
NASA Technical Memorandum 110267

Correlation of Structural Analysis and
Test Results for the McDonnell Douglas
Stitched/RFI All-Composite Wing
Stub Box

John T. Wang

Langley Research Center, Hampton, Virginia

Dawn C. Jegley

Langley Research Center, Hampton, Virginia

Harold G. Bush

Langley Research Center, Hampton, Virginia

Stephen C. Hinrichs

McDonnell Douglas Aerospace, Long Beach, California

July 1996

National Aeronautics and

Space Administration
Langley Research Center
Hampton, Virginia 23681-0001





CORRELATION OF STRUCTURAL ANALYSIS AND TEST RESULTS FOR
THE McDONNELL DOUGLAS STITCHED/RFI ALL-COMPOSITE WING

STUB BOX

John T. Wang, Dawn C. Jegley, and Harold G. Bush
NASA Langley Research Center

Hampton, VA

and

Stephen C. Hinrichs
McDonnell Douglas Aerospace

Long Beach, CA

Abstract

The analytical and experimental results from a study of an all-composite wing stub box are

presented in this paper. The wing stub box, which is representative of an inboard portion of a

commercial transport high-aspect-ratio wing, was fabricated from stitched graphite-epoxy

material with a Resin Film Infusion manufacturing process. The wing stub box was designed

and constructed by the McDonnell Douglas Aerospace Company as part of the NASA Advanced

Composites Technology program. The test article contained metallic load-introduction structures

on the inboard and outboard ends of the graphite-epoxy wing stub box. The root end of the

inboard load introduction structure was attached to a vertical reaction structure, and an upward

load was applied to the outermost tip of the outboard load introduction structure to induce

bending of the wing stub box. A finite element model was created in which the center portion of

the wing-stub-box upper cover panel was modeled with a refined mesh. The refined mesh was

required to represent properly the geometrically nonlinear structural behavior of the upper cover

panel and to predict accurately the strains in the stringer webs of the stiffened upper cover panel.

The analytical and experimental results for deflections and strains are in good agreement.

Introduction

The objective of this paper is to present the correlation between the analytical and experimental

results for a full-scale graphite-epoxy wing stub box loaded in bending. The wing stub box

represents the inboard portion of a high-aspect-ratio wing box for a civil-transport-aircraft. This

wing box was designed and manufactured by the McDonnell Douglas Aerospace (MDA)

Company under the NASA Advanced Composites Technology (ACT) Program. The wing stub

box was fabricated using an innovative stitched/RFI (Resin Film Infusion) manufacturing

process which has the potential for reducing manufacturing cost and producing damage-tolerant



compositeprimaryaircraftstructure.Thiswing stubboxwassubjectedto aseriesof tests at the

NASA Langley Research Center Structural Mechanics Test Laboratory. In the final test, the

wing stub box was loaded to failure after being inflicted with a 100 ft-lb impact damage at a

critical location. The final failure load (154 kips) is approximately 93% of the Design Ultimate

Load (DUL) of 166 kips.

Finite element analysis results obtained prior to testing, (as presented in references 1 and 2),

indicated that the wide bays outboard of the access door in the upper cover panel would not

deform nonlinearly until loading approached the DUL. However, in the test of the wing stub

box, documented in reference 3, large deformations occurred in this region at a load of

approximately 130 kips, which is significantly less than DUL. Following the test, a more

refined global finite element model of the wing stub box was developed in which a finer mesh

was used for the wide bays to better account for their nonlinear behavior.

In addition to the refined global analysis, a local analysis that was presented in reference 4 and

conducted prior to testing in order to study the splice joint between the stub box and the wing-tip

extension structure was re-examined to help determine why measured strains were substantially

greater than predicted. The abrupt termination of the stringers at the splice between the stub box

and the wing-tip extension structure causes stress concentrations in the skin of the upper cover

panel. Strain gages, located on the interior surface of the upper-cover-panel skin and at the base

of three stringer webs, recorded strains up to twice the allowable strain for the skin material. In

the pre-test local f'mite element analysis presented in reference 4, the predicted strain at the base

of one of these stringers was examined and was predicted to be less than half of the strain that

was recorded. Hence, post-test analytical study was conducted using a refined local model to

help identify the difference between test data and analytical results.

The correlation between the experimental data and the results of the global and local analyses

using the more refined models are presented in this paper. Analytical and experimental results are

used to help understand the failure mechanisms of the composite wing stub box. Lessons

learned from this study are also presented which are valuable for the design and analysis of

future full-scale composite wing structures.

Wing-Stub-Box Test Article

The wing-stub-box test article consists of an inboard metallic load-transition structure at the wing

root, the composite wing stub box, and an outboard metallic extension structure from the
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compositewing stubbox out to the wing tip. A photograph of the test article in the NASA

Langley Research Center Structural Mechanics Test Laboratory is shown in figure 1. As shown

in figure 2, the composite wing stub box is approximately twelve feet long and eight feet wide.

The maximum box depth, at the root of the composite wing stub box, is approximately 2.3 feet.

The composite wing stub box weighs approximately 1,200 lb. The load-transition structure and

the wing-tip extension structure are metallic end fLxtures required for appropriate load

introduction into the composite wing stub box during the test. The load-transition structure is

located inboard of the composite wing stub box (between the composite wing stub box and the

vertical reaction structure at the wing-stub-box root). The wing-tip extension structure is located

outboard of the composite wing stub box. The load-transition structure is mounted to a steel and

concrete vertical reaction structure resulting in a near-clamped end condition. The entire

structure, including the composite wing stub box and the metallic structures, is approximately 25

feet long and weighs approximately 7,600 lb. Further details of the geometry of the structure are

presented in reference 5.

The composite wing stub box was fabricated from Hercules, Inc. AS4/3501-6 and IM7/3501-6

graphite-epoxy materials which were stitched together using E. I. DuPont de Nemours, Inc.

Kevlar thread. IM7 graphite fibers were used only for the 0 degree fibers in the lower cover

panel skin. The composite skin and stiffeners were composed of layers of the graphite material

forms prekitted in nine-ply stacks that have a [45/-45/02/90/02/-45/45]. r stacking sequence. Each

nine-ply stack was approximately 0.058 inches thick after curing. Several nine-ply stacks of the

prekitted material were used to build up the desired thickness at each location. The fabrication of

this composite wing stub box using an innovative RFI process is described in reference 6.

As shown in figures 3 and 4, the composite wing stub box consists of ribs, spars, and upper and

lower cover panels (each of which has stringers and intercostals stitched to the skin). The skin

of the upper and lower cover panels range in thickness from approximately 0.29 to 0.90 inches.

The upper cover panel has ten stringers oriented along the length of the wing box, as shown in

figure 3. The lower cover panel has eleven stringers oriented along the length of the wing box,

and is similar to the upper cover panel except that it has no access-door cutout. The skin in the

upper cover panel consists of five to ten of the nine-ply prekitted stacks, depending upon the

location on the wing, as shown in figure 5. The skin in the lower cover panel contains from six

to fifteen of the nine-ply prekitted stacks, depending upon the location on the wing.

The stringer webs were made from eight nine-ply prekitted stacks (except at stiffener runouts

where the stringer webs are tapered and the number of stacks is gradually reduced from eight to



two). At thestringerrunout,a stringeris terminatedandthetaperedstringerwebprovidesa

mechanismfor smoothlytransferringtheloadfromthestringerto theskin. Stringersin the

uppercoverpanelwerespaceduniformlyseveninchesapartexceptfor thebaywhichcontains
theaccessdoor. Thestringersoneithersideof theaccess-doorbayandtwo adjacentoutboard

widebaysare18inchesapart.Thestringerwebsareapproximately2.3 incheshigh and0.464

inchesthick. Eachstringerflangeoneithersideof thewebis 1.12incheswideandtheflangeis
half thethicknessof theweb. SincethecoverpanelswerestitchedandfabricatedusingtheRFI

process,nomechanicalfastenerswererequired.However,atthestiffenerrunoutlocations,
fastenerswereinstalledto preventskin-stiffenerdebondingattheselocations.Onecomposite

bladestiffenerandtwo metalangles,orientedparallelto theribs,wereaddedto thewidebaysof

theuppercoverpanelto preventtheskin frombucklingprematurely.

Theribsandsparsweremadeof conventionalAS4/3501-6graphite-epoxypreimpregnatedfabric

andtapematerials,respectively. Theribsandsparswerestiffenedwith bladestiffenersto
preventbucklingasshownin figure4. Theribswereconnectedto thecoverpanelsat

intercostals(seefigure3)whichwereattachedto theskins. Theintercostalsareapproximately
2.3 inchestall and0.116inchesthick. Sparwebshaveaconstantthicknessof 0.31inchesand
rib webshaveathicknessof 0.15inches.

This wing-stub-boxtestarticlewassubjecteda seriesof testsasdocumentedin reference3. The

wing stubboxwasloadedto failurein thefinal test. Beforethefinal test,a 100ft-lb impact

damagewasinflictedat thestringerRunout2 (seefigure3). Theimpactdentdepthis0.0134
incheswhich is invisible. Thedamageareafrom nondestructivetestingis approximately4.0

incheslongand3.0incheswide. A recordingfrom avideocameraindicatedthatthefailurewas

initiatedfrom theimpactsiteandpropagatedacrossthewing-stub-boxuppercoverpanel(see

figure 3).

Material Properties and Allowables

The material properties used in the analyses for the stitched AS4/3501-6 prekitted stacks of

material in the upper cover panel, the stitched AS4/IM7/3501-6 prekitted stacks of material in the

lower cover panel skin, the AS4/3501-6 fabric material in the ribs, and the AS4/3501-6 tape

material in the spars are shown in table 1. The material properties used for the steel and

aluminum load-introduction structures are also given in table 1. All material properties used in

this study were provided by MDA.
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In theupperandlowercoverpanels,thex-direction,which is parallelto therearspar,is

coincidentwith the0-degreefiberdirection. In theribsandspars,thex-directionis coincident

with the0-degreefiberdirectionwhich isperpendicularto theplaneof theuppercoverpanel.

Theaxialcompressivestrainallowableandtheshearstrainallowablefor theundamagedupper

coverpanelis 0.00933and0.0126,respectively.Theseallowableswereestablishedby MDA.

Finite Element Models

Since the initial global and local finite element analyses, described in references 2 and 4,

respectively, did not accurately predict the behavior of the test article at the center portion of the

upper cover panel or at the splice joint between the composite stub box and the metallic extension

box, refined models were created to improve the accuracy of analytical predictions.

Refined Global Model

The primary differences between the initial and refined global models are the mesh density of the

upper-cover-panel skin outboard of the access door and the modeling of some blade stiffeners as

plate elements rather than the beam elements used initially. The finite element mesh of the upper-

cover-panel skin in the initial and refined models is shown in figures 6 and 7, respectively. More

details of the mesh refinement are shown in figure 8. The number of quadrilateral, triangular,

and beam elements used in the initial and in the refined global models are shown in table 2. The

initial model contains 5,266 grid points and the refined model contains 9,557 grid points.

Refined Local Splice Model

The location of the splice is shown in figure 3. As shown in figure 9, metal splice plates were

used in this region to join the composite stub box to the outboard extension box and a local splice

model is required to represent the complex structural details. The primary difference between the

initial and refined local splice models is the meshing in the upper-cover-panel skin at the base of

the terminated stiffener. The upper-cover-panel skin in the initial and refined local models is

shown in figure 9. In refining the mesh of the initial model, the element size in the region of the

skin at the base of the stringer web was reduced from 0.4 inches to 0.05 inches and the number

of elements was increased from 2,201 to 2,301. The initial model contains 2,544 grid points

and the refined model contains 2,667 grid points.



Analysis

The MSC/NASTRAN finite element code (reference 7), Version 68 was used to perform

buckling and nonlinear analyses of the initial model before testing and to perform analyses of the

refined global model after testing. Solution sequences 105 and 106 were used to conduct

buckling and geometrically nonlinear analyses, respectively. PATRAN (reference 8) was used to

create the ref'med global model and to postprocess the analytical results. The STAGS finite

element code (reference 9) was used to conduct the nonlinear analyses of the initial and refined

local splice joint models.

Buckling Results

Buckling analyses were performed using the initial and refined global models. For the mode

shape shown in figure 10, the analysis using the initial model predicted a buckling load of 185

kips while the analysis using the refined model predicted a buckling load of 160.7 kips. The

buckling load predicted by the refmed global model is approximately 15% less than that predicted

by the initial model.

Correlation of Analysis and Test Results

Correlation between results of the nonlinear analyses and test data is presented. A comparison

using the analysis results from the initial global is presented first to show that the initial global

model did not predict the nonlinear deformation accurately. All succeeding results are based on

the analysis using the refined global model, except for the results at the compression splice,

which are based on the initial and refined local splice models. Although a series of tests were

conducted on the wing stub box (reference 3), all experimental results presented herein are from

the final test when the wing stub box was loaded to failure. The locations of all strain gages

discussed in this section are shown in figure 3.

Results Based on the Initial Global Model and Experiment

The deformed shape of the test article predicted by the initial global model at the test failure load

of 154 kips is shown in figure 6. The region bounded by stringers on either side of the access-

door cutout displayed some geometrically nonlinear deformations in the initial analysis.
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However,duringtesting,back-to-backstraingagesin thecenterof thatregion,straingages63

and64 in figure6, recordedsignificantlyhigherstrainsthanpredictedby thenonlinearanalysis

whentheappliedloadexceeded130kips,asshownin figure 11. Thisdiscrepancyindicatesthat

the initial modelcouldnotpredictthenonlineardeformationandhighstrainsin thelargebay

region. Also, the initial modelshownin figure6 hasfourelementsacrosstheskinbay,which

maybe insufficientto representthenonlinearbehaviorof thestubbox.

Results from the Refined Global Model and the Experiment

Displacements and strains obtained from testing and from the analysis using the refined global

model are presented in this section.

Correlation of displacement results - Analytical predictions and experimental results for the

vertical displacements, measured by Direct Current Differential Transformers (DCDT's), at six

locations on the stub box and at the wing tip are shown in figures 12-14. These figures show the

variation of vertical displacements with the applied load at the wing tip. Rigid body motions of

the load-transition structure relative to the vertical reaction structure were removed from the

measured results to obtain the results presented in these figures. At the wing tip, the difference

between the experimental and the analytical results is approximately 6 %, as shown in figure 12.

Measurements at three locations along the rear spar are shown in figure 13, and measurements at

three locations along the front spar are shown in figure 14. The average of errors between the

analytical results and the experimental results at these six locations is less than 6%.

The predicted deformed shape of the composite stub box subjected to the test failure load of 154

kips is shown in figure 15. The relatively large out-of-plane deformation in the upper cover

panel outboard from the access door is caused by the lack of longitudinal support in this region.

Out-of-plane displacements were measured at six locations on the upper cover panel. DCDTs 7,

8 and 9 are located along line A-A (shown in the insert of figure 16) at 18, 33 and 63 inches from

the access-door cutout, respectively. DCDTs 10, 11 and 12 are located along line B-B (shown in

the insert of figure 16) at 18, 33 and 63 inches from the access-door cutout, respectively. Lines

A-A and B-B are parallel to the rear spar. Line B-B is located 15.875 inches aft of line A-A.

Line B-B is sufficiently removed from the nonlinearly deformed skin bays outboard of the access

door that it can be considered as a far field location; thus, measurements along line B-B are

assumed to represent the global behavior of the stub box. Measurements along line A-A

represent a combination of the global behavior of the stub box and the large local deformations of

the skin. The difference in these measurements provides a good measure of the nonlinearity



developingin thewidebaysoutboardof theaccessdoor. Theanalyticalandexperimentalresults

of therelativeout-of-planedisplacements(e.g.,displacementatDCDT 11subtractedfrom

displacementatDCDT 8) areshownin figure 16.

Theexperimentalandanalyticalresultscorrelatewell for thelocations18and33inchesfrom the
access-doorcutout. However,theagreementbetweenexperimentalandanalyticalresultsisnot

acceptablefor the location63 inchesfrom theaccess-doorcutout. An explanationof this

discrepancyis presentedin asubsequentsectionaboutfailure.

Correlation of strain results - A contour plot of the predicted axial strains on the outer surface of

the upper-cover-panel skin at an applied load of 154 kips is shown in figure 17. The axial x-

direction is parallel to the rear edge of the panel. Analytical and experimental strains for strain

gages 17, 20, 74, 84 and 602 are plotted in figures 18 through 22. These strain gages are

located sufficiently far from the access-door cutout and the nonlinearly deformed region to be

considered as far field results. In each of the figures, the hatched region in the sketch of the

wing stub box is the mesh refinement region. These correlation plots indicate that the far field

strains predicted by the analysis are quite accurate. High strains can be seen at the edge of the

access-door cutout and in the region outboard of the access door where large nonlinear

deformations occurred. Analytical and experimental strains at the strain gage locations in these

regions and near the impact site are shown in figures 23-32.

Strain results on the external surface of the cover panel skin at the edge the access-door cutout,

measured by strain gages 78 and 79, are shown in figure 23. Analytical and experimental results

for these external strain gages indicate approximately linear behavior with no strain exceeding

0.0075. Moreover, the experimental results show that no failures occurred in the region of the

access-door cutout.

Predicted and measured strain results for the first and second bays outboard of the access-door

cutout of the upper cover panel are shown in figures 24 through 28. The first and second bays

are 18 inches wide, and they deformed nonlinearly due to the lack of longitudinal stiffeners.

Results for strain gages 67 and 68 on the upper-cover-panel skin in the first bay, immediately

outboard from the access door, are shown in figure 24. Results for strain gages 613 and 614 on

the external skin at the edge of this bay are shown in figure 25. Results for strain gages 63 and

64 on the upper-cover-panel skin in the second bay outboard of the access door are shown in

figure 26. Results for strain gages 22-24,607 and 608 at the edge of this bay are shown in

figures 27 and 28. Results for strain gages 22- 24 at the aft edge of the nonlinearly deformed



regionareshownin figure27,while resultsfor straingages607and608 at the forward edge of

the nonlinearly deformed region are shown in figure 28.

Good correlation was obtained between experimental and analytical results in the skin and on the

stiffeners for the first and second bays outboard of the access door, as shown in figures 24 to

28. The refined analysis accurately predicts strains in these two bays of the nonlinearly

deformed region while the initial model did not accurately predict the nonlinear response in this

region.

Predicted and measured strain results for the third bay outboard of the access door of the upper

cover panel are shown in figures 29 through 32. The third bay has two stringer runouts and is

also in the mesh refinement region. Results for strain gages 49 and 50, located at the center of

the third bay outboard of the stringer Runout 3 (see figure 3), are shown in figure 29. Strain

results for gages 51 and 54, located at the forward edge of the third bay inboard of the stringer

Runout 2, are shown in figure 30. The correlation between experimental and analytical strain

results shown in figures 29 and 30 is good.

Strain results for internal strain gages 55, 56 and 57 and external strain gage 58 near stringer

Runout 3 are shown in figure 31. Strain gages 55 and 56 are located on the stringer flange.

Good agreement can be seen between the analytical and experimental results for the stringer-

flange strain gages for loads less than approximately 130 kips. The erratic strains recorded at

loads above 130 kips by strain gages 55 and 56 indicate that a local failure has just occurred at

this load level. The analysis predicts significantly more strain than was recorded by strain gage

57 on the intercostal flange, and by strain gage 58 on the external surface of the skin. The

correct trend is predicted on the external surface, including the nonlinear behavior. However, for

loads below 130 kips, the strain recorded by gage 57 on the intercostal flange is linear, but it is

much less than the predicted strain. The discrepancy between analytical and experimental strain

results from gage 57 may be attributed to that this gage was placed right next to edge of a

intercostal flange (see insert in figure 31), and the discontinuity of thickness may cause the

inaccurate strain predication at this location.

Strain results for gages 43 through 46 on the upper cover panel in the stringer Runout 2 region

are shown in figure 32. Poor correlation for strain gages 44 and 45 is very likely due to this

location being subjected to a 100 ft-lb impact damage to the external skin prior to the final test.

Strain gages 44 and 45 are located on interior flanges less then 0.4 inches from the impact site.

The data recorded for these two strain gages from this final test are not the same as in previous
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tests(asdescribedin reference3 for theseprevioustestsinvolvingno impactdamageat stringer
Runout2). Sincetheanalysisdoesnotconsiderdamagein thisregion,correlationbetweenthe

final testresultsandanalyticalresultsshouldnotbeexpectedfor straingages44and45. Strain

gages43 and46 areapproximatelyoneinchfromtheimpactsite,wherelittle damagewouldbe
expected.Forloadsbelow120kips, linearbehaviorisobservedfor straingage43, which is

mountedon theflangeof therunoutstringer,andtheexperimentalandanalyticaldatacorrelate

well. At higherloads,somenonlinearbehavioris observedin theexperimentalresultsand

significantdiscontinuitiesin thedatacanbeseenat loadsof approximately140kipsand 145

kips, indicatinglocal failuresandloadredistribution.However,no suchdiscontinuitiescanbe

seenin theexternalstraingage,gage46. Furtherdiscussionof thisapparentinterior local failure

is presentedin a subsequentsectionon failures.

Results Based on the Local Splice Models and Experiment

Results of the pre-test finite element local analysis in the vicinity of strain gages 38 and 39 are

presented in reference 4. The initial finite element model was refined by increasing the number

of elements of the skin at the base of the terminated stringer web (see figure 9). Details of the

analysis procedure, which were reported in reference 4, were not changed for the new analysis

and are not repeated here.

Experimental data and analytical results for strain gages 38 and 39 are shown in figure 33. For

loads less than 130 kips, the results from the refined analysis agree well with the test data and are

approximately linear. This same strain was recorded during each of the four tests of the stub

box. The sudden change in the slope of the load-strain curve of the test data at approximately

130 kips can be attributed to local failures elsewhere in the stub box since no failure was detected

at this splice.

These results indicate that to represent the high strain concentration in the upper-cover-panel skin

at the base of the stringer web, a very detailed model is needed in the small local region of high

strains. However, surface strains well in excess of the allowable strains can be withstood in

localized regions without failure when the structure is loaded primarily in compression. The

structure has a very small local region of stress concentration (0.3 inches in this case), and other

load paths are provided by heavily stiffened surrounding structures.
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Failures and Load Redistribution

Test results indicate that catastrophic failure of the stub box occurred when the upper-cover-panel

skin failed through the impact site at stringer Runout 2. Post-test evaluation of the test article

revealed local failures in both stringer Runouts 2 and 3 (see figure 8 for locations). These

failures occurred in the thinnest portion of the web and flange of the stringer runout. The failure

at stringer Runout 3 is shown in figure 34. While the stringer separated from the skin, no skin

failure is evident at stringer Runout 3. Displacement and strain gage data at stringer Runout 3

indicate that an initial failure may have occurred at a load of approximately 135 kips as evidenced

by discontinuities in the readings of strain gage 55 which is on the stringer runout flange, as

shown in figure 31. However, no measured axial strain in this region is greater than the

allowable strain. Shear strain in the stringer runout web was not measured experimentally, but

analytical results indicate the presence of high shear strains in the thinnest portion of the stringer

runout web, at the failure location. A contour plot of the shear strain at the failure load in the

stringer runout web is shown in figure 35. The analytical results indicate that the shear strain

alone would have been enough to induce failure prior to the maximum load of 154 kips applied to

the test article.

The behavior of stringer Runout 2 is similar to the behavior of stringer Runout 3. The present

model, which does not account for the reduction of stiffness in the impact damage zone near

stringer Runout 2, predicted that the maximum shear strain at the failure load in the stringer web

at stringer Runout 2 is 0.01069 which is about 15% below the shear allowable. However, when

other factors, such as the axial strain in the stringer web and the increase of stringer web load due

to the reduction of load carrying capability of the impact damage zone, are taken into

consideration, failure of the stringer web at the stringer Runout 2 is likely. Indeed, the

discontinuity of strain results from strain gage 43 indicate that a local failure occurred at 140 to

145 kips (see figure 32). An analysis that assumed the stiffener web at stringer Runout 2 had

failed predicted an increase in the skin axial stress resultant of about 3.6% in the stringer runout

region. The catastrophic failure of the box involving the skin failure at stringer Runout 2

occurred at a load of 154 kips, thereby implying that the stringer runout web failure did not

immediately propagate into the skin. The test of an intermediate wing box, which has the same

stringer runout design as the stringer runouts in the stub box, resulted in the same failure mode,

as described in reference 10. A video camera inside the intermediate wing box confirmed this

analytically-based failure scenario. It recorded the failure progression at that stringer runout and

the failure of the thin web and flange occurring well before the failure of the skin. Strain gage
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behaviorfor theintermediate-wing-boxstringerrunoutis similarto thestraingagebehaviorfor

thestub-boxstringerrunouts.

In orderto determinewhether the failure at stringer Runout 2 was activated prematurely by the

large deformation in the upper-cover-panel skin and the failure in stringer Runout 3, axial stress

resultants in the upper cover panel were computed by the analysis. Analytical results for axial

stress resultants in the vicinity of stringer Runout 2 are presented in figures 36 through 38. The

axial stress resultants, Nx_, for the elements in the thinnest section of the stringer runout flange,

for the skin elements next to the intercostal flange, and for the elements in the intercostal flange

are shown in the figures. Results for all of these elements indicate linear behavior for the

complete load range. No evidence can be seen in these elements of any influence of the large

nonlinear deformation elsewhere in the upper cover panel. Hence, the large nonlinear

deformations in the upper cover panel appear to have no influence on the final failure.

Concluding Remarks

The correlation of the analytical and experimental results for the bending of an all-composite

stitched/RFI wing stub box is documented in this paper. The wing stub box was designed and

fabricated by the McDonnell Douglas Aerospace Company. Displacements and strains predicted

by a geometrically nonlinear analysis using a refined finite element model are compared with the

test results. Excellent agreement is found between analytical results and test data at most

locations prior to failures in the structure.

A refined global model with a finer mesh in the large nonlinearly deformed region of the upper

cover panel provided more accurate results than could be obtain with the initial model. A 15%

reduction in buckling load and considerably larger nonlinear strains and displacements were

predicted by the analysis using the refined model compared to results obtained using the initial

model. The strains in the nonlinearly deformed region agree well with the test data. These

results indicate that the initial model was too stiff to represent the nonlinear behavior of the wide

bay region in the upper cover panel.

The upper cover panel of the stub box contains two critical stringer runouts. One of these

runouts is located outboard from the access-door cutout in the nonlinearly deformed region.

The other critical stringer runout is located near the front spar. Only the runout near the

front spar was impact damaged. The analysis indicates that the high shear strains in both

these stringer runout webs exceeded the material allowable and led to local stringer web
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failures. Theseshearstrainswerenotmonitoredduringthetests.However,the erratic

strains recorded by strain gages in the stringer runout regions indicate that these runouts

failed prior to final catastrophic failure.

Based on analytical and experimental results, the sequence of events that led to the structural

failure of the wing stub box included the onset of nonlinear deformations in the large skin bays

outboard from the access-door cutout, followed by local stringer web and flange failure in the

runout stringer in the nonlinearly deformed region. The skin at this runout stringer remained

intact throughout the test. The next event was the failure of the web and flange of the impact-

damaged runout stringer near the front spar. Finally, the catastrophic failure of the upper-cover-

panel skin initiated from the impact site at the impact-damaged runout. The failure propagated

across the entire upper cover panel. The analysis indicates that the nonlinear deformation of the

wide bays and the failure of the first stringer runout did not significantly redistribute the load into

the impact-damaged region.
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Table 1. Material properties.

Property Stitched Stitched AS4/3501-6 Steel Alumim

AS4/3501-6 AS4/IM7/ Fabric/Tape

3501-6

E_ 8.17 Msi 11.85 Msi 7.32/6.12Msi 29.0 Msi 10.0 Msi

Ey 4.46 Msi 4.55 Msi 7.32/6.12 Msi 29.0 Msi 10.0 Msi

Gxy 2.35 Msi 2.57 Msi 3.32/3.98 Msi 11.0 Msi 3.76 Msi

V_y 0.459 0.409 0.357/0.459 0.32 0.33

Table 2. Element types and total number of elements for the initial model and the refined model.

Element Types

(reference 7)

Initial Model Refined Model

CQUAIM (Quadrilaterial) 4,408 7,923

CTRIA3 (Triangular) 99 182

CBEAM (Beam) 2,050 1,968
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Figure 1. Wing-stub-box test article attached to the vertical reaction structure.

Rear spar ..

__ _<. / Failure line up
8 ff Aft

Metallic load
transition structure

Composite wing/g/ / _ ff_"

stub box Front spar Metallic wing-tip
extension structure

Figure 2. Dimensions of the wing-stub box test article.
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Upper cover and strain gage locations (the numbers on the figure identify

specific strain gages).
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11 _ holes
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Figure 4. Interior of the composite stub box.
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6

Access-door cutout

Aft
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Figure 5. Stub box upper cover panel skin thickness distribution (the numbers on the figure

represent the number of prekitted stacks of the graphite-epoxy material

at a given location ).

Region requiring mesh
refinement for accurate

nonlinear response prediction

Gages 63 and 64

Deformed shape at 154 kips

Figure 6. Finite element mesh of the original model and location of a region that

requires mesh refinement for accurate nonlinear response prediction.
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Rib locations

J

Stringer
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Figure 7. Refined mesh in three bays of the stub-box upper cover
panel.
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connnect | connnect _ __

to skin ; to ribs __

Figure 8. Refined finite element models for the skin, blade stiffeners, and
intercoastals.
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Figure 9. Compression splice and skin models.

Buckling load = 160.7 kips

Figure 10. Buckling mode for the refined model.
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Figure 12. Stub box tip displacements for DCDT 16 at the wing tip.
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Figure 13. Vertical displacements for DCDTs 1 to 3.
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Plotting scale factor = 10.0

Figure 15. Deformed shape of the wing stub box at a load of 154 kips.
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Figure 16. Relative out-of-plane displacements for DCDTs on the upper cover panel.
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Figure 17. Axial strain contour plot for the exterior surface of the upper cover panel at the
failure load.
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Figure 18. Correlation of far field strains for strain gage 17 on the top surface of the

upper cover panel.
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Figure 19. Correlation of far field strains for strain gage 20 on the top surface of the

upper cover panel.
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Figure 20. Correlation of far field strains for strain gage 74 on the top surface of the
upper cover panel.
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Figure 21. Correlation of far field strains for strain gage 84 on the top surface
of the upper cover panel.
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Figure 22. Correlation of far field strains for strain gage 602 on the top surface

of the upper cover panel.
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Figure 23. Correlation of strains for Gages 78 and 79.
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Figure 24. Correlation of strains for strain gages 67 and 68.
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Figure 25. Correlation of strains for strain gages 613 and 614 at the forward edge of the

nonlinearly deformed region.
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Figure 26. Correlation of strains for strain gages 63 and 64 on the upper cover panel skin.
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Figure 27. Correlation of strains for strain gages 22,23, and 24 at the aft edge of the

highly nonlinearly deformed region.
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Figure 28. Correlation of strains for strain gages 607 and 608 on the forward edge

of the highly nonlinearly defromed region.
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Figure 29. Correlation of strains for strain gages 49 and 50 on the runout stringer.
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Figure 30. Correlation of strains for strain gages 51 and 54.
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Figure 31. Correlation of strains for strain gages 55, 56, 57, and 58 at stringer runout 3.
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Figure 32. Correlation of strains for strain gages 43 through 46 at stringer runout 2.
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Figure 33. Correlation of strains for strain gages 38 and 39 at the splice joint.

Load,

kips

rsp"c°'°c""°n
poinL°a_mg

Top view of test specimen

Strain gage 38

_ _. Web !
!

"_\ Upper skin
_Strain gage 39

IAluminum T Thin aluminum plate

Figure 34. Failure location of stiffener runout 3.

.075 inch thick AI
plate, 1.8 inches tall

1/4 inch diameter bolt

31



E_XY

Microinches/inch

1 -24750

Allowable Skin side

Failure-_--

Intercostal _Faiilure line

2 -22500

3 -20250

4 -18000

5 -15750

6 -13500

7 -11250

8 -9000

9 -6750

10 -4500

Y, Up 11 -2250

I 12 0

•-_ X, Outboard

Figure 35. Shear strain contour plot for stringer runout 3 at the failure load.
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Figure 36. Axial stress resultants for elements on the stringer flange near stringer runout 2.
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Figure 38. Axial stress resultants for elements of the intercostal flange near stringer runout 2.
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