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TECHNICAL MEMORANDUM

PRELIMINARY ANALYSIS TECHNIQUES FOR RING AND
STRINGER STIFFENED CYLINDRICAL SHELLS

I. INTRODUCTION

Over the years many methods of stiffened panel analysis and design have been proposed and

substantiated by test. Most methods deal with only one element of the stiffened structure, such as

the skin, the stringer, or the ring. Not many references combine all the elements of skin stringer

design and analysis into one cohesive process. This is especially true when the skin of a structure is

allowed to buckle prior to application of the ultimate load. This report outlines methods of analysis

for the major failure modes for the buckling of thin-walled circumferentially and longitudinally

stiffened cylindrical shells. The report is intended particularly to address launch vehicle design

issues. Loading on the vehicle will consist of pure bending, axial compression, and shear, all in the

elastic range. Generally, any advance of the load beyond the buckling limit is considered a structural

failure and must be avoided in launch vehicle design. (The skin, however, may be allowed to buckle

at limit loads.) A Microsoft Excel worksheet with accompanying macros has been developed to

facilitate application of the various analysis methods. These analysis programs are available by
request from the author.

The analysis methods presented are organized according to failure mode. All necessary

design curves have been curve fit to allow automated analysis in the spreadsheet program. Sections

detailing the calculation of stress in the vehicle, as well as calculation of margins of safety, are also

included in the paper. The appendices contain hand calculations, additional analysis information, and

the analysis programs. This report will focus on the integrally Tee stiffened shell. The reader should

note that, unless otherwise stated, all methods presented in this report are for use in the elastic
region.

II. ANALYSIS METHODS

Analysis of the stiffened shell begins with recognition of the various failure modes. The failure

modes listed below encompass the most significant failure modes of the shell. Analysis techniques
for each of the failure modes listed will be presented.

Buckling failure modes can take one or more of the following forms.

( 1 ) Classical bifurcation buckling

(2) General instability

https://www.abbottaerospace.com/technical-library/


(3) Stringers

(a) Local buckling

(b) Crippling

(c) Column failure

(4) Skin

(a) Compression buckling

(b) Shear buckling

(c) Pressure.

Frames, of course, may experience cap failures, web failures, and other buckling failures.
However, the interest in frames at this level of design is to determine an acceptable moment of
inertia, or other overall general characteristic of the frame design, which will stabilize the structure
against general instability failure. For these reasons, detailed frame design is excluded from this
report. Also, the primary focus of this report is application to pressurized shells. Pressurization pre-
cludes penetration of the tank by rivets except in extreme cases. Therefore, inter-rivet failure and
face sheet wrinkling have been excluded as failure modes.

A. Bifurcation Buckling

The difference between bifurcation buckling (also commonly referred to as "classical" or
"classical bifurcation" buckling) and other types (or modes) of buckling failure are often confusing.
The point (load value) at which a column fails due to bifurcation buckling represents the intersection
of two equilibrium paths in the structure. The failure modes presented in subsequent sections of this
report represent collapse, or failure, at a limit point. Figures la and lb illustrate the difference
between bifurcation buckling and failure at a limit point. The variable P represents the applied load,
and A represents the displacement.

Bifurcation
point

A

(a) (b)

Figure 1. Bifurcation buckling.

A

2
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Figure la represents the load-displacement curve for a Bellville spring. The point on the

equilibrium path at which load P is a relative maximum is called a limit point. A limit point could be
column buckling, skin buckling, stringer crippling, etc. Figure lb represents the load-displacement

curve for a thin-walled cylindrical panel under axial compression. In this figure, the "primary (or fun-

damental) equilibrium path is intersected by a secondary path. ''1 The point of intersection is called

the bifurcation point.

Failure of a general shell usually occurs through collapse at some limit point rather than

through bifurcation. However, bifurcation buckling of the shell must be considered in the design pro-
cess. It is important that the analyst realize that "the classical (or bifurcation) buckling analysis

may give results of little or no value if the shell geometry deteriorates appreciably (Brazier effec0 or
stresses are redistributed.., in the subcritical load range. ''2 In the examples used in this report, the

skin of the cylindrical shell is allowed to buckle at the limit load while the stringers and effective skin

are allowed to buckle only at ultimate load. There is considerable redistribution of stress. Therefore,
the classical bifurcation solution alone is of little use, but will be calculated as an illustration of the

method.

Computation of the linear bifurcation buckling load and application of an empirical knock-down

factor provides a conservative method of determining an appropriate allowable load level. The

following analysis techniques combine the wide column allowables with the bifurcation buckling

allowable reduced by a "knock-down factor" which is a function of (RIt)e.

The bifurcation analysis does yield good results for bending of cylinders with (R/t)e values

large enough so that the Brazier effect is negligible. It has been shown "that the use of wide column
load as a design limit for stringer-stiffened cylinders was unduly conservative. It was suggested that
a term be added to the wide-column load which corresponds to the curvature effect. This term was

obtained as the difference between the classical buckling load and the wide column load multiplied by

a reduction factor. ''3

The effect of curvature is introduced by taking the difference between the wide column and

classical allowables, multiplying by a "knock-down factor" OP), and adding this result to the wide

column allowable)

NcR = Nwc+ ¢P(NcL-Nwc) • (1)

1. Classical

Presented below are the constitutive relationships for the orthotropic shell. _ Examples of

construction that may be treated as orthotropic include corrugated sheets, fiber reinforced plastic

sheets, and plates with closely spaced stiffeners. This method yields adequate results for closely

spaced rings. For spacing greater than 30 to 40 in, setting the ring properties equal to zero may yield

an adequate solution. 1
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N2
N12 _

Ml2

Cll C12 0 C14C15 0

C21 C22 0 C24C25 0

0 0 C33 0 0 Ca6

C41C42 0 C44C45 0

C51 C52 0 C54 C55 0

0 0c630 0c66

El
E2

El2

If 2

K'12

where [Cu] represents the stiffness matrix for the shell. Definition of the stiffness parameters is

given below: 4

Cll = C+E * Ast
bs--_ , C12 =/2"C ,

C14=E * --Aa,
bst est ,

C21 = C12 , C22 = C+E * Af
-- y

d/
Cz_ E * Af= -- * (el) ,

d/

C33 = G*tsk ,

C41 - C14 , C44 = D + _ [Ist+As,*e2] , C45 = ././*D ,

C52 -- C25 , C54 - C45 ,
C55 = D * _/ [If4"A/*e_] ,

-" -F ,

where

J = torsional stiffness constant

A = area of stringer or ring

I = area moment of inertia of stringer or ring

e = distance from the skin middle surface to the centroid of the stiffener cross section

bsk = stringer spacing.

The coupling parameters C14 and C25 are positive for stiffeners outside the skin and negative
for stiffeners inside the skin.

G= E
2"(1+//) '

D= E * t3sk
12"(1-/1 2) ,

C=E* tsk
l_/z2 •

4
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The buckling coefficientsarewritten in termsof the axial half wavelengthnumber(m), and
thefull circumferentialwavenumber(n):

[;t (m) = m =2.

and

where,

From reference 4, the matrices ao and a_ are defined as,

ao(m,n)-lAl' A'2]
-tA2,A22]'

JAn Al2 AI3]

al(m,n ) =/AI2 322 A23i ,

[Al3 323 A33J

All(m,n) = Clr_ ,n+C33_ ,_ ,

a12(m,n)=[C12+C33]m(-_)-_ ,

A22(m,n) = C33;t, m+C22_ ,, ,

a13(m,n) = -._ m (_) + Ci4,;t, mm (-_)+ [C15+2C36]m (-_) Cn,

a23(m,n ) = [C15+2C36]_, m (_)+ -_ ('_)+C25_ n (_)'

a33(m,n)=C44,_,L+[C66+2C45],_m_n+C55_ 2.c22._[c25'_n+'-'_*,_'-'R'-16_n+2(-_)/1, , •

Also from reference 4, the basic buckling equation is defined as,

N_ ,_+gy_ la_(m,n)l
"= lao(m,n)l "

Here, the effect of internal pressure is included by calculation of the pressure induced line load in

pounds per inch (Ny = -p'R), where p is internal gauge pressure. Nx is then determined by the equa-
tion

1 [la,(m,n)l Ny¢ ]= _ tlao(-,,n)l " "

The classical bifurcation buckling load (NcD is determined by attempting all combinations of m and

n. Nct, is the minimum of the buckling values obtained.

5
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2. _lae,_C._am

The wide column buckling allowable is obtained from the matrix equations by the following
relation: 3

7, _r" C_5
6",_-C,_-_@14 and _.s5-_._5-C_ _

In order to combine the wide column and classical buckling solutions, the "knock-down fac-

tor" (q_) is required:

qJ = f(RIt)e .

The "knock-down" factor (q_) as a function of (RIt)e is obtained from figure 2. 3 A probability

level of 99 percent is recommended.

10 20 50 100 200 500 !0C0 2000

( R/t )e

Figure 2. Empirical "knock-down" factors.

(RIt)e =
1 (ref. 3)

All quantities are now known and can be applied to the relation:

Nce= Nwc+tP(Nct-Nwc) .

(2)

6
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B. General Instability

The purpose of general instability calculations is to avoid general instability failure, as illus-

trated in figure 3. 5 Frames are designed to preclude general instability failure, or rather to ensure

panel failure as illustrated in figure 4. 5

A

iOd_s t e Shape
%

iffener

"_--Frame I

Neutral Axis/ A }_. -_.._-_-

ofBending SpringBehaviorofFrames

A

Figure 3. General instability buckling.

_A_i Mode Shape%

ffener

_-- Frame

Neutral Axis j A__. A

ofBending SpringBehaviorofFrames

Figure 4. Panel instability buckling.

1. Shanley Criteria for Cylindrical Shells in Bendim,

To prevent general instability, Shanley has determined an expression--equation (3)--for the

required product of frame modulus of elasticity and moment of inertia for pure bending of a stiffened
shell: 5

(El)f = C.f MD21L . (3)

The coefficient Cfhas been determined through experimentation to be 62.5x10 -6 (or 1/16,000).

Figure 5 shows the data from which this coefficient comes. One can observe the crossover point from

general instability failures to panel failures when the value of C/is approximately equal to 62.5:<10 -6.
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50

=i 40._ a From NACA

E 30 _ • From NACAz

|

TN 909

TN 1499

20

10 __L_' __1-_"1"_ 1"TN 9'09 and _ 14997_ t TN 909--

= _ _..._ .......... .,........

_'_ 62.5 10"6( Ix
=#. I

20 40 60 80 100 120 140 Above
160

Cf x 106

Figure 5. Frame buckling coefficient.

Of course, not all loading in launch vehicles is pure bending. This problem may be remedied by
calculation of an equivalent moment where, 6

Meq = PR/2 , (4)

where P represents the axial load on the cylindrical shell. The equivalent moment is combined with

the pure moment to get total effective moment which is then returned to equation (3) for calculation

of the required frame (E/).

It should be pointed out that the Shanley method of frame sizing may give either conservative

or unconservative results. The results depend on the configuration under analysis. The Shanley

method should only be used as an initial sizing measure. Correlation of results with other methods
would be advisable.

2. B¢cker Method

Other methods for calculation of general instability failure levels include those developed by

Becker. 7

Fc = gE(Ift)°SlRts , (ref. 5)

g = 4.80[(b/d)(pslpf) (ts/ty) 2(ps/b) 21°'25 ,

(5)

(6)
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where

b = stringer spacing

d = frame spacing

R = cylinder radius

t = skin thickness

Ast = stringer area

Af = frame section area

ts = distributed stringer area = Ast/b

tf = distributed frame area = Af/d

If = bending moment of inertia of frame section

If = distributed frame moment of inertia = If/d

Ps = stringer section radius of gyration

Of = frame section radius of gyration

L = length of cylinder

E = modulus of elasticity.

If the frames are not attached to the skin, the coefficient 4.8 in equation (6) should be

replaced by 3.25. The effective skin width for frames should be taken as the total frame spacing. 5

The effective width for stringers for use in frame calculations is given by the following equation. 5

Effective skin is that skin which is assumed to act with an adjoining element and carries the same
stress as that element.

w e _ ( Fccr]'h (ref. 5) (7) -°.5UU/j

Fccr is the critical buckling stress for a curved skin panel, and Fc is the compressive stress at bend-

ing general instability--applied ultimate stress.

A distinct advantage of using the Shanley method is that design parameters such as stringer

geometry and skin thickness do not have to be known. Use of the Becker method, however, requires

that a preliminary design exist for evaluation including stringer and skin definition. Also, there are

several ambiguities in the Becker equation that Dr. Bruhn does not clarify. These ambiguities stem
from the definition of sectional properties, and whether or not to include effective areas and the like.

After review of the original reference, an equivalent equation for critical stress can be obtained which

more clearly defines the use of effective skin for the stringers and frame.

where

crcr = CE_Q b , (ref. 7) (8)

C = 4.800 for frames attached to the skin

C = 3.25 fl_r frames not attached to the skin

9
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(p (b,g)-v,
Qb= R

In determining the radius of gyration for the stringers and frames, the effective widths are
used. The effective width for the frames is defined as the frame spacing itself, while effective width to

be used with the stringers is calculated by equation (7). According to Becker, these equations are

valid only in the range for:

Good agreement can be had between the Becker and Shanley methods even for values of
L21RT below 100. The frame section properties, however, should not be increased by the standoff

distance of the frame from the skin. The properties should be calculated as if the frame were adjacent

to the effective skin. For critical values of stress in the plasticity region, the secant modulus can be

substituted for Young's modulus with credible results.

C. Stringers

1. Local Elastic Bucklin2

"Thin flat sheet is inefficient for carrying compressive loads because the buckling stresses

are relatively low. However, this weakness, or fault, can be greatly improved by forming the flat
sheet into composite shapes such as angles, channels, zees, etc. ''5 Calculation of the composite

buckling strength is thus necessary to prevent failure of the stringer column. However, since the

stringer will continue to carry load after local buckling has occurred, local buckling may be allowed in
some instances. Local buckling is more likely to be a design driver where substantial deformation of

the stringer flanges causes debonding of insulation or other material. In these instances, it is accept-

able to compare the local buckling allowable to the limit load for margin of safety calculations.

Analysis of the local elastic buckling failure mode is easily accomplished by dividing the

flanges of the section into individual plate elements with large a/b ratios. Jumping ahead to buckling

of the skin, and using the buckling equation for a flat plate, equation (26),

k ctr 2E

Figure I 1 is used to determine the buckling coefficient ko (Figure 11 and the buckling equa-

tion are explained in detail in the skin buckling section of this report.) Since at least two of the

flanges are usually of equal size, they buckle at the same stress. Therefore, they cannot be relied

upon for edge support. For this reason, a simply supported edge condition is assumed along the

longitudinal junction of the flange elements. If the opposite edge is free, the buckling coefficient is
0.43. If the opposite edge is also simply supported, choose kc equal to 4.0.

The flange width b extends to the centerline of the adjacent leg for formed angles. For

extruded angles, the width b extends to the inside edge of the adjacent flange or leg. 5 The smallest

buckling stress found in the composite shape, not the average, becomes the critical buckling stress

for local elastic buckling.

10
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"Tests of short lengthsof sectionscomposedof flange-plateelementsoften show that after
the section has buckled locally, the unit still has the ability to carry greater loads before failure

occurs .... For cases where local buckling occurs at low stress, the crippling or failing stress will be

higher. When local buckling occurs at high stress, such as 0.7 to 0.8 Fcy, buckling and crippling

stress are practically the same. ''5 For clarification, stringer crippling may be viewed as a material

failure where critical values are compared against material ultimate or yield stress. Local elastic

buckling is considered a stability failure.

Three methods for computation of the stringer crippling allowable are presented here. The

method from the NASA Structures Manual is the simplest of the methods to employ. 8

a. NASA Structur¢_ Manual. The NASA Structures Manual provides a detailed step-by-

step procedure for determining the overall strength of a sheet and stiffener combination. The method

is very similar to the Gerard method, but with some modifications. No definite reference for this

method was given. However, all references listed by the structures manual were dated earlier than

the paper delivered by Gerard which details his method of stringer crippling determination.

The stringer crippling stress is determined by the following equation: 8

_-.,bnt_gccn

Fc'= _.,b_t,_ (9)

One can easily see that this stress represents the average failing stress of the stringer ele-

ments or flanges. The failing stress of individual elements iSfccn. Dimensions of the individual ele-

ments are determined consistent with figure 6. 8 Note that two number 1 elements will be needed for

analysis of the Tee stringer. The failing stress of each individual element is found from figure 7. 8

Figure 6. Stringer geometry.
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Following the procedure outlined in the manual, the effective width is not used in determina-

tion of the crippling stress of the stringer. This seems contrary to assumptions of the stress distri-

bution in the shell because at this point the effective skin acts with the stringer; experiencing the

same stress and load. Common practice is to include the effective width as another flange element of

the stiffener when performing crippling stress calculations. The example problem will include the

effective skin as part of the stringer in determining crippling stress.

b. Needham. The Needham method is most useful for formed or extruded stringers that are

mechanically attached to the skin--such as a hat stringer riveted to the skin. The method consists of

dividing a stringer into angle sections. The strength of each of the angle sections is determined, and

then the total strength of the stringer is achieved by summing the individual section strengths.

Needham has arrived at equation (10) for determination of angled section strengths: 5

F_ Ce

=[b,)O.7S
(10)

where

bTts_ - equivalent b/t of section = (a+b)12tsk

(a and b are the leg elements of the angle)

Ce = coefficient that depends on the edge support

0.316 (two edges free)

0.342 (one edge free)

0.366 (no edge free).

The crippling load of the angle may then be determined as follows:

Pc, = Fce4 , (ref. 5) (11)

where A is the area of the element in question.

The total crippling stress of the stringer representing the average of all stringer angles is
then:

]_ Crippling Loads of Angles

Fc_= ]_ Area of Angles (ref. 5)
(12)

c. Gerard. The Gerard method can be thought of as a broader application of Needham. The

crippling stress equations for various stringer configurations are presented here. Equation (13) is for

sections with distorted unloaded edges such as angles, tubes, V groove plates, multicorner sections,

and stiffened plates. The accuracy of this equation is said to be +10 percent, as reported by Gerard. 9

Fcs [(gt21AXEiFcy ) ,,'2]o.85
= 0.56 . (ref. 5) (13)

Equation (14) is required for sections with straight unloaded edges such as plates, Tee,

cruciform, and H sections. Reported accuracy is within +5 percent.
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(ref. 5) (14)

For two comer sections, J, Z, and channel sections, use equation (15). Accuracy is within +10

percent.

Fcs 2 i 0 75

= 3.2[(t IA}(EIFcy ) _]"
(ref.5) (15)

Equations (13) through (15) represent approximations or simplifications of the data pre-

sented by Gerard. The general equation for stringer crippling is given by Gerard as:

Fcs= fl,[(g?wts,/A}(E/Fcy)'rz]m (re_ 9) (16)

The coefficient fig is determined experimentally and results are tabulated by Gerard as func-

tions of ? wltsk. Using t8 = 0.56 would be considered an average for stiffened plates. The actual values

range from 0.562 to 0.464, as shown in table 1. The constant g is the sum of the number of flanges of

the angled elements and the number of cuts required to divide the stringer into angled elements. The

exponent m is 0.85.

Table 1. Gerard coefficients.

?_:/tsk

1.16

0.732

0.464

fir

0.562

0.505

0.478

?,, is the average thickness of the flange sections as determined by equation (17):

lw= Ebi (ref.8)
(17)

The skin thickness is represented by tsk, and the exponent m is determined experimentally.

However, it does not change with t w/tsk, and is dependent on the type of stringer arrangement.

The data presented above were for Y-stiffened panels. Inspection of the integrally stiffened

panel indicates that it closely duplicates the Z-stiffened panel. Coefficients for Z-stiffened panels

are: m = 0.85, and fls = 0.558. fls data as a function of ?wltsk are the same as Y-stiffened panels. The

number of flanges and cuts will change.

Bruhn also presents a series of illustrations in which both methods are used to determine

stringer crippling stress. Depending on the stringer configuration, there can be significant differences
in the Needham and Gerard methods. Also, the crippling value is subject to upper limits that should
not be exceeded unless test data can substantiate such a move. A table of upper limits is presented

as table 2. 5
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Table2. Maximum crippling stress.

An_:les

Type of Section

V Groove Plates

Multicomer Section, Includin_ Tubes

Stiffened Panels

Tee, Cruciform, and H Sections

Two Comer Sections, Zee, J Channels

Maximum Fcs

0.7 Fee

Fv
0.8 Fcy

Fee

0.8roy
0.9 Fcr

The reader should note that the entire width of skin between stringers is used as a flange in

determining the stringer crippling value (using Gerard's method), as opposed to using the effective

width only. This convention is maintained since the empirical equations were obtained using that
convention.

3. Column Failure

In general, column failure is the limiting failure mode for most longitudinally stiffened vehicle

structures. The primary buckling equation for elastic failure is simply stated as equation (18); the

Euler buckling equation: 5

Fc= _2E (18)
(Up)2 •

Equation (18) can be rewritten involving the tangent modulus for stresses in the inelastic region.

Where Et is approximately E for stresses in the elastic range:

tr2E' (19)
F c = (L/p)2 "

The radius of gyration (p) for the column (or stringer), is calculated by equation (20): 5

p = d/d/d/d/d/d/d/d/d/dHA. (20)

The buckling strength of a column is also heavily influenced by the end restraint on the

column. Adding the end-fixity coefficient c into equation (19) allows incorporation of the end-fixity

constraint into the buckling equation. A new effective column length is determined by equation (21):5

L'={LI,fg) . (21)

The Euler equation thus becomes:

_r2Et
Fc= (L,/p) 2 . (22)
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Determinationof the tangentmodulusis accomplishedthroughUseof the basicRamberg-
Osgoodrelationship.5 Note thatE = Et for stresses in the low elastic range.

Et = 1

- 3E 1+ ntFo.7]

In 07/7)

n = 1 + In (ao.7/ao.,s} '

where 0"0.7 is the secant yield stress found by drawing a line on the material stress-strain curve from

the origin with a slope of 0.7E and reading the stress at intersection with the stress-strain curve.

¢:ro.85is found similarly.

End-fixity coefficients for various end constraints are presented as figure 8. These coeffi-

cients are presented for completeness. In practice, c = 1 or 1.5 is generally applied to the skin-

stringer design problem. A value of 1.0 would be conservative.

t t t

--ITL-- -T- -

C=I C=4 C=9 C=4 C=I/4 C--2.05

Figure 8. End-fixity coefficients.

The NASA Structures Manual presents design charts (appendix D) for determining the end-

fixity coefficients based on the bending stiffness of the end restraint. This data can be used in

determining the slenderness ratio (L'Ip) of the column. However, the analyst may be inclined to

determine his or her own coefficient depending on the fidelity and conservatism desired of the analy-
sis.

Figure 9 shows a typical curve of Fcr (critical buckling stress) as a function of L'lp. Buckling
of columns with stable cross sections such as tubes and other closed sections follows the curve

ABFC. Equation (22) is applied to determine the critical buckling stress.

However, for columns of unstable cross section such as channels, Tees, and Tee stringers

with effective skin width, curve DEFC must be employed. Critical stresses in the FC region are

found through the Euler equation--equation (22). If the slenderness ratio of the column shows it to

be in the transition region of the curve of figure 9, the buckling limit will be below that predicted by

simple Euler buckling.

I
i
I
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FC

_F = T_SE
_-C -_

\ Euler

(7"

L_/p

Figure 9. Typical column buckling curve.

Stresses in the transition region are determined using the Johnson-Euler equation (24),

where Fcs is the crippling strength of the stringer: 5

(24)

To find out in which section of the buckling curve a column lies, it is necessary to compute the

intersection point of the Euler and Johnson-Euler curves. Setting the buckling stresses from

Johnson-Euler and Euler equations equal to one another and solving for L'/p, the intersection point is
shown to lie at:

/ 2Ec
(L'/p ) = _ '_l "v--

V rcs
(ref. 5) (25)

For values of L'/R greater than the intersection value, use the Euler equation. For values of L'/p less

than or equal to the intersection value, use the Johnson-Euler equation.

Now that methods for calculating the buckling strength of a column have been presented, it is

necessary to apply these methods to the skin-stringer design problem. "As load is increased, the

sheet buckles between the stiffeners and does not carry greater stress than the buckling stress for

the skin. However, as the stiffeners are approached, the skin being stabilized by the stiffener to

which it is attached can take a higher stress, and immediately over the stiffener the skin carries the

same stress as the ultimate strength of the stiffener, assuming the sheet has a continuous connec-
tion to the stiffener. "'5

17

https://www.abbottaerospace.com/technical-library/


In general,attemptsto determinethe amountof skin acting with thestringer haveresulted in
longand complexequations.To simplify thedeterminationof theeffectiveskin width, equationshave
beendevelopedto determinetheskin width that would beconsideredas taking a uniform stress
equivalentto thestressin the effective stringerunderactualnonuniformconditions.Figure 10 illus-
tratestheprogressionof panelbuckling and theassumptionof uniform stressmadeover the effective
skin.5

A methodfor effective sheetwidth determinationis presentedhere.The procedurefollows
the analysisof a flat sheetin compressionwith longedgessimply supported.The critical buckling
stressfor the flat sheetis found from equation(26):5

kclr 2E
Fc - 12(1-02)/'t_)2. (26)

The kc value determined from experiment approaches 4.0 if the long edges of the sheet are assumed

to be simply supported.

Fig. b Sheet Stress Distribution Before Buckling

I I I
Sheet Stress Distribution Before Buckling

t 1 I

Fig.

I
E=quivalent Sheet Effective Width

l-,.w-,,-I I-.,.w.,-I _.w.,--I

t I

riii_ l
Ii I ...... II I Ii i

Sheet-Stiffener Panel

Figure 10. Progression of panel buckling.

The problem of determining effective width has been simplified somewhat by Von-Karman

and Sechler. 5 Their method consists of solving for an effective width (we) in place of b in equation

(26) with the critical stress equal to the yield stress of the material. However, since the buckling

stress can be greater than the yield stress, the yield stress has subsequently been replaced by the

stress in the stringer itself (/'st). Substituting 4.0 for kc and 0.3 for Poisson's ratio, equation (26)

reduces to:
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Fc = 3.60E(t/We) 2

or (ref. 5) (27)

We- 1.90t(E/Fst)o.5.

The "t" of equation (27) is defined as the thickness of the skin plus the skin and stringer land

divided by two (see appendix A). 5 However, experiments by Newell indicate the constant 1.9 is too

high, and 1.7 would be more appropriate, 5 possibly due to the conservatism in the buckling coeffi-
cient. Although the preceding derivation was accomplished using a buckling coefficient of 4.0, a

simply supported flat plate, the determination of effective width for curved plates does not differ

significantly from flat plates for values of Z < 30. _o

b 2
Z = _-7 (1-U 2)'h

The stringer should now be treated as a wide column made up of the stringer and its effective skin,

and the appropriate Johnson-Euler or Euler equation applied to determine buckling allowables.

D. Skin

1. Compression Buckling

The first evaluation of the skin strength comes in the form of simple flat sheet buckling. By
using equation (26) and setting b to the stringer spacing and t equal to the skin thickness, the buck-

ling strength of the skin between stringers can be determined:

F_r_ kc _r2E
12(1_1) 2) (_) 2"

Just as in determination of the effective width, the buckling strength of the skin is very much
dependent on the buckling coefficient. A value of 4.0 is commonly used and is considered conserva-

tive because of its assumption that the long edges of the sheet are simply supported. Figure 11
illustrates the effect of increasing the a/b ratio on the kc values. 12 For long simply supported sheets

(constraint C), the buckling coefficient value approaches 4.0. Figure 12 offers an alternative to this

conservatism by allowing the engineer to choose a buckling coefficient that lies somewhere between

the conservative simply supported case and the nonconservative clamped edge case. 13

One should immediately notice that the buckling coefficient curves discussed thus far are for

flat sheets, and the problem being investigated is one of stiffened cylindrical structures or curved

sheets. Knowing this, however, many analysts use the flat sheet data instead of that for curved

sheets, which are generally stiffer than their flat counterparts. For curved sheet panels, the buckling

equation remains the same, however, kc is determined from figure 13. Curved sheets of large radius

(b2/Rt < 1) can be analyzed as flat plates. 14 The data used in obtaining figure 13 are for a simply

supported edge condition. 5 When curved sheet kc values are compared to those from figure 12, the

flat sheet may be larger. This is caused by the simply supported edge restraint used to obtain figure

13 data. It is recommended that the maximum kc resulting from figures 11, 12, and 13 be used in

determining skin buckling coefficients. Data from figure I 1 or kc = 4.0 may be used for conservatism.
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Figure 12. Compression buckling coefficient.
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A major contribution of the NASA Structures Manual to the analysis of the skin and stringer

structure is the determination of critical load that includes the load carrying capability of the post-

buckled skin. From reference 8, the equation for critical buckling load (modified for integral stiffeners)
is written:

P. = (Fc,,_)(A_,+t,:,)+fFc,,_)(b:w .). (28)

One can see the critical load in the column (Per) is increased by the buckling stress of the

skin multiplied by the area of skin not counted as effective skin acting with the stringer. However,

from an analysis procedure standpoint, it is easier to use the load carrying capability of the buckled

skin to reduce the ultimate stress in the column, rather than increase the column capability.

Equation (28) is further modified by the observation that the skin does not carry the full buck-

ling stress after failing. Bruhn 5 suggests that the maximum stress assumed in the buckled skin

should be no greater than

O'cr= 0.3* E*t/R .

In practice, the buckling stress value for the skin may be reduced 10 percent so that equation (28)
becomes:

Pcr = (Fcr_)(Ast+tskWe)+O.9(Fcr_)(bst'-We) • (ref. 4) (29)

The reader should note that the load carrying capacity of the buckled skin can be accounted for

directly by raising the wide column buckling load or reducing the ultimate stress by reducing the

applied load, as has been discussed. Also, the buckled skin capacity for load can be retrieved

indirectly by determining an area not included with the stringer or effective skin that will act to carry

some load. This area, designated Ae, will be used to increase the moment of inertia and total area

calculations of the shell, and thereby, lower the stress level. Use of the ineffective area is covered

under the section addressing stress calculations using simplified beam theory. The external tank

(ET) stress method uses the Pcr approach outlined above.

2. _hear Buckling

It is not often in launch vehicle design that shear buckling of a launch vehicle becomes a driv-

ing load condition. In general, consideration of axial and bending loads far outweigh any consideration

of shear effects. For completeness however, determination of the shear buckling capability of the

skin will be presented here.

The critical elastic shear buckling stress is given by the following equation:

jr2k_E
['_t_-}2 . (tee. 5) (30)rcr =

12(1-192 )

If buckling occurs above the proportional limit, equation (3 I) must be employed:

22

https://www.abbottaerospace.com/technical-library/


7"I slt 2k_E
'r_r= 12(1-0 2) (_)2, (ref. 5) (31)

where r/s represents the plasticity correction factor. Correlation with test results indicates that an

rls = GiG yields best results. Gs being the shear secant modulus, and G being the shear modulus.

The coefficient ks is chosen from figure 14 using the hinged edge constraint (fiat plate):

Returning to the original reference by Gerard and Becker, a curve for shear buckling of a

curved panel with simply supported edges can be obtained (fig. 15). 15 It is recommended that the

largest of these buckling coefficients be used in determination of the shear buckling stress, keeping

in mind that b is always the shorter of the panel dimensions.

15
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Figure 14. Shear buckling coefficients.
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Figure 15. Shear buckling coefficients.

3. Internal Pressure

Internal pressure in a tank creates a biaxial tensile stress state in the skin and thereby

increases its resistance to buckling. The addition of internal pressure increases the buckling strength

of the curved sheet by the following interaction relationship: 6

R_c+Rp= 1 , (32)

where Rc is the ratio of compressive buckling stress to critical compressive buckling stress, and Rp

is the ratio of applied internal pressure over the external pressure that would buckle the cylinder for

which the curved panel is a section. Buckling due to radial pressure is found by use of figure 16. For

internal pressure, Rp is negative. The buckling equation is the same as for flat plate, substituting ky

for kc, 5
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A more sophisticated method of determining the increase in buckling strength due to the

effects of internal pressure is found in reference 16. Assuming all edges are simply supported, the

relation between critical meridional and hoop stresses is given by the following equation:

(:4o'; -_- + Cry _---_= 0.823 t2 +_-7 • (33)

Here m and n signify the number of half waves in the x and y directions, respectively. To find o-; for a

given o'x, take m = 1, n = 1 if,

C{1 4a4/ C[5+ 2a21
t --71 <ax< t b2J '

where

C = 0"823Et2
(l_t) 2)a2 •

If o'_ is too large to satisfy the inequality, take n = 1 and m to satisfy:

C(2m2-2m+ l +2"2/b2) < (7x < C(2m=+2m+ l +2"2/b2) .

If o', is too small to satisfy the first inequality, take m = 1 and n to satisfy:

C[1-nZ(tz-1) z _4] < _ x < C[1-n2(n+ l )2 _4 ] •
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Internal pressurealso increasesthe shearallowableby the following relation:5

R_+Rp = 1 ,

This equation is employed in the same manner as equation (32). Rs is the ratio of applied shear

stress to the critical allowable shear stress for buckling.

The alternative method presented by reference 16 maintains that the unit shear stress for

buckling with all edges simply supported is given by equation (35):

_ 40"y _._ _ ____.x)z'= C 2 1---_-- +2- 2 1---_ +6- ,

_ 0.823c-
(erx and Cry are negative when tensile).

(34)

(35)

IlL EXAMPLE PROBLEM

The launch vehicle shown in figure 17 will serve to illustrate the methods presented in this

report. The hydrogen tank in particular will be examined. The diameter of the vehicle is 331 in. A
Zee-shaped intermediate ring frame is shown in figure 18. The internal stringer geometry is shown

in figure 19.17

The forces acting on the vehicle are due to ground winds acting against the vehicle prior to

launch and the vehicle's own weight. It is assumed for analysis purposes that no pressure is present

in the tank at this time. At the hydrogen tank barrel section to be examined, the shear load is

53,678 lb, the bending moment is 4.924x107 in-lb, and the axial compressive load is 1,571,825 lb.
Recall that the skin is allowed to buckle at limit load.

The skin and stringers are machined from aluminum 2219-T87 and the rings are extruded

2024. A safety factor of 1.4 will be used.

A. Bifurcation Buckling

A Fortran program written using MacTran--a Fortran development program for the

Macintosh--was developed to facilitate the matrix method buckling analysis procedure. The code

itself is found in appendix E along with a sample output. The code is not as autonomous as the

worksheet developed for use with the other methods. Sectional properties for the shell configuration

must be hard-coded into the Fortran program for execution.
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Figure 18. Intermediate ring frame.
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Figure 19. Stiffened panel configuration.
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Once again, recall that the bifurcation buckling methods may not be used in instances where

significant redistribution of stress occurs in the subcritical load range--as occurs in this example

problem. Determination of the bifurcation buckling allowable is presented for demonstration pur-

poses.

Using the same stiffened shell configuration shown previously, the stiffness matrix [Cij] is
shown below:

1,805,277.3 503,943.5 0.0 -215,235.7 0.0 0.0

503,943.5 1,527,101.4 0.0 0.0 0.0 0.0

0.0 0.0 511,578.9 0.0 0.0 0.0

-215,235.7 0.0 0.0 210,811.6 666.7 0.0

0.0 0.0 0.0 666.7 2,020.4 0.0

0.0 0.0 0.0 0.0 0.0 11,584.0

Ny is zero in this case since there is no pressure acting on the cylinder when the stated loads are

applied. The minimum Nx load is found when m = 1 and n = 12. The classical buckling load is deter-
mined to be

NcL = 5,707 lb/in.

The wide column allowable is calculated as

Nwc = 1,137 Ib/in.

The "knock-down" factor resulting from an (R/t)e value of 130.6 is 0.458. Therefore,

NcR= 3,231 lb/in.

In this particular case, the classical bifurcation load is of little use since there has been "consider-

able redistribution" of stress (i.e., the skin has failed).

B. General Instability

The ring shown in figure 18 will be used as the intermediate stiffening ring in this example

problem. The ring spacing is 40.08 in. Aluminum 2024-T42 extrusion has a compressive modulus of

11.0×106 lb/in 2 and a compressive yield strength of 38,000 lb/in 2.11

Using Cf = 1/16,000, the critical equivalent bending moment can be solved for using equation

(3).

(EI)f = Cf MD21L ,

Meq = 2.7279x108 in-lb.

This equivalent moment is converted to a line load or stress for comparison to applied

stresses in the structure. Comparison of the frame capability and the applied stress yields a margin
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of safetyof 0.428usingtheShanleymethod.Seethesectionon marginof safetycalculationsfor more
details.

Evaluatingthis frameusingthe Beckermethodthecritical stressis 32,087lb/in2. This allow-

able stress determined by the Becker method equates to a margin of safety of 0.019. Evaluation of
the d21Rt term reveals it to be less than 100; not in the range specified by Becker. As a test, a con-

figuration was set up so that d21Rz was greater than 100. For the test case, the two methods pro-
duced identical results.

The reader should take special note that the capability of the frames is compared to the

applied stresses rather than to the equivalent moments themselves. The reason for this is that the
stress in the shell is reduced by the load carrying capability of the buckled skin. This reduction in
load is not reflected in the applied equivalent moment calculations, but is included in the Nx' value

that is introduced as part of the ET stress method in appendix B, and in the final stress value pro-

duced using the simplified beam theory.

C. Stringers

1. Local Elastic Buckling

The skin stringer panels under investigation are machined rather than formed or extruded.

Divide the Tee stringer into three flange sections. Taking the conservitive definition of flange ele-
ments, sections one and two represent the halves of the stringer cap. Section three is the web sec-

tion, which actually extends to the centerline of the cap.

5

The local buckling strength of flanges one and two, and that of flange three (the web) are

determined in the following:

= _.5)2Fq 0"431r210"8E6 (_ = 171,4521b/in 2
12(1-0.332 )
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Fc 3 4.0x210.8E6[ 0.1 _2
= 12(1_0.332 ) _/ = 367,584 lb/in 2

Obviously, the minimum buckling strength is above the material yield strength. Therefore, the
local buckling limit is set equal to the yield strength of the material (51,000 lb/in2). As the reader

may have already discerned, calculation of the local buckling strength for this particular example

problem is unnecessary. The stringers are internal to the tank structure and have no insulation or
other bonded materials to be concerned with. The calculation is carried out for completeness and

added confidence in the design.

a. NASA Structures Manual. The following illustrates the procedures found in the NASA

Structures Manual for determination of stringer crippling stress.

Step (1) Maintaining an end-fixity coefficient of 1.5, L'lp equals 80.15.

Step (2) Writing equations for the no edge free and one edge free curves from figure 7. 4

[fccn / 1.387194

_FcyJ'VEF i_-_c (T-_n))

(fcc, / 0.5693108

= t _ bn '_o.8127115 '

The maximum cutoff value for each material is given by:

F,u
Fcy - Fcy '

or simply F,,. The procedures outlined make no mention of stresses in the inelastic region for

stringer crippling. Obviously, iffccn were to reach the cutoff limit it would be past the proportional

limit stress and some correction factor would be in order. In this report, the cutoff stress will be

limited to the yield stress.

(,/_YJna,ge 51,000 /'v._. _

10.8×106

The limit value iSfccn/Fcy = 1.0; therefore, the crippling stress for the flange element is 51,000

lb/in 2. Notice from figure 6 that the flange width is not simply half the stringer cap width.

Crippling strength for the web is determined using the no-edge-free equation as follows.
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[ f_c,, / = 1.387194

{_/ I,O_0-0 979)} °'s°71793 = 1'91 "
FCYIweb 51,000 {v...-

10.8X10 6

Again the limit ratio offccn/Fcy = 1.0 is employed and the crippling stress for the web

becomes 51,000 lb/in 2 .

The final effective width after iteration using the ET stress method is 4.28 in, so that:

1.387194

51,000 2 09 x0.8o71793 = 1.29 .

10.8x106 (_)/

The resulting crippling stress for the effective skin is 51,000 lb/in 2, and the weighted average

of the three crippling stresses is also 51,000 lb/in 2. Based on literature review and experience, it is

recommended that the designer use the NASA Structures Manual method for determining stringer

crippling first. The structures manual method is easier to program and more straight forward in its

application. The analyst attempting to employ the Gerard method should review the papers authored

by Gerard. The method of determining the number of cuts and flanges is somewhat confusing.

b. Gerard. The shell geometry to be evaluated in this example is shown in figure 18. The

Gerard method of stringer crippling analysis is obviously more applicable to the example than the

Needham method. Dividing the Tee into angled sections, as called for by the Needham method,
would be difficult without splitting the web. Therefore, the Gerard method is illustrated here. The

Needham method will not be used in the example problem.

Since the web and stringer cap are of different thicknesses, an equivalent thickness must be

used. This ?w is obtained from equation (17).

To include the stringer land thickness with the rest of the effective skin, an average thickness

is used. Figuring this average thickness in much the same way as _ _; tar = 0.1318 in.

2(0.625)(0.125)+2(0.4895)(0.1)+2(2.14)(0.1318) = 0.1257 in.
7 w = (2(0.625)+2(0.4895)+2(2.14))

Then from equation (16), the stringer crippling stress with g equal to (7) (six flanges, one cut) is:

_ __...... 1"7(0 1257)(0.1318) ]o.s5Fcs=51,O00_0.5346)[. " _ _/(10.8x106/51,000) =50,464 lb/in 2 .

fig is determined by interpolation from table 1. Table 2 shows the stringer crippling stress of a

stiffened panel to be less than or equal to the proportional limit stress. Therefore,

Fcs = 50,464 lb/in 2
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3. Column Failure

Calculation of the column buckling stress involves the stringer properties as well as the

effective skin width. Using equation (27) with the stress in the stringer equal to 31,503.6 lb/in 2, the
effective width is:

w = 1.7t(E/Fst) °.5 = 4.28 in.

The properties of the stringer and the effective skin width are then combined to form a wide

column. From appendix A, the stringer meets the requirements for a Tee section, and the effective

width is simply the 4.28 in centered under the Tee web. The moment of inertia of the stringer and its

effective skin is 0.131 in 4. The end-fixity coefficient used in calculation of L' was 1.5, yielding an L' of

32.7 in. Inspection of the L'/p value for this panel reveals that it lies in the Euler buckling region. The

resulting critical wide column buckling stress is:

Fc = X210"8X106 = 15,926 lb/in 2
(32.7/0.3997)2

Note that many values used in hand calculations are taken from the worksheet. Small differences

may arise between those numbers and the ones shown here due to round-off errors not as prevalent
in the worksheet.

Had the L'/p value fallen in the transition region, the Johnson-Euler equation would have
been applied as shown below:

Fc = 51,000-(51,000) 2 (_)247r2(10.8X106) = 10,169 lb/in 2

It is useful here to review the transition from Johnson-Euler to Euler equations. This transi-

tion occurs at the intersection point of the two curves when plotted as functions of L'/p. This critical

L'/R value is found by setting the two equations equal to one another. If the L'/p value is larger than
the critical value, use Euler. If the L'/p value is smaller than the critical value, use Johnson-Euler.

_2Ec(L'/p) critical= _

In this case, the critical value is L'/p = 64.65 in.

D. Skin

1. Compression Buckling

For compression buckling of the skin, equation (26) is applied with b equal to the stringer

spacing and t the skin thickness. The buckling coefficient value most used by Bruhn and others is the

conservative 4.0. The compression modulus for AI 2219 is 10.8×106 lb/in 2, and u is 0.33.11
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k c/r 2E
Fc= 12(1 -O2) (_.)2 .

Using 4.0 for kc yields a critical stress of 5,395 lb/in 2, a very low number indeed. Buckling

stresses are typically well below the material limits (Ft,, 2219-T87 = 63,000 Ib/in2). If a less conserva-

tive approach is taken and kc is chosen from figure 12 (kc = 5.80), the critical stress increases to

7,823 lb/in2--a considerable increase.

Using data for curved simply supported sheets, and reading kc from figure 13 with Z = 5.311,

the buckling coefficient is 5.09. The buckling stress is then computed to be 6,861 lb/in 2. Note here

that the buckling coefficient, and therefore, the buckling stress for the curved panel, is lower than that
of the flat sheet. The reason for this apparent contradiction is that the curved panel data is for simply

supported edges, while that for the flat sheet is for an edge condition between simply supported and

clamped. It is recommended that the maximum of the flat sheet and curved panel buckling coefficients

be used. Therefore, the critical compression buckling stress for the skin between the stringers is

7,823 lb/in 2.

2. Shear Buckling

Shear buckling is handled much the same way as compression buckling. The buckling coeffi-

cients are read from figures 14 (flat sheet) and 15 (curved panels). The buckling coefficient for flat

sheet is 5.8, while for curved panels it is read as 6.05 (simply supported curved panels). The result-

ing shear buckling stress is 8,160 lb/in 2. Again, the maximum is used and the critical shear buckling

stress is reported as 8,160 lb/in 2.

E. Example Summary

Presented, thus far, in this report have been the basic methods of stringer stiffened panel

design as presented by Dr. Bruhn, Mr. Almroth, and others. The methods used have been gleaned

from many portions of Bruhn's books, books and papers by Almroth, and various other government

and journal publications. It should be noted that the methods presented by Bruhn were devised

before the advent of modern computational devices. Therefore, most of the methods rely on design

curves to lessen the computational intensity of the problem. However, curve fitting of the appropriate

design curves can make the methods acceptable to modern programming techniques. All necessary

design curves have been curve fit and programmed as macro routines in the Excel programs

contained in the appendices. Despite their age, many of the methods compiled by Bruhn and

presented in this section are still used extensively in the aerospace structural design field. An

engineer must understand and know how to apply these methods before exploring the more recent
works. A summary of analysis results is shown in table 3.
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Table 3. Summaryof critical stresses.

Failure Mode Critical Stress(lb/in2)
General Instability

LocalCrippling
ColumnFailure
Skin Compression
Skin Shear

Shanley
Becker

45,000
32,087
51,000
15,926
7,823
8,160

The following sectionof this report detailsthedeterminationof appliedstressandmarginsof
safety.Obviously, the appliedstresscannotbe determinedindependentlyof certain failure modes
alreadycoveredin detail. Discussionof appliedstressesandmarginsof safetyis placedin a
separatesection for organizationalpurposesonly--to separatefailure analysistechniquesfrom
applied stresscalculations.

IV. APPLIED STRESSES AND MARGINS OF SAFETY

This section of the report provides a summary and explanation of loads and stresses applied

to the example configuration. Determination of the compressive stress level at limit load is fairly

simple--all the skin is effective and moment of inertia and area calculations are quite simple since

they involve the stringers and the entire skin rather than portions that are "effective" and portions
that are "ineffective." Equations (36) and (37) are used to determine the maximum compressive

stress level.

MR (36)
O'b=-'T" ,

tra_ = P • (37)

Determination of compressive stress at ultimate load can be considerably more involved. If
the skin has not failed at ultimate load, the stress calculation procedure is identical to that for limit

stresses. If the skin has failed however, the process becomes a bit more cumbersome. Ultimate

stresses in the shell can be calculated through several methods with varying degrees of accuracy.

The most accurate calculation, of course, requires the most rigorous analysis of the shell configura-
tion. If the skin buckles after limit load, the effective skin provides some stress relief to the stringer

columns. This stress relief depends upon the effective width of skin acting with the stringer. The

effective width is dependent on the stress. One can easily visualize the iterative process necessary

for determining stress and effective width. Shear stress calculations are performed at the limit load

level and the procedure is quite well known. Calculation of the shear stress is shown in detail in

appendix B.

Figure 18 gives details of the configuration to be evaluated. 17 The worst case mechanical

loads (limit loads) on the shell are shown in the following and are typical of launch vehicle ground
wind induced loads. TM
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Shear= 53,678lb
Moment= 4.924x107in-lb
Axial = 1,571,825lb.

This particular load caseoccursduring theprelaunchphase,andthevehicleat this point is con-
sideredasbeing fully fueledand unpressurized.

A. Simplified Beam Theory

The most accurate determination of stress involves calculation of an initial stress estimate

using the entire skin as effective. Since the bending moment acts in compression on one side of the
neutral axis and in tension on the other, the neutral axis of the shell will be shifted toward the tensile

moment side of the shell. The neutral axis shift is a direct result of increased effective width at the

lower compressive stress.

Figure 20 illustrates the iterative shift in neutral axis caused by the application of bending
moment. 5

Figure 20. Illustration of neutral axis.

The procedure begins with an estimate of stress using the moment of inertia and area includ-

ing the entire skin. At this point the stress in each bay must be calculated individually along with an

accompanying effective width. When this is done, a new area, moment of inertia, and neutral axis is

computed using only the stringer, its effective skin, and Ae as defined below. Including this area (Ae)

can be viewed as having the same effect as the reduction in load presented by the NASA Structures

Manual. Stress in each bay is then computed with the new cross-sectional properties. This proce-

dure is repeated until the neutral axis location converges.

O'CRi]

Ae, = (bst-1/2(Wei+l-We,)) [ O'st, J "
(ref. 5) (38)
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The symbolsWei and Wei+l refer to the effective widths on either side of the stringer location where

Ae is desired. Since the effective width changes very little between adjacent stringers on a large

diameter cylinder, equation (38) can be rewritten as equation (39):

Ae= (bsFwe)[_]. (39)

The stress in each bay may be calculated on the stringer location by:

_rb=_--_ y_ and o'ax= _

The Yi in this equation refers to the stringer distance from the centroid.

B. ET Stress Report

This method is referenced from the ET stress report produced for NASA by the Martin

Marietta Corporation. The method in the stress report lacks a great deal of referencing, but has been
used successfully in the analysis of the Space Transportation System ET. The main advantage of

this method is that it is much simpler, requiring iterations only with the maximum stress in the shell.

That is, stresses at each station about the circumference of the shell do not have to be calculated.

This greatly reduces the computational intensity of the process. Also, this method allows inclusion of

hoop stresses in determining the longitudinal stress. This feature could be included in the simplified

beam theory method with a bit of derivation. The disadvantage of the method is its conservatism.
Choosing the proper method depends on the analyst's expectations of fidelity in the analysis, confi-

dence in the given load set, and ultimately, the cost of failure.

Using this method, a more detailed stress breakdown can be obtained for the skin, stringer,

and stringer land. The equations for normal stresses in the skin, land, and stringer are presented

along with figure 21 for explanation. 4

Figure 21. Stress distribution in shell.
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tsk •

The line loads (N r and Nx), in pounds per inch, are determined based on stresses developed

in a thin cylindrical shell by internal pressure and axial and bending loads, respectively:

Axial + Moment
Ny= pR and Nx= _- _rR2 ,

and tsm is the smeared thickness of the stringer, land, and skin thickness so that,

Ast+Ata+Ask

tsm = bs t

Stress in the stringer is now determined based on the applied line loads and the shell

geometry. Now, providing the skin buckles at Fcr, the longitudinal load capability of the skin panel is

0.9*Fcr*tsk, or 90 percent of its buckling load. This capacity of the buckled skin to carry load reduces

the compressive load that the stringer must support, just as Ae adds to the load carrying capacity of

the shell. The effective width acting with a stringer is calculated by equation (27). This varies

somewhat from the ET stress report method for determining effective width, but should give com-

parable results. Once the effective width is known, the load carried by the ineffective skin is deter-

mined and subtracted from the total load applied. Line loads are converted to forces in each panel by

multiplying by a characteristic length--either stringer spacing or effective width depending on
whether or not the skin has failed. The new load that must be carded by the stringer is now known

and the process repeats itself until convergence is obtained on the effective width or the stress.

C. Margins of Safety

Table 4 is a summary of stresses produced using the ET stress method and simplified beam

theory. As shown in the stress table, the shear stress is very low compared to the compressive

stresses resulting from bending and axial load. Shear stress is often ignored for preliminary analy-

ses.

Table 4. Applied stresses.

Shear

Moment
Axial

Total Compressive

Limit (Ib/in 2) Ultimate (lb/in 2)

819.36

3,770.4

9,959.5

13,729.9 31,503.6 (ET)

24,645.7 (Beam)
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The marginof safety (MS) is a numerical evaluation of a structure's load carrying capacity

compared to the applied load. In general, when there is only one type of loading, the MS calculation

takes the following form: 5

MS = Allowable Stress or Load _ 1.0 . (40)
Applied Stress or Load

Evaluating the general instability equations first, the critical stress determined using the

Shanley method is 45,000 lb/in 2. However, 45,000 is greater than the yield stress for the ring of

38,000 lb/in 2. Therefore, the capability of the frame is limited to the yield stress. The applied ultimate

stress is 31,503.6 lb/in 2. The following MS calculation results:

MS = 38,000 1.0 = 0.2062 .
31,504

For the stringer and its effective skin, the wide column buckling allowable is lower than the stringer
crippling value. Therefore, the wide column value is used to determine the minimum MS. The applied

compressive stress is 31,503.6 lb/in 2, and the critical buckling stress is 15,917 lb/in 2. The resulting

margin of safety is -0.495. (The shear load is ignored for the wide column margin of safety because of

its relative insignificance.) Obviously the column is inadequate for the applied loads and must be

redesigned.

The skin is under combined shear and compressive load. The margin of safety under combined

shear and compression loading from reference 5 is,

MS = 2 1 , (41)
2 , 2

Rc+ _/Rc+4 Rs

where Rc is the applied compressive stress divided by the critical buckling or allowable stress. Rs is

the applied shear stress divided by the allowable shear stress in the skin. The MS for the skin is

determined using limit loads. The resulting MS for the skin is --0.4316, with Rc = 1.7551 and

Rs = 0.0874. The shear stress contribution to MS is practically negligible. This is typical in launch

vehicle design. As with the column buckling MS, the skin is inadequate for the loads applied and

must be redesigned.

V. CONCLUSIONS

In this report, many of the most popular methods for determining buckling capability in a ring

and stringer-stiffened cylindrical shell have been presented. Methods for determining the skin buck-

ling load, the stringer failure allowable, and the wide column allowable have been presented. Two
methods for determining the necessary ring geometry to preclude general instability have also been

presented. Where applicable, the conservative approach taken by most designers has been pointed

out, along with methods for reducing unnecessary conservatism.

Microsoft Excel spreadsheets have been developed in conjunction with this report to facilitate

the use of the methods presented. All design curves necessary for calculation of critical buckling
allowables have been curve fit and included in the worksheet as macros which act as subroutines for
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calculationof buckling coefficientsfrom thecurves.Calculationsheetsdoneby handhavealso been
includedin the appendices.Themostcommonproblemfacing theanalystin this areais theproper
designationof sectionalproperties,i.e., whento includeeffectivewidths andwhen not to.
Considerableeffort hasbeenmadeto track downanydiscrepanciesof variousreportson the useof
sectionalproperties.Whereclear instructionswere notgiven by theauthor, the mostlogical option
regardingthe useof sectionalpropertieswaschosen.

Although limited in its scopeof application,a methodfor determinationof thebifurcation
(classical)buckling loadhasbeenincluded.This methodcannotbeusedin caseswhereconsiderable
redistributionof stressoccursin the subcriticalloadrange--ashappenswith the exampleproblem
presented.A Fortranprogramhasbeenwritten to facilitate determinationof the buckling allowable
using the methodsdevisedby Almroth.

The report also addressesdeterminationof the appliedstressandMS. Neither the applied
stressnor the buckling capability of the shellcanbedeterminedindependentof oneanother.
Recognizethat theMS is themeasureof structuralmarginmost often usedin conjunctionwith the
safety factor.

This report hasbeendesignedto serveasa referencefor the analystin needof determining
thebuckling capability of stiffenedcylindrical shells.The methodsareeasily modified for usewith
stiffenersother than the integral Tee's usedfor the exampleanalysis.Howeveralterationsto the
programswould benecessary.Critical stresscalculationsfor the variousmethodsaregiven in the
following chart:

Summaryof Critical Stresses

Failure Mode Critical Stress(lb/in2)

General Instability

LocalBuckling

Crippling (NSN)

Crippling (Gerard)
Column Failure (Euler)

Skin Compression
Skin Shear

Shanley
Becker

38,000

30,930

51,000

51,000

50,464

15,917

7,823

8,160

The methodspresented_inthis report arenot meantto excludeor replacethe useof analysis
codessuchasBOSORor PANDA. Neitherhaveall possiblefailure modesfor tank designbeen
addressed.The report hasaddressedthe major failure modesassociatedwith stiffened circular
cylinders and providesthe methodsnecessaryfor assessingvehicle design.Oncethe major
geometricpropertiesof a designhavebeenestablished,morerigorousanalysisusing further refined
handtechniquesandcomputeralgorithmswouldbe in order.
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Also not coveredin this report are theoptimization techniques.Considerablework hasbeen
donein the optimization of stiffenedshellsarea.Most of themethodsaremathematicallyderived,
rather thanbeing basedon empirical dataas mostof Bruhn's methodsare. It is suggestedthat the
engineerfirst becomefamiliar with the methodspresentedin this report,and then investigatethe
variousoptimization techniques.An optimizeddesignwill likely needto becheckedagainstthe
methodspresentedin this paper to ensurethecapability of thedesign.
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APPENDIX A

Tee Stringer Criteria
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t$

We = 1.7t(EIFst) 112

t= (t.+_)/2
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APPENDIX B

Hand Calculations
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General Instability

hS.haa! 

MD 2
(el):- c: L [Bruhn, "Aircraft" equation (9.7)]

C/= 1/16,000

Solving for M _ McR -- --
(EI):L

c:o
FRAME = 2024 AI

Ef= 11.0E6 in-lb

If = 4.2369 in 4

Becket

(11.0E6)(4.2369)(40.08)

McR = (1/16,000)(331)2

Mcl ¢ = 2.7279x 10 s in-lb

6.0

FCR = CEcQb C = 3.25 Frame not attached to skin

[NACA TN 3786: pg. 33] C = 4.80 Frame attached to skin.

eo = (p _P f)3:4 (bd)--o.a5
R

we, ' = 0.5 SQRT ( 19'904] 1°832
_,29,9791

Ps = radius of gyration of stringer and effective skin

determined by:-_=0.5SQRT(_s_ )

FCR = Buckling stress of column

We, = 4.41 in Fst = Stress in stringer

A eK' = 0.810 in 2 leK, = 0.171 in 4 p/= radius of gyration of frame and effective skin.

P st = _ = 0.4595 in Wef= d

Qb = [(0.4595)(1.3789)] :_:4[(10.832)(40.08)]-i:4 = 0.000940
165.5

FCRFk,,ME= (3.25)(11.0E6)(0.00094) = 33,608.12 lb/in 2 .

*Note that moment of inertia of frame is computed without the large stand-off caused by mounting on

top of the intergral stringers.
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Stringer Local Elastic Buckling

kcl)r2E c

kc = 0.43

t= 0.125 in

b = 1_5 = 0.625 in

FC_ ""
0.43 tr 2 (10.8E6)/0.125_2

12(1-0.332) t_/

= 171,452 lb/in 2

4.0 n'2E
k c = 4.0

tgj
¢kl

¢:5

-,ql-----1.250".
v

t=0.1 in

b = 1.104 0.125 _ 1.0415 in
2

=4.0x 2(10.8E6)( 0.1 '_2=367,584FcR3 lb/in 2
12(I-0.332) .tl 04151

Minimum FcR> Fcr .'. FcR = Fcr

Local Buckling Limit = 51,000 lb/in 2

47

https://www.abbottaerospace.com/technical-library/


Stringer Crippling

*NASA Structures Manual

4'

I,7._"

1

t _ j • ILr

48

f_c,,] = 1.387194
F_y,NoEDCEFREE i[FcyllrZ[b,,_ °'07_793

Curve fits from NASA

Structures Manual C 1.3.1-13

FcylONE EDGE FREE

0.5693108

=I[F_I'_"b."°_':7"_
Corresponding to those

in ET stress report.

0.5693108

[ 51,0001 '_ 0 575"" o.8127115

= 1.4516

f_q = (1.4516)(51,000) = 74,030.83 > 51,000 ' f_q -- 51,000 Ib/in 2

1.387194

0 979 '_ 0.8071793 = 1.91 > 1.0

tte<l

ol. fcc2 = 51,000 lb/in 2

,  7194[r F 11/2 "_0.8071793
cy 2 09

= 1.29 > 1.0

4.28(0.126)+1.25(0.02)
t_= 4.28

_c3 = 51,000

t_=0.1318
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Stringer Crippling

Z b ntnfcc.

F¢c= Ebnt n
[NASA Stress Manual, Section C1, page 11, equation (1)]

Fcc = 51,000 {(0.575)(0.125)(2)+(0.979)(0.1)+2"(2.14)(0.1318) }+

{(0.575)(0.125)(2)+(0.979)(0.1)+(2.14)(0.1318)(20) }

Fcc = Fcs = 51,000 lblin 2
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Ger_d:

Stringer Crippling

w e=4.28 , bf=1.25 , bw=0.979

Using an average thickness to evaluate the effective skin with the land:

1.25(0.02)+4.28(0.126) = 0.1318
tar = 4.28

]Eb,.t i 2(0.625)(0.125)+0.979(0.1)+4.28(0.131)

?w- ]Ebi - 2(0.625)+0.979+4.28

7 w = 0.1257 in

A = 1.25 (0.125)+0.979(0.1)+4.28(0.1318) = 0.8183 in 2

?w
ts'---;=> Interpolate

?_, _ 0.1257
- _ = 0.954

1.16-0.732 0.562-0.505

0.954-0.732 = fl-0.505

0.0570

1.9279= fl-0.505 _ fl-0.505 =0.0296

= 0.5346

v. [ TM-ff_y= fl (7) a

Fc_= 0.99 Fcy ,

Fcs = 50,463.89 lb/in 2 = 50,464 lb/in 2
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Column Buckling

Determine Johnson-Euler Intersection

(L') = tr [_]2Ec la = tr/.(2)(10.8E6)_'a 64.65 in
P" INTERSECTION Ires j _ 51,000 ] =

P COLUMN= I and A = Sum of stringer and effective width.

d-- L2K...-_. _ r.¢. _,._"_12 K ACOLUMN = 0.254+l.25(O.02)+tskWe

We = 4.28 in _ _ -" O, / ACOLUMN = 0.82 in2

Za,d,
tO e P ) Centroid = _4 i

Centroid = [(1.25)(0.125)(1.1875)+(0.1)(0.979)(0.6355)+(1.25)(0.02)(0.136)

+ Wetsk(tsl_12)]+AcoLUMN = = 0.35 in

ICOLUMN = @2 (1.25)(0.125) 3+ 1.25(0.125)(1.1875--0.33) 2+ 1 (0.1)(0.979) 3+(0.1)(0.979)(0.6355--0.33) 2

+ 1 (1.25)(0.02) 9+(1.25)(0.02)(0.136__0.33)2+ 1 Wet]k+Wets_(tsk/2_0.33)2

I¢OLUMS = 0.131 in 4

p = V/_ = _.1-_21 = 0.3997 in

L'= 40.08/lgT_.5-81.87
P 0.3997
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Column Buckline

Using an end-fixity coefficient of 1.5 and a ring spacing of 40.08 in, the effective length is 32.72
in. When divided by p, this length becomes the slenderness ratio.

L,__- - 81.83 P Ir_asF.c'r

Critical buckling load for the column is:

FCR= lr2E

• Column is in the Euler regime,

x2(10.8E6)

(81.83)2 = 15,918.3 lb/in 2
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Compression Buckling of Flat Sheet

From figure C5.6 with

Skin B_kling

kc_2Ec (tsk) 2FcR= 12(1-v 2) _st

b= _2 _ 85.968

kc = 5.802. Could use 4.0 for conservatism.

FcR= 5.802 n'2(10"8E6)(_)2 = 7,825.7 lb/in 2
12(1-0.332 ) •

[Bruhn, "Aircraft," equation (C5.1)]

Compression Buckling of Curved Panel

From Bruhn, "Aircraft," figure C9.1

k clr 2E c
FCR=12(I_v2) (-_) 2

b 2
Z = .-_ ( l-v 2) ''2

Z= 10"8322 (1-0.332) 1/2 5.311 with R/Z=l,313.49
(165.5)(0.126) =

kc = 5.09From figure C9.1

FcR= 5.09 /r 2 10.8E6 (_)2 = 6,860.5 lb/in 2
12(1-v 2)

Taking the larger -- FCR = 7,825.7 lb/in 2-
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Shear Buckling of Flat Panels

From figure C5.11 ks for

q_CR =

kstt 2E c
[Bruhn, "Aircraft, .... equation (C5)]

a = 40.08 =3.7=5.8
b 10.832

k s = 5.8 (hinged edges)

5.812(1__0.332)tr210.8E6 (_)2 = 7,822.89 Ib/in 2

For simply supported curved panels,

ks = 6.49

r cR = 8,753 lb/in 2 .
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• StressatLimit Load: S.F. = 1.0

Limit loads are:

Applied Compressive Stress

moment = 4.924xi07 in-lb

axial = 1,571,825 Ib

O'b= .-_ O'A= PA'

Orb= bending stress

cr/t = axial stress

m = moment

z = distance from centroid

I = moment of inertia

P = axial load

A = area .

*At limit load, all skin is effective. Therefore,

I = (number of stringers) lsr+_,AsrZ2+TrR3tsk ; let tsk = 7 to include land

I = 96*0.0277+0.254 _Z2+x(165.5)37

7 = (0.02)( 1.25)+(0.126)(10.832) ... 0.1283 in
10.832

I = 2,161,079.1 in n

Area = 2zrR? +_.,Asr = 2n(165.5)(0.1283)+(96)(0.254)

(4.924x107)(165.5)

A = 157.79 in 2

Maximum bending stress = o'b_,,_= 2,161,079

crb_ * = 3,770.9 lb/in 2

1,571,825
Axialstress = tr A = 157.79 = era = 9,960.93

Total compressive stress = tYbmax+O'A

crT = 13,731.83 lb/in 2
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• Stressat UltimateLoad: S.F. = 1.4

Ultimate loads are:

Check Skin Buckling:

Applied Compressive Stress

moment = (4.924x 107) * 1.4 in-lb

axial = (1,571,825)'1.4 lb

kdr 2E c

kc = max from curves C5.6 or C9.1

[ref. Bruhn, "Aircraft," (C5.1)]

k c = 5.8

5.8trz(10.8E6) (_)2= 7,822.89 lb/in 2
12(1-0.332) .

If skin does not buckle, I and A remain the same as limit.

(4.924×106)(1.4)(165.5)

erb - 2,161,079
= 5,279.26 lb/in 2

era = 13,945.3 lb/in 2 = (1,571,825)1.4
157.79

er r = 19,224.56 lb/in 2

13,945.3 > 7,822.89: • Skin buckles prior to ultimate load causing redistribution of stress.

Note that erALimit also > 7,822. This indicates a negative margin for skin buckling. The skin must be

redesigned to prevent buckling at limit load.
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Applied Compressive Stress

• The skin fails prior to ultimate load causing a redistribution of stress. The stresses at ultimate load
must now be determined based on the effective widths acting with each stringer.

* Simplified Beam Theory_

Step 1: An initial estimate of stress in each stringer bay is made based on the entire skin as
effective.

I = 2,161,079 in 4

A = 157.79 in 2

m = (4.924×107 in-lb)*(1.4)

P = (1,571,825 lb)*(1.4)

Shell Geometry

_ NGE R,.S

/ _.i_ -'_ ,l_'_ "1 /AsT_E00.02257_iinn24

\ /e=/6S.. 5" /:_ *_" Z = 0, original neutral axis

\/ - ./.,,

9,_ Pitch = _-ff = 3.75 °
Stringer Angle

*Recall that 96 = number of stringers.

Zl=0

z2 = sin(3.75)165.5 = 10.8242 in

z3 = sin(7.5)165.5 = 21.60 in

Z96 = -10.8242
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Applied Com_t_"essive Stress

1,571,825"1.4
0.a = 157.79 = 13,946.09 lb]in 2

(4.924× 107)( 1.4)(10.8242)
0.bj = 0 , 0.b_ = 2,161,079 = 345.28 Ib/in 2

_(4.924×107)(1.4)(21.6)
0._3 - 2,161,079 = 689.02 lb/in 2

(4.924× I 07)(1.4)(- 10.8242 )
°'b_ = 2,161,079 = -345.28 lb/in 2

0.1 = 13,946 lb/in 2 ; We, = 1.7 (ts+t/)12 E_

[ref. Bruhn, "Aircraft," equation C7.16]

_10.8X106_ laWe1= 1.7(0.1360) _ / =5.9608in

Ae,=(10.832-5.9608)(0.126 7i8229489)

Ae, = 0.3443 in 2

o'2 = 13,946+345.28 = 14,291.28 lb/in 2

We2 = 5.8884 in , Ae2 = 0.3410 in 2

0.3 - 13,946+689.02 = 14,635.0

we 3 = 5.8188 in , A_3 = 0.3376 in 2

0.96 = 13,946-345.28 = 13,600.72

w_ = 6.036 in , Ae96 - 0.3476 in 2

* Note: Ae = b't(F, I0.,) (ref. Bruhn, "Aircraft," equation (2), page A20]

b" = bsr--w e

* Note: Ae is not We*ts_!
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Step2:

Applied Compressive Stress

Determine new centroid using Ae, Wei*tavi, and Asr.

tav i is new 7 =
(0.02)(1.25)+(0.126)(w,)

We i

New centroid = -11.58 in

New moment of inertia = 1,859,548 in n

New area = 133.6 in 2

Step 3: Recalculate stresses, Ae and we based on new sectional properties.

(4.924×107)(1.4)(0+11.58) + (I,571,825)(1.4)
0-1 = 1,859,548 133.6

0" 1 = 429.28+16,471.2 = 16,900.5 lb/in 2

0"2 =

0"96 =

(4.924×107)(1.4)(10.8242+11.58)

1,859,548

0-2 = 17,301.7 lb/in 2

U

(4.924×107)(1.4)(-10.8242+11.58)

1,859,548

+ 16,471.2

+ 16,471.2

0"96 = 16,474.0 lb/in 2
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Step4:

Step5:

Applied Compressive Stre_

With new stresses, Ae and We, recalculate neutral axis location, moment of inertia, and area.

Repeat until convergence on neutral axis location is obtained.

Final Results:

Moment of inertia = 1,713,065.85 in4

Area = 124.185 in 2

Neutral axis or centroid = -11.654 in

0.max = 0"25 = 24,645 lb/in 2

We25 = 4.84 in.
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Applied Compressive Stress

External Tank Stress Method

Step 1: Determine initial line loads.

1,571,825"1.4 (4.924×107)(1.4)
Nx = 2 xR + trR 2

N_ = 2,917.3 lb/in

Step 2:

(Pressure)(R)
Ny = • Pressure = 0, Ny = 02

Determine initial stress based on line load and smeared thickness.

fsk = t-_m[Nx+vNy(tsm--tsk]]

2,917.3
fsk = t sm

tsm = Ast+Ata+Ask _ 0.254+ 1.25(0.02)+bsttsk
bst bst

tsm = 0.1518 in

Step 3:

2,917.3
f_k = 0.151------8= 19,223.49 lb/in 2

Calculate effective width.

( 10.8E6 "1,1r2we= 1.7t Ec = 1.7(0.136) '19_91

w e = 5.48 in.
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Applied Compressive Stress

Step 4: Determine new loads in the column.

The total equivalent axial load carried by the panel is,

Peq = 2,917.3"10.832 = 31,600.2 lb

The load carried by the buckled skin is,

Psk = 0.9 Fcr tsk (10.832-We) ; We = 5.48

Psk = 4,764.9 lb.

Load which must be supported by the column is

31,600-4,764.9 = 26,835 lb.

The resulting line load, t_,, and stress are:

, 26,835 _ 4,896.9 lb/in
Nx _ We

• 0.254+1.25(0.02)+tskWe
tsm = We

tsm = 0.1769 in

• 4,897 =27,680.361b/in 2
f_k = 0.1769

Step 5: Continue iteration until convergence on stress is reached.

The final results are:

We = 4.28 in

p

ts,, = 0. I912 in

Nx" = 6,020.26 lb/in

f_k = 31,488 lb/in 2 _ 31,503 lb/in 2 from spreadsheet.
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APPENDIX C

Spreadsheet Output
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Control Macro

sesame (o)

=OPEN("MOI")

=HIDE()

=OPEN('CLOSER')

=HIDE()

=OPEN("BruhnFig")

=HIDE()

=OPEN ('1 nterpolate', 1)

=HIDE()

=O PEN ('Stress', 1)

=HIDE()

=OPEN("Skin-Stringer')

=ACTIVATE("Control Macro")
=HIDE()

=RETURN()
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MOI

Moil
=ARGUMENT("Rad")
=ARGUMENT("Nost")
=ARGUMENT("Ast")
=ARGUMENT("Ist')
=ARGUMENT("tsk")
=ARGUMENT('bf")
=ARGUMENT('tI")
bst=2*PI0*Rad/Nost
DA=2*PI0/Nost
Aid=(tl+tsk)*bf
tav=(tsk*(bst-bf)+AId)/bst
Itotal=0
rnoist=0

moisk= PI0*RadA3*tav
=FOR('Count',l ,Nost)
d=Rad*SIN((Count-1 )*DA)

=SET.NAME("moist',moist + Ast*d^2)
=NEXT 0

=SET.NAM E("ltotal',moisk+moist+Nost*lst)
=RETURN(Itotal)

Moi2

=ARGUMENT("Rad")
=ARGUMENT("Nost")

=ARGUMENT("Aeff")
=ARGUMENT("Ieff")
=ARGUMENT('tsk')

=ARGUMENT("bf")
=ARGUMENT('tI")

DA=2*PI0/Nost

Itotal=O
moist=0

=FOR("Count",l ,Nost)

d=Rad*SIN((Count-1)*DA)
=SET.NAME("moist',moist + Aeff*d^2+leff)
=NEXT()

=SET.NAM E("ltotal",moist)
=RETURN(Itotal)
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CLOSER

Closer (c)

=SAVE()

=CLOSE0

=UNHIDE("BruhnFig")

=SAVE()

--CLOSE0

=UNHIDE('lnterpolate ")

=SAVE()

=CLOSE0

=UNHIDE('Control Macro")

=SAVE()

=CLOSE0

=UNHIDE("MOI')

=SAVE()
=CLOSE0

=UNHIDE('Stress")

=SAVE()

=CLOSE0

=UNHIDE('Closer ")

=SAVE()

=CLOSE0

=RETURN 0
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SruhnFig

RgC5.6

=ARGUMENT('BOT')

= ARGUMENT('Z.,sppa')
=2.9384+0.088965OBOT.0.0013486.BOT^2+0.000012063, BOT,_3.0.000000053153.BOTA4+0.000000000089722 OBOT^5 TorsionaUy Weak

=4.1134+0.074296*BOT-0.001177°BOT^2+0.00001118" BOT^3-0.000000052865* BOT '_,+0`00(X)00(XXX_5262° BOT^5 Torsionally St ro_g

=IF(AND(AND(BOT>=15,BOT<=200),Zappa= 1),R ETU RN(A4))

=IF(AND(AND(BOT>=10,BOT<= 145),Zappa=2),R ETURN(A5))

=IF(BOT<0,RETURN('b/t Out of Range.'))

=IF(_T<15,Z_l),RETURN(4))

=IF(AND(BOT>200,Zappa= 1 ), RETURN(6.96))

=IF(AND(i_)T<10,Zappa=2)0RETURN('b/t Out of Range'))

= IF(AND(BOT>145,Zappa=2),R ETU RN(6.06))

=RETURN(_Iacro Err')

Fv_C5.11

=ARGUMENT('AOB')

=121.37-314.43"AOB+350.O3"AOB"2-195.9"AOB'3+54.702"AOB_-6.0732"AOB ''5

=-I98.31._368.82*AOB-261.64"AOBA2+91.472"AOBA3 -15.8"AOBA4+ 1.0804"AOBA5

--_.,_8-0.20_'AC_3

1<a4><22

2.2<aiD<3.68

3.68<a/b<5.0

=IF(AND(AOB>=I ,AOB<2.2),RETURN(A20))

=IF(AND(AOB>=2.2,AOB<3.68),RETURN(A21 ))

=IF(AND(AOB>=3.68,AOB<=5),RETURN(A22))

=IF(AOB<I ,RETURN('a/b Out of Range"))

=IF(AOB>5,RETURN('a/b Out of Range'))

=RETURN('Macm Err')

F_C9.1

=ARGUM ENT("Z")

=ARGUMENT("ROT')

=3.8337+0.25748oz.0.0015272*ZN2+0.0000048691 °Z^3

=_.8337+0.25748"Z-0.0015272°ZN'2 +0.0000048691 "Z^3

=3.4625+0.3351 *Z-0.0061366"ZN2+0.000084875° Z^3

=5.5977-0.067272"Z+0.015305*Z'_2"0.00014876"Z'%3

=4.12 l+0.078764*Z+0.027337*Z^2 -0.001383* Z^3 +0.000031261° Z^4 "0.00000024°J29" Z_'#

=5.0601-1.7512"Z+1.0254"Z^2"0 24468*Z'%3+0.027988" Z^4 "0.0012329*Z^5

=4

r,I=3000

re1=2000

r,.1=I000

r,'t=700

r/t=500

Z>1.4 AND Z<=.7.O

Z<=1.4

=IF(ANO(Z>= 1,/.<=1.4),RETURN(A40))

=IF(AND(Z.>1.4,Z<=7),RETURN(A39))

=IF(AND(AND(Z>7,Z<=50)_ND(ROT<=3OO0,ROT>2000)),RETURN(Interpolate! INTERPOLATE(3000,ROT,20(X),A34,A35

=IF(AND(AND(Z>7,Z<=50),AND(ROT<=2000,ROT> 1000)), RETURN(Interpolate!INTERPOLATE(2000,ROT, 1000,A35,A36

=IF(AND(AND(Z>7,Z<=50),AND(ROT<= 1000,ROT>700)),RETURN(Inlerpolate!INTERPOLATE(1000,ROT,700,A36,A37)))

=IF(AND(AND(Z>7,Z<=50),AND(ROT<=700,ROT>500)), RETURN(Inter polatet INTERPOLAT E(700,ROT,500,A37,A38)))

=IF(AND(AND(Z>7,Z<=50),AND(ROT<=500,ROT>0)),RETURN('r,'I Out of Range"))

=IF(Z>50,RETURN("Z Out of _'))

=IF(Z<1 ,RETURN("Z Out of Range"))

=IF(ROT>3000,RETURN('rfl Out ol Range"))

=IF(ROT<O.RETURN('r/_ Out of Range'))

=RETURN('Macm Err')

FigC92

=ARGUMENT("Zb')

=ARGUMENT("AOB92")
=92456+0 32745"Zb-0.0013434*Zb^2+0.0000042412" Zb"3

= 10.12B+0.31493*Zb-0.0(X)31213" ZI_2-0.000(3019266" Zb^3

= 10.762 +0.37273*Zb-0.00054319"Z b^2-0.000002604" Zb^3

= 11.72+0.41376"Zb-0.0012646" Zb^2 +0.0000025354" ZbA3

=14 841 +0.34501 "Zb+0.0004971 "Zb^2-0.0000073339" Zb."3

=IF(Z]:><1 .RETURN("Th Out of Range."))

=IF(AND(AND(Zb>=I ,ZI:)<= 100),AOB92>3),R ETURN(Int erpolat e!INT E RPOL ATE(100OOOO,AOB92,3.A59,A60)))

=IF(AND(AND(Zb>=I ,Z]><= 100).AND(AOB92<=3,AOB92>2)).R ETURN(InIerpolate!INTE RPOLATE(3,AOBg2,2,A60,A61)))

=IF(AND(AND(Zb>= 1 ,Zb<= 100),AND(AOB92<=2,AOB92> 15)).RETURN(InIerpolale!INTERPOLATE(2 .AOB92,1.5,A61 ,A6

=IF(AND(AND(Zb>=I ,Zb<= 100),AND(AOB92<= 1.5,AOB92>=l i). RETU RN(InterpolaIe!INTERPOLATE(1.5,AOB92,1 ,A62,h

aJb = Infinily

aJb=3

wb=2

aJb = 1.5

aJb=l
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BruhnFig

=IF(Zb>100,RETURNC'-Z_ Out of Range."))

=IF(AOB92< 1. RETURN_'afo Out o/Range."))

=RETURN('Macro Errfi

F'_c9.4
=ARGUM ENT("Zb94"_

=ARGUMENT("AOBg4_
=5.1455+0.17118*Z:]:_

=2.5003°Zb94A(0.416L_
=5.7438+0.16169"Z1:_

=6.2273+0.18037"Zb1_

=6.9795-+0. lgO77*Zb94

=9.3546+0.25446"Zb94

=1F(2]:)94<1 ,RETURN('Zb Out of Range.'),IF(Zb94>lOO,RETURN("Zb Out of Range.')))

=IF(ANO(AND(Zb94>=20,Zb94<= lO0),AOB94>3)0R ETURN(Interpolale!INTER POLATE( 100(X)OO,AO694,3,A78, A79)))

=IF(AND(AND(Zb94_1 ,Zb94.<=20),AOB94>3), RETU RN(InlerpolaIe!INTERPOLATE(1000000,AOBg4,3.A77,A79)))

=IF(AND(AND(Zb94>=l .Zb94<= lO0),AND(AOB94<=3,AOBO4>2)),RETU RN(Inteq_ate!lNTER POLATE(3,AOB94,2,A79,A

=IF(AND(AND(Zb94>= 1 .Zb94<= 100),AND(AOB94<=2,AOB94>1.5)),R ETURN(Inlerpolale!INTERPOLATE(2,AOB94,1.5,A_

=_F(AND(AND(zb@_>=t_Zb94<=1__)_AND(A_B94<=1_5_A_B94>=1)).RETURN(_nte_p__a1e!_NTERP_LATE(1_5_A_B94'1__

=RETURN('Macro Err'}

aVb = Infinity i

afo = Inf_'y i

aYo=3

aJb=2

a/b= 1.5

a/o=1
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Interpolate

INTERPOLATE

=ARGUMENT("ROTI")

=ARGUMENT('ROT2")

=ARGUMENT("ROT3")

=ARGUMENT("VALI")

=ARGUMENT("VAL3")

=R ETU RN ((VAL1 -VAL3)*(ROT2-R OT3)/(ROT 1-ROT3)+VAL3)
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Stress

Stress Calculation Macros
Equivalents -- Determines Pequivalent and Mequivalent.
=ARGUMENT('Select')
=ARGUMENT('Radl")
=ARGUMENT("Mlim')
=ARGUMENT('Mult')
=ARGUMENT("Axlim')
=ARGUMENT('Axuit')

Meqlim= Mlim+Axlim*Rad 1/2
MeqUIt= MUlt+AxUlt*Radl/2
Peqlim= Axlim+Mlim °2/Radl
Peqult= AxUIt+MUlt*2/Radl
=IF(Select1 =1 ,RETURN(Meqlim))
=IF(Selectl=2,RETURN(MeqUIt))
=iF(Select 1--3,R ETU RN(Peqlim))
=lF(Selectl--4,R ETURN(Pequit))
=RETURN('Select not valid.')

Stress_C -- Limit Stress,
=ARGUMENT("Mlim")
=ARGUMENT("Axlim')
=ARGUMENT('Rad")
=ARGUMENT('Nost")
=ARGUMENT('Ast')
=ARGUMENT("Ist')
=ARGUMENT('bst')
=ARGUMENT("tsk')
=ARGUMENT("tI')
=ARGUMENT("bf")

=(Mlim*RadyMOl!Moil(Rad,Nost,Ast,lst,tsk,bf,tl)
=Axlim/(2*PI0*Rad*(bst*tsk+tl*bf)/bst+Ast*Nost)

=RETURN(A31+A32)

ET_Stress -- Ultimate Stress.
=ARGUMENT('select")
=ARGUMENT("MUIt')
=ARGUMENT('AxUIt")

=ARGUMENT(=Rad ")
=ARGUMENT("Ec")

=ARGUMENT("tsk")
=ARGUMENT("bst")
=ARGUMENT("Ast")
=ARGUMENT("bf")
=ARGUMENT("tI")
=ARGUMENT("d")
=ARGUMENT("nu")

?4
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Stress

Nxult=-(MUIt/PI 0/RadA2+AxUI'd2/PI 0/Rad)

Nyuit=0

k_ MAX(BruhnFig!FigC5.6(bst/tsk,1 ),BruhnFig!FigCg.1 (MIN(bst,d)A2/Rad/tsk*(

For= -kc*PIOA2*Ec/(12*(1 -nuA2))*(tsk/bst)A2
AJd=bf*(tsk+tl)
tsm=(Ast+AId+(bst-bf)*tsk)/bst

tb=(tsk+(tsk+tl)y2
Fskp= 1/tsm'(Nxult+nu*Nyult*(tsm-tsk)/tsk)

=SET.VALUE(B63,Fskp)
AId=bf*(tsk+tl)
we= 1.7*tb*SQRT(ABS(Ec/Fskp))
=IF((Fskp)>=Fcr,RETURN('No Skin Failure'))
Pb= 0.9*Fcr*tsk*(bst-we)
Ro¢=Nxult*bst
Pwe= Ptot-Pb

Nxp= Pwe/we

tsrn=(Ast+AId+(we-bf)*tsk)/we

Fskp= 1/tsm*(N xp+0.33*Nyult*(tsm-tsk)/tsk)

we=1.7*tb*SQ RT(ABS(Ec/Fskp))
=lF(we>bst,SET.NAME('we',bst))

=lF(we<bf,SET.NAME('AId',we*(tsk+tl)))

=IF(ABS(Fskp)-ABS(B63)>0.01 ,GOTO(A63))

-31503.5836277E

Fst= l/tsm* (Nxp-0.33*Nyult)
Fskin= 1/tsm*(Nxp+0.33*Nyult*(tsm-tsk)/tsk)
=IF(select= 1,RETU RN (Fskin), RETU R N(we))
=RETURN(Fskp)

Beam_Theory -- Ultimate Beam Theory.
=ARGUMENT("selecr')
=ARGUMENT('Mult")
=ARGUMENT("AxUIt")
=ARGUMENT('Rad")
=ARGUMENT("Ec")
=ARGUMENT("tsk")
=ARGUMENT("Nost")
=ARGUMENT("bst")
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Stress

=ARGUMENT('Ast')
=ARGUMENT('bf")
=ARGUMENT('tI")
=ARGUMENT("d")
=ARGUMENT('nu')
DA=2*PI0/Nost

Aid= (tl+tsk)*bf
tar= (tsk*(bst-bf)+Aid)fost
tb=(tsk+(tsk+tl))/2
moist=0

moisk= PI0*RadA3"lav

=FOR('Count', 1,Nost)
d=Rad*SlN((Count-1 )*DA)

=SET.NAME("moist',moist + Ast*dA2)

=NEXT 0

moi= moist+moisk

Cent--0

Area=2*PI0*Rad'tav+Nost*Ast
Aeff=0
Stressrnax= 0
wemax=0
Atrack= 0
DC---0
leff= 0

StressA= AxUIt/Area

kc= MAX(BruhnFig}FigC5.6(bst/tsk,1 ),BruhnFig{FigC9.1 (MIN(bst,d)^2/Rad/tsk*(

Fcr= -kc*PI0_2*Ec/(12*(1 -nuA2))*(tsk/bst)A2

=FOR('Count', 1,Nost)
d=Rad*StN((Count-1 )*DA)
Stress=- MUlt*(d-Cent)/moi-StressA

we=1.7*tb*SQRT(ABS(Ec/Stress))

=lF(we>bst,SEl'.NAME("we",bst))

=1F(Stress<Stressmax)
=SET.NAME("Stressmax",Stress)
=SET.NAM E("wemax",we)

=END.IF0

Ae=ABS((bst-we)*tsk*Fcr/Stress)
AId=bf*(tl+tsk)
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Stress

=lF(we<bf,SET.NAME('AId",we*(tl+tsk)))
tav=((we-bf)*tsk+AId)/we

=lF(we<bf,SET.NAME('tav",AId/we))

=SET.NAME('Aeff',Aeff+(we*tav+Ast+Ae))
=SET.NAM E('At rack',Atrack+(we*tav+Ast+Ae)*d)
=S ET.NAME(' leff',leff+(we*tav+Ast+Ae)*dA2)

=NEXT 0

=S ET.NAM E("DC',Cent-AtracldAeff)
=S ET.NAM E("Cent",Atrack/Aeff)

=SET.NAME(*Area",Aeff)

=S ET.NAM E("moi',leff+Aeff*DCA2)

=IF(ABS(DC)>O. 1,GOTO(A122))
=lF(select=l,RETURN(Stressmax),RETURN(wemax))
=RETURN("Macro Error")
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APPENDIX D

End-Fixity Coefficients

PREe, EDING P._GE BLANK ['lOT FILMED
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Lone Colu..---_.s(Cont 'd_
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4.0

_on_. Colu.-_ns (Cont'd)
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Lonm Coluruns (Cont'd]
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APPENDIX E

Bifurcation Buckling
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C

C

C

Source Code

This program utilizes the r.ezhzds put forth in "Design

Criteria for Axially Loaded £':-iindrical Shells" and

"Buckling of Bars, Plates, -=_-.5Shells", by
B.O. Almroth

Real Ist,Ir,Jst,Jr,nu,L,C(6,_,A(3,3),AO(2,2),Al(3,3),}_,P

Real Lam(15),Nx(15,18),Nxp(l_,iS),Ncl,Eta(15),Nwc,Ncr,mb

Real Pcr, Pcl(15,15),Pcla(15)

Integer m,n

CHARACTER TAB
CHARACTER CR

CHARACTER LF

TAB = CHAR(9)
CR = CHAR(13)

LF = CHAR(14)

pi = 3.14159

p=17.3
Stress = 19177.1
E = I0.8E6
nu = 0.33

G = E/2/(l+nu)
bs = 10.832

L = 40.08

Open(unit=3, file='Bifurcation. Dat',status='tunknown')

Write(3,'(/)')

Fpl = 5.8*pi**2*E/12/(l-nu**2)*(tsk/bs)**2

tsk = 0.126
Ast = 0.279

Ist = 0.04238

Jst = 0.023682
es = -0.77374

R = 165.5-tsk/2

twbar = tsk+Ast/bs

tebar = (Ast+tsk*bsk)/bs
Write(*,*)tebar

Ar = 0.0
Ir = 0.0

dr = 40.08
Jr = 0.0

er = 0.0

ii

i0

Cp = E*tsk/(l-nu**2)
D = E*tsk**3/12/(l-nu**2)

--'* Classical Bifuraction Buckling Analysis

DO l0 I=I,6
DO i! J=l,6

C(i,j) = 0.000
Continue

Continue

C(I,I) = Cp+E*Ast/bs
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15

21
20

31
3O

C(i,2 : nu'Op
C(I, 4', : E*Ast'es/bs

C(2,1) = nu*Cp

C(2,2) = Cp + E*Ar/dr
C(2,5) = E*Ar*er/dr

C(3,3) = G*tsk

C(4,1) = E*Ast*es/bs
C(4,4) = D+E/bs*(Ist+Ast*es**2)

C(4,5) = nu*D

C(5,2) = E*Ar*er/dr

C(5,4) = nu*D
C(5,5) = D + E/dr*(Ir+Ar*er**2)

C(6,6) = 2* (l-nu)*D + G* (Jst/bs+Jr/dr)

Write(3,15) ((C(i,j), i=1,6),j=1,6)
Format(6fl2.1)

Write(3,315)

DO 20 i=1,3

DO 21 j=l,3

A(i,j) = 0.0
Al(i,j) = 0.0
Continue
Continue

DO 30 1=1,2

DO 31 j/l,2
Ao(i,j) = 0.0
Continue

Continue

DO i01 nml,15

DO i00 n=l,15

nn = n+3

Lam(m) = (m*pi/L)**2
Eta(n) = (n/R)**2

A(I,I) = C(l,l)*Lam(m) + C(3,3)*Eta(n)

A(I,2) = (C(1,2) + C(3,3))*m*pi*n/L/R

A(I,3) = C(i,2 *m*pi/R/L+C(l,4)'L_r._m)*m*pi/L+
@(C(1,5)+2"C(3,6) *m*pi*Eta(n)/L

A(2,2< = C(2,2 "Eta(n) + C(3,3 *L_-: m}

A(2,2: = (C(l,=)+2*C(3,6))'Lam[m!'n ?.+C(2,2 "n/R**2+
?C(2,5)'Eta(n)*n R

A(3,2. = C(4,4)'Lam(m)**2+tC:6,6;-i't(4,5)_-Lam(m)*Eta(n)*
9C(5,5}'E_a(n)**2.C(2,2)/R'*2÷2*C{2,[ E*Eta{n:-
@2*C(l,_]'Lam(m)/R

ORP-._..N,AL PA'_£ IS

OF POOR QUALITY
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AO(I,i) = A{!,I)

AO(I,2) : A(!,2)

AO(2,1) : A(I,2)
AO(2,2) = A(2,2)

AI(I,I) : A(I,I)
AI(I,2) = A(I,2)

AI(I,3) : A(I 3)

AI(2,1) = A(I 2)
AI(2,2) = A(2 2)

AI(2,3) = A(2 3)

AI(3,1) = A(I 3)
A1(3,2) = A(2 3)

AI(3,3) = A(3 3)

DETAo = Ao (1,
DETAI = AI(I,

@-AI (I,2)* (AI(2,
@+AI (i, 3)* (AI (2,

I)*Ao(2,2)-Ao(2,1)*Ao(I,2)
I)*(AI(2,2)*AI(3,3)-AI(3,2)*AI(2,3))

I)*AI(3,3)-AI(3,1)*AI(2,3))
I)*AI(3,2)-AI(3,1)*AI(2,2))

Ny = -D*R

Nxp(m,n) = (i/Lam(m))*(DetAl/DetAo-Ny*Eta(n))

Nx(m, nn)=Nxp(m, nn-3)

If(m .EQ. 1 .AND. n .EQ.I) Ncl=Nxp(m,n)
If(Nxp(m,n) .LT. Ncl) Ncl = Nxp(m,n)

C
C211

C
C215

C

315

C
C415

i00
i01

Write (3,211) m,n
Format (2x, I2,3x, I2,3x, I2)

Write(3,215) ((Ao(i,j),i=l,2),j=l,2)

Format (2f12.2 )

Write (3,315)
Format (/ )

Write(3,415) ((Al(i,j),i=l,3),j=l,3)
Format(3f20.2)

Write(3,'(2x,''Nxp(''I2,1h,,I2,'')=

Continue
Continue

'',F20.4)') m,n,Nxp(m,n)

Write(,,':''Classical Bifurcation Buckling Allowa_le = '',

@f10.2)') l_cl
Write(3,''-_''Classica! Bifurcation _uckling A!l_z!e = '',

@f10.2)') Ncl

C
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C "'** Wide Column Buckl_n; Analys_s "'"

C

Cb44 = C(4,4)-C(1,41''2/C(I,I}

Cb55 = C(5,5)-C(2,5 --2/C(2,2)

Nwc = Cb44*(pi/L)*-2

Write(*,'(''Wide Column Buckling Allowable = ''.

@f10.2)') Nwc

Write(3,'("Wide Colun_ Buckling Allowable = '',

@f10.2,)') Nwc

Det = C(I,I)*C(2,2)-C(I,2)*-2

te = i/sclrt(5.46*(Cb44+Cb55)*C(2,2)/Det)

ROte = R/te

Phi = 6.48/ROTe**(0._4371769)

Write(*,*)ROTe,Phi

Ncr = Nwc+phi*(Ncl-Nwc)

Write(*,'(''Critical Buckling Allowable = '',

@f10.2,)') Ncr

Write(3,'(''Critical Buckling Allowable = '',

@f10.2,)') Ncr

Close (unit =3 )

Stop

End

0R_JNA[ PA_ Z IF:

OF POOR QLIALITY
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Output

88

805277.3

503943.5.0

215235.7
0

.0

Nxp( i, I)=
Nxp( i, 2)=

Nxp( i, 3)=
Nxp( i, 4)=

Nxp( I, 5)=

Nxp( i, 6)=

Nxp( i, 7)=
Nxp( i, 8)=

Nxp( I, 9)=
Nxp( i,I0)=

Nxp( i, II) =
Nxp( 1,12)=

Nxp( 1,13)=

Nxp( 1,14)=
Nxp( 1,15)=

Nxp( 2, I) =
Nxp( 2, 2)=

Nxp( 2, 3)=
Nxp( 2, 4)=

Nxp( 2, 5)=
Nxp( 2, 6)=

Nxp( 2, 7)=

Nxp( 2, 8)=
Nxp( 2, 9)=

Nxp( 2,10)=

Nxp( 2,11)=
Nxp( 2,12)=

Nxp( 2,13)=
Nxp( 2,14)=

Nxp( 2,15)=
Nxp( 3, I)=

Nxp( 3; 2)=
Nxp( 3, 3)=

Nxp( 3, 4)=

Nxp( 3, 5)=

Nxp( 3, 6)=
Nxp( 3, 7)=

Nxp( 3, 8)=
Nxp( 3, 9)=

Nxp( 3,10)=

Nxp( 3,11)=
Nxp( 3,12)=

:;xD( 3,13)=
Nxp( 3,14)=

Nxp{ 3,15)=

"_,x_<4, !]:
:_×'D(4, 2)=

"ix_< 4, 3)=
/Lxp: 4, 4}:

Nxp_ 4, 5):
",xp, 4, 6)=

"._xQ.< 4, 7):

"Lxp< 4, 8):
:L'qg! 4, 91=

:Txp< 4,10):

:]xp{ 4,11):

503943.5
1527101.4

.0

.0

.0

.0

.9

.0
511578.9

.0

.0

.0

9999.0313

9685.4014

9210.9961
8635.0781

8020.2241
7421.9658

6883.0952

6432.3403
6085.9292

5850.4272

5725.7290

5707.5947
5789.5723
5964.3306

6224.4766
7329 5503

7305 3750
7266 5332

7215 0884

7153 7222
7085 5566

7013.9600
6942.3750

6874.1475

6812.4028
6759.9502

6719.2285
6692.2764

6680.7324
6685.8589

11878 1318
11871 6064

11860 9795

11846 6309
11829 0645

11808 8945

11786.8398
11763.6924

11740.2871

11717.5029
11696.2227

11677.3135
I1661.624C

11649.9580
11643.0674

19441.2724

19433.1367
19432.9961

19425.9992
19417.2949

19407.!345
19395.7?22

19383.543.3

19370.752C
19357.7754

19344.9893

-215235.7

.0

.0

210811.6

666.7
.0

.0

.0

.0

666.7

2020.4
.0

o = Cq:o
.0

11584.

OF P¢<;_ QOALi]_
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NxD< 4,12',=

NXp( 4,_)=_

Nxp( 4,14)=
NXp( 4,15)=

Nxp( 5, i)=

Nxp( 5, 2)=
Nxp( 5, 3)=

NXp( 5, 4)=

Nxp( 5, 5)=
Nxp( 5, 6)=

Nxp( 5, 7)=
Nxp( 5, 8)=

Nxp( 5, 9)=
Nxp( 5,10)=

Nxp( 5,11)=

Nxp( 5,12)=

Nxp( 5,13)=
Nxp( 5,14)=

NxD( 5,15)=
Nxp( 6, i)=

Nxp( 6, 2)=

Nxp( 6, 3)=
Nxp( 6, 4)=

Nxp( 6, 5)=
Nxp( 6, 6)=

NxD( 6, 7)=

Nxp( 6, 8)=
Nxp( 6, 9)=

Nxp( 6,10)=
Nxp( 6,11)=

Nxp( 6,12)=
Nxp( 6,13)=

NoqD( 6, 14) =

Nxp( 6,15)=
NxD( 7, i)=

Nxp( 7, 2)=
Nxp( 7, 3)=

Nxp( 7, 4)=

Nxp( 7, 5)=
Nxp( 7, 6)=

Nxp( 7, 7)=
Nxp( 7., 8)=

Nxp( 7, 9)=
Nxp( 7,10)=

Nxp( 7,11)=

Nxp( 7,12)=
Nxp( 7,13)=

Nxp( 7,14)=
Nxp( 7,15)=

Nxp( 8, I)=

Nxp( 8, 2)=
Nxp( 8, 3}=

Nxp( 8, 4)=
NxD( 8, 5)=

Nxp( 8, 6)=
Nxp( _, 7):

Nx_( _ 8)=

Nxp( _ 9)=
NxD( ? I0)=
Nxp( 3 ii)=

Nxp( 9 12)=
Nxp( ? i3)=

Nxp( S 14)=

Nxp( 9,15)=

Nxp< 9, i)=
Nxp( 9, 2)=

19332.7852

19321.5801

19311.7734

19303.7695

29494.0020
29491.9316

29488.5430
29483.8848

29478 0527

29471 1543
29463 3281

29454 7402
29445 5605

29435 9785

29426 1934
29416 4414

29406.9414

29397.9355
29389.6680

41906.3320

41904.7266
41902.0664

41898.3984
41893.7773

41888.2695
41881.9609

41874.9375

41867.3008
41859 1953

41850 7305
41842 0508

41833 3008

41824 6367
41816 2188

56633.6836

56632.3086
56630.0234

56626,8633
56622.8477

56618.0430

56612.4961
56606.2617

56599.4336
56592.0703

56584.2813
56576.1328

56567.7500
56559 2500

56550 7305

73657 4219
73656 1563

73654 0859
73651 2109

73647 5469
73643 1484

73638 0313
73632.2578

73625.8828
73618.9531

73611.5391
73603.7109

73595.5234

73587.0938
73578.4844

92968.5938

92967.4297

OkI_NA[. F.9.:3_7!S

OF 80OR QUAL;TY
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Nxp( 9, 3)=

Nxp( 9, 4)=

Nxp( 9, 5)=

Nxp( 9, 6)=

Nxp( 9, 7)=
Nxp( 9, 8)=

Nxp( 9, 9)=
Nxp( 9,10)=

Nxp( 9,11)=
Nxp( 9,12)=

Nxp( 9, 13)=
Nxp( 9,14)=

Nxp( 9,15)=
Nxp(10, I)=
Nxp (i0, 2)=

Nxp(10, 3)=

Nxp(10, 4)=
Nxp(10, 5)=

NXp (i0, 6)=
Nxp (i0, 7)=

Nxp (I0, 8)--

Nxp(10, 9)=

Nxp (i0, i0) =
Nxp(10, 11) =
Nxp (i0, 12)=

Nxp(10, 13)=

Nxp (10, 14) =
Nxp(10,15)=
Nxp (11, 1)=
Nxp (11, 2)=

Nxp (11, 3)=
Nxp (11, 4)=

Nxp (11, 5)=
Nxp (11, 6)=

Nxp (11, 7)=
Nxp (11, 8)_

Nxp (11, 9)=

Nxp (11, 10)=
Nxp(11, 11) =

Nxp (11, 12) =
Nxp (11, 13) =

Nxp (11 14)=
Nxp (11 15)=

Nxp (12 i)=

Nxp (12 2)=
Nxp (12 3)=

Nxp (12 4)=
Nxp (12 5)=

Nxp(12 6)=

Nxp (12 7)=
Nxp (12 8)=

Nxp (12 9)=

Nxp (12 i0)=
Nxp (12 Ii)=

Nxp (12 12)=
Nxp (12 13)=

Nxp (12 14)=
Nxp (12 15)=

Nxp(13 1)=

Nxp (13 2)=
Nxp(13 3)=

Nxp( 13 4)=
Nxp (13, 5)=

Nxp (13, 6)=

Nxp( 13, 7)=
Nxp(13, 8)=

92965.4844

92962.7813
92959.3516

92955.1797

92950.3438

92944.8672
92938.7578

92932.0859
92924.9141

92917.2734
92909.2109

92900.8125
92892.1484

114562.5625

114561.4453
114559.5938

114557.0234

114553 7031
114549 7344

114545 0547
114539 7578

114533 8516

114527 3594
114520 3359

114512 8203
114504 8516

114496 4531
114487 7578

138436 6719
138435 5781

138433 7969
138431 2969

138428 0781
138424 2031

138419.6719

138414.5313
138408.7344

138402.3438
138395.4688

138388.0000

138380.0938
138371.7500

138362.9688
164589.2188

164588.1563
164586.3906

164583.9844
164580.8281

164577.0469

164572.6250
164567.5469

164561.8906

164555.5625
164548.7188

164541.3594
164533.4844

164525.0938

164516.3594
193019.3281

193018.2969
193016.5781

193014.1S75

193011.1406
193007.3906

193003.0000
192998.0313
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i_xp( 13, 9)=

Nxp (13, i0) =

Nxp(13, ii)=

Nxp (13,12) =

Nxp(13,13) =

Nxp(13,14 =

Nxp(13, 15 =

Nxp(14, 1 =

Nxp(14, 2 =

Nxp(14, 3 =

Nxp(14, 4 =

Nxp (14, 5)=

Nxp (14, 6)=

Nxp(14 7)=

Nxp(14 8)=

Nxp(14 9)=

Nxp (14 i0)=

Nxp (14 ii)=

Nxp (14 12)=

Nxp (14,13)=

Nxp(14,14) =

Nxp (14,15)=

Nxp (15, i)=

Nxp (15, 2)=

Nxp (15, 3)=

Nxp( 15, 4)=

Nxp (15, 5)=

Nxp (15, 6)=

Nxp (15, 7)=

Nxp(15, 8)=
Nxp (15, 9)=

Nxp(15, i0) =

Nxp(15, 11) =

Nxp (15,12) =

Nxp(15, 13) =

Nxp (15, 14) =

Nxp(15,15) =

192992.3906

192986.2031

192979.3750

192972 0625

192964 2188

192955 8594

192947 0625

223726 2344

223725 1719

223723 5156

223721 0938

223718 1406

223714 4531

223710 1250

223705 1875

223699.6094

223693.4531

223686.6875

223679.3750

223671.5781

223663.2031

223654.3750

256709.4375

256708.4219

256706.7656

256704.4688

256701.4063

256697.8125

256693.5000

256688.5938

256683.1406

256676.9688

256670.2656

256662.9844

256655.1563

256646.8125

256637.9375

Classical Bifurcation Buckling Allowable =

wide Colun_ Buckling Allowable = 1137.54

Critical Buckling Allowable = 3231.44

5707.59
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APPENDIX F

Margin of Safety Calculations

pREt_I,EDrlNG P_IGE BLANK I'_.OT FILMED

93

https://www.abbottaerospace.com/technical-library/


General Instability

Shanley

Margins of Safety

Mcn = 272,794,759 in-lb

Peq 2M=-.-g-

Peq = 3,296,613 lb

_ Peq
Load per stringer column - -_- = 34,339.72 lb

Area per column = 0.8183 in 2

P,q 34,339.72
Stress (allowable) = _ = 0.8183 =41,964.7 Ib/in 2

O'ALLOWABLE> O'YIELD "'" FCR = Fcy= 38,000 lb/in 2

38,000
MS = _ - 1 = 0.2062.

[Bruhn, "Missiles," page E 1.98]
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Local Stringer Buckling

Margins of Safety

FcR= 51,000 lb/in 2

Limit Stress - 13,730 lb/in 2

51,000
MS ='i3,730

Column Buckling and Stringer Cripplinz

1 = 2.715.

Lowest critical stress in the column results from Euler buckling.

FcRE_ = 15,917 lb/in 2

15,917 1 =-0.4947
MS = _ 1,503
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Margin of Safety

Skin Buckling: Combined Compression and Shear

MS = 2

Rc+[R2c+4R_] 'n

fc fs
RC=_CcR, RS=Fs----_

13,729.9 1.7551
Rc= 7,823 =

MS-

R 713.1
s = _ = 0.0874

2

1.7551+[(1.7551) 2+4(0.0874) 2] in

MS = -0.4316

[Bruhn, "Aircraft," page C5.11]

-1
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