = 0, 1, 2.   Note that all the preceding equations were derived for the nth 

element but the index   n   was not included for the sake of simplicity.   In the remainder 

of the paper, the index   n   is included (see appendix B).   The procedure for solution of 

equations (22) and (23) is given in appendix C. 

Unbonded Elements 

For an unbonded element, the governing differential equations are the same as those 

for the corresponding plate in the bonded element, but with   kx   and   kz   equal to zero. 

PROCEDURE FOR ANALYSIS 

The following procedures were used in the analysis for the respective cases. 

For single-lap and flush joints: 

(1) The differential equations (22) are solved for all the elements in the lap region 

(see appendix C). 

(2) The forces and displacements at the junctions (A and B) between the lap region 

and the overhangs are obtained with large deflections taken into account (see appendix A). 

(3) All the interface conditions within the lap region are satisfied.    At junctions A 

and B the proper forces and displacements obtained in step 2 are imposed (see 

appendix B). 

(4) The resulting simultaneous algebraic equations are solved to obtain the arbitrary 

constants.   Displacements and stresses in the plates and shear and peel stresses in the 

bond are calculated by using equations (1), (6), and (10). 

15 



For double-lap joints: 

(1) The differential equations (23) are solved for all the elements in the lap region 

(see appendix C). 

(2) The differential equations are solved for the overhang regions.    (For overhang 

region 1, eqs. (23a) and (23b) with   kx = kz = 0; for overhang region 2, eqs. (23c) and (23d) 

with   kx = kz = 0.) 

(3) All the interface conditions within the lap region and at junctions A and B are 

satisfied (see appendix B). 

(4) The boundary conditions at the supports are satisfied (see appendix B). 

(5) The resulting simultaneous algebraic equations are solved to obtain the arbitrary 

constants.   Displacements and stresses in the plates and shear and peel stresses in the 

bond are calculated using equations (2), (7), and (11). 

NUMERICAL RESULTS AND DISCUSSION 

Numerical results are presented in figures 3 to 8 for single-lap, flush, and double- 

lap joints.   In the examples of double-lap and flush joints, the two main plates which are 

being joined are of the same material and thickness.   In all the examples, the plates are 

of unidirectional composite material.   All elastic moduli are nondimensionalized by divid- 

ing by   E?(l), the Young's modulus of the fiber in plate 1.   All linear dimensions are non- 

dimensionalized by dividing by   t*, the thickness of overhang 1 in single-lap and flush 

joints or the half-thickness of overhang 1 in double-lap joints.    The nondimensional 

Young's modulus of the plate resin is 0.00776 in all examples.    The nondimensional 

Young's and shear moduli of the adhesive in all examples, except those in figure 4, are 

0.00867 and 0.00155, respectively.   In figures 3 and 4, results from the refined analysis 

and thin-beam analysis (the analyses in refs. 1 and 2 were extended for the present con- 

figurations) are presented.   In figures 5 to 8, only the results obtained from the refined 

analysis are presented.   In single-lap and flush joints, the stresses and displacements 

are nonlinear with respect to the applied stress   p, and the results are presented for a 

typical case of   P/E*(1) = 0.002. 

The longitudinal distribution of the direct and shear stresses in the bond are plotted 

in figure 3 for two types of plate 2 fiber materials.   In single-lap joints (figs. 1(a), 3(a), 

and 3(b)) and flush joints (figs. 1(b), 3(c), and 3(d)), the direct stress in the bond is tensile 

(i.e., peeling type) at both ends A and B.   In double-lap joints (figs. 1(c), 3(e), and 3(f)), 

the direct stress in the bond is compressive at the inner end B, whereas it is tensile at 

the outer end A.   Generally, both the maximum peel and shear stresses occur at the inner 

end B in flush joints (figs. 1(b), 3(c), and 3(d)).   The maximum shear stress in double-lap 
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joints (figs. 1(c), 3(e), and 3(f)) and the maximum peel and shear stresses in single-lap 

joints (figs. 1(a), 3(a), and 3(b)) could occur at either end, depending on the relative thick- 

ness and elastic moduli of plates 1 and 2.   In single-lap joints, the ratios of peel and 

shear stresses at B to peel and shear stresses at A are greater when the thickness or 

elastic moduli of plate 2 are smaller (compare figs. 3(a) and 3(b)).   In double-lap joints, 

the ratio of the shear stress at B to shear, stress at A is larger when the thickness or 

elastic moduli of the lap plates are smaller (compare figs. 3(e) and 3(f)). 

For all joints, the maximum peel stress in the bond as a function of the adhesive 

shear modulus for various values of the adhesive Young's modulus is shown in fig- 

ures 4(a), 4(c), and 4(e).    The maximum shear stress in the bond as a function of the 

adhesive Young's modulus for various values of the adhesive shear modulus is shown in 

figures 4(b), 4(d), and 4(f).   In all joints, the maximum peel stress in the bond is larger 

when the Young's modulus or the shear modulus of the adhesive is larger (figs. 4(a), 4(c), 

and 4(e)).   Also, the maximum shear stress in the bond is larger when the shear modulus 

of the adhesive is larger but is not significantly influenced by the adhesive Young's mod- 

ulus (see figs. 4(b), 4(d), and 4(f)).    Thus, a reduction in adhesive shear modulus reduces 

both maximum peel and shear stresses in the bond, but a reduction in adhesive Young's 

modulus reduces only the peel stress. 

The thin-beam and refined analyses give similar longitudinal distributions of shear 

and peel stresses in the bond (figs. 3(a) to 3(f)).   Also, the thin-beam analysis yields rea- 

sonably accurate values of maximum peel stress in the bond at low values of adhesive 

shear and Young's moduli (figs. 4(a), 4(c), and 4(e)) and of maximum shear stress at low 

values of adhesive shear modulus (figs. 4(b), 4(d), and 4(f)).   Although the results are not 

included, it was found that errors obtained by using thin-beam analysis are larger when 

lap length is smaller. 

For all joints, the maximum peel and shear stresses in the bond as functions of 

adhesive thickness are shown in figures 5(a), 5(d), and 5(g) and figures 5(b), 5(e), and 5(h), 

respectively.   Also, the flexibility of the joint (as measured by the axial displacement of 

plate 1 at outer end A) as a function of adhesive thickness is shown in figures 5(c), 5(f), 

and 5(i).   In all the joints, for larger adhesive thickness, the maximum peel stress 

(figs. 5(a), 5(d), and 5(g)) and maximum shear stress (figs. 5(b), 5(e), and 5(h)) in the bond 

are smaller whereas the joint flexibility (figs. 5(c), 5(f), and 5(i)) is slightly larger.   Of 
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the three types of joints considered, for a given total adhesive thickness and joint volume," 

the maximum peel and shear stresses are lowest in double-lap joints and highest in flush 

joints.   The following table gives the results for a total adhesive thickness of 0.2t : 

IZ*(h* + t*)   for single-lap joints 

21*{h* + t*)   for flush joints 

4£*(h* + t*)   for double-lap joints 

Type of joint ff/p -T/p Flexibility 

Double lapa 

Single lap 

Flush 

0.056 

.10 

.35 

0.07 

.08 

.173 

40.3 

46.8 

32.8 

aTwo bonds and thus the total adhesive thickness is twice 

the thickness of a single bond. 

In general, for flush joints, the maximum peel stress in the bond is much higher 

than the maximum shear stress (figs. 5(d) and 5(e)).    For moderate adhesive thicknesses 

(77 = 0.1 to 0.2), the maximum peel stress is nearly equal to the maximum shear stress in 

single-lap joints (figs. 5(a) and 5(b)) and double-lap joints (figs. 5(g) and 5(h)).   Thus, the 

maximum peel stress can be roughly estimated if the approximate value of maximum 

shear stress in the bond is known. 

In figure 6, data for the flush and double-lap joints are shown as a function of max- 

imum direct stress in the lap plate.   The lap-plate thickness is shown in figures 6(a) 

and 6(d); the maximum peel stress is shown in figures 6(b) and 6(e); and the maximum 

shear stress is shown in figures 6(c) and 6(f).    Lap plates with three different moduli are 

considered.   In both flush and double-lap joints, the maximum direct stress in the lap 

plate, which occurs at the inner end B (fig. 1), is larger when the lap-plate thickness is 

smaller (figs. 6(a) and 6(d)).   In flush joints, the maximum shear stress in the bond is 

larger when the maximum lap-plate stress is larger or the lap-plate modulus is smaller 

(fig. 6(c)).    Similar behavior is observed for maximum peel stress in the lower ranges of 

maximum lap-plate stress (fig. 6(b)).   In double-lap joints, the maximum peel stress 

(fig. 6(e)) and the shear stress (fig. 6(f)) in the bond at the outer end A are smaller when 

the maximum lap-plate stress is larger or the lap-plate modulus is smaller.    For the 

same conditions, the shear stress at the inner end B is larger (see dashed curves in 

fig. 6(f)).   Therefore, to reduce the maximum bond shear stress in double-lap joints, it is 

advantageous to use a high-modulus lap plate; the minimum lap-plate thickness is then 

governed by either the strength (maximum allowable stress) of the lap plate or the 

strength of the bond in shear. 
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The preceding discussion referred to joints in which the plates are of constant thick- 

ness and the same bond is used along the entire length of the joint.   In the following dis- 

cussion, variations from these conditions are considered.    For all joints, the bond shear 

stress at a particular location is a function of the load that is transferred from one plate 

to another at that location.   The load transfer is in turn a function of the stiffness of the 

plates and the adhesive.   When the plates are of constant thickness and the same bond is 

used along the entire length of the joint, a large amount of the load is transferred near the 

end or ends.    Making the bond more flexible in the high-load-transfer region than in other 

regions or tapering the plates might reduce the high load transfer.    Such a reduction will 

lower the maximum shear and peel stresses in the bond. 

For all joints, the effect of combining flexible and stiff bonds is illustrated in fig- 

ures 7(a) to 7(f).   The maximum peel stresses in the flexible and stiff bonds are shown in 

figures 7(a), 7(c), and 7(e) as functions of length of stiff bond   ls; the maximum shear 

stresses are shown in figures 7(b), 7(d), and 7(f).    For   ls/l   near 1, the maximum peel 

stress in the flexible bond is less when it is used in combination with a stiff bond than 

when it is used alone (solid curves).    Similarly, the maximum peel stress in the stiff 

bond is less when it is used in combination with a flexible bond than when it is used alone 

(dashed curves).   The two preceding observations are true for maximum shear stress 

also.   A small length of stiff bond does not reduce the peel and shear stresses in the 

flexible bond.    As   ls/l   approaches unity, the stresses in the stiff bond are larger and 

the stresses in the flexible bond are smaller.    Therefore, depending on the particular 

joint and bond properties, optimum lengths of stiff and flexible bonds can be chosen to 

assure the lowest possible stresses in the bond. 

The maximum peel stress in the bond as a function of taper ratio fHe/Hbj is shown 

in figures 8(a) and 8(c) for single-lap and double-lap joints, respectively.   The maximum 

shear stress in the bond is shown in figures 8(b) and 8(d).   In single-lap joints, for larger 

taper (i.e., smaller taper ratio), the maximum peel (fig. 8(a)) and shear (fig. 8(b)) stresses 

are smaller; the decrease in peel stress is more pronounced than the decrease in shear 

stress.   In double-lap joints, for larger taper, the maximum peel (fig. 8(c)) and shear 

stress at the outer end A (fig. 8(d)) are smaller, whereas the shear stress at the inner 

end B (fig. 8(d)) is slightly larger.   Therefore, in double-lap joints, the maximum shear 

stress cannot be reduced by tapering.    Further, in double-lap joints, bond length does not 

have a significant influence on stresses in the bond, when it is greater than 40 times the 

half-thickness of the main plate.   Although the results are not included, it was found that 

tapering is not effective in flush joints. 
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CONCLUDING REMARKS 

A refined elastic analysis of bonded joints which accounts for transverse shear 

deformation and transverse normal stress was developed to obtain the stresses and dis- 

placements in the plates and in the bond.    Single-lap, flush, and double-lap joints were 

analyzed.    This analysis showed that the thin-beam analysis, which neglects transverse 

shear deformation and transverse normal stress, is, in general, reasonably accurate for 

estimating maximum peel and shear stresses.    But, when the lap length is small or the 

stiffnesses of the bond in the longitudinal and thickness directions are high, the errors in 

the stresses in the bond could be high. 

Maximum peel and shear stresses in the bond can be reduced by the following 

methods:   (1) In all joints, making the bond flexible either by increasing the adhesive 

thickness or decreasing the adhesive elastic moduli, (2) in all joints, by using a combina- 

tion of flexible and stiff bonds with flexible bond in regions of high stresses in the bond 

and stiff bond in regions of low stresses, (3) in double-lap joints, by using thinner but 

higher modulus lap plates, (4) in flush joints, by using thicker and higher modulus lap 

plates, and (5) in single-lap and double-lap (only peel stress) joints, by tapering the plate 

or plates.   Of the three types of joints analyzed, for a given total adhesive thickness and 

joint volume, the double-lap joint had the smallest maximum stresses in the bond and the 

flush joint had the highest. 

Langley Research Center, 

National Aeronautics and Space Administration, 

Hampton, Va., February 13, 1975. 
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APPENDIX A 

EFFECT OF LARGE DEFLECTIONS ON SINGLE-LAP AND FLUSH JOINTS 

As mentioned in the section "Analysis," for single-lap and flush joints, the forces 
and deflections at the ends of the lap region are calculated, taking the effect of large 
deflections into account in an approximate way.   The procedure followed is like one used 
by Goland and Reissner (ref. 2).   The complete joint is treated as a beam with discon- 
tinuities in the neutral axis (see fig. 9) as well as bending stiffness.   In the lap region, 
the two plates are assumed to be perfectly bonded throughout and to act like a compound 
beam.    From geometry, the eccentricity in the neutral axis   ju*(s)   is given by 

/i*(s) = e*(s) + 1 - d*(s) - e*(m + 2) (Al) 

where   e*(s)   is the distance from the neutral axis of the compound beam to the top sur- 
face of the sth segment of plate 1.    If the material properties are uniform across the 
depth of the individual plates, then from elementary strength of materials, the distance 
e*(s)   and the bending stiffness   K*(s)   are given by 

/- 

e*(s) = t* 

-\ 

E(l) d(s)2 + E(2)< [f(s) + d(s)]   - d(s)s 

2[E(l)d(s) + E(2)f(s)] 

K*(s) =^- E(l)j[d(s) - e(s)]3 + e(s)3j + E(2)j[f(s) + d(s) - e(s)]3 - [d(s) - e(s)J 

>     (A2) 

where 

E(j) = Cn(j) 
C22Ö) 

and 

The support conditions at end C (fig. 9) are 

M(m+2) = 0 

C(m+2) = 0 

(A3a) 

(A3b) 

where   M   is the bending moment and   £   is the nondimensional deflection. 
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APPENDIX A 

The boundary conditions at end D (fig. 9) are 

For single-lap joints: 

Bending moment 

Deflection 

M(l) = 0 

5(1) = 0 

(A4a) 

(A4b) 

For flush joints: 

Shear force 

Slope 

S(1) = 0 

dg(l) 
d£ 

0 

(A5a) 

(A5b) 

The vertical reaction   R   at end C (fig. 9) is given by 

R PM(1) 

R = 0 

(Single-lap joints) 

(Flush joints) 

> (A6) 

The moment   M(s)   in the sth segment at location   £, when the contribution of 

deflection is taken into account, is given by 

M(s) =    R(L-£) - P /x(s) + m V 

According to thin-beam theory, 

M(s) = - 
K*(s) d2g(s) 

t*       d^2 

Therefore, from equations (A7) and (A8) after some manipulation 

(A7) 

(A8) 

■^2^-^-C(s) = /x(8)-|(L-?) 
gter a? 

(A9) 
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APPENDIX A 

P where   g(s) = t*,j—-—.   Solution of equation (A9) gives 
VK*(s) 

C(s) = T(s)e^ + H(s)e-^ - M(s) + |(L-£) (A10) 

where   T(s)   and   E(s)   are arbitrary constants. 

The conditions of continuity of displacements and slopes are satisfied at the ends of 
each segment.    For the end segment 1 at D, either condition (A4b) or condition (A5b) is 
satisfied.   For end segment   m + 2   at C, condition (A3b) is satisfied.   The resulting set 
of simultaneous algebraic equations is solved to obtain the arbitrary constants. 

Using equations (A10) and (A7) yields the deflections and moments at the end of the 

lap region. 
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APPENDIX B 

BOUNDARY CONDITIONS 

The equations for the boundary conditions are presented in this appendix. 

For single-lap and flush joints: 

(1) At interfaces   X = a(n), where   n = 1, 2, .  .  ., r - 1    (see fig. 2): 

N(n,j,k) =N(n+l,j,k) 

Q(n,j,k) = Q(n+l,j,k) 

0(n,j,k) = 0(n+l,j,k) 

i//(n,j,k) = i//(n+l,j,k) 

> (j = 1,2;   k = 0, 1,2) 

(2) At junction B,   X = 0: 

At the center line   u(2)    (see eqs. (1)) is expressed as 

u(2) = 0(1,2,0) + 0(1,2,1) 
1 + h(2) + 0(1,2,2) 1 + h(2) = 0 

The direct stresses in the overhang were assumed to be linear across the thick- 

ness (see figs. 2 and 9) 

N(l,2,l) = 

N(l,2,2) 

M(2) p[h(l) - lj 

(Bl) 

M(2) 
h(l) - 1 

P hd) - 1 

^(1,2,1) = ?(2) (B2) 

1^/(1,2,1) = ^(1,2,2) = 0 

N(l,l,k) = Q(l,l,k) = 0 (k = 0, 1, 2) 
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APPENDIX B 

In equations (Bl) and (B2),   M(2)   and   C(2)   are moment and deflection at junc- 

tion B (see figs. 2 and 9) for step 1 (which is same as segment 2) and are 

obtained by taking large deflections into account (see appendix A). 

(3) At junction A (see figs. 2 and 9),   X = a(r): 

N(r,l,0) - p 

N(r,l,l) = M(m+l) +- 
Li 

N(r,l,2) = M(m+l)+| 

^/(r,l,0) = C(m+1) 

i//(r,l,l) = i//(r,l,2) = 0 

N(r,2,k) = Q(r,2,k) = 0 (k = 0, 1, 2) 

where   M(m+1)   and   ?(m+l)   are moment and deflection at junction A for 

step m (which is same as segment   m + 1) and are obtained by taking large 

deflections into account (see appendix A). 

For double-lap joints: 

(1) At interfaces,   X = a(n), where   n = 1, 2, .  . ., r - 1   (see fig. 2): 

N(n,l,k) = N(n+l,l,k) (k = 0, 2) 

Q(n,l,k)=Q(n+l,l,k) (k = 1, 3) 

<|>(n,l,k) = <J>(n+l,l,kf 

)//(n,l,k) = tf/(n+l,l,k)^ 

N(n,2,k) = N(n+l,2,kr 

(k = 0, 1) 

(k = 0, 1, 2) 

Q(n,2,k) = Q(n+l,2,k) 
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A 

<Mn,2,k) - ^>(n+l,2,k) 

!//(n,2,k) = ^(n+l,2,k) 
> (k = 0, 1, 2) 

(2) At junction B,   X = 0   (see fig. 2): 

N(l,l,k) = 0 

Q(l,l,k) - 0 

N(l,2,k) = N(l,k) 

Q(l,2,k) - Q(l,k) 

0(l,2,k) = $>(l,k) 

(k = 0, 2) 

(k = 1, 3) 

> (k=0, 1,2) 

)//(l,2,k) = !//(l,k) 

where   <fi,   \p,   N, and   Q   refer to overhang 2. 

(3) At junction A,   X = a(r)   (see fig. 2): 

N(r,l,k) =N(2,k) 

Q(r,l,k) = Q(2,k) 

0(r,l,k) = $>(2,k) 

i//(r,l,k) = ^(2,k) 

(k = 0, 2) 

(k = 1, 3) 

(k = 0, 1) 

N(r,2,k) = 0 

Q(r,2,k) = 0 

> (k = 0, 1, 2) 

where   0,   ip,   N, and   Q   refer to overhang 1. 
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(4) At support D, where symmetry is assumed to be about a vertical axis through D 

(see figs. 1 and 2): 

■>, 

<M2,k) = 0 

Q(2,k) = 0 

(k - 0, 1, 2) 

where    0   and   Q   refer to overhang 2. 

(5) At support C, where the stress   p   is assumed to be uniform across the thick- 

ness (see figs. 1 and 2): 

N(1,0) = p 

N(l,2)=| 

Q(1,1) = Q(1,3) = 0 

where   N   and   Q   refer to overhang 1. 
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APPENDIX C 

SOLUTION OF DIFFERENTIAL EQUATIONS (22) AND (23) 

Equations (22) and (23) are simultaneous second-order ordinary differential equa- 
tions.    They can be formally written in matrix notation as 

where   (Yj,   [©], and   [n]   are coefficient matrices and {x}   is a column matrix of   0 

and   i//.   Equation (Cl) is solved by using any of the standard methods, such as the one 
described in reference 6.    The solution of equation (Cl) has the form 

q 

(X}= £   F(P){A(P)} (C2) 
v=l 

where   F(^)   are arbitrary constants.    The column matrices   {A(^)}   are constants or 

are power or exponential functions of   X.    The values of   q   are 

24      for single-lap and flush joints 

20      for double-lap joints 

12      for unbonded elements without symmetry about x-axis 

8      for unbonded elements with symmetry about x-axis (plate 1 in 

double-lap joint) 
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(a) Single-lap joint;   I = 40;   77 = 0.1; (b) Single-lap joint;   I = 40;   77 = 0.1; 

peel stress. shear stress. 

Figure 4.- Effect of adhesive moduli on maximum peel and shear stresses in bond. 

Plates are of same material and same constant thickness. 
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(c) Flush joint;   Z - 20;   77 = 0.1; 

peel stress. 

Figure 4.- Continued. 

0 .025 .05 

(d) Flush joint;   I = 20;   77 = 0.1; 

shear stress. 
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(e) Double-lap joint;   I = 40;   77 = 0.2; 

peel stress. 

(f) Double-lap joint;   I = 40;   rj = 0.2; 

shear stress,    (T   at outer end is 

plotted because maximum peel 

stress occurs there, although   T 

at inner end is slightly higher.) 

Figure 4.- Concluded. 
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(a) Single-lap joint;   I = 40; peel stress.        (b) Single-lap joint;   I = 40; shear stress. 

60 

40 

20 

0 .4 

(c) Single-lap joint;   I - 40; joint flexibility. 

Figure 5.- Effect of adhesive thickness on maximum peel and shear stresses in bond 
and joint flexibility.    Plates are of same material and same constant thickness. 
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(d) Flush joint;   I = 20; peel stress. 

.2 

n 
.4 

(e) Flush joint;   I = 20; shear stress. 
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.4 

(f) Flush joint;   I = 20; joint flexibility. 

Figure 5.- Continued. 
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(g) Double-lap joint;   I - 40; peel stress. 

.30 

.15 

.2 

n 
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(h) Double-lap joint;   I - 40; shear stress. 

(T   at outer end is plotted because max- 

imum peel stress occurs there, although 

T   at inner end is slightly higher.) 
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(i) Double-lap joint;   I - 40; joint flexibility. 

Figure 5.- Concluded. 
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