

Software Development Plan

for the
Human Research Facility

CCB CONTROLLED

National Aeronautics and
Space Administration

Lyndon B. Johnson Space Center
Houston, Texas 77058

LS-71020B

January 2001
Rev. B

Change B-3

PROJECT DOCUMENT APPROVAL SHEET

DOCUMENT NUMBER DATE NO. OF
LS-71020B 1/11/01 PAGES 110

TITLE:

Software Development Plan
for the

Human Research Facility

APPROVED: NT3/GFE Assurance Branch Original Signature on File 1-3-01

APPROVED: SF4/C. Haven
Configuration Control Manager Original Signature on File 1/5/01

APPROVED: SF2/D. Grounds
HRF Program Manager Original Signature on File 1/11/01

DATE PREPARED BY CHANGE APPROVALS CHANGE
NUMBER

6/28/01

10/1/01

02/05/04

M. Klee

M. Klee

M. Klee

Reference CCBD: HLP1-D020&020-1-0001

Reference CCBD: HLP1-D020&002

Reference CCBD: HLP1-D020-005-0001

B-1

 B-2

 B-3

JSC FORM 604 (REV JUL 81) NASA-JSC

Report Number LS-71020B Date 12/05/00

Software Development Plan
for the

Human Research Facility

Prepared by: Original Signature on File
Margaret Klee
Software Development Project Manager

11/22/00
Date

Approved: Original Signature on File
Mark Scott
HRF Software Quality Assurance

12/04/00
Date

Approved: Original Signature on File
Gloria Salinas
Technical Work Plan Manager

12/15/00
Date

Prepared by:

Lockheed Martin Space Operations
Houston, Texas

For
National Aeronautics and Space Administration

Johnson Space Center

REVISION/CHANGE APPROVALS

 Revision Change Approved by:
Date Letter Number Prepared by

Unit Manager SR&QA Manager Projects Manager

6/28/01 B-1 M. Klee Reference: CCBD:HLP1-D020&020-1-0001

10/1/01 B-2 M. Klee Reference: CCBD:HLP1-D020-0002

02/05/04 B-3 M. Klee Reference: CCBD:HLP1-D020-0005-0001

Lockheed Martin Space Operations (March 1999)

DOCUMENT NUMBER DOCUMENT CHANGE/ PAGE 1 OF 1
LS-71020B REVISION LOG

CHANGE/
REVISION DATE DESCRIPTION OF CHANGE PAGES

AFFECTED

Basic 12/17/97 Baseline Issue

1 4/3//98 Update to correct documentation references, minor process
improvements and document corrections – Reference CCBD:
HPP1-D020-0052

V, 1-1.5-9,
5-10, A-24,
A-25, A-28,
A-29

2 10/1/98 Configuration Control Board Directive HJP1-D020-0012 was
prepared to officially baseline this document

Cover, Document
Change/Revision
Log

A 12/113/99 Complete Revision. See CCBD: HJ00-D020-0002 All

B 1/11/01 Complete Revision. See CCBD: HJ00-D020-0003 All

B-1 6/28/01 Updated Section 4.1 Software Process Overview; Section 5.5
CSCI Integration and Testing; Section 5.6 System Integration
Testing; Section 5.8 Preparing Software for Use; Section 8.0
Notes; and Appendix A3.0. Added Appendix D and
Appendix E.

Contents, 4-1, 4-
5,5-7,508, 5-11,
8-1, A-26, A-31,
and A-35. Add
Appendix D and
Appendix E.

B-2 10/1/01 Updated Appendix A, Appendix D, and Appendix E per
CCBD: HLP1-D20-0002.

A-4 through A-
8, A-34 through
A-36, D-4, E-1
through E-4-6

B-3 02/05/04 Updated the Acronyms, Contents for the Appendix,
Acronyms, Section 2.0 Reference Documents, Section 5.9.5
Storage, Handling and Delivery of Project Software, and
Appendix A. Added Appendix F and Appendix G -
Referenced CCBD: HLP1-D020-005-0001.

v, vi, Appendix i
through
Appendix iii,
2-1, 5-12, A-38,
A-39, F-1
through F-6, G-1
through G-3.

Altered pages must be typed and distributed for insertion.
JSC Form 278 (rev APR 81) nasa-jsc

LS-71020B-11/21/00 i

CONTENTS

Section Page
1.0 SCOPE 1-1
1.1 IDENTIFICATION 1-1
1.2 SYSTEM OVERVIEW 1-1
1.3 DOCUMENT OVERVIEW 1-2

2.0 REFERENCED DOCUMENTS 2-1

3.0 DEFINITION AND ASSUMPTIONS 3-1
3.1 TYPES OF SOFTWARE 3-1
3.1.1 Flight Software 3-1
3.1.2 Ground Support Software 3-1
3.1.3 Test and Simulation Software 3-1
3.2 SOFTWARE CATEGORIES 3-1
3.2.1 HRF Unique Software 3-1
3.2.2 Non-Developmental Software 3-2
3.3 REQUIREMENT DOCUMENTATION 3-3
3.4 CONFIGURATION ITEMS 3-4
3.4.1 Computer Software Configuration Item 3-4
3.4.2 Computer Software Unit 3-4
3.5 ROLES AND RESPONSIBILITIES 3-4
3.6 ASSUMPTIONS 3-4

4.0 SOFTWARE DEVELOPMENT PROCESS 4-1
4.1 SOFTWARE PROCESS OVERVIEW 4-1
4.2 SOFTWARE DEVELOPMENT METHODS 4-5
4.3 STANDARDS FOR SOFTWARE PRODUCTS 4-7
4.4 HANDLING CRITICAL REQUIREMENTS 4-8
4.5 RECORDING RATIONALE 4-8

5.0 SOFTWARE DEVELOPMENT ACTIVITIES 5-1
5.1 ESTABLISHING A SOFTWARE DEVELOPMENT ENVIRONMENT 5-1
5.1.1 Software Engineering Environment 5-1
5.1.2 Software Test Environment 5-1
5.1.3 Software Configuration Library 5-1
5.1.4 Firmware Management 5-1
5.1.5 Software Development Files 5-2
5.2 SYSTEM REQUIREMENTS ANALYSIS AND SYSTEM DESIGN 5-2

LS-71020B-11/21/00 ii

CONTENTS (Cont'd)

Section Page
5.3 SOFTWARE DESIGN 5-3
5.3.1 Software Requirements and Preliminary Design (Flight Software Only) 5-3
5.3.2 Software Detailed Design 5-5
5.4 SOFTWARE IMPLEMENTATION AND UNIT TESTING 5-6
5.5 CSCI INTEGRATION AND TESTING 5-7
5.6 SYSTEM INTEGRATION TESTING 5-8
5.7 CSCI QUALIFICATION TESTING (FLIGHT SOFTWARE ONLY) 5-9
5.8 PREPARING SOFTWARE FOR USE 5-11
5.9 SOFTWARE CONFIGURATION MANAGEMENT 5-11
5.9.1 Configuration Identification 5-12
5.9.2 Configuration Control 5-12
5.9.3 Configuration Status Accounting 5-12
5.9.4 Configuration Audits 5-12
5.9.5 Storage, Handling and Delivery of Project Software 5-12
5.10 SOFTWARE QUALITY ASSURANCE 5-13
5.11 CORRECTIVE ACTION 5-13
5.11.1 Problem/Change Reports 5-13
5.11.2 Corrective Action System 5-13
5.12 REVIEWS 5-13
5.13 RISK MANAGEMENT 5-14
5.14 SECURITY AND PRIVACY 5-14
5.15 SUBCONTRACTOR MANAGEMENT 5-14
5.16 PROCESS IMPROVEMENT 5-14

6.0 SCHEDULES 6-1

7.0 PROJECT ORGANIZATION AND RESOURCES 7-1

8.0 NOTES 8-1

APPENDIX A DOCUMENT TEMPLATES A-1
APPENDIX B REVIEW CHECKLISTS B-1
APPENDIX C HRF CODING STYLE GUIDE C-1
APPENDIX D HRF SOFTWARE TESTING GUIDELINES D-1
APPENDIX E HRF MEDIA PART NUMBERS AND LABELING GUIDELINES E-1

LS-71020B-11/21/00 iii

LIST OF TABLES

Table Page
3.5-1 HRF SOFTWARE DEVELOPMENT ROLES AND RESPONSIBILITIES 3-5

4.1-1 LIFECYCLE PHASE VERSES SOFTWARE TYPE AND CATEGORY 4-4

5.2-1 SUMMARY OF SYSTEM REQUIREMENTS ANALYSIS AND

SYSTEM DESIGN 5-3
5.3.1-1 SUMMARY OF SOFTWARE REQUIREMENTS AND PRELIMINARY

DESIGN 5-4
5.3.2-1 SUMMARY OF SOFTWARE DETAILED DESIGN 5-6
5.4-1 SUMMARY OF SOFTWARE IMPLEMENTATION AND UNIT

TESTING 5-7
5.5-1 SUMMARY OF CSCI INTEGRATION AND TESTING 5-8
5.6-1 SUMMARY OF SYSTEM INTEGRATION TESTING 5-9
5.7-1 SUMMARY OF CSCI QUALIFICATION TESTING 5-10

LS-71020B-11/21/00 iv

LIST OF FIGURES

Figure Page
4.1-1 HRF Software Development Process for Flight Software 4-2
4.1-2 HRF Software Development Process for Ground Support, Test and

Simulation, Software 4-3
4.1-3 HRF Software Change Process 4-6

LS-71020B-02/03/04 v

B-3

B-3

B-3

B-3

B-3

B-3

B-3

ACRONYMS AND ABBREVIATIONS

ADP Acceptance Data Package

CCB Configuration Control Board
CD Compact Disc
CDR Critical Design Review
CHeCS Crew Health Care System
CI Configuration Item
CM Configuration Management
CMS Configuration Management System
COTS Commercial Off-The-Shelf
CPU Central Processing Unit
CQT CSCI Qualification Testing
CR Change Request
CSCI Computer Software Configuration Item
CSU Computer Software Unit

DBMS Database Management System
DR Discrepancy Report

EPI Engineering Process Improvement
EPROM Erasable Programmable Read Only Memory
EXPRESS EXpedite the PRocessing of Experiments to Space Station

FRD Functional Requirements Document
FTP File Transfer Protocol

GCAR Government Certification Acceptance Report
GSS Ground Support Software
GUI Graphical User Interface

HCI Human-Computer Interface
HDP Hardware Development Plan
HRD Hardware Requirements Document
HRF Human Research Facility

ICD Interface Control Document
IDD Interface Definition Document
IEEE Institute of Electrical and Electronics Engineers
IP International Partner
ISS International Space Station

JSC Johnson Space Center

KSC Kennedy Space Center

LMSO Lockheed Martin Space Operations

MB Megabytes
MDM Multiplexer/Demultiplexer
MOTS Modified COTS

LS-71020B-02/03/04 vi

B-3

B-3

B-3

B-3

B-3

B-3

B-3

B-3

ACRONYMS AND ABBREVIATIONS (Cont’d)

MPLM Mini Pressurized Logistics Module
MRB Material Review Board
MSFC Marshall Space Flight Center

NASA National Aeronautics and Space Administration
NDS Non-Developmental Software

OCA Orbiter Communication Adapter
OCR Operations Change Request

PAR Payload Anomaly Report
PC Portable Computer
PCM Program Change Memo
PCMCIA Portable Computer Memory Card International Adapter
PI Principal Investigator
PIMS Payload Information Management System
POIC Payload Operation and Integration Center
PRD Program Requirements Document
PROM Programmable Read Only Memory
PSE Payload System Engineer

RIC Rack Interface Controller
RICO Real-time Information Control Officer
ROM Read Only Memory
RTM Requirements Traceability Matrix

SDD Software Design Document
SDF Software Development File
SDP Software Development Plan
SIT System Integration Testing
SQA Software Quality Assurance

TDIC Technical Documentation and Information Center
TPS Task Performance Sheet
TSC Telescience Support Center

VDD Version Description Document/Drawing

LS-71020B-11/20/00 1-1

1.0 SCOPE

1.1 IDENTIFICATION

The Software Development Plan (SDP) for the Human Research Facility (HRF)
establishes the programmatic requirements, policies, procedures and guidelines for
software development, testing and sustaining engineering in addition to those
requirements set forth in the Program Requirements Document (PRD) for the HRF
(LS-71000). The following types of software will be either developed or acquired for
the HRF to fulfill the Functional Requirements Document (FRD) for the HRF
(LS-71001) and PRD specifications:

a) Flight Software

b) Ground Support Software (GSS)

c) Test and Simulation Software

This SDP establishes the policies, procedures and guidelines for development, testing
and sustaining engineering of software developed for HRF experiments. The SDP
document templates illustrate how requirements traceability from the Hardware
Requirements Document (HRD) to the HRF Software Requirement and implementing
computer software configuration item (CSCI) is managed. Configuration
Management policies and procedures for HRF software are documented in the
Software Configuration Management Plan and Procedures for the HRF (LS-71020-1).

The Display and Graphics Commonality Standard (SSP 50313) and the Human-
Computer Interface (HCI) Design Guide (LS-71130) shall be referenced for all user
interfaces and display software development.

1.2 SYSTEM OVERVIEW

The HRF is a facility class payload that consists of a suite of generic human life
sciences hardware needed to support a multidisciplinary research program that
encompasses basic, applied, and operations research. The HRF will include
equipment to support research to understand the effects of weightlessness and the
space environment on human systems and to develop, where appropriate, methods to
counteract these effects for ensuring safe and efficient crew operations.

Basic research and clinical investigations from both the intramural and extramural
communities, as well as investigations from other federal agencies and the
international community, will all be conducted using the HRF. All hardware/system
elements to be used during the conduct of human research on the International Space
Station (ISS) may not necessarily be included in the HRF racks. The ability to
conduct thorough, multidisciplinary investigations will depend on the interaction of
the HRF with the ISS systems, the Crew Health Care System (CHeCS) program, and
other hardware provided by the international partners. In addition, the HRF
subsystems and experiment packages will be modular in design so that the HRF can
be configured to meet many sets of research objectives for the duration of the ISS
program.

The HRF will be developed in multiple phases, or launch packages. Each launch
package is comprised of science instruments or integrated experiments. This

LS-71020B-11/20/00 1-2

equipment is installed in a customized EXpedite the PRocessing of Experiments to
Space Station (EXPRESS) rack or stowed in stowage trays or drawers external to the
integrated rack. Each launch package is designed such that the entire complement of
equipment can be manifested for flight to orbit in a Mini Pressurized Logistics
Module (MPLM) with some elements installed in the mid-deck of the Space Shuttle.
Final integration of the launch packages will occur on-orbit.

1.3 DOCUMENT OVERVIEW

The HRF SDP contains the requirements of the software development process,
requirements for implementing the process, and templates for the software document
products identified. The SDP contents and templates are based on information
contained in Institute of Electrical and Electronics Engineers (IEEE) 1498 and the
methods presented in the Standards and Practices Manual for Software Engineering.
In addition, this document complies with the Lockheed Martin Quality System
Manual (QSM) and Quality System Procedure (QSPs), which embody the
International Standards Organization (ISO) 9000-series requirements.

Document templates are located in Appendix A. Process checklists are located in
Appendix B.

LS-71020B-02/03/04 2-1

2.0 REFERENCED DOCUMENTS

Document No. Rev. Document Title

IEEE-1498 Draft 2 Standard for Information Technology, Software
Life-Cycle Processes, Software Development,
Acquirer-Supplier Agreement

JPD 5335.1 A Lyndon B. Johnson Space Center Quality Manual

JSCM 2410.11 Baseline JSC Automated Information Systems (AIS)
Security Manual

LMSEAT-31474 See Web Standards and Practices Manual for Software
Engineering (Website:
https://www.hop.hou.lmsg.lmco.com/seat/prog_
only/dept/s20/iso9001/SoftEngr/Frame.htm
NOTE: Access to this document requires access to

the LMSO internal network.

LS-71000 A Program Requirements Document for the Human
Research Facility

LS-71001 A Functional Requirements Document for the Human
Research Facility

LS-71005 A Configuration Management Plan for the Human
Research Facility

LS-71020-1 A Software Configuration Management Plan and
Procedure for the Human Research Facility

LS-71130 Baseline Human-Computer Interface (HCI) Design Guide for
the Human Research Facility (HRF)

LS-71147-3 Check with
TDIC for
most recent
version

HRF Rack Integration Test Procedure: Software
Integration Procedure

MIL-STD-100 E Engineering Drawing Practices

NASA-STD-
8719.13A

 Software Safety NASA Technical Standard

SSP 50313 See Web Display and Graphics Commonality Standard
(website: flight.jsc.nasa.gov/IDAGS/dgcs.html)

B-3

B-3

LS-71020B-11/20/00 3-1

3.0 DEFINITION AND ASSUMPTIONS

3.1 TYPES OF SOFTWARE

3.1.1 Flight Software

Flight software is the software that will be installed on the flight articles and will be
used on-orbit. Software written for experiments and that will be used on-orbit is
considered flight software.

3.1.2 Ground Support Software

GSS is the software used to test and/or verify flight hardware and/or flight software.
GSS must be tested to the same standards as flight software. Specific process waivers
for GSS and identified in Section 5.

3.1.3 Test and Simulation Software

Test software and simulations will provide the environment for the integration and
verification of the HRF flight software and avionics from software development
through integration. This will involve the test environment with End-Item and
segment simulations; environmental simulations which represent the HRF on-orbit
environment and dynamics; and, sensor/effector simulations. Some simulations will
be reused in verification activities at multiple facilities (i.e., End-Item, Stage, and
Launch Package).

HRF personnel will select the appropriate type of test software to support CSCI
testing.

3.2 SOFTWARE CATEGORIES

There are two general categories of software: HRF Unique software and Non-
Developmental Software (NDS). The following sections further specify these general
categories.

3.2.1 HRF Unique Software

HRF unique software consists of all software written by HRF personnel specifically
for HRF. There are four types of HRF unique software:

a) Custom-build Software

b) Modified Commercial Off-The-Shelf (COTS) Software

c) Modified Government Furnished Software (GFS)

d) Data and Configuration Files

3.2.1.1 Custom-Build Software

Custom-build software is software written by HRF personnel based on requirements
defined in a requirements document to meet specifications in the FRD, PRD or other
source.

LS-71020B-11/20/00 3-2

3.2.1.2 Modified COTS (MOTS) Software

MOTS software is COTS software that must be customized for HRF use. All
modified portions of the COTS software must comply with the same development and
documentation standards and procedures as custom-build software. Supplier
documentation can be included in HRF documents by reference. Prior to
modification, all COTS software shall be inspected for completeness of programs and
documentation, and undergo testing to ensure the absence of software viruses.
Completion of this routine check-in procedure shall be documented in the Software
Development File (SDF) of the affected CSCI.

3.2.1.3 Modified GFS

Modified GFS is GFS that must be customized for HRF use. All modified portions of
the GFS software must comply with the same development and documentation
standards and procedures as custom-build software. Supplier documentation can be
included in HRF documents by reference. Prior to modification, GFS shall be
inspected for completeness of programs and documentation, and undergo testing to
ensure the absence of software viruses. Completion of this routine check-in
procedure shall be documented in the SDF of the affected CSCI.

3.2.1.4 Data and Configuration Files

Data and configuration files are those files generated to provide initial data of
configuration to a program or the system. These files are text files, but some may
contain binary information. Data and configuration files shall be treated the same as
the software they support. For instance, flight data and configuration files will be
documented and tested to the same level as flight software.

3.2.2 Non-Developmental Software

NDS includes COTS and GFS. The use of NDS is encouraged on the HRF since it
will provide many of the needed capabilities without the associated development
costs. It will also simplify training since HRF personnel may already be familiar with
the software.

Compliance of NDS to the requirements will be evaluated utilizing the following
criteria:

a) Commercial, government, internal manuals or specifications, demonstrated

results, test reports, or other performance data exist, prior to its incorporation,
evidencing that the software meets requirements;

b) Software is placed under configuration control prior to its incorporation. This
ensures that upgrades or changes that alter software or system operation are
properly qualified. In-house modifications to NDS will be treated as new
development; and

c) Data rights and provisions are, by extension, the same as those required by the
contract.

LS-71020B-11/20/00 3-3

All received NDS shall be inspected for completeness of programs and
documentation, and undergo testing to ensure the absence of software viruses.
Completion of this routine check-in procedure shall be documented in the SDF of the
affected CSCI.

3.2.2.1 COTS Software

COTS software is generally considered to be commercially-available software and is a
low-risk, low-cost alternative to developing new software. Software developed and
maintained by vendors for use by the HRF project is also considered to be COTS
software. COTS software shall be free of computer viruses and Year 2000 compliant.

Provisions should be made with the COTS vendor to provide support for this software
over the life of the HRF program. This support should be in the form of a renewable
service contract or an escrow account containing the source code, tools required to
build the executable, and any available design documentation.

3.2.2.2 Government Furnished Software

GFS is software provided by National Aeronautics and Space Administration (NASA)
for use on HRF. This software may have been developed by HRF personnel, but not
under the HRF project.

Experiment unique software not generated through HRF Technical Work Packages
will be treated as Government Furnished Software.

3.3 REQUIREMENT DOCUMENTATION

Software requirements shall be documented as follows for each type of software:

• Requirements for Flight software shall be defined in a HRD, or an equivalent

document.

• Requirements for Test and Simulation software that will be used to perform
development and qualification testing for Flight software shall be documented in
the software item’s test plan.

• Requirements for GSS, and generic Test and Simulation software shall be
documented in a requirements document or an engineering memo that states the
requirements. The Project Manager shall determine the documentation method
based on complexity of the software.

The modular nature of the HRF hardware and software facilitates both stand-alone
and integrated operations. Integrated operations of multiple HRF components does
not dictate additional operational requirements as HRF requirements have been
written in such a manner as to satisfy stand-alone and/or integrated operations. Thus
any interdependencies between hardware and software have been accommodated in
the modular nature of the overall HRF design.

Should a question arise as to the proper requirements documentation method, the
question shall be resolved by the Technical Work Package Manager.

To simplify this document, all requirements documents will be referred to as HRDs.

LS-71020B-11/20/00 3-4

3.4 CONFIGURATION ITEMS

3.4.1 Computer Software Configuration Item

A CSCI is an aggregation of software or firmware which satisfies an end use function
and is designated for configuration management. Flight CSCIs are formally tested
with Software Quality Assurance (SQA) participation.

3.4.2 Computer Software Unit

A Computer Software Unit (CSU) is a distinct part of a CSCI that is specified in the
design and is separately testable during software implementation phase. CSUs are not
formally tested.

3.5 ROLES AND RESPONSIBILITIES

Table 3.5-1 contains the roles identified for HRF personnel associated with software
development. The table includes the role definition, and the role responsibilities. An
individual assigned to a software development effort may perform several roles over
the course of the lifecycle. The software development activities performed by an
individual depend on their role and the lifecycle phase. Note, all individuals are
responsible for identifying process improvement opportunities.

3.6 ASSUMPTIONS

COTS software will be used whenever possible.

Interfaces to the ISS will be through the EXPRESS Rack Interface Controller (RIC)

Test Plans must be produced for NDS but will not require as exhaustive a testing
regimen as HRF unique software. Interfaces and hardware-peculiar aspects must be
fully tested. The verification and validation approach for NDS software is determined
by the origin and assessed risk of the software. NDS software is not required to be
formally tested and is allowed to contain unused logic. Testing will test only the
function, performance and compatibility at the product level unless there is reason to
believe that the NDS logic is causing logic errors. Executable code must also be
included. A User Guide from the supplier is acceptable if the reporting requirements
are satisfied

LS-71020B-11/20/00 3-5

TABLE 3.5-1 HRF SOFTWARE DEVELOPMENT ROLES AND RESPONSIBILITIES

Software Development Role Definition and Responsibilities

Technical Work Package
Manager

Responsible for technical, cost and schedule performance for those items funded by
the technical work package.
• Review and signature approval on all software documents
• Assure compliance with the procedures identified in this SDP

Project Manager Responsible for technical, cost and schedule performance for an item.
• Review and signature approval on all software documents
• Assure compliance with the procedures identified in this SDP
• Conduct required reviews
• Generate requirements and design
• Direct activities of the software developers assigned to the item
• Tailor documentation templates as needed
• Ensure all applicable software documentation is generated
• Ensure CSCI complies with requirements
• Participate in process deviation discussions and approval

Responsible Engineer/Lead Responsible for technical performance for an item.
• Conduct required reviews
• Generate requirements and design
• Direct activities of the software developers assigned to the item
• Tailor documentation templates as needed
• Ensure all applicable software documentation is generated
• Ensure CSCI complies with requirements
• Participate in process deviation discussions and approval

Software Developer Responsible for the technical content of a CSU/CSCI.
• Assist with the generation of all software documentation
• Implement the design (i.e. programming)
• Perform informal tests on CSUs and CSCIs
• Participate in process deviation discussions and approval

Customer Responsible for technical, cost, and schedule performance for a project.
• Reviews and signs all deliverable software documents
• Participate in process deviation discussions and approval

Software Tester Responsible for formal testing of a CSU or CSCI
• Conduct code review
• Conduct and document integration testing
• Conduct and document System Integration testing
• Conduct and document CSCI Qualification testing

Usability Evaluator Responsible for evaluating user interface designs to ensure human factors
requirements and guidelines are incorporated
• Evaluation Plan and report on user interface design and implementation

Configuration Manager Responsible for maintaining the software configuration.
• Maintains configuration management system

Software Quality Assurance
(SQA)

Responsible for ensuring software quality
• Reviews and signs all deliverable software documents
• For format testing, determines mandatory inspection points for each CSCI, then

signs off on the test documentation when the mandatory points are passed
• Is invited to all software code reviews
• Liaisons with the SEAT Quality Systems Deployment Representative
• Ensures lessons learned are reviewed prior to software design activities
• Ensures lessons learned are written after software design activities
• Participate in process deviation discussions and approval

LS-71020B-06/15/01 4-1

4.0 SOFTWARE DEVELOPMENT PROCESS

4.1 SOFTWARE PROCESS OVERVIEW

The standard software development and sustaining engineering process for HRF flight
software is illustrated in Figure 4.1-1. The HRF process is compatible with the flight
software development process illustrated in Standards and Practices Manual for
Software Engineering. The major deviations from the Standards and Practices Manual
for Software Engineering process occurs in the second two phases. In the HRF
process, the Software requirements definition and preliminary design phases are
combined. The preliminary design review covers all requirements, hardware and
software, that have been defined for the item plus the design represented at a ten
percent completion level. Additionally, the software requirements are documented in
an HRD or an equivalent document. A copy of the software requirements template is
located in Appendix A. The software requirements are usually located in Section
3.2.7.3.6 of the HRD and Section 3.2.7.3.2 of Experiment System Requirements
Documents. The HRF process shows the relationship between the lifecycle phases and
the products required at each phase. Each phase is described in detail in Section 5.

An exception to the standard process has been granted for HRF Launch Package 1
flight items. The Responsible Engineer and Project Manager may decide to use the
modifications of the standard process identified below:

1) Either to conduct a delta Preliminary Design Review (PDR) to address the

software prior to the Critical Design Review (CDR) or at the CDR. This review
shall include a discussion of the software requirements.

2) Conduct a delta CDR to cover the software detailed design.

Any other deviations from the processes described in this document shall be
documented and approved by the Project Manager, SQA, and the customer, except as
indicated in this document.

The standard software development and sustaining engineering process for HRF
ground support, test, and simulation software is illustrated in Figure 4.1-2. This
process is a reduced version of the flight software process. The process has been
simplified to allow completion of the products and tasks with minimum impact to
current schedules and costs. Each phase is described in Section 5.

Table 4.1-1 relates each software lifecycle phase with the activities required for each
software type and category. For the MOTS and modified GFS included in the HRF
unique software category, the activities relate only to the modified portions of the
CSCI.

When discrepancies are found during the development process, a review of the
previous lifecycle phases will be conducted to identify how the error was introduced.
If significant findings are made, the review will be documented in the SDF. If future
errors can be prevented by a modification to the process, a change request will be
written to modify this document to correct the development process. The change
request will be submitted to the HRF Configuration Control Board (CCB) for
disposition.

Software will continue to evolve through training and on-board usage. Proposed
changes will be brought to the HRF CCB for consideration. A Discrepancy Report
(DR) will be written for each problem found. The step in the software development

LS-71020B-06/15/01 4-2

HRF PRD
HRF FRD

System Requirements
Analysis and System Design

(section 5.2)

Software Requirements and
Preliminary Design

(section 5.3.1)

Software Detailed Design
(section 5.3.2)

Software Implementation
and Unit Testing

(section 5.4)

CSCI Integration and Testing
(section 5.5)

CI System Integration
(section 5.6)

CSCI Qualification Testing
(section 5.7)

Release
(section 5.8)

Hardware Development Plan Requirements Review

Hardware Requirements
Document

Preliminary Design
Review

Software Design
Documentation Critical Design Review

Source Code, Test Plans Software Code Review

CSCI Integration Test Signoff

System Integration Test Signoff
Version Description Document

Qualification
Readiness Review

CSCI Qualification Test
Documentation

Figure 4.1-1 HRF Software Development Process for Flight Software

LS-71020B-06/15/01 4-3

HRF PRD
HRF FRD

HRD

System Requirements
Analysis and System Design

(section 5.2)
System Level Requirements Requirements Review

Software Requirements
and Design

(sections 5.3.1, 5.3.2)
Requirements Document Design Review

Software Implementation
and Unit Testing

(section 5.4)

Software Design
Documentation, Test Plans

Software Code
Review

CSCI Integration
and Testing
(section 5.5)

CSCI Integration Test
Signoff

CI System Integration
(section 5.6)

System Integration Test Signoff
Version Description Document

Release
(section 5.8)

Figure 4.1-2 HRF Software Development Process for
Ground Support, Test and Simulation Software

LS-71020B-06/15/01 4-4

TABLE 4.1-1 LIFECYCLE PHASE VERSES SOFTWARE TYPE AND CATEGORY

Lifecycle Phase Flight/Software Ground Support, Test and Simulation Software

 HRF Unique NDS HRF Unique NDS

System Requirements
Analysis and System
Design

See Section 5.2 See Section 5.2 See Section 5.2. Test
software requirements
are documented in the
item Test Plan

System Requirements
Analysis and System
Design

Software Requirements
and Preliminary Design

See Section 5.3.1 N/A See Section 5.2. The
software design phase
may be combined and
a single design review
held.

Software Requirements
and Preliminary Design

Detailed Design See Section 5.3.2 N/A N/A Detailed Design

Software Implementation
and Unit Testing

See Section 5.4 N/A See Section 5.4 Software Implementation
and Unit Testing

CSCI Integration Test See Section 5.5 See Section 5.5. Test
software to verify
functional operation

See Section 5.5. Test
software to verify
functional operation

CSCI Integration Test

CSCI Qualification
Testing

See Section 5.6 See Section 5.6. N/A CSCI Qualification
Testing

System Integration
Testing

See Section 5.7 See Section 5.7 See Section 5.7 System Integration
Testing

Design Certification
Review

See Section 5.8 See Section 5.8 N/A N/A

LS-71020B-06/15/01 4-5

process at which implementation of the change or solution to the DR will begin, will
be determined by the Project Manager. This decision will be based on the relative
size of the change, the impact of the change, and interfaces with other software.

The use of the above process flows during sustaining engineering is illustrated in
Figure 4.1-3, HRF Software Change Process. Authorizations for software changes
shall be in accordance with the Configuration Management Plan for the HRF
(LS-71005). Additional information on the Software Configuration Management
process is located in Section 5 of this document.

4.2 SOFTWARE DEVELOPMENT METHODS

The HRF Program Office will be the central point of contact for all HRF activities.
They will control both facility and experimenter software. The HRF Program Office
will assume responsibility for software modules that are developed by facility support
personnel and by experimenters for as long as the software is used to support HRF
operations. They will assign testing responsibilities and will authorize software
updates. No standard software development methodology (i.e. Structured
Analysis/Design, Object Oriented Analysis/Design) has been adopted by the HRF
Program Office.

Since the HRF will need the ability to accommodate many different experiments, the
development environment must have the capability to support use of multiple
operating systems and software packages. The tools identified for use on HRF
include, but are not limited to:

Operating Systems:

 MacOS
 MS-DOS
 Solaris
 VxWorks
 Windows 95
 Windows 98
 Windows NT
 Windows 2000

Compilers:

 Microsoft Install Shield
 Microsoft J++
 GNU C/C++
 Microsoft Visual Basic
 Microsoft Visual C/C++
 VxWorks Cross Compiler
 Zeus for Windows

Configuration management tools:

 Tower Concepts Razor

LS-71020B-06/15/01 4-6

Direct Connection

Not all process steps shown
(Refer to Figures 4.1-1 and
4.1-2)

No

Yes

Close CR and proceed to
next applicable Software

Development Process step

Enter Software
Development Process at

Software Implementation
and Unit Testing

(section 5.4)

No

CI System Integration
(section 5.6)

Close DR and proceed to
next applicable Software

Development Process step

Does
implementation

correct DR?

Does
implementation

satisfy CR?

No

Yes

Yes

CI System Integration
(section 5.6)

Enter Software
Development Process at

appropriate Software
Requirements/Design step

(section 5.3)

Enter Software
Development Process at
System Requirements

Analysis and
System Design

(section 5.2)

HRD Update
Required?

Design
Change?

Enter Software
Development Process at

Software Implementation
and Unit Testing

(section 5.4)

Yes

No

Yes

No

DRCR

Generate a CR
Close DR

CR or DR?

DR requires a
Class 1 or Class 2

change?

Approved
CR or DR

Figure 4.1-3 HRF Software Change Process

LS-71020B-06/15/01 4-7

Documentation tools:

 Canvas
 Interleaf
 MacFlow
 Microsoft Access
 Microsoft Excel
 Microsoft PowerPoint
 Microsoft Project
 Microsoft Word
 TopDown Flowcharter

Anti-Virus:

 McAfee Anti-Virus
 Norton Anti-Virus

Other Tools:

 Ghost
 Partition Magic
 LabView

Refer to the Software Configuration Management Plan and Procedure for the HRF
(LS-71020-1), Appendix A4 for the complete list of software tools and versions used.

Development of project unique software will be minimized and should be limited to
software required to collect or interface experiment data and video uplink/downlink
with the ISS, user interface software and test routines.

Hardware and software purchased from commercial vendors and provided to
development organizations or program facilities will be used according to the
appropriate restricted access rights established by the particular licensing agreement.

4.3 STANDARDS FOR SOFTWARE PRODUCTS

Templates for each document product are provided in Appendix A, HRF Software
Document Templates. The templates are intended to be guidelines for document
content. Each template should be tailored by the Responsible Engineer to reflect the
type and category of software involved. In general, flight software requires more
information than ground support, test and simulation software.

Process checklists are provided in Appendix B. There are three types of checklists:
review, report, and SDF.

• The review checklists shall be used to ensure review readiness. These checklists

shall be completed before or during the formal review.

• Report checklists for code reviews, integration testing, system integration testing
(SIT), and qualification readiness reviews. The report checklists, or equivalents
shall be used to document the results of the corresponding review or test.

LS-71020B-06/15/01 4-8

• SDF checklists are included for compiler settings, document references, Razor
code version tracking, and overall SDF content management. The compiler
setting, document reference and Razor code version list checklists, or equivalents,
shall be used to document the requested information in the SDF. Use of the CSCI
SDF Checklist is optional, but recommended to ensure that the SDF is current and
complete.

Standards for HRF custom-build software, including naming conventions, are detailed
in the Appendix C, HRF Coding Style Guide. This guide primarily addresses C code
development, however the concepts can easily be adapted to other languages. The
Display and Graphics Commonality Standard (SSP 50313) and the HRF Human-
Computer Interface (HCI) Design Guide (LS-71130) shall be referenced for all user
interface and display software development.

4.4 HANDLING CRITICAL REQUIREMENTS

When a software configuration item is associated with a requirement that impacts
safety, security, privacy, or another requirement deemed critical by the HRF Program
Office, the software developer shall take steps to mitigate the risks associated with the
configuration item. These steps shall be clearly documented in the HRD. HRF
software with potential safety impacts shall adhere to the Software Safety NASA
Technical Standard, NASA-STD-8719.13A, and be so noted in the SDF.

4.5 RECORDING RATIONALE

The developer shall record rationale that the developer feels will be useful in
maintaining the software configuration items. The rationale shall include trade-offs
considered, analysis methods, and criteria used in making design and implementation
decisions. The rationale shall be recorded in the HRD, the Software Design
Document (SDD), the SDF, or in the code as appropriate.

LS-71020B-06/15/01 5-1

5.0 SOFTWARE DEVELOPMENT ACTIVITIES

5.1 ESTABLISHING A SOFTWARE DEVELOPMENT ENVIRONMENT

5.1.1 Software Engineering Environment

A software engineering environment will be established for each item for which HRF
unique software must be developed. The software engineering environment will be
defined in terms of the hardware and software tools required to accomplish the
development of the software for a specific hardware item. Tool selection shall be
based on an understanding of the target operating environment (e.g. Central
Processing Unit (CPU), operating system, peripherals, language, and required vendor
software) based on the tools identified in Section 4.2. When establishing the software
engineering environment for an item, configuration management, security and privacy
requirements of the software involved shall also be considered.

5.1.2 Software Test Environment

A software test environment will be established for each item for which software
must be tested. The software test environment will be defined in terms of the
hardware and software tools required to perform informal and formal testing of the
software for a specific hardware item, and documented in the software test plan. Tool
selection will be based on an understanding of the target operating environment (e.g.
CPU, operating system, peripherals, language, and required vendor software). When
establishing the software test environment, configuration management, security,
training requirements of test personnel, and privacy requirements of the software
involved shall also be considered.

5.1.3 Software Configuration Library

All software under configuration control will be maintained in the HRF Software
Configuration Library by the Configuration Manager. This library will support
electronic distribution and collection of software and data to and from the HRF
project. Master versions of all HRF software and the revisions made to the software
will be maintained in the library. When copies of COTS software are desired and the
software is distributed on alterable media (i.e., floppy disk, PCMCIA card, etc.), the
librarian will generate the desired copy(s) and distribute the copy to the requester.
Master copies of software distributed on alterable media will not leave the Software
Configuration Library.

Software shall be retained in the Software Configuration Library for the period of
time as determined by the HRF CCB. Archival and/or permanent removal of any
controlled item from the library shall be approved and documented via HRF CCB
action.

5.1.4 Firmware Management

The HRF project will define, manage and document project firmware. Externally
programmed firmware is the combination of software programmed on a device and
the nonvolatile device itself (for example Read Only Memory (ROM), Programmable
ROM (PROM), Erasable PROM (EPROM), etc.), once the device has been
programmed. Externally programmed firmware must be removed from the system to
be programmed. For externally programmed firmware, the HRF project will develop
an altered item drawing in accordance with MIL-STD 100 that contains device

LS-71020B-06/15/01 5-2

specifications and modification information for each program/chip. The memory
chip(s) will comply with the requirements of LS-71000, HRF Program Requirements
Document. Development of software intended for storage on these memory chips
will be done in the same manner as other HRF software. Master copies of the
software will be maintained in the HRF Software Library with the master copy of the
altered item drawing for the respective device.

Internally programmed firmware is the software programmed on a nonvolatile device.
The internally programmed firmware nonvolatile device itself (NVRAM, EEPROM,
Ferroelectric, FLASH, FPGA, etc.) is programmed in the system and will not require
an altered item drawing change as the hardware within the system has not been
removed or replaced. The software configuration of the system, including the
internally programmed firmware, will be recorded and updated in the Software
Version Description Document (VDD). Development of software intended for storage
on these devices will be done in the same manner as other HRF software.

5.1.5 Software Development Files

A software development file (SDF) will be created and maintained for each CSCI.
The file contains source code listings, the formal test results, reviewer comments, and
references to formal documents associated with the CSCI. Additionally, the SDF
should contain the version number of the CSCI and the version information of files
containing CSUs, the operating system, the compiler, and any other software used to
build the CSCI. The SDFs are maintained on-line, where practical. SDF checklists
are located in Appendix B. The Compiler Setting checklist, or equivalent, shall be
used to document the location of the file that contains the compiler settings used to
generate the software. This file also contains the compiler and operating system
version numbers, including service pack information. The Document Reference
checklist, or equivalent, shall be used to identify the requirements, design, test,
interface and version documentation associated with the software. The Razor Code
Version List checklists, or equivalent, shall be used to identify the Razor thread and
version associated with the released version of the CSCI. The checklist may also be
used to track earlier versions of the Razor thread. Use of the CSCI SDF Checklist is
optional, but recommended, to ensure that the SDF is current and complete. General
guidelines for maintaining the SDF contents, as identified above, can be found in
Appendix B of the Standards and Practices Manual for Software Engineering.

5.2 SYSTEM REQUIREMENTS ANALYSIS AND SYSTEM DESIGN

The intent of this phase is to develop a high level set of requirements that will define
the function or capability to be developed. The team then defines scenarios showing
how the function or capability will be used. To determine the impact of the function
or capability on the software component, an iterative approach should be used to
isolate the software requirements.

Lessons learned from the NASA Lessons Learned Database (access from the JSC
internal web site) and the Lockheed Martin Engineering Process Improvement (EPI)
Lessons Learned Database (access through the Lockheed Martin Corporation internal
web site) shall be reviewed for information applicable to the HRF software. Review
of the lessons learned prior to any design activity for HRF shall be documented in the
project file.

At this point a build, modify or buy decision should be made by the development team
and approved by the Project Manager. Preliminary software requirements analysis and

LS-71020B-06/15/01 5-3

design may be used to refine critical requirements. If the development team
determines that a users guide would be useful for the end user, the development of the
guide must be scheduled so that release of the guide will coincide with the release of
the software.

The Requirements Review is a formal review of the HRF system requirements to HRF
software requirements and proposed preliminary design approaches. Appendix B
contains a checklist of Requirements Review actions. This checklist shall be
completed as part of the Requirements Review. It is noted that software developers
may choose to use portions of this checklist for informal review prior to formal review.
In addition, if approved by the developing agency, the checklist may be used as
documentation of a Requirements Review for subsequent modifications to the
baselined system.

TABLE 5.2-1 SUMMARY OF SYSTEM REQUIREMENTS
ANALYSIS AND SYSTEM DESIGN

Inputs: • Requirements for the instrument to be developed are contained in the FRD and

PRD or have been addressed through a program level change request to the FRD
and/or PRD.

• Funding for the development effort has been provided (e.g. a Technical Work
Package is in place)

• Lessons learned from previous software development projects

Activities: • Requirements Tradeoffs
• Mission Analysis (optional)
• Market Analysis (optional)
• Feasibility Studies (optional)
• Definition of Required Operational Capabilities
• Software Engineering Analysis
• Software Requirements Analysis

Products: • Hardware Development Plan (HDP) (or equivalent)
• Lessons Learned
• HRF Requirements Review Checklist

Reviews: Requirements Review

Baselines: None

Verification: • Requirements Review is conducted
• HDP or an approved Change Request exists

Roles Project Manager, Responsible Engineer, Software Developer, SQA

5.3 SOFTWARE DESIGN

5.3.1 Software Requirements and Preliminary Design (Flight Software Only)

Software requirements and preliminary design involves identifying the design to
software requirements and defining the high-level software architecture that will
satisfy the requirements and specification of the system. The activities at this phase
are directed at refining the requirements to the point where the design emerges. The
Requirements Traceability Matrix (RTM) shall be included in the HRD to
demonstrate traceability to the parent requirements. Preliminary strategies for testing

LS-71020B-06/15/01 5-4

the CSCIs and their component CSUs and performing qualification testing shall be
developed. External interfaces shall be defined and formalized. To ensure the best
design is achieved, software prototyping may be used to test design concepts. If the
CSCI includes a user interface, prototypes should be developed and tested to ensure
compliance with human factors requirements and guidelines. Test results shall be
included in the SDF for the CSCI. Detailed design may begin for those CSCIs and
CSUs that will implement critical requirements. Rationale for any design decisions
shall be documented in the SDF.

Completion of the Preliminary Design Review (PDR) shall conclude this phase of the
project. The criteria for completion includes:

• Demonstration of the completeness of the preliminary design;
• Identification of feasibility of the design; and
• Outline of the testability of the design as compared to the HRF Functional

Requirements.

Appendix B contains a checklist of Design Review actions. This checklist shall be
completed as part of the PDR. It is noted that software developers may choose to use
portions of this checklist for informal reviews prior to the formal PDR. In addition, if
approved by the developing agency, the checklist may be used as documentation of a
PDR for subsequent modifications to the baselined system.

Lessons learned as a result of the Software Requirements and Preliminary Design
phase shall be documented at the conclusion of the PDR. This documentation shall
be maintained in the project file and a copy sent to the SEAT Quality Systems
Deployment Representative for SEAT/CSSD.

TABLE 5.3.1-1 SUMMARY OF SOFTWARE REQUIREMENTS
AND PRELIMINARY DESIGN

Inputs: • Hardware Development Plan

or
• a change request has been submitted and approved

Activities: • Software Preliminary Design
• Software Requirements Refinement
• Determine Operational Modes and States
• CSCI Identification
• Software Prototyping
• Usability Evaluation of User Interface Prototypes

Products: • HRD
• Preliminary Software Design Documentation (See template in Appendix A)
• Usability Evaluation Results (if applicable)
• Lessons Learned Updates
• HRF Design Review Checklist

Reviews: Preliminary Design Review
Baselines: None
Verification: • Design Review is conducted

• HRD or an approved Change Request exists
• Other phase products have been generated/updated (as applicable)

Roles Responsible Engineer, Project Manager, Software Developer, Usability Evaluator,
Configuration Manager, SQA

LS-71020B-06/15/01 5-5

5.3.2 Software Detailed Design

In the detailed or critical design phase, the formal design for each CSCI and their
corresponding CSUs is developed and refined. Software design includes CSCI
composition, software architecture, algorithms, data interfaces, error handling, and
logic/control flow. A template for the Software Design Document (SDD) can be
found in Appendix A.

Software prototyping may be used to test design concepts. Coding may begin on
CSUs deemed critical to the successful completion of the CSCI by the Responsible
Engineer. Traceability to parent requirements is maintained. During this phase test
plans are refined and formalized.

If the CSCI includes a user interface, prototypes should be developed and tested to
ensure compliance with human factors requirements and guidelines.

Test results and/or Design Review results shall be included in the SDF for the CSCI.

Completion of the CDR shall conclude this phase of the project. The criteria for
completion includes:

• Demonstration of the completeness of the detailed design;

• Identification of all interfaces of the design; and

• Outlining the testability of the design, including test plans as compared to the
HRF Functional Requirements.

Appendix B contains a checklist of Design Review actions. This checklist shall be
completed as part of the CDR. It is noted that software developers may choose to use
portions of this checklist for informal reviews prior to the formal CDR. In addition, if
approved by the developing agency, the checklist may be used as documentation of a
CDR for subsequent modifications to the baselined system.

Lessons learned as a result of the Software Detailed Design phase shall be
documented at the conclusion of the CDR. This documentation shall be maintained
in the project file and a copy sent to the SEAT Quality Systems Deployment
Representative for SEAT/CSSD.

LS-71020B-06/15/01 5-6

TABLE 5.3.2-1 SUMMARY OF SOFTWARE DETAILED DESIGN

Inputs: • Draft HRD or an approved Change Request exists
• Preliminary Software Design Documentation

Activities: • Software Detailed Design
• Software Prototype
• Usability Evaluation of User Interface Prototypes

Products: • Software Design Documentation
• Software Test Plans and Software Test Results, if applicable
• HRD (update)
• Usability Evaluation Results (if applicable)
• Lesson Learned Updates (if applicable)
• Design Review Checklist
• Draft Interface Control Document (ICD)/Interface Definition Document (IDD)

Reviews: Critical Design Review

Baselines: HRD

Verification: • Design Review is conducted
• HRD or an approved Change Request exists
• Other phase products have been generated/updated (as applicable)

Roles Project Manager, Responsible Engineer, Software Developer, Usability Evaluator,
Configuration Manager, SQA

5.4 SOFTWARE IMPLEMENTATION AND UNIT TESTING

Software implementation transforms the design into the corresponding CSCI and its
component CSUs. Prototype versions of software may be incorporated into the CSU.
Informal unit tests by the developer are conducted on CSUs prior to software code
review. The developer promotes the software within the HRF Configuration
Management System (CMS) to indicate that the software has been tested and that it
meets the specified requirements. Once the CSU has passed the software code
review, the code review report (or equivalent) is completed and incorporated into the
SDF. Design changes shall be reflected in the SDD. Requirements changes and
changes to baselined products require CCB approval. This process is repeated until
the CSU passes software code review.

LS-71020B-06/15/01 5-7

TABLE 5.4-1 SUMMARY OF SOFTWARE IMPLEMENTATION
AND UNIT TESTING

Inputs: • Software Design Documentation (90% complete)

• Software Test Plans (90% complete)
• Discrepancy Report (DR) or an approved Change Request exists (if applicable)

Activities: • Implement software per design and prototypes
• Unit test CSUs

Products: • Software Design Documentation (updates)
• Code Review Report (or equivalent)
• Test Plans (updates)
• Source Code
• Configuration files
• Software Development Files
• Executable
• Software Inspection Report

Reviews: Software Code Review

Baselines: Test Plans

Roles Responsible Engineer, Project Manager, Software Developer, Software Tester,
Configuration Manager, SQA

5.5 CSCI INTEGRATION AND TESTING

The purpose of this phase is to produce a fully integrated and tested CSCI that is
ready for SIT. Integration test results are incorporated into the SDF. SQA may
review the integration test results. Design changes shall be reflected in the SDD.
Requirements changes and changes to baselined products require CCB approval.
Integration testing should be performed, if possible, on flight-equivalent hardware. If
CSCI Integration Testing is performed in a flight-equivalent environment, SIT may be
combined with CSCI Integration Testing with Project Manager approval.

In cases where the software will become firmware or the interface device is not
available, interface stubs will be written to verify the interfaces. Additionally, the
integrated firmware CSCI must meet system utilization requirements.

The Integration Tests shall verify incorporation of the specified requirements and
accuracy of operation of the integrated CSCI. The CSCI Test Plan provides
traceability of CSCI requirements to Test Number and Test Case (refer to Section 4.
Requirements Traceability, Appendix A.4, Test Plan Template). The CSCI
Integration Test Signoff form (or equivalent) shall be used to document test results.
Portions of the integration test plan may be skipped with prior approval of the Project
Manager. Rationale for skipping portions of the test plan shall be documented on the
executed copy of the test plan. Test plan redlines do not require prior approval, and
should be incorporated and published prior to the next release of the software.

For all NDS, an acceptance test shall be executed to ensure that the software received
meets the requirements specified for the software. Guidelines for testing this software
are located in Appendix D.

LS-71020B-06/15/01 5-8

TABLE 5.5-1 SUMMARY OF CSCI INTEGRATION AND TESTING

Inputs: • Test Plan
• Unit Tested Source Code
• Requirements: (sources)

a) Functional Requirements Document
b) Hardware Requirements Document
c) [Approved] HRF Change Request

Activities: Integration of CSUs and CSCI Test

Products: • Updates as required to the SDD
• Source Code (update)
• Executable (update)
• Configuration files (update)
• CSCI Integration Test Signoff form (or equivalent)
• Software Development File
• Integration Test Results

Reviews: None

Baselines: None

Roles Project Manager, Responsible Engineer, Software Developer, Software Tester,
Configuration Manager, SQA

5.6 SYSTEM INTEGRATION TESTING

HRF SIT is a process where the capability(s) of HRF software intended for release to
the field are evaluated to assess overall functionality, operability, and conformance to
the defined requirements. During SIT, the HRF software will be evaluated based on
functionality within the integrated environment.

HRF software included in CSCI/Hardware Configuration Item (HWCI) configurations
intended for release as HRF flight software, HRF ground software, HRF training
software, or HRF test and simulation software is subject to SIT. Test requirements
for the integrated configurations are found in the CSCI Test Plans. Portions of the
test plan may be skipped with prior approval of the Project Manager. Rationale for
skipping portions of the test plan shall be documented on the executed copy of the test
plan. Test plan redlines do not require prior approval, and should be incorporated and
published prior to the next release of the software.

SIT team members shall be drawn from the HRF Development Team. Exact team
composition will be specified in the Test Plans.

SIT configuration relies on test environments which duplicate interfacing field
hardware and software conditions. If CSCI Integration Testing was performed in a
flight equivalent environment, the SIT may be combined with CSCI Integration
Testing with Project Manager approval. Any exceptions, such as simulated
interfaces, shall be noted prior to test execution and subject to review/approval by the
Project Manager and documented in the SDF. Any requirements that cannot be tested
prior to release shall be documented in Section 3.9 of the corresponding VDD. The
SIT testing assesses the overall integrity, functionality, and operability of the
configuration as it is intended to be utilized in the field, according to the CSCI test
plan. A dry run of the tests may be made prior to the formal tests. A System
Integration Test Signoff form (or equivalent) shall be used to document SIT results.

LS-71020B-06/15/01 5-9

Completion of SIT demonstrates that the HRF software configuration intended for
release to the field is capable of performing as specified and is ready for Qualification
Readiness Review or field release, as appropriate.

A Qualification Readiness Review shall be conducted for flight software to ensure
that the software, test plans and other documentation is ready for CSCI Qualification
Testing (CQT). A Qualification Readiness Review checklist shall be completed to
document the results of the review.

TABLE 5.6-1 SUMMARY OF SYSTEM INTEGRATION TESTING

Inputs • Integrated CSCIs
• Requirements: (source)

a) Functional Requirements Document
b) Hardware Requirements Document
c) [Approved] HRF Change Request

Activities: • System Integration and Testing
• Operational Testing and Evaluation

Products: • Integrated System Test Results
• Source Code (update)
• Configuration Files (update)
• Software Development File (update)
• Executable (update)
• System Integration Test Signoff Form (or equivalent)
• Qualification Readiness Review Checklist (flight software only)
• Draft Version Description Document

Reviews: Qualification Readiness Review (Flight software only)

Baselines: Software Design Document
Source Code
Configuration Files
Executable

Roles Project Manager, Responsible Engineer, Software Developer, Software Tester,
Configuration Manager, SQA

5.7 CSCI QUALIFICATION TESTING (FLIGHT SOFTWARE ONLY)

HRF CQT is a process where the capability(s) of each flight CSCI developed for the
HRF are evaluated to assess conformance with the defined requirements. During
CQT, the CSCI will be evaluated based on the following, if applicable:

• Interfaces within the configuration item
• Interfaces within the HRF
• Communications, data and video interfaces with the RIC
• Capability to interface with HRF ground control nodes
• Incorporation of applicable HRF Requirements

LS-71020B-06/15/01 5-10

Test requirements for CSCIs are found in the CSCI Test Plans and the HRD. Some
CSCI items may not be tested in CQT. CSCI items which are not collocated with
their target processors will be tested and verified via the use of simulators.

CQT team members shall be drawn from the HRF Development Team. Exact team
composition will be specified in the Test Plans.

CQT begins with a fully integrated CSCI that has been pre-tested and found to meet
its design requirements. A dry run of the Qualification tests may be made prior to the
formal tests. CQT execution and test results shall be documented on a Task
Performance Sheet (TPS).

For each problem found during the formal CQT, a DR is written and the DR Number
is annotated on the TPS. The DR is evaluated by the Responsible Engineer, the SQA
representative, and the Project Manager to determine if the DR is of such serious
operational consequence to halt testing. If so, the Testing should be halted until the
DR is resolved. Configurations which contain DRs determined to be of low
operational impact to the user may continue testing and be released with the open
DRs so noted.

Design changes shall be reflected in the SDD. Requirements changes and changes to
baselined products require CCB approval. The CSCI is then verified as a stand-alone
load. Successful completion of CQT demonstrates that the CSCI, to the extent
possible, is capable of performing as specified. Afterward, the CSCI is ready for
Release.

If limitations of the test environment at the CSCI level preclude verification of all
requirements, then these remaining verification requirements shall be passed on to
higher Integration Levels and documented in the VDD.

TABLE 5.7-1 SUMMARY OF CSCI QUALIFICATION TESTING

Inputs: • Integrated CSCI
• Requirements: (sources)

a) Functional Requirements Document
b) Hardware Requirements Document
c) Approved] HRF Change Request

Draft Version Description Document

Activities: • CSCI Qualification Testing
• Dry Runs of CSCI Qualification Tests (if desired)

Products: • Qualification Test Results (closed TPS)
• Source Code (update)
• Software Development File (Update)
• Executable (update configuration files)
• Identification of open DRs and impact description

Reviews: Configuration Audit

Baselines: Version Description Document

Roles Project Manager, Responsible Engineer, Software Developers, Software Tester,
Configuration Manager, SQA

LS-71020B-06/15/01 5-11

5.8 PREPARING SOFTWARE FOR USE

Development: Custom-build software must be checked into the HRF CM system
prior to first compilation of the software. The HRF CM system provides recovery
protection for software checked into the system.

Handling - When HRF software has been approved and declared ready for release, the
HRF software CMS shall be used by the HRF Configuration Manager to perform
product build activities leading towards software release. This function may be
performed by other individuals with written authorization of the HRF Configuration
Manager.

Build - Upon completion of development, test and formal release by the developing
agency, the software is ready to be installed on the deliverable media. The developing
agency notifies the HRF Software Configuration Manager of the state of the software
readiness and the VDD is prepared. The VDD includes a list of the version
information for the CSCI and all affected components. The document also includes
specific installation and user instructions for the CSCI.

Packaging - Because software packaging requirements vary depending on the type of
software involved, the specific packaging requirements for the software are included
in the VDD. See Appendix A for a template of the VDD. The CSCI and all
supporting software (operating system, tools and utilities required for execution) are
checked out of the software CMS and installed on the deliverable media (e.g.,
magnetic media or burned into PROM) per the instructions in the VDD. All media is
labeled in accordance with Appendix E, HRF Media Part Numbers and Labeling
Guidelines.

Release - Prior to shipment, the deliverable item is subject to final integration test,
inspection, and audit to verify accurate assembly and operation of the final product.
When the software to be released is an upgraded version of the CSCI, the VDD is
updated to reflect the changes included in the new version of the software.

When software must be uplinked to the ISS for installation, the VDD shall include all
instructions for uplink, installation, and testing. The on-orbit installation and test
procedures shall demonstrate successful system installation and operability. The
installation and test process should be automated, if possible.

Storage - Copies of software product configurations released to the field shall be
maintained in the HRF Software Configuration Library. In addition, alternate storage
locations shall contain copies of current and prior versions of the released software to
mitigate the risk of catastrophic loss of data at the primary storage site. The period of
time the copies are maintained is subject to HRF CCB decision.

Archival - Archival of prior released software is subject to HRF CCB action.

5.9 SOFTWARE CONFIGURATION MANAGEMENT

The process for overall configuration management is defined in the Configuration
Management Plan for the HRF. Specifics for software configuration management are
included in the Software Configuration Management Plan and Procedure for the HRF
(LS-71020-1). This section includes summary software configuration management
information.

LS-71020B-02/03/04 5-12

All software must be baselined prior to operational use in an HRF facility or system.
Written authorization by Project Manager and customer is required to use non-
baselined software in an operational system.

5.9.1 Configuration Identification

Each CSCI and CSU will have a version number which will be assigned by the HRF
CMS. Software documentation is also configuration controlled, per existing
documentation CCB procedures.

5.9.2 Configuration Control

The HRF CCB is charged with maintaining control over all software used in or with
the HRF on orbit or on the ground.

All versions of software developed for the HRF shall be stored and maintained in the
HRF CMS. The HRF CMS is a COTS product designed to automate tracking and
version control of CSCIs and their component CSUs. HRF Software developers may
view source from any version of HRF software. Updates to configuration controlled
versions of HRF software require CCB review and approval.

5.9.3 Configuration Status Accounting

Software configurations shall be tracked using version numbers. The CMS will
provide traceability of CCB decisions which elicit changes to baseline versions.
Conversely, the HRF CMS shall provide traceability of CSCIs to approved changes.

5.9.4 Configuration Audits

The HRF CMS will be used to generate periodic reports of the configuration status.
The CMS shall provide traceability of HRF requirements to HRF CSCIs and specific
versions. The CMS reports will constitute the configuration audit. Completion of the
audit and its findings shall be reported to the HRF CCB.

5.9.5 Storage, Handling and Delivery of Project Software

All versions of HRF software will be maintained in the HRF CMS. Flight Qualified
versions of the software are installed on flight qualified media for flight use as needed.
Flight qualified versions of HRF software will be released only per a signed TPS.

All flight software media shall be stored in bonded storage and will be released only
per a signed TPS.

Flight qualified versions of HRF software may be copied onto non-flight storage
media for use in training.

Updates to flight software media will be made only per a signed TPS. If the software
configuration is to be changed via a file uplink, the process described in Appendix F,
HRF Uplink of Software Updates, shall be used. If a permanent software configuration
change is to be implemented by a crewmember on-orbit, please refer to Appendix G,
HRF Crew-Implemented Software Configuration Changes. Distribution of on-orbit
changes to ground-based loads varies with the type and scope of the change. In general,
updates to facility software should be distributed to all controlled, ground-based loads
and updates to experiment software should be distributed on an as-needed basis. It is
the responsibility of the affected project team in conjunction with the integration team
to determine the extent and criticality of ground distribution of the on-orbit updates.

B-3

LS-71020B-06/15/01 5-13

5.10 SOFTWARE QUALITY ASSURANCE

SQA practices have been embedded in the processes described in this software
development plan.

5.11 CORRECTIVE ACTION

5.11.1 Problem/Change Reports

Two levels of problem reporting exist for the HRF project. For problems that extend
or originate outside of HRF, the Project will use a Program Change Memo (PCM) as
defined by the ISS Project. Internal HRF problems will use the JSC DR form.

Proposed software changes shall be submitted to the HRF CCB for review. The
standard HRF CR and JSC DR Forms will be used for software change requests and
software discrepancy reporting, respectively.

Problems with COTS software will be handled through the MRB process or through
the HRF change process depending on the time the problem is identified, the age of
the software, and the relationship between the HRF Program and the vendor.

5.11.2 Corrective Action System

When a DR is initiated, it is reviewed by the Responsible Engineer and the Project
Manager to determine the impact of the change. If the revision required to correct an
DR results in a change to the form, fit or function of the CSCI, a CR shall be
completed and HRF CCB approval is required. The HRF CMS shall provide
traceability of approved changes to the affected CSCI(s).

5.12 REVIEWS

Formal reviews of the HRF software will be conducted as described in LS-71000,
Program Requirements Document for the HRF. In addition, Software Code Reviews
and Peer Reviews will be used.

The purpose of a software Code Review is to perform a detailed review of the
software source code to ensure the design and requirements are met. The software
code review shall include completion of the HRF Software Code Review Checklist
(see Appendix). Errors found during the code review are documented and corrected
before preceding to the next development phase. The Project Manager, SQA, and
software developers shall be invited to attend the code review.

The purpose of peer reviews is to examine requirements and/or design for technical
feasibility, accuracy and desirability. Peer reviews are conducted as part of a CCB
action or as determined by the Project Manager. Peer reviews shall be documented
using the Review Checklists (see Appendix B). Any notes taken at the Peer Review
are placed in the SDF for the CSCI. The Project Manager, Responsible Engineer,
SQA, software developers and others outside the HRF team with an interest in the
discussion shall be invited to attend the peer review.

Problems found during software code reviews or peer reviews are resolved through
informal action assignments. Review closure shall not occur until all informal actions
are closed or converted to formal actions.

LS-71020B-06/15/01 5-14

5.13 RISK MANAGEMENT

The areas of each CSCI development effort that pose technical, cost, or schedule risk
will be identified, analyzed, and prioritized to minimize the risk to the HRF Program.
It is possible that HRF software, while unchanged, could be affected by other
changing HRF parameters. Identified software areas shall be candidates for repeated
SIT. Strategies for managing identified risks will be presented at the monthly HRF
schedule review.

The following areas have been identified as significant potential software risk-areas:

• Software interface to the ISS Command and Data Handling System

• Integration of software from International Partners

• Integration of software provided by Principal Investigators

To mitigate these risks, specific attention to these interfaces shall be emphasized in
integration testing and during the HRF monthly schedule review.

5.14 SECURITY AND PRIVACY

The HRF and its support, development and training facilities shall be rated as a Level
2 facility based on the HRF Program Requirements Document. Development,
training and support of HRF operations and maintenance will comply with JSCM
2410.11 guidance for operational controls and administrative processes necessary to
provide the necessary level of security.

5.15 SUBCONTRACTOR MANAGEMENT

HRF contract requirements will be passed down to subcontractors to ensure that all
software and associated documentation delivered under the contract meet contractual
requirements.

5.16 PROCESS IMPROVEMENT

During the course of the HRF program, the Responsible Engineers, Project Managers
and software developers will evaluate the processes and products identified in this
SDP to determine if modifications will reduce costs while maintaining product
quality, requirements traceability, and compliance with other established procedures.
Completion of the evaluation shall be documented via interoffice memo from the
reviewer to the Technical Work Package Manager. Identified changes will be
proposed to the CCB for review. If the proposed are approved, this document will be
updated to reflect the changes. External reviewers may be required to determine if the
proposed changes maintain compliance with other established procedures.

LS-71020B-11/20/00 6-1

6.0 SCHEDULES

The developer and Responsible Engineer will include software development activities
in the item schedule. Software development milestones may be reflected in the Level
3 schedules. Detailed activities required to meet the milestones will be in the Level 4
schedules. The Level 3 schedules are reviewed monthly at the HRF Status Review.

No software metrics have been established for the HRF software development
process. If metrics are needed, they will be identified and managed on a case by case
basis.

LS-71020B-11/20/00 7-1

7.0 PROJECT ORGANIZATION AND RESOURCES

This section gives an overview of the organization and resources to be made available
for the HRF.

The HRF Program Office will be the central point of contact for all HRF activities,
they will control both facility and experimenter software. They will assume
responsibility for software modules that are developed by facility support personnel
and by experimenters for as long as the software is used to support HRF operations.
They will assign testing responsibilities and will authorize software updates.

LS-71020B-06/15/01 8-1

8.0 NOTES

None.

LS-71020B-11/20/00

APPENDICES

LS-71020B-06/15/01 Appendix-i

CONTENTS

Section Page

 DOCUMENT TEMPLATES
A1.0 SOFTWARE REQUIREMENTS A-1
A2.0 SOFTWARE DESIGN DOCUMENTS A-9
A3.0 SOFTWARE TEST PLAN AND PROCEDURE A-26
A4.0 VERSION DESCRIPTION DOCUMENT A-34

 REVIEW CHECKLISTS
B1.0 HRF REQUIREMENTS REVIEW CHECKLIST B-1
B2.1 HRF SOFTWARE PRELIMINARY DESIGN REVIEW CHECKLIST B-2
B2.2 HRF SOFTWARE CRITICAL DESIGN REVIEW CHECKLIST B-3
B3.0 HRF CODE REVIEW CHECKLIST B-4
B4.0 CODE REVIEW REPORT B-5
B5.0 CSCI INTEGRATION TEST SIGNOFF FORM B-6
B6.0 SYSTEM INTEGRATION TEST SIGNOFF FORM B-7
B7.0 QUALIFICATION READINESS REVIEW CHECKLIST B-8
B8.0 COMPILER SETTINGS B-9
B9.0 DOCUMENT REFERENCE B-10
B11.0 CSCI SDF CHECKLIST B-11

 HRF CODING STYLE GUIDE
C1.0 INTRODUCTION C-1
C1.1 PURPOSE C-1
C1.2 SCOPE C-1

C2.0 PROGRAM STRUCTURE C-1
C2.1 COMPUTER SOFTWARE CONFIGURATION ITEM (CSCI) C-1
C2.2 COMPUTER SOFTWARE UNIT (CSU) C-1
C2.3 LIBRARIES C-1
C2.4 SOURCE FILES C-2
C2.5 HEADER FILES C-2
C2.6 PROLOGUES C-2

C3.0 GENERAL GUIDELINES C-3
C3.1 DESIGN CONSIDERATIONS C-3
C3.2 IMPLEMENTATION CONSIDERATIONS C-3
C3.3 PORTABILITY RULES C-4
C3.4 EXPRESSIONS C-5
C3.5 IDENTIFIERS C-6
C3.5.1 Global Data C-6
C3.5.2 Local Data C-6

LS-71020B-06/15/01 Appendix-ii

CONTENTS (Cont’d)

Section Page
C3.5.3 Input/Output Data C-6
C3.5.4 Pointers C-7
C3.6 DECLARATIONS C-7
C3.7 FUNCTIONS C-8
C3.7.1 Interfaces C-9
C3.7.2 Side Effects C-9
C3.8 HEADER FILES C-9
C3.8.1 Type Definitions C-10
C3.8.2 Constants C-10
C3.8.3 Macros C-11
C3.8.4 Function Prototype Statements C-11

C4.0 NAMING CONVENTIONS C-12
C4.1 FILE NAMES C-12
C4.1.1 CSCI File Names C-12
C4.1.2 CSU File Names C-12
C4.1.3 Library File Names C-12
C4.2 IDENTIFIER NAMES C-13

C5.0 FORMATS C-14
C5.1 FILE FORMATS C-14
C5.1.1 CSCI Source File Formats C-14
C5.1.2 CSU Source File Format C-14
C5.1.3 Library Source File Format C-15
C5.1.4 Header File Format C-15
C5.2 COMMENT FORMATS C-15
C5.3 EXPRESSION FORMATS C-16
C5.3.1 The if...else Statement C-17
C5.3.2 The switch Statement C-18
C5.3.3 The while Statement C-18
C5.3.4 The do Statement C-19
C5.3.5 The for Statement C-19

C6.0 C CODE SAMPLES C-19
C6.1 CSCI HEADER FILE C-20
C6.2 CSCI SOURCE FILE C-21
C6.3 CSU SOURCE FILE 1 C-22
C6.4 CSU SOURCE FILE 2 C-23
C6.5 LIBRARY HEADER FILE C-26
C6.6 LIBRARY SOURCE FILE C-27

LS-71020B-02/03/04 Appendix-iii

CONTENTS (Cont’d)

Section Page
 HRF SOFTWARE TESTING GUIDELINES
D1.0 INTRODUCTION D-1
D2.0 SOFTWARE PROCESSES D-2
D2.1 PROCESS 1 – SOFTWARE IS DELIVERED WITH A

CERTIFICATE OF COMPLIANCE (COC) D-2
D2.2 PROCESS 2 – SOFTWARE DELIVERED WITHOUT A COC D-2
D2.3 PROCESS 3 – SOFTWARE DOWNLOADED FROM AN

INTERNET OR FTP SITE D-3

 HRF MEDIA PART NUMBERS AND LABELING GUIDELINES
E1.0 MEDIA PART NUMBERS E-1
E2.0 MEDIA LABELING E-1

 HRF UPLINK OF SOFTWARE UPDATES
F1.0 PURPOSE AND SCOPE F-1
F1.1 PROCESS DEPENDENCIES F-1
F1.2 DEFINITIONS F-1
F1.3 REFERENCE DOCUMENTS F-1

F2.0 ROLES AND RESPONSIBILITIES F-2

F3.0 PROCESS CRITERIA, INPUTS AND OUTPUTS F-2

F4.0 TASK FLOW F-3

F5.0 RECORDS F-6

F6.0 MEASURES F-6

 HRF CREW-IMPLEMENTED SOFTWARE CONFIGURATION

CHANGES
G1.0 PURPOSE AND SCOPE G-1
G1.1 PROCESS DEPENDENCIES G-1
G1.2 DEFINITIONS G-1
G1.3 REFERENCE DOCUMENTS G-1

G2.0 ROLES AND RESPONSIBILITIES G-1

G3.0 PROCESS CRITERIA, INPUTS AND OUTPUTS G-2

G4.0 TASK FLOW G-2

G5.0 RECORDS G-3

G6.0 MEASURES G-3

B-3

LS-71020B-11/20/00

APPENDIX A

DOCUMENT TEMPLATES

LS-71020B-10/02/01 A-1

A1.0 SOFTWARE REQUIREMENTS

This template is tailored from IEEE-1498 for HRF use. Any sections that are
missing have been tailored out by HRF. The section numbers below reflect the
section numbers from the Hardware Requirements Document (HRD). When the
template is used in an Experiment System Requirements Document, the section
number changes to 3.2.7.3.2. Text in italics is instructional and should be deleted
from the final document. Bold faced text should be replaced with the information
requested.

3.2.7.3.6 Software Design Requirements

This section contains the software requirements for the Computer Software
Configuration Items (CSCIs) associated with the [enter hardware name here].
Each software requirement shall be traceable back to a functional requirement in
this HRD. The requirements traceability matrix is shown in Table 3.2.7.3.6-1
below. The requirements allocation matrix is shown in Table 3.2.7.3.6-2. The
verification process for each requirement is listed in the Certification Matrix
(Appendix B). The type, category, and operational modes required shall be
identified for each CSCI.

Table 3.2.7.3.6-1 and Table 3.2.7.3.6-2 shall be completed. Text displayed in the
table is sample text.

TABLE 3.2.7.3.6-1 REQUIREMENTS TRACEABILITY MATRIX

HRD Requirement Identifier CSCI Requirements

3.1.2.1 3.2.7.3.6.x.3.1

3.1.2.3 3.2.7.3.6.x.3.1, 3.2.7.3.6.x.3.2

3.1.2.6 3.2.7.3.6.x.3.2, 3.2.7.3.6.x.3.n

TABLE 3.1.6-2 REQUIREMENTS ALLOCATION MATRIX

CSCI Requirements HRD Requirement Identifier

3.2.7.3.6.x.3.1 3.1.2.1, 3.1.2.3

3.2.7.3.6.x.3.2 3.1.2.3, 3.1.2.6

3.2.7.3.6.x.3.n 3.1.2.6

In creating requirements, add any software-specific applicable or referenced
documents to Section 2. This should include the SDP for the HRF (LS-71020). Do
not reference any standards listed in the SDP unless you specifically reference them
in this HRD. Each state/mode shall be defined in the definition section.
Additionally, identify the Software Type and primary Software Category for each
CSCI based on the following:

LS-71020B-10/02/01 A-2

Types of Software Categories of Software
• Flight Software • Custom-build Software
• Ground Software • Modified COTS (MOTS) Software
• Test and Simulation Software • Modified GFS
• Training Software • Data and Configuration Files
 • Non-Developmental Software
 • COTS Software
 • Government Furnished Software

For example, a program written by HRF personnel using COTS drivers would be
custom-build software.

When defining requirements, keep in mind what acceptance or test criteria will be
used to verify that the requirement has been met. These criteria should be
documented in the Software Test Plan. See the SDP for the HRF (LS-71020),
Appendix A.4)

3.2.7.3.6.1 Definitions

This section contains a definition of the terms that may be confusing to the reader.
Do not redefine terms that are defined in the SDP.

Please refer to the Software Development Plan for the Human Research Facility
(LS-71020) for definitions of the Software Type, Software Category, and
Configuration Item terms.

3.2.7.3.6.2 Modes

This section contains a list and corresponding definition of the operational modes
that all CSCIs are required to support. A mode is a term that is descriptive of the
capabilities or condition of the system. Example modes include: nominal, idle,
ready, active, post-use analysis, training, degraded, diagnostic, emergency, backup.

3.2.7.3.6.3 Notes

This section shall contain any general information that aids in understanding the
software requirements. Any background information or rationale for decisions
made should be recorded here.

Repeat each of the following sections for each CSCI.

3.2.7.3.6.x [CSCI ID Name]

Replace the x with the actual section number. Replace title text with actual CSCI
name.

In paragraph form describe what the CSCI does and why it exists.

LS-71020B-10/02/01 A-3

3.2.7.3.6.x.1 CSCI Functional and Performance Requirements

Listed below are the functional and performance requirements specific to the [CSCI
ID Name].

List the functional and performance requirements specific to the CSCI, including
top level functional requirements of the user interface and operational scenarios.
The requirements shall specify required behavior of the CSCI and shall include
applicable parameters, such as response times, throughput times, other timing
constraints, sequencing, accuracy, capacities (how much/how many), priorities,
continuous operation requirements, and allowable deviations based on operating
conditions. The requirements shall include modes to be supported and, as
applicable, required behavior under unexpected, unallowed, or "out of bounds"
conditions, requirements for error handling, and any provisions to be incorporated
into the CSCI to provide continuity of operations in the event of emergencies. If the
only mode that the CSCI must support is a nominal operations mode, please state
this. When describing the functional and performance requirements, if a
requirement is restricted to an operational mode, clearly identify the operational
mode associated with the requirement. For example:

The CSCI shall allow thirty parameters to be displayed in nominal operation mode.
In degraded mode, fifteen parameters shall be displayed.

NOTE: In the above example, if the parameters are known, they should be

specified in the requirement.

In the Preliminary Design Review (PDR) version of the requirements, some of the
performance information may not be known. Use To Be Determined (TBD) for
those performance criteria that are important but not known.

3.2.7.3.6.x.2 CSCI External Interface Requirements

Choose one of the following statements based on whether or not the CSCI is a
COTS/GFS [Option 1] or Custom-Build/MOTS/MGFS [Option 2] item.

Option 1 The [CSCI ID Name] external interfaces are defined by the vendor.

Option 2 Listed below are the external interface software requirements for the
[CSCI ID Name].

The following requirements are mandatory for all fight software CSCIs.

3.2.7.3.6.x.2.1 Word/Byte Notations, Types and Data Transmissions

3.2.7.3.6.x.2.1.1 Word/Byte Notations

The [CSCI ID Name] shall use the word/byte notations as specified in paragraph
3.1.1, Notations in SSP 52050. (LS-71000, Section 6.3.3.1.1)

LS-71020B-10/02/01 A-4

3.2.7.3.6.x.2.1.2 Data Types

The [CSCI ID Name] shall use the data types as specified in paragraph 3.2.1 and
subsections, Data Formats in SSP 52050. (LS-71000, Section 6.3.3.1.2)

The following requirement shall be added if the flight software transmits real-time
data to the ground.

3.2.7.3.6.x.2.1.y Real-time data for the [CSCI ID Name] shall be formatted in accordance with the
Life Sciences Data System (LSDS) Format. (LS-71000, Section 6.3.3.2E).

The following requirement shall be added for flight software obtaining
International Space Station command and data handling services (e.g., telemetry,
commanding, ancillary data requests, file transfer, report health and status, etc.)
through the HRF Common Software.

3.2.7.3.6.x.2.1.z The [CSCI ID Name] shall request services in accordance with LS-71062-8,
Interface Definition Document for the Human Research Facility Common Software.
(LS-71000, Section 6.3.3.3).

The following requirement shall be added for flight software obtaining
International Space Station command and data handling services (e.g., telemetry,
commanding, ancillary data requests, file transfer, report health and status, etc.)
through the HRF Rack Interface Controller.

3.2.7.3.6.x.2.1.aa The [CSCI ID Name] shall request services through the HRF rack in accordance
with D683-43631-1, EXPRESS Payload Software Interface Control Document -
Human Research Facility.

In addition to the requirements above, define the requirements for external
interfaces to the CSCI. These interfaces are the interfaces to the software rather
than interfaces to the hardware item. This paragraph may reference other
documents (such as standards for communication protocols and standards for user
interfaces) in place of stating the information here. When identifying external
interface requirements, the following should be considered:

a. Priority that the CSCI must assign the interface (e.g., stop everything and

handle the incoming data, handle the data as soon as possible, or handle the
data whenever it is convenient).

b. Requirements on the type of interface to be implemented (such as real-time data
transfer, storage-and-retrieval of data, etc.).

c. Required characteristics of individual data elements that the CSCI must
provide, store, send, access, receive, etc., such as:
1) Names/identifiers
2) Data type (alphanumeric, integer, etc.)

B-2

LS-71020B-10/02/01 A-5

3) Size and format (such as length and punctuation of a character string)
4) Units of measurement (such as meters, dollars, nanoseconds)
5) Range or enumeration of possible values (such as 0-99)
6) Accuracy (how correct) and precision (number of significant digits)
7) Priority, timing, frequency, volume, sequencing, and other constraints, such

as whether the data element may be updated
8) Security and privacy constraints
9) Sources (setting/sending entities) and recipients (using/receiving entities)

d. Required characteristics of data element assemblies (records, messages, files,
arrays, displays, reports, etc.) that the CSCI must provide, store, send, access,
receive, etc., such as:

1) Names/identifiers
2) Data elements in the assembly and their structure (number, order, grouping)
3) Medium (such as disk) and structure of data elements/assemblies on the

medium
4) Visual and auditory characteristics of displays and other outputs (such as

colors, layouts, fonts, icons and other display elements, beeps, lights)
5) Relationships among assemblies, such as sorting/access characteristics
6) Priority, timing, frequency, volume, sequencing, and other constraints, such

as whether the assembly may be updated
7) Security and privacy constraints
8) Sources (setting/sending entities) and recipients (using/receiving entities)

e. Required characteristics of communication methods that the CSCI must use for
the interface, such as:

1) Project-unique identifier(s)
2) Communication links/bands/frequencies/media and their characteristics
3) Message formatting
4) Flow control (such as sequence numbering and buffer allocation)
5) Data transfer rate, whether periodic/aperiodic, and interval between

transfers
6) Routing, addressing, and naming conventions
7) Transmission services, including priority and grade
8) Safety/security/privacy considerations, such as encryption, user

authentication, compartmentalization, and auditing

LS-71020B-10/02/01 A-6

f. Required characteristics of protocols the CSCI must use for the interface, such
as:

1) Project-unique identifier(s)
2) Priority/layer of the protocol
3) Packeting, including fragmentation and reassembly, routing, and

addressing
4) Legality checks, error control, and recovery procedures
5) Synchronization, including connection establishment, maintenance,

termination
6) Status, identification, and any other reporting features

3.2.7.3.6.x.3 CSCI Internal Interface Requirements

Choose one of the following statements based on whether or not the CSCI is a
COTS/GFS [Option 1] or Custom-Build/MOTS/MGFS [Option 2] item.

Option 1 The [CSCI ID Name] internal interfaces are defined by the vendor.

Option 2 The [CSCI ID Name] internal interfaces will be defined in the HRF

Software Design Document.

3.2.7.3.6.x.4 CSCI Internal Data Requirements

Choose one of the following statements based on whether or not the CSCI is a
COTS/GFS (Option 1) or Custom-Build/MOTS/MGFS (Option 2) item.

Option 1 The [CSCI ID Name] internal data are defined by the vendor.

Option 2 The [CSCI ID Name] internal data will be defined in the HRF

Software Design Document.

3.2.7.3.6.x.5 CSCI Adaptation Requirements

Identify the requirements, if any, which dictate how installation specific
implementations of software, data files or operational parameters must be handled
by this CSCI. For example, if it is important that a CSCI use different data files for
operation on the Portable Computer versus the Workstation, or to support the use
of experiment unique data, a requirement to that effect should replace the default
text in this section. If there are no applicable requirements, use the default text in
this section.

LS-71020B-10/02/01 A-7

Choose one of the following statements based on whether or not the CSCI is a
COTS/GFS/MOTS/MGFS [Option 1] or Custom-build [Option 2] item.

Option 1 There are no CSCI adaptation requirements for the [CSCI ID name].

Option 2 The [CSCI ID Name] shall read file pathnames required for proper

execution of the software from a configuration file rather than “hard
coded” in the software. (LS-71000, Section 6.3.3.2A).

3.2.7.3.6.x.6 Software Safety Requirements

If the software can impact the safe operation of the hardware item, replace the
default text in this section with the requirements that specify what the software must
do to minimize the impact to safety.

The [CSCI ID Name] CSCI shall not be used to hold, store, or process any safety
critical parameters or commands.

3.2.7.3.6.x.7 Data Privacy Requirements

If the data generated by the device contains information that is considered to be
private, replace the default text in this section with the requirements for how the
data must be protected.

There are no CSCI data privacy requirements for the [CSCI ID Name].

3.2.7.3.6.x.8 CSCI Environment Requirements

This paragraph shall specify the requirements, if any, regarding the environment in
which the CSCI must operate. Examples include the computer hardware and
operating system on which the CSCI must run. When writing requirements for
software that will run on a host system such as the HRF Workstation and/or HRF
Portable Computer, this section will consist of a reference to the host system’s
Interface Definition Document (IDD) along with estimates for disk space and
memory utilization.

The following statements shall be used for software that will run on a host system
such as the HRF Workstation and/or HRF Portable Computer.

The [CSCI ID Name] shall execute in the environment described in the [insert host
system(s) IDD document here].

The [CSCI ID Name] shall utilize [insert expected disk space requirements here.

The [CSCI ID Name] shall utilize [insert expected memory requirements here].

LS-71020B-10/02/01 A-8

If system response time or other environmental parameters are required for proper
software performance, requirements for these parameters must be specified here.

3.2.7.3.6.x.9 Software Quality Factors

The following applies to all software.

The [CSCI ID Name] executable shall generate consistent results given the same
initialization data.

The following applies to those CSCIs where the HRF software team has the ability
to compile and build the executable image to test this requirement.

The [CSCI ID Name] source code shall compile and build an executable image
without producing any compiler or build errors.

Provide additional CSCI requirements, if any, concerned with software quality
factors. Examples include quantitative requirements regarding CSCI functionality
(the ability to perform all required functions), maintainability (the ability to be
easily corrected), availability (the ability to be accessed and operated when
needed), flexibility (the ability to be easily adapted to changing requirements),
portability (the ability to be easily modified for a new environment), reusability (the
ability to be used in multiple applications), testability (the ability to be easily and
thoroughly tested), usability (the ability to be easily learned and used), and other
attributes.

3.2.7.3.6.x.10 Design and Implementation Constraints

The [CSCI ID Name] will comply with the HRF Coding Style Guide in Appendix
C of the HRF Software Development Plan (LS-71020).

The HRF HCI Design Guide (LS-71130) should be considered when designing
displays for the [CSCI ID Name].

User interface software associated with the [CSCI ID Name] will comply with the
Display and Graphics Commonality Standards (DGCS) (SSP 50313,
http://139.169.159.8/idags/dgcs.html).

3.2.7.3.6.x.11 Precedence and Criticality of Requirements

If all requirements must be met, then use the default text. If there are some
requirements that are more important than others, clearly identify which
requirements must be met and which requirements may be waived to meet the
critical requirements.

All requirements are equally weighted and are not listed in any order of precedence
or criticality.

LS-71020B-10/02/01 A-9

A2.0 SOFTWARE DESIGN DOCUMENTATION

The text in italics is instructional and should be deleted from the final document.
The intent of the instructional text is to provide guidelines for content, rather than
specify content. Bold-faced text should be replaced with the information requested.

x.0 [NAME OF HARDWARE SYSTEM OR FACILITY]

x.1 SYSTEM ARCHITECTURE AND OVERVIEW

x.1.1 Overview

This paragraph contains a full identification of the system and the software to
which this document applies. Briefly state the purpose of the system and the
software. Describe the general nature of the system and software. Sample Text:

The purpose of the [name of] system is to provide the HRF with the [identify
capability/function]. This system will operate in the [identify operational
environment]. The [name of system] consists of [type of] hardware and related
software. Refer to the Human Research Facility (HRF) Software Configuration
Management Plan and Procedure for a list of the configuration controlled
components of this system. Refer the HRF Configuration Management System for
information regarding the states and revisions of the software.

Documents relevant to this system are:

LS-71020 Software Development Plan for the Human Research Facility
LS-71020-1 Human Research Facility Software Configuration Management Plan

and Procedure
List other non-requirement documents.

x.1.2 System-Wide Design Decisions

This paragraph presents system-wide software design decisions; that is, decisions
about the system’s behavioral design (how it will behave in meeting its
requirements from a user's point of view, ignoring internal implementation) and
other decisions affecting the selection and design of the CSCIs that make up the
system software.

x.1.3 Requirements

This paragraph specifies the requirements that are addressed or allocated to the
software.

The functional requirements for the [System Name] are specified in the following
document(s):

List all requirements documents, by title and document number, associated with the
system and software here.

LS-71020B-10/02/01 A-10

x.1.4 System Architecture

List the CSCIs for this system and, if there is more than one, how they interact.
Specify the Software Type and Software Category (e.g. custom-built flight
software), as defined in the Software Development Plan for the Human Research
Facility, LS-71020.

Each CSCI, other than commercial-off-the-shelf (COTS) and Government
Furnished Software (GFS), will be defined, as indicated, in the following sub-
sections.

Sample Text:

The general architectural approach for the software of the [name of] system is
[generally, describe overall approach; e.g., "... the general approach of the
design for the software of the XYZ system utilizes a real-time controller and
multi-tasked programs with varying degrees of interrupt priority..."]. The
software system consists of [#] major CSCIs, of which [specify number] are
subdivided into Computer Software Units (CSUs). The following paragraphs
provide the software design for each CSCI in the (name of) system.

x.n [CSCI Y, starting with x.2, each developed CSCI for the system]

x.n.1 [CSCI Y] Overview

This paragraph identifies the CSCI by project-unique identifier (see the HRF
Software Configuration Management Plan and Procedure to obtain the identifier)
and states the purpose of the CSCI.

Sample Text:

The purpose of the [name of] CSCI, [unique identifier], is to [general description
of purpose]. Its major inputs are [describe source/type of inputs]. From these
inputs, the CSCI [does what] and outputs the results to [generally describe the
outputs].

x.n.2 CSCI-Wide Design Decisions

This section will be divided into paragraphs as needed to present CSCI-wide design
decisions. Include all decisions about the CSCI's behavioral design and other
decisions affecting the selection and design of the software units that make up the
CSCI. If all such decisions are explicit in the CSCI requirements or are deferred to
the design of the CSCI CSUs, this section may so state.

Design decisions that respond to requirements designated critical, such as those for
safety, security, or privacy, should be placed in separate subparagraphs. If a
design decision depends upon system states or modes, this dependency should be

LS-71020B-10/02/01 A-11

indicated. Design conventions needed to understand the design should be presented
or referenced.

Examples of CSCI-wide design decisions are the following:

a. Design decisions regarding inputs the CSCI will accept and outputs it will

produce, including interfaces with other systems, HWCIs, CSCIs, and users.

b. Design decisions on CSCI behavior in response to each input or condition,
including actions the CSCI will perform, response times and other performance
characteristics, description of physical systems modeled, selected equa-
tions/algorithms/rules, and handling of unallowed inputs or conditions.

c. Design decisions on how databases/data files will appear to the user.

d. Selected approach to meeting safety, security, and privacy requirements.

e. Other CSCI-wide design decisions made in response to requirements, such as
selected approach to providing required flexibility, availability, and
maintainability.

f. The programming language(s) used.

x.n.3 CSCI Composition

This section is divided into the following subsections to describe the CSCI
composition. If part or all of the design depends upon system states or modes, this
dependency should be indicated. If design information falls into more than one
paragraph, it may be presented once and referenced from the other paragraphs.

Sample Text:

The [name of] CSCI is divided into [#] of individual CSUs. The design of this
CSCI is dependent upon [describe the dependency, if applicable]. The following
paragraphs describe the composition of the CSCI.

x.n.3.1 CSCI Components and Organization

This subsection identifies the CSUs and shows the static ("consists of")
relationship(s) of the CSUs. Multiple relationships may be presented, depending on
the selected software design methodology (for example, in an object-oriented
design, this paragraph may present the class and object structures as well as the
module and process architectures of the CSCI.

NOTE: A CSU is an element in the design of a CSCI that is separately testable;

for example, a major subdivision of a CSCI, a component of that
subdivision, a class, object, module, function, routine, or database.

LS-71020B-10/02/01 A-12

Software units may occur at different levels of a hierarchy and may consist
of other software units. Software units in the design may or may not have
a one-to-one relationship with the code and data entities (routines,
procedures, databases, data files, etc.) that implement them or with the
computer files containing those entities. A database may be treated as a
CSCI or as a CSU. The SDD may refer to CSUs by any name(s)
consistent with the design methodology being used.

The section will contain one or more drawings (task decompositions) showing the
functions and subroutines used by this CSCI. The number of decomposition
drawings is determined by the complexity of the CSCI. When more detailed design
information is required to fully understand a subsystem, it may then be iteratively
decomposed to a finer level of detail. Decomposition should be done to a
reasonable level to show design, not necessarily the specific function. No
decomposition drawing will be longer than one page, but more than one
decomposition drawing may appear on one page, if adequate space is available.

The first decomposition drawing will always describe the main task and will have a
title reflecting the task name. In Example 1, the title of the first drawing is "GEN_A
Task Decomposition". If the task is too large and/or complex to be decomposed on
a single page, continuation drawings will be used. Continuation drawings will
have a brief but descriptive name that can be referenced within the higher level
drawing. Continuation drawings will follow the main task decomposition drawing
and should be arranged in some logical order. In the example, task GEN_A
references the INITIALIZE_A and REALTIME_A decomposition drawings.

As a task, GEN_A may call other tasks, library functions that are generic and used
by multiple tasks, or functions and subroutines specific to itself (i.e., used only by
GEN_A). When calling another task, the decomposition drawing will provide the
task name and indicate that it is a task. No additional information regarding that
task will be provided in the GEN_A section. The user must look for further
information regarding these tasks in the section devoted to that task. In Example 1,
the GEN_A decomposition drawing indicates calls PROC_B, PROC_C, and
PROC_D, which are identified as tasks.

When calling a library function, the specific function being used is named, as is the
library that contains that function. No additional information about that library
function will be provided in the GEN_A section. The user must look in the named
library section for specific information on that function. In Example 1, the
initialization decomposition uses "Function_Z" which is located in
"LIBRARY_XYZ". The remaining functions and subroutines contained within a
decomposition drawing(s) will be described in subsection(s) of the main task.

This section will indicate "None." if the task is a stand-alone program.

Example 1:

LS-71020B-10/02/01 A-13

GEN_A

 INITIALIZE_A
(Decomposition)

REALTIME_A
(Decomposition) DATA_ DUMP_A

PRINT_FINAL_DATAPRINT_IC_DATA PRINT_RT_DATA

UNITS_CONVERSION

DATA_SCALING

UNITS_CONVERSION

DATA_SCALING

UNITS_CONVERSION

DATA_SCALING

PROC_B Task

PROC_C Task

PROC_D Task

Figure x.n.3.2 - 1 GEN_A Task Decomposition

INIT_GRAPHICSINIT_POSITION

INITIALIZE_A

INIT_DISPLAYS READ_KYBD_
INPUTS

BUFF_OUT_DATA
(BUFF_LIB)

BUFF_IN_DATA
(BUFF_LIB) IC_DATA_PROC DATA_PROC

GIGO_PROCIC_GIGO_PROC READ_DATA_IN Function_Z
(LIBRARY_XYZ)

Figure x.n.3.2 - 2 INITIALIZE_A Subroutine Decomposition

LS-71020B-10/02/01 A-14

UPDATE_
GRAPHICSCALC_VALUES

REALTIME_A

UPDATE_
DISPLAYS

PROCESS_
INTERRUPTS

BUFF_OUT_DATA
(BUFF_LIB)

BUFF_IN_DATA
(BUFF_LIB) GIGO_PROC DATA_PROC

PROCESS_
ERRORSCALC_STUFF

Figure x.n.3.2 - 3 REALTIME_A Subroutine Decomposition)

x.n.4 [CSCI Y] Concept of Execution

This paragraph describes the concept of execution among the CSUs. Include
diagrams and descriptions showing the dynamic relationship of the software units,
that is, how they will interact during CSCI operation, including, as applicable:

a. flow of execution control
b. data flow
c. dynamically controlled sequencing
d. state transition diagrams
e. timing diagrams
f. priorities among units
g. handling of interrupts
h. timing/sequencing relationships
i. exception handling
j. concurrent execution
k. dynamic allocation/deallocation
l. dynamic creation/deletion of objects
m. processes
n. tasks
o. other aspects of dynamic behavior

x.n.5 [CSCI Y] Interface Design

This section will identify the interfacing entities (software units, systems,
configuration items, users, etc.) by name and documentation references, as
applicable. The identification shall state which entities have fixed interface
characteristics and which are being developed or modified. One or more interface
diagrams should be provided, as appropriate, to depict the interfaces.

LS-71020B-10/02/01 A-15

NOTE TO THE READER: This is the most important section of this document.
Fully describe all interfaces. It is suggested a graphic be included which depicts
system interfaces.

Sample Text:

The [name of] CSCI interfaces with other [name of] CSCI(s), and [name of other]
systems [reference Figure x.x]. Each interface and its associated software design
approach is described in this section.

Continue by describing the interface characteristics all interfacing entities. If a
given interfacing entity is not covered by this SDD (for example, an external
system) but its interface characteristics need to be mentioned to describe
interfacing entities that are, these characteristics shall be stated as assumptions or
as "When [the entity not covered] does this, [the entity that is covered] will"

Other documents (such as standards for protocols, and standards for user
interfaces) may be referenced in place of stating the information here. The design
description should include the following, as applicable, and note any differences in
these characteristics from the point of view of the interfacing entities:

a. Priority assigned to the interface by the interfacing entity(ies)

b. Type of interface (such as real-time data transfer, storage-and-retrieval of data,
etc.) to be implemented

c. Characteristics of individual data elements that the interfacing entity(ies) will
provide, store, send, access, receive, etc., such as:

1) Names/identifiers
2) Data type (alphanumeric, integer, etc.)
3) Size and format (such as length and punctuation of a character string)
4) Units of measurement (such as meters, dollars, nanoseconds)

5) Range or enumeration of possible values (such as 0-99)
6) Accuracy (how correct) and precision (number of significant digits)

7) Priority, timing, frequency, volume, sequencing, and other constraints, such
as whether the data element may be updated and whether business rules
apply

8) Security and privacy constraints

9) Sources (setting/sending entities) and recipients (using/receiving entities)

LS-71020B-10/02/01 A-16

d. Characteristics of data element assemblies (records, messages, files, arrays,
displays, reports, etc.) that the interfacing entity(ies) will provide, store, send,
access, receive, etc., such as:

1) Names/identifiers
2) Data elements in the assembly and their structure (number, order, grouping)
3) Medium (such as disk) and structure of data elements/assemblies on the

medium
4) Visual and auditory characteristics of displays and other outputs (such as

colors, layouts, fonts, icons and other display elements, beeps, lights)
5) Relationships among assemblies, such as sorting/access characteristics
6) Priority, timing, frequency, volume, sequencing, and other constraints, such

as whether the assembly may be updated and whether business rules apply
7) Security and privacy constraints
8) Sources (setting/sending entities) and recipients (using/receiving entities)

e. Characteristics of communication methods that the interfacing entity(ies) will
use for the interface, such as:
1) Communication links/bands/frequencies/media and their characteristics
2) Message formatting
3) Flow control (such as sequence numbering and buffer allocation)
4) Data transfer rate, whether periodic/aperiodic, and interval between

transfers
5) Routing, addressing, and naming conventions
6) Transmission services, including priority and grade
7) Safety/security/privacy considerations, such as encryption, user

authentication, compartmentalization, and auditing

f. Characteristics of protocols that the interfacing entity(ies) will use for the
interface, such as:

1) Priority/layer of the protocol
2) Packeting, including fragmentation and reassembly, routing, and

addressing
3) Legality checks, error control, and recovery procedures
4) Synchronization, including connection establishment, maintenance,

termination
5) Status, identification, and any other reporting features

LS-71020B-10/02/01 A-17

g. Other characteristics, such as physical compatibility of the interfacing
entity(ies) (dimensions, tolerances, loads, voltages, plug compatibility, etc.

x.n.6 CSCI Global Data

Provide a table to describe the global data elements and structures that are used
within this CSCI.

a. Description
b. Components
c. Data type (alphanumeric, integer, etc.)
d. Size and format (such as length and punctuation of a character string)
e. Units of measurement (such as meters, dollars, nanoseconds)
f. Range or enumeration of possible values (such as 0-99.)

x.n.7 CSCI Requirements Traceability

Specify the system software requirements that are addressed or allocated to the
CSCI by referencing the appropriate HRD.

The functional requirements for the [Item Name] CSCI are identified in the table
below.

Document Title Requirement Paragraph

[HRD for XXX] 3.1.2.a
3.1.2.c
3.1.2.d
3.1.2.g

[HRD for XXX, if applicable] 3.4.2.f
3.4.2.h

x.n+1 Detailed Design

Begin with p = n+1, for each CSU.

x.n+1.1 List of CSUs

This paragraph shall list all of the CSUs defined for the system software along with
the corresponding detailed design section number. (All CSUs for all CSCIs). They
may be organized in any logical manner.

LS-71020B-10/02/01 A-18

x.n+1.p [CSU Name (p starting with 2, for each CSU in the system software)]

State the purpose of the CSU and identify the CSU's development status/type (such
as new development, existing design or software to be reused as is, existing design
or software to be reengineered, software to be developed for reuse, software
planned for Build N, etc.) For existing design or software, the description shall
provide identifying information, such as documentation references, library, etc.

x.n+1.p.1 CSCI Mapping

This paragraph shall identify to which CSCI(s) this CSU is linked.

This CSU is used in the following CSCI(s):

List CSCI name or names if used in multiple CSCIs.

x.n+1.p.2 Library Location

Identify the program library in which the software that implements each CSU is to
be placed, if applicable. A program library is a file containing object code. It can
be used to build an executable in lieu of re-compiling each component.

This CSU is compiled into the following library file:

Insert file name here or delete text and state that a library is not used.

x.n+1.p.3 CSU Design

This paragraph shall describe the CSU. The description shall include the following
information, as applicable. Software units that contain other software units may
reference the descriptions of those units rather than repeating information.

a. Unit design decisions, if any, such as algorithms to be used, if not previously

selected

b. Any constraints, limitations, or unusual features in the design of the software
unit

c. The programming language to be used and rationale for its use if other than the
specified CSCI language

d. If the software unit consists of or contains procedural commands {such as menu
selections in a database management system (DBMS) for defining forms and
reports, on-line DBMS queries for database access and manipulation, input to a
graphical user interface (GUI) builder for automated code generation,
commands to the operating system, or shell scripts}, a list of the procedural
commands with references to user manuals or other documents that explain
them

LS-71020B-10/02/01 A-19

e. If the software unit contains logic, the logic to be used by the software unit,
including as applicable:

1) Conditions in effect within the software unit when its execution is initiated
2) Conditions under which control is passed to other software units
3) Response and response time to each input, including data conversion,

renaming, and data transfer operations
4) Sequence of operations and dynamically controlled sequencing during the

software unit's operation, including:
a) The method for sequence control
b) The logic and input conditions of that method, such as timing variations,

priority assignments
c) Data transfer in and out of memory
d) The sensing of discrete input signals, and timing relationships between

interrupt operations within the software unit
5) Exception and error handling

A design flow diagram showing the execution logic shall be provided for each CSU.
Exemptions to this documentation requirement shall be granted on a case-by-case
basis.

The following text explains the symbols and theory used in the design flow diagram
format that will be acceptable in this document.

An object-based notation for describing functional design in the Processing
subsections of this document is used. Process objects used in these subsections are
initially defined at a high level of abstraction (using the Process Object). When
more detailed design information is required to fully understand the design of a
subsystem, these high level process objects may be iteratively decomposed to a finer
level of detail (using Sub-Process Objects).

PROCESS
PROC_NAME Process Objects

This symbol represents the highest level of abstraction for any subsystem design
component. In most cases, this will correspond to a top-level design flow for a task
or process. All design information will be expressly stated by Process Blocks and
Decision Blocks within the Process Object at a uniform and consistent level of
abstraction (i.e., at the highest level).

LS-71020B-10/02/01 A-20

SUB_PROC_NAME Sub-Process Objects

This symbol signifies the start of a subsystem design component that is "executed"
from a higher-level process object. Sub-Process Objects will typically correspond
to subroutines, library routines, or some other low-level design information which
must be shown to sufficiently convey design information. As is the case in Process
Objects, all design information at this level will also be expressly stated by Process
Blocks and Decision Blocks at a uniform and consistent level of abstraction (i.e., at
a level of abstraction lower than the "calling" process object).

 Terminator

This symbol identifies an exit point for a Process or Sub-Process Object. There
should be a single exit point for most Process Objects and Sub-Process Objects.

 Return Symbol

This symbol identifies an exit point for a Sub-Process Object. Whenever Sub-
Process Object flow encounters this symbol, control flow is returned to the parent
process object that initiated the "execution" of that sub-process object.

 External Event

This symbol represents event synchronization. This event can take the form of
external, internal, or timer events. In most cases, this event will represent an
external interrupt from an I/O device.

 Arrows

This symbol represents notation for specialized cases of data and control flow. For
arrows with solid lines, this represents data flows (typically to a data store). For
arrows with dashed lines, these represent specialized control or event flows. As
before, solid lines with no arrows represent process control flow in a diagram.

 Process Block

This symbol is used to describe and define design components and associated
information. It represents a building block for the design of something being
modeled. It should be at a level of abstraction that can be further broken down by
other process blocks (if necessary) but should not be at the code level. It should
contain the action(s) necessary to produce outputs from inputs or to show control
activity in a system.

LS-71020B-10/02/01 A-21

Decision Block

This symbol is used to show that a decision action must be taken which effectively
alters control flow. In other words, design flow will proceed down one of multiple
paths of execution dependent on the design information contained within the
Decision Block. Control information within this block should also be at a level of
abstraction above the code level. That is, the Decision Block should in no case be
construed as representing a programming language construct (i.e., it does not
specifically mean "if-then," "if-then-else," or "case select").

Data Store

 Data Store

This symbol identifies the use of a data store. A data store represents a repository
of data. This data must be external to a Process Block and may represent shared
memory, reflective memory, communication devices, etc. A descriptive name for the
data store should be placed within the horizontal lines of this symbol.

Process_iloads

Copy buffer to iload
buffer

local_sim_buffer

iload buffer

Get num_iloads
from counter in

buffer
iload buffer

Skip to first iload
entry

Read entry until NULL Get iload entry
from iload buffer

iload buffer

iload entry

LS-71020B-10/02/01 A-22

x.n+1.p.4 CSU Data

x.n+1.p.4.1 Global Data Structures/Types

The Global Data Structures/Types subsection contains a list of the global data types
and structures that are used within this CSU. All global data structures and types
are declared at the CSCI level in the document; they are not redeclared in this
section. The subsection header and text may appear anywhere (vertically) on the
page. This subsection will indicate "None." if no Global Data Structures/Types are
required by the CSU.

Example 1:

None.

Example 2:

List variables used in the CSU by referencing the variable description in global
structures section (x.n.6).

x.n+1.p.4.2 Local Data Structures/Types

The Local Data Structures/Types subsection contains declarations of data types and
structures that are local to the CSU.

This subsection will indicate "None" if no Local Data Structures/Types are required
by the CSU. This subsection header and text should appear at the top of a page,
although an exception may be made if "None" is the only entry or if there are very
few entries to the section. Documentation personnel will determine this format.

Example 1:

None.

Example 2:

Provide a table to describe the global data elements and structures that are used
within this CSCI.

a. Description
b. Components
c. Data type (alphanumeric, integer, etc.)
d. Size and format (such as length and punctuation of a character string)
e. Units of measurement (such as meters, dollars, nanoseconds)
f. Range or enumeration of possible values (such as 0-99.)

LS-71020B-10/02/01 A-23

x.n+1.p.4.3 Input Data

The Input Data subsection contains declarations of parameters that are passed to
the CSU and significant global variables (or the named structure that contains
them) that are referenced within the CSU and its associated subfunctions. This is
the only place within the CSU where inputs are declared, so all (significant) inputs
must be listed here. Elements in the input data list will appear in alphabetical
order.

This subsection will indicate "None" if no input parameters are passed to the CSU
and no (significant) global variables are used by the CSU and its subfunctions.
This subsection header and text should appear at the top of a page, although an
exception may be made if "None" is the only entry or if there are very few entries to
the section. Documentation personnel will determine this format.

Example 1:

None.

Example 2:

Provide a table to describe the global data elements and structures that are used
within this CSCI.

a. Description
b. Components
c. Data type (alphanumeric, integer, etc.)
d. Size and format (such as length and punctuation of a character string)
e. Units of measurement (such as meters, dollars, nanoseconds)
f. Range or enumeration of possible values (such as 0-99)

x.n+1.p.4.4 Output Data

The Output Data subsection contains declarations of parameters that are passed
out of this CSU and all global variables (or the structure that contains them) that
are modified by the CSU. This is the only place within the CSU where outputs are
declared, so all modified data and other outputs must be listed here. Elements in
the output data list will appear in alphabetical order.

This subsection will indicate "None" if no parameters are output from the CSU and
no global variables are modified by the CSU. This subsection header and text
should appear at the top of a page, although an exception may be made if "None" is
the only entry or if there are very few entries to the section. Documentation
personnel will determine this format.

LS-71020B-10/02/01 A-24

Example 1:

None.

Example 2:

Provide a table to describe the global data elements and structures that are used
within this CSCI.

a. Description
b. Components
c. Data type (alphanumeric, integer, etc.)
d. Size and format (such as length and punctuation of a character string)
e. Units of measurement (such as meters, dollars, nanoseconds)
f. Range or enumeration of possible values (such as 0-99)

x.n+1.p.5 Requirements Traceability

This section shall contain:

a. Traceability from each software unit identified in this SDD to the CSCI
requirements allocated to it.

b. Traceability from each CSCI requirement to the software units to which it is
allocated.

The requirements allocated to this CSU are identified in the table below.

Document Title Requirement Paragraph CSCI Identifier

[HRD for the XYZ] 3.1.2.a
3.1.2.c
3.1.2.d
3.1.2.g)

HRF-xyyz

HRF-xyyz

[HRD for the ABC] 3.4.2.f
3.4.2.h

HRF-xyyz

x.n+2 NOTES

This section shall contain any general information that aids in understanding this
document (e.g., background information, glossary, rationale). This section shall
include an alphabetical listing of all acronyms and abbreviations and their
meanings as used in this document and a list of any terms and definitions needed to
understand this document.

LS-71020B-10/02/01 A-25

Appendices may be used to provide information published separately for
convenience in document maintenance (e.g., charts, data). As applicable, each
appendix shall be referenced in the main body of the document where the data
would normally have been provided. Appendices may be bound as separate
documents for ease in handling. Appendices shall be lettered alphabetically (A, B,
etc.).

LS-71020B-10/02/01 A-26

A3.0 SOFTWARE TEST PLAN AND PROCEDURE

This template shall be used for writing software test procedure and software
acceptance test procedures. NOTE: If pathnames and/or data values vary with
each execution of the test plan, leave a blank underlined space so that the value can
be handwritten during test plan execution.

1.0 INTRODUCTION

1.1 SCOPE

This test plan covers [test type (acceptance, CSCI qualification, design
certification support)] testing for the [{A} CSCI, product name or system name
as applicable]. Specific items to be tested are listed in Table 1.

TABLE 1 SOFTWARE TEST ARTICLES
FOR [SAME TEXT AS{A} ABOVE]

Item to be Tested Test Number
Item 1 Test number
Item 2 Test number
Item N Test number

The version of software tested shall be documented on the test signoff form, Task
Performance Sheet (TPS), or equivalent. All deviations (other than redlines) to this
test plan require prior approval from the Project Manager.

1.2 PERSONNEL

Personnel with the following skills are required to complete the tests detailed in
section 3:

Test Number Skill Type
Test number skill type
Test number skill type
Test number skill type

Select one or more of the following for skill types for each test: Operations,
Training, Developer, Responsible Engineer, Human Factors, Quality
Representative. Provide a training plan if personnel with other than the required
skill type will be used to conduct the test.

To determine appropriate selection of personnel for test review and approval
authorization, refer to the most current Science and Payloads Activity organization
chart.

NOTE: If software testing requires an experiment test subject, the need for
medical personnel must be stated.

B-1

B-1

LS-71020B-10/02/01 A-27

2.0 REFERENCED DOCUMENTS

List the numbers and titles of any other documents referenced in this plan.

3.0 TEST DEFINITION

The following sections describe each test to be performed, including hardware and
software set-up, detailed test procedures, and expected results. The actual results
are documented [specify where test results will be documented]

NOTE: The Software Development File (SDF) is acceptable for unit and

integration tests; a TPS shall be used for qualification tests.

Add a subsection x for each test to be described. If only one test is described,
remove the subsection x placeholder and provide the test description at this
documentation level.

3.x [TEST IDENTIFIER]

The purpose of this test is to [provide brief description of what this test does and
why it is being run].

3.x.1 Hardware Preparation

Describe the hardware set-up required for the test. The following shall be
provided, as applicable:

a. The specific hardware to be used, identified by name and, if applicable, number
b. Any switch settings and cabling necessary to connect the hardware
c. One or more diagrams to show hardware, interconnecting control, and data

paths
d. Step-by-step instructions for placing the hardware in a state of readiness

Describe how the hardware part of the test environment configuration will be
controlled during testing.

LS-71020B-10/02/01 A-28

3.x.2 Software Preparation

Describe the software set-up required for the test. The following information shall
be provided, as applicable:

a. The specific software to be used in the test. Test software shall be identified

and associated with its appropriate test number in the test plan. The test report
shall identify the use of test software. The HRF software configuration
management tool shall record the test number in its change description record
for a CSCI.

b. The storage medium of the item(s) under test (e.g., magnetic tape, diskette)
c. The storage medium of any related software (e.g., simulators, test drivers,

databases)
d. Instructions for loading the software, including required sequence
e. Instructions for software initialization common to more than one test case

Additionally, describe how the software part of the test environment configuration
will be controlled during testing. Include how the test software is verified prior to
use and identify where documentation of the test software verification is
maintained.

3.x.3 Other Pre-Test Preparations

Describe any other pre-test personnel actions, preparations, training, or
procedures necessary to perform the test. If none are required, insert N/A.

3.x.4 Prerequisite Conditions

Indicate whether there are any test sequence dependencies or other prerequisite
conditions that must be established prior to performing the test. The following
considerations should be discussed, as applicable:

a. Flags, initial breakpoints, pointers, control parameters, or initial data to be

set/reset prior to test commencement

b. Preset hardware conditions or electrical states necessary to run the test case
c. Initial conditions to be used in making timing measurements

d. Conditioning of the simulated environment
e. Other special conditions peculiar to the test case

If none are required, insert N/A.

LS-71020B-10/02/01 A-29

3.x.5 Test Data

For each test case associated with this test, provide the test data information by
completing the table below. If a table field does not apply to the data, insert
“N/A.” When test software will be used, that software shall be verified and
validated by a Software Quality Assurance (SQA) designee prior to use. A copy of
the verification and validation tests and results shall be inserted into the Software
Development File (SDF) for the CSCI. Test software used to verify the test software
shall also be verified and validated. The SQA designee shall select the appropriate
method (inspection or demonstration) for verifying and validating all test software.

The test data for each test case associated with this test are listed in the following
table(s). The expected results for each input item are provided for each specific
input value.

3.x.6 Criteria for Evaluating Results

Evaluation criteria shall be provided for each test result in each test case
associated with this test. The following information should be considered when
developing the evaluation criteria:

a. The range or accuracy over which an output can vary and still be acceptable
b. Minimum number of combinations or alternatives of input and output

conditions that constitute an acceptable test result
c. Maximum/minimum allowable test duration, in terms of time or number of

events
d. Maximum number of interrupts, halts, or other system breaks that may occur
e. Allowable severity of processing errors
f. Conditions under which the result is inconclusive and re-testing is to be

performed
g. Conditions under which the outputs are to be interpreted as indicating

irregularities in input test data, in the test database/data files, or in test
procedures

h. Allowable indications of the control, status, and results of the test and the
readiness for the next test case (may be output of auxiliary test software)

I. Additional criteria not mentioned above that must be evaluated to determine the
success or failure of a test.

LS-71020B-11/20/00 A-30

TABLE 3.x.5-1 TEST CASE [TEST CASE ID] TEST DATA SET
[SEQUENCE NUMBER, IF APPLICABLE]

Input Data
Item Name

Brief

Description

Valid
Range

Accuracy
Required for
Input Value

Input Method (Test
Program or Real

Data Path)

Time Constraints
and other Special

Considerations

Specific Input
Value(s, if more

than one)

Expected
Results

LS-71020B-09/28/01 A-31

The following criteria will be used for evaluating the intermediate and final results
of test case [test case identifier]:

Provide evaluation criteria for each test result associated with each test case. A
tabular form with one table per test case is recommended. Another format may be
used when a tabular form may lead to confusion.

3.x.7 Test Procedure

The test procedure for the test case(s) is detailed in the following paragraphs. Blank
fields shall be completed during execution of the procedure.

The test procedure shall be defined as a series of individually numbered steps listed
sequentially in the order in which the steps are to be performed. The appropriate
level of detail in each test procedure depends on the type of software being tested.
For some software, each keystroke may be a separate test procedure step; for most
software, each step may include a logically related series of keystrokes or other
actions. The appropriate level of detail is the level at which it is useful to specify
expected results and to compare them to actual results. There should be a
procedure for each test case. The following shall be considered for each test
procedure, as applicable:

a. The actions and equipment operation required for each step, including

commands, as applicable, to:

1) Initiate the test case and apply test inputs
2) Inspect test conditions
3) Perform interim evaluations of test results
4) Record data
5) Halt or interrupt the test case
6) Request data dumps or other aids, if needed
7) Modify the database/data files
8) Repeat the test case if unsuccessful
9) Apply alternate modes as required by the test case
10) Perform regression tests, if needed
11) Terminate the test case

b. The manner in which the input data will be controlled to:

1) Test the item(s) with a minimum/reasonable number of data types and
values

2) Exercise the item(s) with a range of valid data types and values that test for
overload, saturation, and other "worst case" effects

B-
1

LS-71020B-09/28/01 A-32

3) Exercise the item(s) with invalid data types and values to test for
appropriate handling of irregular inputs

c. Actions to follow in the event of a program stop or indicated error, such as:

1) Recording of critical data from indicators for reference purposes
2) Halting or pausing time-sensitive test-support software and test apparatus
3) Collection of system and operator records of test results

d. Procedures to be used to reduce and analyze test results to accomplish the
following, as applicable:

1) Detect whether an output has been produced
2) Identify media and location of data produced by the test case
3) Evaluate output as a basis for continuation of test sequence
4) Evaluate test output against required output

In addition to the above, the following should be considered when writing an
Acceptance Test Procedure:

a. Verify the shipment against the purchase order to ensure they match. Document

any discrepancies found.

b. Inspect the media for flaws.

c. Use a virus scanner to ensure that the media is free from viruses, if applicable.

NOTE: All Windows/DOS/Mac media shall be scanned.

The receiving report shall not be signed until the acceptance test has been
performed and the products have passed.

3.x.8 Assumptions and Constraints

Replace the default text with any assumptions made and constraints or limitations
imposed in the description of the test case due to system or test conditions, such as
limitations on timing, interfaces, equipment, personnel, and database/data files. If
waivers or exceptions to specified limits and parameters are approved, they shall be
identified and this paragraph shall address their effects and impacts upon the test
case.

There are no assumptions or constraints associated with the tests described above.

LS-71020B-09/28/01 A-33

4.0 REQUIREMENTS TRACEABILITY

The Requirements Traceability Matrix is shown in Table 4-1. The Requirements
Allocation Matrix is shown in Table 4-2.

In Table 4-1, list each requirement in section 3.1.6 of the HRD (or other
requirements source) and indicate which test case(s) in which test(s) show that the
requirement is met. Table 4-2 is the reverse of Table 4-1.

TABLE 4-1. REQUIREMENTS TRACEABILITY MATRIX

CSCI Requirement Test Number Test Case
Requirement number Test number Test Case ID
Requirement number Test number Test Case ID
Requirement number Test number Test Case ID

TABLE 4-2. REQUIREMENTS ALLOCATION MATRIX

Test Number Test Case CSCI Requirement
Test number Test Case ID Requirement number
Test number Test Case ID Requirement number
Test number Test Case ID Requirement number

5.0 NOTES

This section shall contain any general information that aids the reader’s
understanding of this document (e.g., background information, glossary, rationale).
This section shall include an alphabetical listing of all acronyms, abbreviations,
and their meanings as used in this document and a list of any terms and definitions
needed to understand this document.

LS-71020B-09/28/01 A-34

A4.0 VERSION DESCRIPTION DOCUMENT

The Version Description Document (VDD) is either manually created, or
automatically generated by the HRF Configuration Management (CM) System. The
following provides an overview of the structure of the VDD. The sections where
content can be generated by the CM tool are identified. If the CM System generates
the VDD, the text for the remaining sections must be inserted into the VDD template
in the CM System. If the HRF CM System is not used to generate the VDD, all
sections must be completed manually.

1.0 SCOPE

Briefly describe the software to which this document applies.

This document describes the software release for the [system name]. It includes all
custom, Government Furnished Software (GFS), and Commercial Off-the-Shelf
(COTS) software. This software load is used for [indicate if the software load is
for test, training, ground support, and/or flight].

2.0 APPLICABLE DOCUMENTS

2.1 REFERENCED DOCUMENTS

List the number, title, revision, and date of all documents referenced in this
document.

2.2 RELATED DOCUMENTS

List by identifying numbers, titles, abbreviations, dates, version numbers, and
release numbers, as applicable, all documents pertinent to the software version
being released but not included in the release (i.e., requirement documents, design
documentation, interface documentation, etc.).

3.0 VERSION DESCRIPTION

3.1 INVENTORY OF MATERIALS RELEASED

List by identifying numbers, titles, abbreviations, dates, version numbers, and
release numbers, as applicable, all physical media (for example, listings, tapes,
disks) and associated documentation that make up the software version being
released. Include applicable packaging requirements, security and privacy
considerations for these items, safeguards for handling them such as concerns for
static and magnetic fields, and instructions and restrictions regarding duplication
and license provisions.

B-2

LS-71020B-09/28/01 A-35

3.2 INVENTORY OF SOFTWARE CONTENTS

The CM System generates this section. It contains a list of all software components
and data files included in the software load being released. If this section is
created manually, it should contain a list of all the software components (e.g.,
CSCIs and CSUs) that comprise the software release. The list shall include version
numbers and version dates for each software component. For COTS applications,
the version and release date of each major program shall be identified. For
example, a VDD for Office 2000 Standard would include the versions and release
dates for Word, PowerPoint, Excel, Internet Explorer, etc. For custom software
being delivered to the HRF Project, the byte count for each file shall be included.
For COTS software being delivered to the HRF Project on media other than that
provided by the vendor, the byte count for each file shall be provided.

3.3 CHANGES INSTALLED

The CM System generates this section. It contains a list of all changes incorporated
into the software version since the previous version. This paragraph does not apply
to the initial software version.

3.4 ADAPTATION DATA

Identify all unique-to-site data (e.g., configuration files, serial port configuration,
hard drive address letters, changes made for training, etc.) contained in the
software version. For software versions after the first, this paragraph shall
describe changes made to the adaptation data. Additionally, the operation system
version, operating system setting and any other environmental settings or software
required for execution of the software and not included in the software release shall
be identified.

3.5 INSTALLATION INSTRUCTIONS

Provide or reference the following information, as applicable:

a. Instructions for installing or upgrading the software version
b. Identification of other changes that have to be installed for this version to be

used, including site-unique adaptation data not included in the software version
c. Security, privacy, or safety precautions relevant to the installation

d. Procedures for determining whether the version has been installed properly
e. A point of contact to be consulted if there are problems or questions with the

installation

B-2

B-2

LS-71020B-09/28/01 A-36

3.6 POSSIBLE PROBLEMS AND KNOWN ERRORS

Identify any possible problems or known errors with the software version at the
time of release, any steps being taken to resolve the problems or errors, and
instructions (either directly or by reference) for recognizing, avoiding, correcting,
or otherwise handling each one.

3.7 CSCI ENVIRONMENT INFORMATION

For each CSCI, identify and list the version for the operating system, compilers,
and any other tools used to develop and test the CSCI.

3.8 UNTESTED REQUIREMENTS

Identify every requirement by number and requirements text that could not be tested
prior to release of the software. For each requirement, provide the test steps
associated with the software that are necessary to ensure the requirement is fully
tested during rack integration.

LS-71020B-09/28/01 A-37

4.0 NOTES

This section shall contain any general information that aids in understanding this
document (e.g., background information, glossary, rationale). This section shall
include an alphabetical listing of all acronyms, abbreviations, and their meanings
as used in this document and a list of any terms and definitions needed to
understand this document.

LS-71020B-02/03/04 A-38

5.0 APPENDICES (IF APPLICABLE)

Appendices may be used to provide information published separately for
convenience in document maintenance (e.g., charts, data). As applicable, each
appendix shall be referenced in the main body of the document where the data
would normally have been provided. Appendices may be bound as separate
documents for ease in handling. Appendices shall be lettered alphabetically (A, B,
etc.). If desired, the Human Research Facility On-Orbit Software Change Log may
be included as the last appendix of the document. If it is used, it must be referenced
in Sections 2.1, 3.3, and 3.5. Sample reference text is provided below.

Section 2.1 Documents updated as a result of On-Orbit changes are identified in Appendix
x, HRF On-Orbit Software Change Log.

Section 3.3 Appendix x, HRF On-Orbit Software Change Log contains the list of all
changes made during On-Orbit operations.

Section 3.5 Following installation from the {media source}, the software identified in
Appendix x, HRF On-Orbit Software Change Log, must be installed to achieve
the final On-Orbit configuration.

The change log simplifies tracking of on-orbit changes in the VDD. The table fields
may be customized as needed. The default fields are:

Change Authorization Identifies the change request number that authorized the configuration
change. This field is required.

Install Date Identifies the proposed installation date. This field is required

Incr.(s) Specifies the increment(s) for which the update will be used. This field is
required

R/O Indicates if file must be distributed to all load installations or not.
R - Required – must be installed on all previously distributed loads.
O - Optional – installation on previously distributed loads is not required.
Teams needing to use an optional component must verify installation of
the component on the load prior to use. This field is required.

Version Description
Document

The document number and version of the VDD that contains the change.
If this table is being included in the VDD that contains the change, this
column may be omitted.

Platform Identifies the platform where the change will be installed. If there is only
one viable platform, this column may be omitted.

Software Component Identifies the program, configuration file, batch file data file and/or script
being changed. This field is required.

Origin Identifies the organization that produced the change. Nominally this will
be Principal Investigator (PI) Team, Experiment Team, HRF Instrument
Team, HRF Integration, HRF Common Software, etc. This field is
required.

Version Identifies the version of the new software component. This field is
required.

Part Number Identifies the part number of the new software component used to put the
software in Building 36 Bond. This field is required.

B-3

LS-71020B-02/03/04 A-39

APPENDIX X. HUMAN RESEARCH FACILITY ON-ORBIT SOFTWARE CHANGE LOG

Change
Authorization

Install
Date

Incr.
(s)*

R/O
**

Version Description
Document Platform

Software
Component Origin Version

Part
Number

 HRF PC
 HRF Workstation
 Other: ___________

 HRF PC
 HRF Workstation
 Other: ___________

 HRF PC
 HRF Workstation
 Other: ___________

 HRF PC
 HRF Workstation
 Other: ___________

 HRF PC
 HRF Workstation
 Other: ___________

 HRF PC
 HRF Workstation
 Other: ___________

 HRF PC
 HRF Workstation
 Other: ___________

 HRF PC
 HRF Workstation
 Other: ___________

 HRF PC
 HRF Workstation
 Other: ___________

* - Specify the increment(s) for which the update will be used.
** - Indicates whether the file must be distributed to all load installations or not. R - Required – must be installed on all previously distributed loads.

O - Optional – installation on previously distributed loads is not required. Teams needing to use an optional component must verify installation of the
component on the load prior to use.

B-3

LS-71020B-11/20/00

APPENDIX B

REVIEW CHECKLISTS

LS-71020B-11/21/00 B-1

B1.0 HRF REQUIREMENTS REVIEW CHECKLIST

HRF REQUIREMENTS REVIEW CHECKLIST

Unit Name:_______________________________ Date: ____/_____/_____

Reviewer: _______________________________ Date: ____/_____/_____

Comments:__

Init Activity
 Lessons learned files from other projects have been reviewed for applicability
 Data package distributed two weeks prior to the review.
 Review package includes cover memo, Hardware Development Plan (or other system

approach documentation), schedule, data package contents list, other applicable
material (list:
)

 Lessons learned have been generated and placed in SDF with copy to SEAT Quality
Systems Deployment Rep?

Closure Authorization

Contractor:________________ Date_______ NASA:___________________ Date________

Revision: A [11/21/2000]

LS-71020B-11/21/00 B-2

B2.1 HRF SOFTWARE PRELIMINARY DESIGN REVIEW CHECKLIST

HRF SOFTWARE PRELIMINARY DESIGN REVIEW CHECKLIST

Unit Name:__________________________________ Date: ____/_____/_____

Reviewer: __________________________________ Date: ____/_____/_____

Comments:__

Init Activity
 Data package distributed two weeks prior to the review.
 Review package includes cover memo, Requirements documentation (HRD or other), schedule, data

package contents list, other applicable material (list:
)

 Relationship/dependencies with other units is described.
 Design constraints and assumptions are specified.
 SDF up to date and contains requirements, interface and design information.
 Lessons learned have been generated and placed in SDF with copy to SEAT Quality Systems

Deployment Rep?
 First occurrence of each acronym defined.
 No open issues/questions (record any open as action items).
 Architecture for CSCI (decompose to CSU with calling hierarchy).
 If user interface, screen shots have been submitted to the HRF Display Review Process.
 Each Requirement is specified by a “shall.”
 Only one requirement per “shall” (no compound requirements) with a unique identifier per “shall.”
 Initialization and shutdown requirements are completed (if applicable).
 Each “shall” is quantifiable per the verification method specified.
 Each “shall” addresses an observable behavior or characteristic.
 All expected software functions have been documented.
 Traceability and Allocation tables completed, and accurate.

Closure Authorization

Contractor:________________ Date_______ NASA:___________________ Date________

Revision: A [11/21/2000]

LS-71020B-11/21/00 B-3

B2.2 HRF SOFTWARE CRITICAL DESIGN REVIEW CHECKLIST

HRF SOFTWARE CRITICAL DESIGN REVIEW CHECKLIST

Unit Name:__________________________________ Date: ____/_____/_____

Reviewer: __________________________________ Date: ____/_____/_____

Comments:__

Init Activity
 Data package distributed two weeks prior to the review.
 Review package includes cover memo, Requirements documentation (HRD or other), schedule, data

package contents list, other applicable material (list:
)

 Relationship/dependencies with other units is described.
 Design constraints and assumptions are specified.
 SDF up to date and contains requirements, interface and design information.
 Lessons learned have been generated and placed in SDF with copy to SEAT Quality Systems

Deployment Rep?
 First occurrence of each acronym defined.
 No open issues/questions (record any open as action items).
 All algorithms are identified and described with enough detail to implement.
 Data names follow naming conventions (SDP, Appendix C).
 Data structures are identified and describe with enough detail to implement.
 Each requirement traced through design.
 Error handling is identified and described with enough detail to implement.
 Flow logic is correct and complete.
 I/O sections complete.
 Inputs and outputs are traceable among the CSUs.
 Local data elements are identified.
 No dependencies on direct memory locations except as dictated by target architecture.
 Processing that binds code to target architecture word size should be avoided.
 Software design documentation adheres to template (SDP, Appendix A).
 Draft Test Plans are available for review.
 If user interface, Prototype User Interface S/W has been submitted to the HRF Display Review Process.

Closure Authorization

Contractor:________________ Date_______ NASA:___________________ Date________

Revision: A [11/21/2000]

LS-71020B-11/21/00 B-4

B3.0 HRF CODE REVIEW CHECKLIST

HRF CODE REVIEW CHECKLIST

Unit Name:__________________________________ Date: ____/_____/_____

Reviewer:___________________________________ Date: ____/_____/_____

Comments: __

__

Init Activity
 The SDF, SDD requirements documentation (HRD or other) excerpts and list of open issues are available at

the review.
 All objects are declared with a specific data type.
 Objects are initialized or set before being referenced.
 For every memory allocation, there exists a corresponding "free". After the “free,” is the pointer set to null.
 Codes compiles without warnings or errors.
 If freeing memory in another routine, is this documented in the header or comments?
 All objects of a link list are freed.
 Every call to strncpy is followed by a forced null character.
 For every open, there is a corresponding close.
 No nested header files.
 No multiple declared headers. (a header files is included once in a file)
 Void subprograms have either no return statement or no parameter on the return statement.
 At most, one return per subprogram. (except for error returns)
 No gotos.
 Prototype in proper place (header file or subprogram).
 Subprogram returns 0 if failure; returns 1 if successful. On multiple error return values, subprogram returns

> 0 if failure; returns 0 if successful.
 Is error handling / out-of-bounds checking sufficient?
 All declared variables are used in the code.
 Enumeration types are used instead of integer types (hard-coded integers).
 Switch statements are used instead of an if for selections.
 Switch statements contain the default clause.
 Break statement is the last statement in each case of a switch statement, except in Visual BASIC.
 Avoid modifying an object's value more than once in a single statement.
 Avoid exceeding array or allocated memory boundaries.
 SDF complete and up to date.

Closure Authorization

Contractor:________________ Date_______ NASA:___________________ Date________

Revision: A 12/13/99

LS-71020B-11/21/00 B-5

B4.0 CODE REVIEW REPORT

CSCI Title: Date: _____/_____/_____

Attendees

Comments/Redlines/Recommendations:

All comments, redlines, and recommendations have been addressed accordingly.

Responsible Engineer(s): Data / /

Project Manager: Data / /

SQA: Date / /
 Date / /

Revision: Original [11/21/2000]

LS-71020B-11/21/00 B-6

B5.0 CSCI INTEGRATION TEST SIGNOFF FORM

CSCI Title:

Initial Thread Version:

CSCI Developer(s):

All CSUs promoted for Integration and Unit Test completed.

Test Runs*:

Run Date(s)
Run Without Errors?

(Yes/No.) Tester Name (Print) Tester Signature

*Two test runs without errors must be executed in succession before the integration test of the CSCI is accepted.
The CSCI developer may not execute integration test.

In lieu of formal integration testing due to DRs or other unlikely occurrences, record test actions performed:

Thread promoted for Integration Test completion.

Promoted Thread Version:

Integration Test Complete Acceptance:

Responsible Engineer(s): Data / /

Project Manager: Date / /

Revision: Original [11/21/2000]

LS-71020B-11/21/00 B-7

B6.0 SYSTEM INTEGRATION TEST SIGNOFF FORM

CSCI Title:

Initial Thread Version:

CSCI Developer(s):

All CSUs promoted for System Integration and CSCI Integration completed.

TPS Number (System Evaluation):

Run Date(s):

Run Without Errors? (yes/no)

Comments:

Tester Name (Print):

Tester Signature

Record the evaluation with any problems for the System Integration Test.

Thread promoted for System Integration Test completion.

Promoted Thread Version:

System Integration Test Complete Acceptance:

Tester(s): Data / /

 Data / /

Revision: Original [11/21/2000]

LS-71020B-11/21/00 B-8

B7.0 QUALIFICATION READINESS REVIEW CHECKLIST

CSCI: Version:

Test Status:

Hardware availability:

Support Personnel Required (outside of team members):

Documentation Status:

Test Plans -

Design Documentation -

VDD -

Other -

Configuration Status:

Open Issues:

Project Manager:

SQA:

NASA:

Use the back of this form to record attendance and other information that will not fit in the space provided.

Revision: Original [11/21/2000]

LS-71020B-11/21/00 B-9

B8.0 COMPILER SETTINGS

See the following file(s):

in the thread, version , for the compiler settings.

 / /

 Developer

Revision: Original [11/21/2000]

LS-71020B-11/21/00 B-10

B9.0 DOCUMENT REFERENCE

CSCI Title:

Version:

Document Release Number/Section Initial*

HARDWARE REQUIREMENTS DOCUMENT (HRD) OR
SOFTWARE REQUIREMENT SPECIFICATIONS (SRS)

Software Design Document (SDD)

INTERFACE DEFINITION DOCUMENT (IDD) OR
INTERFACE CONTROL DOCUMENT (ICD)

Test Plan

Version Description Document (VDD)
*NASA representative and project manager must initial if the document is not applicable.

Revision: Original [11/21/2000]

LS-71020B-11/21/00 B-11

B11.0 CSCI SDF CHECKLIST

CSCI Title:

Version:

Initial* Item
Date

Submitted

 Code Review Invitation Page

 CODE REVIEW CHECKLIST

 Razor Code Version List (Code Review)

 Code Review Comments

 Code Review Report

 Integration Test Sign-Off

 System Integration Test Sign-Off

 Qual. Readiness Review Minutes

 Qual. Test Results (Test Procedure, TPS, DR)

 Razor Code Version List (Release)

 Compiler Settings (Release)/Operating System

 DOCUMENT REFERENCE

 JSC Project Parts Tag (911)

 JSC Program Stock Transfer/Receiver/Shipper Form (528)

Revision: Original [11/21/2000]

LS-71020B-11/20/00

APPENDIX C

HRF CODING STYLE GUIDE

LS-71020B-11/20/00

Typographical Conventions

The font style conventions illustrated in Table C-1 are used throughout this
document to identify special text.

TABLE C-1 FONT STYLES FOR SPECIAL TEXT

(OTHER THAN HEADINGS)

Text Text Style Example
C Reserved Words
or Standard Files

Italics main, extern, errno.h

Examples Bold Italics My_File_Name

LS-71020B-11/21/00 C-1

C1.0 INTRODUCTION

C1.1 PURPOSE

This document is intended to be a coding style guideline for C code written for
Human Research Facility (HRF) systems. It is not intended to be a rule book.
Rather, it is intended to provide guidelines to improve code readability and
portability. Many of these guidelines may be superseded by unique requirements
imposed by a Commercial Off the Shelf (COTS) product or by the need to improve
software performance.

C1.2 SCOPE

This document defines the program structure for all C coded Computer Software
Configuration Items (CSCIs) and libraries within the HRF. It also specifies general
guidelines that should be used to ensure sound design, implementation, and overall
clarity and maintainability of the code. General naming conventions are specified,
as are guidelines for commenting the code. A set of formats is provided as
examples to help ensure a consistent look and feel among code written by a wide
range of developers. The concepts presented shall be applied to other programming
languages used for HRF software development as appropriate. Finally, Section
C6.0, C Code Samples, contains some C code examples that incorporate the
guidelines specified throughout the text of this document.

C2.0 PROGRAM STRUCTURE

C2.1 COMPUTER SOFTWARE CONFIGURATION ITEM (CSCI)

A CSCI is an aggregation of software or firmware that satisfies an end use function
and is designated for configuration management. In general, each CSCI has a main
routine that ties together all of the component routines into a cohesive functional
unit. Occasionally, a CSCI may consist of multiple main routines. These cases are
clearly identified and an explanation for the multiple main routines is provided in
the corresponding software design document.

C2.2 COMPUTER SOFTWARE UNIT (CSU)

A source file containing one or more functions used to build a CSCI. If a CSU
consists of more than one function, the functions should work together to execute
part of the CSCI design.

C2.3 LIBRARIES

A library is a special type of CSU that is a collection of functions that are used by
one or more CSCIs and linked with the CSCI main function at compile time. A
library by itself serves as a repository of function object code. This limits the
amount of software that must be recompiled when a CSCI component is changed.

LS-71020B-11/21/00 C-2

C2.4 SOURCE FILES

Source files contain all of the C code, data declarations and functions for a CSCI.
The contents of a source file may represent a CSCI, a CSU or a library.

C2.5 HEADER FILES

Header files contain all of the constants, typedefs, structures, unions, enumeration
types, macros and function prototypes required for the successful compilation of the
CSCI or library.

C2.6 PROLOGUES

The following prologue shall be included at the beginning of each source or header
file:
/**
*
*
* FILENAME: filename.type
*
* DESCRIPTION: Description
*
* CSCI IDENTIFIER: HRF-xyyz
*

/
Where:

filename is the name of the file and indicates the purpose of the file contents.
type represents the type of file, e.g. .c for C source files and .h for header files.
Description is a brief summary of the file contents. If the content is a main

function, the operation of the CSCI shall be included. For individual
functions, function utilization information shall be provided. For
function collections or libraries, rationale for grouping the functions shall
be provided.

HRF-xyyz is the unique identifier associate with a CSCI, see the Human
Research Facility Software Configuration management Plan and
Procedure. If the file is associated with multiple CSCIs, all of the
associated CSCI unique identifiers shall be listed.

LS-71020B-11/21/00 C-3

See Naming Conventions for more information.

If a file contains more than one function, the following prologue shall precede each
function in the file:

/**
*
*
* FUNCTION: FunctionName
*
* DESCRIPTION: Function description including usage.
*

/

C3.0 GENERAL GUIDELINES

C3.1 DESIGN CONSIDERATIONS

The set of design techniques collectively described as "top down" shall be applied to
a CSCI as detailed below:

· Partitioning should be used so that interdependencies between functions are

minimized (i.e., loosely coupled). Each function should have a well-defined
purpose or algorithm.

· Hierarchical relationships should be enforced so that functions at one level can

only invoke functions at a lower level. Typically, upper-level functions contain
primarily decision and control logic, while the lower-level functions perform
specific application tasks.

C3.2 IMPLEMENTATION CONSIDERATIONS

A C compiler should be set at the most stringent level of error checking possible for
that compiler.

The makefile facility should be used to control compile sequences. VG2C

Executing code shall not dynamically modify itself or any other executable code.
Only the data associated with a CSCI may be modified.

When working on systems that support signal processing, the use of signal handlers
is strongly encouraged. This enables developers to produce meaningful error
messages or avoid error messages altogether by using the appropriate user-defined
signal handlers signal and perror and the include file errno.h.

LS-71020B-11/21/00 C-4

C3.3 PORTABILITY RULES

A portable function is platform or machine independent. Any environment-specific
and machine-specific code should be isolated and localized as much as possible. It
should also be delimited with appropriate compiler directives.

Due to the C compiler aligning data types at certain byte boundaries, order members
in a structure by data type length, longest first, whenever possible (i.e. 8-byte
variables first, then 4-byte variables, 2-byte variables, etc.). This may not be
possible when interfacing with external functions or hardware.

System-defined symbolic constants such as NULL, EOF, "/f", etc., should be used.
This usage promotes readability and portability between systems.

Avoid hard-coding character strings into the code. Instead, use #define constructs
or read the strings from a database at execution time.

The following data types should be used because their length and format are
standard across most modern architectures:

Description Data Type Length (Bytes)
ASCII Characters: char 1
Signed Integer
Numbers:

char 1

 short 2
 int 4
Unsigned Integer
Numbers:

unsigned char 1

 unsigned short 2
 unsigned long 4
Floating Point Numbers: float 4
 double 8

The absolute path name of an #include statement should not be specified in the
code. Instead, the directory of the include file (or reference directory for #include
statements with relative path names) should be included as an argument on the C
compiler's command line in the CSCI makefile. For example:

cc -I- -I. -I/home/project_name file_a.c -lm /* UNIX format */

LS-71020B-11/21/00 C-5

C3.4 EXPRESSIONS

Complex or compound expressions in which the order of evaluation is important
shall be avoided. For example, in the expression "Array[i++] = Value;", Value will
be assigned to a different element in Array depending on whether i is incremented
before or after the assignment takes place. This expression should be written as two
separate expressions:
Array[i] = Value;
i++; /* if i is to be incremented after the variable assignment */
 or
i++;
Array[i] = Value; /* if i is to be incremented before the variable assignment.
*/
To avoid Side Effects, "++" and "--" shall not be used within another expression.
Rather, when these operators are needed, they shall be used on their own line. A for
loop increment operation is the only exception.

Braces "{}" shall be used in conjunction with indentation to delineate complex
logic. The braces should be vertically aligned. For example:

 for (i=0; i<5; ++i)
 {
 _
 }

Parentheses "()" should be used as necessary to enforce efficient expression
evaluation.

Mixed-mode operations (i.e. multiplying integer and real identifiers) should be
avoided. If operations need to be performed on mixed types, an explicit type cast
should be used.

Complicated compound negative Boolean expressions should be avoided.

Whenever possible, Boolean expressions should be evaluated as True=1 and
False=0.

The use of the conditional expression operator "?" is discouraged.

The sizeof function should be used to determine the amount of memory a data item
uses, because the actual size of a data item is often not what is expected. This also
maintains the portability of code.

The goto statement shall not be used.

Use of the continue statement is discouraged.

LS-71020B-11/21/00 C-6

The use of break to exit a looping construct is discouraged.

The return statement, when used, should be the last statement within a function.
The only exception is for implementing error handling. Avoid putting return
statements inside if or loop constructs where the return statement could be skipped.

Each CSCI should have only one exit statement, which should be the last executable
statement in the main routine. The only exception is for implementing error
handling.

C3.5 IDENTIFIERS

C3.5.1 Global Data

In general, the use of global data should be avoided in C code. In the cases where
global data is needed to meet performance or data visibility requirements, the
following guidelines should be used:

Combine all of a CSCI's global data into a data structure in the CSCI's header file.
Declare a variable, using the data structure defined in step 1, in the CSCI's main.
Declare the variable as extern, using the data structure defined in step 1 and the
identifier name from step 2, in the other CSU source files associated the CSCI.

An algorithm that prevents simultaneous access by two or more CSCIs should
protect identifiers that are shared between multiple CSCIs.

C3.5.2 Local Data

Temporary (local) memory should be used whenever possible in order to improve
processing speed.

C3.5.3 Input/Output Data

Precautions shall be made to ensure consistent input data (i.e. the input data shall
not be allowed to change while operations are being made on that data).

Some input data words from external subsystems have unused bits that by
convention are not set and are referred to as "don't care" bits. However, the code
should treat these bits as if they were variable. Usually, this means masking out the
"don't care" bits before they are used internally.

Multiple stores into a global output identifier should be avoided, whenever possible,
to prevent intermediate values from being accessed by another function. Instead,
store intermediate values in local identifiers where they are not available to other
functions. Before exiting the function, copy the local value to the global location.

LS-71020B-11/21/00 C-7

C3.5.4 Pointers

Dynamically allocated identifiers should only be used when necessary. In all cases
where an identifier is dynamically allocated, its memory shall be explicitly freed
before the CSCI terminates.

Pointer data types should not be mixed when assigning one pointer identifier to
another.

When declaring a pointer, it should be initialized to a value of NULL or to the
intended object. This makes it easy to determine whether or not a pointer has been
assigned.

Pointers should be initialized or verified to ensure the pointer is not NULL prior to
use.

Manipulation of "pointers to functions" should be limited. This is an extremely
powerful practice, but when used improperly, it can cause system failures that can
be extremely difficult to resolve. If "pointers to functions" are used, strict type
adherence shall be maintained. The same consideration shall be made for "pointers
to pointers" or "handles".

C3.6 DECLARATIONS

The scope of identifiers and functions shall be as local as possible to maintain the
integrity of the system and to discourage outside access to a function's internal data.

All variable to be used in a function shall be declared at the beginning of the
function. This avoids variable scope issues that can cause confusion when variable
declarations are embedded in control constructs (e.g. if, while, etc.).

Statements that attempt to define a data type and declare a variable within the same
statement should be avoided. Instead, define the data type in a header file, then
declare the variable in a source file using the new data type.

Multiple identifier declarations (more than one user identifier in an identifier list)
should be avoided. Exceptions can be made for insignificant identifiers, such as
loop counters.

All identifiers and functions shall be explicitly declared (e.g. short, int, double).
Avoid using "default" function declarations.

Identifiers shall be of declared types defined in a header file or the standard C types
(e.g. double, int, short, char).

[S]tatic identifiers should be used only when necessary to maintain the value of an
identifier from invocation to invocation of a code block.

LS-71020B-11/21/00 C-8

The use of register identifiers should be avoided, except in cases where improved
speed is absolutely necessary.

C3.7 FUNCTIONS

Each function shall have a prologue. If a source file contains only one function,
however, the standard source file prologue will suffice. See Section C2.6,
Prologues, for more information.

The behavior of each function shall adhere to the following considerations:

· Strong internal cohesion — A function has strong internal cohesion if it is

designed to implement a single function or a set of closely related operations.
Poor internal cohesion is demonstrated by a function that is designed to
implement two or more unrelated operations (i.e. to calculate the time and find
the square root of a number).

· Loose external coupling — A function has loose external coupling if it is

designed so that its functioning is not affected (as much as possible) by changes
made internally to other functions.

· Ease of understanding and readability.

· Ease of testing

· Portability

· Maintainability

· Abstraction - Functions should be designed so that a programmer can use a

function by passing the appropriate arguments, but the programmer would not
need to know the implementation details of the function.

In instances in which the order of evaluation of functions is important, the required
order of processing shall be stated explicitly in comment fields within the code.

A function prototype statement shall exist in a header file for each function to be
used. Functions contained in the Standard C Libraries are exempt.

It is a good practice to keep functions as short as possible (i.e. more functions with
less executable statements per function) in order to improve modularity. This
concept is encouraged in most cases, especially for library functions. Be careful,
however, because the incurred overhead associated with an increased number of
function calls can degrade execution speed.

LS-71020B-11/21/00 C-9

With the exception of error handling, the set of design techniques collectively
described as "top down" shall be applied for each function as detailed below:

· Each function shall have one entry and one exit.

· Each function shall return to its calling function.

· The logic of each function shall be simplified as much as possible, without

adversely affecting the ability of the function to meet its requirements.

In general, recursion should not be used, since it may decrease execution efficiency
as a result of overhead.

C3.7.1 Interfaces

Interfaces should be kept as simple as possible. The number of inputs and outputs
should be minimal.

Functions that do not return a value to the calling routine should be declared as void
functions.

All functions shall be explicitly declared (e.g. short, int, double). Avoid using
"default" function declarations.

Typically, interfaces will be as explicit (i.e. arguments passed through a parameter
list) and as simple as possible. Global data should be avoided, when possible.

Structure and union parameters should be passed by reference to user-defined
functions (i.e. pass the address rather than the contents of the structure/union).

C3.7.2 Side Effects

Side effects are defined as changes to identifiers outside the scope of the function.
An example is modification of the function's actual parameters during the call of a
function rather than inside the function (e.g. passing i++ as a parameter). Side
effects should be avoided, because their impacts are typically not obvious and are
difficult to test, and they cause a function to be unnecessarily tightly coupled.

If side effects are necessary, then a comment describing all of the side effects of the
function shall be included in the prologue and design document.

C3.8 HEADER FILES

Header files contain all constants, typedefs, macros, and function prototype
statements for a CSCI or library. Source files only contain identifier declarations of
these types.

LS-71020B-11/21/00 C-10

When possible, put the interface constants, types, macros, and function prototypes
in a separate file from the internal constants, types, macros, and function prototypes.

Each header file shall contain a prologue as specified in Section C2.6, Prologues.

Data shall not be declared in header files, since each inclusion of the file creates a
copy of the data.

Header files shall not contain any executable code.

Including other header files from within a header file is discouraged in all cases.
The only exception is if a subsequent statement within the header file absolutely
requires something contained within another header file. These instances should be
avoided if at all possible, however.

Header files should be protected from multiple inclusions by using the following
construct:

#ifndef FILE_NAME_H

/* header file contents */

#define FILE_NAME_H
#endif

C3.8.1 Type Definitions

A typedef should be used to define new types for all structures, unions, and
enumeration types.

A typedef should be used if several identifiers are going to be used for a common
purpose and declared the same way (e.g. typedef int SEMAPHORE_TYPE).

[T]ypedef statements that modify other user-defined typedefs (e.g. typedef
MEM_TYPE *MEM_TYPE_PTR) should be avoided, because the true nature of
the data type becomes difficult to track.

The use of the union declaration is strongly discouraged.

C3.8.2 Constants

The use of global constant declarations (#define), which symbolically name
constants that occur frequently in one or more function blocks or programs or that
have a recognizable significance, is strongly encouraged.

Constants should be used to ensure data consistency and integrity and to improve
clarity. They should not be used simply to reduce the amount of typing within the

LS-71020B-11/21/00 C-11

source code (e.g., #define FNAME Global->file_name is not recommended).
Overuse of constants can make the source code difficult to read because of frequent
references to the header file contents.

The use of the const type qualifier is similar to #define except that const variables
can have a local scope when they are declared within a function.

C3.8.3 Macros

Macros should be used to enhance readability and maintenance, to save the
overhead of a function call, or to reduce the complexity of an expression. They
should not be overused (e.g., #define GET_FILE_NAME(a) a.file_name), because
frequent references to the header file contents can make the source code difficult to
read.

Each macro shall be preceded by a function prologue.

If a macro contains a control construct (e.g., if...else, for, while, switch, etc.), the
entire construct shall be defined in the macro definition. A starting and ending
macro combination is not acceptable.

Define a macro whenever the value is determined at run-time, otherwise create a
constant if the value can be determined at compile time.

Macros should be defined to look like function calls. If a more robust function is
required of the macro, it can be replaced by a function without changing any of the
calling source code.

C3.8.4 Function Prototype Statements

As previously stated, function prototypes should be placed in the header file and
should be formatted as follows:

function_type function_name(parameter_1_type in_1,

parameter_2_type in_out_1,
parameter_3_type in_out_2,
parameter_4_type out_1,

�
�
�

parameter_n_type direction_n);

Where in_1 is an input to the function (not modified), in_out_1 and in_out_2 are
inputs to the function that are modified by the function, and out_1 is a parameter
that is only passed to the function to be modified.

LS-71020B-11/21/00 C-12

C4.0 NAMING CONVENTIONS

C4.1 FILE NAMES

C4.1.1 CSCI File Names

Following are naming conventions to be used for the CSCI abcd:

Executable: abcd*
Source File(s): abcd_*.c
Header File: abcd.h **

* No convention, but developers are encouraged to include abcd somewhere in the
filename, preferably at the beginning (e.g., abcd_valve.c). If there is only one
source file associated with a CSCI, the recommended name is abcd.c.

** Ideally, each CSCI should have a single header file. If multiple header files
are required for the sake of clarity, each header file shall include abcd somewhere in
the filename, preferably at the beginning (e.g., abcd_macro.h).

C4.1.2 CSU File Names

Following are naming conventions to be used for the CSU lmno:

Executable: lmno*
Source File(s): lmno_*.c
Header File: lmno.h**

* No convention, but developers are encouraged to include lmno somewhere in
the filename, preferably at the beginning (e.g., lmno_valve.c). If there is only one
source file associated with a CSU, the recommended name is lmno.c.

** Ideally, every CSU should be a component of one CSCI or become part of a
library. In the ideal situations, the CSCI or library header file should be used. If a
CSU header file is required for the sake of clarity, each header file shall be called
lmno.h.

C4.1.3 Library File Names

Following are naming conventions to be used for the library wxyz:

Library: lib_wxyz.a*
Source File(s): lib_wxyz_*.c
Header File: lib_wxyz.h **

* No convention, but developers are encouraged to include wxyz somewhere in
the filename, preferably at the beginning (e.g., lib_wxyz_math.c). If there is only
one library source file, the recommended name is lib_wxyz.c.

LS-71020B-11/21/00 C-13

** Ideally, each library should have a single header file. If multiple header files
are required for the sake of clarity, each header file shall include wxyz somewhere in
the filename, preferably at the beginning (e.g., wxyz_macro.h).

C4.2 IDENTIFIER NAMES

Descriptive names for user identifiers based on functionality and/or use shall always
be used.

Identifier names, with the exception of loop counters and indices (e.g., "i", "j"),
shall be longer than two characters. Identifier names should use underscores as
word breaks. Two or three words make variable names long enough to be easily
understood. Note that in ANSI/ISO C, the first 31 characters in a variable name are
significant and therefore must be unique.

Identifier names shall not begin with an underscore (except for identifiers declared
in macros).

Identifiers should not differ only by the presence/absence of underline characters,
the interchange of capital letters with lower-case letters, or the interchange of
symbols that look similar (e.g. "O" and "0", "l" and "1", "S" and "5", etc.).

Identifier names for pointer variables shall be prefixed by "p_", pointers to pointers
shall be prefixed by "pp_", etc.

Function identifiers shall be in mixed case. Each separated word shall begin with
an uppercase letter followed by all lowercase letters to improve readability. Words
may be additionally separated using underscores. Each function identifier should
contain the name of the CSU associated with the function as the last characters of
the identifier. For example, a function in the Linked List CSU that inserts a cell
into a linked list might be called Insert_Cell_Linked_List.

Global object identifiers shall begin with an uppercase letter followed by all
lowercase letters, while local object identifiers shall be all lowercase. Underscores
shall be used to separate words within the global object identifier to enhance
readability. For example, a global object containing the Workstation task list might
be called Workstation_task_list, while a local version of the same object would be
local_task_list.

Constant, typedef and macro names shall be in all uppercase with underscores used
to separate words.

LS-71020B-11/21/00 C-14

C5.0 FORMATS

C5.1 FILE FORMATS

C5.1.1 CSCI Source File Format

A CSCI source file is structured as follows:

1. Prologue — Comment information used to track changes, etc.

2. Include Statements — Header files, including system header files (enclosed by
<>), library header files (enclosed by ""), and the CSCI header file (also
enclosed by "").

3. Global Data Declarations — Declarations for all data global to the CSCI,
including shared memory data. Note that this data is either a standard C data
type (float, short, char, etc.) or a type that is defined in one of the above header
files.

4. The main function of the CSCI, which calls functions from other source files
that comprise the CSCI.

C5.1.2 CSU Source File Format

All CSU source files, with the exception of the CSCI source file, are structured as
follows:

1. Prologue — Comment information used to track changes, etc.

2. Include Statements — Header files, including system header files (enclosed by
<>), library header files (enclosed by ""), and the CSCI header file (also
enclosed by "").

3. Global Data Declarations — Declarations for all data global to the CSCI,
including shared memory data. Note that this data is either a standard C data
type (float, short, char, etc.) or a type that is defined in one of the above header
files, and is preceded by the word extern, which specifies that the variable has
been formally declared elsewhere (in the CSCI Source File).

4. One or more functions that perform operations required for the CSCI.

Note that this format differs from the format of a CSCI source file in two ways:

1. This file contains one or more functions, as opposed to a main, which is a CSCI
master sequencing routine; and

2. All global data declared in this file are defined as extern, because they are
formally declared in the CSCI source file.

LS-71020B-11/21/00 C-15

C5.1.3 Library Source File Format

All library source files are structured as follows:

1. Prologue — Comment information used to track changes, etc.

2. Include Statements — Header files, including system header files (enclosed by
<>) and the library's header file (enclosed by "").

3. One or more functions that perform a task provided by the library.

Note that this format differs from the format for CSU source files in two ways:

1. There are no CSCI header files included within a library source file; and

2. There are no global data declarations within a library — all library functions are
self-contained.

C5.1.4 Header File Format

All header files are structured as follows:

1. Prologue — Comment information used to track changes, etc.

2. Constants — #define statements used to equate a constant value with a string.

3. Typedefs, Structures, Unions and Enumeration types — C constructs used to
improve code readability and maintainability.

4. Macros — #define statements used to substitute a common series of statements
throughout the CSCI/library with a simple string and accompanying arguments.

5. Function Prototypes — Prototypes, including argument list specifications, for all
functions within the CSCI/library.

C5.2 COMMENT FORMATS

The purpose of comments is to serve as an aid for someone unfamiliar with the
code. Comment WHY something is happening not just WHAT is happening.

Every functional block of code shall be explained by a comment.

Block comments should be indented to the same column as the following line of
code.

Comment style shall be consistent throughout a file. Comment style should be
consistent throughout all files associated with a CSCI.

LS-71020B-11/21/00 C-16

Comments that encompass multiple lines should begin the first line with a "/*".
Each subsequent line should begin with a "*". The last line should end with a "*/".
In C++, each comment line should begin with "//".

Constants, structures, unions, enumeration types and macros should have comments
to describe their overall use.

No comments should be embedded within simple executable statements.

Blank lines shall be used as necessary to delineate comments.

Personal pronouns in comments should be avoided.

A formal writing style (third person) should be used with normal capitalization
practices (i.e. not entirely uppercase characters).

Comments shall not reference specific sections, paragraphs, figures, tables, etc. of
documentation that could later change, thereby requiring a change to the code.

Comments that document actions outside of a function should be avoided. This
ensures that the comments within a function only need to be changed when changes
are made to the function itself. Comments pertaining to internal workings of
invoked functions may be used if necessary, but are discouraged.

C5.3 EXPRESSION FORMATS

With the exception of complex mathematical expressions, which should be kept to
one line whenever possible, each line of code should contain a maximum of 80
characters.

There should be a maximum of one statement per line.

Blank lines shall be used to enhance readability. For example, each block of code
that performs a function should be separated by a blank line.

Function definitions, as well as the function's opening and closing braces, should
begin in column one.

All nesting should be indented at least three spaces from the enclosing braces or the
parent structure.

Braces should reside on separate lines by themselves and should be indented to the
same column as the if, while or for statement with which they are associated.

Continuation of if, while, or for conditions should line up with the starting column
of the previous line condition.

LS-71020B-11/21/00 C-17

The connecting logical operator shall go on the same line as if, while or for.

No blanks should be encoded around unary operators such as "abs(-10)" or
"not(Boolean_Identifier)".

A blank space should be encoded on both sides of all binary operators. For
example, "X = X + 1", not "X=X+1".

C5.3.1 The if...else Statement

The format of the if statement should follow one of the following two forms.
Format 2 is preferred. The following examples, demonstrating two coding formats
for an if statement, are functionally identical. Condition_1 and Condition_2 are
Boolean expressions (complex or simple).

Format 1:

if (Condition_1)
{
 /* Comment about statement(s) */
 sequence_of_statements . . .
}
else
{
 if (Condition_2)
 {
 /* Comment about statement(s) */
 sequence_of_statements . . .
 }
 else
 {
 /* Comment about statement(s) */
 sequence_of_statements . . .
 }
}

Format 2:

if (Condition_1)
{
 /* Comment about statement(s) */
 sequence_of_statements . . .
}
else if (Condition_2)
{
 /* Comment about statement(s) */
 sequence_of_statements . . .
}
else

LS-71020B-11/21/00 C-18

{
 /* Comment about statement(s) */
 sequence_of_statements . . .
}

The two coding formats are used to increase understandability. Format 1 uses
nested if statements and avoids a switch-like structure. Format 2 shows mutually
exclusive conditions. It is structured much like a switch statement that always deals
with mutually exclusive conditions.

A NULL choice shall be coded by deleting the alternative else completely. Using
the second example above, if Condition_1 and Condition_2 cover all possibilities,
the final else clause would be deleted.

C5.3.2 The switch Statement

The coding format for a switch statement should be as follows:

/* Comment about statement */
switch (condition)
{
 /* Case 1 comment */
 case first_condition:
 /* Comment about statement(s) */
 sequence_of_statement(s) . . .
 break;

 /* Case 2 comment */
 case second_condition:
 /* Comment about statement(s) */
 sequence_of_statement(s) . . .
 break;

 /* Case default comment */
 default:
 /* Comment about statement(s) */
 sequence_of_statement(s) . . .
 break;
}

C5.3.3 The while Statement

The format of the while statement should follow one of the following two forms:

LS-71020B-11/21/00 C-19

Format 1: A wait loop (sleep until interrupted)

while (condition)
 {
 /* Do nothing until interrupted */;
 }

Format 2: A while condition loop (loop while a condition is met)

while (condition)
{
 /* Comment about statement(s) */
 sequence_of_statements . . .
}

C5.3.4 The do Statement

The coding format for a do statement should be a repeat until condition loop (loop
until a condition is met) as follows:

do
{
 /* Comment about statement(s) */
 sequence_of_statements . . .
} while (condition);

C5.3.5 The for Statement

The coding format for a for loop should be as follows:

for (initial_expression; condition; loop_expression)
{
 /* Comment about statement(s) */
 sequence_of_statements . . .
}

C6.0 C CODE SAMPLES

The following sections contain examples of C source and header files. The example
illustrates a simple CSCI, called Force, which is comprised of the following files:

force.h (CSCI header file)
force.c (CSCI source file)
init_force.c (CSU source file 1)
proc_force.c (CSU source file 2)

LS-71020B-11/21/00 C-20

Additionally, the Force CSCI accesses the function Square_Root, which is
contained in the library Lib_HRF_Math. The Lib_HRF_Math library is comprised
of the following files:

lib_hrf_math.h (library header file)
lib_hrf_math.c (library source file)

Note that the header file lib_hrf_math.h contains the macro DMXM, which isn't
used by the Force CSCI, but is used by another CSCI that accesses this library.

C6.1 CSCI HEADER FILE

#ifndef FORCE_H
/**
** *
* FILENAME: force.h
*
* DESCRIPTION: This header file contains constants, typedefs,
* macros and function prototypes required by the
* Force CSCI.
*
* CSCI IDENTIFIER: HRF-xyyz
*
* ORIGINATOR BASELINE DATE AUTH. DOC.
* ---------- ------------- ----------
* John. Q. Developer 5/95 SCR 1234
*
* REVISED BY BASELINE DATE AUTH. DOC.
* ---------- ------------- ----------
* Judy B. Coder 10/95 SDR 1234
*

/

/* Constant Definitions */

#define NUM_VEHICLES 6

typedef enum { False, True } BOOLEAN;

typedef struct
{

double mass_lbm[NUM_VEHICLES];
double mass_slg[NUM_VEHICLES]
double accel[NUM_VEHICLES];
double accel_x[NUM_VEHICLES];
double accel_x[NUM_VEHICLES];

LS-71020B-11/21/00 C-21

double accel_x[NUM_VEHICLES];
double force[NUM_VEHICLES];
BOOLEAN continue_flag;
BOOLEAN veh_active[NUM_VEHICLES];

} FORCESTRUCT;

/* Macro Definitions */

#define LBM_TO_SLUG(a,b) b = (a) * 0.03108
#define SQUARE(a) (a) * (a)

/* Function Prototype Statements */
void Init_Mass(void);
void Get_Accel(void);
void Force_Calc(void);

#define FORCE_H
#endif

C6.2 CSCI SOURCE FILE

/**
*
*
* FILENAME: force.c
*
* DESCRIPTION: This is the top-level executive source file for the
* Force CSCI, which calculates force for a vehicle
* based on mass and acceleration.
*
* CSCI IDENTIFIER: HRF-xyyz
*
* ORIGINATOR BASELINE DATE AUTH. DOC.
* ---------- ------------- ----------
* John. Q. Developer 5/95 SCR 1234
*
* REVISED BY BASELINE DATE AUTH. DOC.
* ---------- ------------- ----------
* Judy B. Coder 10/95 SDR 1234
*

/

#include "force.h"

FORCESTRUCT Force;
main()

LS-71020B-11/21/00 C-22

{
 /* initialize mass parameters */
 Init_Mass();

 /* loop until requested to stop */
 while (Force.continue_flag)
 {
 /* calculate force after acquiring current acceleration */
 Get_Accel();
 Force_Calc();
 }
}

C6.3 CSU SOURCE FILE 1

/**
*
*
* FILENAME: init_force.c
*
* DESCRIPTION: This function initializes the mass values for all
* of the vehicles in the current scenario by
* converting those values from pounds mass to slugs.
*
* CSCI IDENTIFIER: HRF-xyyz
*
* ORIGINATOR BASELINE DATE AUTH. DOC.
* ---------- ------------- ----------
* John. Q. Developer 5/95 SCR 1234
*
* REVISED BY BASELINE DATE AUTH. DOC.
* ---------- ------------- ----------
* Judy B. Coder 10/95 SDR 1234
*

/

#include <stdio.h>
#include "force.h"

extern FORCESTRUCT Force;

void Init_Mass(void)
{
 short i;

LS-71020B-11/21/00 C-23

 /* loop once for each vehicle */
 for (i = 0; i < NUM_VEHICLES; i++)
 {
 /* if a mass is specified, set the vehicle active flag */
 /* and convert mass from pounds mass to slugs */
 if (Force.mass_lbm[i] != 0)
 {
 Force.veh_active[i] = True;
 LBM_TO_SLUG(Force.mass_lbm[i], Force.mass_slg[i]);
 }
 else
 Force.veh_active[i] = False;
 }
}

C6.4 CSU SOURCE FILE 2

/**
*
*
* FILENAME: proc_force.c
*
* DESCRIPTION: These functions perform the real-time processing
* associated with the Force CSCI, which calculates
* force based on vehicle accelerations.
*
* CSCI IDENTIFIER: HRF-xyyz
*
* ORIGINATOR BASELINE DATE AUTH. DOC.
* ---------- ------------- ----------
* John. Q. Developer 5/95 SCR 1234
*
* REVISED BY BASELINE DATE AUTH. DOC.
* ---------- ------------- ----------
* Judy B. Coder 10/95 SDR 1234
*

/
#include <stdio.h>
#include "lib_hrf_math.h"
#include "force.h"

extern FORCESTRUCT Force;

/**

LS-71020B-11/21/00 C-24

*
*
* FUNCTION: Get_Accel
*
* DESCRIPTION: This function acquires the current acceleration for
* each active vehicle in the current scenario.
*

/
void Get_Accel(void)
{
 double temp;
 short i;

 /* loop once for each vehicle */
 for (i = 0; i < NUM_VEHICLES; i++)
 {
 /* if the vehicle is active, calculate total acceleration */
 /* by summing the acceleration vectors along each axis */
 if (Force.veh_active[i])
 {
temp = SQUARE(Force.accel_x[i]) +
 SQUARE(Force.accel_y[i]) +
 SQUARE(Force.accel_z[i]);
Force.accel[i] = Square_Root(temp);
 }
 }
}

/**
*
*
* FUNCTION: Force_Calc
*
* DESCRIPTION: This function calculates the force on each active
* vehicle as a product of the vehicle's mass and
* acceleration.
*

/
void Force_Calc(void)
{
 short i;

 /* loop once for each vehicle */
 for (i = 0; i < NUM_VEHICLES; i++)

LS-71020B-11/21/00 C-25

 {
 /* if the vehicle is active, calculate force as a product */
 /* of mass and acceleration */
 if (Force.veh_active[i])
 Force.force[i] = Force.mass[i] * Force.accel[i];
 }
}

LS-71020B-11/21/00 C-26

C6.5 LIBRARY HEADER FILE

#ifndef LIB_HRF_MATH_H
/**
*
*
* FILENAME: lib_hrf_math.h
*
* DESCRIPTION: This is the header file for the lib_hrf_math library.
* It contains macros and function prototypes for all
* CSCIs that use this library.
*
* CSCI IDENTIFIER: HRF-xyyz
*
* ORIGINATOR BASELINE DATE AUTH. DOC.
* ---------- ------------- ----------
* John. Q. Developer 5/95 SCR 1234
*
* REVISED BY BASELINE DATE AUTH. DOC.
* ---------- ------------- ----------
* Judy B. Coder 10/95 SDR 1234
*

/

/* Macro Definitions */

#define DMXM(a,b,c) \
 c[0][0] = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0]; \
 c[0][1] = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1]; \
 c[0][2] = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2]; \
 c[1][0] = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0]; \
 c[1][1] = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1]; \
 c[1][2] = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2]; \
 c[2][0] = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0]; \
 c[2][1] = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1]; \
 c[2][2] = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2];

/* Function Prototype Statements */

double Square_Root(double);

#define LIB_HRF_MATH_H
#endif

LS-71020B-11/21/00 C-27

C6.6 LIBRARY SOURCE FILE

/**
*
*
* FILENAME: lib_hrf_math.c
*
* DESCRIPTION: These functions perform standard mathematical
* calculation used in math models throughout the HRF.
*
* CSCI IDENTIFIER: HRF-xyyz
*
* ORIGINATOR BASELINE DATE AUTH. DOC.
* ---------- ------------- ----------
* John. Q. Developer 5/95 SCR 1234
*
* REVISED BY BASELINE DATE AUTH. DOC.
* ---------- ------------- ----------
* Judy B. Coder 10/95 SDR 1234
*

/

#include <lib_math.h>
#include "lib_hrf_math.h"

/**
*
*
* FUNCTION: Square_Root
*
* DESCRIPTION: This function returns the square root of the input
* variable to the calling routine. For negative
* input values, this function returns a zero.
*

/
double Square_Root(double input)
{
 double output;
 double temp;

 if (input <= 0)
 /* square root of 0 is 0, and the square root of a */
 /* negative number is undefined */
 output = 0;

LS-71020B-11/21/00 C-28

 else if (input == 1)
 /* square root of 1 is 1 */
 output = 1;
 else
 {
 temp = log(input);
 output = exp(0.5 * temp);
 }

 return(output);
}

LS-71020B-06/15/01

APPENDIX D

HRF SOFTWARE TESTING GUIDELINES

B-1

LS-71020B-10/02/01 D-1

D1.0 INTRODUCTION

The procedure/guidelines outlined below shall be used with flight software that is downloaded
from an Internet or File Transfer Protocol (FTP) site, or received from International Partners,
Principle Investigator Teams, Vendors and non-HRF NASA organizations. The process to be
followed is determined by:

1. The absence or presence of a Certificate of Compliance (COC) with software when it is

delivered to the responsible HRF team as follows:

Software Origin Responsible HRF Team

International Partners HRF Instrument Team

Principle Investigator HRF Experiment Team

Vendors HRF team that purchased and/or requested the software

Non-HRF NASA organization HRF team assigned to monitor software development and delivery

The COC states that the software is:

Free of viruses
Has met all requirements

For software generated before January 1, 2000 or for software containing components that
were generated before January 1, 2000, the COC must state that the software is “Year 2000
Compliant.” The presence of the COC allows the software to be delivered to bonded storage.

2. The source of the software, that is if the software was received on physical media (floppy,
CD, etc.) versus download from an Internet or FTP site.

Regardless of the process followed, a Software Test Readiness Checklist shall be completed
and a copy presented to Software Quality with the Task Performance Sheet (TPS) to ensure
that all required equipment, documentation, and personnel are available. The responsible
HRF team should:

Provide names and phone numbers of people responsible for the software that would be

available for questions
Provide a software test plan or test steps, a Version Description Document and any changes

to these documents.
Ensure coordination of lab space to run the test and the necessary on-site personnel for

specific equipment.
Schedule activities with SQA personnel.
If a test requires a subject, ensure that the necessary paperwork is at the test site and the

required medical supervision arranged before the test is conducted.

B-1

LS-71020B-10/02/01 D-2

Deviations to this process are allowed under special circumstances. Should a process
deviation be used, the deviation should be documented, including rationale, in a memo to file
and signed by the Project Manager and SQA representative.

The responsible HRF team, in conjunction with software quality assurance, performs all
actions described below using flight or flight equivalent hardware, unless instructed to use
other hardware. GSE hardware will be used when required, particularly in reading the media
onto the flight hardware. All actions taken shall be documented on a Task Performance
Sheet (TPS) or in a published procedure. Execution of any of the processes described below
must be documented on a TPS.

D2.0 SOFTWARE PROCESSES

D2.1 PROCESS 1 – SOFTWARE IS DELIVERED WITH A CERTIFICATE OF

COMPLIANCE (COC)

1. Software delivered to Bond
2. Check out software from Bond
3. Perform virus check on software (if virus free statement is missing from the COC)
4. Verify software versions on the media match the versions described in the Version

description Document (VDD)
5. Perform acceptance test on the software to verify quality of media and ability to install and

operate software successfully.
6. Create two working copies of the original software media and label them in accordance with

the HRF Media Part Number and Labeling Guidelines contained in Appendix E of LS-71020.
7. Generate 911 tags.
8. Perform acceptance test on each of the software copies to verify quality of media and ability

to install and operate software successfully
9. Return master copy to bond and check working copies of software into bond.

D2.2 PROCESS 2 – SOFTWARE DELIVERED WITHOUT A COC

1. Software delivered to the responsible HRF team.
2. Obtain statement of Y2K compliance from the software originator. This step is not necessary

for data file delivery.
3. Virus check software
4. Verify software versions on the media match the versions described in the Version

description Document (VDD)
5. Test software to ensure it meets all documented requirements. (This test cannot be

performed on flight hardware, must use GSE hardware.)

B-1

LS-71020B-10/02/01 D-3

6. Copy the software on to media to be placed in Bond and label the media in accordance with
the HRF Media Part Number and Labeling Guidelines contained in Appendix E of LS-71020.
CDs are the preferred media type. One master and two working copies should be made.

7. Generate 911 tags.
8. Perform acceptance test on each of the software copies to verify quality of media and ability

to install and operate software successfully (On flight or equivalent flight unit)
9. Check master copy into bond and working copies of software into bond.

D2.3 PROCESS 3 – SOFTWARE DOWNLOADED FROM AN INTERNET OR FTP SITE

1. Verify the version of the software to be downloaded. This information should be contained

in a VDD.
2. Identify the hardware configuration needed to support software testing and schedule all

required resources.
3. Provide proof that the software is free for government use or that the necessary license(s) has

been obtained.
4. Obtain Y2K compliance data from the software originator. This step is not necessary for data

file download.
5. Locate a computer attached to the network. Due to network connectivity, it is not required

that this computer be GSE.
6. Download the software, noting the path to the site.
7. Determine if the download was successful, by looking at checksums, if possible or compare

the size of the file on the site to the size of the file received.
NOTE: The exact byte count must be used for this comparison. If the source byte count is

not available, contact the vendor. If the vendor is unable to supply this information,
the software must be obtained on media.

8. Perform a virus scan of the software.
9. Compare the version intended to be downloaded and the version actually received.
10. Copy to removable media such as floppy or CD.
11. Continue with Process 1, step 5 if a COC is available for the software, otherwise, continue

with Process 2, Step 4.

B-1

LS-71020B-10/02/01 D-4

SOFTWARE TEST READINESS CHECKLIST

Action to be completed St
at

us
*

Action completed by
(print) Date

1 Identify and document the names and phone
numbers of people responsible for the
software and/or hardware that will be
available for questions

2 Lab space to run the test has been coordinated

3 All required hardware and test equipment has
been scheduled and is available

4 SQA personnel are aware of the test and test
schedule.

5 If a test requires a subject, a copy of the
necessary safety paperwork has been obtained
and will be brought to the test.

6 If a test requires a subject, required medical
supervision has been coordinated for (describe
specific medical support scheduled):

7 Document any other special considerations for
this test:

*Status = if completed or N/A if not applicable

Team is ready to support testing.

__
Project Manager/Date

Form Rev A (10/01)

B-2

LS-71020B-06/15/01

APPENDIX E

HRF MEDIA PART NUMBERS AND LABELING GUIDELINES

B-1

LS-71020B-10/02/01 E-1

E1.0 MEDIA PART NUMBERS

This section applies to the part number obtained for CDs, floppy disks, Zip disks and Jaz drives
that will be flown aboard the International Space Station in Support of the Human Research
Facility (HRF).

There should be a one-to-one correspondence between each basic media item (e.g., a CD, a
floppy, etc.), its flight part number, and the Version Description Document (VDD) number of the
VDD that describes the contents of the basic media item. The dash number should be used to
distinguish between Increment releases of the media item. Serial number groups will be used to
distinguish between media versions within an Increment. To avoid confusion, previous serial
number groups must be downgraded and removed from Bond after the current version is tested
and released for the same increment.

In the cases where the media item is a set made up of two or more basic media items, the dash
number must be used to differentiate between set members (e.g., disk 1, disk 2, disk 3, etc.).
Therefore, a new part number must be obtained for each Increment. A new VDD must be
generated if the contents of the media set are substantively changed from the previous version
(more than 60% of the CD content titles have changed). Serial number groups will be used to
distinguish between media versions within an Increment. To avoid confusion, previous serial
number groups must be downgraded and removed from Bond after the current version is tested
and released for the same increment.

In all cases the part name selected should be descriptive of the contents. For example, “HRF
Integrated S/W Load – HRF PC” would be a good title for the HRF PC integrated software load
CD.

E2.0 MEDIA LABELING

To ensure consistent labeling of flight software media associated with the Human Research
Facility, the following guidelines shall be used:

NOTE: There are two Version Description Document (VDD) numbering systems: one for

“Integrated” software and one for “Single Source” software. “Integrated” software
would include VDDs for:

• HRF Integrated Rack 1
• HRF Workstation integrated software load (Rack 1)
• HRF PC integrated software load (Rack 1)
• HRF Integrated Rack 2
• HRF Workstation integrated software load (Rack 2)
• HRF PC integrated software load (Rack 2)

For “Integrated” software VDDs, a unique LS document number is assigned, and a dash number
is used to indicate the version (“versions” are usually associated with one or more increments).

B-2

B-

LS-71020B-10/02/01 E-2

For example, the first version of the VDD for the HRF Integrated Rack 2 would be LS-xxxxx-1.
The VDD for the subsequent software release would be LS-xxxxx-2 (where xxxxx is the base
document number).

For “Single Source” software VDDs, the VDD document number is assigned as a dash number
off of a “parent” hardware or software specification document number. In this case, the VDD
document number would follow the template:

LS-xxxxx-vdd#-version#
Where: xxxxx is the document number

vdd is the dash number assigned for the VDD
version is the dash number tracking the version of the VDD

For example, the next HRF Common Software VDD update would be released as LS-71062-9-1.

The project manager responsible for the software shall determine if the VDD document number
should follow the “Integrated” software VDD numbering system or the “Single Source”
numbering system.

Compact Disks (CDs)

Flight (Class I) CDs

PART NAME
INCRYY VDD_DOC_NUM-ZZZ

XXX MM/DD/YY INITIALS

P/N: AAAAAAAAA-BBB
S/N: CCCC

Where all letters are capitalized and:

YY is the increment number
VDD_Doc_Num is the document number of the Version Description Document (VDD)
ZZZ is the document dash number representing the VDD version
XXX is the integrated software version
MM/DD/YY is the date the media was made
INITIALS is the initials of the media builder
AAAAAAAAA is the primary part number
BBB is the part dash number
CCCC is a unique serial number

B-2

LS-71020B-10/02/01 E-3

Class II/GSE CDs

PART NAME
INCR YY VDD_DOC_NUM-ZZZ

XXX MM/DD/YY INITIALS

P/N: AAAAAAAAA
S/N: CCCC

Where all letters are capitalized and:

YY is the increment number
VDD_Doc_Num is the document number of the Version Description Document (VDD)
ZZZ is the document dash number representing the VDD version
XXX is the integrated software version
MM/DD/YY is the date the media was made
INITIALS is the initials of the media builder
AAAAAAAAA is a unique part number or the same part number as the Class I copy.
CCCC is a unique serial number or an indication of the copy number (e.g., Master, Copy 1, Copy
2, etc.)

Uncontrolled CDs

Part name
INCRYY VDD_Doc_NUM-ZZZ
XXX MM/DD/YY INITIALS

Uncontrolled

Where: YY is the increment number

VDD_Doc_Num is the document number of the Version Description Document (VDD)
ZZZ is the document dash number representing the VDD version
XXX is the integrated software version
MM/DD/YY is the date the media was made
INITIALS is the initials of the media builder

The label for Class I, Class II and GSE CDs can be hand written using a controlled Sharpie (extra
fine point) or generated with a GSE CD label maker on approved label material. If the label is
used, the date and initials should be hand written using a controlled Sharpie (extra fine point).
Additional information, such as a CD content list or HRF Logo may be added at the CD maker’s
discretion. Other than content, there are no restrictions on how uncontrolled CDs are labeled.

If the CD contents will not change each increment, the Increment identifier can be omitted or a
range of Increments can be identified. For example, on a boot disk, the Increment number may
be omitted because the boot disk remains the same until a component on the disk is upgraded at
an unknown point in the future. In the case of a media item that will remain static over a fixed,
predetermined range of Increments, the Increments involved should be identified. The integrated

B-2

LS-71020B-10/02/01 E-4

software version may also be omitted if the CD is not expected to be replaced with a different
version.

Floppy Disks, Zip Disks, and Jaz Drives

Flight (Class I) Floppy Disks, Zip Disks, and Jaz Drives

PART NAME
INCRYY VDD_DOC_NUM-ZZZ

XXX MM/DD/YY INITIALS

P/N: AAAAAAAAA-BBB
S/N: CCCC

Where all letters are capitalized and:

YY is the increment number
VDD_Doc_Num is the document number of the Version Description Document (VDD)
ZZZ is the document dash number representing the VDD version
XXX is the integrated software version
MM/DD/YY is the date the media was made
INITIALS is the initials of the media builder
AAAAAAAAA is the primary part number
BBB is the part dash number
CCCC is the serial number

Class II/GSE Floppy Disks, Zip Disks, and Jaz Drives

PART NAME
INCRYY VDD_DOC_NUM-ZZZ

XXX MM/DD/YY INITIALS

P/N: AAAAAAAAA
S/N: CCCC

Where all letters are capitalized and:

YY is the increment number
VDD_Doc_Num is the document number of the Version Description Document (VDD)
ZZZ is the document dash number representing the VDD version
XXX is the integrated software version
MM/DD/YY is the date the media was made
INITIALS is the initials of the media builder
AAAAAAAAA is a unique part number or the same part number as the Class I copy.
CCCC is the serial number

B-2

LS-71020B-10/02/01 E-5

Uncontrolled Floppy Disks, Zip Disks, and Jaz Drives CDs

Part name
INCRYY VDD_Doc_NUM-ZZZ
XXX MM/DD/YY INITIALS

Uncontrolled

Where: YY is the increment number

VDD_Doc_Num is the document number of the Version Description Document (VDD)
ZZZ is the document dash number representing the VDD version
XXX is the integrated software version
MM/DD/YY is the date the media was made
INITIALS is the initials of the media builder

The label for Class I, Class II, and GSE floppy disks, zip disks, and Jaz drives can be hand
written using a controlled Sharpie (extra fine point) or typed (e.g., Brady label). If the label is
typed, the date and initials should be hand written using a controlled Sharpie (extra fine point).
Additional information, such as a content list or HRF Logo may be added at the media creator’s
discretion. Other than content, there are no restrictions on how uncontrolled floppy disks, zip
disks, and Jaz drives are labeled.

If the media contents will not change each increment, the Increment identifier can be omitted or a
range of Increments can be identified. For example, on a boot disk, the Increment number may
be omitted because the boot disk remains the same until a component on the disk is upgraded at
an unknown point in the future. In the case of a media item that will remain static over a fixed,
predetermined range of Increments, the Increments involved should be identified. The integrated
software version may also be omitted if the media is not expected to be replaced with a different
version.

PCMCIA Hard Cards and SCSI Disks

These devices are generally used for data storage. As such, they should be labeled as required by
the experiment or instrument teams responsible for the data on the device. When either device is
used to store software, the device must be ink stamped as follows:

VDD_DOC_NUM-ZZZ
INCRYY XXX

Where all letters are capitalized and:

YY is the increment number
VDD_Doc_Num is the document number of the Version Description Document (VDD)
ZZZ is the document dash number representing the VDD version
XXX is the software version

B-2

LS-71020B-10/02/01 E-6

The ink stamp is in addition to any hardware and/or OPS Nom labels on the device. For Class I,
Class II and GSE items, the ink and stamp used must be controlled. For uncontrolled PCMCIA
hard cards and SCSI disks, the media should be clearly labeled as uncontrolled.

EPROMS

Once software has been loaded into an EPROM, it should be labeled as follows using a Sharpie:

VDD_DOC_NUM-ZZZ
MM/DD/YY XXX

Where all letters are capitalized and:

VDD_Doc_Num is the document number of the Version Description Document (VDD)
ZZZ is the document dash number representing the VDD version
MM/DD/YY is the date the software was installed on the EPROM
XXX is the software version

For Class I, Class II and GSE EPROMS, the Sharpie used must be controlled.

B-2

LS-71020B-02/03/04

APPENDIX F

HRF UPLINK OF SOFTWARE UPDATES

B-3

LS-71020B-02/03/04 F-1

F1.0 PURPOSE AND SCOPE

This procedure describes the process that must be followed to obtain approval from the
HRF program to uplink software changes. Software changes are uplinked under the
conditions identified under Entry Criteria.

The uplink path is determined by the size of the files, if the file has an even or odd
number of bytes, and path availability for Payload use. Small, even byte numbered files
(less than or equal to 8 MB – the Payload MDM file size limit) are nominally uplinked
via the Payload Multiplexer/Demultiplexer (MDM). Odd byte numbered files and larger
files (over 8 MB and under 30 MB – the Orbiter Communication Adapter (OCA) file size
limit) are nominally sent up via the OCA router and transferred to the HRF systems by
the crew.

F1.1 PROCESS DEPENDENCIES

This is an initial process; no specific process precedes this process.

The Payload System Engineer (PSE) File Uplink Process is executed following this
process.

F1.2 DEFINITIONS

Change Type - Minor software change, major software change, or planned software
change.

Major Software Configuration Change - A new version of a program.

Minor Software Configuration Change - This is limited to configuration files, data files,
scripts, and batch files associated with a single application or application suite (e.g., HRF
Common Software).

Planned Software Change - A planned software update occurs when a software
configuration change is required following delivery of the HRF Media Kit to Kennedy
Space Center (KSC), and there is insufficient off-line laboratory time to incorporate the
change on the ground or when a new release of software becomes available during the
increment that, when installed on-orbit, will significantly improve system or experiment
performance.

F1.3 REFERENCE DOCUMENTS

LS-71005 Configuration Management Plan for the HRF
N/A PSE File Uplink Process
LS-71147-3 HRF Rack Integration Test Procedure: Software Integration Procedure

B-3

LS-71020B-02/03/04 F-2

F2.0 ROLES AND RESPONSIBILITIES

HRF Configuration Control Board (CCB) – Approves Change Request (CR).

Affected Project Team (as assigned by the Project Lead) – Responsible for developing the
CR and for performing the tasks identified in this process.

Affected Increment Operations Team – Reviews the CR for need and appropriateness.
Ensures required procedures are in place. Performs the actual upload of the file in
Payload Information Management System (PIMS).

Affected Increment Integration Lead – Reviews CR for impact to the HRF Integrated
Load.

Software Quality Assurance – NT organization responsible for software quality.

PSE – Uploads the file to be uplinked into PIMS with the assigned project team member.

F3.0 PROCESS CRITERIA, INPUTS AND OUTPUTS

Entry Criteria
• This process is used under the following

conditions:
1. In response to a PAR.
2. When a software configuration change is

required following delivery of the HRF
Media Kit to KSC, and there is insufficient
off-line laboratory time to incorporate the
change on the ground.

3. When a new release of software becomes
available during the increment that, when
installed on-orbit, will significantly
improve system or experiment
performance.

• In case 1, the Affected Increment Operations
Team notifies participants.

• In cases 2 and 3, the Affected Project Lead
notifies participants.

Exit Criteria
• This process ends when all of the following

conditions have been met:
o The file to be uplinked has been loaded

into the PIMS system
o All actions associated with the CR have

been closed
o All TPSs have been closed
o All copies of the software have been

placed in Bond
o JSC Form 1027 will be submitted to NT
o GCAR and ADP will be updated

Inputs
• PAR, a planned configuration change or a new

version of software.

Outputs
• Updated Version Description Document.
• Updated on-orbit software configuration.
• JSC Form 1027
• Updated GCAR and ADP

B-3

LS-71020B-02/03/04 F-3

F4.0 TASK FLOW

The following procedure is illustrated in Figures 4-1 (major or planned change) and 4-2
(minor change).

NOTES: ● For major or planned software changes, step 5 may be performed in parallel

with steps 2 through 4.
● For minor changes, steps 5 through 8 may be performed in parallel with

steps 2 through 4.
1. The project team and affected Increment Operations Team determine that a

configuration change is needed and agree on the uplink approach, including the
change type.

2. The project team develops the change package, including the Version Description
Document (VDD) updates and any other controlled documentation changes. See
applicable Configuration Management (CM) procedure based on change type in
LS-71005, Configuration Management Plan for HRF.

3. The Increment Integration Lead reviews the change package and concurs with the
change type.

4. The project team presents the change package to the HRF CCB using either the
standard Change Request (CR) process (major or planned change) or the On-Orbit
CR process (minor change) to obtain approval. Refer to LS-71005, Configuration
Management Plan for the HRF.

5. The project team develops or receives the change from a Principal Investigator (PI),
International Partner (IP) or vendor. Delivery methods are: mail to Building 36
Bond or electronic (download from the web or File Transfer Protocol (FTP) only –
no email). If FTP or Web download is used, the download must be performed on a
Task Performance Sheet (TPS) in accordance with LS-71020, Appendix D. The file
must be an even number of bytes if it will be uplinked through the Payload MDM.

6. The project team performs a functional test, including a virus scan and check sum
calculation, of the change with Software Quality Assurance (TPS required). Note: If
this is a major change, test of the entire Integrated Load is required. If the functional
test fails, the project team must determine whether the problem can be solved by
fine-tuning the change, whether more extensive alterations must be made to the
change, or whether a change must be made to another component in the system. If
either of the latter cases is true, the Project Team must return to the HRF CCB for
direction.

7. The project team places the updated and successfully tested software on compact
disc (CD) or floppy (a minimum of two Class II copies: Master and Copy 1) and
labels the media per LS-71020, Appendix E.

8. The project team places the master copy in Building 36 Bond.

B-3

LS-71020B-02/03/04 F-4

Figure 4-1. HRF Uplink of Major or Planned Software Updates

B-3

LS-71020B-02/03/04 F-5

Figure 4-2. HRF Uplink of Minor Software Updates

B-3

LS-71020B-02/03/04 F-6

9. The project team prepares a JSC Form 1027 and obtains signatures per the JSC Form
1027 work instruction.

10. The project team transfers the “Copy 1” media to the Building 30 Telescience
Support Center (TSC) by TPS and places the updated software in the PIMS with the
PSE using the PSE File Uplink Process.

11. The project team transfers “Copy 1” media to Building 36 Bond.
12. The project and integration teams update the affected Government Certification

Acceptance Reports (GCARs) and Acceptance Data Packages (ADPs) to reflect the
new VDD.
NOTES:
a) The media must be scanned for viruses when inserted into the workstation that

will be used to upload the file into PIMS.
b) The file must be loaded into PIMS directly from the media (an intermediate copy

shall not be made on any workstation). Note: Transferring the file from the
media directly into PIMS ensures that the file in PIMS is identical to the
controlled copy and eliminates any question that the file was manipulated outside
of PIMS.

F5.0 RECORDS

• The HRF Configuration Control Board Secretary maintains change Request Forms.

• Marshall Space Flight Center (MSFC) Payload Operation and Integration Center
(POIC) maintains Payload Anomaly Reports (PARs) through the Real-time
Information Control Officer (RICO) web page. The RICO page requires special
account access.

https://payloads.msfc.nasa.gov/station/rico/rt/rico_main.html

• The Quality Records Center in Building 36 maintains the Task Performance Sheets
(TPSs).

• The Technical Documentation and Information Center (TDIC) maintains all versions
of the Version Description Documents.

F6.0 MEASURES

No process measures have been identified.

B-3

LS-71020B-02/03/04

APPENDIX G

HRF CREW-IMPLEMENTED SOFTWARE CONFIGURATION CHANGES

B-3

LS-71020B-02/03/04 G-1

G1.0 PURPOSE AND SCOPE

This procedure describes the process that must be followed when the crew will make a
permanent software configuration change. This procedure should only be used for minor
editorial changes to configuration files, scripts, data files and batch files when science
will be lost during the current session without the change.

NOTE: If the change being considered is limited to a drive letter change, or if a

malfunction procedure was written and approved that covers the configuration
change steps, the following process is not required. Execution of a drive letter
change or a “configuration change” malfunction procedure shall be noted in the
console log and in the HRF Daily Status report.

G1.1 PROCESS DEPENDENCIES

There are no dependencies associated with this process

G1.2 DEFINITIONS

None

G1.3 REFERENCE DOCUMENTS

LS-71005 Configuration Management Plan for the HRF

G2.0 ROLES AND RESPONSIBILITIES

Affected Increment Coordinator – Provides authority to proceed with crew implements
on-orbit change

HRF Configuration Control Board (CCB) – Approves Change Request (CR) following
implementation.

Affected Project Team (as assigned by the Project Lead) – Responsible for developing the
CR and for performing the tasks identified in this process.

Affected Increment Operations Team – Reviews the CR for need and appropriateness.
Ensures required procedures are in place. Coordinates with the Payload Operation and
Integration Center (POIC) to obtain crew time to implement the change.

Affected Increment Integration Lead – Reviews CR for impact to the HRF Integrated
Load.

Software Quality Assurance – NT organization responsible for software quality.

B-3

LS-71020B-02/03/04 G-2

G3.0 PROCESS CRITERIA, INPUTS AND OUTPUTS

Entry Criteria
• This process is used when a minor

configuration change is required to prevent loss
of science and crew time

• The Affected Increment Operations Team
notifies participants.

Exit Criteria
• This process ends when all actions associated

with the CR have been closed and the GCAR
and ADP have been updated

Inputs
• Minor on-orbit configuration error and/or PAR

Outputs
• Updated Version Description Document.
• Updated on-orbit software configuration.
• Updated GCAR and ADP

G4.0 TASK FLOW

1. The Project Team and affected Increment Operations Team determine that a

configuration change is needed and agree on the crewmember implementation
approach.

2. The affected Increment Coordinator and Increment Integration Lead concur with
crewmember implementation of the change.

3. The project team works with Operations to develop any required procedures.
4. The project team performs a functional test of the proposed crew procedure to ensure

the desired results are achieved. Note: This may be a test of instructions that will be
voiced up to the crew rather than a formal crew procedure.

5. The affected Increment Operations Team delivers the procedure to POIC using the
Operations Change Request (OCR) process.

6. The project team develops the change package [including the Version Description
Document (VDD) updates and any other controlled documentation changes] and
indicates in the impacts block on the CR that the change was implemented by the
crewmember, including the date the procedure was executed.

7. The project team presents the change package to the HRF CCB using the On-Orbit
CR process (minor change) to obtain approval. Refer to LS-71005, Configuration
Management Plan for the HRF.

8. The project and integration teams update the affected Government Certification
Acceptance Report (GCAR) and Acceptance Data Package (ADP) to include the new
VDD.

B-3

LS-71020B-02/03/04 G-3

G5.0 RECORDS

• The HRF Configuration Control Board Secretary maintains change Request Forms.

• Marshall Space Flight Center (MSFC) Payload Operation and Integration Center
(POIC) maintains Payload Anomaly Reports (PARs) through the Real-time
Information Control Officer (RICO) web page. The RICO page requires special
account access.

https://payloads.msfc.nasa.gov/station/rico/rt/rico_main.html

• The Technical Documentation and Information Center (TDIC) maintains the current
and previous version of the Version Description Documents.

G6.0 MEASURES

No processes measures have been identified.

B-3

DISTRIBUTION LIST
FOR

LS-71020B

NASA/JSC
TDI Center Building 36 (5)

EB/E. Bauer
 E. Strong

SM3/C. Haven
 D. Bauman
 M. Kamman
 S. McCollum

NT3/M. Iwasa

NT52/F. Simmons
 L. McGalliam

LOCKHEED MARTIN
A23/W. Tinch
C07C/M. Scott
C25/F. Haas
C42/W. Cohen
C42/M. Klee
C42/M. Romell
C42/Science Payloads Library
C45/C. Williamson
S03/D. Babic
S03/M. Pickett
S361/S. Landsdowne
S362/H. Rahman
S362/M. Simpson
S363/J. Fox

