
Fault Tree Handbook with Aerospace Applications Version 1.1

FFFaaauuulllttt TTTrrreeeeee HHHaaannndddbbbooooookkk wwwiiittthhh AAAeeerrrooossspppaaaccceee
AAAppppppllliiicccaaatttiiiooonnnsss

Prepared for
NASA Office of Safety and Mission Assurance

NASA Headquarters
Washington, DC 20546

August, 2002

Fault Tree Handbook with Aerospace Applications Version 1.1

FFFaaauuulllttt TTTrrreeeeee HHHaaannndddbbbooooookkk wwwiiittthhh AAAeeerrrooossspppaaaccceee
AAAppppppllliiicccaaatttiiiooonnnsss

NASA Project Coordinators:

Dr. Michael Stamatelatos, NASA Headquarters
Office of Safety and Mission Assurance

Mr. José Caraballo, NASA Langley Research Center

Authors:
NASA

Dr. Michael Stamatelatos, NASA HQ, OSMA

Lead Author:

Dr. William Vesely, SAIC

Contributing Authors (listed in alphabetic order):

Dr. Joanne Dugan, University of Virginia
Mr. Joseph Fragola, SAIC
Mr. Joseph Minarick III, SAIC
Mr. Jan Railsback, NASA JSC

Fault Tree Handbook with Aerospace Applications Version 1.1

FFFaaauuulllttt TTTrrreeeeee HHHaaannndddbbbooooookkk wwwiiittthhh AAAeeerrrooossspppaaaccceee
AAAppppppllliiicccaaatttiiiooonnnsss

Acknowledgements

The project coordinators and the authors express their gratitude to NASA Office of Safety and
Mission Assurance (OSMA) management (Dr. Michael Greenfield, Deputy Associate
Administrator and Dr. Peter Rutledge, Director of Enterprise Safety and Mission Assurance) and
to Mr. Frederick Gregory, NASA Deputy Administrator, for their support and encouragement in
developing this document. The authors also owe thanks to a number of reviewers who provided
constructive criticism.

Fault Tree Handbook with Aerospace Applications Version 1.1

Foreword

FFFaaauuulllttt TTTrrreeeeee HHHaaannndddbbbooooookkk wwwiiittthhh AAAeeerrrooossspppaaaccceee
AAAppppppllliiicccaaatttiiiooonnnsss

Foreword

NASA has been a leader in most technologies it has employed in its programs over the years.
One of the important NASA objectives is now to add Probabilistic Risk Assessment (PRA) to its
repertoire of expertise in proven methods to reduce technological and programmatic risk.

Fault Tree Analysis (FTA) is one of the most important logic and probabilistic techniques used
in PRA and system reliability assessment today.

Methods to perform risk and reliability assessment in the early 1960s originated in US aerospace
and missile programs. Fault tree analysis is such an example that was quite popular in the mid
sixties. Early in the Apollo project the question was asked about the probability of successfully
sending astronauts to the moon and returning them safely to Earth. A risk, or reliability,
calculation of some sort was performed and the result was a mission success probability that was
unacceptably low. This result discouraged NASA from further quantitative risk or reliability
analysis until after the Challenger accident in 1986. Instead, NASA decided to rely on the use of
failure modes and effects analysis (FMEA) and other qualitative methods for system safety
assessments. After the Challenger accident, the importance of PRA and FTA in systems risk and
reliability analysis was realized and its use at NASA has begun to grow.

The nuclear industry began to utilize probabilistic risk assessment to assess safety following the
Three Mile Island accident in 1979. In 1981, the US Nuclear Regulatory Commission (NRC)
issued the Fault Tree Handbook, NUREG-0492. Over the past two decades, this document has
become the leading technical information source on how FTA should be performed. Although
originally intended for nuclear power applications, the Fault Tree Handbook has been
extensively used in all fields where this powerful systems analysis methodology was applied.

Over the past two decades, probabilistic risk assessment and its underlying techniques, including
FTA, has become a useful and respected methodology for safety assessment. Because of its
logical, systematic and comprehensive approach, PRA and FTA have been repeatedly proven

Fault Tree Handbook with Aerospace Applications Version 1.1

Foreword

capable of uncovering design and operational weaknesses that escaped even some of the best
deterministic safety and engineering experts. This methodology showed that it was very
important to examine not only low-probability and high-consequence individual mishap events,
but also high-consequence scenarios which can emerge as a result of occurrence of multiple
high-probability and nearly benign events. Contrary to common perception, the latter is
oftentimes more detrimental to safety than the former.

A foremost strength of PRA and its underlying analysis techniques, including FTA, is that it is a
decision support tool. In safety applications, this methodology helps managers and engineers find
design and operational weaknesses in complex systems and then helps them systematically and
efficiently uncover and prioritize safety improvements.

In order to best benefit from PRA and FTA in management decisions, it is important that
managers and their support staffs be familiar with the value and application of these methods. In
addition, there should be a small but robust group of in-house technical experts that understand
the methods used in a PRA or FTA study, can explain its meaning and applicability to given
problems to management and serve as in-house technical advisers to the management decision
process for safety improvement. If these in-house experts do not exist initially, they should be
hired or groomed through training and transfer of technology, becoming part of the corporate
resources and memory that will help shape the organization, taking advantage of the PRA and
FTA methods and results and the expert knowledge of the external consultants. In-house experts
will help build risk-based knowledge and experience and stimulate cultural changes so that a
progressive organization can use these resources to make sound and cost-effective safety
improvement decisions.

In support of this, NASA has recently began to implement the following important risk
assessment enhancement principles in its programs and projects:

• Transfer quantitative risk assessment technology to NASA managers and practitioners as
soon as possible,

• Develop or acquire quantitative risk assessment expertise and state-of-the-art software
and data,

• Encourage ownership in quantitative risk assessment methods, studies and results in order
to use them effectively in the management decision process,

• Develop a corporate memory of the risk assessment project results and data on which to
build future capabilities and experience, and

• Develop risk awareness in programs and projects that will eventually help NASA develop
a risk-informed culture for all its programs and activities.

To this end, and in support of the Risk Management Program, NASA began to develop training
and practitioner documents on how to perform quantitative risk assessment and utilize important
techniques like FTA. One such document is a Procedures Guide for performing PRA for
aerospace applications. The other is this document, the re-issue of an updated version of the
Fault Tree Handbook for aerospace applications.

A considerable amount of material on PRA methods and applications has been written over the
past three decades. Several university and practitioner textbooks and sourcebooks currently exist

Fault Tree Handbook with Aerospace Applications Version 1.1

Foreword

but they focus on application of PRA in industries other than aerospace. Although some of the
techniques used in PRA originated in work for aerospace and military applications, no
comprehensive reference currently exists for PRA applications to aerospace systems. In
particular, no comprehensive reference for applying FTA to aerospace systems currently exists.

The current Fault Tree Handbook, serves two purposes:

• As a companion document to the training material taught in FTA courses for practicing
system analysts, and

• To assist aerospace FTA practitioners in acquiring and implementing current state-of-the
art FTA techniques in their applications.

The Handbook contains some of the material of the original handbook. However, some of the
basic tutorial material from the original handbook was eliminated because currently, unlike the
time when this handbook was first published, a number of PRA textbooks containing this type of
material are in existence.

The current version of the Fault Tree Handbook contains the following material that was not in
the original version:

• A discussion of the Binary Decision Diagram (BDD) method for solving fault trees that
were originally solved only through Boolean reduction and the use of minimal cuts sets;

• An introduction to Dynamic Fault Trees (DFTs) and methods to solve them;
• Illustrations of fault tree analysis in aerospace applications, with detailed description of

the models;
• An extended discussion of modeling common cause failures and human errors in FTA;
• Descriptions of modeling feedback loops so as to properly cut such loops in a FT;
• Extended discussion of applications of FTA for decision making, covering applications to

operating systems and to systems that are in design;
• Descriptions of absolute and relative importance measures that are obtainable from FTA

and that enhance the output and value of an FTA; and
• Expanded discussion of success trees, their logical equivalence to fault trees, and their

applications.

Fault Tree Handbook with Aerospace Applications Version 1.1

Table of Contents i

Table of Contents

Acknowledgements... 3
1. Introduction and Overview ... 1

1.1 Introduction and Intended Readers ... 1
1.2 The Fault Tree Approach .. 2
1.3 Qualitative and Quantitative Evaluations of a Fault Tree... 3
1.4 The Success Tree as a Logical Complement of the Fault Tree....................................... 4
1.5 Role of FTA in Decision Making ... 5
1.6 Role of Fault Trees in a PRA.. 7
1.7 Software for Fault Tree Analysis.. 8
1.8 References... 8

2. System Logical Modeling Approaches... 9
2.1 Success vs. Failure Approaches.. 9
2.2 Deductive Methods and FTA.. 11
2.3 Inductive Methods .. 12
2.4 Comparison of FTA with Inductive Methods... 20
2.5 References... 21

3. Fault Tree Analysis ... 22
3.1 Steps in Carrying Out a Fault Tree Analysis .. 22
3.2 Basic Paradigm in Constructing a Fault Tree ... 24
3.3 Boundaries of the Analysis ... 25
3.4 Definition of the Top Event .. 25
3.5 Faults vs. Failures ... 26
3.6 Failure Mechanism, Failure Mode, and Failure Effect ... 27
3.7 Success Path Models... 29
3.8 Cut Sets and Path Sets .. 31

4. The Fault Tree Model ... 33
4.1 Symbology—The Building Blocks of the Fault Tree ... 33
4.2 Component Fault Categories: Primary, Secondary, and Command 45
4.3 Passive vs. Active Components .. 46
4.4 The “Immediate Cause” Concept.. 46
4.5 Basic Rules for Fault Tree Construction... 49
4.6 State of System Versus State of Component Faults.. 53
4.7 Depth to Which a Fault Tree Should be Constructed ... 53
4.8 FMEAs Cannot be Combined to Make a Fault Tree .. 54

5. Extended FTA... 55
5.1 Modeling Inadvertent Flow Versus No Flow: An Illustration of the Basic Fault Tree

Modeling Principle ... 55
5.2 Modeling of Common Cause Failures in a Fault Tree.. 57
5.3 Modeling Human Errors in a Fault Tree... 60
5.4 Modeling Loops and Feedback... 63
5.5 Modeling of a Phenomenological Sequence... 64
5.6 Naming Schemes for the Fault Tree ... 66
5.7 Fault Tree Construction Ground Rules ... 67
5.8 Validating a Fault Tree ... 69

Fault Tree Handbook with Aerospace Applications Version 1.1

Table of Contents ii

5.9 References... 70
6. Qualitative Evaluations of a Fault Tree and Basic Probability Formulas................................. 71

6.1 Application of Boolean Algebra in Fault Tree Analysis .. 71
6.2 Binary Decision Diagrams.. 78
6.3 Comparison of the BDD Approach with the Minimal Cut Set Approach 81
6.4 References... 82

7. Quantitative Evaluations of a Fault Tree .. 83
7.1 Basic Quantification of the Fault Tree and Associated Data Used............................... 83
7.2 Data Requirements.. 87
7.3 Top Event Probability ... 89
7.4 Gate Probability .. 89
7.5 Importance Measures for a Fault Tree .. 89
7.6 Uncertainty Analyses in FTA ... 91
7.7 Phase Dependent and Time Dependent Analyses... 94
7.8 References... 96

8. Dynamic Fault Tree Analysis ... 97
8.1 Sequence Dependent Events and Gates .. 99
8.2 Coverage Modeling for Fault Tolerant Computer-based systems 102
8.3 Modular Solution of Dynamic Fault Tree... 106
8.4 References... 108

9. FTA in Aerospace PRA Applications... 109
9.1 Separating Qualitative and Quantitative Considerations in FTA as Exemplified in a

Phased Mission Analysis.. 109
9.2 Fault Trees for System Design.. 110
9.3 Fault Trees for an Implemented System ... 111
9.4 References... 112

10. Pressure Tank Example... 113
10.1 Pressure Tank System Definition and Fault Tree Construction.................................. 113
10.2. Fault Tree Evaluation (Minimal Cut Sets).. 124

11. Monopropellant Propulsion System Example .. 127
11.1 Mono-propellant propulsion system ... 127
11.2 Monopropellant Propulsion System Fault Tree Development.................................... 129
11.3 Qualitative and Quantitative Evaluation of the Fault Tree ... 134
11.4 Common Cause Failures ... 138

12. Sample Container Seal Design Example .. 139
13. Hypothetical Computer System Example... 144

13.1 Developing the Fault Tree for HECS.. 144
13.2 Fault Tree Quantification.. 148
13.3 Analysis Results.. 152

Appendix A. Boolean Algebra And Application To Fault Tree Analysis................................. 155
A.1 Rules of Boolean Algebra... 155
A.2 Determining the Minimal Cut Sets or Minimal Path Sets of a Fault Tree.................. 157

Appendix B. Probability Theory: The Mathematical Description Of Events............................ 163
B.1 Set Theory—Application to the Mathematical Treatment of Events 163
B.2 Symbolism .. 168
B.3 Additional Set Concepts ... 169

Fault Tree Handbook with Aerospace Applications Version 1.1

Table of Contents iii

B.4 Algebraic Operations with Probabilities... 171
B.5 Bayes' Theorem... 175

Appendix C - Probabilistic And Statistical Analyses ... 180
C.1 The Cumulative Distribution Function ... 180
C.2 The Probability Density Function... 182
C.3 Distribution Parameters and Moments.. 183
C.4 The Failure Rate or Hazard Function.. 188
C.5 Bayesian Analyses .. 192
C.6 References... 194

Appendix D. Markov Modeling for Reliability Analysis .. 195
D.1 Introduction to Markov Modeling .. 195
D.2 Converting a Dynamic Fault Tree to a Markov Model... 197
D.3 References... 202

Glossary .. 203
Acronyms.. 204

Fault Tree Handbook with Aerospace Applications Version 1.1

Table of Contents iv

LIST OF TABLES

Table 2-1. Redundant Amplifier Analysis ... 14
Table 2-2. Fault Severity Categories and Corresponding System Effects................................... 17
Table 2-3. Extended Fault Severity Categories ... 17
Table 2-4. Fuel System Double Failure Matrix ... 19
Table 3-1. Fuel Flow System Failure Analysis.. 27
Table 3-2. Doorbell Failure Analysis... 29
Table 3-3. Single Failure Analysis for Redundant Valve Configuration..................................... 30
Table 4-1. Fault Tree Symbols.. 34
Table 5-1. Representative Component and Failure Mode Identifiers.. 67
Table 7-1. Illustrative Component Failure Rate Data.. 86
Table 10-1. Failure Probabilities for Pressure Tank Example... 125
Table 11-1. Propellant System Nomenclature ... 128
Table 11-2. Failure Probabilities for Monopropellant Propulsion System Example (the listed

failure probabilities are hypothetical) ... 137
Table A-1. Rules of Boolean Algebra.. 156

Fault Tree Handbook with Aerospace Applications Version 1.1

Table of Contents v

LIST OF FIGURES

Figure 1-1. A Simplified Fault Tree .. 3
Figure 2-1. The Failure Space-Success Space Concept... 9
Figure 2-2. Use of Failure Space in Transport Example ... 11
Figure 2-3. Fuel System Schematic ... 18
Figure 2-4. Reliability Block Diagram of a Fuel System. ... 20
Figure 3-1. Fault Tree Analysis Steps.. 22
Figure 3-2. Doorbell and Associated Circuitry.. 28
Figure 3-3. Redundant Configuration of Two Valves ... 30
Figure 4-1. Typical Fault Tree ... 33
Figure 4-2. The OR-Gate ... 35
Figure 4-3. Specific Example of the OR-Gate... 36
Figure 4-4. OR-Gate for Human Error .. 36
Figure 4-5. The AND-Gate ... 37
Figure 4-6. Specific Example of an AND-Gate... 38
Figure 4-7. AND-Gate Relationship with Dependency Explicitly Shown.................................. 38
Figure 4-8. Example of the COMBINATION-Gate (AND- and OR-Gate Model)..................... 40
Figure 4-9. Example of the COMBINATION-Gate. ... 40
Figure 4-10. The INHIBIT-Gate.. 41
Figure 4-11. Examples of the INHIBIT-Gate .. 41
Figure 4-12. An Alternative Type of INHIBIT-Gate... 42
Figure 4-13. The Exclusive OR-Gate .. 43
Figure 4-14. The PRIORITY AND-Gate... 43
Figure 4-15. System Illustrating “Immediate Cause” Concept.. 47
Figure 4-16. A Simple Fault Tree .. 49
Figure 4-17. Simple Motor-Switch-Battery System .. 51
Figure 4-18. A Short-Cut Fault Tree.. 52
Figure 5-1. Fault Tree Model for No Flow to Receiver... 56
Figure 5-2. Fault Tree Model for Inadvertent Flow to Receiver. .. 57
Figure 5-3. Fault Tree Representing Three Redundant Components with CCF Contribution. ... 60
Figure 5-4. Fault Tree Models that Avoid Logical Loops ... 64
Figure 5-5. Fault Tree for Explosion Resulting from Hydrazine Leak.. 65
Figure 6-1. The Gate Function in a Fault Tree .. 71
Figure 6-2. A Two-Input OR-Gate .. 72
Figure 6-3. A Specific Two-Input OR-Gate .. 73
Figure 6-4. Two Switches in Series ... 74
Figure 6-5. A Specific Three-input OR-Gate .. 75
Figure 6-6. A Two-Input AND Gate.. 76
Figure 6-7. Fault Tree Structure for D = A•(B+C).. 77
Figure 6-8. Equivalent Form for the Fault Tree of Figure 6-7... 77
Figure 6-9. BDD for Basic Event B... 78
Figure 6-10. OR of BDD for B and C (step 1)... 78
Figure 6-11. OR of BDD for B and C (step 2)... 79
Figure 6-12. AND of BDD for B and C (step 1) ... 79
Figure 6-13. AND of BDD for A and B (step 2) ... 79

Fault Tree Handbook with Aerospace Applications Version 1.1

Table of Contents vi

Figure 6-14. BDD construction for an OR with an AND gate (step 1) 80
Figure 6-15. BDD construction for an OR with an AND gate (step 2) 80
Figure 6-16. BDD construction for an OR with an AND gate (step 3) 80
Figure 8-1. Example of Sequence Dependent Failure ... 97
Figure 8-2. Fault Tree Model for Standby System .. 98
Figure 8-3. Alternate Fault Tree for Standby System.. 98
Figure 8-4. Functional Dependency Gate .. 99
Figure 8-5. Using an FDEP to Model Network Failures. .. 100
Figure 8-6. Using Standard Fault Tree Constructs to Model Functional Dependence.............. 100
Figure 8-7. Accounting for Feedback Using FDEP... 101
Figure 8-8. Spare Gate ... 101
Figure 8-9. Sharing a Spare ... 102
Figure 8-10. General Structure for a Coverage Model .. 103
Figure 8-11. 3P2M Fault Tree ... 105
Figure 8-12. Inserting Coverage Model in a Fault Tree .. 105
Figure 8-13. Fault Tree for 3P2M System with Cold Spares .. 107
Figure 8-14. Independent Module in Fault Tree.. 107
Figure 9-1. A Typical PRA Task Flow.. 109
Figure 10-1. Pressure Tank System ... 113
Figure 10-2. Pressure Tank Operational Modes .. 114
Figure 10-3. Fault Tree Construction – Step 1 .. 116
Figure 10-4. Fault Tree Construction – Step 2 .. 117
Figure 10-5. Fault Tree Construction – Step 3 .. 117
Figure 10-6. Fault Tree Construction – Step 4 .. 118
Figure 10-7. Fault Tree Construction – Step 5 .. 119
Figure 10-8. Fault Tree Construction – Step 6 .. 119
Figure 10-9. Fault Tree Construction – Step 7 .. 120
Figure 10-10. Fault Tree Construction – Step 8 .. 120
Figure 10-11. Fault Tree Construction – Step 9 .. 121
Figure 10-12. Fault Tree Construction – Final Step .. 122
Figure 10-13. Pressure Tank Rupture Fault Tree Example ... 123
Figure 10-14. Basic (Reduced) Fault Tree for Pressure Tank Example 124
Figure 11-1. Monopropellant Propulsion System.. 127
Figure 11-2. Monopropellant Propulsion System Operational Configurations 130
Figure 11-3. Fault Tree Construction – Step 1 .. 131
Figure 11-4. Fault Tree Construction – Step 2 .. 132
Figure 11-5. Fault Tree Construction – Step 3 .. 133
Figure 11-6. Thruster supplied with propellant after thrust cutoff. ... 135
Figure 12-1. Conventional Functional Seal Design... 139
Figure 12-2. Risk-Based Design for Independent Failures.. 140
Figure 12-3. Fault Tree Model for Triply Redundant Design (Independent Failures Only) 140
Figure 12-4. Fault Tree Model for Triply Redundant Design Considering Common Cause 141
Figure 12-5. Risk-Based Design against CCF ... 142
Figure 12-6. Fault Tree Model of Risk-Based Design Against CCF... 142
Figure 12-7. Fault Tree for Contamination and CCF Risk-Based Design................................. 143
Figure 13-1. HECS (Hypothetical Example Computer System) ... 144

Fault Tree Handbook with Aerospace Applications Version 1.1

Table of Contents vii

Figure 13-2. HECS Failure Causes.. 144
Figure 13-3. Fault Tree Model for HECS Processors.. 145
Figure 13-4. Fault tree for HECS Memory System ... 146
Figure 13-5. Fault Tree for HECS Bus System ... 147
Figure 13-6. Fault Tree for HECS Application ... 147
Figure 13-7. Fault Tree for HECS ... 148
Figure 13-8. Coverage Model for HECS Processors ... 150
Figure 13-9. Coverage Model for Memory System... 151
Figure 13-10. Analysis of HECS for 100-hour mission .. 152
Figure 13-11. Unreliability for HECS ... 153
Figure A-1. Example Fault Tree .. 159
Figure A-2. Fault Tree Equivalent of Figure A-1. ... 160
Figure A-3. Water Pumping System.. 161
Figure B-1. Venn Diagram Representation of Sets ... 164
Figure B-2. The Operation of Union.. 165
Figure B-3. The Operation of Intersection... 166
Figure B-4. The Operation of Complementation... 166
Figure B-5. The Operation (Y-X) .. 167
Figure B-6. Set Theoretic Definition of Probability .. 170
Figure B-7. Partition of the Universal Set ... 176
Figure B-8. Illustration of the Use of Bayes' Formula... 178
Figure C-1. Typical Shapes for F(x) .. 181
Figure C-2. Typical Shapes for f(x)... 183
Figure C-3. The Median, Mode, and Mid-Range .. 184
Figure C-4. Two Symmetrical Distributions with Different Dispersion Parameters................. 185
Figure C-5. The Rectangular Distribution ... 187
Figure C-6. Plot of λ(t) vs. t for a General System.. 189
Figure C-7. Risk Intensity vs. Time During Shuttle Ascent .. 190
Figure D-1. Example of Sequence Dependent Failure .. 195
Figure D-2. DFT for Standby Space System ... 196
Figure D-3. Markov Model for Standby Spare System. .. 196
Figure D-4. 3P2M Example System .. 198
Figure D-5. Markov chain for 3P2M system.. 198
Figure D-6. An Example DFT for VMS.. 199
Figure D-7. Markov Model for VMS .. 200
Figure D-8. DFT for HECS Memory System.. 201
Figure D-9. Markov Model for HECS Memory System ... 202

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 1, Introduction and Overview 1

1. Introduction and Overview

1.1 Introduction and Intended Readers

This handbook is an update of the original Fault Tree Handbook published in 1981 [1]. It is
written for the informed reader who has some knowledge of system analysis and has knowledge
of basic mathematics. This handbook is intended for system analysts, system engineers, and
managers. No previous knowledge or training in statistics, reliability, or risk analysis is
assumed. Basic concepts of statistical analysis, reliability analysis, and risk analysis are
presented in relevant chapters and in the appendices.

This updated version of the Fault Tree Handbook is entitled Fault Tree Handbook with
Aerospace Applications or AFTH for short. The AFTH presents the basic principles and
procedures for Fault Tree Analysis (FTA), with an emphasis on Aerospace applications. The
AFTH is organized into two major parts.

The first part of the handbook describes the concepts, steps, tools, and uses of FTA. FTA is a
deductive, failure-based approach. As a deductive approach, FTA starts with an undesired event,
such as failure of a main engine, and then determines (deduces) its causes using a systematic,
backward-stepping process. In determining the causes, a fault tree (FT) is constructed as a
logical illustration of the events and their relationships that are necessary and sufficient to result
in the undesired event, or top event. The symbols used in a FT indicate the type of events and
type of relationships that are involved. The FT is a qualitative model that provides extremely
useful information on the causes of the undesired event. The FT can also be quantified to
provide useful information on the probability of the top event occurring and the importance of all
the causes and events modeled in the FT. This handbook leads the reader through FTA.
Particular details can be skipped if the reader desires only an overview of FTA and instead wants
to focus on its uses to assist decision-making.

In addition to FTA, inductive approaches are also used in safety analysis and in risk and
reliability analysis. In contrast to the deductive approach used in FTA, inductive approaches are
forward-stepping approaches that begin with a basic cause or initiating event and then investigate
(induce) the end effects. Both FTA and inductive approaches are failure-based. The advantages
of failure-based approaches are also discussed.

A FT can be transformed into its logical complement, a success tree (ST) that shows the specific
ways the undesired event can be prevented from occurring. The ST provides conditions that, if
assured, guarantee that the undesired event will not occur. The ST is a valuable tool that
provides equivalent information to the fault tree, but from a success viewpoint. Techniques for
transforming the FT to its ST are described along with uses of the ST.

The uses of FTA to assist decision-making are described in this AFTH. FTA provides critical
information that can be used to prioritize the importance of the contributors to the undesired
event. The contributor importances provided by FTA vividly show the causes that are dominant
and that should be the focus of any safety or reliability activity. More formal risk-benefit
approaches can also be used to optimally allocate resources to minimize both resource
expenditures and the occurrence probability of the undesired event. These risk benefit

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 1, Introduction and Overview 2

approaches are useful for allocating resource expenditures, such as safety upgrades to complex
systems like the Space Shuttle.

FTA can be applied to both an existing system and to a system that is being designed. When it is
applied to a system being designed for which specific data do not exist, FTA can provide an
estimate of the failure probability and the important contributors using generic data to bracket the
design components or concepts. FTA can also be used as an important element in the
development of a performance-based design. When applied to an existing system, FTA can be
used to identify weaknesses and to evaluate possible upgrades. It can also be used to monitor
and predict behavior. Furthermore, FTA can be used to diagnose causes and potential corrective
measures for an observed system failure. The approaches and tools to obtain this information
and the applications of this information in decision-making are important topics of the AFTH.

The second part of the AFTH contains examples of the application of FTA in studies that have
been previously performed. The focus is on aerospace applications. The examples include the
rupture of a pressure tank (a classic FTA example), failure to initiate and terminate thrust in a
monopropellant propulsion system, failure of a redundant container seal (design analysis), and a
dynamic FT analysis of a mission avionics system.

1.2 The Fault Tree Approach

FTA can be simply described as an analytical technique, whereby an undesired state of the
system is specified (usually a state that is critical from a safety or reliability standpoint), and the
system is then analyzed in the context of its environment and operation to find all realistic ways
in which the undesired event (top event) can occur. The fault tree itself is a graphic model of the
various parallel and sequential combinations of faults that will result in the occurrence of the
predefined undesired event. The faults can be events that are associated with component
hardware failures, human errors, software errors, or any other pertinent events which can lead to
the undesired event. A fault tree thus depicts the logical interrelationships of basic events that
lead to the undesired event, the top event of the fault tree.

It is important to understand that a fault tree is not a model of all possible system failures or all
possible causes for system failure. A fault tree is tailored to its top event that corresponds to
some particular system failure mode, and the fault tree thus includes only those faults that
contribute to this top event. Moreover, these faults are not exhaustive—they cover only the
faults that are assessed to be realistic by the analyst.

It is also important to point out that a fault tree is not in itself a quantitative model. It is a
qualitative model that can be evaluated quantitatively and often is. This qualitative aspect, of
course, is true of virtually all varieties of system models. The fact that a fault tree is a
particularly convenient model to quantify does not change the qualitative nature of the model
itself.

Intrinsic to a fault tree is the concept that an outcome is a binary event i.e., to either success or
failure. A fault tree is composed of a complex of entities known as “gates” that serve to permit
or inhibit the passage of fault logic up the tree. The gates show the relationships of events
needed for the occurrence of a “higher” event. The “higher” event is the output of the gate; the

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 1, Introduction and Overview 3

“lower” events are the “inputs” to the gate. The gate symbol denotes the type of relationship of
the input events required for the output event. Figure 1-1 shows a simple fault tree.

D Fails

G1

A Fails

A

B OR C Fail

G2

B Fails

B

C Fails

C

Figure 1-1. A Simplified Fault Tree

1.3 Qualitative and Quantitative Evaluations of a Fault Tree

Both qualitative and quantitative evaluations can be performed on an FT. The FT itself is a
qualitative assessment of the events and relationships that lead to the top event. In constructing
the FT, significant insights and understanding are gained concerning the causes of the top event.
Additional evaluations serve to further refine the information that the FT provides.

The qualitative evaluations basically transform the FT logic into logically equivalent forms that
provide more focused information. The principal qualitative results that are obtained are the
minimal cut sets (MCSs) of the top event. A cut set is a combination of basic events that can
cause the top event. An MCS is the smallest combination of basic events that result in the top
event. The basic events are the bottom events of the fault tree. Hence, the minimal cut sets
relate the top event directly to the basic event causes. The set of MCSs for the top event
represent all the ways that the basic events can cause the top event. A more descriptive name for
a minimal cut set may be “minimal failure set.” The set of MCSs can not only be obtained for
the top event, but for any of the intermediate events (e.g., gate events) in the FT.

A significant amount of information can be obtained from the structure of MCSs. Any MCS
with one basic event identifies a single failure or single event that alone can cause the top event
to occur. These single failures are often weak links and are the focus of upgrade and prevention
actions. Examples of such single failures are a single human error or single component failure
that can cause a system failure. An MCS having events with identical characteristics indicates a
susceptibility to implicit dependent failure, or common cause, that can negate a redundancy. An
example is an MCS of failures of identical valves. A single manufacturing defect or single
environmental sensitivity can cause all the valves to simultaneously fail.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 1, Introduction and Overview 4

The quantitative evaluations of a FT consist of the determination of top event probabilities and
basic event importances. Uncertainties in any quantified result can also be determined. Fault
trees are typically quantified by calculating the probability of each minimal cut set and by
summing all the cut set probabilities. The cut sets are then sorted by probability. The cut sets
that contribute significantly to the top event probability are called the dominant cut sets. While
the probability of the top event is a primary focus in the analysis, the probability of any
intermediate event in the fault tree can also be determined. Different types of probabilities can
be calculated for different applications. In addition to a constant probability value that is
typically calculated, time-related probabilities can be calculated providing the probability
distribution of the time of first occurrence of the top event. Top event frequencies, failure or
occurrence rates, and availabilities can also be calculated. These characteristics are particularly
applicable if the top event is a system failure.

In addition to the identification of dominant cut sets, importances of the events in the FT are
some of the most useful information that can be obtained from FT quantification. Quantified
importances allow actions and resources to be prioritized according to the importances of the
events causing the top event. The importance of the basic events, the intermediate events, and
the minimal cut sets can be determined. Different importance measures can be calculated for
different applications. One measure is the contribution of each event to the top event probability.
Another is the decrease in the top event probability if the event were prevented from occurring.
A third measure is the increase in the top event probability if the event were assured to occur.
These importance measures are used in prioritization, prevention activities, upgrade activities,
and in maintenance and repair activities. Later sections describe in further detail the rich amount
of qualitative and quantitative information that can be obtained from a FT.

1.4 The Success Tree as a Logical Complement of the Fault Tree

Since success and failure are related, the FT can be transformed into its equivalent ST. In the FT
context, success in a success tree is specifically defined as the top event not occurring. The
method by which the ST can be obtained from the FT will be described in a later section. The
ST is a logical complement of the FT, with the top event of the ST being the complement of the
top event of the FT. For example, if the top event of the FT is “Occurrence of LOV,” LOV
implying Loss of Vehicle, then the ST will have as a top event “Nonoccurrence of LOV.” The
ST therefore defines the logic for the failure top event not occurring. Moreover, the ST identifies
the minimal sets of basic events that need to be prevented in order to assure that the failure top
event will not occur. These minimal sets of events that prevent the failure top event are termed
the minimal path sets. A more descriptive name may be “minimal prevention sets” since they
indicate how to prevent the occurrence of the failure top event and achieve success in terms of its
nonoccurrence. The minimal path sets provide valuable information on the means by which the
failure top event can be prevented even without quantification. Moreover, the ST can be
quantified to provide the probability of success, i.e., nonoccurrence of the failure top event.
Additionally, each of the minimal path sets can be quantified to prioritize the most effective
methods for prevention (often in terms of cost to ensure prevention). Ability to analyze the top
event from both a failure (occurrence) and success (nonoccurrence) standpoint increases the
scope of information that can be obtained from these logic trees.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 1, Introduction and Overview 5

1.5 Role of FTA in Decision Making

A variety of information is provided by FTA to assist decision-making. An overview some of
the major uses of FTA is presented here to give the reader an appreciation of the breadth of
applications of FTA in decision-making. Note that this section includes some information
already provided in previous sections for the benefit of readers who want to focus on the FTA
role in decision making.

1. Use of FTA to understand of the logic leading to the top event. FTA provides a
visual, logic model of the basic causes and intermediate events leading to the top
event. Typically, fault trees are not limited to a single system, but cross system
boundaries. Because of this, they have shown great benefit in identifying system
interactions that impact redundancy. The combination of failures and events that
propagate through a system are clearly shown. The minimal cut sets can be organized
and prioritized according to the number of events involved and their nature. For
example, if there are minimal cut sets that contain only one component failure then
this shows that single component failures can cause failure of the system. A failure
path of only human errors shows that human errors alone can cause system failure.
After reading this handbook, the reader should be convinced that the qualitative
information obtained from an FTA is of equal importance to the quantitative
information provided.

2. Use of FTA to prioritize the contributors leading to the top event. One of the most
important types of information from FTA is the prioritization of the contributors to
the top event. If a FT is quantified, the failures and basic events that are the causes of
the top events can be prioritized according to their importance. In addition, the
intermediate faults and events leading to the top event can also be prioritized.
Different prioritizations and different importance measures are produced for different
applications. One of the valuable conclusions from FTAs is that generally only a few
contributors are important to the top event. Often only 10% to 20% of the basic
events contribute significantly to the top event probability. Moreover, the
contributors often cluster in distinct groupings whose importances differ by orders of
magnitude.

The prioritizations obtained from FTA can provide an important basis for prioritizing
resources and costs. Significant reductions in resource expenditures can be achieved
with no impact to the system failure probability. For a given resource expenditure,
the system failure probability can be minimized by allocating resources to be
consistent with contributor importances. The importance measures obtained from a
FTA are as important as the top event probability or the ranked cut set lists obtained
from the analysis.

3. Use of FTA as a proactive tool to prevent the top event. FTA is often used to identify
vulnerable areas in a system. These vulnerable areas can be corrected or improved
before the top event occurs. Upgrades to the system can be objectively evaluated for
their benefits in reducing the probability of the top event. The evaluation of upgrades
is an important use of the FTA. Advocates of different corrective measures and

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 1, Introduction and Overview 6

upgrades will often claim that what they are proposing provides the most benefit and
they may be correct from their local perspective. However, FTA is a unique tool that
provides a global perspective through a systematic and objective measure of the
impact of a benefit on the top event. The probability of the top event can be used to
determine the criticality of carrying out the upgrades. The probability of the top
event can be compared to acceptability criteria or can be used in cost benefit
evaluations. Advances in cost benefit methodology allow uncertainties and risk
aversion to be incorporated as well as the probabilities. Furthermore, success paths
provided from FTA can be used to identify specific measures that will prevent the top
event. The proactive use of FTA has been shown to be one of its most beneficial
uses.

4. Use of FTA to monitor the performance of the system. The use of the FT as a
monitoring tool is a specific proactive use that has been identified because of its
special features. When monitoring performance with regard to the top event, FTA
can account for updates in the basic event data as well as for trending and time
dependent behaviors, including aging effects. Using systematic updating techniques,
the fault tree can be re-evaluated with new information that can include information
on defects and near failures. Actions can then be identified to maintain or replace
necessary equipment to control the failure probability and risk. This use of FTA as a
monitoring tool is common in the nuclear industry.

5. Use of FTA to minimize and optimize resources. This particular use of FTA is
sometimes overlooked but it is one of the most important uses. Through its various
importance measures, a FTA identifies not only what is important but also what is
unimportant. For those contributors that are unimportant and have negligible impact
on the top event, resources can be relaxed with negligible impact on the top event
probability. In fact, using formal allocation approaches, resources can be re-allocated
to result in the same system failure probability while reducing overall resource
expenditures by significant amounts. In various applications, FTA has been used to
reduce resource burdens by as much as 40% without impacting the occurrence
probability of the top event. Software has been developed to help carry out these
resource re-allocations for large systems.

6. Use of FTA to assist in designing a system. When designing a system, FTA can be
used to evaluate design alternatives and to establish performance-based design
requirements. In using FTA to establish design requirements, performance
requirements are defined and the FTA is used to determine the design alternatives that
satisfy the performance requirements. Even though system specific data are not
available, generic or heritage data can be used to bracket performance. This use of
FTA is often overlooked, but is important enough to be discussed further in a
subsequent section.

7. Use of FTA as a diagnostic tool to identify and correct causes of the top event. This
use of FTA as a diagnostic tool is different from the proactive and preventative uses
described above. FTA can be used as a diagnostic tool when the top event or an
intermediate event in the fault tree has occurred. When not obvious, the likely cause

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 1, Introduction and Overview 7

or causes of the top event can be determined more efficiently using the FTA power to
prioritize contributors. The chain of events leading to the top event is identified in the
fault tree, providing valuable information on what may have failed and the areas in
which improved mitigation could be incorporated. When alternative corrective
measures are identified, FTA can be used to objectively evaluate their impacts on the
top event re-occurrence. FTA can also be an important aid to contingency analysis by
identifying the most effective actions to be taken to reduce the impact of a fault or
failure. In this case, components are set to a failed condition in the fault tree and
actions are identified to minimize the impact of the failures. This contingency
analysis application is often used to identify how to reconfigure a system to minimize
the impact of the component failures. Allowed downtimes and repair times can also
be determined to control the risk incurred from a component failure.

As can be seen from the above, FTA has a wide variety of uses and roles it can play in
decision-making. FTA can be used throughout the life cycle of the system from design through
system implementation and improvement. As the system proceeds to the end of life, its
performance can be monitored to identify trends before failure occurs. When consciously used
to assist decision-making, the payoffs from FTA generally far outweigh the resources expended
performing the analysis.

1.6 Role of Fault Trees in a PRA

A Probabilistic Risk Assessment, or PRA, models sequences of events that need to occur in order
for undesired end states to occur. A sequence of events (event sequence) is usually called an
accident sequence. An example of an accident sequence is a fire that leads to catastrophic
consequences because mitigation systems fail to operate. A model of a simple event sequence in
a PRA is shown below.

Initiating

event
System
A fails

System B
succeeds

Final
end state

Notice that in the above event sequence model, success of a system as well as failure of another
system appears. Which particular systems fail and which succeed determine the type of end state
and its associated consequences. To quantify the accident sequence, a probability for each event
in the event sequence, other than the end state, needs to be determined. The probability of each
event is conditional on the previous events in the sequence (e.g., the probability of system A
failing is the probability of A failing given the initiating event occurs, the probability of system
B succeeding is the probability of B succeeding given A fails and the initiating event occurs). If
an event is independent of others in the sequence and failure data exist, the probability can be
directly estimated from the data. For more complex events in the sequence, that do not have
directly applicable data or that may have dependencies on other events in the sequence, such as
for a system failure, a fault tree is usually constructed. The fault tree is developed to a level that
encompasses the dependencies between systems or to a level where failure data exist for the
basic events, whichever is lower (more detailed). The fault tree is then evaluated to determine
the probability of the system failure.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 1, Introduction and Overview 8

Each event sequence is a logical intersection (an AND gate) of the initiating event and the
subsequent events other than the end state. Available PRA software automatically carries out the
operations involving this intersection using all the fault trees that are input to an event sequence.
Depending upon the level of resolution, a complex PRA such as for the Space Shuttle can have
tens of thousands of accident sequences involving hundreds of different fault trees. In a large
analysis, the fault trees (AND gates) of each sequence are combined into a single OR gate to
generate accident sequence cut sets for the entire PRA in a single analysis run. When several
different end states are defined the fault trees for each individual end state are combined. Fault
trees are generally the work horses of a PRA, providing causes and probabilities for all the
system failures involved, as well as a framework for quantification of the sequences.

1.7 Software for Fault Tree Analysis

A number of software applications exist for FTA and new applications are continually being
developed. Some applications provide the capability to draw and quantify FT models, while
others provide an integrated set of PRA tools that include the capability to draw and solve FTs.
It is not the purpose of this document to serve as reference for FT-related software; it is not
possible to describe all FT software that is currently available and it is clearly not possible to
describe software that may be available in the future. Therefore, this Handbook does not include
FT software references (the one exception is the Galileo/ASSAP software [2] developed by
NASA to solve the DFTs described in Chapter 8).

1.8 References

1. W. Vesely et al., Fault Tree Handbook, NUREG-0492, Nuclear Regulatory Commission,
1981.

2. K. Sullivan, J. Dugan and D. Coppit, “The Galileo Fault Tree Analysis Tool,”
Proceedings of IEEE International Symposium of Fault Tolerant Computing, FTC-29,
June 1999, pp 232-235.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 2, System Logical Modeling Approaches 9

2. System Logical Modeling Approaches

2.1 Success vs. Failure Approaches

The operation of a system can be considered from two standpoints: the various ways for system
success can be enumerated or the various ways for system failure can be enumerated. Such an
enumeration would include completely successful system operation and total system failure, as
well as intermediate conditions such as minimum acceptable success. Figure 2-1 depicts the
Failure/Success space concept.

Figure 2-1. The Failure Space-Success Space Concept

It is interesting to note that certain identifiable points in success space coincide with certain
analogous points in failure space. Thus, for instance, “maximum anticipated success” in success
space can be thought of as coinciding with the “minimum anticipated failure” in failure space.
Although the first inclination might be to select the optimistic view of our system (success)
rather than the pessimistic one (failure) when considering system operation, this is not
necessarily the most advantageous perspective to take.

From an analytical standpoint, there are several overriding advantages that accrue from the
failure space perspective. First of all, it is generally easier to attain concurrence on what
constitutes failure than it is to agree on what constitutes success. An aircraft might be desired to
fly high and fast, travel far without refueling and carry a big load. When the final version of this
aircraft rolls off the production line, some of these features may have been compromised in the
course of making design trade-offs. Whether the vehicle is a "success" or not may very well be a
matter of controversy. On the other hand, if the aircraft crashes, there will be little argument that
this event constitutes system failure.

“Success” tends to be associated with the efficiency of a system, the amount of output, the
degree of usefulness, and production and marketing features. These characteristics are
describable by continuous variables that are not easily modeled in terms of simple discrete
events, such as “valve does not open,” which characterize the failure space (partial failures, i.e., a
valve opens partially, are also difficult events to model because of their continuous possibilities).
Thus, the event “failure,” or in particular, “complete failure,” is generally easy to define, whereas
the event “success” may be much more difficult to tie down. This fact makes the use of failure
space in analysis much more valuable than the use of success space.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 2, System Logical Modeling Approaches 10

Another point in favor of the use of failure space is that, although theoretically the number of
ways in which a system can fail and the number of ways in which a system can succeed are both
infinite, from a practical standpoint there are generally more ways to success than there are to
failure. Thus, purely from a practical point of view, the size of the population in failure space is
less than the size of the population in success space. In analysis, therefore, it is generally more
efficient to make calculations on the basis of failure space.

A final point in favor of the use of failure space is the nature of the mathematics involved in the
quantification of failure models. Most failure probabilities are small (less than 0.1), which
allows the use of accurate approximations when combining failure probabilities. Since success
probabilities are usually close to 1.0, these approximations cannot be used, necessitating the use
of complex calculations when combining success probabilities. The solution of success models
is therefore much more different than the solution of failure models.

The advantageous use of the failure space when analyzing system operation has been
demonstrated on numerous occasions in the past. The drawing of logic diagrams for a complex
system is an expensive and time-consuming operation. When failures are considered, it may be
necessary to construct only one or two system models, such as fault trees, that cover all the
significant failure modes. When successes are considered, it may become necessary to construct
several hundred system models covering various definitions of success. A good example of the
parsimony of events characteristic of failure space was the Minuteman missile analysis. Only
three fault trees were drawn corresponding to the three undesired events: inadvertent
programmed launch, accidental motor ignition, and fault launch. It was found that careful
analysis of just these three events provided a complete overview of the complex Minuteman
system.

Consider the “mission” in Figure 2-2 referring to the transport of person X by automobile from
home to the office. The desired arrival time is 8:30, but the mission will be considered
marginally successful if X arrives at the office by 9:00. Arrival at 8:30 is labeled “minimum
anticipated failure.” Below “minimum anticipated failure” lie a number of possible incidents
that constitute minor annoyances, but which do not prevent X from arriving at the desired time.
Arrival at 9:00 is labeled “maximum anticipated failure.” Between this point and “minimum
anticipated failure” lie a number of occurrences that cause X’s arrival time to be delayed half an
hour or less. It is perhaps reasonable to let the point “maximum tolerable failure” coincide with
some accident that causes some damage to the car and considerable delay but no personal injury.
Above this point lie incidents of increasing seriousness terminating in complete failure or death.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 2, System Logical Modeling Approaches 11

COMPLETE FAILURE

MAXIMUM TOLERABLE FAILURE

MAXIMUM ANTICIPATED FAILURE

MINIMUM ANTICIPATED FAILURE

TOTAL SUCCESS

ACCIDENT
(DEATH OR CRIPPLING INJURY)

ACCIDENT
(CAR DAMAGED; NO PERSONAL INJURY)

MINOR ACCIDENT

FLAT TIRE

TRAFFIC JAM

ARRIVES AT 9:00

WINDSHIELD WIPERS INOPERATIVE
(LIGHT RAIN)

TRAFFIC CONGESTION

ARRIVES AT 8:45

LOST HUBCAP

WINDSHIELD WIPERS INOPERATIVE
(CLEAR WEATHER)

ARRIVES AT 8:30
(NO DIFFICULTIES WHATSOEVER

WINDSHIELD WIPERS INOPERATIVE
(HEAVY RAIN)

Figure 2-2. Use of Failure Space in Transport Example

Note that an event such as “windshield wipers inoperative” will be positioned along the line
according to the nature of the environment at that time.

A chart such as Figure 2-2 might also be used to pinpoint events in, for example, the production
of a commercial airliner. The point “minimum anticipated failure” would correspond to the
attainment of all specifications and points below that would indicate that some of the
specifications have been more than met. The point “maximum anticipated failure” would
correspond to some trade-off point at which all specifications had not been met but the
discrepancies were not serious enough to degrade the saleability of the aircraft in a material way.
The point “maximum tolerable failure” corresponds to the survival point of the company
building the aircraft. Above that point, only intolerable catastrophes occur. Generally speaking,
but not in all cases, FTA addresses itself to the identification and assessment of just such
catastrophic occurrences and complete failures.

2.2 Deductive Methods and FTA

Deduction constitutes reasoning from the general to the specific. In a deductive system analysis,
it is postulated that the system itself has failed in a certain way, and an attempt is made to find
out what modes of system or subsystem (component) behavior contribute to this failure. In
common parlance this approach might be referred to as a “Sherlock Holmes” approach. Holmes,
faced with given evidence, has the task of reconstructing the events leading up to the crime.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 2, System Logical Modeling Approaches 12

Indeed, all successful detectives and other types of investigators are experts in deductive
analysis.

Typical of deductive analyses in real life are accident investigations: what chain of events caused
the sinking of an “unsinkable” ship such as the Titanic on its maiden voyage? What failure
processes, instrumental and/or human, contributed loss of the vertical stabilizer and to the crash
of a commercial airliner into a residential area?

The principal subject of this book, Fault Tree Analysis, is an example of deductive systems
analysis. In this technique, some specific system state, which is generally a failure state, is
postulated, and chains of more basic faults contributing to this undesired event are built up in a
systematic and logical way. The broad principles of FTA, as well as details relating to the
applications and evaluation of FTs, are given in later chapters.

While deductive methods are applied to determine how a given system state (usually a failed
state) can occur, inductive methods can be applied to determine what system states (usually
failed states) are possible. Induction methods play an important role in risk and reliability
analysis, particularly in the development of accident scenarios and in ensuring completeness.
Inductive methods are described in the next section and in Chapter 9 and compared to FTA in
Section 2.4.

2.3 Inductive Methods

Induction involves reasoning from individual cases to a general conclusion. If, in the
consideration of a certain system, a particular fault or initiating condition is postulated and an
attempt to ascertain the effect of that fault or condition on system operation is made, an inductive
system analysis is being conducted. Thus, an inquiry might be made into how the loss of some
specified control surface affects the flight of an aircraft or into how the elimination of some item
in the budget affects the overall operation of a school district.

In everyday language the inductive techniques provide answers to the generic question, “What
happens if…?” More formally, the process consists of assuming particular states for components,
generally failed states, and then analyzing the effects on the system. More generally, a given
initiating event is assumed, such as a pipe rupture, and the consequences of the event are
analyzed. This more general approach is used in event trees and event sequence diagrams, which
are discussed in Chapter 9.

Inductive approaches are also termed bottom-up approaches that start at the bottom, i.e., at the
failure initiators and basic event initiators, and then proceed upwards to determine the resulting
system effects of a given initiator. Inductive approaches thus start at a possible basic cause and
then analyze the resulting effects. A set of possible causes are analyzed for their effects.
Principal examples of inductive approaches are described below.

The “Parts Count” Approach

Probably the simplest and most conservative (i.e., pessimistic) assumption that can be made
about a system is that any single component failure will produce complete system failure. Under

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 2, System Logical Modeling Approaches 13

this assumption, obtaining an upper bound on the probability of system failure is especially
straightforward. All the components are listed along with their estimated probabilities of failure.
The individual component probabilities are then added and this sum provides an upper bound on
the probability of system failure. The failure probabilities can be failure rates, unreliabilities, or
unavailabilities depending on the particular application (these more specific terms will be
covered later).

For a particular system, the Parts Count technique can provide a very pessimistic estimate of the
system failure probability and the degree of pessimism is generally not quantifiable. The “Parts
Count” technique is conservative because if critical components exist, they often appear
redundantly, so that no single failure is actually catastrophic for the system. Furthermore, a
component can often depart from its normal operating mode in several different ways and these
failure modes will not, in general, all have an equally deleterious effect on system operation. If
the relevant failure modes for the system operation are not known then it is necessary to sum the
failure probabilities for all the possible failure modes. The parts count method is not discussed
further but has been introduced as the simplest inductive approach where every component
failure is assumed to cause system failure.

Failure Mode and Effect Analysis (FMEA)

Table 2-1 shows an FMEA constructed of a redundant system of amplifiers. In constructing the
table, it is recognized that amplifiers can fail in several ways and the first task is the
identification of these various failure modes. The two principal ones are "open" and "short," but
suppose that the analysis has also detected 28 other modes (e.g., weak signal, intermittent
ground, etc.). A short of any amplifier is one of the more critical failure modes inasmuch as it
will always cause a failure of the system. The FMEA table contains the following information:

(1) Component designation
(2) Failure probability (failure rates or unavailabilities are some of the specific

characteristics used)
(3) Component failure modes
(4) Percent of total failures attributable to each mode
(5) Effects on overall system, classified into various categories (the two simplest

categories are “critical” and “non-critical”).

Based on prior experience with this type of amplifier, it is estimated that 90% of amplifier
failures can be attributed to the “open” mode, 5% of them to the “short” mode, and the balance
of 5% to the “other” modes. It is known that whenever either amplifier fails shorted, the system
fails so X's are placed in the "Critical" column for these modes; “Critical” thus means that the
single failure causes system failure. On the other hand, when either amplifier fails open, there is
no effect on the system from the single failure because of the parallel configuration. What is the
criticality of the other 28 failure modes? This example is conservative in that all the other failure
modes are considered to be critical, i.e., the occurrence of any one causes system failure. The

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 2, System Logical Modeling Approaches 14

numbers shown in the Critical column are obtained from multiplying the appropriate percentage
in Column 4 by 1×10-3 from Column 2.∗

Table 2-1. Redundant Amplifier Analysis

1 2 3 4
5

Effects

Component
Failure

Probability
Failure
Mode

% Failures
by Mode

Critical Non-Critical

A

B

1×10-3

1×10-3

Open
Short

Other

Open
Short

Other

90
5

5

90
5

5

X
(5×10-5)

X
(5×10-5)

X
(5×10-5)

X
(5×10-5)

X

X

Based on the table, the probability of system failure from single causes can be more realistically
calculated, considering now only those failure modes that are critical. Adding up the critical
column, Column 5, the probability of system failure = 5 × 10-5 + 5 × 10-5 + 5 × 10-5 + 5 × 10-5 =
2 × 10-4 is obtained. This is a less conservative result compared to 2 × 10-3 obtained from the
parts count method where the critical failure modes were not separated. The difference between
the two system results can be large, i.e., an order of magnitude or more, as in this example, if the
critical failure modes are a small percentage of the total failure mode (e.g., 10% or less).

FMEA (and its variants) can identify, with reasonable certainty, those component failures having
“non-critical” effects, but the number of possible component failure modes that can realistically
be considered is limited. Conservatism dictates that unspecified failure modes and questionable
effects be deemed “critical” (as in the previous example). The objectives of the analysis are to
identify single failure modes and to quantify these modes; the analysis needs be no more
elaborate than is necessary for these objectives.

Failure Mode Effect and Criticality Analysis (FMECA)

Failure Mode Effect and Criticality Analysis (FMECA), is essentially similar to a Failure Mode
and Effects Analysis in which the criticality of the failure is analyzed in greater detail, and
assurances and controls are described for limiting the likelihood of such failures. Although
FMECA is not an optimal method for detecting hazards, it is frequently used in the course of a

∗ The notation 1×10-3 is scientific notation and describes 0.001, where the decimal is moved over three places to the
left of 1.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 2, System Logical Modeling Approaches 15

system safety analysis. The four fundamental facets of such an approach are (1) Fault
Identification, (2) Potential Effects of the Fault, (3) Existing or Projected Compensation and/or
Control, and (4) Summary of Findings. These four facets generally appear as column headings
in an FMECA layout. Column 1 identifies the possible hazardous condition. Column 2 explains
why this condition is a problem. Column 3 describes what has been done to compensate for or to
control the condition. Finally, Column 4 states whether the situation is under control or whether
further steps should be taken.

At this point the reader should be warned of a most hazardous pitfall that is present to a greater
or lesser extent in all these inductive techniques: the potential of mistaking form for substance.
If the project becomes simply a matter of filling out forms instead of conducting a proper
analysis, the exercise will be completely futile. For this reason it might be better for the analysis
not to be restricted to any prepared formalism. Another point: if the system is at all complex, it
is foolhardy to imagine that a single analyst can conduct a correct and comprehensive survey of
all system faults and their effects on the system. These techniques call for a well-coordinated
team approach. Moreover, FMEAS and FMECAs analyze single component faults and their
system effects and do not consider combinations of component faults.

Preliminary Hazard Analysis (PHA)

The techniques described so far have been, for the most part, system oriented, i.e., the effects are
faults on the system operation. The subject of this section, Preliminary Hazard Analysis (PHA),
is a method for assessing the potential hazards posed, to plant personnel and other humans, by
the system.

The objectives of a PHA are to identify potential hazardous conditions inherent within the
system and to determine the significance or criticality of potential accidents that might arise. A
PHA study should be conducted as early in the product development stage as possible. This will
permit the early development of design and procedural safety requirements for controlling these
hazardous conditions, thus eliminating costly design changes later on.

The first step in a PHA is to identify potentially hazardous elements or components within the
system. This process is facilitated by engineering experience, the exercise of engineering
judgment, and the use of numerous checklists that have been developed from time to time. The
second step in a PHA is the identification of those events that could possibly transform specific
hazardous conditions into potential accidents. Then the seriousness of these potential accidents
is assessed to determine whether preventive measures should be taken.

Various columnar formats have been developed to facilitate the PHA process. Perhaps the
simplest is:

Column (1) Component/subsystem and hazard modes
Column (2) Possible effects
Column (3) Compensation and control
Column (4) Findings and remarks

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 2, System Logical Modeling Approaches 16

Fault Hazard Analysis (FHA)

Another method, Fault Hazard Analysis (FHA), was developed as a special purpose tool for use
on projects involving many organizations, one of which is supposed to act as integrator. This
technique is especially valuable for detecting faults that cross organizational interfaces. Even
though FHA is generally not used now per se, FHA concepts and approaches are used in certain
extended FMEAs and FMECAs. The FHA approach considers the following basic causes and
effects, which can be arranged in columns and which characterize this form of inductive
approach.

Column (1) Component identification
Column (2) Failure probability
Column (3) Failure modes (identify all possible modes)
Column (4) Percent failures by mode
Column (5) Effect of failure (traced up to some relevant interface)
Column (6) Identification of upstream component that could command or initiate the fault in

question
Column (7) Factors that could cause secondary failures (including threshold levels). This

column should contain a listing of those operational or environmental variables to
which the component is sensitive.

Column (8) Remarks

What is different for FHA is the consideration of the extra information given in Columns 6 and
7. Column 6 identifies possible command or interface failures. Column 7 identifies secondary
failures that are failures outside the design envelope. As will become apparent in later chapters,
Columns 6 and 7 have special significance for the fault tree analyst.

Double Failure Matrix (DFM)

The previous techniques concerned themselves with the effects of single failures. An inductive
technique that also considers the effects of double failures is the Double Failure Matrix (DFM);
its use is feasible systems with small numbers of redundant components. The DFM approach is
useful to discuss since it provides an extension of inductive approaches from single failure
causes to multiple failure causes. This is a significant enhancement to FMEA and FMECA
approaches. To more effectively apply the DFM approach faults, including multiple faults, are
first categorized according to the severity of the system effect. A basic categorization that
originated in MIL STD 882 and that is still used is shown in Table 2-2.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 2, System Logical Modeling Approaches 17

Table 2-2. Fault Severity Categories and Corresponding System Effects

Fault Category Effect on System

I
II
III
IV

Negligible
Marginal
Critical

Catastrophic

More complete definitions of the system effects are:

(I) Negligible−loss of function that has no effect on system.
(II) Marginal-this fault will degrade the system to some extent but will not cause the

system to be unavailable; for example, the loss of one of two redundant pumps,
either of which can perform a required function.

(III) Critical-this fault will completely degrade system performance; for example, the
loss of a component which renders a safety system unavailable.

(IV) Catastrophic-this fault will produce severe consequences which can involve injuries
or fatalities; for example, catastrophic pressure vessel failure.

The categorization will depend on the conditions assumed to exist previously, and the
categorizations can change as the assumed conditions change. For example, if one pump is
assumed failed, then the failure of a second redundant pump is a critical failure.

The above fault categorizations can be refined in many ways. For example, six fault categories
are shown in Table 2-3. These fault categories were originally used in the NERVA project but
have been used in more recent times with slight modifications

Table 2-3. Extended Fault Severity Categories

Fault Category Effect on system
I

IIA

IIB

IIC

III

IV

Negligible

A second fault event causes a transition into Category III
(Critical)

A second fault event causes a transition into Category IV
(Catastrophic)

A system safety problem whose effect depends upon the situation (e.g.,
the failure of all backup onsite power sources, which is no problem as
long as primary, offsite power service remains on)

A critical failure and mission must be aborted

A catastrophic failure

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 2, System Logical Modeling Approaches 18

To illustrate the application of DFM, consider the simple subsystem shown in Figure 2-3. In this
figure, the block valves can operate only as either fully open or fully closed, whereas the control
valves are proportional valves which may be partially open or partially closed.

FUEL SUPPLY MOTOR

BVA

BVB

CVA

CVB

BLOCK VALVE A CONTROL VALVE A

BLOCK VALVE B CONTROL VALVE B

Figure 2-3. Fuel System Schematic

Let two fault states for this system be defined and categorized as follows:

Fault State Category

No flow when needed IV

Flow cannot be shut off III

All possible component failures and their fault categories are now considered. For instance,
Block Valve A (BVA) failed open is identified as Category IIA because, if Control Valve A
(CVA) is also failed open, Category III results. BVA failed closed is identified as Category IIB
because, if either BVB or CVB is also failed closed, Category IV results. This type of analysis is
conveniently systematized in the Double Failure Matrix shown in Table 2-4.

For illustrative purposes the entire matrix has been filled in; for a first-order analysis the concern
would be only with the main diagonal terms, to wit, the single failure states. Note that if BVA is
failed open, there is only one way in which a second failure can cascade into Category III;
namely, CVA must be failed open too. In contrast, if BVA is failed closed, Category IV can
result if either BVB or CVB is also failed closed, which is why "Two Ways" is given in Table 2-
4. Similar considerations apply to the single failures of CVA, BVB and CVB and this important
additional information has been displayed in the principal diagonal cells of the matrix.

Now concentrating only on single failures, a hazard category count is conducted as the following
table shows:

Number of Ways
Hazard Category of Occurring

IIA 4
IIB 8

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 2, System Logical Modeling Approaches 19

Table 2-4. Fuel System Double Failure Matrix

BVA CVA BVB CVB
Open Closed Open Closed Open Closed Open Closed

Open
(One
Way)
IIA

III IIB IIA IIA or
IIB IIA IIA

BVA

Closed
(Two
Ways)

IIB
IIB IIB IIA or

IIB IV IIA or
IIB IV

Open III IIB
(One
Way)
IIA

IIA IIA or
IIB IIA IIA or

IIB
CVA

Closed IIB IIB
(Two
Ways)

IIB
IIA IV IIA or

IIB IV

Open IIA IIA or
IIB IIA IIA or

IIB

(One
Way)
IIA

III IIB

BVB

Closed IIA or
IIB IV IIA or

IIB IV
(Two
Ways)

IIB
IIB IIB

Open IIA IIA or
IIB IIA IIA or

IIB III IIB
(One
Way)
IIACVB

Closed IIA or
IIB IV IIA or

IIB IV IIB IIB
(Two
Ways)

IIB

How can this information be used? One application would be a description and subsequent
review of how these hazard categories are controlled or are insured against. Another application
would be a comparison between the configuration of valves shown in Figure 2-2 and an
alternative design. The DFM is a useful inductive approach for redundancies but is limited in its
capability in being able to handle small combinations, especially double failures, and only a
limited number of combinations can be assessed. Software allows more combinations and
multiple failures beyond two to be assessed. However constraints still must be placed on the
combinations considered.

Reliability Block Diagram (RBD)

A reliability block diagram is an inductive model wherein a system is divided into blocks that
represent distinct elements such as components or subsystems. These elemental blocks are then
combined according to system-success pathways. RBDs are generally used to represent active
elements in a system, in a manner that allows an exhaustive search for and identification of all
pathways for success. Dependencies among elements can be explicitly addressed.

Initially developed top-level RBDs can be successively decomposed until the desired level of
detail is obtained. Alternately, series components representing system trains in detailed RBDs
can be logically combined, either directly or through the use of FTs, into a supercomponent that
is then linked to other supercomponents to form a summary model of a system. Such a
representation can sometimes result in a more transparent analysis.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 2, System Logical Modeling Approaches 20

An example RBD for the fuel system depicted in Figure 2-3 is shown in Figure 2-4. Separate
blocks representing each system element (fuel supply, block valves, control valves and motor)
are structurally combined to represent both potential flow paths through the system. The model
is solved by enumerating the different success paths through the system and then using the rules
of Boolean algebra to continue the blocks into an overall representation of system success.

FUEL
SUPPLY MOTOR

BLOCK
VALVE A

BLOCK
VALVE B

CONTROL
VALVE A

CONTROL
VALVE B

Figure 2-4. Reliability Block Diagram of a Fuel System.

Software exists to convert RBDs into FTAs and vice versa. While these conversions result in
logically equivalent models, the logical representation in the conversion may not be as clear as in
the original model.

2.4 Comparison of FTA with Inductive Methods

The basic difference between FTA and inductive methods is the direction of the analysis. A
FTA starts with the undesired event and traces backward to the necessary and sufficient causes.
The fault tree ends with the initiating basic events and failures that are identified as the primary
causes. An inductive approach starts with an initiating cause and traces forward the resulting
consequences. This forward stepping is repeated for different selected initiating causes. The end
consequences can vary depending on the initiating cause. FTA is thus the appropriate analysis to
carry out if a given undesired event is defined and the goal is to determine its basic causes.

Inductive analysis is the appropriate analysis to carry out if a given set of initiating causes are
identified and the goal is to determine the resulting consequences. A PRA uses both inductive
and deductive approaches. Initiating events are typically identified using a deductive approach
called a Master Logic Diagram (MLD). This concept is described in Reference 1. For initiating
events that can progress to multiple failure states that must be separately tracked (i.e., Space
Shuttle LOV), PRA uses an inductive tool such as event trees not only to determine the resulting
consequences, but also to enumerate all possible accident scenarios. A system analysis generally
evaluates the causes of a defined undesirable system event, such as system failure. Hence, FTA
is the appropriate analysis tool for a system analysis.∗

∗ It is also important to note that, in general, performing an FTA alone should not be mistakenly perceived as an
alternative to or substitute for a complete PRA. In particular, a complete and scenario-based PRA requires more
than just a straight forward FTA.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 2, System Logical Modeling Approaches 21

In general, both deductive and inductive approaches must be employed to get a complete set of
accident sequences. The deductive approach has the benefit of focusing the analysis on the
undesired event while the inductive approach is useful in assuring that the analysis is broad
enough to encompass all possible scenarios.

There are of course overlaps between FTA and inductive analysis. As discussed, fault trees are
used in a PRA to analyze specific system failures in the event sequences. Multiple fault trees can
be, and often are, constructed for different undesired events to evaluate a spectrum of
consequences. In these applications, the basic difference between FTA and inductive analysis
remains in the direction of the analysis, the FTA as a backward analysis and the inductive
analysis as a forward analysis.

2.5 References

1. Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners,
NASA, Version 1.1, August 2002.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 3, Fault Tree Analysis 22

3. Fault Tree Analysis

3.1 Steps in Carrying Out a Fault Tree Analysis

A successful FTA requires the following steps be carried out:

1. Identify the objective for the FTA.
2. Define the top event of the FT.
3. Define the scope of the FTA.
4. Define the resolution of the FTA.
5. Define ground rules for the FTA.
6. Construct the FT.
7. Evaluate the FT.
8. Interpret and present the results.

The first five steps involve the problem formulation for an FTA. The remaining steps involve the
actual construction of the FT, the evaluation of the FT, and the interpretation of the FT results.
While most of the steps are performed sequentially, steps 3-5 can proceed concurrently. It is not
uncommon for steps 4 and 5 to be modified during steps 6 and 7. The interrelationship of the
eight steps are shown in Figure 3-1. The feedback is indicated in the figure.

Identify FTA
Objective

Define FT
Top Event

Define FTA
Scope

Define FTA
Resolution

Define FTA
Ground Rules

Construct
FT

Evaluate
FT

Interpret/
Present
Results

Figure 3-1. Fault Tree Analysis Steps.

The first step for a successful FTA is to define the objective of the FTA. This may seem obvious;
however, there have been many cases where a FTA is performed, but the analysis does not
satisfy the objective of the decision maker or manager who commissioned it. To be successful
the objective should be phrased in terms of a failure of the system to be analyzed. For example if
the general objective is to evaluate different designs for a mission then the particular failure that
characterizes mission failure and that will be analyzed to evaluate the designs needs to be
identified.

Once the objective is defined in this way then the top event of the FT is also defined (Step 2).
The top event of the FT is the event for which the failure causes will be resolved and the failure
probability determined. The top event defines the failure mode of the system that will be

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 3, Fault Tree Analysis 23

analyzed. An example would be the benign shutdown of an engine. Sometimes the objective
may entail defining and analyzing more than one failure. In this case separate top events are then
defined. In particular, for a given mission there may be several objectives and the resulting fault
tree might be very different depending on the particular objective chosen for the analysis. For
example, for a manned launcher the objective might be loss of vehicle (LOV), loss of crew
(LOC) or loss of mission (LOM). For an unmanned Mars sample return mission the objective
might be sample containment assurance (CA) or mission success (MS). In each case the
resulting fault trees would likely be different even for the same mission. If the mission has
different phases, then a separate top event for each phase may need to be defined. Phased
mission analysis will be discussed in a subsequent section.

In Step 3, the scope of the analysis is defined. The scope of the FTA indicates which of the
failures and contributors will be included and which will not be included. The scope of the FTA
also includes the particular design version and historical time period relevant to the system that
will be analyzed. Finally, the scope includes the boundary conditions for the analysis. The
boundary conditions include the initial states of the components and the assumed inputs to the
system. The FT represents a snapshot of the system at a given time for a given configuration and
boundary. For example, assume the failure of a flight control system is being analyzed. In
defining the scope, the version of the system to be analyzed is identified, the modes of operation
defined, the component failures to be considered are indicated, and the interfaces to system (e.g.,
support systems, actuation signals) that will be modeled for their failures or that will be assumed
to not fail are identified.

In Step 4 of the process, the resolution of the FTA is defined. The resolution is the level of detail
to which the failure causes for the top event will be developed. If the top event is a functional
failure of the system, such as failure to operate or inadvertent shutdown, then the top event is
generally resolved to the major components in the systems. Examples of major components are
valves, pumps, and control modules. If the top event is a phenomenological failure such as a
catastrophic explosion of an engine then the resolution is the level of detail to which the causes
of the explosion will be modeled. The development of a quantitative model is based on the need
to get the best possible estimate for the top event probability, considering the data and other
information that are available. Fault trees are developed to a level of detail where the best failure
probability data are available. Further resolution of the system is necessary when decisions
about subcomponents or support systems are being made, or when an event cannot be shown to
be independent of others in the analysis (e.g., a system that has actuation signals or power in
common with other systems). The FT can, and often is, developed to a level of detail that is
below the level where data is available to estimate the basic event probabilities or to where the
risk discrimination no longer matters. This is often unnecessary. The FTs that will be illustrated
in later sections demonstrate resolution levels for different types of systems and top events.

In Step 5 any ground rules for the FTA are defined. These ground rules include the procedure
and nomenclature by which events and gates are named in the FT. The naming scheme used is
very important in creating an understandable FT. Examples of naming schemes are given for the
FTs that will be illustrated. Ground rules can also be given for the manner in which specific
failures are modeled in the FT. These modeling ground rules are useful in providing consistency
among different FTs especially when different individuals are developing them. The modeling
ground rules can include the manner in which specific component failures, human errors and

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 3, Fault Tree Analysis 24

common cause failures are to be modeled. In later sections some of the modeling ground rules
that can be used will be described. The FTs that will be presented will also illustrate some
modeling ground rules that have been applied.

Step 6 involves the actual construction of the FT. The subsequent sections describe in detail the
thinking and logic that is involved in constructing the fault tree from the system schematics and
descriptions. The symbols that are used in the fault tree to represent the relationships between
events are also described.

Step 7 involves the evaluation of the FT. The evaluation includes both a qualitative and
quantitative evaluation. The qualitative evaluation provides information on the minimal cut sets
for the top event. Success sets may also be identified that guarantee prevention of the top event.
The nature of the basic events and the number of basic events in the combined sets give
important information about the top event occurrence. Cut sets are usually sorted by cut set
order (the number of events in a cut set) to provide information on the combinations of basic
events that can result in the top event. The quantitative evaluation produces not only the
probability of the top event but also the dominant cut sets that contribute to the top event
probability, as well as quantitative importance of each basic event contributing to the top event.
Cut sets in this case are sorted by probability, and low probability cut sets are truncated from the
analysis. (Sometimes the top event probability is calculated without solving for cut sets when
calculational efficiency is required.) Different quantitative importances are determined for
different applications. Sensitivity studies and uncertainty evaluations provide further key
information.

Finally, Step 8 involves the interpretation and presentation of the results. Emphasis is placed
upon the interpretation and not simply on the presentation. Many a FTA has failed to have
significant impact because the results were simply documented in a report. The results must be
interpreted to provide tangible implications, especially concerning the potential impact upon the
objective. If a decision maker or manager is given only a set of numerical values and a handful
of jargon then the analysis may have little impact and will likely dissuade managers from
attempting a future FTA!

3.2 Basic Paradigm in Constructing a Fault Tree

The basic paradigm in constructing a fault tree is “think small”, or more accurately “think
myopically.” For each event that is analyzed, the necessary and sufficient immediate events (i.e.,
the most closely related events) that result in the event are identified. The key phrase is “the
necessary and sufficient immediate events.” The analysis doesn’t jump to the basic causes of the
event. Instead, a small step is taken and the immediate events that result in the event are
identified. This taking of small steps backwards assures that all of the relationships and primary
causes will be uncovered. This smallest stepping also provides the analyst with the insight into
the relationships that are necessary and sufficient for the occurrence of the top event of the fault
tree. This backward stepping ends with the basic causes identified that constitute the resolution
of the analysis.

Subsequent sections of this handbook will describe the backward, immediate stepping involved
in constructing a fault tree. However, a simple example will illustrate the paradigm. Consider

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 3, Fault Tree Analysis 25

the situation where no water flows from a faucet. The immediate causes of this are not that the
water company has turned off the water or that water line outside the home has ruptured
(although these may eventually be the primary causes), the immediate causes are either that the
faucet is failed (i.e., plugged) or that no water is being supplied to the faucet. If the faucet is
checked and found to be operable then the water line to the faucet is checked to see if it is
plugged or ruptured. If it is not then the next obstacle in the line, such as an upstream valve, is
checked. If no water is flowing from the valve then the immediate causes are that the valve is
failed or no water is being supplied to the valve. This backward immediate stepping is carried
out until the primary cause or causes are identified. This thought process illustrates the paradigm
of a fault tree analysis.

3.3 Boundaries of the Analysis

As with any modeling technique the boundaries of a FTA must be defined. This should be
initially completed before the fault tree is constructed and must be documented. As the fault tree
is being constructed, the boundaries may change and these changes must be documented. If a
system failure is analyzed as the undesired event then defining the boundary of the analysis
involves defining the boundary of the system that will be analyzed. Interfaces to the system such
as power sources or water supplies are typically included in an analysis and are therefore within
the analysis boundary. If they are excluded from the analysis then their states need to be defined
in order to define the inputs to the components that are analyzed.

More generally, defining the boundaries of the analysis involves defining what is in the analysis
and what is out of the analysis. What is in the analysis will be those contributors and events
whose relationship to the top undesired event will be analyzed. What is out of the analysis will
be those contributors that are not analyzed. There will be contributors that are at the boundary in
the sense that they affect the contributors that are analyzed. The states of these interfaces need to
be defined in terms of what is assumed in terms of inputs to the contributors being analyzed.

It is good practice to always show the interfaces and their assumed states on the fault tree. This
serves to document the boundary of the analysis. As important, is it allows the interfaces to be
developed at a later stage or allows models of the interfaces that are developed elsewhere to be
joined to the fault tree.

3.4 Definition of the Top Event

The top event of the fault tree directs all of the rest of the analysis. If the top event is incorrectly
defined (and this happens a surprising number of times) then the FTA will be incorrect, which
can result in wrong decisions being made. There have been a surprising number of cases where
the top event of the fault tree was defined incorrectly because the analyst thought it was the
correct definition but did not check with the decision maker or correlate the definition with the
objectives of the program. This is why it is extremely important to define and understand the
objectives of the analysis and the problem to be solved. It is often fruitful to define several
potential top events and then decide the appropriate one or ones based on consultation with the
decision maker and others involved.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 3, Fault Tree Analysis 26

In defining the top event, it is important to define the event in terms of the specific criteria that
define the occurrence of the event. Generally to do this for a system failure, the system success
criteria are first defined. Then failure of the system is defined as the failure to satisfy the given
success criteria. For example if the success criteria for a given cooling system is that two of
three pumps start and operate for 12 hours then failure of the system is that two pumps fail to
start or fail to continue to operate for 12 hours. This serves as the top event definition. The
initial state of the system needs also to be defined as part of the top event or as part of the scope
of the analysis. These points can be summarized as follows:

1. To define the top event, define the criteria for the occurrence of the event. For a
system failure, first define the system success criteria.

2. Assure that the top event is consistent with the problem to be solved and the
objectives of the analysis.

3. If unsure of the top event, define alternative definitions that cover the top event and
assess the applicability of each one.

3.5 Faults vs. Failures

A distinction is made here between the rather specific word “failure” and the more general word
“fault.” As an example of the distinction, consider a relay. If the relay closes properly when a
voltage is applied across its terminals, this is a relay “success.” If, however, the relay fails to
close under these circumstances, this is a relay “failure.” Another possibility is that the relay
closes at the wrong time due to the improper functioning of some upstream component. This is
clearly not a relay failure; however, untimely relay operation may well cause the entire circuit to
enter into an unsatisfactory state. An occurrence like this is referred to here as a “fault” so that,
generally speaking, all failures are faults but not all faults are failures. Failures are basic
abnormal occurrences, whereas faults are “higher order” or more general events.

Consider next a bridge that is supposed to open occasionally to allow the passage of marine
traffic. Suddenly, without warning, one leaf of the bridge flips up a few feet because of a
command from the operator. This is not a bridge failure because it is supposed to open on
command and it does. However, the event is a fault because the bridge mechanism responded to
an untimely command issued by the bridge attendant. Thus, the attendant is part of this
“system,” and it was his untimely action that caused the bridge fault.

The proper definition of a fault requires the specification of not only what the undesirable
component state is but also when it occurs. These “what” and “when” specifications should be
part of the event descriptions which are entered into the fault tree.

A fault may be repairable or not, depending on the nature of the system. Under conditions of no
repair, a fault that occurs will continue to exist. In a repairable system a distinction must be
made between the occurrence of a fault and its continued existence. This distinction is of
importance only in fault tree quantification (to be discussed in a later chapter). From the
standpoint of constructing a fault tree only the phenomenon of occurrence is of concern.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 3, Fault Tree Analysis 27

3.6 Failure Mechanism, Failure Mode, and Failure Effect

The definitions of system, subsystem, and component are relative, and depend upon the context
of the analysis. A “system” is the overall structure being considered, which in turn consists of
subordinate structures called “subsystems,” which in turn are made up of basic building blocks
called “components.”

For example, in a fault tree of the Space Shuttle Solid Rocket Booster (SRB) the Thrust Vector
Control (TVC) may be referred to as a system. A subsystem is then, for example, the Auxiliary
Power Unit (APU) of the TVC. A component is then the Fuel Pump of the APU. In a particular
analysis, definitions of system, subsystem, and component are generally made for convenience in
order to provide a hierarchy for and boundaries to the problem. These definitions are also used in
the naming scheme developed for the fault tree. A key aspect of FTA is that the elements of a
system are viewed in terms of their function—artificial systems boundaries are largely ignored.

In constructing a fault tree, the basic concepts of failure effects, failure modes, and failure
mechanisms are important in determining the proper interrelationships among the events. When
failure effects are addressed, the concern is why a particular failure is of interest, i.e., what are its
effects (if any) on the system? When the failure modes are detailed, exactly what aspects of
component failure are of concern? When failure mechanisms are listed, how can a particular
failure mode occur? Failure mechanisms are thus the means by which failure modes occur,
which in turn are the effects of more basic causes. Alternatively, failure mechanisms produce
failure modes, which, in turn, have certain effects on system operation.

To illustrate these concepts consider a system that controls the flow of fuel to an engine. See
Table 3-1. The subsystem of interest consists of a valve and a valve actuator. Various events
that can occur can be classified from either the system, subsystem, or component perspective.
Some of the events are given in the left-hand column of the table below. For example, “valve
unable to open” is a mechanism of subsystem failure, a mode of valve failure, and an effect of
actuator failure.

Table 3-1. Fuel Flow System Failure Analysis

Description of Event System Subsystem Valve Actuator
No flow from subsystem
when required Mechanism Mode Effect

Valve unable to open Mechanism Mode Effect
Binding of actuator stem Mechanism Mode
Corrosion of actuator
stem Mechanism

To make the mechanism-mode-effect distinction clearer, consider the simple system of a
doorbell and its associated circuitry from the perspective of the system, the subsystem, and the
component designer. The system is shown schematically in Figure 3-2.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 3, Fault Tree Analysis 28

Figure 3-2. Doorbell and Associated Circuitry

From the viewpoint of the system designer, the system failure modes are:

(1) Doorbell fails to ring when button is pushed.
(2) Doorbell inadvertently rings when button is not pushed.
(3) Doorbell fails to stop ringing when push button is released.

If the system designer now sat down and made a list of the failure mechanisms causing the
failure modes of interest, a list would be generated that corresponded to the failure modes of the
subsystem designer who actually procures the switch, bell-solenoid unit, battery, and wires.
These are:

(1) Switch - (a) fails to make contact (including an inadvertent open)
(b) fails to break contact
(c) inadvertently closes

(2) Bell-solenoid unit-fails to ring when power is applied (includes failure to continue
ringing with power applied)

(3) Battery-low voltage condition
(4) Wire-open circuit or short circuit.

It is emphasized again that this last list constitutes failure mechanisms for the system designer
and failure modes for the subsystem designer. It is also a list of failure effects from the
standpoint of the component designer. Try to imagine what sort of list the component designer
would make. See Table 3-2.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 3, Fault Tree Analysis 29

Table 3-2. Doorbell Failure Analysis

Failure Effect Failure Mode Mechanism
Switch fails to
make contact

 Contacts broken

 High contact resistance

 Mechanical shock

 Corrosion

Bell-solenoid unit
fails to ring

 Clapper broken or not attached

 Clapper stuck

 Solenoid link broken or stuck

 Insufficient magneto-motive
force

 Shock

 Corrosion

 Open circuit in solenoid

 Short circuit in solenoid

Low voltage from
battery

 No electrolyte

 Positive pole broken

 Leak in casing

 Shock

The system failure modes constitute the various types of system failure. In fault tree terminology
these are the “top events” that the system analyst can consider. The analyst will select one of
these top events and investigate the immediate causes for its occurrence. These immediate
causes will be the immediate failure mechanisms for the particular system failure chosen, and
will constitute failures of certain subsystems. These latter failures will be failure modes for the
subsystem designer and will make up the second level of the fault tree. Proceeding, step by step,
in this “immediate cause” manner the component failures are arrived at. These components are
the basic causes or so-called “basic events” defined by the limit of resolution of the tree. Care
should be taken to identify cases where faults in other systems can cause failures of a
component, and that those faults are investigated.

From the component designer's point of view, all of the subsystem and system failures higher in
the tree represent failure effects; that is, they represent the results of particular component
failures. The component designer's failure modes would be the component failures themselves.
If the component designer were to construct a fault tree, any one of these component failures
could constitute a suitable top event. In other words, the component designer's "system" is the
component itself. The lower levels of the designer's fault tree would consist of the mechanisms
or causes for the component failure. These would include quality control effects, environmental
effects, etc., and in many cases would be beneath the limit of resolution of the system designer’s
fault tree, but need to be investigated none-the-less since they may be dominant source of overall
system failure. FTA is powerful because it looks beyond system boundaries and into the role of
a subsystem or component in the overall design.

3.7 Success Path Models

For the most part failures have been discussed and failures will remain the primary focus of this
document. However, instead of working in “failure space,” work can be performed equivalently
in “success space.” A brief example of the equivalence will be provided before the failure space
approach discussion is continued.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 3, Fault Tree Analysis 30

Consider the configuration of two valves in parallel shown in Figure 3-3. This system may be
analyzed either by a consideration of single failures (assuming the probabilities of multiple
failures are deemed negligible) or by a consideration of "success paths." Consider the former
case first.

The system requirements are as follows:

(1) The operation involves two phases;
(2) At least one valve must open for each phase;
(3) Both valves must be closed at the end of each phase.

The two relevant component failure modes are valve fails to open on demand and valve fails to
close on demand. For purposes of the analysis, assume the following probability values for each
of these failure modes:

P(valve does not open) = 1×10-4 for either phase
P(valve does not close) = 2×10-4 for either phase

where the symbol "P" denotes probability, and the valves are assumed to be identical.

1

2

Figure 3-3. Redundant Configuration of Two Valves

The single failure analysis of the system can be tabulated as in Table 3-3.

Table 3-3. Single Failure Analysis for Redundant Valve Configuration.

COMPONENT FAILURE
MODE

FAILURE
EFFECT

PROBABILITY OF
OCCURRENCE (F)

Valve #1

Valve #2

Failure to open
Failure to close

Failure to open
Failure to close

-
System Failure

-
System Failure

4×10-4 (either phase)

4×10-4 (either phase)

The system failure probability is 8×10-4.

Now consider whether this result can be duplicated by considering the possible successes. There
are three success paths which can be identified both notationally and schematically. If

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 3, Fault Tree Analysis 31

i
OR denotes “valve i opens successfully,” and i

CR denotes “valve i closes successfully,” and
P(Path i) denotes the success probability associated with the ith success path, the following
diagram can be developed:

Path 1: Both valves function properly for both cycles.

P(Path 1) = (RORC)4

Path 2: One valve fails open on the first cycle but the other valve functions properly for both
cycles.

P(Path 2) = 2(1-RO)(RORC)2

Path 3: One valve fails to open on the second cycle but the other valve functions properly for
both cycles.

P(Path 3) = 2(1-RO)(RORC)3

Numerically, system reliability is given by

RSYSTEM =(RORC)4 + 2(1-RO)(RORC)2 + 2(1-RO)(RORC)3

=0.99880027 + 0.00019988 + 0.00019982
=0.99919997 ≅ 1 - 8×10-4

which is essentially the same result as before. However, it should be observed that the failure
approach is considerably less laborious.

3.8 Cut Sets and Path Sets

When a fault tree is evaluated then cut sets, which can also be termed failure sets, are obtained.
A cut set is a set of basic events, which if they all occur, will result in the top event of the fault
tree occurring. Since the basic events are the bottom, primary events of the fault tree, a cut set
relates the basic events directly to the top event. A minimal cut set, informally termed a minimal

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 3, Fault Tree Analysis 32

failure set, is a smallest set of basic events, which if they all occur will result in the top event
occurring. The set is minimal in that if any of the events do not occur then the top event will not
occur by this combination of basic events. A given fault tree will have a finite number of unique
minimal cut sets. The minimal cut sets identify all the distinct ways the top event can occur in
terms of the basic events. A method for obtaining minimal cut sets and their uses will be
discussed in later chapters.

The logical complement of the cut sets are the path sets of a success tree. A path set, which can
also be termed a success set, is a set of events, which if they all do not occur, will result in the
top event not occurring. A path set thus relates the nonoccurrence of basic events to the top
event nonoccurrence. A minimal path set, informally termed a minimal success set, is a smallest
number of events, which if they do not occur, will result in the nonoccurrence of the top event.
The set is minimal in that if any of the events occur then the nonoccurrence of the top event
cannot be guaranteed by this set of events. The minimal path sets of a success tree identify all
the unique ways the top event can be assured to not occur.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 4, The Fault Tree Model 33

4. The Fault Tree Model

4.1 Symbology—The Building Blocks of the Fault Tree

A typical fault tree as shown in Figure 4-1 is composed of a number of symbols which are
described in detail in the remaining sections of this chapter and are summarized for the reader's
convenience in Table 4-1.

 OVERRUN OF ANY MOTOR
AFTER TEST IS

INITIATIED

G019

EMF APPLIED TO MOTOR
1 FOR t>60 SEC

G020

EMF APPLIED TO MOTOR
2 FOR t>60 SEC

G021

KS RELAY CONTACTS
REMAIN CLOSED FOR

T>60 SEC

G023

EMF REMAINS ON K5
COIL FOR T>60 SEC

G025

K3 RELAY CONTACTS
REMAIN CLOSED FOR

T>60 SEC
G027

TEST SIGNAL REMAINS
ON K3 COIL FOR t>60

SEC
B042

K5 RELAY CONTACTS
FAIL TO OPEN

B043

K1 RELAY CONTACTS
FAIL TO OPEN WHEN K3
CONTACTS CLOSED FOR

t>60 SEC

G028

KS RELAY CONTACTS
FAIL TO OPEN

B026

K2 RELAY CONTACT
FAILS TO OPEN WHEN K5
RELAY CONTACTS CLOSED

FOR T>60 SEC

G024

K2 RELAY CONTACTS
FAIL TO OPEN

B028

EMF NOT REMOVED FROM
K2 RELAY COIL WHEN K5
CONTACTS CLOSED FOR

t>60 SEC

G030

K1 RELAY CONTACTS
FAIL TO OPEN WHEN K5
CONTACTS CLOSED FOR

t>60 SEC

G031

EMF TO K1 COIL THRU
TIMER CIRCUIT WHEN K5
CONTACTS CLOSED FOR

t>60 SEC

G097

EMF NOT REMOVED FROM
K1 RELAY COIL WHEN K5
CONTACTS CLOSED FOR

t>60 SEC

G048

KT1 TIMER RESET

B050

KT2 TIMER CONTACTS
FAIL TO OPEN WHEN K5
CONTACTS CLOSED FOR

t>60 SEC

G090

KT2 TIMER CONTACTS
FAIL TO OPEN

B095

KT2 TIMER DOES NOT
"TIME OUT" DUE TO

IMPROPER INSTALLATION
OR SETTING

B096

KT3 TIMER RESET

B075

EMF TO K1 COIL THRU
S1 CONTACTS WHEN K5
CONTACTS CLOSED FOR

t>60 SEC
G098

S1 SWITCH
INASDVERTENTLY CLOSES

OR FAILS TO OPEN

B100

RESET SIGNAL
INADVERTENTLY APPLIED
OR NOT REMOVED FROM

SWITCH S1
B101

EMF TO K2 COIL THRU
S1, KT1, KT2 AND KT3

CONTACTS
B032

EMF APPLIED TO MOTOR
3 FOR T>60 SEC

G022

Figure 4-1. Typical Fault Tree

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 4, The Fault Tree Model 34

Table 4-1. Fault Tree Symbols

BASIC EVENT - A basic initiating fault requiring no further development

CONDITIONING EVENT - Specific conditions or restrictions that apply to
any logic gate (used primarily with PRIORITY AND and INHIBIT gates)

UNDEVELOPED EVENT - An event which is not further developed either
because it is o f insu ff ic ien t consequence or because in fo rm ation is
unavailable

HOUSE EVENT - An event which is normally expected to occur

PRIMARY EVENT SYMBOLS

GATE SYMBOLS

AND - Output fault occurs if all of the input faults occur

OR - Output fault occurs if a least one of the input faults occurs

EXCLUSIVE OR - Output fault occurs if exactly one of the input faults
occurs

PRIORITY AND - Output fault occurs if all of the input faults occur in a
specific sequence (the sequence is represented by a CONDITIONING
EVENT drawn to the right of the gate)

INH IB IT - O utpu t fau lt occurs if the (s ing le) input fau lt occurs in the
presence of an enabling condition (the enabling condition is represented
by a CONDTIONING EVENT drawn to the right of the gate)

TRANSFER SYMBOLS

TR A N S F E R IN - Ind ica tes tha t the t ree is deve loped fu r the r a t the
occurrence of the corresponding TRANSFER OUT (e.g., on another page)

TRANSFER OUT - Indicates that this portion of the tree must be attached
at the corresponding TRANSFER IN

n COMBINATION - Output fault occurs if n of the input faults occur

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 4, The Fault Tree Model 35

Gates

There are two basic types of fault tree gates, the OR-gate and the AND-gate. All other gates
(other than the special DFT gates described in Chapter 8) are special cases of these two basic
types. With one exception, gates are symbolized by a shield with a flat or curved base.

The OR-Gate

 gate description

gate identifier

The OR-gate is used to show that the output event occurs only if one or more of the input events
occur. There may be any number of input events to an OR-gate.

Figure 4-2 shows a typical two-input OR-gate with input events A and B and output event Q.
Event Q occurs if A occurs, B occurs, or both A and B occur.

OUTPUT Q

G001

INPUT A

B001

INPUT B

B002

Figure 4-2. The OR-Gate

Inputs to an OR-gate are restatements of the output but are more specifically defined as to cause
or to specific scenario. Figure 4-3 helps to clarify this point.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 4, The Fault Tree Model 36

 VALVE IS FAILED
CLOSED

G001

VALVE IS CLOSED DUE
TO HARDWARE FAILURE

B001

VALVE IS CLOSED DUE
TO HUMAN ERROR

B003

VALVE IS CLOSED DUE
TO TESTING

B002

Figure 4-3. Specific Example of the OR-Gate.

Note that the subevents in Figure 4-3 can be further developed; for instance, see Figure 4-4.

VALVE IS CLOSED DUE
TO HUMAN ERROR

G003

VALVE IS NOT OPENED
FROM LAST TEST

B004

VALVE IS
INADVERTENTLY CLOSED
DURING MAINTENANCE

B005

Figure 4-4. OR-Gate for Human Error

However, the event

VALVE IS
IN ADVERTEN TLY CLOSED
DURIN G M AIN TEN AN CE

B 0 0 5

is still a restatement of the output event of the first OR-gate

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 4, The Fault Tree Model 37

VALVE IS FAILED
CLOSED

G0 0 1

with regard to a specific cause.

The AND-Gate

The AND-gate is used to show that the output fault occurs only if all the input faults occur.
There may be any number of input faults to an AND-gate. Figure 4-5 shows a typical two-input
AND-gate with input events Input A and Input B, and output event Output Q. Output Q occurs
only if Input A and Input B both occur.

OUTPUT Q

G001

INPUT A

B001

INPUT B

B002

Figure 4-5. The AND-Gate

In contrast to the OR-gate, causes can directly input an AND-gate; that is, the input faults
collectively represent the cause of the output fault. An example of an AND-gate is shown in
Figure 4-6. A failure of both fuel cells and of the battery will result in a failure of all power to
the DC bus.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 4, The Fault Tree Model 38

POWER UNAVAILABLE
TO DC BUS

G0 0 1

FUEL CELL 1 IS
FAILED

B0 0 1

FUEL CELL 2
IS FAILED

B0 0 3

BATTERY IS FAILED

B0 0 2

Figure 4-6. Specific Example of an AND-Gate

When describing the events input to an AND-gate, any dependencies must be incorporated in the
event definitions if the dependencies affect the system logic. Dependencies generally exist when
the failure “changes” the system. For example, when the first failure occurs (e.g., Input A of
Figure 4-5), the system may automatically switch in a standby unit. The second failure, Input B
of Figure 4-5, is now analyzed with the standby unit assumed to be in place. In this case, Input B
of Figure 4-5 would be more precisely defined as “Input B given the occurrence of A.”

The variant of the AND-gate shown in Figure 4-7 explicitly shows such dependencies and is
useful for those situations when the occurrence of one of the faults alters the operating modes
and/or stress levels in the system in a manner affecting the occurrence mechanism of the other
fault.

Q OCCURS

G001

A OCCURS AND THEN B
OCCURS

G002

A OCCURS

B001

B OCCURS GIVEN THE
OCCURRENCE OF A

B002

B OCCURS AND THEN A
OCCURS

G003

B OCCURS

B003

A OCCURS GIVEN THE
OCCURRENCE OF B

B004

Figure 4-7. AND-Gate Relationship with Dependency Explicitly Shown

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 4, The Fault Tree Model 39

That is, the subtree describing the mechanisms or antecedent causes of the event

A OCCURS

B001

will be different from the subtree describing the mechanisms for the event.

A OCCURS GIVEN THE
OCCURRENCE OF B

B004

For multiple inputs to an AND-gate with dependencies affecting system logic among the input
events, the “givens” must incorporate all preceding events.

The COMBINATION-Gate

n

The COMBINATION-gate, represented by a hexagon with a number at its center, is a modeling
convenience available in most software packages. The combination gate allows a user to specify
the number of failures within a group of inputs that will result in output from the gate. This gate
eliminates the need for an analyst to delineate all the required combinations of input events that
can cause in the output event for cases when fewer than the total number of inputs are required
(e.g., three of four inputs).

An example of the use of the COMBINATION-gate is shown in Figures 4-8 and 4-9. Figure 4-8
is a model, using only OR- and AND-gates, of a system in which the failure of two of three
trains will result in system failure. As can be seen, each combination of train failure must be
included in the FT. In Figure 4-9, the same failure logic is represented using the
COMBINATION-gate. In addition to modeling convenience, the COMBINATION-gate helps
eliminate errors that can result from the specification of multiple failure combinations.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 4, The Fault Tree Model 40

G001

TRAINS A AND B FAIL

G002

TRAIN A FAILS

B001

TRAIN B FAILS

B002

TRAINS A AND C FAIL

G003

TRAIN A FAILS

B001

TRAIN C FAILS

B003

TRAINS B AND C FAIL

G004

TRAIN B FAILS

B002

TRAIN C FAILS

B003

Q

Figure 4-8. Example of the COMBINATION-Gate (AND- and OR-Gate Model).

Q

G001

2

TRAIN A FAILS

B001

TRAIN B FAILS

B002

TRAIN C FAILS

B003

Figure 4-9. Example of the COMBINATION-Gate.

The INHIBIT-Gate

The INHIBIT-gate, represented by the hexagon, is a special case of the AND-gate. The output is
caused by a single input, but some qualifying condition must be satisfied before the input can
produce the output. The condition that must exist is the conditional input. A description of this
conditional input is spelled out within an elliptic event drawn to the right of the gate. Figure
4-10 shows a typical INHIBIT-gate with Input A, Conditional Input B and Output Q. Event Q
occurs only if Input A occurs under the condition specified by Input B.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 4, The Fault Tree Model 41

OUTPUT Q

G001

INPUT A

B002

CONDITIONAL INPUT B

B001

Figure 4-10. The INHIBIT-Gate

To clarify this concept, two examples are given below and are illustrated in Figure 4-11.

(a) Many chemical reactions go to completion only in the presence of a catalyst. The
catalyst does not participate in the reaction, but its presence is necessary.

(b) If the loss of resiliency in an O-ring constitutes an event of interest, such an event
can occur only when the temperature T is less than T(critical), the temperature at which the
material of which the O-ring is made is no longer pliable. In this case the output event would be
“O-ring Failure,” the input event would be “Existence of Low Temperature,” and the conditional
input would be “T < T(critical).”

 CHEMICAL REACTION
GOES TO COMPLETION

G001

ALL REAGENTS PRESENT

B002

CATALYST PRESENT

B001

O-RING FAILURE

G002

EXISTENCE OF
TEMPERATURE T

B004

T < T(cr it ical)

B003

Figure 4-11. Examples of the INHIBIT-Gate

Occasionally, especially in the investigation of secondary failures, another type of INHIBIT-gate
depicted in Figure 4-12 is used.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 4, The Fault Tree Model 42

OUTPUT Q

G101

CONDITION A

B002

CONDITION THAT Q
OCCURS GIVEN A

B001

Figure 4-12. An Alternative Type of INHIBIT-Gate

In Figure 4-12, condition A is the necessary, but not always sufficient, single cause of output Q;
i.e., for Q to occur we must have A, but just because A occurs it does not mean that Q follows
inevitably. The portion of time Q occurs when A occurs is given in the conditional input ellipse.

The gates we have described above are the ones most commonly used and are now standard in
the field of fault tree analysis. However, a few other special purpose gates are sometimes
encountered.

The EXCLUSIVE OR-gate

The EXCLUSIVE OR-gate is a special case of the OR-gate. In most FT modeling, the
EXCLUSIVE OR-gate is a two-input gate in which the output event occurs only if one of the
inputs occurs but not two1. Figure 4-13 depicts a typical EXCLUSIVE OR-gate.

1 Some FT modeling approaches recognize an EXCLUSIVE OR-gate with more than two inputs. In this situation,
the logic represented by the gate can be dependent on the application software and its intended use. In an
application associated with electronic logic circuits, for example, the output of an EXCLUSIVE OR-gate will occur
when an odd number of inputs occur (i.e., three inputs to a three-input gate).

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 4, The Fault Tree Model 43

Q

G001

A

B001

B

B002

Figure 4-13. The Exclusive OR-Gate

The exclusive OR differs from the usual or inclusive OR in that the situation where both input
events occur is precluded. Thus, the output event Q occurs if A occurs or B occurs, but not if
both A and B occur. As will be seen later, the quantitative difference between the inclusive and
exclusive OR-gates is generally so insignificant that the distinction is not usually necessary. In
those special instances where the distinction is significant, this difference can be accounted for in
the quantification phase.

The PRIORITY AND-gate

The PRIORITY AND-gate is a special case of the AND-gate in which the output event occurs
only if all input events occur in a specified ordered sequence. The sequence is usually shown
inside an ellipse drawn to the right of the gate. Figure 4-14 shows two alternative ways of
depicting a typical PRIORITY AND-gate with two inputs.

Q

G001

A

B001

B

B002

A BEFORE B

B003

Q

G002

A

B001

B

B002

Figure 4-14. The PRIORITY AND-Gate

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 4, The Fault Tree Model 44

In Figure 4-14, the output event Q occurs only if both input events A and B occur with A
occurring before B.

Transfer Symbols

TRANSFER IN TRANSFER OUT

The triangles are introduced as transfer symbols and are used as a matter of convenience to avoid
extensive duplication in a fault tree or to allow a large tree to be represented on a number or
smaller trees for clarity. A “transfer in” gate will link to its corresponding “transfer out.” This
“transfer out,” perhaps on another sheet of paper, will contain a further portion of the tree
describing input to the gate.

Basic Events

The basic events of a fault tree are those events, which, for one reason or another, have not been
further developed. These are the events for which probabilities will have to be provided if the
fault tree is to be used for computing the probability of the top event. There are four types of
basic events. These are:

The Primary Event

basic event description

basic event identifier

The circle describes a basic initiating fault event that requires no further development. In other
words, the circle signifies that the appropriate limit of resolution has been reached.

The Undeveloped Event

The diamond describes a specific fault event that is not further developed, either because the
event is of insufficient consequence or because information relevant to the event is unavailable.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 4, The Fault Tree Model 45

The Conditioning Event

The ellipse is used to record any conditions or restrictions that apply to any logic gate. It is used
primarily with the INHIBIT and PRIORITY AND-gates.

The House Event

The house is used to signify an event that is normally expected to occur: e.g., a phase change in a
dynamic system. Thus, the house symbol displays events that are not, of themselves, faults.

4.2 Component Fault Categories: Primary, Secondary, and Command

It is useful for the fault tree analyst to classify faults into three categories: primary, secondary
and command. A primary fault is any fault of a component that occurs in an environment for
which the component is qualified; e.g., a pressure tank, designed to withstand pressures up to and
including a pressure PO, ruptures at some pressure p ≤ PO because of a defective weld.

A secondary fault is any fault of a component that occurs in an environment for which it has not
been qualified. In other words, the component fails in a situation which exceeds the conditions
for which it was designed; e.g., a pressure tank, designed to withstand pressure up to and
including a pressure PO, ruptures under a pressure p>PO. Other types of secondary faults include
damage from micrometeoroid impact, failure due to loss of environmental control systems or
excessive vibration.

Because primary and secondary faults are generally component failures, they are usually called
primary and secondary failures. A command fault in contrast, involves the proper operation of a
component but at the wrong time or in the wrong place; e.g., an arming device in a warhead
closes too soon because of a premature or otherwise erroneous signal originating from some
upstream device. Another type of command fault is the failure of a component to operate due to
a loss of signal or control power.

Oftentimes, the analyst doesn’t think of these fault categories when constructing a FT.
Secondary failures may, for example, not be included under a tacit assumption that only primary
failures and design conditions are considered. However, there has been many a FT constructed

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 4, The Fault Tree Model 46

that inadvertently omitted one or more of these faults due to shortcut thinking. Even if the
analyst doesn’t explicitly use these categories, they serve as a useful checklist to assure that the
FT is complete in its coverage of the different types of faults.

4.3 Passive vs. Active Components

In most cases it is convenient to separate components into two types, passive and active (also
called quasi-static and dynamic). A passive component contributes in a more-or-less static
manner to the functioning of the system. Such a component may act as a transmitter of energy
from place to place (e.g., a wire or bus-bar carrying current or a steam line transmitting heat
energy), or it may act as a transmitter of loads (e.g., a structural member). To assess the
operation of a passive component, tests such as stress analysis, heat transfer studies, etc. are
performed. Further examples of passive components are pipes, bearings, journals, and welds.

An active component contributes in a more dynamic manner to the functioning of its parent
system by modifying system behavior in some way. Generally, such a component requires an
input signal or trigger for its output signal. In such cases the active component acts as a “transfer
function,” a term widely used in electrical and mathematical studies. If an active component
fails, there may be no output signal or there may be an incorrect output signal. A valve that
opens and closes, for example, modifies the system's fluid flow, and a switch has a similar effect
on the current in an electrical circuit. To assess the operation of an active component, parametric
studies of operating characteristics and studies of functional interrelationships are performed.

A passive component can be considered as the transmitter of a “signal.” The physical nature of
this “signal” may vary considerably; for example, it may be a current or force. A passive
component may also be thought of as the “mechanism” (e.g., a pipe) whereby the output of one
active component becomes the input to a second active component. The failure of a passive
component will result in the loss of transmission of its “signal.”

As an example, consider a postman (passive component) who transmits a signal (letter) from one
active component (sender) to another (receiver). The receiver will then respond in some way
(provide an output) as a result of the message (input) that has been received.

From a numerical reliability standpoint, an important difference between failures of active
components and failures of passive components is the difference in failure rates. The difference
in reliability between the two types of components is, quite commonly, two to three orders of
magnitude.

In the above discussion, the definitions of active and passive components apply to the primary
function performed by the component: failures of the component related to the failure of that
primary function. (For example, “passive” failure modes of active components, e.g., valve
rupture, might be considered if we attempted to classify specific failure modes according to the
“active” or “passive” definition.)

4.4 The “Immediate Cause” Concept

Returning to the perspective of the system analyst, the system under study is first defined (its
boundary is determined) and a particular system failure mode is selected for further analysis.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 4, The Fault Tree Model 47

The latter constitutes the top event of the fault tree. The analyst next determines the immediate,
necessary, and sufficient causes for the occurrence of this top event. It should be noted that these
are not the basic causes of the event but the immediate causes or immediate mechanisms for the
event. This is an extremely important point that will be clarified and illustrated in later
examples.

The immediate, necessary, and sufficient causes of the top event are now treated as sub-top
events and the analyst then proceeds to determine their immediate, necessary, and sufficient
causes. In so doing, the analyst is placed in the position of the subsystems analyst for whom the
failure mechanisms are the failure modes; that is, the sub-top events correspond to the top events
in the subsystem fault tree.

In this way the analyst proceeds down the tree continually transferring the point of view from
mechanism to mode, and continually approaching finer resolution in defining mechanisms and
modes, until ultimately, the limit of resolution of the tree is reached. This limit consists of basic
component failures of one sort or another, and the tree is now complete.

As an example of the application of the “immediate cause” concept, consider the simple system
in Figure 4-15.

A

B

C

D E

Figure 4-15. System Illustrating “Immediate Cause” Concept

This system is intended to operate in the following way: a signal to A triggers an output from A
which provides inputs to B and C. B and C then pass a signal to D which finally passes a signal
to E. A, B, C and D are dynamic subsystems. Furthermore, subsystem D needs an input signal
from either B or C or both to trigger its output to E. Thus there is redundancy in this portion of
the system.

The system of Figure 4-13 can be interpreted quite generally. For example, it could represent an
electrical system in which the subsystems are analog modules (e.g., comparators, amplifiers) it
could be a piping system in which A, B, C and D are valves; or it could represent a portion of the
“chain of command” in a corporation.

Consider as the top event the possible outcome “no signal to E,” and assume that the transmitting
devices (passive components) which pass the signals from one subsystem to another can be

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 4, The Fault Tree Model 48

neglected. This is tantamount to assigning a zero failure probability to the wires, pipes, or
command links.

A step-by-step analysis of the top event is begun. The immediate cause of the event, “no signal
to E,” is “no output from D.” The analyst should strongly resist the temptation to list the event,
“no input to D” as the immediate cause of “no signal to E.” In the determination of immediate
causes, one step should be taken at a time. The “immediate cause” concept is sometimes called
the “Think Small” Rule because of the methodical, one-step-at-a-time approach.

Now the sub-top event, “no output from D,” has been identified and it is next necessary to
determine its immediate cause or causes. There are two possibilities:

(1) “There is an input to D but no output from D.”
(2) “There is no input to D.”

Therefore, the sub-top event, “no output from D,” can arise from the union of events 1 or 2. (The
reader should note that if we had taken more than one step and had identified (improperly) the
cause of “no input to D,” then event 1 above would have been missed. In fact, the motivation for
considering immediate causes is now clear: it provides assurance that no fault event in the
sequence is overlooked.)

Now the immediate causes for the new mode failures, events 1 and 2 can be investigated. If the
limit of resolution is the subsystem level, then event 1 (which can be rephrased, “D fails to
perform its proper function due to some fault internal to D”) is not analyzed further and
constitutes a basic input to the tree. With respect to event 2, its immediate, necessary and
sufficient cause is “no output from B and no output from C,” which appears as an intersection of
two events, i.e.,

2 = 3 and 4

where

3 = “no output from B,” and
4 = “no output from C.”

As a matter of terminology, it is convenient to refer to events as “faults” if they are analyzed
further (e.g., event 2). However, an event such as 1 which represents a basic tree input and is not
analyzed further is referred to as a “failure.” This terminology is also fairly consistent with the
mechanistic definitions of “fault” and “failure” given previously.

The analysis is continued by focusing attention on events 3 and 4. As far as 3 is concerned,

3 = 5 or 6

where

5 = “input to B but no output from B,” and
6 = “no input to B.”

Event 5 can be readily identified as a failure (basic tree input). Event 6 is a fault which can be
analyzed further. Event 4 is dealt with in an analogous way.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 4, The Fault Tree Model 49

The further steps in the analysis of this system can now be easily supplied by the reader. The
analysis will be terminated when all the relevant basic tree inputs have been identified. In this
regard, the event "no input to A" is also considered to be a basic tree input.

Our analysis of the top event (“no input to E”) consequently produced a linkage of fault events
connected by “and” and “or” logic. The framework (or system model) on which this linkage is
“hung” is the fault tree. The next section provides the necessary details for connecting the fault
event linkage to its framework (fault tree).

4.5 Basic Rules for Fault Tree Construction

The construction of fault trees is a process that has evolved gradually over a period of about 50
years. In the beginning it was thought of as an art, but it was soon realized that successful trees
were best drawn in accordance with a set of basic rules. Observance of these rules helps to
ensure successful fault trees so that the process is now less of an art and more of a science. The
basic rules for successful fault tree analysis will now be examined.

Consider Figure 4-16. It is a simple fault tree or perhaps a part of a larger fault tree. Note that
none of the failure events have been “written in”; they have been designated Q, A, B, C, and D.

Q

G001

A

B001

B

G002

C

B003

D

B004

Figure 4-16. A Simple Fault Tree

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 4, The Fault Tree Model 50

Now, when a specific problem is considered it is necessary to describe exactly what such events
such as Q, A, B, C, D actually are. The proper procedure for doing this constitutes Ground Rule
1:

Write the statements that are entered in the event boxes as faults; state precisely
what the fault is and the conditions under which it occurs. Do not mix successes with
faults.

The “what-condition” describes the relevant failed (or operating) state of the component. The
“when-condition” describes the condition of the system—with respect to the component of
interest—that makes that particular state of existence of the component a fault.

Note that Ground Rule 1 may frequently require a fairly verbose statement. If this is the case, so
be it. The analyst is cautioned not to be afraid of wordy statements. Do not tailor the length of
your statement to the size of the box that you have drawn. If necessary, make the box bigger or
the font size smaller! (Modern FT software may limit the length of a statement. However,
allowable description lengths are usually sufficient to adequately describe an event.) It is
permissible to abbreviate words but resist the temptation to abbreviate ideas. Examples of fault
statements are:

(1) Normally closed relay contacts fail to open when EMF is applied to coil.
(2) Motor fails to start when power is applied.

The next step in the procedure is to determine the necessary and sufficient events that result in
the fault described by each boxed statement. A useful step in determining the next logic
structure to develop is to ask whether the fault is a “state of component” fault or whether it is a
“state of system” fault. A “state of component” fault is a fault that is localized to a given
component. A “state of system” fault is a fault that is not necessarily localized to a given
component, but may involve a system-level fault or the occurrence of multiple faults.

The “state of component” versus “state of system” fault terminology does not necessarily have to
be used by the analyst. However it provides a useful checklist or mnemonic. What is important
is the questioning of whether the fault is localized to a component or whether it can involve
system-level faults or multiple faults.

Using “state of component” and “state of system” as mnemonics leads to Ground Rule II:

If the answer to the question, “Is this fault a component failure?” is “Yes,” classify
the event as a “state of component fault.” If the answer is “No,” classify the event as
a “state of system fault.”

If the fault event is classified as “state of component,” add an OR-gate below the event and look
for primary, secondary and command failure modes. If the fault event is classified as “state of
system,” look for the minimum necessary and sufficient immediate cause or causes. A “state of
system” fault event may require an AND-gate, an OR-gate, an INHIBIT-gate, or possibly no gate
at all. As a general rule, when energy originates from a point outside the component, the event
may be classified as “state of system.”

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 4, The Fault Tree Model 51

To illustrate Ground Rule II, consider the simple motor-switch-battery circuit depicted in Figure
4-17.

Figure 4-17. Simple Motor-Switch-Battery System

The system can exist in two states: operating and standby. The following faults can be
identified and classified using Ground Rule II:

OPERATING STATE

FAULT CLASSIFICATION

Switch fails to close when
thumb pressure is applied.

State of component

Switch inadvertently opens
when thumb pressure is
applied

State of component

Motor fails to start when
power is applied to its
terminals.

State of component

Motor ceases to run with
power applied to terminals

State of component

STANDBY STATE

FAULT CLASSIFICATION

Switch inadvertently closes
with no thumb pressure
applied.

State of component

Motor inadvertently starts. State of system

In addition to the above ground rules, there are a number of other procedural statements that
have been developed over the years. The first of these is the No Miracles Rule:

If the normal functioning of a component propagates a fault sequence, then it is
assumed that the component functions normally.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 4, The Fault Tree Model 52

It might be discovered in the course of a system analysis that the propagation of a particular fault
sequence could be blocked by the miraculous and totally unexpected failure of some component.
The correct assumption to make is that the component functions normally, thus allowing the
passage of the fault sequence in question. However, if the normal functioning of a component
acts to block the propagation of a fault sequence, then that normal functioning must be defeated
by faults if the fault sequence is to continue up the tree. Another way of stating this is to say
that, if an AND situation exists in the system, the model must take it into account.

Two other procedural statements address the dangers of not being methodical and attempting to
shortcut the analysis process. The first is the Complete-the-Gate Rule:

All inputs to a particular gate should be completely defined before further analysis
of any one of them is undertaken.

The second is the No Gate-to-Gate Rule:

Gate inputs should be properly defined fault events, and gates should not be
directly connected to other gates.

The Complete-the-Gate Rule states that the fault tree should be developed in levels, and each
level should be completed before any consideration is given to a lower level. Concerning the
No-Gate-to-Gate Rule, a “shortcut” fault tree is shown in Figure 4-18. Note that current FT
software often includes a description box as part of the gate object, which facilitates a clear
development of the fault tree logic and prevents the gate-to-gate connections shown in Figure
4-18.

Q

G001

A

G002

X

B003

Y

B004

Z

B005

B

B002

Figure 4-18. A Short-Cut Fault Tree

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 4, The Fault Tree Model 53

The “gate-to-gate” connection is indicative of sloppy analysis. When a fault tree is being
constructed, the gate-to-gate shortcuts may lead to confusion and may demonstrate that the
analyst has an incomplete understanding of the system. A fault tree can be successful only if the
analyst has a clear and complete understanding of the system to be modeled.

4.6 State of System Versus State of Component Faults

As indicated, as a mnemonic it is useful to ask whether a fault is a “state of system” fault or a
“state of component” fault. A “state of component” fault is a fault is associated uniquely with
one component. A “state of system” fault is a fault not uniquely associated with one component.
The immediate cause of a “state of system” fault involves more than one component. An
example of a “state of component” fault is a valve failure to open. The valve may fail to open
because of an inherent valve failure or because it did not receive an open signal. Both these
faults uniquely involve the valve.

An example of a “state of system” fault is no flow from a redundant pair of pumps. The faults
involve two pumps. The analysis may find that a primary cause is no water supply to the pumps
from a single tank. However, the immediate cause of no water supply is no supply from either of
two pumps. Another example of a “state of system” fault is a pump inadvertently starting. The
pump did not have the fault. It was the inadvertent application of power to the pump that was the
fault. Therefore it is a “state of system” fault.

A “state of component” fault is always modeled as an OR gate or a primary event. The example
above of the valve failing to open is modeled as an OR gate with the primary event of valve
failure as one input and failure of the signal to the valve as the other input. An example of a
“state of component” fault that is a primary event “valve failed closed.” There is no signal to the
valve and the normal position of the valve is open. The valve failing closed could be due to an
internal blockage or failure, for example.

A “state of system” fault is modeled with the type of gate that is applicable. For example, for the
redundant pump example above, if both pumps are needed then the gate is an OR gate. If either
pump is sufficient then the “state of system” fault is modeled with an AND gate.

4.7 Depth to Which a Fault Tree Should be Constructed

Even though this topic is included in other discussions it is useful to highlight it here. The depth
to which a fault tree is constructed is important since it determines how meaningful the end result
is. There have been more cases of the fault trees being developed to too great a depth than not
enough depth. When the fault tree is developed to too great a depth then not only is this a waste
of effort but it introduces additional uncertainties and obfuscation into the analysis.

The general principal is that the fault tree should be developed to the necessary depth to identify
functional dependencies and to a depth that is consistent with the data available and the
objectives of the analysis. Developing the fault tree to greater depth loses cohesiveness and
structure. For example, a valve can be decomposed into over one hundred parts. Each part
would show up in the results. It would be difficult to synthesize these part results to recognize
the valve as the entity. Furthermore, data is extremely sparse or does not exist at such deep
levels of definition so that quantification is impossible or at best bloated with uncertainty.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 4, The Fault Tree Model 54

Usually a fault tree of a system failure is developed to a major component or contributor level.
Examples of major components and contributors are valves, pumps, identifiable human errors,
and fire initiations. It is important to show the support interfaces such as power supplies and
cooling water supplies. These interfaces are what determine whether there are any hardwired
dependencies or functional dependencies among the components or major contributors.
Developing depth for depth sake is a misguided effort. However, developing a fault tree to the
depth necessary to identify dependencies and relationships among events is essential.

4.8 FMEAs Cannot be Combined to Make a Fault Tree

There have been attempts to combine FMEAs to form a fault tree. This cannot be done and is
bad practice. An FMEA connects given initiating causes to their end results or consequences.
These consequences are often failure of a system or component. Because the consequences are
the same as those that can appear in a fault tree, it might appear as if these consequences can be
linked, or be “patched,” to form a top event or an intermediate event in a fault tree. This cannot
be done and will produce an erroneous model.

The reason that this patching cannot be done is because a fault tree is a top down structured
model of the immediate, necessary and sufficient relationships among events that result in the
top event. The basic events are identified in an exhaustive manner that fit into this relationship.
Patching together FMEAs developed using a bottom up approach does not constitute a fault tree
analysis. There is no assurance, as in a fault tree, that the primary causes of the FMEAs have
been identified in a comprehensive and consistent manner as in a fault tree. This is because in an
FMEA the primary causes are selected without a defining logic structure. Moreover, an FMEA
does not show the relationships among the primary causes and their subsequent events. These
relationships can result in causes or events being redundant to others or being contained
(absorbed) in others. These relationships are accurately identified in a fault tree that is used to
determine the resulting basic events that are consistent and complete within this framework.

This is not meant to imply that an FMEA cannot be a useful tool in the construction of a fault
tree. In particular, an FMEA can be used to check a fault tree. If the root causes (or hazardous
initiating events) initially identified in an FMEA are systematically developed through FTA (i.e.,
through the use of an MLD), then the initial use of FMEA can help provide assurance of the
completeness of a given FT analysis objective. An FMEA can also serve as a tool for initial
evaluation to assist in deciding whether a fault tree need be constructed and to what detail.
However, patching the results of one or more FMEAs together to construct an FT is piecemeal
and does not produce a meaningful or useful model.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 5, Extended FTA 55

5. Extended FTA

The following sections describe FTA topics that are relevant in applications and
implementations. The first topic discusses the basic fault tree construction principle as applied to
systems in which fluid flows or to networks in which signals or power flows. Common cause
failure (CCF) modeling, human error modeling, modeling loops and feedback, modeling
phenomenological sequences, naming schemes for a fault tree, construction ground rules that
have been used in FTA, and methods available for validating a fault tree are then discussed.

5.1 Modeling Inadvertent Flow Versus No Flow: An Illustration of the Basic Fault Tree
Modeling Principle

The basic principle of fault tree modeling is to identify in each step the immediate, necessary,
and sufficient causes of the fault being analyzed. To better see how this principle is explicitly
applied, consider the modeling of inadvertent flow versus the modeling of no flow. The flow can
be a liquid flow, gaseous flow, or a general signal flow. The example is not only useful in
showing how the fault tree principle is applied but also to provide a basic modeling template that
can be applied in many actual fault tree models.

Consider the signal line below. Treat A and B as if they were valves and the fluid flowing as
water.

 A B

Source Receiver
1 2 3

The Source will then be the supply of water and the Receiver (or Receptacle) the receiving
component. Alternatively, consider a signal flow from the Source to the Receiver with
Components A and B as relays or other electrical components. The numbers in the figure identify
the flow lines.

The fault tree logic and models for no flow to the receiver (Figure 5-1) and for inadvertent flow
to the receiver (Figure 5-2) are given below. The reader should be able to identify a one-to-one
relationship between each step of the thought process logic and the corresponding step in the
tree. The equal sign in the logic equations is logical equality and can be read as “is equivalent
to” or “results from”. The analysis proceeds in stepwise fashion by backwards tracing the no
flow (or inadvertent flow) in a deductive manner from the receiver to the source. For each step
the question concerning what are the immediate, necessary, and sufficient conditions that result
in the event is asked. Finally, note the parallelism in the two models with AND gates replacing
OR gates for the inadvertent flow. This parallelism generally occurs.

Logic for No Flow to Receiver

1. No Flow to Receiver = No Flow in Line 3
2. No Flow in Line 3 = Component B Blocks Flow OR No Flow in Line 2
3. No Flow in Line 2 = Component A Blocks Flow OR No Flow in Line 1
4. No Flow in Line 1 = No Flow from Source

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 5, Extended FTA 56

 NO FLOW TO RECEIVER

G001

NO FLOW IN LINE 3

G002

NO FLOW IN LINE 2

G003

NO FLOW IN LINE 1

G004

NO FLOW FROM SOURCE

B003

COMPONENT A BLOCKS
FLOW

B002

COMPONENT B BLOCKS
FLOW

B001

Figure 5-1. Fault Tree Model for No Flow to Receiver.

Logic for Inadvertent Flow to Receiver

1. Inadvertent Flow to Receiver = Inadvertent Flow in Line 3
2. Inadvertent Flow in Line 3 = Component B Passes Flow AND Inadvertent Flow in

Line 2
3. Inadvertent Flow in Line 2 = Component A Passes Flow AND Inadvertent Flow in

Line 1
4. Inadvertent Flow in Line 1 = Inadvertent Flow from Source

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 5, Extended FTA 57

INADVERTENT FLOW TO
RECEIVER

G010

INADVERTENT FLOW IN
LINE 3

G011

INADVERTENT FLOW IN
LINE 2

G012

INADVERTENT FLOW IN
LINE 1

G013

INADVERTENT FLOW FROM
SOURCE

B012

COMPONENT A PASSES
FLOW

B011

COMPONENT B PASSES
FLOW

B010

Figure 5-2. Fault Tree Model for Inadvertent Flow to Receiver.

A comparison of the FTs in Figures 5-1 and 5-2 illustrates the importance of the top event
definition in establishing the structure of the subsequent fault tree. As shown in the fault tree in
Figure 5-2, multiple failures must occur to result in inadvertent flow to the receiver. However,
no flow to the receiver (Figure 5-1) can result from any one of three failures. The applicable
component failure modes are also different in the two FTs, which would require different data if
the trees were to be quantified.

5.2 Modeling of Common Cause Failures in a Fault Tree

Common cause failures (CCFs) are two or more component failures that occur at the same time
or occur within a relatively short interval and that are due to a common cause. "Component" is
used in a general sense here and can mean a component such as a valve or pump or a subsystem
such as a power supply. The common causes of the failures that are considered in a fault tree are
ones which are not explicitly modeled. Hence, common causes of this type generally do not
include a functional dependency of a component that is explicitly modeled even though loss of
the supporting function (such as power or cooling) could cause multiple failures. The common

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 5, Extended FTA 58

cause referred to here is an implicit dependency in the failures that can cause additional failures
to be triggered once one failure occurs. CCFs must be considered and modeled in a fault tree
because of their importance. Neglecting these CCF contributions can result in a significant
underestimate of the probability of the top event. The key in successfully including CCFs in a
fault tree is to identify the components that are susceptible to CCFs and then properly model
them in the fault tree.

Before CCFs can be modeled properly they must be understood. Examples of CCFs that can
occur and which have occurred are:

1. A common design or material deficiency that results in multiple components failing to
perform a function or to withstand a design environment. Examples include
undetected flaws in main engines and low material strengths in turbo pumps.

2. A common installation error that results in multiple components being misaligned or
being functionally inoperable. Examples include check valves being installed
backwards that remained undetected because they were not tested after installation.

3. A common maintenance error that results in multiple components being misaligned or
being functionally inoperable. Examples include multiple valves remaining in a
misaligned position after maintenance.

4. A common harsh environment such as vibration, radiation, moisture or contamination
that causes multiple components to fail.

If a particular common cause such as a maintenance error is explicitly modeled in the fault tree
then this particular common cause would not be modeled as a CCF. However, other CCF causes
would still need to be included in the fault tree. Generally CCFs are potentially important
contributors to the failure of redundant identical components, e.g., two identical motor operated
valves of the same specification, two identical turbo pumps of the same specification, etc.
Generally CCFs are more significant for active redundant components (motor operated valves,
etc.) and become more dominant contributors as the number of redundant components increases.

The importance of CCF contributions can be illustrated by a simple example, which is
representative of actual situations. Consider three redundant components that must all fail for
the system to fail. The components can be relief valves, hydraulic pumps, controllers, or any
other components providing a redundant function.

If each component has a failure probability p of 1 in a 1000, i.e. 1×10-3, then the probability of
the three components failing independently, Pindependent is

Pindependent = p3. (5.1)

That is

Pindependentt = 1×10-3
•1×10-3

•1×10-3 (5.2)

or

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 5, Extended FTA 59

Pindependent=1×10-9. (5.3)

Consequently, the probability of the three components failing independently is 1 in one billion.

Now consider the possibility of a common cause failing all three components. Assume that there
is a likelihood of 1%, i.e., 1×10-2, that a common cause occurs. This can be interpreted as saying
that in 1% of the failures there are common cause dependencies. This is the probability, for
example, that a flaw exists in multiple components due to a manufacturing deficiency where the
flaw has been missed by inspection. If the component fails from the deficiency then all the
components with this deficiency will fail. The probability of the three components failing due to
CCF, PCCF is calculated as

PCCF = 1×10-3
•1×10-2 (5.4)

or

PCCF = 1×10-5. (5.5)

Consequently PCCF is one in one hundred thousand and is a factor of 10,000 greater than the
independent failure probability Pindependent. Note that in determining PCCF, the individual
component failure probability (p=1×10-3) is the first factor in Equation (4) and is multiplied by
the probability of the CCF occurring which in this case is 1×10-2. The common cause probability
of 1×10-2 is a conditional probability of the remaining components failing given one component
has failed. The common cause probability of 1×10-2 is equivalently the probability that the
failure cause, given a failure, is a common cause that will affect all the other components. The
CCF probability is thus a fraction of the failures involving all similar components. This is the
basis for its estimation from data∗.

As can be observed, because the CCF probability affects all components in a redundant set, even
if it has a small likelihood of occurrence, it can enormously increase the probability of all the
components failing and hence the system failing. Even if the CCF probability were 1 in 1000,
i.e., 1×10-3, the probability of all three components failing due to CCF would be 1×10-6 which is
a factor of 1000 greater than the independent failure probability. This example is illustrative of
the impacts of CCFs. Other specific CCF probabilities would produce other specific results, but
the result would generally be larger than the independent probability of all the redundant
components failing.

To include the CCF contribution in the fault tree, it must be separately modeled. For the three
component redundancy example above, the fault tree structure could be as shown in Figure 5-3.
alternately, the CCF contribution could be ORed with each individual component failure below
the AND gate. This second approach is often more successful when modeling complex systems
or when complex dependencies exist in a system.

∗ Several CCF models and associated data exist. The most common model is the β-factor model, in which β
represents the fraction of the failure rate that is common to multiple susceptible components. More elaborate
models have been developed that distinguish between CCF failures in different component size groupings, including
the Multiple Greek Letter (MGL) model and the Alpha-factor model [1].

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 5, Extended FTA 60

THREE COM PONENTS FAIL

G001

THREE COM PONENTS FAIL
INDEPENDENTLY

G002

COM PONENT 1 FAILS DUE
TO INDEPENDENT CAUSES

B001

COM PONENT 2 FAILS DUE
TO INDEPENDENT CAUSES

B002

COM PONENT 3 FAILS DUE
TO INDEPENDENT CAUSES

B003

THREE COM PONENTS FAIL
DUE TO CCF

G003

COM PONENTS 1 , 2 , 3
FAIL FROM CCF

B004

Figure 5-3. Fault Tree Representing Three Redundant Components with CCF
Contribution.

In the actual fault tree, the identifiers of the components would be shown. What is important is
that the CCF contribution is modeled as a separate contributor.

The same structure as above could be used for redundant trains of a system or redundant
subsystems of a system. For example, instead of Component 1, 2, and 3, Train 1, 2, and 3 could
be substituted. When the CCF at the train or subsystem level is modeled, it implies that the
trains or subsystems are identical and that CCF data (e.g., the conditional CCF failure
probability) is available at the train or subsystem level. If there is some doubt then CCF
contributions should be modeled at the basic component level. A good rule of thumb is to
include CCF contributions for any redundancy of identical, active components. If identical,
redundant passive components are potentially important contributors then a CCF contribution
can be included for these redundancies also. When in doubt, it is a good practice to model the
CCF contribution in the fault tree. Sensitivity studies can be performed to determine the
sensitivity of the top event probability to the CCF probability. If the top event probability is
sensitive then more detailed analysis can be carried out.

5.3 Modeling Human Errors in a Fault Tree

Human performance plays a central role in overall safety. Human interactions with equipment
occur during operations, response to accidents, surveillance testing, and maintenance. Human-
machine interactions can mitigate the effects of accidents through recovery and control actions.
Human interactions may also cause initiating events through errors. Humans are more perceptive

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 5, Extended FTA 61

and flexible in performance than machines; hence, during adverse situations, crew members are
expected to be able to deal with complex situations and system interactions. However, in the
response errors may be committed that not only do not correct the situation but actually exacerbate
it.

Human Reliability Analysis, or HRA, is a term applied to a series of methods used to describe
qualitatively and quantitatively the occurrence of human errors that affect safety and reliability.
Because human errors can be important contributors to risk, the inclusion of human error
possibilities in FTA is important to provide a realistic picture of the overall failure probability and
risk. Here, the focus is on what human errors should be modeled and how they should be modeled
and not on how human errors are identified and quantified. Additional information on identification
and quantification of human errors is included in [2] and [3].

Types of Human Errors

Examples of human errors that can be modeled include:

Test and maintenance related errors

Errors causing initiating events

Procedural errors during an incident or accident

Errors leading to inappropriate actions

Detection and Recovery errors

A brief description of each of these types of human errors to is presented so as to provide a better
understanding as to why they may be of significance.

Test and Maintenance Related Errors

Test and maintenance related errors are errors induced by test and maintenance operations that can
cause equipment to be degraded or to be put into an inoperable or disabled state. For example, these
types of errors can occur in checkout and maintenance processes on the Space Shuttle. Examples of
test and maintenance errors include:

Failing to properly align or restore a component or system following a test

Miscalibration of equipment

Incorrectly wiring a valve motor operator, contact or circuit

Incorrect re-assembly of a valve, pump, or component

Collateral damage resulting from maintenance performed on unrelated component, often in
difficult work environments.

These human error contributions should be explicitly modeled in a fault tree if the equipment
failure caused by the error is not modeled. If the equipment failure is modeled in the fault tree
then the human error contribution need not be generally explicitly modeled. When the human
error contribution is not explicitly modeled, then the failure probability assigned for the

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 5, Extended FTA 62

equipment failure should include the inherent, equipment failure rate contribution plus the
human error contribution. When the human error can result in a misconfiguration of the
component, e.g., leaving a valve in a closed position, then the human error is generally explicitly
modeled. This is because a misconfiguration is generally not the same as a failure and may have
different recovery possibilities. Also a human error is always explicitly modeled when it can
cause failure of two or more components in the tree. The human error is then explicitly modeled
with the same identifier to identify its occurrence at multiple sites in the fault tree. If there is a
question then the human error is modeled. The human error contribution is modeled in the fault
tree as a basic event causing an equipment failure or equipment misconfiguration.

Errors causing initiating events

Errors causing initiating events include human actions that cause a fire to start, that cause a
pipeline to break, and that cause a life support system to terminate. These types of human errors
are generally included as causes of the initiating event frequencies used for quantification and hence
are generally not explicitly modeled. A human initiating error is explicitly modeled in the fault tree
if it is not included in the initiating event frequencies or if the human error can cause multiple
impacts. Such multiple impacts occur, for example, if a human action can initiate an accident and at
the same time impact a safety component that can help mitigate the accident.

Procedural errors during an incident or accident

Procedural errors can occur during an incident or accident in response to an off-normal situation.
These are errors that may occur as an astronaut interprets the incoming diagnostic information,
follows procedures, or takes action to implement an action. These errors are generally modeled
in a fault tree assessing human procedural responses. The specific errors that are modeled are
errors of omission in not responding, or not activating a system, or not changing the state of a
component. The human error is modeled as a basic event in the fault tree with the equipment
affected identified as the equipment failure and the cause attributed to human error.

Errors leading to inappropriate actions

Errors leading to inappropriate actions are sometimes termed errors of commission. These errors
result in inappropriate actions being taken that may compound a problem. Errors of commission are
sometimes committed in conjunction with procedural errors or errors of omission described in the
previous paragraph. For example, instead of performing the steps in a procedure, different actions
may be taken. Errors of commission are generally not modeled in a fault tree because of the
difficulty of postulating a bounded scope for the possible errors of commission and the difficulty in
assessing their probabilities.

Detection and Recovery errors

Detection and Recovery errors are human errors to fail to detect and recover a failure that occurs.
For example, a failed piece of equipment may be able to be repaired in time to help mitigate an
accident if the appropriate human actions are taken. If these actions are not taken then an error
occurs of failing to recover the failed piece of equipment. A recovery error also occurs if a
human error in following a procedure is not caught. Detection errors can occur if defects or
failures are not detected in inspections and tests. Detection and recovery errors are sometimes

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 5, Extended FTA 63

modeled in the fault tree to show their particular contributions. When these errors are not
explicitly modeled then the probabilities of failing to detect and restore failed equipment are
included in the equipment failure probability quantification. In defining the scope and
approaches for the fault tree, as part of the steps of the fault tree process, it is important to define
how such human errors, and all the types of human errors, will be modeled.

5.4 Modeling Loops and Feedback

Consider the feedback loop illustrated below. In this figure, System A sends a signal to System
B.

System A

System B

Signal to A

Signal to B

System B in turn provides a signal to System A. For example, System A could be a controller
sending a control signal to System B, and System B an online system sending a feedback signal
to System A. As a more specific example, for the Space Shuttle, System A could be the Orbiter,
which sends a control signal, and System B could be the Main Engine, which provides the
feedback signal.

For a fault tree model of a feedback situation such as this, it is desirable that the model include
system failures that include the failure of a signal from another system. However, it is also
necessary to avoid feedback loops in the fault tree model. These loops will occur if the failure of
System B is included as a contributor to System A failing and the failure of the signal from
System A is included as a contributor to System B. In this case the model would indicate System
A causing the failure of System A. A similar loop would occur for System B.

A fault tree model for System B failing and a fault tree model for System A failing that avoid
these loops are shown in Figure 5-4.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 5, Extended FTA 64

 SYSTEM B FAILS

G001

SYSTEM B FAILS DUE TO
INTERNAL FAILURES OF

SYSTEM B

B001

SYSTEM B FAILS DUE TO
FAILURE OF SIGNAL

FROM SYSTEM A DUE TO
INTERNAL FAILURES

B002

 SYSTEM A FAILS

G002

SYSTEM A FAILS DUE TO
INTERNAL FAILURES OF

SYSTEM A

B003

SYSTEM A FAILS DUE TO
FAILURE OF SIGNAL

FROM SYSTEM B DUE TO
INTERNAL FAILURES

B004

Figure 5-4. Fault Tree Models that Avoid Logical Loops

In the above fault tree models only internal failure causes are included and not failures due to
any feedback. For example, causes for System A failing from a signal failure of System A
should not be included. Thus the loops are cut (eliminated) in the fault tree. In the above fault
tree for System A failure, for example, for the fault on the right hand side of the OR gate, the tree
will only be developed to include internal failures of B. A failed signal from A will not be
included as a cause of B failing. This also applies to the model for System B failing. It should
be noted that the internal failures for a given system might be different for the two trees because
of the different failures considered. However, again, only internal failures of the system
originating the signal are considered. This general rule of considering internal failures of the
system originating the signal applies to any number of systems interacting with each other. If
this general rule is followed, then no loops will be constructed in the resulting fault tree.

5.5 Modeling of a Phenomenological Sequence

A phenomenological sequence consists of an initiating event and additional events, called pivotal
events, that lead to an undesired event. A phenomenological sequence is more often modeled
using an Event Sequence Diagrams (ESD) or an Event Tree (see Chapter 9). However, there are
instances where modeling the sequence using a fault tree might be desired. In this case, the final
undesired event in the sequence is the same as the top event of the fault tree. The sequence can

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 5, Extended FTA 65

be modeled in the fault tree using standard fault tree modeling techniques. However care must
be taken in describing the events in the fault tree to show their conditional dependency.

To illustrate the considerations in fault tree modeling of a sequence, consider the figure below
that illustrates a sequence for a hydrazine leak resulting in an explosion.

Hydrazine
leak occurs in
the fuel pump

Leak is sufficient
in size to cause
an explosion if
ignited

Leak contacts
ignition source
and explodes

The first event is the occurrence of a hydrazine leak aboard the craft. The second event is the
condition that the leak is a sufficiently large leak to have the potential for an explosion. The
third event is the event of the hydrazine leak contacting an ignition source given the leak is of
sufficient size.

The conditional nature of the second and third events are implied by the sequence diagram. In
modeling the events in a fault tree, this conditional nature must be explicitly defined to identify
the order of the events when the fault tree is evaluated. By defining these given conditions, the
probabilities can then be calculated and the events arranged in proper order. Figure 5-5
illustrates the corresponding fault tree model for this sequence.

HYDRAZINE LEAK OCCURS
IN FUEL AND RESULTS

IN EXPLOSION

G001

HYDRAZINE LEAK OCCURS
IN FUEL PUM P

B001

HYDRAZINE LEAK IN
FUEL PUM P IS OF

SUFFICIENT SIZE TO
EXPLODE GIVEN A LEAK

B003

HYDRAZINE IN FUEL
EXPLODES GIVEN LEAK
OCCURS AND IS OF A

SUFFICIENT SIZE

B002

Figure 5-5. Fault Tree for Explosion Resulting from Hydrazine Leak

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 5, Extended FTA 66

As observed in the above fault tree structure, the sequence is modeled as an AND gate. The
descriptions of the basic events can vary, however the conditional nature of the events need to be
clearly identified in the event descriptions. As shown above, the events are clearly defined,
identifying the substance leaking and the component affected, and the given conditions leading
up to the event.

The given conditions of the above events define the order of the events. The probabilities
assigned to the events will be conditional probabilities, conditioned on the previous events
having occurred as defined by the given conditions. If a more explicit model is desired then the
AND gate needs to be replaced by a PRIORITY AND gate which will assure that the given
physical order of the events is retained.

5.6 Naming Schemes for the Fault Tree

The critical need in naming gates and basic events is to ensure that correct cut sets and
probabilities are calculated if a gate or basic event occurs more than once in the model. If a basic
event representing an identical component failure has different names a cut set calculation for an
AND gate would erroneously conclude that a single failure is a double failure. Similarly, if the
events were to occur under an OR gate the event would be double counted. Basic event and gate
names are used to input the fault tree to a computer code. These names are identifiers of each
event in the tree. Any identifiers can be used, but they should be concise and descriptive. FT
software generally limits the number of characters that can be used. Common limits are 18 or 24
characters. For a component failure, the identifier often used is of the form: Component Type-
Component ID-Failure Mode. The Component Type is the general type of component.
Examples are MOV for motor operated valve, PMP for pump, and TNK for tank, The
Component ID is the identifier of the unique component that is often related to a system or
schematic number. Example failure modes are FTO for fail to open, FTC for fail to close, and
INOP for inoperable. Thus, a basic event could be identified as MOV-1233-FTO. If different
systems were being modeled then a system identifier could be the first identifier. An alternate
naming scheme used in the Space Shuttle PRA places the system identifier differently:
ElementID-SystemID-ComponentID-FailureMode. Table 5-1 shows other representative
identifiers that have been used.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 5, Extended FTA 67

Table 5-1. Representative Component and Failure Mode Identifiers

Component
Type

Component
Failure Mode

Description

HX F Heat Exchanger Cooling Capability Fails

HX J Heat Exchanger Tube Rupture

HX P Heat Exchanger Plugs

IN F Inverter No Output

IR F Regulating Rectifier No Output

IV F Static Voltage Regulator No Output

LC D Logic Circuit Fails to Generate Signal

LS D Level Switch Fails to Respond

LS H Level Switch Fails High

LS L Level Switch Fails Low

Intermediate events in the fault tree can have similar naming conventions, with each identifier
identifying the type of event and the input events. In some past FTAs, gate names were not
codified to the same degree as the names for the basic failures and basic events. This is because
the basic failures and basic events are the principal outputs of fault tree computer codes. What is
most important is that an agreed upon naming scheme be used for the events before the fault tree
is constructed, and that procedures exist to minimize the likelihood of inadvertently giving the
same basic event two names. Going through an already constructed fault tree and changing
names is a challenging and difficult task, as anyone who has attempted it will attest, and it will
be likely to result in errors.

5.7 Fault Tree Construction Ground Rules

In constructing a fault tree, ground rules are oftentimes used to narrow the scope or resolution of
the fault tree without impacting the overall results. Ground rules listed below have been used in
past fault tree analyses. These ground rules should be evaluated for their applicability to the
particular problem being addressed before they are applied.

1. Model to the highest level for which data exists and for which there are no common
hardware interfaces with other contributors. In applications, this generally means
modeling to the major component level, e.g. a motor operated valve, high-pressure
pump, etc. Modeling to a lower level will not only be a waste of time but will often
provide erroneous probabilities or probabilities with much larger uncertainties. This
is an example of the fault tree maxim- “too much detail, too much uncertainty”.

2. Do not model wiring faults between components. Generally, wiring faults, such as
shorts to ground and shorts to power, have very low probabilities compared to
probabilities of major components failing. However, if there are no significantly

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 5, Extended FTA 68

higher contributors or if the wiring can be impacted by other failures (e.g., a fire) then
wiring faults need to be considered. Also if the objective includes the modeling of
wiring faults then they need to be included (for example, in the case of wear over
time of wiring bundles due to maintenance activity on a reusable vehicle).

3. Do not model piping faults between components. The reasoning here is similar to
Item 2. Piping faults generally have very small probabilities of occurring. However,
if there are no significantly higher contributors or the objective includes modeling
piping faults (e.g., then they need to be included because aging effects increase the
global impact of piping failure over time).

4. Do not model out-of-design conditions. In general, the component is not intended to
operate outside of design conditions. Therefore, these conditions are not generally
modeled and out-of-design failures are not shown on the fault tree. In special
circumstances these may be included but in these circumstances justification must be
provided.

5. Model CCF contributors on all identical active, redundant components. Active
components are generally mechanical or electro-mechanical components that change
state. Examples are pumps, motor operated valves, motors, and circuit breakers.
Generally CCF contributors are highest for these active components because of their
interactions with environments and operations. CCF contributors can be included for
identical, redundant electrical components or passive components if these
components are assessed to be possibly susceptible to common failure causes. In past
FTAs, CCF contributors have often been included on all identical, redundant
components and sensitivity analyses performed to identify those CCF contributors
that could most influence the results. These sensitive CCF contributors were then
analyzed in more detail.

6. Do not model human errors of commission. Human errors of commission are those
involving the human committing an unforeseen action. The reason human errors of
commission are not modeled is that current modeling approaches would require a
consideration of an almost unlimited scope of actions.

7. Do not continue to model an AND gate with four or more inputs if there are triple,
double, or single contributors elsewhere in the tree and if it can be assured that there
are no common hardware interfaces to the inputs. Sometimes instead of four or more
inputs, AND gates are not continued if they have three inputs. This ground rule is a
common sense type rule that says don’t chase higher order combinations of faults if
there are lower order combinations already identified. This rule has to be evaluated
for its applicability for each situation. For these cases, the events inputting the AND
gate are kept as undeveloped events that could be expanded later if necessary.

8. Do not continue to model an input to an OR gate if there is information that assures
its probability is significantly lower than the probability of one or more of the other
inputs. This rule is a common sense rule like the previous rule. This rule suggests
not chasing contributors that can be shown to be significantly lower in probability
than the contributors already identified. The input events not continued are again
shown as undeveloped events.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 5, Extended FTA 69

5.8 Validating a Fault Tree

The topic of validating a fault tree is an important one but a difficult one. Therefore it is not
often addressed in textbooks or papers. Validating a fault tree is difficult since the quantitative
result of the tree is a probability, which is not at all tangible. However, the fault tree can be
validated at least indirectly using the following steps:

1. Obtain the minimal cut sets of the fault tree. Identify the smallest order cut sets and
check if these are indeed valid failure paths to the top event. Use the system
schematic or system diagram for these checks. An FMEA may also be used for these
checks if there are only one or two components in the failure paths that are checked.

2. Identify failures and basic events that have occurred as recorded in databases. Check
if these have been included in the fault tree and if not, why not. This is a check on the
scope and completeness of the fault tree.

3. Obtain the success paths of the fault tree. Identify the smallest of these success paths
and validate that these are indeed success paths. This is similar to Step 1 but uses the
success paths to cross-check the fault tree.

4. Identify lower order faults (i.e., intermediate events) in the fault tree. Obtain the cut
sets and success paths for these lower order faults. Validate these cut sets and success
paths as in Steps 1 and 2. Validating lower order faults is done if validating the top
event directly in Steps 1 and 2 is too difficult, e.g. the smallest order cut sets contain a
large number of basic events that are difficult to check.

5. Check the probabilities of the cut sets and their relative contributions to determine if
the results are reasonable. This is a sanity check on the reasonableness of the cut sets
probabilities. The lowest order cut sets and those containing active component
failures should generally have the highest probabilities. Since each cut set is similar
to a parallel system of the contributors, the probability value can be compared with
values from past experience. If CCF contributors or human errors have been modeled
then these should appear as relatively high contributors.

6. Check the probabilities of intermediate faults for their reasonableness. These
intermediate faults are often subsystem or module faults. Their values can be
compared with those from past experience. Since intermediate faults will generally
have higher probabilities than the probability for the top event, these intermediate
fault probabilities can often be compared with failure data involving the intermediate
faults.

7. Check the probability of the top event for its reasonableness. Compare it to results
obtained for similar type assessments that have been performed in the past. Very low
probabilities in particular, such as 1×10-9 or lower, are fictitious and generally only
show that the more likely ways of the top event occurring have not been identified in
the fault tree. (Remember, the chance of a meteoroid or other catastrophe destroying
the earth is of the order of 1×10-9.)

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 5, Extended FTA 70

5.9 References

1. A. Mosleh, Procedure for Analysis of Common-Cause Failures in Probabilistic
Safety Analysis, NUREG/CR-5801, US Nuclear Regulatory Commission, 1993.

2. D. Gertman and H. Blackman, Human Reliability and Safety Analysis Data
Handbook, John Wiley and Sons, 1994.

3. E. Dougherty and J. Fragola, Human Reliability Analysis: A Systems Approach with
Nuclear Power Plant Applications, Wiley, New York, 1988.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 6, Qualitative Evaluations of a Fault Tree and Basic Probability Formulas 71

6. Qualitative Evaluations of a Fault Tree and Basic Probability Formulas

The following sections describe qualitative evaluations of a fault tree. These evaluations include
applying Boolean algebra to the fault tree to obtain the equations for each gate of the fault tree.
The associated basic probability formulas for each type of gate are described. The section also
describes a methodology for obtaining the minimal cut sets of the fault tree and minimal path
sets from a complimentary success tree, as well as an alternate approach to solving a fault tree
using binary decision diagrams.

6.1 Application of Boolean Algebra in Fault Tree Analysis

A fault tree, as is now understood, is a logic diagram depicting certain events that must occur in
order for other events to occur. The events are termed “faults” if they are initiated by other
events and are termed “failures” if they are the basic initiating events. The fault tree interrelates
events (faults to faults or faults to failures) and certain symbols are used to depict the various
relationships. As described in Chapter 4, the basic symbol is the “gate” and each gate has inputs
and an output as shown in Figure 6-1.

The gate output is the “higher” fault event under consideration and the gate inputs are the more
basic (“lower”) fault (or failure) events that relate to the output. When a fault tree is drawn, the
tree is developed from the “higher” faults to the more basic faults (i.e., from output to inputs). In
this process, certain techniques are used to determine which category of gate is appropriate. The
two basic gate categories are the OR-gate and the AND-gate. Because these gates relate events
in exactly the same way as Boolean operations, there is a one-to-one correspondence between the
Boolean algebraic representation and the fault tree representation. The rules of Boolean Algebra
are summarized in Appendix A.

OUTPUT

G0 0 1

INPUT A

B0 0 1

INPUT C

B0 0 3

INPUT B

B0 0 2

Figure 6-1. The Gate Function in a Fault Tree

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 6, Qualitative Evaluations of a Fault Tree and Basic Probability Formulas 72

The OR-Gate

As described in Chapter 4, the fault tree symbol

 is an OR-gate which represents the union of
the events attached to the gate. Any one or more of the input events must occur to cause the
event above the gate to occur. The OR-gate is equivalent to the Boolean symbol “+.” For
example, the OR-gate with two input events, as shown in Figure 6-2, is equivalent to the Boolean
expression, Q=A+B. Either of the events A or B, or both must occur in order for Q to occur.
Because of its equivalence to the Boolean union operation denoted by the symbol “+,” the OR-
gate is sometimes drawn with a “+,” inside the gate symbol as in Figure 6-2. For n input events
attached to the OR-gate, the equivalent Boolean expression is Q=Al+A2+A3+. . .+An.

In the terms of probability,

P(Q) = P(A) + P(B) - P(A∩B) (6.1)

or

= P(A) + P(B) – P(A)P(B|A)

Q

G001

A

B001

B

B002

+

Figure 6-2. A Two-Input OR-Gate

The following observations can be made:

 If A and B are mutually exclusive events, then P(A∩B) = 0 and P(Q) = P(A) + P(B);

 If A and B are independent events, then P(B|A) = P(B) and
P(Q) = P(A) + P(B) - P(A) P(B);

 If event B is completely dependent on event A, that is, whenever A occurs, B also occurs,
then P(B|A) = 1 and

P(Q) = P(A) + P(B) - P(A)

P(Q) = P(B);

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 6, Qualitative Evaluations of a Fault Tree and Basic Probability Formulas 73

 The approximation P(Q) ≅ P(A) + P(B) is, in all cases, a conservative estimate for the
probability of the output event Q, i.e.,

P(A) + P(B) ≥ P(A) + P(B) - P(A∩B) for all A, B;

 If A and B are independent, low probability events (say P(A), P(B) < 10-1), then P(A∩B)
is small compared with P(A) + P(B) so that P(A) + P(B) is an accurate approximation of
P(Q).

 In an EXCLUSIVE OR-gate with two inputs A and B, the output event Q occurs if event
A occurs or event B occurs, but not both. The probability expression for the output event
Q of an EXCLUSIVE OR-gate is:

P(Q)EXCLUSIVE OR= P(A) + P(B) - 2P(A∩B). (6.2)

Comparing Equations (1) and (2), we observe that if A and B are independent low probability
component failures, the difference in probability between the two expressions is negligible. This
is why the distinction between the inclusive and exclusive OR-gates is generally not necessary in
FTA where independent, low probability component failures are often under consideration. It
may sometimes, however, be useful to make the distinction in the special case where the
exclusive OR logic is truly required, and in addition where there is a strong dependency between
the input events or the failure probabilities are high. In this latter case, the intersection term may
be large enough to significantly effect the result (if this is the case the events can be made
mutually exclusive by replacing each event by an AND gate with one event the compliment of
the other event as the inputs). In conclusion, it should be observed that in any case, the error
which is made by using the inclusive rather than the exclusive OR-gate biases the answer on the
conservative side because the inclusive OR has the higher probability. In the remainder of this
text, unless otherwise noted, all references to the OR-gate should be interpreted as the inclusive
variety.

Figure 6-3 shows a realistic example of an OR-gate for a fault condition of a set of normally
closed contacts.

NORM ALLY CLOSED RELAY
CONTACTS FAIL TO OPEN

G001

RELAY COIL NOT
DE-ENERGIZED

B001

RELAY CONTACTS FAIL
CLOSED

B002

Figure 6-3. A Specific Two-Input OR-Gate

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 6, Qualitative Evaluations of a Fault Tree and Basic Probability Formulas 74

This OR-gate is equivalent to the Boolean expression

 RELAY
CONTACTS FAIL

TO OPEN

RELAY COIL
NOT

DE-ENERGIZED

CONTACTS FAIL
CLOSED = +

Instead of explicitly describing the events, a unique symbol (Q, A2, etc.) is usually associated
with each event as shown in Figure 6-2. Therefore, if the event “relay contacts fail to open” is
labeled “Q”, relay coil not “de-energized” is labeled “A,” and “contacts fail closed” is labeled
“B,” the OR-gate of Figure 6-3 can be represented by the Boolean equation Q=A+B.

An OR-gate is merely a re-expression of the event above the gate in terms of the more
elementary input events. The event above the gate encompasses all of these more elementary
events; if any one or more of these elementary events occurs, then B occurs. This interpretation
is quite important in that it characterizes an OR-gate and differentiates it from an AND-gate.
The input events to an OR-gate do not cause the event above the gate; they are simply re-
expressions of the event above the gate. This topic has been addressed previously, but it is
considered so important to fault tree analysis that it is covered again, having now reviewed the
concepts of Boolean algebra.

Consider two switches in series as shown in Figure 6-4. The points A and B are points on the
wire. If wire failures are ignored then the fault tree representation of the event, “No Current to
Point B” is shown in Figure 6-5.

 Switch 1 Switch 2

A B

Figure 6-4. Two Switches in Series

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 6, Qualitative Evaluations of a Fault Tree and Basic Probability Formulas 75

N O CU RREN T TO POIN T B

G0 0 1

SWITCH 1 IS OPEN

B 0 0 1

SWITCH 2 IS OPEN

B 0 0 3

N O CU RREN T TO POIN T A

B 0 0 2

Figure 6-5. A Specific Three-input OR-Gate

If the events are denoted by the symbols given below, then the Boolean representation is

B = Al +A2+A3.

SWITCH 1
IS OPEN

SWITCH 2
IS OPEN

NO CURRENT
TO POINT A

NO CURRENT
TO POINT B

= B

= A1 = A2 = A3

The event B occurs if Al or A2 or A3 occurs. Event B is merely a re-expression of events Al, A2,
A3. We have classified the particular events Al, A2, A3 as belonging to the general event B.

The AND-Gate

As discussed in Chapter 4, the fault tree symbol is an AND-gate which represents the
intersection of the events attached to the gate. The AND-gate is equivalent to the Boolean
symbol “•.” All of the input events attached to the AND-gate must exist in order for the event
above the gate to occur. For two events attached to an AND-gate (Figure 6-6), the equivalent
Boolean expression is Q=A•B. Because of its equivalence to the Boolean intersection operation
denoted by the symbol “•”, that symbol is sometimes included inside the AND-gate as in Figure
6-6. For n input events to an AND-gate, the equivalent Boolean expression is

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 6, Qualitative Evaluations of a Fault Tree and Basic Probability Formulas 76

Q = A1•A2•A3• … •An.

In this case, event Q will occur if and only if all the Ai occur. In terms of probability, for two
events

P(Q) = P(A)P(B|A) = P(B)P(A|B). (6.3)

The following observations can be made:

 If A and B are independent events, then P(B|A)=P(B), P(A|B)=P(A),

and P(Q)=P(A) P(B);

 If A and B are not independent events, then P(Q) may be significantly greater than
P(A)P(B). For example, in the extreme case where B depends completely on A, that is,
whenever A occurs, B also occurs, then P(B|A)= 1 and P(Q) = P(A).

Q

G001

A

B001

B

B002

•

Figure 6-6. A Two-Input AND Gate

The events attached to the AND-gate are the causes of the event above the gate. Event Q is
caused only if every one of the input events occurs. This causal relationship is what
differentiates an AND-gate from an OR-gate. If the event above the gate occurs when any one of
the input events occurs, then the gate is an OR-gate and the event is merely a restatement of the
input events. If the event above the gate occurs only when combinations of more elementary
events occur, then the gate is an AND-gate and the inputs constitute the cause of the event above
the gate.

This discussion is concludes with an example indicating how Boolean algebra can be used to
restructure a fault tree. Consider the equation D = A•(B+C). The corresponding fault tree
structure is shown in Figure 6-7.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 6, Qualitative Evaluations of a Fault Tree and Basic Probability Formulas 77

Now according to Rule 3a in Appendix A, event D can also be expressed as D = (A•B) + (A•C).
The fault tree structure for this equivalent expression for D is shown in Figure 6-8.

The two fault tree structures in Figures 6-7 and 6-8 may appear to be different; however, they are
equivalent. Thus, there is not one “correct” fault tree for a problem but many correct forms that
are equivalent to one another. The rules of Boolean algebra can thus be applied to restructure the
tree to a simpler, equivalent form for understanding or for simplifying the evaluation of the tree.
Later, the rules of Boolean algebra will be applied to obtain one form of the fault tree, called the
minimal cut set form, which allows quantitative and qualitative evaluations to be performed in a
straightforward manner.

D

G001

A

B00 1

B OR C

G0 02

B

B002

C

B00 3

Figure 6-7. Fault Tree Structure for D = A•(B+C)

D

G010

A AND B

G011

A

B001

B

B002

A AND C

G012

A

B001

C

B002

Figure 6-8. Equivalent Form for the Fault Tree of Figure 6-7

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 6, Qualitative Evaluations of a Fault Tree and Basic Probability Formulas 78

6.2 Binary Decision Diagrams

Recent developments in digital logic have helped produce an alternative analysis procedure for
fault trees. This alternative approach, based on the use of Binary Decision Diagrams (BDDs),
works directly with the logical expressions instead of the cut sets. A BDD can be thought of as a
graphical representation of a data structure for a logic function.

The BDD that is used for fault tree analysis is more properly referred to as a Reduced Ordered
BDD. Reduced means that the BDD is in minimal form. Ordered means that the variables
appear in the same order on each path. For more information on the BDD approach to fault tree
analysis see [1], [2].

The BDD is constructed from the fault tree recursively, which can be seen as being bottom-up.
Each basic event has an associated single-node BDD. For example, the BDD for a basic event B
is shown in Figure 6-9. Starting at the bottom of the tree, a BDD is constructed for each basic
event, and then combined according to the logic defined by the gate. The BDD for the OR
relation B + C is constructed by applying the OR function to the BDD for B and the BDD for C.
Since B is first in the relation, it becomes the “root” node. The C BDD is then OR’ed with each
“child” node of B. Thus, as shown in Figure 6-10, B is the root node and the C BDD is ORed
with the left and right children of B.

1

B

0

Figure 6-9. BDD for Basic Event B

1

C

01

B

0

+ =

1

B

0

1

C

0 1

C

0

+ +

Figure 6-10. OR of BDD for B and C (step 1)

First consider the left child of B, which is terminal node 0. From the laws of Boolean algebra
(8b and 8d in Appendix A, Table A-1), 0+X = X and 1+X = 1. Thus, the left child reduces to C
and the right child reduces to 1 (See Figure 6-11).

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 6, Qualitative Evaluations of a Fault Tree and Basic Probability Formulas 79

1

B

1

C

0

1

B

0

1

C

0 1

C

0

+ +

=

Figure 6-11. OR of BDD for B and C (step 2)

Next consider the AND operation applied to events A and B, shown in Figure 6-12. Again from
the laws of Boolean algebra, 0•X = 0 and that 1•X = X. Thus the reduced BDD for event A•B is
shown in Figure 6-13.

1

A

0 1

B

0

AND = 1

A

0

1

B

0

AND

1

B

0

AND

Figure 6-12. AND of BDD for B and C (step 1)

1

A

0

1

B

0

•

1

B

0

•

=
A

0

1

B

0

Figure 6-13. AND of BDD for A and B (step 2)

Consider now a basic event C that is ORed with the AND gate of A and B, i.e. A•B+C. The
BDD construction is shown in Figure 6-14. Since A comes before C, A becomes the root node
and the OR operation is applied to A’s children. The left child reduces by Boolean algebra and
the right child continues as in Figure 6-11 producing the BDD shown in Figure 6-15.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 6, Qualitative Evaluations of a Fault Tree and Basic Probability Formulas 80

A

0

1

B

0

+ = A

0

1

B

0

1

C

0

1

C

0

+ +

1

C

0

Figure 6-14. BDD construction for an OR with an AND gate (step 1)

=A

0

1

B

0
1

C

0

+ +

1

C

0

A

1

B

1

C

0

1

C

0

Figure 6-15. BDD construction for an OR with an AND gate (step 2)

The BDD on the right side can be reduced further. Notice that there are two identical instances
of the node representing C. One is redundant and can be removed, as shown in Figure 6-16.

Each path from the root node to a terminal node with value 1 represents a disjoint combination of
events that causes system failure. Thus, if Figure 6-14 represented a small fault tree of C ORed
with A AND B the failure paths would be A'C+AB+AB'C. Since the paths are disjoint, the
calculation of the probability of failure is straightforward—the probability of failure is the sum
of the probabilities associated with the paths.

A

1

B

1

C

0

Figure 6-16. BDD construction for an OR with an AND gate (step 3)

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 6, Qualitative Evaluations of a Fault Tree and Basic Probability Formulas 81

The transformation of a fault tree would proceed in the above manner until all the gates have
been linked in the BDD. The failure paths leading to an end value of 1 would be quantified by
summing the failure paths that by their nature are disjoint. In developing the BDD for a fault
tree various reduction techniques are used to simplify the BDD. For example, the above BDD
can be further reduced because of the two identical nodes representing C.

6.3 Comparison of the BDD Approach with the Minimal Cut Set Approach

The BBD approach is a complementary approach to the MCS approach. Each approach has its
advantages and features. The MCS approach identifies the minimal sets (combinations) of basic
events that will cause the top event. The MCSs thus highlight the most significant failure
combinations and show where design changes can eliminate or reduce undesirable combinations.
MCSs also support fault tree validation in that specific minimal cut sets can be checked to
determine if they indeed cause the top event. MCSs support recovery actions—effective
recovery procedures are aimed at recovering at least one failure in the dominant minimal cut sets.
MCSs can furthermore be reviewed for dependencies and susceptibilities to CCF potentials. The
MCSs thus provide valuable, qualitative information as well as quantitative information.

The BDD approach provides an exact calculation of the top event probability. The exact
probability is useful when many high-probability events appear in the model. The BDD
approach is also the most efficient approach for calculating probabilities. Because the minimal
paths generated in the BDD approach are disjoint, calculation of importances and sensitivities
can be done in an efficient and exact manner.

For very large fault trees having many AND and OR gates, in which many MCSs can be
generated, the MCS approach must often truncate the lowest probability minimal cut sets to
calculate the probability of the top event in relatively short time. The result of this calculation is
generally accurate to at least two significant figures, which is typically more accurate than the
basic event probabilities that are used once their uncertainties are considered. Present fault tree
software packages have algorithms for bounding the truncation error. If this error is too large
then the truncation limit can be lowered and more minimal cut sets generated. Because of the
speed of present personal computers, generating sufficient numbers of MCSs or generating more
MCSs if needed is usually not a problem.

The BDD approach is thus more efficient and precise in quantifying probabilities and
importances. The MCS approach provides important qualitative information as well as
quantitative information. The most information is provided by using both approaches. The use
of BDDs does not preclude the determination of MCSs. Many available software packages only
use the MCS approach, which has been the standard fault tree evaluation approach for many
years. However, there are software packages available that use the BDD approach, and a few
use both approaches. In the future, more software packages are expected to include both
approaches for evaluation.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 6, Qualitative Evaluations of a Fault Tree and Basic Probability Formulas 82

6.4 References

1. R. Sinnamon and J. Andreas, Fault Tree Analysis and Binary Decision Diagrams,
Proceedings of the Reliability and Maintainability Symposium, January 1996, pp 215-
222.

2. A. Rauzy, New Algorithms for Fault Tree Analysis, Reliability Engineering and
System Safety, Vol. 40, 1993, pp 203-211.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 7, Quantitative Evaluations of a Fault Tree 83

7. Quantitative Evaluations of a Fault Tree

7.1 Basic Quantification of the Fault Tree and Associated Data Used

To quantify the probability of the top event of the FT a probability for each basic event (BE) in
the fault tree must be provided. These BE probabilities are then propagated upward to the top
event using the Boolean relationships for the FT. This process was illustrated when the basic
gates of the FT were discussed in Chapter 6. The BE probabilities can be propagated upward
using BDDS that represent the FT structure. Alternatively, the minimal cut sets can be generated
from the FT and then used to quantify the top event. The minimal cut set generation approach is
used by most FT software because of the additional, important information provided by the
minimal cut sets.

Since the top event is expressed as the union of the minimal cut sets, the probability of the top
event can be approximated as the sum of the individual minimal cut set probabilities, provided
these probabilities are small. This is typically an accurate approximation for basic event
probabilities below 0.1. The approximation is termed the “rare event approximation.” Other,
more accurate approximations can be applied if needed using standard bracketing approaches to
compute the probability of a union. However, FT software often uses the simple sum of the
minimal cut set probabilities as the standard quantification method. A user must be aware of
this, and use a more accurate quantification method, considering the intersection of the minimal
cut sets, if minimal cut set probabilities are high (if the sum of the minimal cut set probabilities is
greater than 0.1).

Since a minimal cut set is an intersection of BEs, the probability of a minimal cut set is simply
the product of the individual BE probabilities. Thus, the probability of the top event is
expressible as the sum of the products of individual BE probabilities. This expression is called
the sum of products approximation. It has a relative accuracy of at least 10% (at least two
significant figures) if the BE probabilities are less than 0.1. Further, even if some BE
probabilities are greater than 0.1, the approximation is accurate if most of the probabilities are
less than 0.1. The accuracy can be checked by carrying out a second order bracketing
approximation (i.e., including the intersections between all pairs of minimal cut sets) and
comparing the results for the top event. Additionally some FT codes estimate the accuracy of the
sum of products approximation.

In terms of symbols the sum of products expression is given as:

P(Top) = Σ P(Mi) (7.1)

P(Mi) = P(BE1)P(BE2) … P(BEk) (7.2)

where the term “P()” denotes the probability of the enclosed event, “Top” denotes the top event,
“Mi” denotes a particular minimal cut set, “BE” a basic event, and k the number of basic events
in a minimal cut set. The symbol “Σ” is a summation sign and denotes the summation over the
number of minimal cut sets that are evaluated.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 7, Quantitative Evaluations of a Fault Tree 84

If the FT is a small one and has relatively few events then all the minimal cut sets of the FT can
be generated. If the FT is large, say more than 100 events, and has AND gates with OR gate
inputs then the number of minimal cut sets for the FT can be too large to be exhaustively
generated. For some large FTs that have been constructed, the numbers of minimal cut sets have
exceeded one million. Most FT software includes techniques for estimating the total number of
minimal cut sets in the FT based on the number of BEs, the number of gates and the types of
gates. When the number of minimal cut sets is large then the number generated can be truncated
for the sum in Equation (1). In this case, using the probabilities of the BEs and the logic
structure of the FT, minimal cut sets are not generated if their probability is below some cutoff
value, such as 1×10-12. The minimal cut set probability can be estimated (bounded) using the
logic structure of the FT and probability bounding techniques. FT software documentation
describes these techniques.

The input data that must be supplied for a BE is usually one of four basic types:

1) a component failure probability in some time interval,

2) an event occurrence probability in some time interval,

3) a component unavailability, and

4) a pure event probability.

To calculate the component failure probability over some interval, a component failure rate
(expressed in failures per unit time) and the elapsed mission time must be supplied as input data.
The elapsed mission time is the sum of the entire time over which the component is in an
operating and non-operating state. The operating state is defined as a state where the component
is subjected to the stresses of actual operation that may involve the transfer of energy, signals or
information. The non-operating state is defined as the state when the component has been
“shutdown” and is subject only to environmental stresses due to its location within a system.
The failure rate can be defined as

λ = λOd + λN(1-d),

where

d = fractional duty cycle (total operating time/total mission time)

λO = the component failure rate in the operating state

λN = the contribution to the component failure rate from the non-
operating state.

The standard assumption is to assume a constant failure rate. This is based on the further
assumption that there is no aging (wearout) and that burn in of the component was 100%

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 7, Quantitative Evaluations of a Fault Tree 85

effective and removed all infant mortalities from the population of parts used for assembly, and
therefore the failures are purely random∗.

The foundation of a good analysis is the pedigree of failure rate or event probability data that is
assigned to basic events. A good faith effort must be made to obtain the best failure rate data
that is available. The uncertainty in failure rate data depends in large part on the applicability of
the data (its source). A failure rate should apply to the particular application of a component, its
operating environment, and its non-operating environment. The failure rate data hierarchy is as
follows:

1. Actual mission data on the component,

2. Actual mission data on a component of similar design,

3. Life test or accelerated test data on the component,

4. Life test or accelerated test data on a similar component,

5. Field or test data from the component supplier,

6. Specialized data base or in-house data base on similar components, and

7. Standard handbooks for reliability data.

The component failure probability P, which is also called the unreliability, is determined from
the formula

P = 1- e-λt, (7.3)

where λ is the component failure rate and t is the relevant time interval. For small values of λt
(λt<0.1) the above formula for P simplifies to

P ≅ λt. (7.4)

The units of λ are the failure probability per unit time, e.g. per hour of exposure. For most FT
software, the failure rate and time interval can be separately input as data.

Table 7-1 illustrates a sample of component failure rate data used for the Space Shuttle PRA
evaluation. The component failure rates are given in the column labeled “Rate” and are in units
of per hour. The failure rates are assembled from historical data and from expert inputs. The
other columns give attributes of the component failure rate that allow component failure
probabilities to be calculated for the appropriated component failures identified in the Shuttle
PRA model. Uncertainty information associated with the component failure rate estimates is
given in the last three columns for uncertainty propagation.

∗ If sufficient time-to-failure data from life testing or field operation is available, both random and wearout failures
can be accounted for using the Weibull distribution, as described in Appendix C, Section C.4.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 7, Quantitative Evaluations of a Fault Tree 86

Table 7-1. Illustrative Component Failure Rate Data

NAME DESC
EVENT
LEVEL PART NAME

PART
NUMBER SOURCE RELATED CIL LOCATE

SUBSYST
EM

NUMB
ER OF
FAILU
RES

EXPOSU
RE UNITS RATE DELTA T PF MISSION DIST

UNCERTAINT
Y

PARM1
(MEDIAN)

PARM2
(EF)

042BD0101A

APU 1
BURST

DISK FAILS
TO BURST BE

BURST
DISK -
SEAL

CAVITY
DRAIN

48-6806,
ME251-

0017-0001
PEAPU1SC

D
04-2-BD01-

01 1R/2 04-2 0 0 X 2.55E-05 1 0.0000255 L 6.58E-06 15

042BD0101A

APU 2
BURST

DISK FAILS
TO BURST BE

BURST
DISK -
SEAL

CAVITY
DRAIN

48-6806,
ME251-

0017-0001
PEAPU2SC

D
04-2-BD01-

01 1R/2 04-2 0 0 X 2.55E-05 1 0.0000255 L 6.58E-06 15

042BD0101A

APU 3
BURST

DISK FAILS
TO BURST BE

BURST
DISK -
SEAL

CAVITY
DRAIN

48-6806,
ME251-

0017-0001
PEAPU3SC

D
04-2-BD01-

01 1R/2 04-2 0 0 X 2.55E-05 1 0.0000255 L 6.58E-06 15

042BD0102A

APU 1
BURST

DISK
EXTERNAL
LEAKAGE BE

BURST
DISK -
SEAL

CAVITY
DRAIN

48-6806,
ME251-

0017-0001

PEAPU1FL
K,

PEAPU1SC
D

04-2-BD01-
02 1/1 04-2 0 0 H 2.55E-05 217.5 0.0055463 L 6.58E-06 15

042BD0102A

APU 2
BURST

DISK
EXTERNAL
LEAKAGE BE

BURST
DISK -
SEAL

CAVITY
DRAIN

48-6806,
ME251-

0017-0001

PEAPU2FL
K,

PEAPU2SC
D

04-2-BD01-
02 1/1 04-2 0 0 H 2.55E-05 217.5 0.0055463 L 6.58E-06 15

042BD0102A

APU 3
BURST

DISK
EXTERNAL
LEAKAGE BE

BURST
DISK -
SEAL

CAVITY
DRAIN

48-6806,
ME251-

0017-0001

PEAPU3FL
K,

PEAPU3SC
D

04-2-BD01-
02 1/1 04-2 0 0 H 2.55E-05 217.5 0.0055463 L 6.58E-06 15

042BD0103A

APU 1
BURST

DISK
INTERNAL
LEAKAGE

OR
PREMATU

RE
RUPTURE BE

BURST
DISK -
SEAL

CAVITY
DRAIN

48-6806,
ME251-

0017-0001
PEAPU1SC

D
04-2-BD01-

03 1R/2 04-2 0 0 H 2.55E-05 217.5 0.0055463 L 6.58E-06 15

042BD0103A

APU 2
BURST

DISK
INTERNAL
LEAKAGE

OR
PREMATU

RE
RUPTURE BE

BURST
DISK -
SEAL

CAVITY
DRAIN

48-6806,
ME251-

0017-0001
PEAPU2SC

D
04-2-BD01-

03 1R/2 04-2 0 0 H 2.55E-05 217.5 0.0055463 L 6.58E-06 15

The second type of probability data, an event occurrence probability in some time interval, is
similar to a component failure probability in some time interval. An event occurrence rate and
the time interval must be supplied. The formulas for the probability of the event occurrence are
the same as above, with λ now the event occurrence rate. Event occurrence rates and exposure
time intervals are used for fire occurrences, rupture occurrences, and other initiating or occurring
events for which there are data on event occurrence rates (e.g., in units of per year or per hour)
for the event.

The third type of probability data that may be required is an unavailability. This data is supplied
for a component that is repairable or checkable. Events in the FT requiring this type of data
include cases where a component is out of service and unavailable if called upon to operate. For
a component unavailability, a component failure rate and repair time or test interval must be
supplied. The specific data required and the associated expression for the component
unavailability depends on the type of component. The two usual expressions for the component
unavailability “q” are

q= λ0τ/(1+λ0τ) ≅ λ0τ for an operating component (7.5)

and

q = (1/2)λsT/(1+1/2 λsT) +1-e-λ
0
τ ≅ (1/2)λsT + λ0τ for a standby component. (7.6)

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 7, Quantitative Evaluations of a Fault Tree 87

In the above formulas, for an operating component λ0 is the operating failure rate and τ is the
average repair time. For a standby component λs is the standby component failure rate, T is the
test or inspection interval, λ0 is the operating failure rate and τ is the operating time if the
component needs to operate for a time after being called upon. (Note that strictly speaking, q in
Equation 7.6 is really an unavailability (the first term) plus an operational failure probability (the
second term)). An example of a standby component would be a battery that is called upon to
operate if normal electric power is lost. An example of an operating component would be an
operating pump that continuously circulates water through a cooling system. For most FT
software, the component failure rate(s), e.g., λ0 and/or λs, and the appropriate time intervals, e.g.
τ and/or T are input. More detailed expressions for the unavailability can be applied for special
situations such as when component testing is staggered. FT software documentation frequently
describes these other expressions.

The fourth, and last type of probability data that may be required is a pure event probability. A
pure event probability is also sometimes called a probability per act or probability per demand.
A pure event probability is not decomposed into more basic parameters and can be input for any
event. It generally is only input for an event for which a failure rate or occurrence rate per unit
time is not recorded. Examples of events for which pure event probabilities are generally input
are human errors (input as a probability per demand or per act) and pivotal events, which are
generally conditional probabilities. Another example of an event probability would be the
probability of a relief valve failing to lift once demanded (i.e., once the system pressure exceeds
the lift pressure). Some components have both a pure demand failure rate and a per-hour failure
rate. For these components, the demand failure rate needs to be added to the probability of
component failure using the per-hour failure rate.

7.2 Data Requirements

To carry out quantifications of an FT, quantitative data need to be input for the basic events. In
the simplest form, the input data consists of probabilities for the basic events of the fault tree. As
was described in preceding sections, the basic event probabilities can be used in the fault tree
equations to determine the probabilities of every higher event in the fault tree, including the top
event. Data bases exist that provide basic data for calculating probabilities of different types of
basic events. The data in these data bases are used in standard reliability and probability
formulas to calculate the basic event probabilities. The use of component failure rates was
discussed in a previous section. Available fault tree computer codes use basic input data to
calculate the basic event probabilities.

The basic data that are required depends on the type of basic event being quantified. The list
below gives the types of data that are generally required:

Component failure rate data. Component failure rates are required to calculate component
failure probabilities and component unavailabilities. If a component failure rate data base is
used, as is the general case, then the failure mode of the component in the data base should be
the same as the failure mode being evaluated in the fault tree. If a component failure rate of the
same failure mode is selected from a data base then the specifications of the component in the
database and its environment should also match as closely as possible to the component being
evaluated. This includes determining that the boundaries of the component are similar (e.g., if

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 7, Quantitative Evaluations of a Fault Tree 88

the component defined in the data base includes failure contributions from its power supply and
the one being evaluated doesn’t, then the data or the model should be modified to insure
consistency). Often, the component being evaluated can only be approximated or can only be
bracketed by component specifications in the data base. It is therefore important to define
associated uncertainty bounds that not only cover statistical uncertainties in the estimate of a
given data value, but also the variations in possible applicable data values (this uncertainty is
sometimes referred to as the “tolerance” uncertainty and can often be much larger than the
statistical uncertainty).

In addition to defining the component specification, it is important to identify whether a standby
failure rate or an operating failure rate is required, or both. A standby failure rate is used to
determine the probability of a failure to start from a standby condition. An operating failure rate
is used to determine the probability of failure to operate for an operating component that has
successfully started. For an operating failure rate, a time of operation is also needed to determine
the failure probability. For a standby component, the average time that a standby failure exists
before repair is accomplished is needed to calculate the unavailability. Failure rates are
sometimes given in units or per demand instead of per hour. The demand can be an operational
cycle of the component for a cyclic component, an average operation time for an operating
component, or an average time a failure exists before completion of repair. The analyst needs to
determine which is the definition used for a given data value and if it is applicable, e.g. if the
average time that a failure exists is similar to that being evaluated.

Human error data. Data in human error data bases consists of human error rates per action.
Human error quantification and human error reliability is different from human factors analysis.
Human factors analysis is a psychological assessment of the factors affecting human behavior.
Human factors analysis is a qualitative analysis. Human reliability analysis quantifies the
probability of different types of human actions. It is human reliability analysis that is used in
FTA.

To quantify the human error that is modeled in the fault tree using a human error rate data base,
the human error being modeled should be matched as closely as possible to the same type of
human error in the data base. Often expert opinion will be used to estimate the human error rate
because of the inapplicability of available human error data. In any case, the uncertainty
associated with the human error rate should account for the possible variations in human
performance and conditions as well as statistical estimation error. Oftentimes, conservatively
high human error rates are assigned to determine the resulting sensitivity of the top event
probability. Those human error rates for which the top event probability is sensitive are then
assessed with more accuracy.

Common cause failure data. Common cause failure (CCF) data are required when CCFs are
modeled in the fault tree. The modeling of CCFs was discussed in an earlier section and is
addressed in the Sample Container Seal Design Example in Chapter 12. Generally, when CCFs
are modeled, conditional failure probabilities are required that are termed beta factors. For more
detailed CCF models, more detailed conditional failure probabilities are used that account for the
number of previous failures. These more detailed models utilize data that are termed alpha
factors, beta binomial factors, or multiple Greek Letter factors. Specialized CCF data sources
are available for some components. Often, a conservatively high value is used for the

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 7, Quantitative Evaluations of a Fault Tree 89

conditional failure probability for a sensitivity study. If the top event is sensitive to the value
then a more accurate assessment is performed.

Phenomenological data. Phenomenological data are needed if one or more initiating event
occurrences are modeled as basic events in the fault tree. These phenomenological events can
include micrometeoroid or orbital debris (MMOD) damage, a fire or explosion, or an earthquake.
The basic data are event frequencies per mission or per unit time. These frequencies, if small,
are often used as probabilities and if they are in units of per unit time can be multiplied by the
appropriate time interval. For a high value of a frequency, the top event is then the frequency of
occurrence (or the expected number of top event occurrences in a given interval). Specialized
data bases or expert opinion are used to obtain these estimates along with their uncertainty
ranges.

In addition to initiating event probabilities, additional probabilities may be required if sequences
are modeled in the fault tree that begin with the phenomenological event. These special
probabilities can include the probability that a defect is missed by inspection and the probability
that the defect propagates to failure. These probabilities are obtained from external calculations,
e.g., stress versus strength calculations, or from expert opinion.

7.3 Top Event Probability

The top event probability is a general term for the probability calculated for the top event. The
top event probability is calculated from the fault tree using the probabilities that are input for the
basic events. Depending on the specific top event definition, the top event probability can be the
probability of the top event occurring during a mission, the probability of the top event occurring
in a given period of time, a pure probability number for the top event, or the top event
unavailability, i.e., the probability that the top event exists at a given point in time. In some
cases, which are not usual, the top event probability can be the frequency of the top event
occurring or the expected number of occurrences of the top event in some interval, which can be
greater than one. This only occurs if the inputs are basic event frequencies or expected numbers
of occurrences that are greater than one in value, which is only done in special cases and is
handled by special computer algorithms. The calculation of the top event probability is described
in Appendix A.

7.4 Gate Probability

A gate probability is sometimes called an intermediate event probability since it is for an
intermediate event below the top event. The gate acts like a top event for the fault tree below it.
Thus, everything that is calculable for the top event is also calculable for every intermediate
event in the fault tree. The types of probabilities that can be calculated for an intermediate event
are the same as those for the top event.

7.5 Importance Measures for a Fault Tree

One of the most important outputs of an FTA is the set of importance measures that are
calculated for the top event. These top importance measures establish the significance for all the
events in the fault tree in terms of their contributions to the top event probability. Both
intermediate events (gate events) as well as basic events can be prioritized according to their

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 7, Quantitative Evaluations of a Fault Tree 90

importance. Top importance measures can also be calculated that give the sensitivity of the top
event probability to an increase or decrease in the probability of any event in the fault tree. Both
absolute and relative importance measures can be calculated.

What is often useful about the top event importances is that they generally show that relatively
few events contribute to the top event probability. In many past FTAs, less than 20% of the
basic events in the fault tree were important contributors, contributing more than 90% of the top
event probability. Moreover, the importances of events in the fault tree generally cluster in
groups that differ by orders of magnitude from one another. In these cases, the importances are
so dramatically different that they are generally not dependent on the preciseness of the data used
in the FTA.

In addition to providing the significance of the contributors, the top importances can be used to
allocate resources. These resources might include testing and maintenance resources, inspection
resources, upgrade resources, quality control requirements and a wide variety of other resource
expenditures. By using the top importances, resources can be optimally adjusted to minimize
total resource expenditures while maintaining the top event probability, thus providing a win-win
situation. Alternatively, for a given resource expenditure such as for upgrades or for
maintenance, the top importances can be used to allocate resources to minimize the top event
probability. This aids decision makers in obtaining the “biggest bang for the buck” by providing
an objective assessment using systematic methodologies, with associated software if needed, to
supplement and complement their subjective information.

These optimizations have been used in various industries to reduce resources by as much as 40%
while at the same time maintaining or decreasing the top event probability. An advantage of
these optimal allocation approaches is that relative risk importances can be used, which have
generally smaller uncertainties than absolute values. Moreover, uncertainties in the importances
can also be handled.

In addition to allocating resources, the importances can be used to assign allowed downtimes and
repair times (actually a type of resource), to focus diagnostic activities in identifying the causes
of a top event, and to focus design activities and requirements in design applications.

Four basic types of top importances can be calculated for the different types of applications that
are described above [1]. The basic importance measures that can be calculated for each event in
the fault tree are:

Fussell-Vesely (F-V) Importance—the contribution of the event to the top event probability.
This importance measure is sometimes call the Top Contribution Importance. Both the
absolute and the relative F-V importance are determinable for every event modeled in the
fault tree, not only for the basic events, but for every higher-level event and contributor as
well. This provides a numerical significance of all the fault tree elements and allows them to
be prioritized. The F-V importance is calculated by summing all the causes (minimal cut
sets) of the top event involving the particular event.

Risk Reduction Worth (RRW)—the decrease in the probability of the top event if a given
event is assured not to occur. This importance measure can also be called the Top Decrease

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 7, Quantitative Evaluations of a Fault Tree 91

Sensitivity. This measure is related to the previous F-V importance. The risk reduction worth
for a basic event shows the decrease in the probability of the top event that would be
obtained if the lower level event, e.g., the failure, did not occur. It thus gives the maximum
reduction in the top probability for the upgrade of an item. Both the absolute value and
relative value of the risk reduction worth are determinable for every event and contributor
modeled in the fault tree. The risk reduction worth is normally calculated by re-quantifying
the fault tree or the minimum cut sets with the probability of the given event set to 0.0. This
calculation and that for Risk Achievement Worth and Birnbaum’s importance measure
(below) are similar to a partial derivative, in that all other event probabilities are held
constant.

Risk Achievement Worth (RAW)—the increase in the top event probability if a given event
occurs. This importance measure can also be called the Top Increase Sensitivity. The risk
achievement worth shows where prevention activities should be focused to assure failures
don’t occur. Since the failures with largest risk achievement worth have the largest system
impacts, these are the failures that should be prevented. The risk achievement worth also
shows the important events for contingency planning: those events having the largest risk
achievement worth have the biggest impacts and should be the priority events considered in
contingency plans and reaction plans. Again, both the absolute and relative risk achievement
worth are obtainable for every event and contributor modeled in the fault tree. The risk
achievement worth is normally calculated by re-quantifying the fault tree or the minimum cut
sets with the probability of the given event set 1.0.

Birnbaum’s Importance Measure (BM)—the rate of change in the top event probability as a
result of the change in the probability of a given event. BM is equivalent to a sensitivity
analysis and can be calculated by first calculating the top event probability with the
probability of the given event set to 1.0 and then subtracting the top event probability with
the probability of the given event set to 0.0. Because of the way BM is formulated, it does
not account for the probability of an event. BM is related to RAW and RRW. When these
are expressed on an interval scale (absolute value), BM = RAW + RRW.

The above importance and sensitivity measures can be calculated, not only for the fault tree, but
also for its equivalent success tree. When applied to the success tree, the measures give the
importance of an event not occurring. The top event is now the nonoccurrence of the undesired
event and each event is the event nonoccurrence. Therefore, when applied to an event in the
success tree, the F-V importance gives the contribution of the nonoccurrence of the event to the
nonoccurrence of the top event. The risk reduction worth gives the decrease in the
nonoccurrence probability of the top event if the event nonoccurrence probability were zero, i.e.,
if the event did occur. The risk achievement worth gives the increase in the nonoccurrence
probability of the top if the nonoccurrence probability of the event were 1.0, i.e., if the event
were assured not to occur. Thus, the importance measures for the success tree give equivalent
information as for the fault tree, but from a nonoccurrence, or success, standpoint.

7.6 Uncertainty Analyses in FTA

The data used for FT quantification is uncertain in part because the estimates are obtained from
limited sampling (i.e., statistical uncertainty) and in part because the events and/or the way they

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 7, Quantitative Evaluations of a Fault Tree 92

are applied varies from the application from which the data was obtained (i.e., tolerance
uncertainty). There are two basic approaches for evaluating data uncertainties, sensitivity
analysis and formal uncertainty analysis. Each of these approaches are briefly discussed below.
The objective here is to give the reader an understanding of the basic concepts of these
approaches as used in FTA. For more details the reader is advised to see any of the many
references on sensitivity and uncertainty analysis [2].

In a sensitivity analysis, an input data parameter, such as a component failure rate is changed,
and the resulting change in the top event probability is determined. This is repeated for a set of
changes using either different values for the same parameter or changing different parameters,
e.g., changing different failure rates. Usually for a given sensitivity evaluation, only one
parameter is changed at a time. This is called a one-at-a-time sensitivity study. Sometimes two or
more parameter values are simultaneously changed to study the interactions among the
parameters.

The decisions that must be made in carrying out sensitivity analyses include what data
parameters to change and what values to use for the changes. A small change in a data
parameter shows the linear effect of the change on the top event probability. Assigning a value
or 1 or 0 to the failure probability of a basic event provides the maximum effect of changes in the
parameter. It can be shown that using a small change and using 1 or 0 for the event probability
gives the same information as the top event importance measures that were described in a
previous section, i.e., the F-V importance, the risk achievement worth, and the risk reduction
worth. Therefore, intermediate changes in the parameters are selected for the sensitivity studies.
Some FT software allows a series of systematic changes in the parameters to be carried out, e.g.,
changing each failure rate by a factor or 2 then a factor of 4, etc.

In contrast to a sensitivity analysis, in an uncertainty analysis a probability distribution is
assigned to each data parameter to describe the possible values that the data parameter may have.
A probability distribution, for example, is assigned to a component failure rate to describe
uncertainties in the estimated failure rate value and uncertainties in the application of this failure
rate to a particular design. The type of probability distribution and the distribution parameters
must be selected to define the specific distribution. The types of probability distributions that are
usually used are the beta distribution, the gamma distribution, and the log normal distribution. A
histogram is also sometimes used if there are assigned discrete values that the data parameter
may assume (with associated probabilities). However, for most FT evaluations one of the
parametric distributions are used, i.e., the beta, gamma, or the lognormal. For any distribution,
the mean value, median value, standard deviation, 5% lower bound and 95% upper bound give a
comprehensive set of characteristic values that summarize the possible values of a data
parameter. When one value is reported it is often the mean value. However, the set of
characteristic values should be ideally reported to provide a comprehensive summary. Many
data bases give at least some of these characteristic values for a given data estimate along with
the probability distribution that is used. However it is important to note that these values only
address the uncertainty associated with the sampling process, and not the application variation.

The beta distribution is used when the data parameter is a pure probability. The possible
argument values for the beta distribution range from zero to one. Two distribution parameter
values are required to define the specific beta distribution. The 5% lower bound and 95% upper

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 7, Quantitative Evaluations of a Fault Tree 93

bound are often used. The mean and standard deviation are also used and are determinable from
the lower and upper bounds. These values must be assigned by the user or be extracted from the
database being used. Depending on the values of the beta parameters, the beta distribution can
be symmetric, can be skewed to the left (a longer tail for lower values), can be skewed to the
right (a longer tail for larger values), or can be u-shaped. The beta distribution is used because it
allows easy manual updating of the distribution parameters when failure data or event data are
collected to give the revised, posterior distribution.

The gamma probability distribution is used to describe the uncertainty in component failure rates
and occurrence rates per unit time. The possible values for the argument of the gamma range
from zero to infinity. The gamma is a positively skewed distribution with a longer tail for larger
values. The gamma is a two-parameter distribution and any two characteristic values determine
the specific gamma distribution. Usually the 5% lower bound and 95% upper bound or the mean
and standard deviation are used to define a specific gamma distribution. These parameters must
again be assigned by the user. Like the beta distribution, the gamma distribution is used because
it is easy to manually update the gamma parameters for observed failure data or occurrence data
to obtain the revised, posterior distribution.

The lognormal distribution is the probability distribution most often used to describe
uncertainties in data for a FT. The range of the lognormal argument is from zero to infinity. The
lognormal is a positively skewed distribution. It is used to describe uncertainties in failure rates
and occurrence rates per unit time. It can also be used to describe uncertainties in event
probabilities if the values are truncated to be no larger than 1.0. Most FT software uses the
lognormal as an uncertainty distribution, and some only have this option. When a lognormal
distribution is used this choice implies that on a log scale the data parameter has a standard,
normal probability distribution. In using a lognormal, factors are the basic descriptors that define
changes in the value, e.g., a factor of 3 change, a factor of 10 change, etc. These “error” factors
are natural measures of change to describe uncertainties in FT data. The lognormal is a two
parameter distribution and any two characteristics such as the median and 90% (two-sided) error
factor define the specific lognormal. The median value divided by the error factor gives the 5%
lower bound. The median value multiplied by the error factor gives the 95% upper bound. The
mean is simply obtained from the median and error factor, as is the standard deviation. These
values must be supplied by the user. Empirical fits that have been carried out show that the
lognormal is one of the best fitting distributions to observed data variations.

Once the probability distributions are assigned to each data parameter then the distributions are
propagated through the fault tree to determine the probability distribution of the top event. This
distribution is interpreted as describing the uncertainty in the top event probability. The mean,
median, standard deviation, 5% upper bound, and 95% lower bound are reported for a full
summary of uncertainty characteristics. A histogram of the top event probability distribution is
also shown and is often fitted to a standard distribution such as a lognormal.

Most FT software determines the top event probability distribution using Monte Carlo
simulation. In a Monte Carlo simulation, a value is selected (sampled) from each data parameter
distribution. This is done using statistical sampling techniques. Each set of data values are used
to quantify the fault tree to determine a value for the top event probability. This is repeated a

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 7, Quantitative Evaluations of a Fault Tree 94

large number of times, such as 10,000∗ or more, to obtain an accurate estimate of the top event
probability distribution. The sample of top event probabilities is then used to obtain the top
event distribution characteristics and the top event distribution histogram.

Finally, in sampling, the user has the choice of assigning the data distributions to be independent
or to be coupled in the sampling. In independent sampling, a value is independently sampled
from each probability distribution. In coupled sampling, one probability distribution is used and
a value sampled from it and used for multiple data values. Generally, the data distributions
should be assigned to be coupled if the same data is used for multiple similar events in the fault
tree. This is the case, for example, if the same generic operated motor valve failure rate is used
for several motor operated valves in the fault tree. FT software documentation describes the
sampling techniques that are available as well as capabilities for coupled and independent
sampling.

7.7 Phase Dependent and Time Dependent Analyses

A simple fault tree quantification provides one value for the probability of the top event along
with the associated uncertainty. This top event probability is not partitioned into contributions
over different phases or different time intervals. If the mission under consideration has different
phases and these are reflected in the fault tree then the top event probability obtained is the total
probability for the mission. Similarly, if a system failure is modeled over a time interval then the
top probability obtained is the total system failure probability over the time interval. In this case,
individual probabilities for different segments of the time interval are not obtainable. Most FT
software cannot produce phase-dependent or time-dependent results. This is not the limitation of
the fault tree model itself but a limitation of the available software. Different phase contributions
can be modeled in an FT. Also, individual failure rates and time intervals can be provided for
each component. However, typical FT software calculates the total probability only and does not
have the capability of breaking the probability into more detailed contributions.

This limitation of FT software is not generally a problem because for most applications a total
probability is all that is desired. If phase-dependent or time-dependent results are desired then
there are two options. Specialized software can be used that has the capability to perform these
calculations. Most of the more specialized software use the minimal cut sets of the fault tree as
input and then carry out more detailed quantifications using these cut sets. Alternatively, the
fault tree model can be modified to allow phase-dependent or time-dependent calculations to be
accomplished with standard FT software. Usually it is more resource effective to use specialized
software since the fault tree modifications can be both extensive and intensive. However, the
fault tree modifications which would be required will be treated briefly here since they can be
useful in cases where only a relatively few events are involved. In the following, the term “time-
dependent” calculations will be used to cover both “phase-dependent” and “time-interval-
dependent” calculations since the techniques are similar for both types of calculations.

∗ The actual number of samples required can be formally estimated by a number of techniques. However all of these
relate to providing enough samples to allow all failure events of interest to occur. One simple rule of thumb is to
sample at a factor of 10 greater then the largest denominator given by the lowest point value of interest. For
example if the lowest probability were 1×10-3, or 1 in 1000, then 10,000 samples would be chosen. Another
technique is to increase the sample size until the results stabilize.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 7, Quantitative Evaluations of a Fault Tree 95

One method of modeling time dependence in the fault tree is to divide (partition) the occurrence
of a given basic event into occurrences in smaller time segments. The event is divided into time
interval events using an OR gate. This modeling is illustrated below. In this case the event
occurrence is divided into two interval occurrences.

EVENT OCCURS

G001

EVENT OCCURS IN
INTERVAL 1

B001

EVENT OCCURS IN
INTERVAL 2

B002

In the above model, the basic event occurrence, such as a component failure, has been separated
into two more specific events, the event occurrence in Interval 1 or the event occurrence in
Interval 2. These two intervals divide the total interval into two smaller sub-intervals. If mission
phases were being modeled then the two intervals would be two separate phases. For more
intervals or phases there would be more inputs. The OR gate is more correctly a mutually
exclusive OR gate since the event cannot occur in both Interval 1 and Interval 2. If the FT
software cannot address mutually exclusive OR gates then the simple OR gate can be used
provided the minimal cut sets can be scanned to remove any minimal cut sets that contain both of
the events.

Data is then be provided for each of the basic events. Specifically, the failure rate or occurrence
rate would be provided for each interval, as well as the length of the specific interval. When the
minimal cut sets are obtained they are divided into two sets, those containing the Interval 1
event; and those containing the Interval 2 event. The sum of the minimal cut sets in a given set
would then be the probability of the top event for that interval (using the standard rare event, or
sum of products, approximation).

If there are multiple events in the fault tree that are to be divided into intervals, the same
partitioning would be carried for each basic event in the fault tree. When the minimal cut sets
are sorted they would be sorted according to the last interval in the minimal cut set. For
example, if a minimal cut set contained the basic events “Event A occurs in Interval 1” and
“Event B occurs in Interval 2” that cut set would be placed into the set of cut sets for Interval 2.
The occurrence of Event A in the earlier interval did not cause the top event. It was the later
occurrence of Event B that caused the top event to occur in Interval 2. This same sorting
procedure applies to any number of intervals which may be modeled.

The above approach applies the rare event approximation in calculating the probability of an OR
event (a union) as the sum of the more specific, input probabilities. As previously discussed, the
use of this approximation is not a problem for most applications since it is accurate for most
problems of interest. In addition, the above approach is flexible since different failure rates can

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 7, Quantitative Evaluations of a Fault Tree 96

be used for each interval, for example to reflect different environments or stresses. The problem
with the approach is that it causes the number of basic events on the fault tree to be expanded
and hence can greatly expand the number of minimal cut sets that are generated and then must be
evaluated.

The number of basic events can be reduced by only expanding particular events and not
expanding others. When this is done the top event probability is divided into the intervals in
which only particular events have occurred. For other events no differentiation is made as to
their interval of occurrence. This approach provides a partial time-dependent answer but even
this partial answer can be useful if the focus is on the dominant events or on the events of
particular interest. However, for a large fault tree and for many time intervals it is better to use
more specialized time dependent software.

Instead of modeling the time dependency in the basic events in the fault tree, separate
quantifications can be carried out for each interval. However to allow this to be performed
correctly, the FT software must be able to accept initial probabilities for basic events as boundary
conditions. In this case, the initial probability for an event is the probability that the event would
have occurred prior to the beginning of the calculation. The probability for the first interval is
then calculated from the interval length and failure rate for the first interval first. Then the
probabilities for each basic event and the top event probability for the first interval are
calculated. For the second interval, the first interval basic event probabilities are input along
with the failure rates and the interval length for the second interval. This is repeated for each of
the intervals in the evaluation. When the minimal cut sets are evaluated for an interval only
those contributions for the minimal cut set occurring in the interval are included, i.e., at least one
of the basic events in the minimal cut set must occur in the interval for there to be any
contribution. This approach can also account for different success criteria or different
configurations by using a different fault tree structure in each case. The approach in which
repeated calculations are carried out is basically a “Markov” analysis. However, as was
mentioned, repeated application of the process can be tedious and most standard FT software
does not allow initial probabilities to be provided for events. Therefore, in these cases, it is
better to use more specialized software that incorporates the necessary modifications directly as
will be addressed in subsequent sections. (The previous approach for modeling the time
dependency in the fault tree can also accommodate different fault tree structures for each interval
by house events at appropriate points in the fault tree.)

7.8 References

1. W. Vesely et al., Measures of Risk Importance and their Applications, NUREG/CR-
3385, U.S. Nuclear Regulatory Commission, 1983.

2. T. Bedford and R. Cooke, Probabilistic Risk Analysis: Foundations and Methods,
Cambridge University Press, 2001.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 8, Dynamic Fault Tree Analysis 97

8. Dynamic Fault Tree Analysis

In this chapter two special fault tree gates are introduced that make it easier to model systems
where the order in which events occur affects the outcome. These two special gates are part of
the Dynamic Fault Tree (DFT) methodology that has been developed specifically for the analysis
of computer-based systems [1]. The concept of fault coverage is also introduced, which is used
in the fault tolerant computing community to model a phenomenon similar to common-cause
failures. The purpose of this chapter is to introduce an interesting extension of the fault tree
analysis methodology and to relate concepts used for analysis of computer systems to those used
in more traditional FTA.

The DFT methodology was developed to provide a means for combining FTA with Markov
analysis. Markov chains [2] are commonly used to assess the reliability and performance of fault
tolerant computer-based systems. Markov models have the advantage of easily modeling the
sequence-dependent behavior that is typically associated with fault tolerant systems. However
Markov models have the disadvantage of being large and cumbersome. The generation of a
Markov model for many systems can be tedious and error-prone.

As a simple example of a sequence dependent failure, consider a system with one active
component and one standby spare connected with a switch controller [3], shown in Figure 8-1.

Primary

Standby

Switch

Figure 8-1. Example of Sequence Dependent Failure

Suppose that the failure mode of the switch is such that when it fails, it is unable to switch. The
failure of the switch only matters if switching from the primary to the standby spare is of interest.
If the switch controller fails after the primary unit fails (and thus the standby spare is already in
use), then the system can continue to operate. However, if the switch controller fails before the
primary unit fails, then the standby spare unit cannot be switched into active operation and the
system fails when the primary unit fails. The order in which the primary and switch fail
determines whether the system continues to operate.

A fault tree model for the standby system is shown in Figure 8-2, where a Priority AND gate
captures the sequence dependent failure of the primary and switch. As discussed in Section 4.2,
Priority AND gate, the Priority AND gate can be replaced with an AND gate, if the sequence
condition is stated explicitly. Thus the fault tree in Figure 8-2 can be replaced with the one in
Figure 8-3. To use the fault tree in Figure 8-3, the analyst must calculate the probability
associated with the event “Switch fails before primary.” In some cases this calculation is trivial.
For example, if the time to failure distributions are exponential, and the primary fails at rate λp

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 8, Dynamic Fault Tree Analysis 98

while the switch fails at rate Sλ , then the probability that the switch fails before the primary is
simply S P S/()λ λ + λ .

Standby
System Failure

Loss of primary
and backup Switch fails

before primary

Switch failsPrimary failsStandby fails

Figure 8-2. Fault Tree Model for Standby System

Standby
System Failure

Loss of primary
and backup

Switch failsPrimary failsStandby fails

Switch fails
before primary

Switch fails
before primary

Figure 8-3. Alternate Fault Tree for Standby System

If the inputs to a Priority AND gate are not simply basic events, this calculation is more difficult,
and in general requires the solution of a set of integral equations or some approximations [4].

The DFT methodology can relieve the analyst of the need to perform the calculation of the
probability of the order of occurrence of the inputs to a Priority AND gate. The DFT
methodology automatically generates and solves the set of integral equations needed to solve the
Priority AND system.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 8, Dynamic Fault Tree Analysis 99

Although many systems with sequence dependencies can be analyzed using traditional fault tree
analysis, the use of DFT constructs offers an interesting alternative. The DFT methodology, in
addition to supporting exact solution of the Priority AND gate, facilitates the analysis of other
sequence dependencies.

8.1 Sequence Dependent Events and Gates

Functional Dependency

Suppose that a system is configured such that the occurrence of some event (call it a trigger
event) causes other dependent components to become inaccessible or unusable. For example, a
communication network failure could disconnect processing elements, or a power failure could
disable other components. A functional dependency (FDEP) gate∗ can be used to explicitly
reflect such dependence. An FDEP gate (see Figure 8-4) has a single trigger input (either a basic
event or the output of another gate in the tree), and one or more dependent basic events.

FDEP

Trigger event
whose

occurrence
forces

other events
to occur

Dependent events that are
forced to occur when the

trigger event occurs.

The FDEP has no
logical output. Thus it is

connected to the fault tree
with a dashed line.

Figure 8-4. Functional Dependency Gate

The dependent basic events are functionally dependent on the trigger event. When the trigger
event occurs, the dependent basic events are forced to occur (fail). The separate occurrence of
any of the dependent basic events has no effect on the trigger event.

The functional dependency gate is useful, for example, when communication is achieved through
some network interface elements, where the failure of the network element isolates the connected
components. Figure 8-5 shows the use of an FDEP gate to model network failure that isolates a
set of processing nodes. In this case, the failure of the network element is the trigger event and
the connected components are the dependent events. When the network element fails, the three
processing nodes are set to failed.

∗ The speciality gates described in this Chapter are a part of the Galileo/ASSAP software package (See Chapter 1,
Section 1.7).

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 8, Dynamic Fault Tree Analysis 100

FDEPNetwork
Failure

Causes of
network
failure

P1 P2 P3
Processing nodes that are

unreachable when
network fails

Connect FDEP
gate to the rest of

the fault tree

Network failure
may have other

effects in fault tree

Figure 8-5. Using an FDEP to Model Network Failures.

An alternative to using the FDEP gate in this case is to include network failure as a potential cause
of failure for each processing node individually, as in Figure 8-6. That is, the network failure event
could input to a set of OR gates, one for each processing node. These two approaches are
equivalent as long as the processing nodes do not experience uncovered failures (uncovered
failures are discussed later in this chapter).

Network
Failure

Causes of
network
failure

Processing nodes that are
unreachable when

network fails

Network failure
may have other

effects in fault tree

P3P2P1

P1 fails P2 fails P3 fails

Figure 8-6. Using Standard Fault Tree Constructs to Model Functional Dependence

An FDEP gate can also be used to model systems with interdependencies, which would
otherwise introduce loops in the fault tree. In Chapter 5, Section 5.4, it was noted that feedback
loops must be avoided in fault tree analysis. This requires only the internal failures in a system
providing support be addressed, which often requires multiple fault trees to be developed for a
support system. However, the use of the dynamic FDEP gate allows such loops to be modeled
correctly. Suppose for example that thermal control and power systems are interconnected, such
that each needs the other to function. A pair of FDEP gates can reflect this interdependence.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 8, Dynamic Fault Tree Analysis 101

Figure 8-7 shows that the failure of the thermal system affects the power system, and that the
failure of the power system affects the thermal system.

FDEPThermal system
Failure

Connect FDEP
gate to the rest of

the fault treeThermal failure
may have other

effects in fault tree

FDEP

Power failure may
have other effects

in fault tree

Connect FDEP
gate to the rest of

the fault tree

Power system
Failure

Figure 8-7. Accounting for Feedback Using FDEP

Spare Gate

Consider a system that utilizes cold spares (spare components that are unpowered, and thus do
not fail before being used). Such systems can be difficult to model exactly using standard fault
tree techniques. The difficulty arises because the system failure criteria cannot be expressed in
terms of logical combinations of basic events, all using the same time frame.

Figure 8-8 shows a SPARE gate. The inputs to the SPARE gate are all basic events and are
ordered. The first (usually drawn as leftmost) input is the primary event, while the second and
subsequent inputs represent spares. The SPARE gate models the sequential activation of the
spares: the first spare is activated when the primary fails; the second when the first fails, etc. The
SPARE gate has one output that becomes true after all the input events occur.

SPARE

Output of gate occurs
when the primary and all
spares have failed (or are

otherwise unavailable).

Primary
component

Spare components.
Spares are used in defined

order.

Spare components
have reduced failure rate
before being switched

into active use.

Figure 8-8. Spare Gate

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 8, Dynamic Fault Tree Analysis 102

Associated with each input to the SPARE gate is a dormancy factor (usually between zero and
one) that multiplies the failure rate while the unit is spare. Thus, it can be assumed that spares
are cold, warm or hot. Cold spares do not fail (if dormancy is zero). Hot spares fail at the same
rate as active (if the dormancy is one). Warm spares fall somewhere between cold and hot
spares.

The DFT methodology keeps track of the order of occurrence of events in the fault tree by
automatically generating and solving the equivalent Markov model. Markov modeling is
described in Appendix D.

The SPARE gate can be used if spare units are shared, that is, where a pool of spares is available
to replace any of a set of (presumably identical) components. A basic event representing a
shared can be an input to more than one SPARE gate. In this situation, the spare is only
available to one of the SPARE gates, depending on which of the primary units fails first. For
example, Figure 8-9 shows a single cold spare A that is available to replace either A1 or A2,
whichever fails first.

A processors
and spare

SPARE SPARE

A1 A2

Cold
Spare A

Figure 8-9. Sharing a Spare

8.2 Coverage Modeling for Fault Tolerant Computer-based systems

Within the fault tolerant computing community, the concept of fault coverage has been studied,
as well as the importance of coverage to accurate reliability assessment [5]. Coverage is defined
as the probability that the computer system can recover, given that a fault occurs. Fault coverage
is a measure of the computer system’s ability to perform fault location, fault containment, or
fault recovery [2], [6], [7], [8].

This section introduces the concept of coverage as it is understood in the fault tolerant computing
community, and relates it to the concept of common-cause failure, as it is understood in the PRA
community.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 8, Dynamic Fault Tree Analysis 103

The concept of coverage in fault tolerant computing

Technological advances have reduced costs to the point where fault tolerant computer system
designs can include sufficient redundant components to minimize the probability that all have
failed. However, the system designer must be certain that faults and errors are detected promptly,
so that the redundant units can be used effectively. If a faulty unit is not reconfigured out of the
system it can produce incorrect results that contaminate the non-faulty units. Reliability models
of fault tolerant computer systems incorporate coverage factors to reflect the ability of the
system to automatically recover from the occurrence of a fault during operation. A coverage
factor is a probability that the system can automatically recover from a fault and it’s associated
errors, and thus can continue normal operation, though possibly in a degraded mode.

A fault tolerant computer system may fail to recover from a fault even if spare units remain. For
example, a fault may produce an undetected error and the subsequent calculations or operations
then operate on incorrect data, possibly leading to overall system failure. Even if an error is
detected, the system may still be unable to recover, because the fault could “confuse" the
automatic recovery procedures into disabling the wrong component. A coverage model is used to
help structure our discussion of covered and uncovered faults.

General structure of a coverage model

Figure 8-10 shows the general structure of a coverage model. The entry point to the model is the
occurrence of the fault, and the three exits (R, C, and S) are the three possible outcomes. The R
or C exit is reached when a fault is covered; the S exit is reached when a fault is uncovered.

Coverage
Model

Fault occurs in a
component.

Fault may be transient or
permanent.

Exit R:
Transient Restoration
Covered transient fault

does not lead to
component failure

Exit C:
Permanent Coverage
Fault leads to covered
failure of component.

Exit S:
Single Point Failure

Fault leads to uncovered
failure of component, and
hence to system failure

Figure 8-10. General Structure for a Coverage Model

Exit R from the coverage model represents transient restoration, the correct recognition of and
recovery from a transient fault. A transient may be caused by external or environmental factors,
such as excessive heat or a glitch in the power line, or more likely, subtle software defects. The
vast majority of faults that occur in computer systems are transient. Successful recovery from a
transient fault restores the system to an operational state without discarding any components - for

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 8, Dynamic Fault Tree Analysis 104

example by masking the error, retrying an instruction, or rolling back to a previous checkpoint.
Reaching this exit successfully requires timely detection of an error produced by the fault;
performance of an effective recovery procedure; and swift disappearance of the fault (the cause
of the error).

Exit C from the coverage model represents permanent coverage, the determination of the
permanent nature of the fault, and the successful isolation and (logical) removal of the faulty
component.

Exit S from the coverage model represents single point failure, in that a single fault causes the
system to fail, generally when an undetected error propagates through the system, or if the faulty
unit cannot be isolated and the system cannot be reconfigured.

In a reliability analysis of a fault tolerant computer system, each component in the computer
system has an associated set of coverage factors (r, c and s) that represent the probability of
reaching the associated exit of the coverage model when a fault occurs in that component. The
three exits from the coverage model are mutually exclusive and complete, thus the three
probabilities sum to unity. The s probability reflects the extent to which a component fault can
cripple the system. The r and c probabilities reflect the extent to which the computer system can
automatically recover from a fault. The relative values of r and c reflect the relative proportion
of transient and permanent faults expected to occur.

Incorporating the coverage probabilities into the fault tree model

To illustrate how the coverage probabilities (r, c, and s) for each component are integrated into
the solution of a static fault tree model, first consider a simple computer system. The 3P2M
system consists of 3 processors (of which one is needed), 2 memories (of which one is needed)
connected by a bus. The fault tree model for the 3P2M system is shown in Figure 8-11. The

Xk * notation in a basic event represents k identical components of type X. This shorthand
notation is supported by the DFT methodology as a convenience to the analyst. Suppose that we
have defined coverage models for the processors and memories. Such coverage models would
include an analysis of the proportion of transient to permanent faults, error detection, recovery
mechanisms, and automatic reconfiguration. Figure 8-12 shows conceptually how coverage
models are added to the fault tree. The pictures inside the boxes are representations of the
coverage models for the components.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 8, Dynamic Fault Tree Analysis 105

3*P 2*M

Bus

3P2M failure

3 Processors;
need 1

2 Memories;
need 1

Figure 8-11. 3P2M Fault Tree

In Figure 8-12, the arrow from a basic event to the coverage model represents the occurrence of a
fault. The effects of the fault (transient restoration, covered fault or uncovered fault) are the exits
of the coverage model. Transient faults (from which the system can automatically recover) lead
back to the basic event, representing a fault that had no permanent consequences. A covered
fault leads to the normal fault tree gate.

Bus

3P2M
failure

2 Memories;
need 1

2*M

3 Processors;
need 1

3*P

Uncovered
fault

Fault
Occurs

Trans ient
Res toration

Covered Fault

Figure 8-12. Inserting Coverage Model in a Fault Tree

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 8, Dynamic Fault Tree Analysis 106

It is covered faults whose combination is represented by the original fault tree model.
Uncovered faults lead directly to the top OR gate in the tree. For details on how the coverage
probabilities are incorporated into the quantitative analysis of the fault tree, see [9].

Relationship between coverage and common-cause failures

The concept of coverage and the concept of common-cause failures were developed
independently to address similar needs in different analysis communities. Probabilistic analysis
of redundant systems can produce wildly optimistic results if the redundant components are
considered to fail independently.

Common cause failures (CCFs) are described in Chapter 5, Section 5.2, where the concept of a
β-factor is introduced. When modeling CCF, one defines a set of (usually identical) components
or subsystems, and associated with this set is a β-factor to represent the fraction of the failure
rate of a single component that threatens the other components in the set. Suppose that there are
three components of type A, with individual failure rate λA and a β-factor of βΑ. The rate of a
common cause failure for all components of type A is then. A CCF affects all components in the
common cause set of like components.

Imperfect coverage, or an uncovered fault in a computer system, similarly affects more than a
single component. An uncovered fault in component A with individual failure rate λA and
single-point failure (uncoverage) probability sA affects the entire computer system with rate
 λΑsΑ.

Thus the notions of common-cause and uncovered failures are similar. The main difference is
that CCF affect components of the same type, and do not necessarily lead to system failure.
Uncovered faults in a computer system can (and usually do) affect components of a different
type and lead to the failure of the entire computer system (and presumably the system being
controlled by the computer). That is, an uncovered failure in a processor could affect all the
components connected to the bus, whether they are processors, memories, devices, etc. Further,
coverage modeling allows the distinction between transient faults (which are very common in
computer systems) and permanent faults.

8.3 Modular Solution of Dynamic Fault Tree

The use of a Markov model to solve DFTs offers a significant advantage. The Markov model
permits failure effects that depend on the order in which components fail to be captured in the
analysis. This issue is especially important when modeling systems with shared pools of spares.
However, this ability to model complex redundancy management does not come easily. The
solution of a Markov model is much more time and memory consuming than the solution of a
standard (static) fault tree model. The size of a Markov model (in terms of the number of states
and transitions) grows exponentially with the number of components in the system. For a system
with many components, the solution of a system using a Markov model may be infeasible, even
if the model is truncated.

However, if the system level fault tree can be divided into independent modules [10], and the
modules solved separately, then the separate results can be combined to achieve a complete

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 8, Dynamic Fault Tree Analysis 107

analysis. As an example, consider the 3P2M example, but consider that one of the processors is
a cold spare. The modified 3P2M with fault tree is shown in Figure 8-13. The Markov model
for this fault tree has about 30 states, and is readily solved. However, the fault tree may be
divided into two modules, as shown in Figure 8-14, where the independent module is indicated.
This independent dynamic module can be solved as a Markov model with only 6 states. When
the Markov model is solved, its probability of failure is incorporated into the rest of the fault
tree, which is now static (it has no dynamic gates), and can be solved via conventional fault tree
analysis techniques.

2*M

Bus

Failure of
3P2M with
cold spares

3 Processors;
need 1

2 Memories;
need 1

SPARE SPARE

A1 A2

Cold
Spare A

Figure 8-13. Fault Tree for 3P2M System with Cold Spares

2*M

Bus

Failure of
3P2M with
cold spares

3 Processors;
need 1

2 Memories;
need 1

SPARE SPARE

A1 A2

Cold
Spare A

Independent subtree that
can be solved as a Markov

chain

Figure 8-14. Independent Module in Fault Tree

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 8, Dynamic Fault Tree Analysis 108

This modularized approach to fault tree analysis has several important advantages. First, it
allows for the use of the more efficient static fault tree analysis methodology where it applies,
and the Markov approach is used only where necessary. Further, even if every module is
dynamic, separate Markov models can be developed for each module, which can result in an
enormous saving of computer time and memory. Consider the case of three dynamic modules,
each needing 1000 states in the Markov chain. The solution of three 1000-state Markov chains is
not computationally intensive. However, without modularization, the resulting single Markov
chain would consist of the cross-product of the states of the separate models; that is, a
1000×1000×1000 states, which is beyond the capabilities of most computer systems.

8.4 References

1. J. Dugan, S. Bavuso and M. Boyd, “Dynamic fault tree models for fault tolerant
computer systems,” IEEE Transactions on Reliability, Vol. 41, No. 3, September
1992, pp 363-377.

2. J. Pukite and P. Pukite, Modeling for Reliability Analysis, IEEE Press, 1998.

3. E. Henley and H. Kumamoto, Probabilistic Risk Assessment, IEEE Press, 1992.

4. J. Fussell, E. Aber and R. Rahl, “On the quantitative analysis of Priority-AND failure
logic,” IEEE Transactions on Reliability, Vol. R-25, No. 5, December 1976, pp 324-
326.

5. W. Bouricius, “Reliability modeling for fault-tolerant computers,” IEEE Transactions
on Computers, Vol. 20, No. 11, November 1971.

6. J. Dugan and K. Trivedi, “Coverage modeling for dependability analysis of fault
tolerant computer systems,” IEEE Transactions on Computers, Vol. 38, No. 6, pp
775-787, 1989.

7. M. Cukier, J. Arlat and D. Powell, “Coverage estimation methods for stratified fault-
injection,” IEEE Transactions on Computers, Vol. 48, No. 7, pp 707-723, July 1999.

8. L. Kaufman, B. Johnson and J. Dugan, “Coverage estimation using statistics of the
extremes when testing reveals no failures,” IEEE Transactions on Computers, Vol.
51, No.1, pp 3-12, January 2002.

9. S. Amari, J. Dugan and R. Misra, “A separable method for incorporating imperfect
fault coverage into combinatorial models,” IEEE Transactions on Reliability,
September 1999, pp 267-274.

10. Y. Dutuit and A. Rauzy, “A linear-time algorithm to find modules in fault trees,”
IEEE Transactions on Reliability, September 1996.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 9, Aerospace Risk and System Applications 109

9. FTA in Aerospace PRA Applications

The following sections discuss FTA topics that are relevant to aerospace applications. Figure 9-
1, extracted from the NASA PRA Procedures Guide [1], shows the role of the FT modeling in a
typical PRA. The block labeled “Logic Modeling” corresponds to event tree and fault tree
modeling of accident sequences (accident scenarios) as discussed previously in Section 1.6 of
this handbook. Because FTs are workhorses of a PRA, and can be used as stand-alone models,
this handbook focuses on fault trees modeling techniques. For information on scenario-based
PRA modeling, the reader should consult Reference 1.

Certain PRA model considerations for aerospace applications are discussed in Section 9.1. The
last two sections of the chapter describe two specific uses of FTs either in a PRA or as a stand-
alone —to support development of a new design (an important current use by NASA) and to
support analysis for an implemented design such as the Space Shuttle.

Objectives
Definition

System
Familiarization

Initiating
Events

Identification
Structuring
 Scenarios

Logic
Modeling

Quantification
and

Integration

Uncertainty
AnalysisData Collection and Analysis

Interpretation
of Results

Sensitivity
Analysis

Importance
Ranking

Figure 9-1. A Typical PRA Task Flow

9.1 Separating Qualitative and Quantitative Considerations in FTA as Exemplified in a
Phased Mission Analysis

For certain aerospace applications, the goal is to model the different phases of a mission. An
example is the Space Shuttle, which can be modeled as having three phases in its mission—
Ascent, Orbit and Entry. If a system goes through different phases in a mission then the failure
of the system in each phase should be modeled. The success criteria for the system as well as the
system configuration and system boundary may change from phase to phase. For each phase a
fault tree can be constructed for system failure accounting for the success criteria, configuration,
and system boundary for that phase. In constructing the fault tree for the given phase other

Focus of this
handbook

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 9, Aerospace Risk and System Applications 110

phases can be ignored. However, when the fault trees are quantified for the different phases then
the interactions among the different phases need to be taken into account. For example, if there
is an event in the fault tree that describes the component being failed in a given phase, then the
component may be failed due to its failing in the given phase or may be failed due to its failing in
a previous phase. When the probability of the component being failed in a phase is quantified
then the probabilities of the component failing in the past phases need to be evaluated as well as
in the present phase. In this quantification, different component failure rates in the different
phases may be used as well as different repair criteria. A number of computer codes handle
these inter-phase evaluations to simplify the analyst’s tasks. This separation of the qualitative
and quantitative considerations in phased missions is an example of the general separation of the
qualitative and quantitative considerations in FTA in general.

9.2 Fault Trees for System Design

A fault tree can also be constructed for a system that is being designed as well as for a system
that is implemented and operating. Even though the general principles used in constructing these
two different types of fault trees are the same, there are differences in the strategies used, in the
scope of the fault trees, and the level of resolution of the fault trees. The basic principles
applicable to the construction of fault trees for design are discussed here. Fault trees constructed
for already operating systems are discussed in the next section.

In constructing a fault tree for a system that is being designed, the detailed specifications for the
system or the detailed schematic for the system are not generally available. Often only the top-
level logic for the system is available, this consisting of its basic functions and general interfaces.
Even with this limited information, a fault tree can be an important tool in assisting in the design
of the system. Furthermore, a fault tree can serve as a primary tool for providing a performance-
based design for the system.

For evaluating a system design, the fault tree to be developed is a top-level fault tree showing the
general logic and relationships for the design. To quantify the fault tree, where specific data are
not available, generic data from published data sources are used. When using generic databases,
data on heritage systems, suitably modified to take into account risk significant design changes,
are used and the data that brackets the component or subsystem that is being investigated is
determined by comparing the general characteristics of the design with the characteristics
associated with the generic data. The bracketed results from the design fault tree gives useful
information on the range of failure probability or reliability achievable with the design. One of
the example fault trees that will be described was used for a system design.

When the design fault tree is quantified the importances and sensitivities of the different parts of
the design are obtained. This is useful information and shows what parts of the system drive the
failure probability and reliability. The designer can then focus on the important and sensitive
parts. One of the greatest benefits resulting from carrying out any FTA is the establishment of
design priorities for all elements of the fault tree and thereby for the design effort. Often, only a
few of the elements, or contributors, will drive the failure probability and reliability. The FTAs
that have been performed in the past generally show that less than 20% of the contributors
dominate the failure probability and the reliability. Often, in fact, 90% or more of the result is
driven by as little as 10% or less of the contributors.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 9, Aerospace Risk and System Applications 111

The application of the design fault tree can be carried one step further. In this case it can be used
as a tool for performance-based design. The example of the design fault tree that will be
described is an application of FTA for performance-based design. In carrying out a
performance-based fault tree evaluation, a failure probability goal is assigned to the top event.
This goal is then allocated down through the fault tree to the modules and subsystems in the
design. The allocated values that are obtained for the modules and subsystems indicate whether
the design has the capability of meeting the top goal. In other words, these values indicate what
is sometimes called the “achievability” of the design goal. Various allocations can be selected to
determine their feasibilities. Furthermore, by incorporating CCFs into the fault tree evaluations,
not only can the number of redundant elements required be determined but also whether diversity
is required as opposed to simple identical unit redundancy. For diversity, the redundant
capabilities must be provided without relying on identical units to guard against common
dependencies. It can be further required that proven technologies be used to provide the
functions. In this case, the allocated values provide performance requirements to the suppliers of
the system. Design fault trees can therefore be important tools to assist in focusing the design
effort and providing performance-based requirements for the design.

9.3 Fault Trees for an Implemented System

When a fault tree is constructed for an implemented and operational system, detailed design and
operational information is generally available. In this case, the goal in carrying out a FTA is
often to improve the system or to diagnose problems within the system. The fault tree may also
be constructed to monitor system safety or reliability performance. When a fault tree is
constructed for an implemented system the tree is developed down to a level containing the
contributors of interest and for which data is available. This often means constructing the fault
tree down to the major component level, e.g. to a valve, pump, and control module level.
Because of their low failure probabilities, piping and wiring is not generally modeled unless the
objective is specifically to go to this level of detail or if there is suspicion that global effects,
such as aging or wearout, have increased the failure probabilities. Also, fault trees are generally
not developed to a detailed contact or part level for a component such as a valve stem because of
the lack of data to support quantification of such detailed models.

The capability of a FTA to establish priorities among fault tree elements is very useful. Different
importance measures may be calculated in FTA for different applications. By including resource
expenditures, burden-to-importance ratios can be calculated to show the imbalances between
resource expenditures and the importance to risk. Using these importance measures and using
cost-benefit principles, resource expenditures on operational systems can be optimally re-
allocated to maximize their effectiveness. In many past applications, resources have been re-
allocated resulting in significant reductions in total resource expenditures with no impacts on the
failure probability or risk. In particular cases, resource expenditures have been reduced as much
as 40% or more. If the total resource expenditure is held fixed then the resources can be re-
allocated to significantly reduce the current failure probability and risk. In many cases the
failure probabilities have been significantly reduced, sometimes by a factor of 10 or more, using
the same total resources.

In addition to prioritizing the contributors, FTA can be used on an operational system to predict
and correct failures before they occur. Failure trending of the components or other lower level

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 9, Aerospace Risk and System Applications 112

elements in a system can be established and input to the fault tree to determine the system
implications. Performance criteria on the system can then be used to determine the appropriate
actions to take. Monitoring of system performance can also be conducted by periodically
updating the fault tree quantification with current data. Formal approaches exist for
incorporating new data into the baseline fault tree quantification. Defect data and soft failure
(partial failures) data can also be incorporated, in addition to hard failure data. The use of FTA
in this way can be referred to as a “proactive” use.

The FTA can also be used reactively. In this case, when a system failure occurs the fault tree can
be used to diagnose the potential causes and to identify the most effective corrective measures.
If a component failure occurs, the fault tree can be used to identify the significance of the failure
with respect to the overall failure of the systems and identify those remaining components in the
system that are most important in preventing the top event (precursor or “near miss” analysis).
This evaluation can sometimes be performed using the importance measures produced by the
FTA.

9.4 References

1. Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners,
NASA, Version 1.1, August 2002.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 10, Pressure Tank Example 113

10. Pressure Tank Example

In this and the next three chapters, undesired events associated with four simple systems are
defined and the corresponding fault trees are developed with the help of the rules described in
Chapter 4. The fault trees are solved in two of the examples to identify the associated minimal
cut sets and limited observations are drawn. The first example, the pressure tank, is a classic
fault tree example.

10.1 Pressure Tank System Definition and Fault Tree Construction

Consider Figure 10-1, which shows a pressure tank-pump-motor device and its associated
control system that is intended to maintain the tank in a filled and pressurized condition. The
operational modes are given in Figure 10-2.

PRESSURE
TANK

PRESSURE
SWITCH S

RELAY
K1

RELAY
K2

TIMER
RELAY

MOTOR

PUMP

SWITCH
S1

FROM RESERVOIR

OUTLET
VALVE

Figure 10-1. Pressure Tank System

The function of the control system is to regulate the operation of the pump. The latter pumps
fluid from an infinitely large reservoir into the tank. Assume that it takes 60 seconds to
pressurize the tank. The pressure switch has contacts that are closed when the tank is empty.
When the threshold pressure has been reached, the pressure switch contacts open, deenergizing
the coil of relay K2 so that relay K2 contacts open, removing power from the pump, causing the
pump motor to cease operation. The tank is fitted with an outlet valve that drains the entire tank
in an essentially negligible time; the outlet valve, however, is not a pressure relief valve. When
the tank is empty, the pressure switch contacts close, and the cycle is repeated.

Initially the system is considered to be in its dormant mode: switch S1 contacts open, relay K1
contacts open, and relay K2 contacts open; i.e., the control system is de-energized. In this de-
energized state the contacts of the timer relay are closed. The tank is also assumed to be empty
and the pressure switch contacts are therefore closed.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 10, Pressure Tank Example 114

DORMANT MODE
SW S1 - CONTACTS OPEN
RELAY 1 - CONTACTS OPEN
RELAY 2 - CONTACTS OPEN
TIMER REL - CONTACTS CLOSED
PRESSURE SW - CONTACTS CLOSED

START-UP TRANSITION

S1 -MOMENTARILY
 CLOSED

RELAY 1 - ENERGIZED &
 LATCHED

RELAY 2 - ENERGIZED
 (CLOSED)

TIMER REL - STARTS TIMING
PRESSURE SW - MONITORING

 PRESSURE

PUMP STARTS

PUMPING MODE

SW S1 - CONTACTS OPEN
RELAY 1 - CONTACTS CLOSED
RELAY 2 - CONTACTS CLOSED
TIMER REL - CONTACTS CLOSED

 & TIMING
PRESSURE SW - CONTACTS CLOSED

 & MONITORING

EMERGENCY SHUTDOWN

SW S1 - CONTACTS OPEN
RELAY 1 - CONTACTS OPEN
RELAY 2 - CONTACTS OPEN
TIMER REL - CONTACTS CLOSED
PRESSURE SW - CONTACTS CLOSED

EMERGENCY
SHUTDOWN
TRANSITION

(ASSUME PRESSURE
SWITCHING-UP)

RELAY 1 - CONTACTS OPEN
RELAY 2 - CONTACTS OPEN
TIMER REL - TIMES OUT &

 MOMENTARILY
 OPENS

PRESSURE SW - FAILED CLOSED
PUMP STOPS

PUMPING MODE

SW S1 - CONTACTS OPEN
RELAY 1 - CONTACTS CLOSED
RELAY 2 - CONTACTS OPEN
TIMER REL - CONTACTS CLOSED
PRESSURE SW - CONTACTS OPEN

 & MONITORING

TRANSITION TO READY

RELAY 2 - DE-ENERGIZED
 (OPEN)

TIMER REL - RESETS TO ZERO
 TIME

PRESSURE SW - CONTACTS OPEN

PUMP STOPS

TRANSITION TO PUMPING

RELAY 2 - ENERGIZED
 (CLOSED)

TIMER REL - STARTS TIMING
PRESSURE SW - CONTACTS CLOSE

PUMP STARTS

Figure 10-2. Pressure Tank Operational Modes

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 10, Pressure Tank Example 115

System operation is started by momentarily depressing switch S1. This applies power to the coil
of relay K1, thus closing relay K1contacts. Relay K1 is now electrically self-latched. The
closure of relay K1 contacts allows power to be applied to the coil of relay K2, whose contacts
close to start the pump motor.

The timer relay has been provided to allow emergency shut-down in the event that the pressure
switch falls closed. Initially the timer relay contacts are closed and the timer relay coil is de-
energized. Power is applied to the timer coil as soon as relay K1 contacts are closed. This starts
a clock in the timer. If the clock registers 60 seconds of continuous power application to the
timer relay coil, the timer relay contacts open (and latch in that position), breaking the circuit to
the K1 relay coil (previously latched closed) and thus producing system shut-down. In normal
operation, when the pressure switch contacts open (and consequently relay K2 contacts open),
the timer resets to 0 seconds.

The undesired event for this example is:

 RUPTURE OF
PRESSURE TANK

AFTER THE START
OF PUMPING

It will simplify things considerably if plumbing and wiring failures and also all secondary
failures are neglected except, of course, the one of principal interest: “tank rupture after the start
of pumping.”

The reader may object that a system that includes an infinitely large reservoir and an outlet valve
that drains the tank in a negligible time is unrealistic; and that furthermore plumbing and wiring
faults that might contribute to the occurrence of the top event have been neglected. The point is
that with this simplified system most of the important steps in fault tree construction can be
illustrated. In a more complex system the reader might tend to lose sight of the overall system
and become too involved in the details.

First, check to make certain that the top event is written as a fault and that it specifies a “what”
and a “when.” Next, apply the test question: “Can this fault consist of a component failure?”
Because the answer is “Yes,” immediately add an OR-gate beneath the top event and consider
primary, secondary, and command modes.∗ The tree has now been developed to the point shown
in Figure 10-3.

In this problem the limit of resolution will be established at the “component failure level.”
“Component” refers to those items specifically named in Figure 10-1. Thus the primary failure
of the tank (e.g., a fatigue failure of the tank wall) is already at the limit of resolution and is
shown in a circle. Whether or not the statement in the diamond is included is moot. It could be
assumed at the beginning that the tank was an appropriate one for the operating pressures
involved. At any rate, it is decided not to trace this fault any further.

∗ In this case, however, there is no command mode.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 10, Pressure Tank Example 116

RUPTURE OF PRESSURE
TANK AFTER THE START

OF PUMPING

G001

TANK RUPTURE
(SECONDARY FAILURE)

TANK RUPTURE
(PRIMARY FAILURE)

B001

TANK RUPTURES DUE TO
IMPROPER SELECTION OR

INSTALLATION (WRONG TANK)

B002

Figure 10-3. Fault Tree Construction – Step 1

Thus, attention is now directed to the secondary failure of the tank. The reader will remember
from Chapter 4, that in contrast to a primary failure, which is the failure of a component in an
environment for which it is qualified, a secondary failure is the failure of a component in an
environment for which it is not qualified. Because the secondary failure of the tank can consist
of a component failure, another OR-gate is introduced and the tree assumes the form shown in
Figure 10-4.

Here again the diamond indicates a set of conditions whose causes are chosen not to be
developed further. Notice that the fault spelled out in the rectangle is a specific case of the top
event with a more detailed description as to cause.

Now it might happen that the tank could miraculously withstand continuous pumping for t > 60
seconds but an application of the “No Miracles” rule constrains the situation such that the tank is
always assumed to rupture under these conditions. This can be indicated on the fault tree by
using an Inhibit gate whose input is “continuous pump operation for t > 60 seconds” (see Figure
10-5).

Can the input event to the Inhibit gate consist of a component failure? No, the pump is simply
operating and pump operation for any length of time cannot consist of a component failure.
Therefore this fault event must be classified “state of system.” Now recall the rules of Chapter 4.
Below a “state of system” fault there can be an OR-gate, an AND-gate, or no gate at all.
Furthermore, the minimum, immediate, necessary and sufficient cause or causes should be
sought. In this case the immediate cause is “motor runs for t > 60 seconds,” a “state of system”
fault. Its immediate cause is “power applied to motor for t > 60 seconds,” a “state of system”
fault. The immediate cause of the latter event is “K2 relay contacts remain closed for t > 60

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 10, Pressure Tank Example 117

seconds.” The string of events shown in Figure 10-6 is added to the model to reflect this
additional causal information.

In this case, nothing is lost by jumping from “pump operates continuously for t > 60 seconds”
directly to “K2 relay contacts remain closed for t > 60 seconds.” There is, however, no harm
done in detailing the intermediate causes and, as a matter of fact, the opportunity for error is
thereby lessened.

G001

TANK RUPTURE
(SECONDARY FAILURE)

G002

TANK RUPTURES DUE TO
INTERNAL OVER-PRESSURE
CAUSED BY CONTINUOUS

PUMP OPERATION FOR t > 60
SEC

SECONDARY TANK FAILURE FROM
OTHER OUT-OF-TOLERANCE

CONDITIONS (e.g., MECHANICAL
THERMAL)

B004

B001 B002

+

+

Figure 10-4. Fault Tree Construction – Step 2

TANK RUPTURES DUE TO
INTERNAL OVER-PRESSURE
CAUSED BY CONTINUOUS
PUMP OPERATION FOR t >

60 SEC

G003

PUMP OPERATES
CONTINUOUSLY
FOR t > 60 SEC

IF PUMP RUNS FOR t > 60
SEC, TANK WILL RUPTURE

WITH PROBABILITY = 1

B003

Figure 10-5. Fault Tree Construction – Step 3

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 10, Pressure Tank Example 118

G0 0 3

PUM P OPERATES
CONTINUOUSLY
FOR t > 6 0 SEC

G0 0 4

M OTOR RUNS FOR
t > 6 0 SEC

G0 2 0

POWER APPLIED
TO M OTOR FOR

t > 6 0 SEC

G0 2 1

K2 RELAY CONTACTS
REM AIN CLOSED
FOR t > 6 0 SEC

B0 0 3

Figure 10-6. Fault Tree Construction – Step 4

Now consider the fault event, “K2 relay contacts closed for t > 60 seconds.” Can this consist of
a component failure? Yes, the contacts could jam, weld, or corrode shut. Therefore an OR-gate
is drawn and primary, secondary, and command modes are added as shown in Figure 10-7.

The event of interest here is the command mode event described in the rectangle. Recall that a
command fault involves the proper operation of a component, but in the wrong place or at the
wrong time because of an erroneous command or signal from another component. In this case,
the erroneous signal is the application of EMF to the relay coil for more than 60 seconds. This
“state of system” fault can be analyzed as shown in Figure 10-8.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 10, Pressure Tank Example 119

K2 RELAY CONTACTS
REM AIN CLOSED
FOR t > 60 SEC

G005

K2 RELAY
(SECONDARY FAILURE)

B006

K2 RELAY
CONTACTS FAIL

TO OPEN
(PRIM ARY FAILURE)

B007

EM F APPLIED TO
K2 RELAY COIL
FOR t > 60 SEC

Figure 10-7. Fault Tree Construction – Step 5

EM F APPLIED TO
K2 RELAY COIL
FOR t > 6 0 SEC

G0 0 6

PRESSURE SWITCH
CONTACTS CLOSED

FOR t > 6 0 SEC

EM F REM AINS ON
PRESSURE SWITCH
CONTACTS WHEN

PRESSURE SWITCH
CLOSED FOR t > 6 0 SEC

Figure 10-8. Fault Tree Construction – Step 6

Notice that both input events to the AND-gate in Figure 10-8 are written as faults. In fact, as has
been discussed, all events that are linked together on a fault tree should be written as faults
except, perhaps, those statements that are added simply as remarks (e.g., statements in ellipses).
The pressure switch contacts being closed is not a fault per se, but when they are closed for
greater than 60 seconds, that is a fault. Likewise the fact that an EMF is applied to the pressure
switch contacts is not itself a fault. Notice that the condition that makes this event a fault is
framed in terms of the other input event to the AND-gate.

The fault event, “pressure switch contacts closed for t > 60 seconds,” can consist of a component
failure, so both input events in Figure 10-8 are followed by OR-gates. These events are analyzed
separately, starting with the left-hand event (see Figure 10-9).

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 10, Pressure Tank Example 120

PRESSU RE SWITCH
CON TACTS CLOSED

FOR t > 6 0 SEC

G0 0 7

EXCESS PRESSU RE
N OT SEN SED B Y

PRESSU RE ACTUATED
SWITCH

B 0 0 8

PRESSU RE SWITCH
CON TACTS FAIL TO

OPEN (PRIM ARY
FAILURE)

B 0 1 0

PRESSURE SWITCH
FAILURE

(SECON DARY
FAILURE)

B 0 0 9

Figure 10-9. Fault Tree Construction – Step 7

This leg of the tree has reached its terminus (all input events are either circles or diamonds)
unless, for some reason, it is desired to pursue the event in the left-hand diamond somewhat
further (e.g., ruptured diaphragm, etc.).

The right-hand event in Figure 10-8 is now analyzed as shown in Figure 10-10.

Both the input events in Figure 10-10 are state-of-component faults. The left-hand one is the
more easily analyzed as shown in Figure 10-11.

EMF REM AINS ON PRESSURE
SWITCH CONTACTS WHEN

PRESSURE SWITCH CONTACTS
CLOSED FOR t > 60 SEC

G008

EM F THRU K1 RELAY
CONTACTS WHEN PRESSURE
SWITCH CONTACTS CLOSED

FOR t > 60 SEC

EMF THRU S1 SWITCH
CONTACTS WHEN PRESSURE
SWITCH CONTACTS CLOSED

FOR t > 60 SEC

Figure 10-10. Fault Tree Construction – Step 8

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 10, Pressure Tank Example 121

EM F THRU S1 SWITCH
CONTACTS WHEN

PRESSURE SWITCH
CONTACTS CLOSED

FOR t > 6 0 SEC

G0 1 0

EXTERNAL RESET
ACTUATION FORCE

REM AINS ON SWITCH S1

B0 1 3

S1 SWITCH CONTACTS
FAIL TO OPEN

(PRIM ARY FAILURE)

B 0 1 5

S1 SWITCH FAILURE
(SECONDARY FAILURE)

B0 1 4

Figure 10-11. Fault Tree Construction – Step 9

Another tree terminus has now been reached. The analysis of the remaining input event in
Figure 10-10 is shown in Figure 10-12. The reader will note from this latter figure that the fault
tree development has continued—in this step-by-step fashion—down to timer relay faults.
Finally, the complete fault tree for the pressure tank example is shown in Figure 10-13.

Actually, the fault tree of Figure 10-13 could be considered too complete. Because the only
secondary failure developed was the rupture of the pressure tank due to overpumping, other
secondary failures (the dotted diamonds) could simply be omitted from the diagram. Further
simplifications can also be made, leading to the basic fault tree of Figure 10-14, where the basic
events represent primary failures as shown in the legend and the fault events El, E2 etc. are
defined as follows:

The E's are fault events.

El - Pressure tank rupture (top event).
E2 - Pressure tank rupture due to internal overpressure from pump operation for t > 60

seconds which is equivalent to K2 relay contacts closed for t > 60 seconds.
E3 - EMF on K2 relay coil for t > 60 seconds.
E4 - EMF remains on pressure switch contacts when pressure switch contacts have

been closed for t > 60 seconds.
E5 - EMF through KI relay contacts when pressure switch contacts have been closed

for t > 60 seconds, which is equivalent to timer relay contacts failing to open
when pressure switch contacts have been closed for t > 60 seconds.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 10, Pressure Tank Example 122

G009

EMF NOT REMOVED FROM K1
RELAY COIL WHEN PRESSURE
SWITCH CONTACTS CLOSED

FOR t > 60 SEC

G011

TIMER RELAY CONTACTS FAIL
TO OPEN WHEN PRESSURE
SWITCH CONTACTS CLOSED

FOR t > 60 SEC

G012

TIMER DOES NOT “ TIME OUT”
DUE TO IMPROPER

INSTALLATION OR SETTING

B016

TIMER RELAY CONTACTS
FAIL TO OPEN

(PRIMARY FAILURE)

B018

TIMER RELAY FAILURE
(SECONDARY FAILURE)

B017

K1 CONTACTS FAIL TO OPEN
(PRIMARY FAILURE)

B011

K1 RELAY FAILURE
(SECONDARY FAILURE)

B012

EMF THRU K1 RELAY
CONTACTS WHEN PRESSURE
SWITCH CONTACTS CLOSED

FOR t > 60 SEC

Figure 10-12. Fault Tree Construction – Final Step

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 10, Pressure Tank Example 123

RUPTURE OF
PRESSURE TANK

AFTER THE START
OF PUM PING

G001

TANK RUPTURE
(SECONDARY FAILURE)

G002

TANK RUPTURES DUE TO
INTERNAL OVER-PRESSURE

CAUSED BY CONTINUOUS PUM P
OPERATION FOR t > 60 SEC

G003

PUMP OPERATES
CONTINUOUSLY
FOR t > 60 SEC

G004

K2 RELAY CONTACTS
REMAIN CLOSED FOR

t > 60 SEC

G005

K2 RELAY
(SECONDARY FAILURE)

B006

K2 RELAY
CONTACTS

FAIL TO
OPEN

B007

EMF APPLIED TO
K2 RELAY COIL
FOR t > 60 SEC

G006

PRESSURE SWITCH
CONTACTS CLOSED

FOR t > 60 SEC

G007

EXCESS PRESSURE NOT
SENSED BY PRESSURE

ACTUATED SWITCH

B008

PRESSURE SWITCH
CONTACTS FAIL

TO OPEN
(PRIMARY FAILURE)

B010

PRESSURE SWITCH
(SECONDARY FAILURE)

B009

EM F REAM INS ON
PRESSURE SWITCH
CONTACTS WHEN

PRESSURE SWITCH
CONTACTS CLOSED

FOR t > 60 SEC

G008

EMF THRU K1 RELAY
CONTACTS WHEN

PRESSURE SWITCH
CONTACTS CLOSED FOR

t > 60 SEC

G009

EMF NOT REMOVED FROM K1
RELAY COIL WHEN PRESSURE
SWITCH CONTACTS CLOSED

FOR t > 60 SEC

G011

TIMER RELAY CONTACTS
FAIL TO OPEN WHEN
PRESSURE SWITCH

CONTACTS CLOSED FOR
t > 60 SEC

G012

TIMER DOES NOT "TIME OUT”
DUE TO IMPROPER

INSTALLATION OR SETTING

B016

TIMER RELAY CONTACTS
FAIL TO OPEN

B018

TIMER RELAY
(SECONDARY FAILURE)

B017

K1 RELAY CONTACTS
FAIL TO OPEN

B011

K1 RELAY
(SECONDARY FAILURE)

B012

EMF THRU S1 SWITCH
CONTACTS WHEN

PRESSURE SWITCH
CONTACTS CLOSED FOR

t > 60 SEC

G010

EXTERNAL RESET
ACTUATION FORCE

REMAINS ON SWITCH S1

B013

S1 SWITCH CONTACTS
FAIL TO OPEN

(PRIMARY FAILURE)

B015

S1 SWITCH
(SECONDARY FAILURE)

B014

IF PUMP RUNS FOR t > 60 SEC,
TANK WILL RUPTURE WITH

PROBABILITY = 1

B003

SECONDARY TANK
FAILURE FROM OTHER

OUT-OF-TOLERANCE
CONDITIONS (e.g.,

MECHANICAL, THERMAL)

B004

TANK RUPTURE

B001

TANK RUPTURE DUE TO
IM PROPER SELECTION

OR INSTALLATION
(WRONG TANK)

B002

Figure 10-13. Pressure Tank Rupture Fault Tree Example

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 10, Pressure Tank Example 124

E1

G1 00

T

T

E2

G10 1

E3

G102

S

S

E4

G103

S1

S1

E5

G1 04

K1

K1

R

R

K2

K2

+

+

+

+

•

Figure 10-14. Basic (Reduced) Fault Tree for Pressure Tank Example

10.2. Fault Tree Evaluation (Minimal Cut Sets)

The top event of the fault tree shown in Figure 10-14 can be expressed as a Boolean function of
the primary input events using the method explained in Appendix A, Section A.2. This is
accomplished by starting at the top of the tree and working down:

El = T+E2
= T+(K2+E3)
= T+K2+(S•E4)
= T+K2+S•(S1+E5)
= T+K2+(S•S1)+(S•E5)
= T+K2+(S•S1)+S•(K1+R)
= T+K2+(S•S1)+(S•K1)+(S•R)

LEGEND: FAULTS

E1 TOP EVENT
E2, E3, E4, E5 INTERMEDIATE FAULT EVENTS
R PRIMARY FAILURE OF TIMER RELAY
S PRIMARY FAILURE OF PRESSURE SWITCH
S1 PRIMARY FAILURE OF SWITCH S1
K1 PRIMARY FAILURE OF RELAY K1
K2 PRIMARY FAILURE OF RELAY K2
T PRIMARY FAILURE OF PRESSURE TANK

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 10, Pressure Tank Example 125

This expression of the top event in terms of' the basic inputs to the tree is the Boolean algebraic
equivalent of the tree itself. E1 appears as the union of various combinations (intersections) of
basic events and is the minimal cut expression for the top event. In the example, five minimal
cut sets—two singles and three doubles—have been found:

K2
T
S•S1
S•K1
S•R

Each of these defines an event or series of events whose existence or joint existence will initiate
the top event of the tree.

At this point, first, a qualitative assessment of results and then, armed with some data, a gross
quantitative assessment can be made. Qualitatively, the leading contributor to the top event is
the single relay K2 because it represents a primary failure of an active component. Therefore,
the safety of the system would be considerably enhanced by substituting a pair of relays in
parallel for the single relay K2. Actually, however, the system contains a much more serious
design problems—the controls are being monitored instead of the parameter of interest (pressure
in this case). It should be just the other way around! Thus, the most obvious way to improve the
system would be to install a pressure relief valve on the tank and remove the timer.

The next basic event, in order of importance, is T, the primary failure of the pressure tank itself.
Because the tank is a passive component, recall from Chapter 4 that the probability of the event
T should be less (by an order of magnitude or so) than the probability of event K2. Of less
importance are the three double component cut sets S•S1, S•K1, and S•R2, although it should be
noted that the failure of the pressure switch contributes to each of them.

To make a quantitative assessment of the results requires estimates of failure probabilities for the
components. Table 10-1 provides assumed values for the failure probabilities for the
components in the system.

Table 10-1. Failure Probabilities for Pressure Tank Example

COMPONENT SYMBOL FAILURE PROBABILITY

Pressure Tank T 5 x 10-6

Relay K2 K2 3 x 10-5

Pressure Switch S 1 x 10-4

Relay K1 K1 3 x 10-5

Timer Relay R 1 x 10-4

Switch S1 S1 3 x 10-5

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 10, Pressure Tank Example 126

Because a minimal cut is an intersection of events, the probabilities associated with the five
minimal cut sets are obtained by multiplying the appropriate component failure probabilities
(assuming independence of failures);

P[T] = 5×10-6

P[K2] = 3×10-5

P[S•K1] = (1×10-4) (3×10-5) = 3×10-9

P[S•R] = (1×10-4) (1×10-4) = 1×10-8

P[S•S1] = (1×10-4) (3×10-5) = 3×10-9

The probability of the top event, El is what is to be estimated. Observing that the top event
probability is given by the probability of the union of the minimal cut sets, and that the
probability of each individual minimal cut set is low, the rare event approximation (Chapter 7,
Section 7.1) can be used. Therefore the minimal cut set probabilities are simply summed to
produce

P(E1) ≅ 3.4×10-5.

The relative quantitative importance of the various cut sets can be obtained by taking the ratio of
the minimal cut set probability to the total system probability:

Cut Set Importance

T 14%
K2 86%
S•K1
S•R Less than 0.1%
S•S1

The pressure tank example has been provided on numerous occasions as a workshop exercise for
students learning the basics of fault tree construction. The most frequent analytical error made
by these students is the tendency to leap directly from the event of rupture to the pressure switch.
When this is done the single failure minimal cut set K2, i.e., the primary failure of K2, is missed
completely. The tendency for this error to occur illustrates the importance of applying the rules
described in Chapter 4.

One design-related principle that arises out of this example is that a system should be designed
so that in the failure logic AND-gates appear as close to the tree-top as possible in an effort to
eliminate single event cut sets. The family automobile is a good example of a system which is
not of this type, and the reader can amuse himself by making a lengthy list of single events that
will immobilize his or her car.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 11, Monopropellant Propulsion System Example 127

11. Monopropellant Propulsion System Example

In this chapter an example fault tree for a hypothetical propulsion system is presented.
Following a description of the hypothetical propulsion system, the fault tree for the top event is
developed in a step-by-step fashion with the help of the rules described in Chapter 4. The fault
tree is then solved and limited conclusions are drawn.

11.1 Mono-propellant propulsion system

Consider a simple, pressure fed, monopropellant propulsion system for a small space flight
vehicle shown in Figure 11-1. The purpose of the system is to provide thrust for the vehicle
while in orbit. Additional support systems (such as thermal control) that may be required for
such a system are ignored for this example.

S3

Relief valve
RV4

Thrust chamber inlet
valve
IV3

S2

S1

K5

K1

K4

K3

K2

Propellant tank
with bladder
PT1

Timer relay
K6

Inert gas pressurization
tank

Inert gas check
valve CV1

TK1

Thruster isolation
valve
IV2

Inert gas isolation
valve IV1

Inert gas pressure
regulator RG1

Catalyst

Relief valve
RV1

Relief
valve RV2

Relief
valve RV3

Figure 11-1. Monopropellant Propulsion System

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 11, Monopropellant Propulsion System Example 128

The system uses hydrogen peroxide (H2O2) that passes over a catalyst and decomposes into
byproducts of oxygen, water, and heat to create an expanding gas producing a thrust that changes
the spacecraft velocity. The propellant system component nomenclature is listed in Table 11-1.

Table 11-1. Propellant System Nomenclature

TK1 – Propellant Storage Tank PT1- Propellant Tank 1

RV1 – Relief Valve 1 K1 – Arming Relay K1

RV2 – Relief Valve 2 K2 – Firing Protection Relay

RV3 – Relief Valve 3 K3 – Arming Relay

RV4 – Relief Valve 4 K4 – Firing Relay

IV1 – Isolation Valve 1 K5 – Firing Relay

IV2 – Isolation Valve 2 K6 – Timing Relay

IV3 – Isolation Valve 3 S1 – Arming Switch

RG1 – Regulator 1 S2 – Firing Switch

CV1 – Check Valve 1 S3 – Emergency Cutoff Switch

The system consists of a reservoir TK1 of inert gas that is fed through an isolation valve IV1 to a
pressure regulator RG1. The pressure regulator RG1 senses pressure downstream and opens or
closes to control the pressure at a constant level. A check valve, CV1 allows passage of the inert
gas to the Propellant Tank PT1. Separating the inert gas from the propellant is a bladder that
collapses as propellant is depleted. Propellant is forced through a feed line to the Thruster
Isolation Valve IV2 and then to the Thrust Chamber Inlet Valve IV3. For the Thruster to fire, the
system must first be armed, by opening IV1 and IV2. After the system is armed, a command is
sent to IV3, to open, allowing H2O2 into the thrust chamber. As the propellant passes over the
catalyst, it decomposes producing the byproducts and heat and the expanding gas that creates the
thrust. The relief valves RV1-4 are available to dump propellant overboard should an
overpressure condition occur in any part of the system.

The electrical command system controls the arming and thrusting of the propellant system. To
arm the system, switch S1 is momentarily depressed, allowing electromotive force (emf) to
activate relay switches K1, K2 and K3, and open valves IV1 and IV2. K1 closes and sustains the
emf through the arming circuit. K2 momentarily opens to preclude the inadvertent firing of the
system during the transition to the armed mode, and closes when S1 is released. K3 closes in the
firing circuit. The system is now armed with power supplied to sustain IV1 and IV2 in the open
position.

When firing switch S2 is momentarily depressed, K4 closes sustaining the firing circuit. K5
closes completing the circuit for K6, which begins timing to a predetermined time for the thruster
to fire. The completed circuit opens IV3 and thrusting begins. When K6 times out, it
momentarily opens breaking the arming circuit and opening K1. Power is removed from the IV1
and IV2 relays and both valves are spring-loaded closed. K3 opens breaking the firing circuit,

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 11, Monopropellant Propulsion System Example 129

which opens K4 and K5. IV3 is spring-loaded closed, and the system is in now in the dormant
mode. Should K6 fail and remain closed after timing out, the system can be shut down manually
by depressing S3, which breaks the arming circuit, opening K1 and closing IV1 and IV2. The
firing circuit relay switch K3 will open breaking the firing circuit, which causes K4 and K5 to
open. When K5 opens, IV3 will be spring-loaded closed, and the system will be in the dormant
mode. System operational configurations are summarized in Figure 11-2.

11.2 Monopropellant Propulsion System Fault Tree Development

In this example there are three general system failure modes that can be assessed: (1) the failure
of the system to provide propulsion when commanded; (2) the inadvertent firing of the system
when it is not required; and (3) the continued system firing after the system has been commanded
off. For this example failure mode (3) is addressed.

Since failure mode (3) is of concern, the first question to be asked is, “Can this thruster continue
to thrust by itself?” The answer is no, because a thruster needs propellant to continue thrusting.
Therefore this fault is a “state of system” fault. Because it is a “state of system” fault, either an
AND or OR gate may be applicable. Immediate, necessary and sufficient causes of this failure
mode are identified. Propellant only enters the thruster through IV3, but since IV3 cannot
provide propellant by itself, IV2 is also of concern. Both IV3 and IV2 must remain open to
provide propellant to the thruster from propellant tank PT1. The fault tree is begun as shown in
Figure 11-3.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 11, Monopropellant Propulsion System Example 130

Transition to
Thrust Mode

Transition to armed mode

Dormant Mode
RV1, 2, 3, 4 Closed
IV1 Closed
RG1 As is
CV1 Closed
IV2 Closed
IV3 Closed
S1 Open
S2 Open
S3 Closed
K1 Open
K2 Closed
K3 Open
K4 Open
K5 Open
K6 Closed

Armed Mode
RV1, 2, 3, 4 Closed
IV1 Open
RG1 Regulating
CV1 Closed
IV2 Open
IV3 Closed
S1 Open
S2 Open
S3 Closed
K1 Closed
K2 Closed
K3 Closed
K4 Open
K5 Open
K6 Closed

Thrust Mode
RV1, 2, 3, 4 Closed
IV1 Open
RG1 Regulating
CV1 Open
IV2 Open
IV3 Open
S1 Open
S2 Open
S3 Closed
K1 Closed
K2 Closed
K3 Clos ed
K4 Closed
K5 Closed
K6 Closed (timing)

S1 momentarily closed
K1 closes
K2 momentarily opens
K3 closes
IV1 opens
IV2 opens

Transition to
Dormant Mode

Emergency Shutdown Mode
RV1, 2, 3, 4 Closed
IV1 Closed
RG1 As is
CV1 Closed
IV2 Closed
IV3 Closed
S1 Open
S2 Open
S3 Closed
K1 Open
K2 Closed
K3 Open
K4 Open
K5 Open
K6 Closed

Transition to
Emergency
Shutdown Mode

S3 momentarily opened
IV1 closes
CV1 closes
IV2 closes
IV3 closes
K1 open
K3 open
K4 open
K5 open

K6 opens momentarily (times out)
IV1 closes
CV1 closes
IV2 closes
IV3 closes
K1 opens
K3 opens
K4 opens
K5 opens

CV1 opens
IV3 opens
K4 closes
K5 closes
K6 timing

Figure 11-2. Monopropellant Propulsion System Operational Configurations

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 11, Monopropellant Propulsion System Example 131

THRUSTER SUPPLIED
WITH PROPELLANT AFTER

THRUST CUTOFF

G1

ISOLATION VALVE IV3
REM AINS OPEN AFTER

CUTOFF

ISOLATION VALVE IV2
REM AINS OPEN AFTER

CUTOFF

Figure 11-3. Fault Tree Construction – Step 1

It is assumed in this design that given the failure of IV2 and IV3 when commanded, and
assuming that IV1 closes when commanded, there will be enough residual pressure in the
propellant tank PT1, to blow down enough propellant to adversely affect the intended thrust.

Because they are spring-loaded, valves IV3 and IV2 are expected to close when the power is
removed from their respective relays, the ways in which the valves can remain open are
explored. A primary failure of IV3 (IV3 remains open even though emf is removed from its
relay), can occur if a fault occurs in the structure of the armature; e.g., corrosion, contamination,
or a structural failure may preclude the valve from closing. This is a primary failure of this
component and is described as:

 Primary failure of
IV3 to close after

cutoff.

This is a “state of component” failure because the fault can exist as a component failure. The
gate is an OR gate, one side of which represents the component failure causes (e.g., corrosion,
contamination, or structural failure). The other side of the OR gate consists of any other system-
related causes that result in the same fault, that is, IV3 fails to close after cutoff. In this case, emf
continues to be supplied to the IV3 relay. The fault tree continues, as shown in Figure 11-4. The
fault also depends on the circuit that keeps IV3 open and can only occur with a fault in K5 that
must remain closed to maintain current to the IV3 relay. This is a “state of component” fault that
requires another OR gate with primary failure on one side and other sources of continued emf on
the other. Fault tree construction continues in Figure 11-5.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 11, Monopropellant Propulsion System Example 132

THRUSTER SUPPLIED
WITH PROPELLANT

AFTER THRUST
CUTOFF

G1

ISOLATION VALVE
IV3 REMAINS OPEN

AFTER CUTOFF

G2

EMF CONTINUES TO
BE SUPPLIED TO IVV3

AFTER CUTOFF

PRIMARY FAILURE OF
IV3 TO CLOSE AFTER

CUTOFF

E2

ISOLATION VALVE IV2
REMAINS OPEN
AFTER CUTOFF

Figure 11-4. Fault Tree Construction – Step 2

In the same way the branch for Isolation Valve IV2 is constructed further to consider primary
and command inputs. For the system side of the IV2 fault, it can be seen that one of two events
must occur to remove emf from the IV2 relay; K6 must open at cutoff when the timer times out,
or the emergency switch S3 must open when the operator observes that thrust is continuing and
takes action. The S3 event is broken down into two events, an operation failure (sometimes
called a command event) and a primary failure. In this case the assumptions is also made that an
operator is observing the thrust time and will be ready to depress S3 should the K6 timer fail to
automatically stop the thrust.

 emf continues to be
supplied to IV3

after cutoff.

The fault, in Figure 11-5 is depends on the circuit that keeps IV3 open and can only occur with a
fault in K5 (recall that “miracles” such as power supply failure or wire failures are not
considered), which must remain closed to maintain current to the IV3 relay. This is a “state of
component” and is another OR gate with primary failure on one side and other sources of emf on
the other. The fault path leads to the following tree.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 11, Monopropellant Propulsion System Example 133

THRUSTER SUPPLIED
WITH PROPELLANT

AFTER THRUST
CUTOFF

G1

ISOLATION VALVE
IVE3 REMAINS OPEN

AFTER CUTOFF

G2

EMF CONTINUES TO
BE SUPPLIED TO IV3

AFTER CUTOFF

G4

EMF CONTINUES TO BE
SUPPLIED TO K5 AFTER

CUTOFF
PRIMARY FAILURE OF
IV3 TO CLOSE AFTER

CUTOFF

E3

PRIMARY FAILURE
OF IV3 TO CLOSE

AFTER CUTOFF

E2

ISOLATION VALVE
IV2 REMAINS OPEN

AFTER CUTOFF

G3

EMF CONTINUES TO
BE SUPPLIED TO IV2

AFTER CUTOFF

G5

EMERGENCY SWITCH S3
FAILS TO OPEN AFTER

CUTOFF

PRIMARY FAILURE OF K6
TO OPEN AFTER CUTOFF

PRIMARY FAILURE
OF IV2 TO CLOSE

AFTER CUTOFF

E1

Figure 11-5. Fault Tree Construction – Step 3

On the IV3 side, the tree continues to be constructed through the firing circuit path back through
relay K5 and then to relay K3, which will open when the K6 relay times out and momentarily
opens. Relay K4 does not enter into the fault tree because its only purpose is to sustain the
current in the firing circuit and can only open if relay K3 opens.

Note that the paths of each of the two major branches from the top event, that is IV3 and IV2,
lead to a primary or operational failure of the emergency switch S3 and relay switch K6. A fault
in either of these basic events will affect the propagation of events on both sides and could lead
to the top event.

An additional point should be made regarding the “no miracles” rule. An event that is a
“miracle” cannot occur to resolve a bad situation. For example, the battery deenergizing at the
time that the thruster should stop is not considered.

Note that switch S1 can be depressed to stop the thrust, as well, since K2 will momentarily open.
However, the arming circuit will still be activated (IV2 and IV3 open) and the intent of using S3
as an emergency stop is to place the system in the dormant mode.

The completed fault tree is shown in Figure 11-6. Note the transfers on the right side of the fault
tree to gate G8 and G9 on the left side of the tree.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 11, Monopropellant Propulsion System Example 134

11.3 Qualitative and Quantitative Evaluation of the Fault Tree

Qualitative evaluation of the fault tree in Figure 11-6 is now performed to determine the
minimum cut sets for continued thruster operation after cutoff.

The tree can be broken down into fault event gates as follows:

G1 – Thruster supplied with propellant after thrust cutoff
G2 – Isolation valve IV3 remains open after cutoff
G3 – Isolation valve IV2 remains open after cutoff
G4 – emf continues to be supplied to IV3 after cutoff
G5 – emf continues to be supplied to IV2 after cutoff
G6 – emf continues to be supplied to K5 after cutoff
G7 – emf continues to be supplied to K3 after cutoff
G8 – Emergency switch S3 fails to open after cutoff
G9 - Primary failure of K6 to open after cutoff

The basic events are listed below. The naming scheme used here is arbitrary, but the analyst
should ensure that the naming scheme (see Section 5.6) specifically identifies the basic event
failure mode. For ease in analysis, E1-E8 are used to keep the results simple

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 11, Monopropellant Propulsion System Example 135

 THRUSTER SUPPLIED
WITH PROPELLANT AFTER

THRUST CUTOFF

G1

ISOLATION VALVE IV3
REMAINS OPEN AFTER

CUTOFF

G2

EMF CONTINUES TO BE
SUPPLED TO IV3 AFTER

CUTOFF

G4

EMF CONTINUES TO BE
SUPPLIED TO K5 AFTER

CUTOFF

G6

EMF CONTINUES TO BE
SUPPLIED TO K3 AFTER

CUTOFF

G7

EMERGENCY SWITCH S3
FAILS TO OPEN AFTER

CUTOFF
G8

PRIMARY FAILURE OF S3
TO OPEN WHEN
COMMANDED

E8

OPERATIONAL FAILURE
OF S3 TO OPEN WHEN

COMMANDED

E7

PRIMARY FAILURE OF K6
TO OPEN AFTER CUTOFF

G9

PRIMARY FAILURE OF K6
TO OPEN AFTER TIMING

OUT

E5

PRIMARY FAILURE OF K6
TIMER TO TIME OUT

E6

PRIMARY FAILURE OF K3
TO OPEN AFTER CUTOFF

E4

PRIMARY FAILURE OF IV3
TO CLOSE AFTER

CUTOFF

E3

PRIMARY FAILURE OF
IV3 TO CLOSE AFTER

CUTOFF
E2

ISOLATION VALVE IV2
REMAINS OPEN AFTER

CUTOFF

G3

EMF CONTINUES TO BE
SUPPLIED TO IV2 AFTER

CUTOFF

G5

EMERGENCY SWITCH S3
FAILS TO OPEN AFTER

CUTOFF

G8

PRIMARY FAILURE OF K6
TO OPEN AFTER

CUTOFF

G9

PRIMARY FAILURE OF
IV2 TO CLOSE AFTER

CUTOFF

E1

Figure 11-6. Thruster supplied with propellant after thrust cutoff.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 11, Monopropellant Propulsion System Example 136

E1 = Primary failure of IV2 to close after cutoff
E2 = Primary failure of IV3 to close after cutoff
E3 = Primary failure of K5 relay to open when emf is removed
E4 = Primary failure of K3 to open after cutoff
E5 = Primary failure of K6 to open after timing out
E6 = Primary failure of K6 timer to time out
E7 = Operational failure of S3 to open when commanded
E8 = Primary failure of S3 to open when commanded

In the equations below each fault event is expressed in terms of its equivalent Boolean equation.
The gates are shown as G1-G9. The (•) indicates AND gates and plus sign (+) indicates OR
gates.

G1 = G2 • G3
G2 = G4 + E2
G3 = G5 + E1
G4 = G6 + E3
G5 = G8 • G9
G6 = G7 + E4
G7 = G8 • G9
G8 = E7 + E8
G9 = E5 + E6

Next, starting from the bottom of the tree (Gate G9), each fault gate is expressed in terms of
basic events.

G9 = E5 + E6
G8 = E7 + E8
G7 = (E7 + E8) • (E5 + E6)
G6 = ((E7 + E8) • (E5 + E6)) + E4
G5 = (E7 + E8) • (E5 + E6)
G4 = ((E7 + E8) • (E5 + E6)) + E4) + E3
G3 = ((E7 + E8) • (E5 + E6)) + E1
G2 = (((E7 + E8) • (E5 + E6)) + E4) + E3) + E2
G1 = ((((E7 + E8) • (E5 + E6)) + E4) + E3) + E2) • (((E7 + E8) • (E5 + E6)) + E1)

Expanding algebraically, the entire equation is:

(E7•E5)(E7•E5) + (E7•E5)(E7•E6) + (E7•E5)(E8•E5) + (E7•E5)(E8•E6) + (E7•E5)(E1) +
(E7•E6)(E7•E5) + (E7•E6)(E7•E6) + (E7•E6)(E8•E5) + (E7•E6)(E8•E6) + (E7•E6)(E1) +
(E8•E5)(E7•E5) + (E8•E5)(E7•E6) + (E8•E5)(E8•E5) + (E8•E5)(E8•E6) + (E8•E5)(E1) +
(E8•E6)(E7•E5) + (E8•E6)(E7•E6) + (E8•E6)(E8•E5) + (E8•E6)(E8•E6) + (E8•E6)(E1) +
(E4)(E7•E5) + (E4)(E7•E6) + (E4)(E8•E5) +(E4)(E8•E6) + (E4)(E1) + (E3)(E7•E5) +
(E3)(E7•E6) + (E3)(E8•E5) + (E3)(E8•E6) + (E3)(E1) + (E4)(E7•E5) + (E4)(E7•E6) +
(E4)(E8•E5) + (E4)(E8•E6) + (E4)(E1) + (E2)(E7•E5) + (E2)(E7•E6) + (E2)(E8•E5) +
(E2)(E8•E6) + (E2)(E1)

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 11, Monopropellant Propulsion System Example 137

Minimal cut sets are determined by reducing the expanded equation shown above. The first term
in the equation is replicated cut set E7•E5. Since A•A=A (Appendix A), this term reduces to
E7•E5. E7•E5 also appears as a part of many other terms in the equation. These terms are
eliminated, since A+A•B=A. If the reader looks closely, there are only seven instances of unique
combinations of basic events, which have been shown in bold text.

The equation reduces to the following minimal cut sets:

E6 • E7
E6 • E8
E5 • E7
E5 • E8
E1 • E3
E1 • E4
E1 • E2

Single point failures can be identified by the appearance of single basic events in the list of
minimal cut sets. By simple inspection it can be seen that there are no single point failures.

Assuming the basic events have failure probabilities shown in Table 11-2, the minimal cut set
probabilities are calculated to be as follows:

Table 11-2. Failure Probabilities for Monopropellant Propulsion System Example (the
listed failure probabilities are hypothetical)

Basic
Event Component Failure Mode Failure

Probability

IV Isolation Valve Failure to close when emf is removed 2 x 10-4

K Relay Switch Failure to return when emf removed 3 x 10-3

K6 Timer Relay Switch Failure to time 2 x 10-2

S Manual Switch Failure to close when commanded 1 x 10-5

S Manual Switch Failure to open when commanded 5 x 10-5

S Operational Switch Failure to command the switch open 1 x 10-2

(E6 • E7) = 2.0×10-4

(E5 • E7) = 3.0×10-5

(E6 • E8) = 1.0×10-6

(E1 • E3) = 6.0×10-7

(E1 • E4) = 6.0×10-7

(E5 • E8) = 1.5×10-7

(E1 • E2) = 4.0×10-8

Because the cut set probabilities are all small, the rare event approximation is applicable and the
probability of the top event can be calculated by summing the cut set probabilities (2.3×10-4).

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 11, Monopropellant Propulsion System Example 138

One of the pitfalls in modeling is assuming that the probabilities of all failure modes of a
particular component are the same. Depending on how the component is constructed, the
probabilities will very likely be different for different failure modes, as in a valve failing open or
close. In this example the calculated probability of continued system firing after the system has
been commanded off is shown using hypothetical primary failure mode probabilities. The
importance of using the proper failure mode probability could make a significant difference in
the result.

11.4 Common Cause Failures

Note that the cut sets (E1 • E2), (E5 • E8), and (E1 • E4) result in probabilities that are very low,
even for a redundant system.

The example shows several components that may be susceptible to common-cause failure (CCF),
that is, situations in which the same type of components fail simultaneously for the same cause.
For example, suppose all of the isolation valves had the same manufacturing flaw resulting in the
valve failing to close when power was removed. The thruster could continue to burn despite the
K6 relay timing out and the S3 emergency switch depressed simply because all three isolation
valves remained open due to the same inherent fault.

E1 and E2 (one of the cut sets), the primary failure of isolation valves IV2 and IV3 to close when
commanded, are candidates for common cause failure investigation since the failure of both
valves to close would result in the thruster continuing to fire (recall that the assumption has been
made that enough pressurized propellant remains in the propellant tank PT1 to adversely affect
the intended thrust). This can be accounted for in the fault tree by adding an extra basic event
populated with the estimated CCF probability to gates G2 and G3.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 12, Sample Container Seal Design Example 139

12. Sample Container Seal Design Example

In this example the fault tree modeling process is applied to the design of a sealing mechanism
for a container that is to return samples to Earth.

The first step in a risk-based design process is the establishment of a success criterion for the
events of interest. In this case the success criterion is related to the effectiveness of the container
in assuring containment of a sample. For the sake of this example assume a containment
assurance requirement of 1.0×10-7.

Figure 12-1 indicates a design of a simple single O-ring type seal of the type used in many
applications, including the field joints of the shuttle solid rocket boosters∗. To determine the risk
involved in this simple design the probability of single O-ring failing to maintain containment
must be established. This determination involves a thorough review of the historical
performance of these types of seals made of the proposed material in the proposed application
environment. From the investigation of this historical heritage a failure probability is chosen to
represent the failure of this single seal under normal (that is, within specification) conditions.
Now suppose this investigation discovers that these seals have been shown to be good with a
level of assurance in the 3-sigma or 1.0×10-3 range (a fairly good assumption based upon the
heritage of these designs). In this case the conventional design process would be unlikely to
produce a design employing a single O-ring seal that would meet the success criterion. A simple
conventional design solution, employing multiple seals is shown in Figure 12-2. Considering
only independent failure the combined design would provide containment assurance in the
1.0×10-9 range, as shown by Fault Tree model given in Figure 12-3 (consistent with the rules for
FT construction described in Chapter 4, the combined failure of the three seals is classified as a
“state of system” fault and is modeled using an AND gate), which clearly meets the established
success criterion.

• One seal on each side suffices to perform the
sealing function

Compression
Seal

Figure 12-1. Conventional Functional Seal Design

∗ The shuttle boosters incorporate multiple O-rings in all joints.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 12, Sample Container Seal Design Example 140

• Three seals, rather than one, satisfies both
functional and independent failure risk
requirements

• Redundancy provides protection against
independent seal failures

3 Compression
Seals

Figure 12-2. Risk-Based Design for Independent Failures

REDUNDANT SEALS FAIL
TO PROVIDE

CONTAINM ENT
ASSURANCE

G00 1

1 st O-RING SEAL FAILS

B001

1 .00E-03

2nd O-RING SEAL FAILS

B002

1 .00E-0 3

3 rd O-RING SEAL FAILS

B0 03

1 .00 E-03

Figure 12-3. Fault Tree Model for Triply Redundant Design (Independent Failures Only)

However, in the case of the relatively simple example design given here, all failure modes are of
concern for each seal, so the performance heritage for common cause failure modes must also be
investigated as potential causes of loss of containment assurance. The full set of failure modes
includes those that might represent a CCF to a triplicated identical design. Consideration of the
heritage of non-diverse redundant sealing systems bears out their vulnerability to single causes
that fail multiple seals (again the Shuttle SRBs are an example).

Modeling CCF potential using the conventional “Beta factor” method (Chapter 5, Section 5.2)
and assuming a β-factor of 0.1 (i.e., 10% of the potential failures would represent a common
cause threat) results in a CCF failure probability of 0.1×1.0×10-3, or 1.0×10-4. Adding this failure
to the fault tree results in a containment assurance failure probability of 1.0×10-4, as shown in the

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 12, Sample Container Seal Design Example 141

Fault Tree model given in Figure 12-4∗. Consideration of CCF therefore places the design
unacceptably above the level required by the success criterion.

REDUNDANT SEALS
FAIL TO PROVIDE

CONTAINM ENT
ASSURANCE

G0 01
1 .0 0 E-0 4

COM M ON CAUSE SEAL
FAILURE

B00 4
1 .0 0E-0 4

SEALS FAIL
INDEPENDENTLY

G0 0 3
1 .0 0E-0 9

1 st O-RING SEAL FAILS

B00 1
1 .0 0 E-0 3

2 nd O-RING SEAL
FAILS

B0 02
1 .0 0E-0 3

3rd O-RING SEAL FAILS

B0 03
1 .0 0E-0 3

Figure 12-4. Fault Tree Model for Triply Redundant Design Considering Common Cause

To avoid this, the designer must consider what types of additional diverse design features might
protect against or mitigate the potential for common cause failure. Figure 12-5 shows such a
design. Here a metal-to-metal seal separates two O-ring seals and the O-rings are placed in
different geometric planes. The use of a diverse metal-to-metal seal protects against common
cause failure modes such as low temperature, which might impact the resiliency of the O-rings.
The geometrical separation of the O-rings and their non-coplanar placement mitigates against the
potential for a contaminating fiber or other extended debris compromising both O-rings
simultaneously. Additionally, a fused plug seal has been added as a mitigator against more
insidious debris environments such as dust or other finely suspended particles. The addition of
these diverse elements in the design improves the common cause protection significantly. This
improvement has been accounted for in a revised fault tree by reducing the CCF β-factor by an
order of magnitude from 0.1 to 0.01. This improves the overall design performance to 1.0×10-5

as shown in the Fault Tree model given in Figure 12-6. This value reflects the fact that the seal
insertion process is still vulnerable to dust contamination up to the last seal, the fuse plug, and so
the final seal represents a single seal for residual contaminants given the plug insertion process
assumed.

∗ Since the common cause seal failure fails the entire seal assembly, it can be considered to be a “state of
component” fault. The fault tree has been revised to address this through the use of an OR gate for the top event.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 12, Sample Container Seal Design Example 142

Fused Plug

Compression
Plug @ 180
degrees

Metal-to-metal
Seal

Compression
Plug @ 270
degrees; First
to engage

• Different surface, 90 degree
separation

• Diversity in seal type
– Compression seal
– Fused Plug
– Metal-to-metal seal

Figure 12-5. Risk-Based Design against CCF

The design effort then moves to improving the sealing sequence and identifying methods which,
at most, would expose the first sealing surface to contamination.

REDUNDANT SEALS FAIL
TO PROVIDE

CONTAINMENT
ASSURANCE

G001

1.00E-05

COMMON CAUSE SEAL
FAILURE

B005
1.00E-05

SEALS FAIL
INDEPENDENTLY

G003

2.00E-09

METAL-TO-METAL SEAL
FAILS

B001
1.00E-03

COMPRESSIONS SEAL
FAILURE

G004

COMPRESSION SEAL 1
FAILS

B006

1.00E-03

COMPRESSIONS SEAL 2
FAILS

B007

1.00E-03

FUSED PLUG FAILS

B003

1.00E-03

Figure 12-6. Fault Tree Model of Risk-Based Design Against CCF

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 12, Sample Container Seal Design Example 143

Assume next that it is determined that a debris avoidance or removal process using a special tape
would reduce further the vulnerability to common cause associated with widespread debris. The
Figure 12-6 model is revised to require an additional failure (contamination tape fails) before an
overall common cause seal failure would occur (Figure 12-7). This failure plus the previously
described CCF basic event are included under an AND gate (since neither of these failures
individually results in a common cause seal failure, this is a “state of system” fault). When the
revised model is quantified, the overall probability improves to 1.0×10-6, within striking distance
of the requirement for design success.

SEALING FUNCTION
FAILS

G001
1.00E-06

COMMON CAUSE
SEAL FAILURE

G002
1.00E-06

CONTAMINATION TAPE
FAILS

B006
1.00E-01

COMMON CAUSE
SEAL FAILURE

B005
1.00E-05

SEALS FAIL
INDEPENDENTLY

G003
2.00E-09

METAL-TO-METAL
SEAL FAILS

B001
1.00E-03

COMPRESSION SEAL
FAILURE

G004

COMPRESSIONS SEAL 1
FAILS

B006
1.00E-03

COMPRESSION SEAL 2
FAILS

B007
1.00E-03

FUSED PLUG
FAILS

B003
1.00E-03

Figure 12-7. Fault Tree for Contamination and CCF Risk-Based Design

The design team would then focus attention toward adding more mitigating features to attack the
residual risk by isolating the first seal from the environment as well and/or reducing the
probabilities of failure of the individual seals by the choice or the development of different, more
robust, sealing materials.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 13, Hypothetical Computer System Example 144

13. Hypothetical Computer System Example

This example demonstrates the use of the Dynamic Fault Tree constructs described in Chapter 8
for reliability analysis of fault tolerant computer based systems. Chapter 8 describes the
specialty gates and specialty software developed specifically for modeling DFTs. Figure 1
shows a block diagram of a hypothetical example system that will be referred to as HECS. A
description of the processing, memory and bus systems and applications that constitute HECS
are described below, along with the modeling approach used.

A2

A1 Cold
Spare A

Memory
Interface

Unit 1

Memory
Interface

Unit 2

M1 M5M4M3M2

Operator console,
Operator,

& Software

Redundant Bus

Figure 13-1. HECS (Hypothetical Example Computer System)

13.1 Developing the Fault Tree for HECS

The HECS system requires the correct operation of the processing, memory and bus subsystems,
as well as the software application. Thus HECS will fail (“state of system” fault) if any of these
subsystems fail. The top level of the HECS fault tree appears in Figure 13-2, where the four
major subsystems are listed. The development of each of these subsystems will be investigated
in turn.

HECS FAILURE

G001

PROCESSING SYSTEM
FAILURE

MEMORY SYSTEM FAILURE

BUS SYSTEM FAILURE

APPLICATION/
INTERFACE FAILURE

Figure 13-2. HECS Failure Causes

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 13, Hypothetical Computer System Example 145

Modeling the processing system

HECS includes dual-redundant processors A1 and A2 and a cold spare, which can replace either
upon failure. A cold spare is one that is assumed not to fail before being used. Processors A1,
A2 and the cold spare A are all identical processors, running the same operating system. The
processors are dual-redundant and use comparison monitoring for fault tolerance. Periodic
checkpoints are taken and stored to aid in recovery from errors. Comparison of results and
checkpoints are used to detect errors. When one of the two active processors is determined to
have failed, the cold spare takes its place. The system can continue to operate until all three
processors have failed.

Figure 13-3 shows the use of an AND gate to model the “state of system” processing system
failure, as well as the use of the SPARE gate available in the Galileo/ASSAP software (see
Chapter 1, Section 1.7), to model the relationship between the two active (hot) processors and the
cold spare. The cold spare A is shared between the two active processors, thus its representative
basic event inputs to both SPARE gates.

SPARE SPARE

A1 A2

Cold
Spare A

Processing
system failure

Figure 13-3. Fault Tree Model for HECS Processors

Modeling the memory system

HECS includes five memory units of which three are required. These memory units are
connected to the redundant bus via two memory interface units. If a memory interface unit fails,
the memory units connected to it are unusable. Memory unit 3 (M3) is connected to both
interfaces for redundancy; thus M3 is accessible as long as either interface unit is operational.

The function of the memory units illustrates functional dependencies between elements. There
are five memory units, of which three are required for reliable operation. Thus nominally, one
would expect to connect the basic events for the five memory units using logic such that when

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 13, Hypothetical Computer System Example 146

three of the five units fail, the memory system becomes unreliable. However, there is an added
complication to consider. The memory units are connected to the busses via a pair of memory
interface units. The memory interface unit must be operational in order for the memory unit to
be accessible; thus the memory units are functionally dependent on the interface.

Figure 13-4 shows the portion of the fault tree that models the memory units. The five memory
units (M1 through M5) are connected to a three-of-five combination gate, which provides failure
logic such that the gate output is failed if three of the five inputs are failed (most fault tree
software provides a combination gate as a modeling convenience). The dependency of the
memory units on the interface is captured in the three functional dependency (FDEP) gates. The
memory interface units are the trigger input to the FDEP gates, and the dependent basic events
are the memory units. The FDEP gate operates by labeling the dependent basic events as failed
when the trigger event occurs. The trigger event for an FDEP gate need not be a basic event; the
second functional dependency gate triggers the failure of memory unit M3 when both interface
units fail.

M1 M2 M5M4M3

FDEP FDEP

MIU
1

MIU
2

3/5

FDEP

Memory
system failure

Figure 13-4. Fault tree for HECS Memory System

Since the FDEP gate does not produce a logical output that affects the fault tree output, it is
connected to the fault tree via a dummy output signaled by a dashed line in the figure. Thus the
three-of-five combination gate has five logical inputs, and three dummy inputs (the three-of-five
specification relates to the number of logical inputs that have to fail, and not to the dummy
inputs).

Modeling the bus system

The bus subsystem is a simple one to elaborate. There are two identical redundant buses, of
which one is required for system operation. Thus the bus system fails when both of the buses

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 13, Hypothetical Computer System Example 147

fail. Figure 13-5 shows the Galileo/ASSAP fault tree elaboration of the bus system failure. The
basic event is labeled 2*Bus in order to represent the fact that the two buses are statistically and
functionally identical.

2 *
BUS

Bus system
failure

Figure 13-5. Fault Tree for HECS Bus System

Modeling the application failure

The last subsystem to be considered is the application subsystem. The application software runs
on the computer system. The operator is a human who interfaces with the computer system via a
Graphical User Interface (GUI) that runs on an interface device. Thus an application (software
(SW)) failure, GUI (hardware (HW)) failure or human operator error will lead to system failure.
Figure 13-6 shows the Galileo/ASSAP fault tree elaboration of the application and interface.

HW SW

operator

Application/
Interface failure

Figure 13-6. Fault Tree for HECS Application

HECS system level fault tree

The full HECS fault tree drawn by Galileo/ASSAP is shown in Figure 13-7.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 13, Hypothetical Computer System Example 148

13.2 Fault Tree Quantification

There are two kinds of failure parameters needed to quantify the basic events for the HECS
system: failure rates or probabilities and coverage* parameters. Consider each subsystem in
turn.

Failure rates and probabilities

Processing system

The failure rate for each the processors (when active) is assumed to be a fairly typical value for
such systems, λP = 10-4 per hour. Because the spare is cold, and thus is assumed not to fail
before it is used to replace a failed processor, the dormancy factor* is zero.

Memory system

The failure rate for each of the memory units is assumed to be λM = 6×10-5 per hour, while that
of the memory interface units is assumed to be λMIU = 5×10-5 per hour.

HECS
Failure

Processing
system failure

HW SW

operator

SPARE SPARE

A1 A2

Cold
Spare

A

2 *
BUS

Bus system
failure

M1 M2 M5M4M3

FDEP FDEP

MIU
1

MIU
2

3/5

Memory
system failure

FDEP

Application/
Interface failure

Figure 13-7. Fault Tree for HECS

* See Chapter 8 for a definition of this term.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 13, Hypothetical Computer System Example 149

Bus system

The failure rate for the each individual bus is assumed to be λB = 10-6 per hour.

Application/Interface system

The failure rate for the GUI HW is assumed to be λHW = 5×10-5 per hour. The two remaining
basic events are quantified in terms of failure probabilities rather than rates. The assumed
probability of failure for the operator is PO = 0.001, which means that, on average, the operator is
assumed to be 99.9% reliable. A similar quantification for the application software results in a
software reliability of 97%. Thus the failure probability for the application software is assumed
to be PSW = 0.03.

Coverage parameters

For the fault tolerant components, coverage parameters must be defined. Chapter 8 described the
three coverage probabilities (r, c and s) representing, respectively, the probability of successful
recovery from a transient fault, the probability of successful recovery from a permanent fault and
the probability that a fault is uncovered. To estimate these parameters, some analysis of the fault
tolerance mechanisms is in order.

Processing system

A processor contains built-in test functionality so that error checking occurs concurrently with
instruction execution. If an error is detected, the instruction is retried immediately. Partial results
are stored in case the retry is unsuccessful, so that the computation can be continued from some
intermediate point (called a checkpoint). The process of continuing a computation from a
previously saved checkpoint is called a rollback. In some cases the fault is such that the rollback
is not successful, so the computation must start over after a system-level recovery procedure is
invoked.

An example of a processor fault coverage model is shown in Figure 13-8, and represents the
following hypothetical recovery procedure. First, assume that the fault is transient, and begin a
four-step recovery procedure that continues as long as an error is detected. If an error persists
after all steps have been performed, then a permanent recovery procedure must be invoked.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 13, Hypothetical Computer System Example 150

Transient
Step 1:
Wait

Transient
Step 2:
Retry

Transient
Step 3:

Rollback

Transient
Step 4:
Restart

Exit R:
Transient

Restoration

Attempt
Permanent
Recovery

Exit C:
Permanent
Coverage

Exit S:
Single-Point

Failure

Figure 13-8. Coverage Model for HECS Processors

Step 1. Wait for a short time (a few cycles) and do nothing. If the fault is transient, it may
disappear during this time, allowing rollback to succeed.

Step 2. Retry the current instruction several times.
Step 3. If an error persists, perform a rollback to a previous checkpoint, and pick up the

computation from the checkpoint.
Step 4. Restart the processor and either reload a checkpoint or start the task from the beginning.

If an error persists after the four-step transient recovery process, it is assumed to be caused by a
permanent fault. A system level permanent fault recovery process is begun, to remove the
offending processor from the set of active units and to reconfigure the system to continue
without it.

The analysis of this coverage model consists of calculating the probability of system recovery for
each step of transient recovery and for permanent recovery, given parameters that define the
probability of success and duration of each phase and the characteristics of faults themselves.
The detail of the analysis is beyond the scope of this handbook. The results of the analysis of the
coverage model are summarized in the three coverage probabilities, one for each of the three
exits of the coverage model (Exits R, C and S). For this example, transient restoration is
assumed to be an effective recovery procedure for 70% of all faults (rp = 0.7). Permanent
coverage is assumed to be 98% effective on the remaining 30% of faults (i.e., permanent faults).
Thus, cP = 0.294. The probability that a single processor fault is uncovered, and thus leads to
system failure is sP = (1 – cp – rp) = 0.006.

Memory system

A hypothetical recovery procedure for the memory units is shown in Figure 13-9. The memory
uses an error correcting code, so a single-bit error is always detectable and correctable, and no

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 13, Hypothetical Computer System Example 151

reconfiguration is required. If 98% of all memory faults affect only a single bit, then the
probability of reaching the R exit is 98.0=Mr .

Single bit
Memory error

Error masked
in zero time

Multiple bit
Memory error

Attempt
recovery

Error Occurs

successful unsuccessful

not detecteddetected

0.98 0.02

0.05

0.85 0.15

0.95

Transient
Restoration
Exit R

Permanent
Coverage
Exit C

Failure
Exit S

Failure
Exit S

Figure 13-9. Coverage Model for Memory System

The 2% of faults that affect more than one memory bit are assumed to be 95% detectable. When
a multiple memory error is detected, the affected portion of memory is discarded, the memory
mapping function is updated, and the needed information is reloaded from a previous checkpoint
and updated to represent the current state of the system. Experimentation on a prototype system
revealed that this recovery from the detected multiple-memory errors works 85% of the time.
Thus, the probability of reaching the C exit is the probability that a multiple fault occurs, is
detected, and is recovered from is cM = (0.02) • (0.95) • (0.85) = 0.01615.

There are two paths to the S (single point failure) exit. First, the memory fault causes a single-
point failure if a multiple-bit error is not detected (with probability 0.02 • 0.05). Second, a
single-point failure occurs if a multiple-bit memory error is detected, but the attempted recovery
is not successful. Thus, sM = (0.02) • ((0.05) + (0.95) • (0.15)) = 0.00385.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 13, Hypothetical Computer System Example 152

Memory interface units

Experience with memory interface units suggests that 95% of all faults are recoverable
transients, thus rMIU = 0.95. Of the remaining 5% of faults, which are permanent, 80% are
recoverable by discarding the affected MIU. Thus, cMIU = 0.4 and sMIU = 0.1.

Bus, application and interface

For the remaining components (the bus, the application HW and SW and the human operator) it
is assumed that all faults are permanent and are perfectly covered, thus c = 1 and s = r = 0.

13.3 Analysis Results

The HECS example system was analyzed using Galileo/ASSAP. Galileo/ASSAP analyzed the
HECS fault tree by automatically dividing it into four subtrees, along the same lines as was done
in building the tree. The results at the subtree level are shown in Figure 13-10, for a 100-hour
mission. The processing system and the memory systems were solved as Markov models, while
the rest was solved using static (BDD) methods. Importance analysis (using Birnbaum’s
importance measure*) results are also shown. Three of the subsystems are about equally
important, and a small decrease in unreliability in these subsystems translates to an almost equal
decrease in HECS unreliability (since the importance measures are close to 1). In terms of the
basic components, the memory units, the memory interface units, the application SW and HW
and human operator all have about the same importance (between 0.89 and 0.96). The
processors are less important (0.66). The cold spare (0.002) and bus (0.0002) are not major
contributors to unreliability.

 HECS FAILURE

G001

PROCESSING SYSTEM
FAILURE

G002

MEMORY SYSTEM
FAILURE

G003

BUS SYSTEM FAILURE

G004

APPLICATION/
INTERFACE FAILURE

G005

Unreliability = 0.0670 for
a 100 hour mission.

Solved as Markov chain

Solved as Markov chain

Solved as BDD

Solved as BDD

Prob failure = 0.0140
Importance = 0.94

Prob failure = 0.0186
Importance = 0.95

Prob failure = 1E-8
Importance = 1E-4

Prob failure = 0.0358
Importance = 0.93

Figure 13-10. Analysis of HECS for 100-hour mission

* See Chapter 7 for a definition of this term.

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 13, Hypothetical Computer System Example 153

For a 100-hour mission, the unreliability of the HECS system was found to be 0.067, which
means that it is approximately 93% reliable for 100 hours. Figure 13-11 shows the unreliability
for the HECS system for a period of up to 1000 hours (non-maintained).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000

Time in hours

Pr
ob

ab
ili

ty
 o

f f
ai

lu
re

Figure 13-11. Unreliability for HECS

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendices 154

APPENDICES

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix A. Rules of Boolean Algebra 155

Appendix A. Boolean Algebra And Application To Fault Tree Analysis

A.1 Rules of Boolean Algebra

The Boolean techniques discussed in this appendix have immediate practical importance in
relation to fault trees. A fault tree can be thought of as a pictorial representation of those
Boolean relationships among fault events that cause the top event to occur. In fact, a fault tree
can always be translated into an entirely equivalent set of Boolean equations. Thus an
understanding of the rules of Boolean algebra contributes materially toward the construction and
simplification of fault trees. Once a fault tree has been drawn, it can be evaluated to yield its
qualitative and quantitative characteristics. These characteristics cannot be obtained from the
fault tree per se, but they can be obtained from the equivalent Boolean equations. In this
evaluation process the algebraic reduction techniques discussed in this appendix are used.

The rules of Boolean algebra are presented in Table A-1 along with a short discussion of each
rule. The reader is urged to check the validity of each rule by recourse to Venn diagrams, as
illustrated in Appendix B, Section 1. Those readers who are mathematically inclined will detect
that the rules, as stated, do not constitute a minimal necessary and sufficient set. Here and
elsewhere, mathematical elegance has sometimes been sacrificed in favor of a more useful and
understandable presentation for the practical system analyst.

According to relations (la) and (lb), the union and intersection operations are commutative. In
other words, the commutative laws permit interchange of the events X, Y with regard to an
“AND” or “OR” operation. It is important to remember that there are mathematical entities that
do not commute; e.g. the vector cross product and matrices in general.

Relations (2a) and (2b) are similar to the associative laws of ordinary algebra: a(bc) = (ab)c and a
+ (b+c) = (a+b) + c. If a series of “OR” operations or a series of “AND” operations are under
consideration, the associative laws permits grouping the events any way desired.

The distributive laws, relations (3a) and (3b) provide the valid manipulatory procedure whenever
a combination of an “AND” operation with an “OR” operation is under consideration. By
proceeding from left to right in the equations, the left-hand expression is reduced to an
unfactored form. In relation (3a), for example, operating with X on Y and on Z results in the
right-hand expression. Operating from right to left in the equations simply factors the
expression. For instance, in relation (3b) X is factored out to obtain the left-hand side. Although
relation (3a) is analogous to the distributive law in ordinary algebra, relation (3b) has no such
analog.

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix A. Rules of Boolean Algebra 156

Table A-1. Rules of Boolean Algebra

Mathematical
Symbolism

Engineering
Symbolism Designation

(1a) X∩Y = Y∩ X X•Y = Y•X Commutative Law
(1b) X∪Y = Y∪X X+Y = Y+X
(2a) X∩(Y∩Z) = (X∩Y) ∩Z X•(Y•Z) = (X•Y)•Z Associative Law

X•(Y•Z) = (X•Y)•Z
(2b) X∪(Y∪Z) = (X∪Y) ∪Z X+(Y+Z) = (X+Y)+Z
(3a) X∩(Y∪Z) = (X∩Y) ∪(X∩Z) X•(Y+Z) = X•Y+X•Z Distributive Law

X•(Y+Z) = X•Y+X•Z
(3b) X∪(Y∩Z) = (X∪Y) ∩(X∪Z) X+Y•Z = (X+Y)•(X+Z)
(4a) X∩X = X X•X = X Idempotent Law
(4b) X∪X = X X+X = X
(5a) X∩(X∪Y) = X X•(X+Y) = X Law of Absorption
(5b) X∪(X∩Y) = X X+X•Y = X
(6a) X∩X' = φ X•X' = φ Complementation
(6b) X∪X' = Ω = I* X+X' = Ω = Ι
(6c) (X')' = X (X')' = X
(7a) (X∩Y)' = X'∪Y' (X•Y)' = X'+Y' de Morgan's Theorem
(7b) (X∪Y)' = X'∩Y' (X+Y)' = X'•Y'
(8a) φ∩X = φ φ•X = φ Operations with φ and Ω
(8b) φ∪X = X φ+X = X
(8c) Ω∩X = X Ω•X = X
(8d) Ω∪X = Ω Ω+X = Ω
(8e) φ' = Ω φ' = Ω
(8f) Ω' = φ Ω' = φ
(9a) X∪(X'∩Y) = X∪Y X+X'•Y = X+Y These relationships are
(9b) X'∩(X∪Y') = X'∩Y' =

(X∪Y)'
X'•(X+Y') = X'•Y' =
(X+Y)'

unnamed but are fre-
quently useful in the
reduction process.

*The symbol Ι is often used instead of Ω to designate the Universal Set. In engineering notation Ω is often replaced by 1
and φ by 0.

The idempotent laws, relations (4a) and (4b), “cancel out” any redundancies of the same event.

The laws of absorption, relations (5a) and (5b), can easily be validated by reference to an
appropriate Venn diagram. Relation (5a) can also be argued in the following way. Whenever
the occurrence of X automatically implies the occurrence of Y, then X is said to be a subset of Y.
This situation can be represented in symbolic form as X⊂Y or X→Y. In this case X+Y = Y and
X•Y = X. In relation (5a), if X occurs then (X+Y) has also occurred and X⊂(X+Y); therefore
X•(X+Y) = X. A similar argument can be developed in the case of relation (5b).

De Morgan's theorems, relations (7a) and (7b), provide the general rules for removing primes on
brackets. Suppose that X represents the failure of some component. Then X' represents the non-

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix A. Rules of Boolean Algebra 157

failure or successful operation of that component. In this light, relation (7a) simply states that for
the double failure of X and Y not to occur, either X must not fail or Y must not fail.

As an application of the use of these rules, consider the simplification of the expression

(A+B) • (A+C) • (D+B) • (D+C).

Applying relation (3b) to (A+B) • (A+C) results in

(A+B) • (A+C) = A+(B•C).

Likewise,

(D+B) • (D+C) = D+(B•C).

An intermediate result produced is

(A+B) • (A+C) • (D+B) • (D+C) = (A+B•C) • (D+B•C).

Letting E represent the event B•C results in:

(A+B•C) • (D+B•C) = (A+E) • (D+E) = (E+A) • (E+D).

Another application of relation (3b) yields

(E+A) • (E+D) = E+A•D = B•C + A•D.

Therefore, the final result is

(A+B) • (A+C) • (D+B) • (D+C) = B•C + A•D.

The original expression has been substantially simplified for purposes of evaluation.

A.2 Determining the Minimal Cut Sets or Minimal Path Sets of a Fault Tree

One of the main purposes of representing a fault tree in terms of Boolean equations is that these
equations can then be used to determine the fault tree's associated minimal cut sets and minimal
path sets. Once the minimal cut sets are obtained, the quantification of the fault tree is more or
less straightforward. The minimal path sets are essentially the complements of the minimal cut
sets and define the “success modes” by which the top event will not occur. The minimal path
sets are often not obtained in a fault tree evaluation; however, they can be useful in particular
problems.

Minimal Cut Sets

By the definition, a minimal cut set is a combination (intersection) of primary events sufficient
for the top event. The combination is a “minimal” combination in that all the failures are needed
for the top event to occur; if one of the failures in the cut set does not occur, then the top event
will not occur (by this combination).

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix A. Rules of Boolean Algebra 158

Any fault tree will consist of a finite number of minimal cut sets that are unique for that top
event. One-component minimal cut sets, if there are any, represent those single failures that will
cause the top event to occur. Two-component minimal cut sets represent the double failures that
together will cause the top event to occur. For an n-component minimal cut set, all n
components in the cut set must fail in order for the top event to occur.

The minimal cut set expression for the top event can be written in the general form,

T = Ml + M2 +…+ Mk,

where T is the top event and Mi are the minimal cut sets. Each minimal cut set consists of a
combination of specific component failures, and hence the general n-component minimal cut can
be expressed as

Mi =X1•X2•...•Xn,

where X1, X2, etc., are basic component failures in the tree. An example of a top event
expression is

T=A+B•C,

where A, B, and C are component failures. This top event has a one-component minimal cut set
(A) and a two-component minimal cut set (B•C). The minimal cut sets are unique for a top event
and are independent of the different equivalent forms the same fault tree may have.

To determine the minimal cut sets of a fault tree, the tree is first translated to its equivalent
Boolean equations. A variety of algorithms exist to translate the Boolean equations into cut sets.
Two of the most common are the “top-down” or “bottom-up” substitution methods to solve for
the top event. The methods are straightforward and involve substituting and expanding Boolean
expressions. The distributive law, relations (3a) and (3b) in Section A.1, and the law of
absorption, relations (5a) and (5b), are used to remove the redundancies.

Consider the simple fault tree shown in Figure A-1; the equivalent Boolean equations are shown
following the tree.

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix A. Rules of Boolean Algebra 159

T

G1

E1

G2

A G4

B

B

C

C

G3

C G5

A

A

B

B

E2

A E3 C E4

Figure A-1. Example Fault Tree

T = El•E2
El = A+E3
E3 = B+C
E2 = C+E4
E4 = A•B

First the top-down substitution will be performed, starting with the top event equation and
substituting and expanding until the minimal cut set expression for the top event is obtained.
Substituting for E1 and E2 and expanding produces

T = (A+E3) • (C+E4)
= (A•C) + (E3•C) + (E4•A) + (E3•E4).

Substituting for E3,

T = A•C + (B+C)•C + E4•A + (B+C)•E4
= A•C + B•C + C•C + E4•A + E4•B + E4•C.

By the idempotent law, C•C = C, which results in

T = A•C + B•C + C + E4•A + E4•B + E4•C.

But A•C + B•C + C + E4•C = C by the law of absorption. Therefore,

T = C + E4•A + E4•B.

Finally, substituting for E4 and applying the law of absorption twice

T = C + (A•B)•A + (A•B)•B.
 = C + A•B.

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix A. Rules of Boolean Algebra 160

The minimal cut sets of the top event are thus C and A•B; one single component minimal cut set
and one double component minimal cut set. The fault tree can thus be represented as shown in
Figure A-2, which is equivalent to the original tree (both trees have the same minimal cut sets).

G6

C G7

A

A

B

B

T

C A•B

Figure A-2. Fault Tree Equivalent of Figure A-1.

The bottom-up method uses the same substitution and expansion techniques, except that now the
operation begins at the bottom of the tree and proceeds upward. Equations containing only basic
failures are successively substituted for higher faults. The bottom-up approach can be more
laborious and time-consuming; however, the minimal cut sets are now obtained for every
intermediate fault as well as for the top event.

Consider again the example tree (the equivalent Boolean equations are repeated for the reader's
convenience).

T = El•E2
El = A+E3
E3 = B+C
E2 = C+E4
E4 = A•B

Because E4 involves only basic failures, it is substituted into E2 to obtain

E2 = C + A•B.

The minimal cut sets of E2 are thus C and A•B. E3 is already in reduced form having minimal
cut sets B and C. Substituting into E1, El = A+B+C is obtained. El therefore has three minimal
cut sets A, B, and C. Finally, substituting the expressions for El and E2 into the equation for T,
expanding and applying the absorption law, results in

T = (A+B+C) • (C+A•B)
= A•C + A•A•B + B•C + B•A•B + C•C + C•A•B
= A•C + A•B + B•C + A•B + C + A•B•C
= C + A•B.

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix A. Rules of Boolean Algebra 161

The minimal cut sets of the top event are thus again C and A•B.

As a very simple example, assume the pumping system shown in Figure A-3.

WATER
SOURCE

PAD DELUGE
NOZZLES

VALVE V

PUMP 2

PUMP 1

Figure A-3. Water Pumping System

Assume that the undesired event is “no flow of water to pad deluge nozzles.” Ignoring the
contribution of the pipes, this system can be modeled by the fault tree of Figure A-2, where:

T = “no flow of water to pad deluge nozzles”
C = “valve V fails closed”
A = “pump 1 fails to run”
B = “pump 2 fails to run”

It has just been shown that the minimal cut sets of this tree are C and A•B. The undesired event
“no flow of water to tank” will therefore occur if either valve V fails closed or both pumps fail to
run. In this simple case, the cut sets do not really provide any insights that are not already quite
obvious from the system diagram. In more complex systems, however, where the system failure
modes are not so obvious, the minimal cut set computation provides the analyst with a thorough
and systematic method for identifying the basic combinations of component failures that can
cause an undesired event.

For small fault trees, the determination of the minimal cut sets, using either the top-down or
bottom-up method, can be done by hand. For larger trees, various computer algorithms and
software for fault tree evaluation are available.

Minimal Path Sets and Compliment Fault Trees

The top event of a fault tree often represents system failure. System failure is of great interest
from the point of view of system safety. However, from the point of view of reliability the
concern would more likely be with the prevention of the top event. Since the top event of a fault
tree can be represented by a Boolean equation, and because this equation can be complemented,
there is also a Boolean equation for the complement (i.e., nonoccurrence) of the top event. This
complemented equation, in turn, corresponds to a tree that is the complement of the original tree.
This complemented tree may be obtained directly from the original tree by complementing all
the events and substituting OR-gates for AND-gates and vice versa. In either case, whether the
top event equation or the tree itself is complemented, de Morgan's theorem as given in Table A-1
is applied. The minimal cut sets of the dual tree are the so-called “minimal path sets” of the

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix A. Rules of Boolean Algebra 162

original tree—the smallest combination (intersection) of primary events whose non-occurrence
assures the non-occurrence of the top event.

The combination is a smallest combination in that all the primary event nonoccurrences are
needed for the top event to not occur; if any one of the events occurs then the top event can
potentially occur. The minimal path set expression for the top event T can be written as

T' = P1 + P2 + … + Pk

where T' denotes the complement (nonoccurrence) of T. The terms P1, P2, … Pk are the minimal
path sets of the fault tree. Each path set can be written as

Pi = X'1 • X'2 • … • X'm,

where Xi represents the basic events in the fault tree and X'i represents the complements.

The minimal path sets of a given fault tree can be found by forming its dual and then using either
the top-down or bottom-up method to find the dual’s minimal cut sets. These cut sets are the
minimal path sets of the original tree which were desired.

Alternatively, if the minimal cut sets of the fault tree have already been determined, the
complement of the minimal cut set equation can be generated and the minimal path sets obtained
directly. For the sample tree, the following minimal cut expression was previously obtained:

T = C + A•B.

Taking the complement using de Morgan's theorem

T' = (C+A•B)'
= C'•(A•B)'.

Applying de Morgan's theorem to the term (A•B)',

T' = C'•(A'+B');

and using the distributive law (i.e., expanding)

T' = C'•A'+C'•B'.

Therefore, the minimal path sets of the tree are C'•A' and C'•B'. In terms of the pumping system
of Figure A-3, this indicates that the undesired event can be prevented and the system assured
success if either:

(1) Valve V is open and pump 1 is running, or
(2) Valve V is open and pump 2 is running.

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix B. Probability Theory: The mathematical Description of Events 163

Appendix B. Probability Theory: The Mathematical Description Of Events

This Appendix addresses the basic mathematical technique involved in the quantitative
assessment of fault trees: probability theory. Probability theory is basic to fault tree analysis
because it provides an analytical treatment of events, and events are the fundamental components
of fault trees. The topics that will be considered include set theory, the algebra of probabilities,
and Bayes theorem, all of which provide a foundation for the treatment of events and the
quantification of probabilities of events.

B.1 Set Theory—Application to the Mathematical Treatment of Events

As seen in the previous section, combinatorial analysis allows for the determination of the
number of combinations pertinent to an event of interest. Set theory is a more general approach
that allows the outcome events of an experiment to be “organized” to determine the appropriate
probabilities. In the most general sense, a set is a collection of items having some recognizable
features in common so that they may be distinguished. Examples are prime numbers, relays,
rocket engines, solutions of Bessel's equation, etc. The application of set theory addressed here
involves a considerable particularization. The items of immediate interest are the outcome
events of random experiments and the development of the elementary notions of set theory will
be restricted to the event concept.

An event can be thought of as a collection of elements. Consider, for example, the following
possible events of interest associated with the toss of a die:

A - the number 2 turns up
B - the result is an even number
C - the result is less than 4
D - some number turns up
E - the result is divisible by 7.

Each of these events can be considered as a particular set whose elements are drawn from the
basic outcome space of the experiment: {l, 2, 3, 4, 5, 6}.

That is:

A = {2}
B = {2, 4, 6}
C = {1, 2, 3}
D = {l, 2, 3, 4, 5, 6}
E = φ (the null, void, or empty set),

where braces, “{ },” are used to denote a particular set and the quantities within the braces are
the elements of that set.

Event A can be represented as a set having a single element—the number 2. Both B and C can be
represented as three-element sets. Event D contains all the possible results of the experiment. It
thus coincides with the outcome space. Any such set that contains all the outcomes of an

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix B. Probability Theory: The mathematical Description of Events 164

experiment is referred to as the universal set and is generally denoted by the symbol Ω or I (also
sometimes by the number 1 when the notation is informal). E is an impossible event and can be
represented by a set containing no elements at all, the so-called null set symbolized by φ.

Returning to the die-throwing example, note that the element “1” belongs to C and D but not to
A or B. This fact is symbolized as follows:

B,1 A,1 D,1 ,C1 ∉∉∈∈

where the symbol “∈” means “is an element of” and the symbol ∉ means “is not an element of.”

Note also that the elements of A, B, C are contained in set D. A, B, C are therefore called
subsets of D and this can be expressed by A⊂D, B⊂D, C⊂D. Observe also that A is a subset of
both B and C. If X and Y are two sets such that X is a subset of Y, i.e., X⊂Y and Y is a subset
of X, i.e., Y⊂X, then X and Y are equal (i.e., they are the same set).

As another example, consider the time of failure t of a diesel (in hours) and consider the sets

A = {t=0}
B = {ti, 0 < t ≤ 1}
C = {tj, t > 1}.

The failure to start of the diesel is represented by A, i.e., “zero failure time.” B represents times of
failure which are greater than zero hours (i.e., the diesel started) and less than or equal to one hour.
C represents time of failure greater than 1 hour. Each of these sets, i.e., events, could be associated
with different consequences if an abnormal situation existed (e.g., loss of utility power).

There exists a graphical representation that permits a simple visualization of the set theory
concepts. This representation is known as a Venn diagram. The universal set is represented by
some geometrical shape (usually a rectangle) and any subsets (events) of interest are shown
inside. Figure B-1 represents a Venn diagram for the previous toss-of-a-die example.

A

C
B

Ω

Figure B-1. Venn Diagram Representation of Sets

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix B. Probability Theory: The mathematical Description of Events 165

Operations on sets (events) can be defined with the help of Venn diagrams. The operation of
union is portrayed in Figure B-2.

Ω

X Y

Figure B-2. The Operation of Union

The union of two sets of X, Y is the set that contains all elements that are either in X or in Y or
in both, is written as X∪Y, and is indicated by the shaded area in Figure B-2. Returning to the
die example, the union of B, C is written,

B∪C = {1, 2, 3, 4, 6}

Note that the word “or” translates into the symbol “∪.”

The operation of intersection is portrayed in Figure B-3. The intersection of two sets X, Y is the
set that contains all elements that are common to X and Y, is written as X∩Y, and is indicated by
the shaded area in Figure B-3. In the die example, B∩C = {2} = A. Note that the word “and”
translates into the symbol “∩.”

The operation of complementation portrayed in Figure B-4. The complement of a set X is the set
that contains all elements that are not in X, is written X (or X'), and is indicated by the shaded
area in Figure B-4. For the die example, the complement of the set

() () { }5 CB CB is CB ' =∪=∪∪ .

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix B. Probability Theory: The mathematical Description of Events 166

Ω

X Y

Figure B-3. The Operation of Intersection

Ω

Y

Figure B-4. The Operation of Complementation

There is another operation (unnamed) that is sometimes defined, but it is not independent of the
operations that have already been given. This operation is illustrated in Figure B-5. If all
elements are removed from set Y that are common to both X and Y, the shaded area indicated in
Figure B-5 is what is left. This process is occasionally written (Y-X) but the reader can readily
see that

() XY XY ′∩=− ,

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix B. Probability Theory: The mathematical Description of Events 167

Ω

X

Y

Figure B-5. The Operation (Y-X)

so that the symbol (Y-X) is not needed and hence will not be further used.

As an example, consider a simple system consisting of three components A, B, C. Consider
using the symbols A, B, C not only to designate the components themselves but also the events
“component success” for A, B, C, respectively. Thus, C ,B ,A , represent the events “component
failure” of A, B, C, respectively. The symbol CBA will consequently be used to represent the
event, “A operates successfully, B fails, and C operates successfully.”

Because there are three components and two modes of operation for each component
(success/failure), combinatorial analysis tells us that there are 23 = 8 combinations which give all
modes of failure or operation for the system. Thus, the universal set (or outcome collection) is
given by:

{ }ABC,CAB,CBA,BCA,BCA,CBA,CAB,ABC =Ω .

Suppose it is determined that the system will fail if any two or more of its components fail. Then
the events corresponding to system failure are:

ABCS
CABS
CBAS

BCAS

4

3

2

1

=
=
=
=

and the event, “system failure,” S, can be represented by the subset 1 2 3 4S S S S S= ∪ ∪ ∪ =
{ }ABC,CAB,CBA,BCA . All the ways the system can fail have been enumerated in an
exhaustive manner. This information can be used in various applications. For example, if the

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix B. Probability Theory: The mathematical Description of Events 168

probability of component failures is known, the probability of system failure can be calculated.
In the same way that has been illustrated above, intersections and unions of any of the basic
elements (simple events) of the universal set may be taken to generate still other events that can
be represented as sets consisting of particular elements.

Using the set theory concepts that have been developed, probability equations can be translated
into set-theoretic terms. For example,

P(A or B) = P(A) + P(B) - P(A and B) becomes
P(A∪B) = P(A) + P(B) - P(A∩B). (B.1)

The equation

P(A and B) = P(A|B) P(B) = P(B|A) P(A) becomes
P(A∩B) = P(A|B) P(B) = P(B|A) P(A). (B.2)

B.2 Symbolism

Boolean algebra, which is the algebra of events, deals with event operations that are represented
by various symbols. Unfortunately, symbolism in set theory is not uniform; the symbology
differs among the fields of mathematics, logic, and engineering as follows:

Operation Probability Mathematics Logic Engineering

Union of A and B A or B A∪B A ∨ B A+B

Intersection of A and B A and B A∩B A ∧ B A•B or AB

Complement of A not A A' or A -A A' or A

The symbols used in mathematics and in logic are very similar. The logical symbols are the
older; in fact the symbol “∨“ is an abbreviation for the Latin word “vel” which means “or.” It is
unfortunate that engineering has adopted “+” for “∪“ and an implied multiplication for “∩” This
procedure “overworks” the symbols “+” and “•”. As an example of the confusion that might
arise when “+” is used for ∪, consider the expression

P(A∪B) = P(A) + P(B) - P(A∩B).

If “+” is written for “∪” on the left-hand side, an equation with “+” meaning one thing on the left
and a totally different thing on the right is produced.

Despite these difficulties and potentially confusing elements in the symbology, the engineering
symbology is now quite widespread in the engineering literature and any expectation of a return
to mathematical or logic symbols seems futile. In fault tree analysis, use of the engineering
notation is widespread, and, as a matter of fact, it is used elsewhere in this handbook. If,
however, the reader is unacquainted with event algebra, it is strongly recommended that the
proper mathematical symbols be used until attaining familiarity with this type of algebra. This

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix B. Probability Theory: The mathematical Description of Events 169

will serve as a reminder that set algebraic operations are not to be confused with the operations
of ordinary algebra where numbers, and not events, are manipulated.

B.3 Additional Set Concepts

Certain addition set concepts will now be presented. These will illustrate the difference between
simple events and compound events. This distinction is useful for some fault tree concepts and
also leads to a more rigorous definition of “probability.”

Consider again the throw of a single die. The event A = {2} is a simple event; in fact it
constitutes an element of the outcome space. In contrast, the events B = {2, 4, 6} and C = {1, 2,
3} are compound events. They do not constitute, per se, elements of the outcome space, even
though they are made up of elements of the outcome space. Events B and C have an element in
common; therefore, their intersection is non-empty (i.e., they are not “disjoint” subsets or, in
probability language, they are not mutually exclusive). The elements of outcome collections are,
by definition, all mutually exclusive and, thus, all mutually disjoint.

Compound events (like B and C) are generally the ones that are of predominant interest in the
real world and it is necessary, because they are not included in the outcome space, to define a
mathematical entity that does include them. Such a mathematical entity is called a class. A class
is a set whose elements are themselves sets and these elements are generated by enumerating
every possible combination of the members of the original outcome space.

As an example, consider the four-element outcome space S = {l, 3, 5, 7}. If every possible
combination of these four elements is listed the class S is generated and is defined on the original
set S as follows:

S = {1}, {3}, {5}, {7}, {1, 3},{1, 5},
{l, 7}, {3, 5}, {3, 7}, {5, 7}, {1, 3, 5}
{1, 5, 7}, {1, 3, 7}, {3, 5, 7}, {1, 3, 5, 7}, {φ}.

Notice that the null set φ is considered an element of the class to provide a mathematical
description of the “impossible event.” If the number of elements in the class S are counted, the
total is determined to be 16, which is 24, where 4 is the number of elements in the original set S.
In general, if the original set has n elements, the corresponding class will have 2n elements.

The utility of the class concept is simply that the class will contain as elements, every
conceivable result (both simple and compound) of an experiment. Thus, in the die toss
experiments, S will have 6 elements and S will have 26 = 64 elements, two of which will be B =
{2, 4, 6} and C = {1, 2, 3}. In the throw of 2 dice, S will contain 36 elements and S will have 236

(a number in excess of 1010) elements. Embedded somewhere in this enormous number of
subsets the compound event “sum = 7” is formed and it can be represented in the following way:

E = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}.

Consider again the simple three-component system A, B, C, where system failure consists of any
two or more components failing. In that example, the universal set comprised eight elements,

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix B. Probability Theory: The mathematical Description of Events 170

and these eight elements gave all modes of failure or operation of the system. The class based on
this set would contain 28 = 256 elements and would include such events as

“A operates properly”: { }BCA,CBA,CAB,ABC ,
“Both B and C fail”: { }ABC,BCA ,
“Five components fail”: φ, and
“System fails”: { }ABC,CAB,CBA,BCA .

The reader should bear in mind that the elements of classes are sets. Thus, the event ABC is an
element of the original universal set, whereas {ABC} is a set containing the single element ABC
and is an element of the class generated from the universal set. The utility of the class concept is
that it enables compound events to be treated in a formal manner simply because all possible
compound events are included in the class.

Perhaps the most useful feature of the class concept is that it provides a basis for establishing a
proper mathematical definition of the probability function. The set theoretic definition of the
probability function is shown schematically in Figure B-6.

0 1

S

S

E

P(E)

Figure B-6. Set Theoretic Definition of Probability

In Figure B-6, the box labeled “S” represents the outcome collection for some random
experiment. It could, for instance, represent the totality of the 36 possible outcomes in the two-
dice experiment. The circle labeled “S” represents the class generated from set S by
enumerating all combinations of the elements of S. In the two-dice example the class S
possesses an enormous number (> 1010) of elements. These elements represent every
conceivable outcome (simple and compound) of the experiment. Specifically, the event E =
“sum of 7” is a member of S. Event E is shown schematically in Figure B-6. Next, the axis of
real numbers between 0 and 1 is drawn. A function can now be defined that “maps” event E into
some position on this axis. This function is the probability function P(E).

The concept of mapping may be unfamiliar. For the purpose of this handbook a mapping may be
considered simply as establishing a functional relationship. For instance, the relation y = x2

maps all numbers x into a parabola (x = ±l, y = +1 ; x = ±2, y = +4; etc.). The relation y = x maps
all numbers x into a straight line making a 45° angle with the y-axis. In these examples one
range of numbers is mapped into another range of numbers and the examples are referred to as
point-functions. The function P(E) is somewhat more complicated; it maps a set onto a range of

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix B. Probability Theory: The mathematical Description of Events 171

numbers, and is referred to as a set function instead of a point function although the underlying
concept is the same. In unsophisticated terms, however, a probability function simply assigns
one unique number, a probability, to each event.

Two things should be noted. One is that probability has now been defined without making use of
the limit of a ratio (e.g., as the ratio of the number of favorable outcomes to the total number of
outcomes). The second thing is that this definition does not provide a method for calculating
probability; rather, it explains the mathematical nature of the probability functions. If E is the
event “sum = 7,” the method to be used to calculate its probability assuming that all 36 outcomes
in the outcome collection are equally likely has been discussed previously:

()
6
1

36
6EP == .

Of course this is a particularly simple example. In other cases the physical nature of the problem
may have to be investigated, sometimes in great detail, in order to develop the probabilities of
events of interest.

B.4 Algebraic Operations with Probabilities

Consider a random experiment and designate two of its possible outcomes as A and B. If A and
B are mutually exclusive, then A and B cannot both happen on a single trial of the experiment.
For instance, either Heads or Tails is expected as a result of a coin toss. Both Heads and Tails
occurring on a single toss is not possible. If events A and B are mutually exclusive, an
expression for the probability that either A or B occurs can be written:

P(A or B) = P(A) + P(B). (B.3)

This relation is sometimes referred to as the addition rule for probabilities and is applicable to
events that are mutually exclusive. This formula can be readily extended to any number of
mutually exclusive events A, B, C, D, E, ... :

P(A or B or C or D or E or …) = P(A) + P(B) + P(C) + P(D) + P(E) + … (B.4)

For events that are not mutually exclusive a more general formula must be used. For example,
suppose that the random experiment is the toss of a single die in which two events are defined as
follows:

A = “the number 2 turns up”
B = “an even number turns up.”

Clearly these events are not mutually exclusive because if the result of the toss is 2, both A and B
have occurred. The general expression for P(A or B) is now

P(A or B) = P(A) + P(B) - P(A and B) (B.5)

If A and B are mutually exclusive, P(A and B) = 0 and Equation B.5 reduces to Equation B.3. The
reader should also note that Equation B.3 always gives an upper bound to the true probability

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix B. Probability Theory: The mathematical Description of Events 172

Equation B.5 when the events are not mutually exclusive. Now, returning to the single die
problem and defining A and B as above, P(A or B) can be calculated numerically:

P(A or B) = 1/6 + 1/2 - 1/6 = ½.

Equation B.5 can be extended to any number of events. For example, for three events A, B, C

P(A or B or C) = P(A) + P(B) + P(C) - P(A and B) - P(A and C)
- P(B and C) + P(A and B and C). (B.6)

For n events E1, E2, …, En the general formula can be expressed as

() () ()

()

() (),E and and E and EP1

E and E and EP

E and EP - EP Eor E or EP

n21
n

2n

1i

1n

1ij

n

1jk
kji

1n

1i

n

1ij
ji

n

1i
in21

K

K

K

−+

+

=

∑ ∑ ∑

∑ ∑∑
−

=

−

+= +=

−

= +==

(B.7)

where “Σ” is the summation sign.

If the possibility of any two or more of the events Ei occurring simultaneously is ignored,
Equation B.7 reduces to

() ()∑
=

=
n

1i
in21 EP Eor or E or EP K . (B.8)

Equation B.8 is the so-called rare event approximation and is accurate to within about ten
percent of the true probability when P(Ei) < 0.1. Furthermore, any error made is conservative in
that the true probability is slightly lower than that given by Equation B.8.

Consider now two events A and B that are mutually independent. This means that in the course
of several repetitions of the experiment, the occurrence (or non-occurrence) of A has no
influence on the subsequent occurrence (or nonoccurrence) of B and vice versa. If a well-
balanced coin is tossed randomly, the occurrence of Heads on the first toss should not cause the
probability of Tails on the second toss to be any different from ½. The results of successive
tosses of a coin are considered to be mutually independent outcomes. Also, if two components
are operating in parallel and are isolated from one another, then the failure of one does not affect
the failure of the other. In this case the failures of the components are independent events. If A
and B are two mutually independent events, then

P(A and B) = P(A) P(B). (B.9)

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix B. Probability Theory: The mathematical Description of Events 173

This is often called the multiplication rule for probabilities and its extension to more than two
events is obvious:

P(A and B and C and D) = P(A) P(B) P(C) P(D). (B.10)

Very often, events that are not mutually independent are encountered, that is, they are mutually
interdependent. For instance, the overheating of a resistor in an electronic circuit may very well
change the failure probability of a nearby transistor or of related circuitry. The probability of
rain on Tuesday will most likely be influenced by the weather conditions prevailing on Monday.
In order to treat events of this nature, the concept of conditional probability is introduced, and a
new symbol P(B|A) is needed that is the probability of B, given A has already occurred. The
probability of A and B both occurring then becomes

P(A and B) = P(A) P(B|A) = P(B) P(A|B) (B.11)

If A and B are mutually independent, then P(A|B) = P(A) and P(B|A) = P(B) and Equation B.11
reduces to Equation B.9. Thus, Equation B.11 constitutes a general expression for the
probability of the joint occurrence of two events A and B.

For three events A, B, C,

P(A and B and C) = P(A) P(B|A) P(C|A and B), (B.12)

where P(C|A and B) is the probability of C occurring given A and B have already occurred. For
n events E1, E2, …, and En,

P(E1 and E2 and ... En) = P(E1) P(E2|E1) P(E3|E1 and E2)
… P(En|E1 and E2 ... and En-1). (B.13)

An example of the use of the formulae in this section may be helpful. Consider the following
random experiment: mentally select one card at random from a well-shuffled regulation deck of
52 cards. Note its face value (e.g., “seven,” “Queen,” etc.) and lay it aside (if the card is not put
back in the deck this is known as sampling without replacement). Then choose a second card at
random from the deck of 51 cards and note its face value. Now calculate the probability of
getting at least one Ace in the two draws. There are three mutually exclusive possibilities:

(Ace on first draw then non-Ace on second draw) or
(non-Ace on first draw then Ace on second draw) or
(Ace on first draw then Ace again on second draw).

Expressed in mathematical language, this becomes much more succinct:

P(at least one Ace in two draws) = P(A)
= P(A1 and A2) + P(A1 and A2) + P(A1 and A2)
= P(A1) P(A2|A1) + P(A1) P(A2|A1) + P(A1) P(A2|A1),

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix B. Probability Theory: The mathematical Description of Events 174

in which the subscripts refer to the order of the draw, A stands for “Ace” and A stands for “non-
Ace.” This expression is numerically evaluated as

() () ()
4 48 48 4 4 3 396 33P A 0.149.
52 51 52 51 52 51 52 51 221

        = + + = = =        
        

Now calculate the probability of getting an Ace and a King in two draws.

()()

l 2 1 1 2 lP(A and K) P(A) P(K |A) P(K) P(A |K)
4 4 4 4 32 8 0.012.

52 51 52 51 52 51 663

= +

     = + = = =     
     

An important point should be noted here. If the events “getting an Ace” and “getting a King”
were independent, P(A and K) = P(A) P(K) = (0.149)2 = 0.022, but it has just been shown that
P(A and K) = 0.012 ≠ 0.022. Therefore, the events in question are not independent. At this point
the reader is invited to present an argument that the events in question would have been
independent if the first card drawn had been replaced in the deck and the deck had been shuffled
before the second draw.

A result with important applications to fault tree analysis is the calculation of the probability of
occurrence of at least one of a set of mutually independent events.

Consider the set of mutually independent events,

{ }n321 E,,E,E,E K

and define the event 1E as the non-occurrence of El, the event 2E as the non-occurrence of E2,
etc. Because a particular event must either occur or not occur,

() () 1EPEP ii =+ (B.14)
() ()ii EP1EP −= . (B.15)

Now there are two possibilities concerning to the events E1, E2, …, En: at least one Ei occurs or
none of the Ei occur. Therefore,

i i

1 2 n

P(at least one E occurs) = 1-P(no E occurs)
= 1-P(E and E … and E)

Since the E's are mutually independent, it is perhaps intuitively obvious that E 's must also be
mutually independent. As a matter of fact, this result can be easily proven. Therefore,

() () () () ()n321n321 EPEPEPEPE and E and E and EP KK = (B.16)

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix B. Probability Theory: The mathematical Description of Events 175

But from Equation B.15 this is the same as

()[] ()[] ()[]n21 EP1EP1 EP1 −−− K , (B.17)

so that the final result is

() ()[] ()[] ()[] ()[]{ }n321n321 EP1 EP1 EP1 EP11E or or E or E or EP −−−−−= KK . (B.18)

In the simple case where P(El) = P(E2) = … = P(En) = p, the right-hand side of Equation B.18
reduces to 1 - (1- p)n.

Our general result equation (Equation B.18) finds application in fault tree evaluation. For
example, consider a system in which system failure occurs if any one of the events E1, E2, …, En
occurs, it being assumed that these events are mutually independent. The probability of system
failure is then given by Equation B.18. For example, the events E1, …, En may be failures of
critical components of the system, where each component failure will cause system failure. If
the component failures are independent, then Equation B.18 is applicable. In the general case,
the events E1, E2, etc., represent the modes by which system failure (top event of the fault tree)
can occur. These modes are termed the minimal cut sets of the fault tree and if they are
independent, i.e., no minimal cut sets have common component failures, then Equation B.18
applies.

To conclude this section, the concept of an outcome space is recalled because now the
knowledge has been acquired to allow it to be defined in more detail. The elements of an
outcome space possess several important characteristics:

(a) The elements of an outcome space are all mutually exclusive.

(b) The elements of an outcome space are collectively exhaustive. This means that the
outcome space includes every conceivable result of the experiment.

(c) The elements of the outcome space may be characterized as being continuous or discrete;
e.g., the times-to-failure for some systems are continuous events and the 52 possible
cards when a card is drawn from a deck are discrete events.

B.5 Bayes' Theorem

The formula developed by Sir Thomas Bayes plays an important and interesting role in the
structure of probability theory, and it is of particular significance because it illustrates a way of
thinking that is characteristic of fault tree analysis. The formula is first developed using set
theory, and then the meaning of the result is discussed.

Figure B-7 portrays a “partitioning” of the universal set Ω into subsets Al, A2, A3, A4, and A5.

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix B. Probability Theory: The mathematical Description of Events 176

A1

A2

A3

A4

A5

Ω
B

Figure B-7. Partition of the Universal Set

The A's have the following characteristics:

.jifor AA

AAAAAA

ji

5i

1i
i54321

≠φ=∩

Ω==∪∪∪∪
=

=
U (B.19)

Any set of A’s having the properties of Equation B.19 is said to constitute a partition of the
universal set. Also shown in Figure B-7 is another subset B. The reader can show (by shading
the appropriate regions in the Venn diagram) that

(B∩A1) ∪ (B∩A2) ∪ (B∩A3) ∪ (B∩A4) ∪ (B∩)A5) = B.

(Actually B∩A1 = φ but φ∪X = X, where X is any set.) The expression for B above can be
written in a more mathematically succinct form:

U
5i

1i
iABB

=

=

∩= , (B.20)

in which the large union symbol implies a succession of unions just as the symbol Σ implies a
succession of sums. Similarly, a large intersection symbol implies a succession of intersections
just as the symbol Π implies a succession of products.

Consider now the probability equation for an intersection,

P(A∩B) = P(A|B) P(B) = P(B|A) P(A).

This is true for any arbitrary events A, B. In particular it will be true for B and any one of the A's
in Figure B-7. Thus,

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix B. Probability Theory: The mathematical Description of Events 177

P(Ak ∩ B) = P(Ak|B) P(B) = P(B|Ak) P(Ak) (B.21)

or

k k k
k

P(A B) P(B|A)P(A)P(A |B)
P(B) P(B)

∩
= = . (B.22)

P(B) can now be written in a different way by using Equation B.20.

i 5

i
i 1

i 5 i 5

i i i
i 1 i 1

P(B) P B A

P(B A) P(B|A) P(A).

=

=

= =

= =

 
= ∩ 

 

= ∩ =∑ ∑

U

This can be done because the events (B∩Ai) are mutually exclusive. If this expression is
substituted for P(B) into Equation B.22, then:

k k
k

i ii

P(B|A) P(A)P(A |B) .
P(B|A) P(A)

=
Σ

(B.23)

This is Bayes’ theorem. The equation is valid in general for any number of events A1, A2, …, An
that are exhaustive and are mutually exclusive (see Equation B.19). The summation then extends
from i = 1 to i = n instead of i = 1 to i = 5.

Some of the interpretations of Equation B.23 will now be discussed. Suppose that some event B
has been observed and that a complete list of the mutually exclusive causes of the event B can be
generated. These causes are just the A’s. Notice, however, the restrictions on the A’s given by
the relations in Equation B.19.∗ Now, having observed B, there may be interest in seeking the
probability that B was caused by the event Ak. This is what Equation B.23 permits to be
computed, if all the terms of the right-hand side can be evaluated.

The Bayesian approach is deductive—given a system event, what is the probability of one of its
causative factors? This is contrasted with the inductive approach—given some particular
malfunction, how will the system as a whole behave? The use of Bayes’ formula will now be
illustrated by a simple example for which it is particularly easy to enumerate the A’s.

Consider three shipping cartons labeled I, II, III. The cartons are all alike in size, shape, and
general appearance and they contain various numbers of resistors from companies X, Y, Z as
shown in Figure B-8.

∗ The restrictions on the Ai given by Equation B.19 are equivalent to the restrictions: Σ P(Ai) = 1 and
P(Ai∩Aj) = 0; i ≠ j.

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix B. Probability Theory: The mathematical Description of Events 178

9 ITEMS 6 ITEMS 9 ITEMS

3X 4Y 2Z 1X 2Y 3Z 2X 3Y 4Z

I II III

Figure B-8. Illustration of the Use of Bayes' Formula

A random experiment is conducted as follows. First, one of the cartons is chosen at random.
Then two resistors are chosen from the selected box. When they are examined, it is found that
both items are from Company Z. This latter event is identified with event B in this general
development of Bayes' rule. The “causes” of B are readily identified: either carton I was chosen
or carton II was chosen or carton III was chosen. Thus,

Al = choice of carton I
A2 = choice of carton II
A3 = choice of carton III.

Now the probability that, given event B, it was carton I that was originally chosen can be
calculated.

1 1
1

1 1 2 2 3 3

P(B|A)P(A)P(A |B)
P(B|A)P(A) P(B|A)P(A) P(B|A)P(A)

=
+ +

It would appear natural enough to set

P(Al) = P(A2) = P(A3) =
3
1

because the boxes are all alike and a random selection among them is made. Now the terms
P(B|A1), P(B|A2) and P(B|A3) are evaluated. This is easily done from Figure B-8.

1

2

3

2 1 1P(B|A)
9 8 36
3 2 1P(B|A)
6 5 5
4 3 1P(B|A) .
9 8 6

  = =  
  
  = =  
  
  = =  
  

Substituting these numbers into Bayes’ formula:

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix B. Probability Theory: The mathematical Description of Events 179

1

1 1
536 3P(A |B)

1 1 1 1 1 1 71
36 3 5 3 6 3

  
  
  = =

        + +        
        

.

In a similar way the alternative terms can be calculated

2 3
36 30P(A |B) , and P(A |B)
71 71

= = .

Thus, if event B is actually observed, the chances are about 50-50 that carton II was originally
chosen.

As another example, refer once more to the simple system made up of three components. It has
already been determined that the system can fail in any one of the four modes, 4321 S,S,S,S . If
the system fails and the probability that its failure mode was S3 is of interest, this can be
computed as:

3 3
3

1 1 2 2 3 3 4 4

P(S|S)P(S)P(S |S)
P(S|S)P(S) P(S|S)P(S) P(S|S)P(S) P(S|S)P(S)

=
+ + +

.

This can be written in a simpler form because the system will surely fail if any one of the events
1 2 3 4S ,S ,S ,or S occurs:

3
3

1 2 3 4

P(S)P(S |S)
P(S) P(S) P(S) P(S)

=
+ + +

.

Presumably the quantities)S(P i can be estimated from reliability data. The quantity iP(S |S) is
sometimes called the importance of system failure cause)S(i . Bayes’ Theorem is sometimes
applied to obtain optimal repair schemes and to determine the most likely contributors to the
system failure (i.e., which of the iP(S |S) is the largest).

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix C. Probabilistic and Statistical Analyses 180

Appendix C - Probabilistic And Statistical Analyses

This appendix presents basic probabilistic and statistical concepts that are associated with fault
trees. This material augments Chapter 7, “Quantitative Evaluation of a Fault Tree.” The
appendix initially addresses probability distribution theory. Cumulative distribution functions
and density functions as well as distribution parameters, including the mode, median, and mean
are described. Measures of the dispersion of a distribution are also presented. Failure rate
functions, also sometimes called hazard functions, are then defined. Examples of distributions
and their parameters are given. The special case of an exponential distribution with a constant
failure rate is illustrated. The appendix closes with a discussion of the concepts of Bayesian
analysis, which is the current, principal statistical approach used in quantifying event
probabilities.

C.1 The Cumulative Distribution Function

The symbol X will be used to designate the possible results of a random experiment. X is usually
referred to as a random variable.∗ A random variable may take on values that are either discrete
(e.g., the number of defective items in a lot) or continuous (e.g., the heights or weights of a
population of individuals). Actually, the latter category of values is also strictly discrete because
the measuring apparatus employed will have some limit of resolution. Despite this it is often
convenient mathematically to consider such values as being represented by a continuous
variable. In the discussion that follows, corresponding lower case letter x is used to designate a
specific value of the random variable X.

The fundamental formula that is about to be presented will be given for the continuous case.
Differences between the continuous and discrete cases will be noted when necessary. In general,
the change from continuous to discrete variables is operationally a matter of replacing integral
signs with summation signs. The cumulative distribution function F(x) is defined as the
probability that the random variable X assumes values less than or equal to the specific value x.

F(x) = P [X ≤ x] (C.1)

According to Equation C.1, F(x) is a probability and thus must assume values only between (and
including) zero and one:

0 ≤ F(x) ≤ 1.

If X ranges from -∞ to +∞, then

F(-∞) = 0
F(+∞) = 1.

If X has a more restricted range, xl < X < xu, then

F(xl) = 0

∗ Random variables will be denoted in this text by boldface type.

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix C. Probabilistic and Statistical Analyses 181

F(xu) = 1.

An important property of the cumulative distribution function is that F(x) never decreases in the
direction of increasing x. F(x) is a non-decreasing function although not necessarily
monotonically so, in the strict mathematical sense. This can be stated more succinctly as
follows:

If x2 > x1, then F(x2) ≥ F(x1).

One further important property of F(x) is stated in Equation C.2 below.∗

P[x1 ≤ X ≤ x2] = F(x2) – F(x1) (C.2)

The binomial cumulative distribution, B(x; n, p), encountered previously in this appendix is one
specific example of F(x). Typical shapes for F(x) for a continuous variable and for a discrete
variable are shown in Figure C-1.

1 1

00
CONTINUOUS VARIABLE CASE DISCRETE VARIABLE CASE

Figure C-1. Typical Shapes for F(x)

The properties of the cumulative distribution function that have been presented in the above
formulae are generally valid for continuous and discrete random variables.

As an example of a random variable and its corresponding cumulative distribution, consider a
random experiment in which times to failure of a single component are observed. Whenever the
component fails, it is repaired, time is reset to 0 and the new time to failure is noted (see sketch
below).

t1 t2 t3 t4 t5

FAILURE 1 FAILURE 2 FAILURE 3 FAILURE 4 FAILURE 5

Assume that repair (“renewal”) does not alter the component, (i.e., in every instance its repair
state coincides with its initial operating state.) The random variable of interest, T, is the time to
failure from renewal or repair. A specific value of T is represented by the symbol ti. The

∗ For Discrete variables the formula is P[x1 < X ≤ x2] = F(x2) – F(x1).

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix C. Probabilistic and Statistical Analyses 182

cumulative distribution F(t) for any t thus gives the probability that the time to failure will be less
than or equal to t.

As another example consider a random experiment in which repeated measurements are
performed on some item. The random variable X represents the “measurement outcome” in
general and xi represents some specific measurement value. The cumulative distribution F(x)
gives the probability that the measurement value is less than or equal to x. Values of F(x) can be
estimated from Fest (xi):

() i
est i

nF x
n

=

in which n gives the total number of measurements and ni is the number of measurements in
which X assumes values less than or equal to xi. As n gets larger and larger Fest (xi) will
approach more and more closely the true value F(xi). In application, the cumulative distribution
function must either be determined from theoretical considerations or be estimated by statistical
methods.

C.2 The Probability Density Function

For a continuous random variable, the probability density function (pdf), f(x), is obtained from
F(x) by a process of differentiation:∗

df (x) F(x).
dx

= (C.3)

An equivalent statement is

x
F (x) f (y)d y.

− ∞
= ∫ (C.4)

Because f(x) is defined as the slope of a non-decreasing function,

f(x) ≥ 0 (C.5)

When the pdf is integrated over the entire range of its argument, the result is unity.

f (x)dx 1
∞

− ∞
=∫ (C.6)

This property of f(x) permits us to treat areas under f(x) as probabilities.

The fundamental meaning of the pdf is stated in Equation C.7.

f(x)dx = P[x < X < x + dx] (C.7)

∗ F(x) is assumed to be well-behaved and to allow differentiation.

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix C. Probabilistic and Statistical Analyses 183

The previous Equation C.2 can now be stated in another, especially useful, form:

[] 2

1

x

1 2 x
P x x f (x)dx≤ ≤ = ∫X (C.8)

Typical shapes for f(x) are illustrated in Figure C-2 in which (a) represents a symmetrical
distribution, (b) a distribution skewed to the right, and (c) a distribution skewed to the left. (In all
the figures x increases to the right).

Figure C-2. Typical Shapes for f(x)

In the case of a continuous variable, probabilities must be expressed in terms of intervals. This is
because the probability associated with some specific value x is always zero because there are an
infinite number of values of X in any range. Thus f(x)dx is the probability that the quantity of
interest will lie in the interval between x and x + dx. Of course, the interval length dx may be
made as small as is desired. The quantity f(x) itself is therefore the probability per unit interval.
In the case of discrete variables the integral signs are replaced by summation signs and the sum
over the individual probabilities of the x-values in the range of interest is obtained. Equation
C.8, for example, becomes applicable for a discrete variable X in this case.

Concerning the previous time to failure example, f(t)dt gives the probability that the component
will fail in the time interval between t and t + dt. In the measurement example f(x)dx gives the
probability that the measurement outcome will lie between x and x + dx. Empirically, if a large
number of measurements are considered, f(x)dx could be estimated by

()
n
n

xxf i∆
=∆ ,

where n is the total number of measurements and ∆ni is the number of measurements for which
X lies between x and x + ∆x.

C.3 Distribution Parameters and Moments

The characteristics of particular probability density functions are described by distribution
parameters. One of the members of this set of parameters may be used to locate the distribution
along the horizontal axis. For this reason such a parameter is called a location parameter.

The most common location parameter is the statistical average or mean. Other location
parameters commonly employed are: the median (50% of the area under the probability density

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix C. Probabilistic and Statistical Analyses 184

curve lies to the left of the median; the other 50%, to the right), the mode, which locates the
“peak” or maximum of the probability curve (there may be no “peak” at all or there may be more
than one as in bimodal or trimodal distributions); the mid-range, which is simply the average of
the minimum and maximum values when the variable has a limited range, and others of lesser
importance. For an illustration of these concepts refer to Figure C-3.

Figure C-3. The Median, Mode, and Mid-Range

In (a) of Figure C-3, the median is indicated by x.50. From the definition of the median, 50% of
the time the outcome will be less than or equal to x.50, and 50% of the time it will be greater than
x.50. Therefore P(X ≤ x.50) = .50 and, in terms of the cumulative distribution, F(x.50) = .50. The
median is a particular case of the general α-percentile, xα defined such that F(xα) = α. For
example, the 90%ile is such that F(x.90) = .90 and 90% of the time the outcome value x will be
less than or equal to x.90. In (b) of Figure C-3, the mode is indicated by xm, and gives the most
probable outcome value. In (c), the calculation of the mid-range from the two extreme values x1
and x2 is illustrated.

The average is also termed the mean, or the expected value. If a random experiment is repeated
many times and the outcome values are averaged, this empirical average will approximate the
true average and will approach the true average more and more closely as the number of
repetitions is increased. (This assumes that the distribution has an average and is such that the
empirical average converges to the population average.)

In the case of uni-modal symmetrical distribution as shown in (a) of Figure C-2, the mean,
median, and mode all coincide. For skewed distributions, as in Figure C-2 (c), the median will
fall between the mode and the mean.

In Figure C-4 two symmetrical distributions with the same values of mean, median, and mode
are displayed. They are, however, strikingly different from the perspective of the clustering
about the central position. Parameters used to describe this aspect of a distribution are known as
dispersion parameters. Of these, the most familiar are the variance and the square root of the
variance, or standard deviation. Other dispersion parameters, less frequently employed, are the
median absolute deviation and the range between a lower bound value and an upper bound value.
The variance of a distribution will be discussed later.

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix C. Probabilistic and Statistical Analyses 185

Figure C-4. Two Symmetrical Distributions with Different Dispersion Parameters

There are, in fact, many other types of distribution parameters, but those that have been
mentioned are some of the most basic ones. It is essential that the general methods for
calculating distribution parameters, once the functional form of the pdf is known, become
familiar to the analyst. Some of these general methods entail calculating the moments of the
distribution and are of great importance in theoretical statistics. Distribution moments may be
calculated about any specified point but here the calculation is restricted to the discussion of (a)
moments about the origin, and (b) moments about the mean.

Moments About the Origin

The first moment about the origin is defined as

1 x f(x)d x .
∞

− ∞
′µ = ∫ (C.9)

This defines the mean or expected value of X, written E[X]. The symbol µ will be used for the
mean for the sake of brevity although actually E[X] = 1µ′ .

The second moment about the origin is defined as

2
2 -

x f(x)dx ,
∞

∞
′µ = ∫ (C.10)

and yields the expected value of X2, E[X2].

In general, the nth moment about the origin is defined as

n
n x f(x)d x ,

∞

− ∞
′µ = ∫ (C.11)

and yields the expected value of Xn, E[Xn].

If Y = g(X) is any function of X, and X is distributed according to the pdf f(x), then the expected
value of g(X) may be obtained from

E[Y] = E[g(X)] g(x)f(x)dx.
∞

−∞
= ∫ (C.12)

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix C. Probabilistic and Statistical Analyses 186

Moments About the Mean

The first moment about the mean is defined as

()1 x f(x)dx.
∞

−∞
µ = − µ∫ (C.13)

Because, µl is always and invariably equal to 0, it is not of great utility.

The second moment about the mean is defined as

()2
2 x f (x)dx.

∞

−∞
µ = − µ∫ (C.14)

This gives the variance σ2 or E[(X-µ)2]. In general, the nth moment about the mean is defined as

()n
n x f(x)dx,

∞

−∞
µ = − µ∫ (C.15)

and yields E[(X-µ)n].

There is a useful relationship between ' '
2 2 1, , and µ µ µ namely,

' ' 2
2 2 1- ()µ = µ µ (C.16)

Equation C.16 permits calculation of the variance by evaluating the integral in Equation C.10
rather than the integral in Equation C.14, which is more complicated algebraically. Equation
C.16 is easily proven as follows:

()2
2 (x-) f x dx

∞

−∞
µ = µ∫

2 2

- - -
x f(x)dx 2 x f(x)dx f(x)dx

∞ ∞ ∞

∞ ∞ ∞
= − µ + µ∫ ∫ ∫

' 2 2 ' 2 ' ' 2
2 2 2 1 -2 - - ()= µ µ + µ = µ µ = µ µ .

In the case of a discrete random variable, the first moment about the origin is written

n
'
1 i i

i 1
 x p(x),

=

µ = µ = ∑ (C.17)

where p(xi) is the probability associated with the value xi. The commonly used formula for
finding the average of n values,

n

i
i 1

1x x ,
n =

= ∑

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix C. Probabilistic and Statistical Analyses 187

is a special case of Equation C.17 which can, be used whenever all the individual values are treated
as having the same probability or “weight,” namely 1/n. Thus, in the case of a single die

' 1 2 3 4 5 6 21 3.5,
6 6

+ + + + +
µ = µ = = =

so that the expected value is 3.5 despite the fact that such an outcome is impossible in practice.

Also, if the random variable is discrete, the second moment about the mean (the variance)
assumes the form

() ()i

n

1 i

2
i

2 xp x ∑
=

µ−=µ . (C.18)

If all the xi have the same “weight”
n
1 , Equation C.18 reduces to a sampling formula for

computing the variance of a sample of n readings,∗

n
2 2

i
i 1

1s (x x)
n =

= −∑ . (C.19)

This section is concluded with a simple example of the use of distribution moments. Consider
the rectangular pdf shown in Figure C-5 in which any value between a and b is equally likely.
Because any value is equally likely, f(x) = f0, a constant. The area under a pdf must integrate to
1 and hence:

() .
a-b

1 f that so 1 abf Area 00 ==−=

Figure C-5. The Rectangular Distribution

The mean of this distribution is given by

∗ Equation C.18 provides a biased estimate of the population variance α2. The bias is eliminated by multiplying
Equation C.18 by the factor n/(n-1), “Bessel’s correction.” For large n the difference is slight.

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix C. Probabilistic and Statistical Analyses 188

()
()()

()

b

1 a

2 2 2

1 E[X] x dx
b a

b b a b a1 x b a b a .
ab a 2 2 b a 2 b a 2

′µ = µ = =
−

− +  − +
= = = = − − − 

∫

The variance of the distribution is given by

()()

2
b2 ' ' 2 2

2 2 1 a

23

23 3

2 2 2

2 2

1 b aVar - () x dx -
b a 2

b1 x b a -
ab a 3 2

1 b a b a -
b a 3 2

b a b ab a1 b a -
b a 3 2

bb 2ab a
12

+   = α = µ = µ µ =    −   

  +   =     −    

 − +   =     −    
 − + + +    =    −     

− +
= =

∫

()2a
.

12
−

C.4 The Failure Rate or Hazard Function

Recall from previous sections that

F(t) = P[failure occurs at some time prior to t]

and that

f(t)dt = P[failure occurs between t and t + dt].

A conditional probability, λ(t), called the failure rate function or hazard function can now be
defined:

λ(t)dt = P[failure occurs between t and t + dt  no prior failure]. (C.20)

For any general distribution, there is an important relationship between the three functions λ(t),
f(t), and F(t);

() f (t)t
1 F(t)

λ =
−

. (C.21)

The validity of Equation C.21 is easily demonstrated as follows.

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix C. Probabilistic and Statistical Analyses 189

Let the time at which failure occurs be designated as T. Since T is a random variable, according
to the definition given in Equation C.20,

λ(t)dt =P [t<T<t+dt t<T].

Let (t<T<t+dt) be denoted as event A and (t < T) be denoted as event B. Remembering that in
general,

P(A|B) = ()
()BP

BAP I .

Therefore,

() () ()[]
()T

T T
<

<∩+<<
=λ

tP
tdtttPdtt .

Now event A is just a special case of event B, i.e., when A occurs then B automatically occurs.
Since A is a subset of B, A∩B=A. It follows that

() []
()

[]
[]

()
()tF1
dttf

BP
AP

tP
dtttPdtt

−
==

<
+<<

=λ
T

T .

Finally,

() ()
() ,
tF1

tf t
−

=λ

which is just Equation C.21.

If λ(t) is plotted against time for a general system, the curve shown in Figure C-6 results. For
obvious reasons this relationship between λ(t) and t has become known as the “bathtub curve.”

Figure C-6. Plot of λ(t) vs. t for a General System

This curve can be divided into three parts that are labeled I, II, III in Figure C-6. Region I is
termed the region of “infant mortality” where sometimes an underlying distribution is difficult to
determine. The distribution appropriate to this part of the curve may depend quite critically on

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix C. Probabilistic and Statistical Analyses 190

the nature of the system itself. Manufacturers will frequently subject their product to a burn-in
period attempting to eliminate the early failures before lots are shipped to the consumer. Region
II corresponds to “a constant failure rate function,” and is the region of chance failures to which
the exponential distribution applies. Region III corresponds to a wear-out process for which the
normal distribution or the more general Weibull Distribution often provide adequate models. For
an actual system, the λ(t)-vs.-t curve may be quite different from that depicted in Figure C-6.
For example, the exponential Region II may be entirely missing or the burn-in region may be
negligible. Figure C-7 shows the λ(t) of the Space Shuttle main engine (SSME) and the solid
rockets (ISRB) vs. burntime. Notice that the SSME has a flat hazard throughout its burn at least
until the ISRBs are separated (until SRB sep). The ISRBs on the other hand follow a more
traditional “bathtub” curve relationship.

0.00E+00

2.00E-06

4.00E-06

6.00E-06

8.00E-06

1.00E-05

1.20E-05

1.40E-05

1.60E-05

1.80E-05

2.00E-05

Time (seconds after lift-off)

R
is

k
pe

r s
ec

on
d

Integrated Solid Rocket Booster

0 10 20 30 40 50 60 70 80 90 100 110 120
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Percent of Total Propulsion
…. Ascent Risk Transcended

Percent of Propulsion Ascent R
isk

SSME

SRB
Separation

Figure C-7. Risk Intensity vs. Time During Shuttle Ascent

Returning to the failure rate function equations, it is convenient to solve Equation C.21 explicitly
for both F(t) and f(t). This is accomplished by writing Equation C.21 in the form

[]F (t)dt
(t)dt

1 F(t)
′−

λ = −
−

, (C.22)

where

d F (t)F (t) .
d t

′ = −

Integrating both sides of Equation C.22,

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix C. Probabilistic and Statistical Analyses 191

[]
t

0
(x)dx 1n 1-F(t)− λ =∫ .

This is equivalent to

t

0
1 F(t) exp (x)dx . − = − λ  ∫

and therefore

t

0
F(t) 1 exp (x)dx . = − − λ  ∫ (C.23)

If Equation C.36 is differentiated,

t

0
f (t) (t) exp (x)dx . = λ − λ  ∫ (C.24)

If λ(t) = λ (a constant) in Equation C.23 and C.24, the reader should be able to show that

F(t) = 1 – e-λt and f(t) = λe-λt,

which is the exponential distribution. For the exponential distribution, then, the failure rate
function is a constant (independent of t) and

λ(t)dt = P [failure occurs between t and t + dt | no prior failure] = λdt.

If a component failure distribution is described using the exponential distribution, then this
implies the constant, steady state portion of the bathtub curve with no burn-in or wear-out
occurring. Because of the constancy of the failure rate function in this case, the exponential
distribution is often referred to as the “random failure distribution,” i.e., the probability of future
failure is independent of previous successful operating time.

It is also valuable to note that if e-t/θ is used to represent reliability, this is a conservative
representation even if wear-out is occurring (but no burn-in), i.e., R(t) ≥ e-t/θ where R(t) is the
actual reliability and θ is the actual mean time to failure. This relation is true for t ≤ θ [1].

Equations C.23 and C.24 may be used to investigate a wide variety of failure rate models. For
instance, an assumption that λ(t) = kt (linearly increasing failure rate) implies that

R(t) = 1 - F(t) = exp(-kt2/2),

which is known as the Rayleigh distribution. An important distribution of times-to-failure, the
Weibull distribution, is obtained by putting λ(t) = Ktm (m > - 1), whence

()
m 1

m ktf t kt exp
m 1

+ 
= − + 

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix C. Probabilistic and Statistical Analyses 192

and

() ()
m 1ktR t 1 F t exp .

m 1

+ 
= − = − + 

The Weibull distribution is a two-parameter distribution, where k is known as the scale
parameter and m as the shape parameter. For m = 0 the Weibull becomes equivalent to the
exponential distribution and as m increases a wear-out behavior is modeled. When m increases
to 2, f(t) approaches normality. When m is less than 0 but greater than - 1, the burn-in portion of
certain bathtub curves may be modeled. Thus, by changing the value of m, the Weibull
distribution can be used to represent the hazard function in regions I, II, or III of the bathtub
curve. The reader can find a more detailed description of the Weibull distribution in the
reliability literature [2] pp. 137-138, [3], and [4], p. 190 et seq.

C.5 Bayesian Analyses

When a Bayesian approach is applied, the parameters of the distribution are treated as random

variables and are not fixed. Considering the exponential distribution x /1f (x) e− θ=
θ

, the mean

time to failure θ can be treated as being associated with a probability distribution. Expressing
the exponential in terms of the failure rate λ = 1/θ, f(x) = λe-λx. The failure rate is thus also
associated with a probability distribution (because of the relation λ = 1/θ, the distribution of λ is
given by the distribution for θ and vice versa). From here on λ and θ will denote the random
variables associated with the parameters λ and θ.

Let the pdf for λ be denoted by p(λ). The pdf p(λ) is known as the prior distribution. It
represents the prior knowledge of λ before a given sample is taken. Assume now that a given
sample ()n21 t,,t,t K of component failure times is collected. In this case the posterior
distribution of λ can be developed that represents the updated knowledge of the distribution of λ
with the additional sample data incorporated.

The posterior distribution of λ, whose pdf is denoted by p(λ|D), is easily obtained by applying
Bayes theorem∗ (the symbol “D” denotes the data sample, e.g., ()n21 t,,t,t K). Bayes theorem
states

() () ()P A|B P B
P B|A

P(A|B)P(B)
=

∑
.

Letting “A” denote the data sample “D,” and “B” the event that the failure rate lies between λ
and λ + dλ,

∗ See Appendix B, Section B.5.

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix C. Probabilistic and Statistical Analyses 193

()

()

n
n

i
i 1
n

n
i

i 1

exp t p
p (|D) .

exp t p d

=

=

 
− λ λ λ  λ =

 − λ λ λ λ  

∑

∑∫

Here the summation sign is replaced by the integral sign. Because the denominator does not
involve λ (it is integrated out) the above equation can be written as

() ()
n

n
i

i 1

p | D K exp t p ,
=

 
λ = − λ λ λ  

∑

where K is treated as a normalizing constant. The distribution p(λ|D) is the posterior distribution
of λ now incorporating both the prior knowledge and the observed data sample.

Bayes theorem thus gives a formal way of updating information about the failure rate λ (i.e.,
going from p(λ) to p(λ|D)). If a second sample D' were collected (say '

n
'
2

'
1 t,,t,t K) then the

distribution of λ could be updated to incorporate both sets of data. If p(λ|D,D') represents the
posterior distribution of λ based on both sets of data D and D' then the above equation is simply
used with p(λ|D) now as the prior giving

() ()
n

n
i

i 1

p |D, D ' K exp t p |D .
=

 λ = − λ λ λ  
∑

Choices for the initial prior p(λ) as well as techniques for handling various kinds of data are
described in detail in various texts [5], [6]. In Bayesian approaches, the pdf's obtained for the
parameters (such as p(λ|D)) give detailed information about the possible variability and
uncertainty in these parameters. Point values, such as the most likely value of λ or the mean
value of λ can be obtained. Interval values, which are probability intervals and are sometimes
called Bayesian confidence intervals can also be obtained. For example, having determined
p(λ|D) the lower and upper 95% values of λL and λU can be determined, such that there is a 95%
probability that the failure rate lies between these values, i.e.,

U

L

p(|D)d = 0.95.
λ

λ
λ λ∫

Other bounds and other point values can be obtained in the Bayesian approach because the
parameter distribution (e.g., p(λ|D)) is entirely known and this distribution represents the state of
knowledge about the parameter. The Bayesian approach has the advantage that engineering
experience and general knowledge, as well as “pure” statistical data, can be factored into the
prior distribution (and hence posterior distribution). Once distributions are obtained for each
relevant component parameter, such as the component failure rate, then the distribution is
straightforwardly obtained for any system parameter quantified in the fault tree, such as the
system unavailability, reliability, or mean time to failure. The priors that truly represent the

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix C. Probabilistic and Statistical Analyses 194

analyst's knowledge must be determined very carefully, including ascertaining the impact of
different priors if they are all potentially applicable [6].

C.6 References

1. B. Gnedenko, Y Belyayev, and A. Solovyev, Mathematical Methods of Reliability
Theory, Translation edited by R.E. Barlow, Academic Press, New York 1969.

2. D. Lloyd, M. Lipow, Reliability: Management, Methods, and Mathematics, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1962.

3. H. Romig, Binomial Tables, John Wiley and Sons, Inc., New York, 1953.

4. M. Shooman, Probabilistic Reliability: An Engineering Approach, McGraw-Hill,
New York, 1968.

5. C. Rao, Linear Statistical Inference and Its Applications, John Wiley and Sons, Inc.,
New York, 1977.

6. N. Mann, R. Schafer and N. Sigpurwalla, Mathematical Methods for Statistical
Analysis of Reliability and Life Data, John Wiley and Sons, inc., New York, 1974.

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix D. Markov Modeling for Reliability Analysis 195

Appendix D. Markov Modeling for Reliability Analysis

This appendix provides a brief introduction to the use of continuous time Markov models for
reliability analysis of non-repairable systems. Specifically, the Markov model as used for the
solution of a dynamic fault tree is discussed

A dynamic fault tree (DFT)* model cannot be easily evaluated using traditional fault tree analysis
techniques, such as those that are based on cut sets or other Boolean logic techniques. Since the
DFT gates must capture the order in which events occur, not simply their probability of
occurrence, a Markov model is used for solution. The equivalent Markov model can be
generated from the DFT and then solved using ordinary differential equations.

D.1 Introduction to Markov Modeling

As a simple example of a sequence dependent failure, consider a system with one active
component and one standby spare connected with a switch controller shown in Figure D-1. (This
example system was considered earlier in Chapter 8). Assume that the failure mode of the
switch is such that when it fails, it is unable to switch. The failure of the switch only matters if a
switch from the primary to the standby spare is required. If the switch controller fails after the
primary unit fails (and thus the standby spare is already in use), then the system can continue
operation. However, if the switch controller fails before the primary unit fails, then the standby
spare unit cannot be switched into active operation and the system fails when the primary unit
fails. The order in which the primary and switch fail determines whether the system continues
operation.

Primary

Standby

Switch

Figure D-1. Example of Sequence Dependent Failure

The DFT for this standby system is shown in Figure D-2, where a Priority-AND gate is used to
model the order dependence.

* Dynamic Fault Trees are described in Chapter 8.

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix D. Markov Modeling for Reliability Analysis 196

Standby
System Failure

Loss of primary
and backup Switch fails

before primary

Switch failsPrimary failsStandby fails

Figure D-2. DFT for Standby Space System

Figure D-3 shows the Markov model for the standby spare system, where circles represent states
and arcs represent events that cause transitions between states. Arcs are labeled with the rate at
which the transition occurs (usually the failure rate of the failed component). The failure rate of
an active component (the primary or spare when activated) is λp, while λs is the failure rate of the
switch. In the initial state (state 1) the primary, spare and switch are all functional. The two
transitions from state 1 represent the failure of the primary (leading to state 2) and the failure of
the switch (leading to state 3). In state 2, the spare has been switched to active service, and a
later failure of the switch is inconsequential. From state 3, failure of the primary leads to system
failure (state F).

1 2 F

3

λp λp

λp
λs

Figure D-3. Markov Model for Standby Spare System.

A Markov chain is equivalent to a set of differential equations, with one equation for each state.
Associated with each state is a state variable representing the time-dependent probability that the
system is in that state (note that the states are mutually exclusive). The set of differential
equations associated with the Markov chain shown in Figure D-3 is given by

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix D. Markov Modeling for Reliability Analysis 197

1 p s 1

2 P 1 P 2

3 s 1 P 3

F P 2 P 3

d P (t) ()P (t)
dt
d P (t) P (t) P (t)
dt
d P (t) P (t) P (t)
dt
d P (t) P (t) P (t).
dt

= − λ + λ

= λ − λ

= λ − λ

= λ + λ

where it is assumed that the initial state (at time zero) is state 1:

1 iP (0) 1 and P (t) 0,i 1= = ≠

The solution of the differential equations is given by

P S

p P S

p P S

p P S

()t
1

t () tP
2

S

t ()t
3

t () tP S P
4

S S

P (t) e

P (t) (e e)

P (t) e e

P (t) 1 e e .

− λ +λ

−λ − λ +λ

−λ − λ +λ

−λ − λ +λ

=
λ

= −
λ

= −
λ + λ λ

= − +
λ λ

The reliability of the standby system is the probability that the system is not in a failed state:

p P St ()tP S P

S S

R(t) e e−λ − λ +λλ + λ λ
= −

λ λ

Additional detail on Markov models for reliability is provided in [1].

D.2 Converting a Dynamic Fault Tree to a Markov Model

The algorithm for converting a dynamic fault tree to an equivalent Markov model is conceptually
simple [2]. Starting with the initial state (all components operational), a set of target states and
associated transitions are generated by considering the effect of failing each active component,
one at a time. Each time a new state is generated, it is checked against the fault tree to see if it is
an operational or failed state. Each operational target state is added to the Markov chain and is
further expanded.

Consider an example static fault tree, consisting of three processors and two memories connected
by a bus. At least one processor, one memory and the bus are needed for the system to operate.
The fault tree model for this 3P2M (three processor and two memory) system is shown in Figure
D-4, and the corresponding Markov chain is shown in Figure D-5. In Figure D-5, λ is the
failure rate of a single processor; µ is the failure rate of a single memory and σ is the failure rate
of the bus. Each state is labeled with three integers, representing the number of operational

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix D. Markov Modeling for Reliability Analysis 198

processors, memories and buses, respectively. The initial state (3,2,1) has three outgoing
transitions, representing a failure of a single component. Note that the transition rates are
multiplied by the number of active components of each type. The failure states (FP, FM and
FB), representing failures caused by exhaustion of processors, memories and buses, respectively,
are drawn separately to simplify the diagram. Although it is simpler and more efficient to solve
the 3P2M example system directly as a fault tree, the Markov chain solution yields identical
results.

3*P 2*M

Bus
Fails

3P2M failure

3 of 3
Processors Fail

2 of 2
Memories Fail

Figure D-4. 3P2M Example System

Figure D-5. Markov chain for 3P2M system

Because this 3P2M system has no order dependent behavior (since it only needs AND and OR
gates in the fault tree), separate paths can lead to the same state. For example, consider state
(2,1,1), in which there has been both a processor failure and a memory failure. The two paths
from the initial state (3,2,1) to the (2,1,1) state represent the different orders in which the two
failures could have occurred. The single state (2,1,1) can be used as the target state because the
order is not important for the analysis of the fault tree. However, if there had been a gate in the

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix D. Markov Modeling for Reliability Analysis 199

fault tree that depended on the order, then the state (2,1,1) would have been split into two states,
recording the order of the events.

The Markov chain approach is necessary when there are dynamic gates in a fault tree. The
Markov chain generation algorithm identifies which sets of events are order-dependent and
generates separate states for each possible order. When spare gates are used (warm spare gates
(WSP) in this example), the assignment of the spares as well as the determination of the failure
rate for each spare (active or not) is included. Functional dependencies affect the set of
operational components in the target state, and can interact with spare gates. Thus, although the
Markov chain generation is conceptually simple, there are interaction and timing issues to be
considered. As a slightly more involved example, consider a DFT for a Vehicle Management
System (VMS) (Figure D-6) and its associated Markov chain (Figure D-7), where transitions are
labeled with the basic event that occurs rather than with the transition rate, for clarity. Notice in
Figure D-7 that there are two states representing the combined failure of components A and C.
State S7, representing the sequence A fails then C fails is a failure state. This is a failure state
because of the asymmetry of the system: if A fails it is replaced by the spare. When C fails, the
spare is not available and the system fails. Contrast state S7 with state S13, representing the
sequence C fails then A fails. State S13 is an operational state for this system.

VMS CPUs

Veh Mgt

VM
a

VM
b

VM
c

VM
S

Vehicle
Mgmt A
HSP

Vehicle
Mgmt B
HSP

Vehicle
Mgmt C
HSPWSP WSP WSP

Figure D-6. An Example DFT for VMS

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix D. Markov Modeling for Reliability Analysis 200

S1
1A2B3C

S

S2
1S2B3C

S3
1A2B3C

S4
1A2S3C

S5
1A2B3S

S6
1S2X3C

S7
1S2B3X

S8
1X2B3C

S9
1A2X3C

S10
1X2S3C

S11
1A2S3X

S12
1A2B3X

S13
1X2B3S

S14
1A2X3S

S15
1S2X3X

S16
1X2X3C

S17
1X2S3X

S18
1X2B3X

S19
1A2X3X

S20
1X2X3S

S21
1X2X3X

A
Fa

ils
S

Fa
ils

B FailsC Fails

A Fails
B Fails

S Fails

A Fails

C Fails

S Fails

B Fails

C Fails
S Fails

A Fails

B FailsC Fails

S Fails

C Fails

S Fails

B Fails

A Fail
s

S
Fa

ils

C FailsS Fails

B Fails

B Fails

A Fails

S Fails

C Fails

C Fails

A Fails

S Fails

S F
ail

s

B Fails

A Fails

A Fails

B Fails

S F
ail

s

C Fails

S Fails

Operational
States

Failed
States

Figure D-7. Markov Model for VMS

As an illustration of the effect of the FDEP (functional dependency) gate, consider the memory
system from the HECS example described in Chapter 13 (shown in Figure D-8). The main part
of the HECS memory system is a set of redundant memory units (M1 through M5) of which
three are required. Thus when three of the five fail, the memory system fails. However, the
memory units are functionally dependent on the memory interface units (MIUs). If MUI 1 fails,
it disconnects M1 and M2. If MIU 2 fails, it disconnects M3 and M4. If both MIUs fail, then
M3 is disconnected.

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix D. Markov Modeling for Reliability Analysis 201

M1 M2 M5M4M3

FDEP FDEP

MIU
1

MIU
2

3/5

FDEP

Memory
system failure

Figure D-8. DFT for HECS Memory System

The Markov chain for the HECS memory system is shown in Figure D-9. Figure D-9 shows
more than the enumeration of the states associated with up to two memory units failed. Each
individual memory unit failure moves the system from a state with i failures to a state with i+1
failures. Notice that some arcs (those representing MIU failures) take the system from a state
where there are i failures to i+3 failures (the MIU as well as its dependent memory units).

Fault Tree Handbook with Aerospace Applications Version 1.1

Appendix D. Markov Modeling for Reliability Analysis 202

1111111

0011101

0111111

1011111

1101111

1110111

1111011

1110010

0011111

0101111

0110111

0111011

1001111

Failed

1010111

1011011

1100111

M2

M3

M4

M5

M1

M3

M4

M5

M
1

M2

M4

1110011

1101011

M
5

M
1

M2

M5

M3

M4

M3

M2

M
1

M3

M2
M

1

M4
M

5

M
IU

1

M
IU2

MIU1, MIU2

MIU1

MIU2

MIU1

MIU1

MIU2

MIU1

MIU2

MIU2

M1 M2 M3 M4 M 5 M IU1
M IU2

Key

Figure D-9. Markov Model for HECS Memory System

Once the Markov chain is generated, its solution is fairly straightforward using numerical
techniques. However, the Markov chain can be extremely large; the number of states is
exponential in the number of components. Fortunately, good techniques exist for truncating the
Markov chain and generating an approximate (bounded) result.

D.3 References

1. J. Pukite and P. Pukite, “Modeling for Reliability Analysis,” IEEE Press, 1998.

2. J. Dugan, S. Bavuso and M. Boyd, “Dynamic Fault Tree Models for Fault Tolerant
Computer Systems,” IEEE Transactions on Reliability, Vol. 40, No. 3, pp. 363-377.

Fault Tree Handbook with Aerospace Applications Version 1.1

Glossary 203

Glossary

Basic event. The bottom or “leaf” events of a fault tree. The limit of resolution of the fault tree.
Examples of basic events are component failures and human errors.
Common cause failure. Multiple component faults that occur at the same time or that occur in a
relatively small time window and that are due to a common cause.
Failure. An unacceptable deviation from the design tolerance or in the anticipated delivered
service, an incorrect output, the incapacity to perform the desired function.
Fault. A defect, imperfection, mistake or flaw of varying severity that occurs within some
hardware or software component or system. “Fault” is a general term and can range from a
minor defect to a failure.
Fault realization or error. The manifestation of a fault in a system or the information that is
processed by the system or a manifestation in the internal system state.
Minimal cut set. A smallest combination of basic events whose occurrence results in the
occurrence of the top event of a fault tree.
Minimal path set. A smallest combination of basic events whose nonoccurrence results in the
nonoccurrence of the top event of the success tree.
Permanent fault. A fault with lasting effects. The failed component or system must be
replaced.
Recoverable, or covered, fault. A fault from which the system can recover all or part of its
functionality. The system can continue to operate, although possibly in a degraded mode.
“State of component” fault. A fault of a component due to either the failure of the component
or the failure of a command to the component.
“State of system” fault. A fault with a system-level effect and which is not necessarily
localized at a given component.
Top event. The initial event of a fault tree or success tree. Also called the undesired event in
the case of a fault tree.
Transient fault. A fault of limited duration that causes no permanent hardware damage.
Transient faults can be caused by excessive heat, power disruptions, timing issues or
environmental influences, for example. It is often possible to recover from a transient fault
without discarding the affected component or system.
Undesired event. The top event of the fault tree.
Unrecoverable, or uncovered, fault. A fault from which the component or system cannot
automatically recover. A unrecoverable fault leads to immediate system failure. Both transient
and permanent faults can be unrecoverable.

Fault Tree Handbook with Aerospace Applications Version 1.1

Acronyms 204

Acronyms

AFTH Fault Tree Handbook with Aerospace Applications
APU Auxiliary Power Unit
BDD Binary Decision Diagram
BE Basic Event
CA Containment Assurance
CCF Common Cause Failure
DFM Double Failure Matrix
DFT Dynamic Fault Tree
ELV Expendable Launch Vehicle
ESD Event Sequence Diagram
ET Event Tree
FDEP Functional Dependency Gate
FHA Fault Hazards Analysis
FMEA Failure Modes and Effects Analysis
FMECA Failure Modes, Effects and Criticality Analysis
FT Fault Tree
FTA Fault Tree Analysis
FV Fussell-Vesely (Importance)
GUI Graphical User Interface
HECS Hypothetical Example Computer System
HRA Human Reliability Analysis
HW Hardware
IEEE Institute for Electrical and Electronics Engineers
ISRB Integrated Solid Rocket Booster
LOC Loss of Crew
LOCV Loss of Crew and Vehicle
LOM Loss of Mission
LOV Loss of Vehicle
MCS Minimal Cut Set
mincut Minimal Cut Set
minpath Minimal Path Set
MIU Memory Interface Unit
ML Maximum Likelihood
MLD Master Logic Diagram
MMOD Micrometeoroid or Orbital Debris
MMSE Minimum Mean Square Error
MS Mission Success
MSE Mean Square Error
MVUE Minimum Variance Unbiased Estimator
NASA National Aeronautics and Space Administration
NRC Nuclear Regulatory Commission
PHA Preliminary Hazards Analysis
PRA Probabilistic Risk Assessment
RAW Risk Achievement Worth (Importance)

Fault Tree Handbook with Aerospace Applications Version 1.1

Acronyms 205

RBD Reliability Block Diagram
RLV Reusable Launch Vehicle
RRW Risk Reduction Worth (Importance)
SAIC Science Applications International Corporation
SRB Solid Rocket Booster
SSME Space Shuttle Main Engine
ST Success Tree
SW Software
TVC Thrust Vector Control
VMS Vehicle Management System

