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Abstract

The NASA goal of reducing external aircraft noise by 10 dB in the near-term presents the acoustics community
with an enormous challenge. This report identifies technologies with the greatest potential to reduce airframe
noise. Acoustic and aerodynamic effects will be discussed, along with the likelihood of industry accepting and
implementing the different technologies. We investigate thelower bound, defined as noise generated by an aircraft
modified with a virtual retrofit capable of eliminating all noise associated with the high lift system and landing
gear. However, the airframe noise of an aircraft in this “clean” configuration would only be about 8 dB quieter
on approach than current civil transports. To achieve the NASA goal of 10 dB noise reduction will require
that additional noise sources be addressed. Research shows that energy in the turbulent boundary layer of a
wing is scattered as it crosses trailing edge. Noise generated by scattering is the dominant noise mechanism
on an aircraft flying in the clean configuration. Eliminating scattering would require changes to much of the
aircraft, and practical reduction devices have yet to receive serious attention. Evidence suggests that to meet
NASA goals in civil aviation noise reduction, we need to employ emerging technologies and improve landing
procedures; modified landing patterns and zoning restrictions could help alleviate aircraft noise in communities
close to airports.
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1 Introduction

The goal of 10 dB noise reduction is scientifically demanding because it means reducing the acoustic power by
90 percent. NASA’s long-term goal is to reduce aircraft noise by 20 dB. In recent years, aircraft engine noise
at take off and on approach has been reduced by an intensive research effort involving industry, academia, and
research establishments. The greatest contributions to engine noise reduction have come from the introduction
of high bypass ratio engines and successful applications of liner technology. Over twenty years ago, researchers
determined that airframe noise was of secondary importance, so there has not been a commensurate reduction in
airframe noise. Currently, the result of the success in engine noise reduction has meant that on the approach to
landing, airframe and engine noise are comparable. Thus, any further reduction of aircraft noise on the approach
can only be obtained if both engine and airframe noise are reduced by roughly equal amounts. At take off, when
the engines develop maximum power, the engine remains the major source of aircraft noise. Recent theoretical
and experimental studies into the physics-based sources of airframe noise have uncovered not only most of these
sources, but also methods for their reduction. However, most of these methods have yet to be implemented, and
the anticipated noise reduction is relatively modest in comparison with NASA goals.

This report identifies technologies with the greatest potential to reduce airframe noise. Acoustic and aerody-
namic effects will be discussed, as well as the likelihood of the aircraft industry adopting the new technologies.
Although the current NASA quiet aircraft technology program is not sufficiently endowed to validate or even
investigate all the proposed technologies, significant progress is possible if the present research is aggressively
pursued. However, it is unlikely that technology alone will meet the 10 dB goal within 10 years. An investigation
of the lower boundfor airframe noise reveals that there will still be a significant shortfall. Thelower boundis
the noise generated by an aircraft modified by a virtual retrofit capable of eliminating all noise associated with
the high-lift system and landing gear. The retrofit is assumed to have no performance penalty. Once thelower
boundhas been established and calibrated in terms of the aerodynamic parameters of the aircraft, it is possible to
assess how far current technology can be used to meet noise reduction goals. The somewhat discouraging result
results show that thelower boundis within 10 dB of current aircraft noise levels on the approach. Although the
lower boundis merely conceptual, it is developed in a scientifically rigorous manner using formulas for acoustic
scattering. Current research has shown that the energy in the turbulent boundary approaching the wing trailing
edge is scattered as it crosses the trailing edge. Noise generation through scattering appears to be the dominant
noise mechanism on an aircraft flying at constant altitude in the clean configuration with all high-lift devices
stowed. Hence, trailing-edge scattering is used as the dominant noise mechanism for the virtual aircraft used to
define the lower bound. A ‘dirty’ aircraft is one flying in a typical approach configuration at high angle of attack
with the flaps, slats, and landing gear deployed. The goal is to reduce the excess noise in the dirty configuration to
those of the clean aircraft, but then trailing-edge scattering must be reduced. Eliminating scattering would require
significant changes to the aircraft, and practical reduction devices have yet to receive serious attention. Present
evidence suggests that to meet the NASA near-term goals in civil aircraft noise reduction, we will need to employ
the currently emerging aircraft noise technology, and make progress in implementing improvements to aircraft
safe landing procedures. Modified landing patterns will allow for greater separation between communities living
close to the airport and the aircraft on the approach to landing. An important step in helping to alleviate commu-
nity noise nuisance in areas close to airports would be to introduce further zoning restrictions. This report does
not address the problem of military aircraft that also create extensive noise annoyance in those communities living
close to military airfields. The design of military aircraft is less conducive to the application of noise reduction
techniques at take off and landing because modifications would be at the expense of their military performance.
However, communities near military airfields would have a right to demand greater separation between people
and military airports once stricter zoning restrictions are put in place for commercial airfields.

Since the beginning of the jet transport age in the early 1950s, civil transport aircraft at take off and landing
have produced an annoyance to populations living close to airports throughout the world. Land-use planning has
in a few cases enabled new airports to be built far from the centers of population. However, soon after an airport
has been built, housing developments emerge and encroach on the airport; inevitably, new residents will make
claims that the noise from civil aircraft is intolerable. The control of aircraft noise in the vicinity of airports from
the late 1960s to the present day has been achieved by setting statutory noise limits and monitoring the aircraft
noise during every take off. Additionally, the noise of all new aircraft must meet stringent levels set by the Federal
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Aviation Administration (FAA) in Federal Aviation Regulation (FAR) Part 36 and the International Civil Aviation
Organization (ICAO) in Annex 16. Currently, all civil transport aircraft must meet the limits set by FAR Part 36
Stage 3, and new requirements will be introduced as a Stage 4 limit in the near future. Naturally, the concerns of
the people exposed to aircraft noise are central to all noise certification, but noise limits must be carefully selected
within the bounds of the available technology and the economic viability of the aircraft.

Due to the great success in noise reduction methods during the past 40 years, further noise reduction is more
difficult to achieve. In the past, the engine was the main source of aircraft noise. However, the changeover from
the straight-jet engine to the high-bypass ratio front-fan engine has not only greatly reduced its radiated noise, but
also resulted in a reduction in the fuel burn and a consequent economic benefit to civil aviation. It is not often
that a solution to noise reduction is accompanied by a gain in economic performance and cost benefit. However,
noise from the airframe on the approach is only marginally lower than the engine noise. Indeed, on some modern
transport aircraft, the engine noise is less than the airframe noise on the approach. Therefore, further reduction in
aircraft noise can only be achieved by addressing both airframe and engine noise, which involves major reductions
in the noise of all the individual sources contributing to these general classes of noise.

Research into airframe noise prediction and reduction started in the early 1970s. A large experimental data-
bank was acquired from which Fink[1] produced an empirically based airframe noise prediction method. This
research was reviewed by Crighton[2] who defined airframe noise as the nonpropulsive noise of an aircraft in
flight, which is exemplified by the noise of a glider. However, an analysis of the available theoretical and ex-
perimental results in the 1970s showed that the peak values of airframe noise were on the order of 10 dB below
those of the engine at the three checkpoints used in noise certification. These measurement points include 6500
m from the start of roll during take off, sideline at 450 m, and 2000 m from touchdown when on a3◦ glide slope
during approach. Current aircraft design technology, especially in regard to the design of high lift devices, renders
sections of the Fink prediction method obsolete. Thus, it is no longer reliable as a prediction tool and gives little
guidance to methods for noise reduction that can be applied to modern aircraft.

A noteworthy feature of airframe noise is its scaling with aircraft speed. Consider as a baseline case the
noise below an aircraft in straight and level flight without flaps, slats, and landing gear. This operating condition
describes a “clean” aircraft as opposed to the “dirty” condition when high-lift devices and the undercarriage are
deployed. If the noise of the engine and its interference with the airframe are deducted, then for a wide range of
aircraft, including gliders and birds, the noise intensity at ground level varies approximately asV 5, whereV is
the aircraft flight speed. TheV 5 law was originally derived by Ffowcs Williams and Hall[3] and later confirmed
by Howe[4]. Brooks and Hodgson[5] experimentally confirmed the formula. The theory shows that the dominant
noise source on the airframe arises from the noise generated by scattering energy contained in turbulent eddies
within boundary layers in the vicinity of an edge. Thus, the source of noise lies in the turbulent fluctuations in
the wing boundary layers. Only fluctuations within an acoustic wavelength of the trailing edge are scattered. The
spectrum of the noise ranges from 50 Hz to over 10 kHz. Aircraft size and mass determine the noise intensity at
ground level.

Early work on airframe noise included a definitive study by Kroeger, Gruska, and Helvey[6] on the silent flight
of the owl. The owl is the only known flying object that can fly silently within the range of frequencies above 2
kHz. The study of the owl is important in spite of the bird’s small size, mass and low flight speed compared with
the airplane. The owl flies at a high angle of attack similar to a landing aircraft. Furthermore, its noise sources
are also related to the pseudo-turbulent pressure fluctuations in the wing boundary layers and from its legs. It
should be a very noisy flying object, but it has acquired special feathers on its wings and legs, different from
those on all other birds, that allow it to fly stably and quietly at a high angle of attack. The comb at the leading
edge of its primary feathers acts like a row of vortex generators: it removes the leading-edge laminar separation
by generating a carpet of streamwise vortices that form a quasi-turbulent, fully attached boundary layer over the
entire wing upper surface. Thus, the owl’s flight is silent in the range of frequencies heard by its prey. Any study
of airframe noise, including methods of noise reduction, needs to address the physical principles of what can
loosely be calledowl technology. A recent review of this subject has been given by Lilley[7][8].

Although owl technology can be used to reduce the noise from scattering, different technology will be required
to eliminate noise associated with the high-lift system. This paper reviews technology that can be used to reduce
airframe noise and approach the NASA goal of 10 dB noise reduction. It will be shown that even if all noise from
the high-lift system and landing gear are eliminated, the goal will not be met. To demonstrate the shortfall, the
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paper discusses the notion of alower boundto airframe noise of current commercial aircraft. Thelower bound
corresponds to the ideal situation of an aircraft flying in level flight in the clean configuration while producing
high lift. In other words, this virtual aircraft can generate high lift and fly at approach speeds without suffering
any extra noise from a high-lift system and undercarriage.

Noise mechanisms that are active in the clean state are influenced by the flight speed and lift on the wing.
The lower boundcorresponds to the minimum noise that an aircraft can produce when trailing edge scattering
of boundary layer turbulence occurs. Unfortunately, thelower boundfor conventional aircraft does not meet the
10 dB goal, which implies that the noise of the clean airplane must be reduced to meet the NASA goal. This
may be a more difficult problem than the present focus on reducing the noise of high-lift devices. Any additional
noise reduction would require owl technology to minimize scattering, but the applicability and viability of this
technology to commercial aircraft has not been thoroughly studied.

The use of aircraft noise reduction technology to retrofit aircraft or modify designs is not the only technically
possible and economically feasible method to attack the noise nuisance. All over the world, airports have been
designed with little thought for careful community zoning to prevent aircraft noise from adversely affecting the
lives of people living close to the boundary fences of the airports. Planning restrictions have generally been
nonexistent, and their absence has contributed to what has become an immense problem on a global scale. Airport
authorities and government agencies need to address this problem and make it a priority to move people away
from the regions of excessive noise around airports. Moving people will be costly, but so are the alternatives.
The combination of airport community zoning restrictions around airports plus the use of aircraft noise reduction
technology will have a far greater chance of success in meeting the NASA goals than one of these methods alone.

Other alternatives need to be fully explored, including coordinating flight operations with new community
zoning restrictions. An investigation among civil aircraft pilots should be made to ascertain if aircraft on the
approach can provide greater separation to the population while still following current safe landing procedures.
One possible method is for pilots to use only part of the runway length for landing. Current practice is for pilots
to lower the undercarriage early, and to fly low over the remaining houses while getting the airplane into its final
landing attitude before touchdown. The actual landing currently occurs at the first or outer marker, and is quickly
followed by deployment of the thrust reverser and speed brakes. The deceleration of the aircraft to taxiing speed is
completed in less than half the length of runway, and the aircraft turns onto the taxiway to the terminal buildings.
If the landing point were moved to one-third the way down the runway, greater separation with the population
could be achieved. The pilot could make adjustments and use the entire runway in an emergency, but the pilots
must make a determination of whether such an approach is completely safe.

More advantageous approach and landing flight trajectories would require modifying current landing regula-
tions. One possibility is to fly the aircraft on a continuous descent path, as described by Smith[9], joining the
Instrument Landing System (ILS) glide slope of3◦ while still at high speed. The aircraft could maintain a mini-
mum drag and power configuration for as long as possible. Full flaps, wheels down and high thrust should only be
applied in the final phase of the approach to touchdown. Furthermore, the location of undercarriage deployment
could be set beyond the nearest communities to the airport. This approach and landing trajectory would provide an
important noise reduction for all people living under and to the side of the flight path of 5-10 Effective Perceived
Noise Level (EPNL) dB at 4 km from the airport. The aircraft height would be increased to about 200 m at this
location.

In the next section we explain some of the terminology used in the paper. Then, a practical example is
used to demonstrate the requirement to reduce all important component noise sources commensurately to achieve
significant overall noise reduction. A discussion of technology that could be used to reduce airframe noise follows.
The difficulty in achieving the 10 dB goal is then demonstrated through an analysis of thelower boundof airframe
noise. The paper concludes with some recommendations for reducing community noise.

2 Definitions

Airframe noiseis the total aircraft noise minus the noise from the engine and noise from engine/airframe interfer-
ence. In this paper, we divide airframe noise into the following categories:

1. Wingsincluding tail surfaces and fuselage
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2. High Lift Devicesincluding trailing-edge flaps, leading-edge slats, and brackets

3. Undercarriageincluding main and nose wheels, axles, oleo legs and struts, fairings, brake cables and hy-
draulic pipes, wheel wells, and doors.

Airframe Noise is defined in terms of the noise intensity,I(Watts/m2), as measured by an observer at
ground level directly below the aircraft whenθ = 90◦. The angleθ is measured in the longitudinal flight plane
from downstream. This is not necessarily the location of maximum noise, which in some cases occurs between
80− 100◦. Because the human response to sound varies greatly with frequency, the intensity is usually calculated
within frequency bands. To simplify the analysis, we use a single measure of the noise: the overall sound pressure
level (OASPL). The OASPL is measured in units of dB as

OASPL = 10 log10

I(Watts/m2)
Iref

= 120 + 10 log10 I(Watts/m2) (1)

whereIref = 10−12 (Watts/m2) andI =< p2 > /ρ∞c∞. Airframe noise is highest on the approach to landing
when the high-lift devices are operational and the undercarriage is down.

As required under noise certification, the typical flight speed on the approach is 1.3 times the aircraft stalling
speed with the aircraft at its all-up-weight. Typically, the flyover speed will be taken as 132 kt = 68 m/s with
the aircraft flying at an altitude of 120 m. This condition occurs about 2 to 3 minutes before landing. Thus,
for an aircraft having a maximum wing loading of 4500 N/m2, the overall lift coefficient based on wing area is
C̄L = 1.59 with CLmax = 2.69. The analysis must be modified appropriately to account for the wide variability
in flight speed, height, and weight. It is important to note that a change in approach speed from 132-145 kt results
in an increase in OASPL of 2 dB. Similarly, a change in height from 120 to 150 m leads to a decrease in OASPL
of 2 dB.

3 Effect of Component Noise Reduction

The primary components generating airframe noise are flaps, slats, and landing gear. In general all three compo-
nents have similar amplitudes, but their peaks occur at different frequencies. If we have three spectra of nearly
equal amplitude, then to reduce airframe noise by 4 dB means all three components must have their component
noises reduced by 4 dB. Table 1 shows the effect of reducing the noise of three sources separately and simultane-
ously. The table gives the sound pressure level (SPL) of three distinct sources in units of decibels. The combined
effect of all the sources is given by the overall sound pressure level, which is calculated by logarithmically adding
the separate noise from each component. This method is usually oversimplistic because there will always be flow
interference effects between the components. The interference produces additional noise that must be accounted
for separately. Nonetheless, the simplified analysis shown in table 1 clearly demonstrates the need to reduce all
noise sources by commensurate levels to achieve any significant overall noise suppression. For modern aircraft,
engine noise on the approach is around the same intensity as airframe noise. Therefore, four major noise sources
must be reduced on approach. Furthermore, distributed noise sources such as trailing-edge scattering over the
wings and other secondary noise sources are likely to become important with only modest reductions in the four
primary noise sources.

4 Technology to Reduce or Eliminate Airframe Noise

Flaps, leading-edge devices, and landing gear are the three main components of airframe noise. The first step
in achieving significant airframe noise reduction must be to eliminate the loudest noise sources. In this section,
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Table 1: Estimates of the effect of reducing noise sources individually and simultaneously.

Case (a) Case (b) Case (c) Case (d)
Sourcei SPL (dB) SPL (dB) SPL dB SPL (dB)
1 80 70 0 76
2 80 80 80 76
3 80 80 80 76
OASPL 84.78 84.62 83.0 80.79

we investigate technology that could be applied to the airframe to reduce or eliminate airframe noise. We present
concepts and devices that could be applied to existing aircraft to reduce airframe noise in the near term, along with
some novel approaches that could be incorporated into new aircraft designs. We also consider flight operations
that could further reduce the noise impact on communities near airports.

4.1 Flaps

The major noise source from flaps occurs at the side edge where a strong vortex is formed because of the sharp
change in lift between the flapped and unflapped portion of the wing. The continuous moldline link (CML) has
been shown experimentally to drastically reduce the noise from the flap edge. Computational studies have shown
that the vortex system is more diffuse and rolls up further downstream as seen in figure 1. A similar effect can be
realized through the use of a porous flap tip. The section of the end of the flap that needs to be porous is only a
small percentage of the chord. If the correct impedance is used, the pressure and suction surfaces are allowed to
communicate in a fashion that smooths out the transition from the solid flap to the unflapped region. This process
also tends to diffuse the tip vortex.

Some disruption of the flap vortex system can also be obtained through the use of a fence. A fence is similar
to a winglet in that it moves the vortex generated by the discontinuity in lift away from the tip. This change
results in less noise and has a potential aerodynamic benefit of decreasing the induced drag on the flap. Fences
are more problematic for practical applications because they use a rigid surface to stop all spanwise flow and are
susceptible to separation. Furthermore, they have a drag penalty during cruise.

Microtabs have also been found to be effective in decreasing flap noise. These thin strips of rectangular
cutouts can be placed near edges to thicken shear layers thereby affecting the stability characteristics. Modest
improvements over a wide frequency range have been observed, and the tabs can be used to eliminate tones.
Side-edge blowing also had the potential to move and diffuse the vortex system.

4.2 Leading-Edge Devices

Noise reduction technology for leading-edge devices such as slats is less advanced than for flaps, but several
approaches appear promising. It is still uncertain whether the loud, high frequency noise source observed in
model experiments and computations is a scale phenomena, but the mechanism is now better understood, so it can
be eliminated. Vortex shedding from the trailing edge of a slat occurs at a high amplitude when the ratio of the
boundary layer thickness to the trailing-edge thickness is within a certain range. However, the intense source is
caused by resonances between the shedding mechanism and the gap between the trailing edge of the slat and the
leading edge of the main element. Geometrical relations that would result in reinforcement of this noise source
need to be carefully avoided during all phases of flight operations. Thinning the trailing edge has been shown to be
effective in eliminating the noise from leading-edge devices. Changing the boundary layer thickness with vortex
generators or some other form of flow control should also be effective. Trailing-edge notches have also minimized
this noise mechanism. The other major noise source for leading-edge devices is believed to be instabilities in the
shear layer in the cove region, including unsteadiness in the recirculation zone and reattachment point. Porous slat
pressure surfaces that would allow communication between the different regions on the slat should be an effective
means of reducing the unsteadiness in the cove and significantly affect the noise. Another approach is to fill the
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Figure 1: Streamlines and pressure contours around a continuous moldline link

cove region. Some experiments have already been performed with solid inserts designed to follow the isobars in
the cove. The insert, commonly called a filler, eliminates the strong shear layer that develops at the first edge
of a standard slat. As long as the filler is designed properly, the flow remains attached, and the noise generation
mechanism is greatly reduced. Some additional noise near the wing tip has been observed when a filler is present,
thus, this method needs further investigation. For real applications on planes, the filler would have to be made so
that the slat could be stowed. New advances flexible materials may make this a practical solution.

4.3 Wing Morphing

Currently, wing morphing is receiving considerable attention because of the aerodynamic advantages of being
able to dynamically change the shape of a wing based on the flight regime, but it would also have a desirable
side effect on the noise because the slats and flaps could be eliminated. Morphing could be performed by using
smart materials that have preferred states dependent on the temperature or electrical current in the metal. Shape-
memory alloys can be taught to remember any useful shape, then molded into a new shape. They will return to
their original shape when exposed to enough heat. Piezoelectrics act in a similar fashion with electric current
providing the trigger instead of heat. If these materials were embedded in a wing, a pilot could morph the wing
from a cruise configuration to a high-lift configuration by applying heat or electricity. Because the wing itself is
forced to deform, no sharp edges, corners, or gaps would be produced. Hence, the noise characteristics should
be the same as that of a clean airplane. However, significant technological challenges need to be addressed to
make morphing airplanes a reality. The amount of heat or electricity that must be applied to achieve the desired
deformation is often excessive. There is also the material problem of finding metals for the wing that can be
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stretched and compressed into the appropriate shapes without breaking. All of the materials must also be resistant
to fatigue from being cycled through the different configurations. Furthermore, it is debatable whether a wing
can be deformed enough to produce lift similar to a multielement configuration, especially for a large commercial
transport. Nonetheless, wing morphing has shown great promise and may eventually allow planes to be designed
without flaps and slats.

A passive form of wing morphing has already been investigated for its noise benefits for flaps. Experiments
and computations have shown that the side-edge vortex generated at a flap edge can be drastically diffused by
providing a smooth transition from the end of the flap to the trailing edge of the wing. Continuous moldline
technology (CMT) is already in use as a means to construct flexible structures, and has been proposed for making
the flap edge transition region, termed a continuous moldline link (CML). This problem is much simpler than
morphing the entire plane because the system does not need to generate the forces causing the deformation-it only
needs to respond properly to an externally applied force. Also, the CML is relatively small and is not a major
load-bearing component. To design a CML that can maintain the proper shape under aerodynamic load is still
a technological challenge, but the likelihood of near-term success is good. The expected flap noise reduction in
EPNL for a large quad with a CML is over 5 dB based on the estimates of Rackl et al.[10]. All of the other noise
sources must be decreased commensurately to achieve this reduction. Although a flap with a CML still has an
additional trailing edge and brackets, the noise is not very different from that of a wing without a flap.

4.4 Circulation Control

Circulation control is a means to eliminate both the flaps and the slats. One form of circulation control is the
jet-flap, where a stream of air emanating from near the trailing edge of a wing is used to simulate the effects
of a flap. An alternative is to use additional engines during takeoff and landing to provide the additional lift
needed during these phases of flight. Many early researchers conjectured that the ultimate solution would be
vertical takeoff with a vertical thrust greater than the all-up weight of the airplane. Kucheman, Maskell, and
Lilley patented such a design in the 1950s. Also in the 1950s, A. A. Griffith invented the vertical takeoff aircraft
that employed multiple lift engines that were closed down during the cruise. Both these schemes were proved
technically feasible but uneconomical. In the military application, the Harrier proved effective as a short takeoff,
vertical landing (STOVL) aircraft, but its commercial counterpart was criticized for its fuel burn. Even when
operated from the center of an airfield, takeoff and landing of these vehicles would be very noisy.

The growing field of aeroacoustics seems to be the future path of noise reduction. This field requires the
combined expertise of aerodynamicists and acousticians, Currently, there is a great emphasis on circulation con-
trol in the aerodynamics community which may lead to revolutionary changes in high-lift systems, but the new
technology needs to be evaluated from an aeroacoustic perspective. Powered lift, including the use of the jet flap,
would enable high-lift coefficients to be achieved without the need for mechanical flaps and slats. Furthermore,
such short takeoff and landing (STOL) aircraft are desirable because they would have much shorter ground rolls
resulting in touch down and lift off points that are farther from the surrounding population. Despite the poten-
tially enormous acoustic benefit that could result from circulation control, very little is known about the noise
characteristics of the devices that would be used to achieve such control.

Many forms of circulation control are currently being researched, and some previously abandoned schemes
may be rejuvenated by active control. Unsteady suction and blowing appears to have many possible applications
for control on commercial aircraft. However, many of these schemes are likely to generate excessive noise in
the process of controlling the flow. Hence, it is imperative that the aerodynamicist and the acoustician work
synergistically to create flow control methods that are also quiet.

4.5 Landing Gear

When considering airframe noise reduction, it is crucial to reduce gear noise, as well as the wheel-well cavity
noise when the undercarriage is down. The latter is mainly tonal, and schemes have been suggested to eliminate
this tonal component. Most of the remainder of the noise from landing gear is a result of bluff body separation
and shedding from the various components. Because the size of the components varies greatly, the noise spectrum
is broadband. However, the peak in the spectrum appears to be fairly low (around a few hundred hertz). Removal
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of the small parts such as hydraulic lines and nuts has been shown to reduce the high frequency noise by several
decibels. Although actual removal of the small parts would be impractical, some of the small components could
be hidden behind larger ones in relatively dead zones of the flow. Some small components could also be enclosed
by the larger ones.

A rigid fairing could be placed around the landing gear to present the oncoming flow with a more aerodynamic
shape that would not be subject to strong shedding. The advantage of a fairing over the entire gear is that it
would reduce the noise over the entire spectrum, including the low frequency region of the peak. Nonetheless,
the undercarriage itself is considered optimal design, and it is unlikely that significant modifications or external
fairings will be permitted because they make maintenance and inspection difficult. A compromise that may still
be of some benefit is partial fairings. The door itself could be modified to provide some shielding of the other
components, and other fairings could be designed to swing down into place independent of the gear. This design
would allow them to move away from the gear for ease of inspection, but would add to the complexity of the
system. Other deployable fairings are under investigation.

Virtual fluidic fairings could provide a similar noise benefit without interfering with maintenance. By blowing
air out of the landing gear, the streamlines from the oncoming flow would be diverted around the gear, thereby
eliminating the shedding. The difficulty is that the gear has a large frontal area and the wheel bogey is often
several feet long. The air flow rate would be approximately the frontal area times the speed of the oncoming flow.
At Mach 0.2, it is unlikely that so much air could be bled from the engines at idle, and a great deal of tubing
would be required to direct the blown air properly. However, proper design could minimize the air requirement.
Furthermore, localized blowing may prove sufficient to eliminate vortex shedding.

A spike placed forward of a bluff body at transonic, supersonic, and hypersonic speeds can reduce drag, and
this has been suggested as a means to modify the flow field around a landing gear. However, it seems unlikely that
a forward spike could be effective at low speeds. Preliminary tests would be needed to explore the potential of
the long slender spike with and without forward blowing from its apex. The spike would need to be retracted just
before touchdown. Even if such a scheme was found to be satisfactory for noise reduction on a single wheel, it is
doubtful that it would retain its effectiveness over the second and third set of wheels in a six-wheel undercarriage
bogey.

It has been suggested that the landing gear could be eliminated, but the alternative strategies for landing large,
commercial aircraft are currently in the realm of science fiction. Some alternatives include blowing air out of
the runway to provide a cushion of air or magnetic levitation. Implementations of these systems would require
enormous capital investments at airports and would have major safety issues. At the moment, other means of
noise reduction appear more economical, but future breakthroughs may change the situation. A system study by
J. Russell (private communication, 2002) showed that eliminating gear noise alone from generic aircraft would
produce a minimal EPNL noise reduction. However, this view does not conform with flyover measurements of
current aircraft that indicate gear noise is a major, and possibly dominant source.

4.6 Other Noise Reduction Alternatives

Although present noise reduction technology may allow airframe noise to be reduced substantially, it is doubtful
that enough technological advances will occur over the next few years to meet NASA’s goal of reducing airframe
and engine noise by 10 dB. Thus, alternative methods such as flight operations must be investigated. The current
3◦ instrument landing system (ILS) glide slope and early deployment of the landing gear is primarily responsible
for the noise nuisance experienced by people living under the approach path at airports. Present landing proce-
dures require the aircraft to fly at a speed around 68 m/s at an altitude less than 300 m upon approach. The altitude
is reduced further to 120 m when 2 km from touchdown. The landing gear is lowered when the plane is 6 km from
landing, which corresponds to 2-3 minutes of flight time. A number of proposals for increasing the separation
between landing aircraft and residents living near airports are summarized by Smith et al.[9]. Of course, safety
in the air is paramount, and the present air traffic control procedure employing the3◦ glide slope could only be
changed if it were demonstrated that alternate strategies were as safe as those in use today.

We must be careful when predicting the effects of changing the flight path and speed on approach noise, but
the global effect can be estimated by making some approximations. When the primary noise source involves
scattering,p′2 ∝ V 5. For spherical wave propagation,p′2 ∝ 1/r2. Combining the effects, the additional noise
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reduction from operations can be estimated as

Noise Reduction = 10 log10

(
V

Vref

)5 (rref

r

)2

(2)

The distance from the plane to the observer isr, andV is the speed of the aircraft. The reference quantities
denoted byref are the values for a normal approach. The noise from a plane flying 10 percent higher and 10
percent slower during landing would achieve an additional noise reduction of 3.1 dB. Because the certification
points are so close to the touchdown location, it may be difficult to change the flight operations sufficiently to alter
the noise levels at these points. However, the footprint of the noise during approach is much more important in
determining the total community impact from landing aircraft. The overall footprint of unacceptable noise levels
can be altered significantly by changing the flight operations, which will help meet the goal of 10 dB of noise
reduction.

Equation (2) shows that the change in speed has the greater influence on the overall noise levels. However,
the scaling law with velocity may be slightly different for the engines. Therefore, keeping the plane away from
the observers may be more important to reduce the overall noise. Assuming no change in the noise from speed,
it would take a 45 percent increase in the altitude to achieve 3.2 dB of noise reduction. Some studies should
be performed to determine the trade-off between distance and velocity so that an optimal flight path could be
developed. It is possible that current aircraft cannot fly the preferred flight schedule, but simple modifications to
the planes, such as speed brakes, would greatly increase their flight envelopes.

4.7 Noise Prediction

An important aspect of all discussions on airframe noise reduction is the need to develop methods by which
airframe noise can be predicted both accurately and rapidly. This is a challenge equally as important as finding
methods to reduce noise. Future aircraft will be designed to meet both performance and noise certification goals.
The designer urgently needs the tools to predict noise for different airframe and engine layouts.

Some of the concepts for eliminating the high-lift systems may prove useful in other fields upon further
investigation. Aeroacoustic methods of noise control involve modifications to the unsteady flow and are often
applicable to a wide range of flow problems. Thus, the methods used to minimize or eliminate high-lift noise may
be suitable to reduce the noise of other sources on an airplane. However, the general applicability of the methods
may not be apparent until they are investigated specifically for different sources. Our discussion has focused on
ways to eliminate the high-lift system, but methods that do not appear promising for this task may prove important
for other sources. Although completely eliminating the high-lift systems may not be possible within the 10-year
time limit of the 10-dB noise reduction goal, this case provides alower boundfor the noise of an aircraft flying in
a clean configuration. In the next section, we investigate thelower boundof airframe noise, where the dominant
noise source is trailing-edge scattering.

5 Lower BoundOf Airframe Noise

Consider the ideal case where all high-lift noise has been eliminated leaving an aircraft in the clean condition.
Furthermore, assume that the plane can fly in this clean condition while maintaining the same lift and speed as a
landing aircraft. Such a virtual aircraft was investigated by Lilley[8] who showed that the plane’s dominant noise
source was scattering at the trailing edge. We define thelower boundof airframe noise as the noise that would
be generated by this virtual aircraft when flying at approach conditions. Although such an aircraft is hypothetical
today, the goal of our current research is to make it a reality. Hence, thelower boundcan also be thought of
as an estimate of how much noise will be generated on the next generation of planes if all of our research into
eliminating flap, slat, and landing gear noise is completely successful. If we are able to reduce the noise of the
high-lift system to that of the clean aircraft, but fail to meet the 10 year goal, research must be reordered to
attack the more challenging problem of noise reduction of an aircraft flying in a clean condition. Furthermore,
modifications must not interfere the aircraft’s ability to fly in the clean condition while generating high lift.

We assume that such a high-lift hush kit does not degrade the aerodynamic performance in the approach to
landing. If modifications resulted in a weight penalty for this aircraft, this would automatically be taken care of
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by using the new weight throughout the calculations. The method used to estimate thelower boundis based on
the work of Ffowcs Williams and Hall[3] on the noise scattered at the edge of a half-plane. In the next section
we will review this work and consider how we can estimate the noise of the clean airplane flying at a nominal
C̄L = 0.5.

5.1 Half-Plane Problem

The noise from turbulent boundary layer pressure fluctuations in a low Mach number flow over an infinite plane
surface was shown by Powell[11] to be quadrupole and, therefore, proportional toV 8

∞, where,V denotes the
freestream velocity. The analysis shows that the normal force fluctuations on the surface, which are dipole, are
exactly canceled by image dipoles. Hence, the infinite plane does not augment the noise radiated by turbulent
eddies in the boundary layer. However, the situation is quite different for finite surfaces. A turbulent source above
a compact wing will radiate as a dipole and be proportional toV 6

∞. The wing appears compact to the source when
its dimensions are small compared with the wavelength of the disturbance. However, when the wing chord is
large compared with the wavelength, the acceleration of the turbulent flow as it approaches and recedes from the
trailing edge causes some of the kinetic energy to be scattered into sound. The far-field radiated noise is increased
from a proportionality ofV 6

∞ to V 5
∞ for a sharp trailing edge. The exponent was shown by Crighton[12] to be

a function of the trailing edge geometry. Crighton[2] also showed that much more noise is generated by trailing
edge scattering than by any other mechanism involving eddies in the boundary layer even though the wing area
can be very large.

To investigate these findings in more detail, we now consider the noise radiated from the unsteady flow past a
semi-infinite plate of zero thickness and at zero incidence. The analysis will use Lighthill’s acoustic analogy. This
approach was first employed for the scattering problem by Ffowcs Williams and Hall[3]. They found the solution
to the far-field noise problem was dominated by the singularity in the Green’s function at the sharp trailing edge,
analogous to the scattering of electromagnetic waves past the edge of a half-plane. In the acoustic case at low
Mach number, the sources within an acoustic wavelength of the trailing edge emit noise that scatters at the trailing
edge, and the intensity of the radiated noise is proportional toV 5

∞ sin2(θ/2), whereV∞ is the freestream or flight
velocity. The angleθ is measured from the downstream direction. We find that for level flight at heightH when
θ = ±90◦, the far-field noise intensity per unit volume of acoustic sources is

I(Watts/m2) =
c3
∞

ρ∞

ω0

2π3H2

ρ2
0u

4
0

c5
∞

(3)

which is a form of the Ffowcs Williams-Hall equation given by Goldstein[13]. It is also similar to that given by
Howe[4, 14] and Crighton[2, 15]. In this approximate form of the equation the space-retarded time covariance
of the Lighthill stress tensor is nondimensionalized and given the approximate value of unity. The characteristic
source frequencyω0 is given by the Strouhal relation for turbulent flowω0`0/u0 ≈ 1.7. The characteristic length
and velocity scale for the turbulence are`0 andu0, respectively. The noise from the half-plane is an idealized
problem, but it provides a good approximation to the noise of a clean aircraft. When equation (3) is integrated
over the wing span, the resultant noise estimate is in reasonable agreement with experimental results. Equation
(3) is for low Mach numbers and omits the Doppler factors that would be required at higher Mach numbers and
directivity angles other than90◦. Because the equivalent sources in the wing boundary layer are in motion relative
to the wing, they appear to be moving very slowly to an observer on the ground. The relative velocity between the
sources and the observer determines the amplitude of the Doppler factors. Because the relative velocity is small,
the Doppler factors can be neglected. Acos3 β term that is important for highly swept edges is also ignored. The
angleβ measures the sweep of the trailing edge. Howe[16] suggested that a serrated trailing edge would reduce
the radiated noise by changing the sweep angle, and recent experiments have confirmed this result. However,
conventional aircraft have a sweep angle of zero at trailing edges.

Computations and experiments have confirmed the relevance of the results for the half-plane to more realistic
problems involving wings. Simulations of turbulence crossing a wing trailing edge have been performed by Singer
et al.[17], where the radiated noise has been evaluated from a time-accurate flow solver coupled to the Lighthill
acoustic analogy in the form presented by Ffowcs Williams and Hawkings[18]. Agreement was obtained with the
formulation given in equation (3). In addition, measurements of trailing edge scattering noise has been measured
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by Brooks and Hodgson[5] and more recently by Ostertag et al.[19], confirming the result given in equation (3)
for the two dimensional airfoil.

5.2 Noise From Clean Aircraft

In the early work on the airframe noise of the clean aircraft, experiments seemed to indicate that the noise was
independent of the aircraft lift coefficient. However, the present more detailed study shows that the clean aircraft
noise is a strong function of lift coefficient when the aircraftC̄L exceeds about̄CL = 0.5. This increase arises
from the change in the turbulent boundary layer characteristics along the wing upper surface and approaching
the wing trailing edge with increases in lift coefficient. As̄CL increases, the turbulent pressure fluctuations and
the turbulent kinetic energy in the upper surface adverse pressure gradient also increase. A preliminary study
of the changes in amplitude and length scale of turbulence in a boundary layer was performed by using steady,
two-dimensional RANS calculations of a NACA 4412. A range of incidence from zero to stall has given us
some insight about the influence of the lift coefficient on airframe noise. We have also observed a reduction in
airframe noise due to the large decrease in flight speed from cruise to the approach to landing. The study has used
the available published results of flight tests on the clean aircraft. The amount of good data is sparse: repeated
flight tests differ by more than 2 dB. To assist industry in meeting the new goals, additional accuracy could be
achieved by calibrating the noise measured levels of the clean aircraft with thelower bound. This calibration could
be obtained from RANS calculations on the complete aircraft, wind tunnel tests on complete configurations, or
further “piggyback” tests as part of conventional noise certification flight tests.

For a clean aircraft with a large aspect ratio wing, we assume that its primary noise source is the scattering
of noise from the wing trailing edge. For aircraft flying at lift coefficients greater thanC̄L = 0.5, the noise
sources in the upper surface boundary layer are much stronger. Hence, the noise from the lower surface boundary
layer may be neglected. A good first approximation is to assume that the amplitude of the acoustic sources is
proportional to the maximum turbulent kinetic energy, and the length scale of the acoustic sources equals its
distance from the wall. The wall distance is of the same order as the turbulent boundary displacement thickness.
At large values ofC̄L the maximum value of the turbulent kinetic energy occurs at distances from the wall that
increase with increases in lift coefficient. We find in regions of adverse pressure gradient thatym/δ is typically
between0.2 and0.3, but it can be as large as0.5. The position of maximum turbulent kinetic energy is denoted
by ym, andδ is the boundary layer thickness. The turbulent kinetic energy iskm = 3u2

0/2, and`0 = ym, where
u0 and`0 are the characteristic velocity and length scale of the turbulence in the upper surface boundary layer,
respectively. It is further assumed that for the clean aircraft that these quantities do not vary along the wing span.
Thus, to apply equation (3) to the complete clean aircraft, we must validate it against measured data found for the
complete aircraft using steady RANS, wind tunnel measurements, or flight tests. Our preliminary results suggest
that this method gives results for the OASPL of the clean aircraft that agree with experiments for the pre-1980
aircraft without modifying the numerical constants in equation (3). However, on modern commercial aircraft
with advanced wing design and twin wing mounted engines, the average turbulent kinetic energy in the boundary
layer at the trailing edge is lower than for aircraft of the pre-1980 era. Simplified calculations suggest that for the
cleaner post-1980 aircraft,u0 needs to be replaced byeu0, wheree ≈ 0.9.

The radiated noise from the wing of an aircraft flying straight and level in the clean configuration forC̄L < 0.5
is found from integration of equation (3) over the spanb of a wing of mean chord̄c. The characteristic length scale
of the turbulence in the proximity of the wing trailing edge`0 can be equated to the boundary layer displacement
thickness(δ1)TE. In the far-field at a distanceH from the aircraft, in which the noise sources are considered as
existing only over the upper surface of the wing,

I(Watts/m2) =
1.7
2π3

ρ∞SV 3
∞M2

∞
H2

((
u0

V∞

)5
δ

δ1

)
TE

. (4)

The wing area isS = bc̄, andδTE is the boundary layer thickness at the wing trailing edge. This dimensionally
correct formula ignores the finite spanwise correlation length of the space-retarded time covariance. Deriving
this expression from equation (3) involves an integration in the chordwise direction over all disturbances within
an acoustic wavelength of the trailing edge. We must include all frequencies in the broadband spectrum, and
the frequency of the peak in the spectrum is in the lower band of frequencies. Therefore, the required range of
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integration is a major fraction of the chord and can be approximated by the chord itself. Clearly, this estimate is
more valid for smaller aircraft and aircraft having a large wing aspect ratio. In earlier work an attempt was made
to include only part of the wing chord. However, a more detailed study of the experimental data obtained from
flyover tests in the 1970s showed such good correlation based on wing area alone that it was assumed integration
over the mean chord was justified.∗ Here we ignore the presence of the engines and the fuselage as well as the
noise from the tail surfaces.†

For an aircraft of all-up weightW , flying straight and level before the approach, the aircraft speed and lift
coefficientC̄L are related by

W = (1/2)ρ∞V 2
∞SC̄L (5)

From equations 4 and 5 we find for the radiated far-field noise

I(Watts/m2) =
13.6
π3

V∞M2
∞

(
u0

V∞

)5
W

C̄LH2
(6)

We assume that(δ/δ1)TE ≈ 8, which is appropriate for a typical civil aircraft flying at high Reynolds number.
Furthermore, we assume that only the wing upper surface boundary layer contributes to the far-field radiated
airframe noise. If we defineF (Watts/m2) = WV M2/(H2C̄L), we see that the noise intensityI ∼ F . From
equations (3) and (4), the definition ofF can also be written asF = (ρ∞/2c2

∞)(S/H2)V 2
∞. We prefer the former

definition because it emphasizes the importance of both the lift coefficient and flight speed for a given aircraft
all-up weight by notingC̄LV 2

∞ = (2/ρ∞)(W/S). A still further equivalent form forF is

F = (W/Tth)(ρ∞/(2c2
∞)(S/h2)V 2

∞)/(C̄L/C̄D) (7)

which shows the relation betweenF and the main aerodynamic parameters. Here,Tth is the engine thrust corre-
sponding to the flight speedV , andW/Tth = C̄L/C̄D in level flight. All these interrelationships are required in
defining the noise of an aircraft during the approach.

On substituting suitable values for the typical turbulent intensity we find

I(Watts/m2) = K

(
WV∞M2

∞
C̄LH2

)
(8)

whereK ≈ 5.6 × 10−7. Although the coefficientK will vary with the Reynolds number of the aircraft, we find
this simple formula fits remarkably well with the experimental data collected from ground noise measurements
over the past25 years for aircraft ranging from gliders to jumbo jets.‡ At constant height and speed and an average
flight C̄L = 0.5, the far-field noise intensity is only a function of aircraft all-up weight. For other angles in the
longitudinal flight plane, we find the noise directivity follows thesin2(θ/2) law. This law fits the measured data
for aircraft flying straight and level in the clean state over a weight range from about 10 N to4 × 106 N. As an
example, whenW = 2 × 106 N, C̄L = 0.5, V∞ = 125 m/s,H = 120 m, we findI = 95.4 dB, which is typical
of the airframe noise from a “large quad” such as theB747− 100.§

The spectrum of noise is important, for without it we cannot calculate the high frequency weighting required
for calculations involving perceived noise levels. In this simplified formulation, we will find only a measure of the
peak in the frequency spectrum for the complete clean aircraft. If we define the Strouhal number for the frequency
of the peak in the spectral density as

ST =
fpeak c̄

V∞
=

1.7
2π

u0

V∞

c̄

δTE

(
δ

δ1

)
TE

(9)

∗Clearly, this was a gross approximation and applied only to that data set. We will discuss later the reasons why we may need to amend
this assumption when dealing with the modern commercial aircraft fleets.

†Corrections for these components can easily be made by summing just those contributions that include a near horizontal scattering trailing
edge.

‡The value ofK quoted above is more appropriate for aircraft of the pre-1980 era than to more modern commercial fleets.
§For later versions of the B747 with a new wing of greater aspect ratio, a smaller value ofK is more appropriate.
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and use the values ofu0/V∞ = 0.066, (δ1)TE/c̄ = 0.0044, andδ/δ1 ≈ 8, we find thatST ≈ 4. As an example
for a large civil transport with a mean chord ofc̄ = 7 m flying at a speed ofV∞ = 130 m/s, we findfpeak = 78
Hz.¶

The decay law for the spectrum beyond its peak is not universal and is a function of aircraft geometry. In
addition the spectrum has a broad peak before the decay occurs. As is the case for many shear layers, the frequency
spectrum beyond the broad peak falls asf−n wheren = 1.5 to 2.

It is assumed that this clean aircraft has a broadband spectrum with all tones suppressed. The noise atC̄L =
0.5 with flaps, slats, and undercarriage stowed can be determined from flight tests, but the results are sparse and
not well documented for modern aircraft. In addition, the measurements of aircraft noise at ground level need to
be corrected for engine noise and engine-airframe interference to obtain the true airframe noise component. It is
only by this method that we can find the true clean aircraft OASPL and its spectral density.

5.3 Clean Aircraft at High Lift

Figure 2: The structure of the wake downstream of high-lift extended flaps. (Photograph courtesy of J. P.
Crowder[20])

For an aircraft on the approach with part-span Fowler flaps deployed and the aircraftC̄L = 1.5 to 1.7, the
spanwise loading suffers a strong discontinuity at the inboard and outboard flap extremities. The result is that
strong trailing vortices develop along the flap side-edges as found by Crowder[20] and shown in figure 2. The
resultant flow field has been examined experimentally by Radeztsky et al.[21] and computationally by Khorrami et
al.[22]. The flap side-edge vortex forms close to the leading edge of the extended flap in the cove region between

¶Normally OASPL is measured in 1/3 octave bands. If in the lower frequency bands the 1/3 octave spectrum frequencies the spectrum is
flat, this is a sign that the peak in the spectral density is at a very low frequency. This is typical of the airframe noise spectral density for the
clean aircraft.
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the flap and main element. The side-edge vortex is fed from the spanwise flow from the lower boundary layers,
and the vortex grows in strength as it develops along the side-edge between the leading and trailing edges of the
flap. The flap side-edge vortex remains close to the flap except at large flap deflections when flow separation
occurs. The experimental and computational data show the side-edge vortex has a large curved feeding sheet and
a near circular core.

The concept of the clean aircraft at high lift idealizes the aircraft high-lift system as able to attain lift coef-
ficients in the approach of̄CL = 1.5 to 1.7 while the aircraft remains aerodynamically clean with no part-span
vortices. However, noise reduction devices have to be applied so that all the excess noise of the high-lift system,
including undercarriage noise, are eliminated. Such an aircraft, having a wing of large aspect ratio, would expe-
rience tip vortices. However, previous work of Brooks and Hodgson[5] suggests the increase in noise from the
wing tip vortices for a wing of high aspect ratio in the high-lift configuration over that of the noise from the clean
airplane at the lower lift coefficient is relatively unimportant.

We speculate that the clean aircraft at high lift has an increase in airframe noise due to the change in its upper
surface boundary layer characteristics approaching the trailing edge arising from the increase inC̄L. We assume
the noise on this clean aircraft arises exactly as with the case of the aircraft flying at lowerC̄L, with the dominant
noise being due to trailing edge scattering. Therefore, we determined the dependence of the turbulent kinetic
energy and length scale in the boundary layer approaching the trailing edge as a function of the lift coefficient.
Steady RANS calculations of a NACA 4412 have been performed at incidences ranging from zero to stall. The
computational code CFL3D[23] was used to calculate the flows. The results show that

(
(u0/V∞)5(δ/ym)

)
TE

increases with lift coefficient and is given approximately by

(
(u0/V∞)5(δ/ym)

)
TE

=
(

1 +
1
4
C̄2

L

)4

. (10)

For high lift, the length scale of the energy containing eddies is given byym because we can no longer assume
thatδ1 is a reasonable value. The actual length scale was obtained from the RANS computations of the NACA
4412 airfoil at high lift. Thus, the OASPL of the clean aircraft at high lift can be determined as follows. We first
find the flight speedV corresponding tōCL = 0.5. Next we determine the aircraft wing loading and the value of
F . For the given aircraft, value ofe will be known. Hence, its OASPL as a function ofF can be calculated from

I(Watts/m2) =
1.7
π3

V∞M2
∞W

C̄LH2

(
1 +

1
4
C̄2
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)4

=
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1
4
C̄2

L

)4

(11)

Additional detail on the justification for using such a simple formula to approximate the noise during high lift can
be found in appendix A.

5.4 Comparison With Full-Scale Flight Measurements

The simple formulae for thelower boundof airframe noise given previously may not be sufficiently accurate for
prediction purposes and the requirements of noise certification. However, it gives some insight into the dominant
noise characteristics generated by a complete aircraft and its components flying in the high-lift clean configuration
under conditions where all excess noise due to to the high-lift system has been eliminated.

Comparison of flight data for the clean aircraft with the trailing edge noise scattering formula show all aircraft
obey the lawI ∼ WV 3

∞, and the inverse square lawH−2. Such a law provides information on thelower boundof
airframe noise for present-day types of aircraft, assuming we could entirely eliminate all extra noise arising from
the dirty configuration. (We have ignored the effect of atmospheric sound absorption at the higher frequencies
due to the relatively short distances involved when the aircraft is on the final approach.)

Figure 3 shows OASPL and the parameterWV∞M2
∞/C̄L covering an enormous range of aircraft weights.

For the clean aircraft, the agreement with experimental observations is very good. Figure 4 shows thelower bound
curve for pre-1980 aircraft flying at various values of(C̄L) on the approach at the speedV . For each aircraft of
given weightW , we find a unique curve covering all values of(C̄L) > 0.5 using equation (11). Two example
aircraft (with specific values ofWMV 2/CL at CL = 0.5) are used to generate curves forCL > 0.5. Figure
5 shows thelower boundcurve for post-1980 aircraft flying at various values of(C̄L) on the approach. The
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Figure 3: Theoretical and measured OASPL levels for post-1980 aircraft in a clean configuration;H = 120 m
andC̄L = 0.5.

figure gives only one curve that relates to an aircraft having the all-up weight of theB777 − 200. It shows the
difference∆(dB) for the OASPL of this aircraft above thelower boundcurve is about 8 dB. To obtain further
noise reduction, trailing edge scattering must be addressed.

6 Trailing-Edge Scattering

If all three components of the high-lift system were eliminated on an airplane retrofitted with an advanced concept
Pratt & Whitney engine, the total noise reduction during landing would be about 7 dB. It has been shown in section
5.2 that thelower boundfor such an aircraft would be around 8 dB below that of a conventional large quad on
approach. In order to reach the 10 dB goal, the noise from the clean airplane would have to be decreased. Presently,
experimental and theoretical evidence suggests that the noise of the clean airplane arises from the scattering of
energy in turbulent eddies in the boundary layer as they cross the wing trailing edge. Additional noise is generated
at the trailing edges of all control surfaces. A detailed discussion of scattering in section 5.1 shows that the noise
generated by scattering is proportional toV 5 whereV is the aircraft speed. This fifth power law has been observed
experimentally for all gliders, aircraft flying clean, and all birds, with the exception of the owl. The noise source
suppressed on the owl is trailing-edge scattering. Thus, to reduce the noise below its lower bound requires that
trailing-edge scattering be eliminated. If this could be achieved, the total aircraft noise would be proportional to
V 6 with a corresponding noise reduction of almost 7 dB at approach speeds. However, other noise sources that
are currently buried by high-lift noise and scattering are likely to be exposed minimizing the gains. Hence, only a
few decibels of additional noise reduction may actually be realized. Nonetheless, it is likely that the 10 dB goal
could be met. Many suggestions have been made regarding methods to reduce the noise from the clean aircraft,
but none may be capable of developing sufficient lift during take-off and landing while not adversely affecting
cruise performance.

The scattering phenomena can be interrupted by introducing a pressure release mechanism such as porous
surfaces or a brush-like fringe as found on the trailing edge of owl feathers. When turbulent eddies pass over such
a region that gradually transitions from the loaded wing to freestream conditions, the energy transferred to noise is
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Figure 4:Lower boundfor clean pre-1980 aircraft flying at the approachC̄L; H = 120 m andC̄L = 0.5.

minimal. Changes in trailing-edge geometry such as serrations have also been investigated analytically and shown
to have a significant effect on the radiated noise. Other suggestions to effect scattering involve compliant surfaces
and water or aerosol injection to reduce the intensity of the turbulence in the boundary layer. The complete
elimination of the turbulence is the goal of laminar flow control techniques. However, conventional high-lift
systems have large pressure gradients that make it very difficult to achieve laminar flow. The boundary layers will
almost certainly be turbulent near the trailing edge unless the design of the airplane is significantly changed.

As the primary sources of airframe noise are eliminated, other noise sources will become the limiting factor
in noise reduction. The technology that is currently being developed should provide substantial noise reduction
for the high-lift system, but little is currently being done to develop methods for the other noise sources. The
trailing-edge scattering mechanism is a major source of airframe noise that may become dominant with projected
reductions in the noise from the high-lift system. Nature has provided us with a model to address trailing-edge
scattering. The owl has three devices that help it almost eliminate scattering. The leading edge comb produces a
streamwise lattice of vortices that allow the flow to remain attached over its wings even when at angles of attack
that would normally produce stalling. The owl also has a fluffy down covering its wings that act as a compliant
surface that damps out turbulent fluctuations. Finally, it has a fringe at the trailing edge that equalizes the pressure
and prevents separation. Hardware that has the same effect but is amenable to modern aircraft is needed. In this
section, we speculate on some practical ways in which owl technology could be applied to modern aircraft.

Various schemes have been proposed that have been in line with the mechanisms uncovered regarding the
silent flight of the owl. The airflow over the wing of the owl is complex because not only is it at low Reynolds
numbers, but the owl flies at a low speed and a highC̄L. For a comparable continuous wood or metal surface, the
wing would stall before a lift coefficient of near unity could be attained. The flow would suffer laminar separation
at the leading edge and would remain separated over the whole of the wing upper surface. The owl uses a ‘comb’
on the leading edge flight feathers as vortex generators to produce closely spaced streamwise vortices that form
a pseudo-turbulent boundary layer with no laminar separation. However, the adverse pressure gradient near the
upper surface trailing edge should still lead to boundary layer separation, a loss of lift, and result in unsteady flow
leading to unsteady flight. The owl prevents this from happening by using a simple rule in fluid dynamics; ‘If a
flow past or over a surface is causing an unsteady flow to develop, it is worth trying to get rid of the problem by
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eliminating the surface.’ The owl has a fringe in the feathers close to the trailing edge enabling the relatively high
energy lower surface boundary layer air to flow upward into the low energy upper surface boundary layer flow.
This latter flow is re energized and separation is avoided. Furthermore, the fringe causes a pressure equalization
between the upper and lower surfaces, and the previous large accelerations of convected eddies in the boundary
layers close to the leading edge are eliminated. Thus, the owl wing achieves a high lift coefficient at low Reynolds
numbers, and the flow remains steady for low speed flight. A byproduct is that there is no longer a continuous
trailing edge on the owl’s feathered wing and acoustic scattering proportional toM5 has been eliminated. The loss
of lift due to the reduction in available surface area, since the ‘fringe’ area cannot support lift, may be relatively
unimportant in the case of the owl. The radiated noise is now proportional toM6

∞, which represents a large noise
reduction. For a typical aircraft approach velocity of 68 m/s the noise reduction would be of the order 7 dB. Of
course, a fringe similar to that on owl’s feathers would be impractical. A scheme involving porous holes close to
the trailing edge has related properties to the owl’s fringe. Nonetheless, the trailing edge remains, and less noise
reduction would be obtained. Ornithologists have frequently drawn attention to the bird’s feathers having this
advantage over a solid wing surface by allowing airflow from the under surface to flow through the feathers and
so help to re-energize the upper surface boundary layer by natural means. The amount of airflow on most birds
is too small to produce any worthwhile effect. In the case of the owl’s fringe, it is clear the effect on maintaining
both high lift and steady flow has been achieved. The use of wings with porous surfaces close to the trailing edge
enables an optimum scheme of natural re-energization to be employed on actual aircraft. However, a penalty may
be experienced if the holes remain uncovered during cruise. An adaptive porosity scheme might prove useful.

A further scheme proposed by Fink[24][25] involves serrating the trailing edge and takes advantage of noise
reduction when a trailing edge is swept with respect to the freestream direction. The noise is reduced, as shown by
Howe[4], by the cube of the cosine of the trailing edge angle of sweepback. This would amount to an elimination
of trailing edge noise when the angle of sweepback equals90◦, an example for which is the owl’s fringe. Of
course, this does not reduce the noise to zero. Strictly speaking, the owl is never silent except to its prey who can
only hear frequencies greater than2kHz. All flying vehicles, including all other birds apart from the owl, have a
broadband spectrum extending to well beyond10kHz.
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7 Conclusions

This study on the prediction of airframe noise concludes that only through advances in both noise reduction
technology and aircraft operations will it be possible to meet the NASA goal of 10 dB noise reduction within
10 years. Major research studies are also needed to develop accurate prediction schemes that are valid for the
new technology being developed. Designers will need to evaluate retrofits and completely new designs from a
noise perspective as they simultaneously evaluate performance characteristics. The primary driver of the airline
industry is still economics, so it is imperative that new noise reduction technology does not adversely affect cruise
performance nor increase operating and maintenance costs. All of these different aspects must be investigated, and
new tools need to be developed to allow the designer to perform these studies. Current research and development
appears to be addressing all of these important areas, so we are optimistic that the 10 dB goal can be met.

The prediction of airframe noise depends on the availability of a space/time accurate unsteady flow database
for the flow over the complete aircraft. The interactions between the component flows, such as between the
undercarriage and the flap, cannot be ignored. Measurement and theory strongly point to the flow over the upper
surface of the wing approaching the wing trailing edge as a dominant source of noise when the aircraft is flying
in its clean configuration with flaps, slats, and undercarriage stowed. In this configuration, the estimation of
airframe noise and its variation with aircraft all-up-weight and speed is well predicted by the simple formula for
the turbulent boundary layer noise scattered by the wing trailing edge. The noise radiated varies with flight speed
according toV 5

∞.
For aircraft flying in the dirty configuration, the radiated noise is highly geometry-dependent, but still is nearly

proportional toV 5
∞. The extra noise is due to deployment of the trailing-edge flaps, the leading-edge slats, and

the undercarriage. For the trailing-edge flaps, the same generic formula for edge scattering can be used although
the scattering now takes place at both the flap side edges as well as at the trailing edge. In the case of the
slat, its geometry is critical and good aerodynamic performance does not necessarily lead to acceptable noise
performance. The avoidance of slat tones and resonances is essential within the operational range of the slat. The
undercarriage is probably the most important contributor to airframe noise in the dirty configuration and possibly
the most difficult component to lower its noise level.

Various methods of reducing the noise from the high-lift system and landing gear have been discussed. Sub-
stantial gains are expected from technology that is already in development, but current estimates show that elimi-
nation of high-lift associated noise alone will not meet the goal of 10 dB in 10 years for the approach condition.
The shortfall will have to be made up by either changing the flight operations or addressing trailing-edge scat-
tering. Scattering is the dominant mechanism for a plane flying in the clean configuration. The possibility of
reducing the noise of the clean aircraft have been discussed. Reference was made to to the techniques employed
by the owl in producing silent flight over the range of frequencies above 2 kHz. This range of frequencies is
most annoying to people when aircraft fly over communities in the final approach to an airport, and is where the
important high frequency weighting is generated in calculating perceived noise levels. Already, interest is being
shown in developing schemes for application to aircraft based on the same principles used by owls. Although
trailing-edge scattering must be addressed, changing the flight operations appears to be the most practical way to
obtain the desired noise reduction in the near term. Changing flight operations would help alleviate both airframe
and engine noise. Even with the combined attack recommended in this paper, obtaining the desired noise reduc-
tion will be a significant challenge. The next section makes some suggestions on how to maximize our efforts
both technically and in relation to the public.

8 Recommendations

Our ability to reduce further the aircraft noise on landing can be effected if we turn to all involved in this problem.
The people living close to the airport boundaries, the airport controllers, the local and federal legislators concerned
with land-use planning, the pilots flying our commercial transport aircraft, as well as the aircraft and engine
designers, and our scientific community must work closely together to find the best technical and economic
solution. The following suggestions are proposed to address the current community noise problem.

• The aircraft industry should make public the work done to reduce the noise of aircraft over the past 30-40
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years. The public hears about the success of physicists and space scientists in their work in combating
disease and exploring space that they become annoyed when told that it is impossible to land an aircraft
quietly. In the past 40 years the aircraft industry has reduced aircraft noise by 30 dB that is equivalent
to reducing the acoustic power to1/1000 = 0.1% of its level in the early 1960’s. This enormous noise
reduction in terms of acoustic power was only achieved by dedicated research throughout this period. The
task required all the skills of the scientific community equal to those required to send a human into space
and to land on the moon. However, this enormous reduction in noise power was achieved almost solely
through changes to the propulsion system. The migration from the straight jet to the modern, large diameter
front fan turbojet engine yielded enormous increases in overall efficiency and large reductions in the fuel
burn for a given thrust. This change in engine design not only provided significant gains in performance,
but also produced enormous reductions in aircraft noise. However, few are aware of the tremendous gains
that have already been achieved in performance and noise reduction.

• An effort should be made to educate the public of the inner workings of the human ear and its logarithmic
response to noise. In all branches of engineering and technology, the power required to overcome resistance
is the sum of the components constituting the resistance. Power requirements are reduced by decreasing
the resistance of each component. Normally, it is regarded as a major advance in engineering when power
requirements are reduced by as much as 50 percent, even when greater reductions are possible. The pressure
fluctuations in the air associated with the propagation and radiation of sound are also measured in these same
units of Watts. However, the human ear is such a remarkable organ that a human would perceive a noise
source power reduction of 50 percent as small. We measure the ear’s response in terms of the logarithm
of the power, by the unit called the decibel. A reduction of 50 percent of the acoustic power amounts to a
reduction of just 3 dB on the logarithmic decibel scale. It is only when the ear receives a noise reduction of
about 10 dB, amounting to a drop in acoustic power of 90 percent, that the hearer realizes that a significant
change has been made in reducing the noise of the offending noise source.

• When a source of noise has many independent components, such as in aircraft noise, the total noise level
measured in dB is the sum of the logarithms of the acoustic powers of all the components. Hence, managers,
researchers, and the public needs to be aware that noise sources combine in a complicated fashion that makes
it difficult to achieve large reductions in perceived noise. For example, an observer clearly hears the noise
of a dominant source, but sources having a level 10 dB less than the maximum are not heard. Elimination of
the dominant source would achieve a significant 10 dB of noise reduction. Noise reductions made to noise
sources that have levels less than the maximum produce little or no reduction to the total noise. In contrast,
two sources of equal intensity produce a combined noise that is 3 dB louder than either noise source alone.
Elimination of either source alone would only net 3 dB. In the airframe noise case, multiple sources are
producing noise at similar intensities. All of these sources must be reduced by commensurate levels to
achieve any significant overall noise reduction.

• Unfortunately, poor land planning around airports throughout the world has encourage families to live too
close to airports. Today, many communities continue to be exposed to unacceptable aircraft noise during
take off and landing. It is clear that if families remain in the vicinity close to an airport, no further amount of
aircraft noise reduction will fully satisfy their demands to live in a peaceful urban environment. Technically,
a further noise reduction of 10 dB (equivalent to reducing the noise power by 90 percent) approaches the
limit of human achievement and economic feasibility. Families living close to airports should be given
the means to move to quieter areas, and the land redeveloped for industrial purposes where aircraft noise
would not create any problem. This should be an urgent priority for local and federal legislation and all
concerned with land-use planning. In many cases, the land could be taken over by the airport to prevent
further encroachment of residential areas.

• All aircraft approaching to land should fly as high as possible when flying over residential areas. Pilots
should take advantage of the lower landing weights of their aircraft and use a smaller fraction of the airport
runway for landing, except in the case of an emergency. The instrument landing system (ILS) glide slope
of 3◦ should have its first marker positioned at one-quarter to one-third of the way from the start of the
runway. These changes would enable the pilot to fly with the undercarriage stowed at a constant altitude of
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twice the present height of 120 m to the intersection with the ILS glide slope. This landing approach would
reduce the noise on the ground by 10 dB for people under the flight path.

• The undercarriage should be lowered during approach between the nearest community and the airport
boundary. Pilots desiring to put on extra power to land could do this in the landing trajectory beyond
the nearest community and possibly within the airport boundaries. The turn-off to taxiways should be to-
ward the end of the runway instead of near the 50 percent point as at present. This change would add some
minutes to the time between aircraft landing and arrival for passenger embarkation at the terminal gate.
However, it would have a significant noise benefit for those continuing to live close to the airport.

• The scientific and technical community are currently seeking methods of noise reduction to the high-lift
system and undercarriage without losses in performance. These technologies will provide significant noise
reduction to the present and future generations of commercial aircraft. Such noise reduction will further
alleviate the noise nuisance in those communities remaining under the approach path to the airport. The
aim of these methods of noise reduction is to eliminate the excess noise due to the high-lift system to reduce
the noise to that of a clean airplane flying at the approach speed with the same overall lift. The challenge
to reduce undercarriage noise would not be so demanding provided the undercarriage was not lowered until
clear of the nearest community to the airport as discussed previously. To effect a reduction in aircraft noise
on the approach to landing, it is essential to reduce all the dominant noise sources by equal amounts. Thus,
because undercarriage noise is a dominant noise source in the aircraft approach noise signature at ground
level, our aim should be to eliminate the noise as long as possible by delaying landing gear deployment.
In addition to airframe noise reduction, a corresponding decrease is required from the engine. We expect
engine noise on the approach will be decreased further by using moderate increases in bypass ratio, which
continue to make the engine more efficient. Furthermore, the new technologies used for airframe noise
should reduce the aircraft drag and thereby decrease the required thrust during approach, which further
reduces engine noise.

• If engine technology advances to reduce engine noise significantly below current levels, then the challenge
will exist to reduce the airframe noise to below its current clean level. Airframe noise currently follows a
V 5 law in both the clean and dirty configurations when flying at high lift. Research on the silent flight of
the owl has shown it is possible to fly according to theV 6 law that involves a potential noise reduction of
about 8 dB for an aircraft flying at its approach speed. This change in the power law would be obtained if
the scattering of noise from the trailing edges of wings and flaps was removed. Scattering is the dominant
noise source of all flying vehicles including birds except the owl. We can build on “owl technology” by
research how to reduce the noise of the clean airplane.

• Previous recommendations have not referred to the subjective side of aircraft noise. Allowance has to be
made for the penalties incurred in human annoyance to high frequencies above 2 kHz, especially when the
noise is tonal. This involves the perceived noise scale associated with the high frequency weighting of the
noise source spectrum that mimics the response of the human ear. In all the noise reduction techniques
discussed previously, attention should be paid to (1) eliminating as far as possible all tones at both low and
high frequencies from the noise signature, (2) reducing all excess noise at high frequency to reduce the
penalty of the high frequency weighting associated with perceived noise level, and (3) reducing the noise
around the peak in the spectrum to reduce the overall sound pressure level (OASPL). These changes must
be accomplished while ensuring the frequency at the spectrum peak is not increased to a higher frequency.
Again we can learn from owl technology. The owl possesses a “hush kit” whereby it can fly toward its
prey at low speeds and high lift, similar to an aircraft on approach to landing. However, the owl remains
almost totally silent at frequencies above 2 kHz. It is a challenge to the aircraft industry and scientific
community to find practical methods to employ equivalent schemes for high frequency noise elimination on
an aircraft by duplicating the effects of the special devices on owl feathers. When this has been achieved,
the noise of the airplane measured in OASPL would almost be equal to the perceived noise level, resulting
in a noise reduction of 10 dB. However, this is the subject of ongoing research, and we cannot conclude if
such research will be successful.
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The previously mentioned methods of noise reduction center on reducing the community noise annoyance
and noise nuisance in areas close to airports. The methods involve both separation in distance of people from
the offending aircraft as well as adding noise reduction technology to the aircraft. Some of the proposals for
noise reduction will allow retrofits to existing aircraft and incorporation into future aircraft. The proposals
to separate people from the approaching aircraft need careful study, but in principle could be implemented
in the short term following flight and simulator studies from which new safe flight procedures could be
evaluated. The necessary legislation could be introduced, but would need approval by the international
organizations such as International Civil Aviation Organization (ICAO).

The aircraft industry should widely publicize the actions they take to reduce aircraft noise. The message
should be that we cannot safely fly aircraft that are completely quiet during landing, but we can reduce
noise beyond what has been achieved in the past40 years.

Appendices

A Aircraft at High Lift

To develop the lift necessary to equal the all-up weight at low forward speeds, an aircraft uses increased camber
by flaps and auxiliary airfoils, called slats. In the case of flaps, the chord may be extended. Let us consider the
case of an aircraft having essentially a rectangular wing for cruise and a flap for approach and landing. The mean
chord and span of the main wing arec̄ andb, respectively. The lift increment due to a flap deflection is given by

∆CL = a1τηδF (12)

wherea1 is the lift curve slope,δF is the flap deflection andτ andη are flap parameters that depend on the
geometry of the flaps and their chord extension. The value ofτ is known as the flap effectiveness factor, andη is
a correction to allow for viscous effects.

The lift coefficient on the wing with the flaps retracted is

CL0 = a1(α + α0) (13)

where the wing lift curve slope is

a1 =
6

1 + 2/AR
(14)

andα is the wing incidence, or angle of attack. The zero-lift angle isα0. AR is the aspect ratio of the wing.
With the wing with flaps extended but at zero deflection, the lift coefficient isCL0(1 + SF /S), whereSF is

the total flap area. Consider the wing with a single flap depicted in figure 6. The span of the wing isb, and the
mean chord length is given bȳc. The flap span and chord arebF andcF , respectively. Using lifting line theory,
the lift coefficient with the flap extended and deflected is

C̄L = CL0

(
1− bF

b

)
+ (CL0 + ∆CL)

bF (c̄ + cF )
bc̄

= CL0

(
1 +

SF

S

)
+ ∆CL

(
bF1

b
+

SF

S

)
(15)

The first term in equation 15 is the contribution from the unflapped portion of the wing operating at an average
lift coefficient ofCL0 . The second term is the contribution from the flapped portion of the wing operating with a
lift coefficient of (CL0 + ∆CL) over the area of the flap and the flapped portion of the wing. The equations have
been manipulated to depend on the basic wing area in cruiseS = bc̄, and the flap areaSF = bF cF .

Now consider a wing with two flaps as shown in 7. Note that both flaps contribute to the lift on the inner
section of the wing in this configuration. This allows one to take into account some of the effects of the fuselage
on the lift. The overall span of the outer flaps isbF2 andbF1 for the inboard, wherebF = bF1 + bF2 . The overall
lift coefficient for the wing with flaps is̄CL. The lift coefficient on the outer wing beyond the flaps isCL0 . The
lift increments on the inboard and outboard flaps are∆CL1 and∆CL2 , respectively. The overall lift coefficient is

C̄L = CL0

(
1− bF

b

)
+ (CL0 + ∆CL2)

bF2(c̄ + cF2)
S

+ (CL0 + ∆CL2 + ∆CL1)
bF1(c̄ + cF1)

S
=
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Figure 6: Schematic of a wing-flap system.
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Figure 7: Schematic of a wing system with two flaps.
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where the total flap area isSF = SF1 + SF2 .
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Figure 8: Schematic of the vortex system behind a wing with two flaps. Only the left half of the wing is shown.

It is also important to know the strength of the circulation around the wing. The circulation of the tip vortex
is approximately given by

Γ0 =
1
2
V∞c̄CL0 (17)

as in the unflapped case. The aircraft speed isV∞. Using the experimental results for the vorticity behind a
wing in figure 2 as guidance, we model the vortex system behind the wing with two flaps as shown in figure
8. The straight lines between the vortices represent vortex sheets. Clearly, we have made some approximations
in assuming that the strengths of the vortices at the ends of each sheet are identical. The circulation due to the
outboard flap can be determined from the difference between the strengths of the two vortices formed near the
outer flap edge. Hence, the circulation at this outer edge is

Γouter = Γ2 − Γ0 (18)

Similarly, the circulation around the inboard flap edge is

Γinner = Γ1 − Γ2 (19)

where

Γ1 =
V∞
2

∆CL1S

bF1

(
bF1

b
+

SF1

S

)
(20)

and

Γ2 =
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)
(21)
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Note thatΓ2 depends on the total flapped wing chord.
BecauseC̄L, ∆CL1 , CL2 are known, we can findCL0 . The flight speed isV∞, so

W =
1
2
ρ∞V 2

∞SC̄L (22)

Lilley[8] reports that the turbulent flap side-edge vortex and its curved feeding sheet remain close to the flap
side-edge during its evolution. It forms initially close to the flap leading edge and leaves the flap close to the flap
trailing edge, where the vortex is cast off into the wake. The noise scattered at the flap side-edge depends on the
flap geometry, including its number of separate elements. Double and triple slotted flaps will have different noise
characteristics. The noise depends on the aerodynamic loading on each of the elements as well as the growth
of the vortex along the flap side-edge. The resultant cloud of vorticity and its corresponding turbulent intensity
and length scales will be functions of the change in strength of the vortex and its feeding sheet along the flap
side-edge. The strength of the vortex depends on both the axial and swirl velocity components. It appears that the
wing tip vortex is much weaker than the flap side-edge vortices, and the latter makes a strong contribution to the
radiated noise at large incidences and correspondingly large overall lift coefficients,C̄L.

As shown in the previous analysis, the strength of the flap-side vortices depends on the discontinuities in
the combined wing and flap geometry and the flap deflection. In other words, the strength of these vortices
is dependent on the changes in the spanwise loading and is reduced when the gradients are small. Overall,
the vortices must contain the same circulation regardless of the gradient of the spanwise loading. However,
when the cloud of vorticity has its concentration reduced, the corresponding turbulent intensity is diminished.
This condition causes a large reduction in the amplitude of the turbulent fluctuations and, hence, of the radiated
noise. This description is an oversimplified model of the source of noise generated by the flap side-edge vortices.
However, it gives us a clue into how to reduce this noise: we should carefully adjust the geometry of the wing-flap
system so that no discontinuities in spanwise loading occur. This is the objective of the continuous mold-line link
(CML) approach. A further benefit of the simple model is that once the source of the flap side-edge vortex is
removed, we are left with a wing and extended flap system at high incidence that continues to radiate noise from
its trailing edge, similar to the mechanism at lower incidences. Thus, our formulation can be used for the radiated
noise from the wing and flap system at high lift as if it were part of the mechanism of the noise from the clean
airplane. This level again acts as a lower bound for noise unless we can reduce the basic noise of the airplane at
all incidences and lift coefficients. This reduction can only be achieved if we can reduce trailing edge noise.
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