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1 . 0 INTRODUCTION

1 . 1 Scope

The purpose of this handbook is to introduce models and computer codes for

predicting the properties of textile composites. The composites of primary interest are those

best suited to applications in aircraft structures. This is first to say those ranked high in

stiffness and strength; and many models are therefore discussed which detail the elastic

regime and predict the proportional limit. But textile composites are also favoured for their

superior damage tolerance. The handbook therefore includes several models for predicting

the stress-strain response all the way to ultimate failure; methods for assessing work of

fracture and notch sensitivity; and design rules for avoiding certain critical mechanisms of

failure, such as delamination, by proper textile design.

The textile classes receiving at least some treatment are:

(i) 2D woven laminates

(ii) 2D braided laminates

(iii) laminates of knitted plies

(iv) stitched laminates

(v) 3D interlock weaves

(vi) 3D braids

(vii) 3D nonwoven composites.

The fiber and matrix materials need not be specified until the models are applied to a

particular material. However, many models are based on assumptions that may be invalid if

the degree of anisotropy is not as high as it is for stiff fibers such as carbon or glass in a

polymeric matrix. Models assuming high anisotropy would not be appropriate for ceramic

or metal matrix composites. Readers working with ceramics or metals should exercise

caution accordingly.

The handbook deals mainly with models for textile composites manufactured as flat

panels, with limited attention to curved panels. Yet one of the longer term attractions of

textiles is that they promise a method of manufacturing net shape, integral structures,

eliminating many machining and joining steps in manufacture, cutting material waste,

preventing the possibility of debonding failures in service, and saving the attendant
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necessity of continual inspection. Some textile technologies, especially stitching and

braiding, are already on the verge of producing cost effective integral structures.

Unfortunately, there are almost no models available at the time of writing for general part

shapes, even though the technological advantage of integral textile structures is a strong

motivation for their development. It is to be hoped they will be included in future editions

of the handbook.

1 . 2 Layout of the Handbook

The intended audience for this handbook is the practicing design engineer, who

might be assumed to be very familiar with the mechanics of composites. However, textile

composites are sufficiently new and their mechanisms of failure so unlike those of tape

laminates in so many ways, that it would be very imprudent for a designer to take any

model of a textile composite at face value and proceed to use it. Whether a model will

work, whether it is the best available, how it should be used, and what limits exist on its

accuracy and domain of applicability are questions whose correct answer requires sound

understanding of concepts that are peculiar to textiles and very recent in their development.

Therefore the handbook offers tutorial chapters on the technology and mechanics of

textile composites before the models are presented. Section 2 surveys the rich diversity of

textile processes and products. Section 3 highlights some of the distinctions between

textiles and tape laminates that designers more familiar with the latter should remember.

Section 4 details the known mechanisms of failure of textile composites, many of which

have no parallel in traditional laminates, and offers a few failure maps in cases where the

controlling microstructural and material parameters are known. Sections 5 through 7

present the models themselves, each section being prefaced by a summary of essential

geometrical and modeling concepts, which must be mastered before any judgment can be

exercised over the choice of code for a particular application. With the guidance of these

concepts and available experimental data, a critical appraisal is offered of the relative merits

of models that claim to calculate the same quantities. The reader is strongly advised to work

through all these sections to acquire at least a rudimentary understanding of the special

challenges in modeling textile composites.

Details of the codes, sample input and output decks, and user’s guides written by

the original authors are supplied in Section 8 and the appendices. Source codes for all the
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models presented are available over the internet. All codes have been compiled on a Unix

platform and verified to perform as claimed in at least a few representative cases.

Throughout the handbook, the names of codes are printed in UPPER CASE

BOLD TYPE.

1 . 3 Historical Origins

Many of the models presented were developed by the Textiles Working Group

within the Advanced Composites Technology (ACT) Program sponsored by NASA

Langley Research Center. This research was conducted over a period of five years ending

in 1994 by about a dozen groups in universities and industry.

Other key models and computer codes have also been included to ensure that the

handbook’s scope is representative of the growing population of models in the modern

literature.

At least some of the models have had the advantage of being conceived in the midst

of vigorous experimental programs, in which stiffness, strength, and damage mechanisms

have been studied extensively, by which it might be hoped that they are more realistic than

models formulated on entirely theoretical grounds.

The ACT program has also funded the writing of this first edition of the handbook.

1 . 4 Internet Access

This report is also available in electronic format from the Langley Technical Report

Server (LTRS) using the Uniform Resource Locator (URL):

 http://techreports.larc.nasa.gov/ltrs.

Instructions for accessing source codes and user’s guides for programs described in this

handbook is available at:

http://coins.larc.nasa.gov

Refer to NASA Contractor Report No. CR-4750.
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2 . OVERVIEW OF TEXTILES

Textile composites for engineering structures draw on many traditional textile forms

and processes. In this section, the processes and architectures that can yield composites

with the high performance required for aerospace structures will be summarized. These

textiles are generally those that most effectively translate stiff, strong yarns into stiff, strong

composites.

A textile composite has internal structure on several scales. At the molecular scale,

both the polymer matrix and the fibers exhibit structural details that profoundly affect

strength and stiffness. Matrix properties are determined by chain morphology and cross-

linking, among other things. Carbon fibers, which are often the preferred choice in

aerospace materials, owe their axial stiffness and strength to the arrangement of carbon

atoms in oriented graphitic sheets. On a coarser scale, typically ~1 mm., lots of 103 - 104

fibers are bundled into yarns or tows. Within the finished composite, each tow behaves as

a highly anisotropic solid entity, with far greater stiffness and strength along its axis than in

transverse directions. Because tows are rarely packed in straight, parallel arrays, stresses

and strains often possess strong variations from tow to tow. Thus composite mechanical

properties such as elasticity can only be considered approximately uniform on scales that

are even larger still, say ~ 10 mm or higher, where the effects of the heterogeneous

structure at the tow level are averaged out. Finally, the textile forms part of an engineering

structure, perhaps the stiffened skin of a wing or fuselage. Since the engineering structure

itself usually has some dimensions as small as ~ 10 mm, the fabrication of the composite

material and the fabrication of the engineering structure may no longer be considered

distinct operations. To fabricate the textile composite is to fabricate the structure.

Figure 2-1 illustrates scales in one textile process. The part shown is an integrally

formed skin/stiffener assembly. The first processing step is the formation of yarns from

fibers. In the second step, the yarns are woven into plain woven cloth. The cloths are then

laid up in the shape of the skin and stiffener and stitched together to create an integral

preform. Finally, the composite part is consolidated by the infiltration of resin and curing in

a mold.
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Figure 2-1.  Steps in the production of a textile composite structure.

The fabrication method of Figure 2-1 also illustrates fairly high utilization of the

axial stiffness and strength of the fibers. The fibers in the skin are arranged approximately

in-plane and straight and with reasonably high volume fraction. High in-plane composite

stiffness and strength can therefore be expected. Certain other traditional textiles do not

achieve this. For example, many knitted fabrics loop yarns in highly curved paths, rather

than aligning them; and, because of the openness of the fabric, can achieve only moderate

fiber volume fractions. Composite stiffness and strength are consequently inadequate for

airframes. For similar reasons, fiber mats and discontinuous reinforcements are usually

unattractive to airframe designers. These materials will be excluded from further

consideration in the handbook.

Figure 2-1 also exemplifies reinforcement that is heterogeneous on the scale of the

structure. The length of the stitches varies with the thickness of the flange of the rib and

their spacing is not far below the thickness of either the rib itself or the flanges. Just as the

material and the structure are fabricated simultaneously, so in this case they must be

analyzed simultaneously. Dealing adequately with the fiber architecture in determining

stress distributions requires analyzing the external geometry of the part itself. However,

computer programs to perform such a task are still being developed. Therefore, this

handbook in its first edition focuses on solutions for skins, sheets, or slabs without

complicating external shapes, for which developed and tested programs are already

available.
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2 . 1 Textile Processes

2 . 1 . 1 Categorizations

Figure 2-2 introduces the most important groups of textile forms that are candidates

for airframes, many of which were investigated during NASA's ACT Program. The left

column (weaving, braiding, etc.) categorizes textiles according to the machines and

processes used in creating them. High-performance composite structures have been created

using all the processes listed, conventional textile machinery having been modified in many

cases to handle the high modulus fibers needed in airframes and to reduce costs through

automation.

Weaves

Braids

Stitching

2D

3D

2D

3D

Bias

Triaxial

2-Step

4-Step

Multi-Step

Angle Interlock

Orthogonal Interlock

Non-Woven
N-Directional

Plain

Satin

Triaxial

Uniweaves

Layer-to-Layer

Through-Thickness

Multi-Axial
Warp Knit

Tubular

Cartesian

Quasi-Laminar

Quasi-Laminar
in elastic regime
only

Quasi-Laminar

Nonlaminar

Nonlaminar

Quasi-laminar

Figure 2-2.  Some of the textile forms available for high performance composite structures.

2.1.1.1 Dimensionality

The division into 2D and 3D composites is determined by whether the fiber preform alone

(in the absence of the matrix) can transport loads continuously in three or only two linearly
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independent directions.1 Thus a 2D composite has distinct layers, which may be separated

without breaking fibers. Of course, yarns in textile composites that are defined to be 2D

may still follow path segments with components in the through-thickness direction, as in a

laminated plain weave; but surfaces may be defined through which no tows pass and which

separate the composite into layers. This cannot be done for a 3D composite.

2.1.1.2 Quasi-Laminar and Nonlaminar Textiles

In modeling their macroscopic properties, all 2D and many 3D textile composites

can be considered to function as laminates, with relatively minor allowance for their textile

nature, even though the routes to their manufacture are very different from conventional

tape lay-up. Most textile composites designed for skin or sheet applications fall into this

category. When high in-plane stiffness and strength are demanded, the majority of fibers

must lie in-plane; relatively few can be dedicated to through-thickness reinforcement

without unacceptable loss of in-plane properties. And indeed for most sheet applications,

damage tolerance and delamination resistance require modest volume fractions of through-

thickness fibers (Sect. 4; [2.1,2.2]). Textile composites that behave in most ways like

laminates will be called "quasi-laminar."

In structures where substantial triaxial stresses exist, the optimal reinforcement will

no longer be a laminate with moderate through-thickness reinforcement. Instead, fibers will

be arranged by some textile process with roughly equal load bearing capacity along all three

axes of a Cartesian system. Such textile composites will be called "nonlaminar."

Nonlaminar textiles are often manufactured to respond to complex part geometry

and triaxial loads, for example the union of a skin and stiffening element or a short beam

with approximately equiaxed cross-section. But even a curved plate designed as a laminate

with through thickness reinforcement must be considered nonlaminar if its curvature is

sufficiently high. As the curvature increases, greater through-thickness tension is generated

by applied bending moments, and so much through-thickness reinforcement is needed to

suppress delamination that the part loses its laminar character (Sect. 4, [2.3]).

Figure 2-2 shows how the main classes of textiles may be categorized as quasi-

laminar or nonlaminar. Occasionally, experience with damage modes obliges categorization

                                                

1Direction vectors are linearly independent if none of them can be expressed as a simple combination of the
others.  Thus three in-plane directions cannot be linearly independent.
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of a textile as nonlaminar in describing its passage to ultimate failure, even though in the

elastic regime it is clearly quasi-laminar.

Whether a textile is quasi-laminar or nonlaminar is a crucial question in choosing an

appropriate approach to modeling its properties. Quasi-laminar composites can generally be

modeled accurately by some modification of standard laminate theory. Nonlaminar textiles

require a model that computes the distribution of stresses in all tows, which is a much more

difficult problem.

2 . 1 . 2 Preforms

2.1.2.1 Weaving

Weaves have been used in composites for many years. They offer a low cost

method of fabricating large areas of material, with only a small sacrifice in the properties

that would have been obtained with laminates of unidirectional tape. Weaves are made by

interlacing two or more orthogonal sets of yarns (warp and weft) on a loom. Most weaves

contain similar numbers of fibers and use the same material in both warp and weft.

However, hybrid weaves [2.4] and weaves dominated by warp yarns (Sect. 2.2.2.4) have

important roles in textile composites .

Woven broadgoods may be purchased either as a dry preform or pre-impregnated

with a B-staged epoxy matrix. In most applications, multiple layers of 2D weaves are

laminated together. As with tape laminates, the layers are oriented to tailor strength and

stiffness.

3D woven fabrics are created on a multiwarp loom. As in a conventional loom,

harnesses alternately lift and lower the warp yarns to form the interlacing pattern. In the

multiwarp loom, separate harnesses lift different groups of warp yarns to different heights,

so that some are formed into layers while others weave the layers together.

2.1.2.2 Flat Braiding from Cylindrical Mandrels

Traditional braiding involves a series of yarn carriers that follow intersecting

circular paths so that the yarns interlace to form a tubular fabric (Fig. 2-3). A mandrel that

passes through the braider may be used to control the final fabric configuration. The

rotational speed of the yarn carriers relative to the transverse speed of the mandrel controls
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the orientation of the yarns. The mandrel can vary in cross-section, with the braided fabric

conforming to the mandrel shape (as long as the perimeter is not re-entrant).

Figure 2-3.  Maypole braider for production of 2D bias braid.

Fixed, straight axial yarns can also be introduced at the center of orbit of the braider

yarn carriers. The braider yarns lock the axial yarns into the fabric, forming a triaxial braid,

i.e. a braid reinforced in three in-plane directions.

A flat braided sheet can be formed by cutting the cylindrical sheet from the mandrel

and stretching it out flat.

2.1.2.3 3D Braiding

3D braiding can produce thick, net section preforms, in which tows are so

intertwined that there may be no distinct layers. In one process, the yarn carriers (bobbins)

are arranged in a two-dimensional grid, often in rectangular or annular patterns, sometimes

in the cross-sectional shape of the final component. Multiple rectangles can be concatenated

to form more complex cross-sections. Braiding proceeds by alternately exchanging rows

and columns of yarn carriers. While the tracks that move yarn carriers return to their

original positions after a small number of steps, the carriers themselves can follow complex

paths by passing from one track to another.
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Three-dimensional braids can be characterized as two-step, four-step, and multi-

step processes. The number of steps refers to the number of movements required for the

yarn carrriers to return to their original positions. The two-step process is illustrated in Fig.

2-4. The braider yarns move in opposite directions along alternating diagonals formed by

the axial yarns.

Step 1 Step 2

Axial Yarn

Braider Yarn

Figure 2-4.  Two-step braiding process.

The four-step process is shown in Fig. 2-5. In the first step, alternate columns are

shifted a prescribed relative distance. The next step involves shifting alternate rows. The

third and fourth steps permute the columns and rows to return the device to its original

configuration (although an individual bobbin does not return to its original position in one

cycle). The 4-step process is a general term for processes that include Omniweave,

Magnaweave, SCOUDID, and Cartesian braiding. Multistep braiding is a generalization of

the four-step procedure which involves individual control over columns and rows.

The relative shifting distance of the rows and columns also controls the braid

pattern. In a 1x1 braid, the shifting distances of the rows and columns are equal. More

complex braid patterns are possible.

3D braiding machines use a beater to control compaction as the yarns interlace. The

degree of compaction is a process variable which affects the resulting fabric geometry.

2.1.2.4 Uniweaves

The uniweave concept combines the mechanical property potential of unidirectional

tape with the handling advantages and low-cost fabrication of a fabric. Uniweave consists

of primary yarns of strong, stiff fibers woven together with fine yarns of glass or polyester
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thread. The glass or polyester threads, which contribute around 2% of the total weight,

serve mainly to hold the primary yarns together during subsequent handling. The fibers in

the primary yarns remain close to unidirectional. Multiple layers of uniweave are often

stitched together to form a sheet of any desired thickness.

Start

Step 3 Path of Typical Carrier

Step 1 Step 2

Step 4

Typical
Carrier

Figure 2-5.  Four-step braiding process.

2.1.2.5 Warp Knits

The multi-axial warp knit process ties yarns of primary fibers together in layers

with 0°, ±45°, and 90° orientations. The knitting is done with fine polyester threads, which

amount to a small percentage of the total weight. During knitting, the polyester threads are

passed around the primary yarns and one another in interpenetrating loops (Fig. 2-6). The

mechanical properties of the stack of layers can be controlled by selecting the yarn weight

in each of the four orientations. The knitted stacks form building blocks which can be

laminated to form the thickness desired for some structure. The knitted stacks can also be

stitched together in a secondary operation. The major advantage of the knitting process is

its low cost compared to conventional tape lay-up.

Stacks most commonly contain four oriented layers. However, a symmetric, seven

layer stack may be preferred to control twist and bending in the final laminate.
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Carbon
Yarns

Polyester
Knitting Thread

Figure 2-6.  Multi-axial warp knit.

2.1.2.6 Stitching

Stitching has been used for more than 20 years to provide through-thickness

reinforcement in composite structures. It significantly enhances damage tolerance. The

major manufacturing advance in recent years has been the introduction of resin transfer

processes which allow one to stitch dry preforms, rather than prepreg material. This

enhances speed, allows stitching through thicker material, and greatly reduces damage to

the in-plane fibers.

As well as enhancing damage tolerance, stitching also aids fabrication. Many textile

processes generate preforms that cannot serve as the complete structure. For example, bias

plies usually must be attached to 0/90° weaves; or stiffeners to a skin. Stitching provides a

mechanical connection between the preform elements before the resin is introduced,

allowing the completed preform to be handled without shifting or damage. In addition,

stitching compacts the fiber preform closer to the final desired thickness. Less mechanical

compression need then be applied to the preform in the tool.

In many applications, strength and damage tolerance requirements would be

satisfied by less than one volume percent of stitching fibers. However, the minimum

volume of stitching is set by the fabrication process. While there is considerable latitude in

stitch density, the lower bound in current technology sometimes exceeds the amount

needed, thus unnecessarily sacrificing in-plane properties.
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Two forms of stitching are of interest for structural applications; the modified lock

stitch and the chain stitch (Fig. 2-7). The chain stitch uses only one stitching thread,

whereas the lock stitch requires separate bobbin and needle threads. In the modified lock

stitch, the thread tension is adjusted so that the knot forms on the outer surface of the

laminate, rather than internally. This minimizes distortion of the laminate. The stitching

parameters that may be controlled include the pitch between penetrations, the spacing

between parallel rows of stitching, the stitching material, and the weight of the stitching

yarn. Various stitching materials have been successfully demonstrated, including carbon,

glass, and Kevlar, with Kevlar being the most popular. Yarn weights for Kevlar of

between 800 and 2000 denier have been used. Stitching that contributes around 2% of the

total areal weight of the completed fabric has usually been found to impart satisfactory

damage tolerance (compression strength after impact).

2 . 1 . 3 Molding

A key technology for making textiles practicable in composite structures is the

ability to infuse a dry preform with a matrix. Numerous methods are available for this step.

This handbook will focus on materials and processes suitable for polymer matrix

composites. Other technologies such as vapor deposition have been developed for carbon-

carbon, metal matrix, and ceramic matrix composites.

One approach to matrix infusion is called resin transfer molding or RTM (Fig. 2-

8a). In this process, the preform is placed in a mold with the shape of the final part. A low

viscosity resin is pumped in via a series of injection ports. Vent ports, connected to a

vacuum pump, evacuate trapped gases and excess resin. The part is then cured at elevated

temperature while still in the mold. In a successful RTM process, the preform is fully

wetted with resin, but achieving full wetting can be challenging in a complex part. Resin

flow is controlled by the permeability of the fiber preform and the viscosity of the resin.

Permeability is higher for low fiber volume fractions, but of course high fiber volume is

usually demanded to maximize structural performance. Despite this conflict, high quality

parts have been made with fiber volume fractions exceeding 60%. Success often depends

on having good process models to identify the optimum location of injection and venting

ports.
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Needle Thread

Bobbin Thread

Laminate

Knot

Surface Loop

Surface Loop
Pitch

Laminate

Knot

a)  Lock Stitch

b) Chain Stitch

Figure 2-7.  Types of stitching used for through-thickness reinforcement.

Another process is called resin film infusion (RFI) (Fig. 2-8b). In this process,

solid sheets of resin material are placed next to the fiber preform. At cure temperatures, the

viscosity of the resin drops dramatically and the resin flows through the thickness of the

preform, wetting the fibers. Since the resin starts inside the tool, RFI allows the use of

tooling methods developed for prepreg materials (single-sided tooling and vacuum

bagging). The amount of resin is controlled by the number of sheets of resin used in a

given area. The distance the resin needs to flow is usually less than in an RTM tool, which

simplifies the problem of obtaining full wetting.

The RTM and RFI processes are both suitable for thermoset resin. Additional

techniques are being developed for thermoplastic materials (Fig. 2-9, [2.5]). Thermoplastic

materials can be spun into fibers. This offers the possibility of commingling the

thermoplastic and reinforcing fibers to produce a hybrid yarn. The hybrid yarn is woven

into a preform and placed into a tool. When heated, the thermoplastic fibers melt and form

the matrix. Alternatively, the thermoplastic thread can be spun over the outside of the
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reinforcing fiber bundle. In another process, the reinforcing yarns are coated with

thermoplastic powder.

Resin

PreformClosed Mold

Pump

Trap

To Vacuum

Injection Port Vent Port

a)  Resin Transfer Modling

b)  Resin Film Infusion

Vacuum Bag Preform

Resin Sheets

Tool

Breather

Figure 2-8.  Resin infusion techniques

2.2 Materials

Textile processes have been adapted to handle most of the fibers commonly used in

structural composites, including glass, aramid, and carbon. The only limitation to fiber

selection is that most textile processes subject yarns to bending and abrasion. Machines

have been modified to minimize fiber damage, but, in many processes exceptionally brittle

or stiff fibers cannot be used.

Important properties of some popular fibers are shown in Table 2.1, with the usual

assumption that they are transversely isotropic. Axial properties were obtained from

manufacturers' data sheets. The transverse properties have been estimated indirectly by

various techniques, since they cannot be measured by conventional mechanical tests. For

example, there is a relationship between the axial and transverse moduli of a carbon fiber,

which arises from the degree of alignment of the graphite crystals that make up the fiber.

Nonaxial properties can also be inferred by fitting micromechanical relations to the

measured transverse properties of composites.
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a)  Commingled b) Spun c)  Powder Coated

Carbon Fiber

Thermoplastic Fiber

Thermoplastic Powder

Figure 2-9.  Techniques for using thermoplastics in textiles.

Table 2.1 Fiber Properties

Name Type EA ET GA αA
kA σATen σAComp ρ

GPa GPa GPa µm/m-K W/m-K MPa MPa kg/m3

P100 Pitch 772 7 22 -0.44 520. 2440 700 2150

T300 PAN 231 14 22 -0.17 8.5 2970 2690 1770

AS4 PAN 248 13 21 -0.17 9.0 3490 2700 1800

IM6 PAN 276 12 19 -0.17 10.0 4500 2700 1770

IM7 PAN 276 12 19 -0.17 10.0 3940 2700 1740

S-2 Glass 90 90 36 0.50 9.0 2990 1570 2490

Kevlar-49 Aramid 112 7 3 -1.50 0.04 3040 1050 1440

A - Axial, T - Transverse, σA - Axial strength, kA - Axial thermal conductivity

The size of the yarn into which fibers are bundled is a very important parameter in a

textile composite. Yarn size is expressed as a filament count (the number of fibers, usually

in thousands or K); or as a linear density, either the denier (the number of grams in 9000 m

of yarn) or the yield (length per unit mass). Table 2.2 shows the relation between these

parameters for two carbon fibers and an aramid fiber. The nominal diameter of a circular

yarn is based by convention on an assumed packing fraction (area of fibers over area of the

circle) of 0.75. (This aasumption should not be carried into models of composite

properties. Fiber volume fractions should always be measured. See Sect. 5.)
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In the traditional textile industry, yarns are twisted to provide structural integrity

and the ability to hold shape. In forming structural composites, in contrast, softer yarns are

desirable, since this allows compaction to maximize the total volume fraction or flattening

(especially in braids) to maximize coverage. Furthermore, twist would reduce the axial

stiffness of yarns, which is paramount in airframe applications. Therefore, yarns with

minimal or nominally zero twist (tows) are preferred.

Epoxy resins have been the predominant matrix in textile composites manufactured

by RTM or RFI for commercial aircraft structures. Epoxies meet the requirement of having

a low-viscosity state (100-500 cps), which is crucial for flow through a low permeability

preform with complete wetting of the fibers. Some epoxies that have been used in

prepregs, e.g. Hercules 3501-6 and 3502, have also been used for the RTM process (see

Section 2.1.3). The extensive data available from their use in prepregs has made them

attractive choices. There are now also a number of resins that have been especially

formulated for RTM, including 3M PR-500, BP Chemical E-905L, and Shell RSL-1895.

PEEK is a typical thermoplastic for manufacture via commingling or spinning a

matrix onto yarns, as described in Section 2.1.3.

Table 2.2  Typical Yarn Weights and Dimensions

Fiber Filament
count

Area of
Fibers
(mm2)

Diam. of Circular
Yarn with pd =

0.75
(mm)

Denier
(g/9000m)

Hercules AS4 3K 0.12 0.45 1990
Dia = 7.1 µm 6K 0.24 0.64 3980

Density = 1850 kg/m3 12K 0.48 0.90 7960
30K 1.19 1.42 19900
75K 2.98 2.25 49800

Hercules IM6 3K 0.07 0.35 1190
Dia = 5.6 µm 6K 0.15 0.50 2380

Density = 1800 kg/m3 12K 0.29 0.71 4770
30K 0.74 1.12 11900
75K 1.84 1.77 29800

Du Pont Kevlar 49 1K 0.11 0.44 1450
Dia=11.9 µm 2K 0.22 0.62 2900

Density = 1440 kg/m3 3K 0.34 0.75 4350
4K 0.45 0.87 5800
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2.3 The Geometry of Textile Reinforcement

2 . 3 . 1 Ideal geometry

2.3.1.1 Unit Cells

The geometry of a periodic textile is conveniently described in terms of unit cells,

following the example of crystallography ([2.6]; see also section 5.1.5). The unit cell is

defined by the requirement that the entire textile can be constructed from spatially translated

copies of it, without the use of rotations or reflections. The unit cell is not unique.

Nevertheless, as in crystallography, symmetry in the textile usually suggests a preference.

2.3.1.2 2D Weaves

Weaves may be classified by the pattern of interlacing. The simplest pattern is the

plain weave shown in Fig. 2-10(a). A disadvantage of the plain weave is the frequent

exchanges of position from top to bottom made by each yarn. This waviness or yarn crimp

reduces the strength and stiffness of the composite. Other weave patterns reduce the

number of exchanges and increase the lengths of straight segments of yarn (known as the

“float”). Of particular interest are the satin weaves shown in Fig. 2-10(b), (c), and (d). The

satin weave pattern is defined by the number of yarn widths between exchanges. For

example, the five harness satin weave shown in Fig. 2-10(c) has a 4-over, 1-under pattern.

In addition, the exchanges are arranged so as not to connect; or in the case of the crow's-

foot pattern (Fig. 2-10(b)), so as not to lie on continuous diagonals.

Individual layers of satin weave fabric are asymmetric. One side of the fabric is

predominantly warp yarns; the other fill. Exchange sites also break symmetry because they

bend yarns in an asymmetric way. Bending and stretching in a satin weave ply are

consequently coupled. There is also coupling between stretching and in-plane shear,

because exchange locations are not symmetric about either in-plane axis (Fig. 2-11).

Coupling between bending and stretching will tend to cause warping during cure because

of thermal strains. Warping can be minimized in a multilayer laminate by considering which

side of each ply should face the tool.

The selection of a weave involves manufacturing considerations as well as final

mechanical properties. The type of weave affects dimensional stability and the

conformability (or drape) of the fabric over complex surfaces. Satin weaves, for example,

exhibit good conformability. Unfortunately, good conformability and resistance to shear
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are mutually exclusive. Thus, while woven fabrics are frequently the material of choice for

complex geometries, the designer must be aware that specified material directions may be

impossible to maintain on a doubly curved surface; and initially orthogonal yarns may not

remain orthogonal in the fabricated product.

Most 2D weaves involve two orthogonal directions of yarn, implying weak in-plane

shear resistance within a single ply. However, triaxial weaves, in which the yarns form 60°
angles to each other, have also been fabricated (Fig. 2-12, [2.5]). A single ply of triaxial

material would have approximately isotropic in-plane elasticity.

2.3.1.3 2D Braids

Figure 2-13(a) shows the interlacing pattern for a ±θ bias braid. Structurally, a 1x1

braid with yarns oriented at ±45° is indistinguishable from a plain weave rotated by 45°.

(In a 2D braid, the designation "nxn" refers to the number of bias yarns between crossover

points.)

Longitudinal or axial yarns can be introduced into the braiding process to create a

triaxial braid. The axial yarns are trapped within the crossovers of the bias yarns. In

principle, the axial yarns can remain straight, and therefore retain much of their

unidirectional properties. By controlling the relative size of the axial yarns and the angle of

the bias yarns, a wide range of final properties can be obtained. As with woven fabrics, the

pattern of crossovers can be controlled. Figures 2-13(b), (c), and (d) show three possible

patterns for triaxial brads. These figures show the braid patterns with gaps between the

yarns for clarity; the actual braid would normally have complete coverage.

Applications for braids can be limited by the size of the braiding machines available.

A large braider has 144 yarn carriers and a bed diameter of 2.25 m. Often, full coverage of

the mandrel by the bias yarns alone is required on each pass to minimize gaps and resin

pockets in the structure. Full coverage is obtained when [2.7]

wb/cos θ =P/2N (2.1)

where wb is the width of a bias yarn as it lies on the mandrel, P is the perimeter of the

mandrel, N is the number of bias yarn carriers in operation, and θ is the angle between the

bias yarns and the longitudinal axis of the structure. A less severe constraint is for full

coverage on a pass including the area covered by the axial yarns. In that case, full coverage

is obtained when
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wL + wb / cos θ = P / 2 N (2.2)

a)  Plain Weave b) Crows-Foot Satin Weave

c) Five-Harness Satin Weave d)  Eight-Harness Satin Weave

Unit
Cell

e)  2x2 Twill f)  2x2 Basket Weave

Figure 2.10. Commonly used 2D weave patterns.
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where wL is the width of an axial yarn. The maximum width of the yarns is controlled by

several parameters, including the linear density of the yarn, the degree of twist (twisting a

26.6°

64.4°

64.4°

56.3°

a)  Five-Harness Satin Weave b)  Eight-Harness Satin Weave

Figure 2-11.  Angles of the diagonal patterns formed by exchange locations.

Figure 2-12.  Triaxial weave.

yarn tends to prevent flattening), and the size of the carrier guides. The last factor imposes

an upper limit to the width of approximately 5 mm [2.7]. Reference [2.5] reports a

maximum width for a 6K carbon yarn of 1.9 mm; and 3.0 mm. for a 12K yarn.
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The minimum and maximum braid angles are limited by the phenomenon of

jamming, which is related to the maximum shear distortion that can be put on a fabric.

Jamming also limits the ratio of the minimum and maximum radii of the mandrel.

b)  1x1 Triaxial Braid, Axial Yarns at 
      Alternate Crossovers

c)  1x1 Triaxial Braid, Axial Yarns at
      Each Crossover

d)  2x2  Triaxial Braid

Axial Yarns

Braider
Yarns

a)  1x1 Bias Braid

θ Braid Angle

Rhomboidal
Unit Cell

Rectangular
Unit Cell

Smallest
Rectangular
Unit Cell

Smallest
Rectangular
Unit Cell

Figure 2-13.  Some common 2D braid patterns.

The total thickness of a braided part may be controlled by overbraiding, in which

multiple passes of the mandrel are made through the braiding machine. This lays down a

series of nearly identical layers, similar to a lamination. For 2D braiding, there is no

mechanical connection between the layers.

A convenient notation for triaxial braids is
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[0nK / ±θmK] Y% Axial

where n is the size of the axial yarns in thousands of fibers (K), m is the size of the bias (or

braider) yarns, and Y is the percentage of axial yarns in the preform. For example,

[030K / ±706K] 46% Axial

indicates a braid with 30K axial yarns and 6K bias yarns, with 46% of the total fiber

volume in the axial yarns, and a braid angle of 70°. While this notation does not convey

many details of the fabric geometry, it suffices for estimates of properties based on

modified 2D laminate theory.

2.3.1.6 3D Interlock Weaves

A 3D weave contains multiple planes of nominally straight warp and weft yarns that

are connected together by warp weavers to form an integral structure. The most common

classes are shown in Fig. 2-14. Within each class, there are several parameters that can be

varied.

Angle interlock weaves can be categorized by the number of layers that the warp

weavers penetrate. Figure 2-14(a) shows a through-the-thickness interlock fabric, in which

the warp weavers pass though the entire thickness. Figures 2-14(b) and (c) show layer-to-

layer interlock patterns, where a given weaver connects only two planes of weft yarns, but

the weavers collectively bind the entire thickness. Various intermediate combinations can be

fabricated, with the weavers penetrating a specified number of layers.

In orthogonal interlock weaves, the warp weavers pass through the thickness

orthogonal to both in-plane directions, as shown in Fig. 2-14(d).

Interlock weaves are sometimes manufactured without straight warp yarns

(stuffers) to produce a composite reinforced predominantly in one direction. They may also

be fabricated with weft rather than warp yarns used for interlock.

A major limitation of 3D weaves is the difficulty of introducing bias direction yarns

to achieve in-plane isotropy. One solution is to stitch additional 2D fabric plies oriented at

±45° onto the woven preform.
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2.3.1.7 3D Braids

An extension of braiding technology is the 3D braid, in which the braiding yarns

interlock through a volume of material. There are no distinct layers in a 3D braid. A 3D

a)  Through-Thickness Angle Interlock d) Orthogonal Interlock

b)  Layer-Layer Angle Interlock
      Straight-Interlacing Structure

c)  Layer-to-Layer Angle Interlock
      Wavy-Interlacing Structure

Surface Warp Weaver Body Warp 
Weaver

Filler (Weft)

Stuffer (Straight Warp)

Warp Weaver

Figure 2-14.  Three-dimensional weave patterns.

braid is also generally nonlaminar, although, as with a 2D braid, nominally straight axial

yarns may be introduced to improve the stiffness and strength in one direction.

A 3D braiding machine can be set up to produce near net-shape matching to the

cross-section of the final part. Typical stiffener cross-sections, such as "I" and "T" shapes

can be produced.

2.3.1.8 Orthogonal Nonwoven Composites

There is a long history of 3D, non-woven reinforcements, primarily in carbon-

carbon composites. Orthogonal 3D materials are fabricated by fixing a series of yarns in

one direction (or rods which will later be withdrawn and replaced by yarns), and then

inserting planar yarns in the two orthogonal directions around the fixed yarns. Figure 2-15

shows a typical arrangement of fiber bundles that might be obtained in this process. Unlike

other textile forms, the reinforcement remains relatively straight throughout the preform in
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all directions. This pattern of reinforcement requires volumes of pure matrix material to fill

the substantial interstitial areas created by the fiber bundles. The problem of shaping and

arranging straight elements in several directions while maximizing the volume they occupy

is an interesting one [2.8].

Figure 2-15.  3D orthogonal composite.

The concept of multiple direction linear reinforcement can be extended to a larger

number of non-orthogonal fiber bundle orientations. These are termed nD materials (in a

somewhat loose use of the term dimension!) For example, a 4D material could be created

with fiber directions that connect the diagonal corners of a cube. There can be significant

strength advantages to using a 4D or 5D material when shear and multidirectional loading

are considered [2.9].

2 . 3 . 2  The relation of volume fraction and fabric geometry to process

parameters

The properties of textile composites depend most of all on the total volume fraction

of all fibers and the proportions of the fibers that point in various directions. These

characteristics can be predicted with useful accuracy by fairly simple models of the fabric

geometry.

2.3.2.1 2D Weaves

Crucial properties of a 2D weave include yarn paths, cross-sectional shapes, and

the pattern and geometry of exchange points. Calculations of these characteristics from
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simple geometric models have been presented in Refs. [2.10] through [2.13]. The

following illustrative formulae for a plain weave are reproduced from Ref. [2.10].

Consider a 2D plain weave composite. Assume that the fabric has full coverage,

i.e., there are no gaps between the yarns; and that the yarn spacing and fiber counts are

equal in the fill and warp directions. The yarn cross-sectional area, A , can be determined

from

A = πdf
2 n

4pd

(2.3)

where df is the filament diameter, n is the yarn filament count, and pd is the yarn packing

density. The yarn packing density can be measured using photomicrographs of sections.

Typical values are in the range 0.7 - 0.8.

Alternatively, if one knows the linear density of the dry yarn, Dy, then

A =
Dy

9×105 ρf pd( ) (2.4)

where Dy is in denier (g/9000 m), and ρf is the fiber density (g/cm3).

The overall fiber volume fraction for the unit cell shown in Fig. 2-16 is

V f = 2pd A
Ha

(2.5)

where a is the yarn spacing, controlled during fabrication by fixing the number of yarn

carriers over the fabric width; and H is the cell height, usually equated to the cured layer

thickness specified by the manufacturer. Often, the areal weight of the dry fabric, wa, is

specified in g/m2, and in this case

wa =
2Dy

9000a
. (2.6)

The yarn thickness, t, is related to H by t = H/2. For full coverage, the yarn width, w ,

must equal the yarn spacing.

The path taken by each of the four yarns in the unit cell consists of two straight

portions and three curved portions (Fig. 2-16). The curves are commonly assumed to be

sinusoidal, with the z-coordinate of the yarn centerline expressed as
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zc = ± t
2

Sin
πxc

L u







. (2.7)

where xc is measured from the cross-over. The yarn cross-section shown in Fig. 2-16

consists of a straight central portion, with sinusoidal, lenticular ends. If the area of this

shape is known (from eqs. 2.3 or 2.4) then the shape parameter Lu (defined in Fig. 2-16)

can be determined by

L u = A − wt
2
π

−1





t
2

(2.8)

Textile composites are often characterized by the “crimp angle”, θc. This is the

maximum angle the yarn makes with respect to the x-y plane (Fig. 2-16). From the simple

geometric description just given, the crimp angle must be given by

θc = Tan−1 t π
2Lu







(2.9)

The constraint w ≥ Lu imposes a minimum value for θc.

The yarn cross-sections and crossover points are similar for satin weave fabrics.

The distinguishing characteristic is the longer straight segments of yarn.

2.3.2.2 2D Braids

A simplified description of the unit cell geometry for a bias and a triaxial braid is

given in Ref. [2.10]. The formulation is similar to that given for the plain weave in the

previous section. However, because the yarns interlace at nonorthogonal angles, the

equations are more complex. They are not reproduced here.

More advanced process models attempt to predict the yarn cross section from the

mechanical interactions between yarns as the textile is formed. One such model includes the

twisting that must occur when yarns cross at non-orthogonal angles [2.14]. However, even

advanced models assume relatively simple forms for cross sections.

2.3.2.3 3D Weaves

Even though unit cells can be quite large because of the complex patterns preferred

for the phases of warp weavers, geometric idealizations for 3D interlock weaves are quite



OVERVIEW OF TEXTILES

2-25

simple. The idealizations are relatively simple because most warp and weft yarns are

nominally straight.
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Figure 2-16.  A unit cell for a plain weave.

In a composite of thickness t with ns layers of stuffers alternating with  nf layers of

fillers, the volume fractions of fibers in stuffers and fillers are simply

Vs = e ns /[ys ρf t] (2.10a)

and

Vf = p nf /[yf ρft] (2.10b)

where e is the number of ends (stuffers) per unit length in the weft direction and p is the

number of picks (fillers) per unit length in the warp direction; ys and yf are the yields of the

stuffers and fillers; and ρ
f is the fiber density. The volume fraction of the warp weavers can

be written

Vw = e nw cw/[yw ρf t] (2.10c)

where nw is the number of warp weavers between successive columns of stuffers, yw is the

yield of warp weavers, and cw is a crimp or take-up factor. In principle, cw is computed

simply as the ratio of the integrated path length of a warp weaver to its projected length in
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the warp direction. In practice, cw is difficult to predict a priori, because the paths of warp

weavers in the finished product vary greatly with process parameters. Experimentally

determined values are typically between 1.1 and 1.3 for layer-to-layer angle interlock

weaves, near 1.5 for through-the-thickness angle interlock weaves, and between 2 and 5

for orthogonal interlock weaves [2.15].

2.3.2.4 3D Braids

Various process models have been derived to describe the complex unit cells of 3D

braids (see [2.16-2.20]). The following simple expressions were given in [2.18] for the 4-

step, 1x1 braid (without inlaid axial yarns).

The 4-step, 1x1 braiding pattern produces the 3D unit cell shown in Fig. 2-17. The

yarns in the unit cell are inclined in 4 directions; 2 parallel to surface ABDC, and 2 parallel

to surface CDEF, as shown in the accompanying diagram. These surfaces are cut at 45°
angles to the surface of the fabric.

Consider a rectangular array of yarn carriers, with m columns and n rows in the

array. The total number of required yarns, N, is

N = (m+1)(n+1)-1 (2.11)

The number of machine cycles required for all the yarn carriers to return to the original

positions is given by N/G, where

G = m n/Rmn (2.12)

with Rmn the least common multiple of m and n. The normalized cycle length, hd, is

defined as the fabric length produced in one cycle, divided by the diameter of the yarn,

which is assumed to remain circular. The cycle length cannot be easily predicted, because it

is a function of the beat-up.

The angle formed by internal yarns, γ, is given by

γ = arctan(4/hd) . (2.13)

Equation (2.12) is valid up to an angle of 55° (hd = 2.8), beyond which jamming is

predicted. A plot of the fiber inclination angle versus hd is shown in Fig. 2-18.
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Figure 2-17.  3D unit cell for 1x1, 4-step braid.

Because yarn carriers on the surface of the rectangle travel less distance in a given

cycle, the surface yarns incline at different angles. Furthermore, the apparent angle seen on

the surface of a braid is actually the projection of the angle of inclination onto the plane of

the surface. The relations between the surface yarn angle of inclination, β, the projected

surface angle, α, and the internal yarn angle of inclination, γ, are

tan α = tan γ / 8 = tanβ / 5 (2.14)

The yarn volume fraction is

Vy = π sec(γ)/8 (2.15a)

or

Vy = π hd
2 + 16 / 8hd (2.15b)

These relations are shown in Fig. 2-19.

The ratio of surface yarns to internal yarns is a function of the aspect ratio of the

rectangle, m/n, and the total number of carriers, N. Figure 2-20 shows this relationship for

a series of aspect ratios.
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Given the circular yarn assumption, the width of the preform depends only on the

number of yarns arranged on a side, k, and the diameter of the yarns, d. It is given by

wk = (21/2 k +1) d . (2.16)
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Figure 2-18. Inner yarn angle of inclination versus cycle length for 1x1, 4-step braid.

2 . 3 . 3 Irregularity

The ideal geometry popularized in schematics of textiles, viz. a collection of straight

tow segments and smoothly curved arcs of tows, with regular tow spacings and well-

formed periodicity, is never realized in practice. The rigors and complexity of textile

manufacture and the distortions caused by handling preforms and forcing them to conform

to molds always introduce significant geometrical irregularity. Irregularity usually has a

measurable effect on elastic properties [2.15,2.21,2.22]; and a dominant effect on strength,

fatigue life, and all properties related to damage mechanisms and work of fracture [2.22-

2.26].

Geometrical irregularity is manifested in many ways. The following list is indicative

but not exhaustive.

1. Tow spacing. Inconsistency in tow tensioning during the textile process and handling

of preforms after fabrication often results in uneven spreading or compacting of tows.

Uneven spreading is indeed geometrically necessary when a flat preform is draped over a
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surface that possesses curvature about more than one axis (requiring a nondevelopable

transformation of shape).
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Figure  2-19.  (a) Yarn volume fraction versus (a) inner yarn angle of inclination and
(b) normalized cycle length for 1x1, 4-step braid.
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Figure 2-20.  Ratio of outer (surface) yarns to inner yarns.
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2. Tow waviness. Nominally straight tows, which are highly desirable in stiffness

critical applications, always exhibit some degree of waviness. Fig. 2-21 shows

waviness in the through-thickness direction typical of triaxial braids, in which the axial

tows are nominally straight, and interlock weaves, which contain nominally straight

stuffers. The misalignments even in quasi-laminar textiles are usually considerably

greater than in tape laminates. Tow waviness tends to be commensurate with the

spacing of tows that traverse the subject tow, but waviness deflections are not periodic.

Tow misalignment has been described by normal distributions [2.15, 2.21] and power

spectra [2.27,2.28]. In flat panel specimens of quasi-laminar textiles, out-of-plane tow

waviness is often the larger component and is directly correlated with failure

mechanisms ([2.21, 2.23, 2.24, 2.25] and Section 4), but in-plane waviness can also

be significant.

Fig. 2-21.  Waviness in nominally straight axial tows in a triaxial braid.  The fine white curves mark the
centers of mass of nominally straight axial tows determined by digital image analysis.

Tow waviness can be especially pronounced in through-thickness tows in quasi-

laminar textiles, e.g., stitching tows or warp weavers in an interlock weave. Through-

thickness tows are very vulnerable to the through-thickness pressure that is favoured in

consolidating plate-like parts to enhance the in-plane fiber volume fraction (Fig. 2-22).

Waviness in through-thickness tows can only be controlled by forming the textile

preform as nearly as possible to its desired final thickness before the consolidation

process.

3. Tow pinching. In all textiles, the cross-sectional aspect ratios of tows are not

uniform along their axes. Each tow is subjected to irregular pressures imposed by

neighboring tows during both manufacture of the textile preform and the consolidation

process. Each tow is pinched in different directions at different points. The resulting

cross-sectional variations are especially pronounced in textiles with predominantly

curved tows. Fig. 2-23 shows tow outlines sketched from a photomicrograph of a 3D

braid. Cross-sectional variations are also a major form of irregularity in textiles formed

predominantly of nominally straight tows.
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Fig. 2-22.  Waviness induced in warp weavers in a 3D interlock weave by
compression during processing.

Measuring geometrical irregularity in textile composites is very difficult; predicting

it from process models probably impossible. Therefore, detailed knowledge of types and

degrees of irregularity are not likely to become part of any practicable scheme for predicting

strength and life. More reasonably, the degree of regularity should be correlated

experimentally with process parameters, so that a maximum degree of irregularity can be

guaranteed given sufficient quality control in composite fabrication. While irregularity is

difficult to quantify, it dominates strength and fatigue life and therefore must be able to be

bounded for textile composites to be regarded as reliable. Neither should any model of a

textile be accepted as giving accurate predictions without an assessment of how irregularity

would affect the outcome.

Fig. 2-23.  Tracings of yarn cross-sections in a 3D braided composite (from [2.29]).

2 . 4 Integral Structures made by Textile Processes

The performance and manufacturing advantages of eliminating joints make integral

structures a particularly exciting prospect in textile composite technology. Unfortunately,

models for integral structures are not yet developed and they therefore receive little attention

in the remainder of this handbook. A few examples are offered here in anticipation of future

developments.
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A weaving pattern does not need to be constant over the entire breadth or length of a

fabric. By programming the loom, it is possible to have segments of a fabric that are not

locked through the thickness along a specified plane. After weaving, the flat fabric may be

unfolded to create a branched structure (Fig 2-24). This approach can be used to fabricate

crossing stiffeners with continuous reinforcements passing through the intersection. The

final yarn paths in the intersection are difficult to predict.

Cut

Planes without
Z–Reinforcement

Z-Reinforcement Through
3 Sublaminates

Continuous 
Crossing Fibers

Figure 2-24.  Use of 3D weaving to create a branched structure.

Figure 2-25 illustrates the use of weaving technology to produce an integral skin and

stiffener assembly. The skin contains orthogonal warp and weft, as well as ±45° bias 

Figure 2-25.  An integrally woven skin/stiffener preform. (Courtesy of Techniweave Inc.)
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tows. These are all embraced by through-thickness reinforcement in an interlock

architecture. The stiffeners are formed by the bias tows, which pass continuously from the

skin up and over each stiffener in turn and back into the skin again. Thus the stiffeners and

skin are formed in the same weaving process in an entirely integral manner. The part is

finished to net shape by placing the preform in a mold, introducing matrix, for example by

resin transfer molding, and curing.

Figure 2-26 shows a schematic of a skin and stiffener formed integrally by

stitching. Once again, finishing can be accomplished by resin transfer molding and curing

in a net shape tool. Alternatively, resin can be introduced by resin film infusion, which is

the preferred process in the new McDonnell-Douglas stitched wing program.

Figure 2-26. A stitched skin/stiffener assembly. (From Ref. [2.30])
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3 . THE CHOICE BETWEEN TEXTILES AND TAPE LAMINATES

The main factors to weigh in deciding whether to use a textile composite or a

conventional tape laminate are mechanical properties and the ease and cost of manufacture.

Generally speaking, textiles are somewhat inferior in stiffness and strength for sheet

applications; superior in any application, including sheet applications, requiring high strain

to failure, high work of fracture, or damage or impact tolerance; and superior when triaxial

loads must be carried. Their relative cost depends very much on the state to which

applicable textile technologies have been developed for the particular application. If parts

can be manufactured automatically to net shape, or the number of joints reduced by forming

integral structures, or robotic manufacture substituted for manual set-up and handling, then

textiles become increasingly cost competitive. In short, whether textiles are the better choice

depends strongly on the application and the class of textile chosen.

In the following, quasi-laminar textiles will frequently be compared with so-called

"equivalent tape laminates."These are laminates configured to have the same volume

fraction of in-plane fibers in all orientations and plies of thickness roughly equal to the

thickness of tows in the textile in the through-thickness direction.

In other instances, data are unavailable for equivalent tape laminates. Estimates of

the penalty in stiffness or strength associated with using a textile will then be inferred from

comparisons of measurements for textiles with data for unidirectional tape laminates, with

due allowance for reduction of aligned fiber volume fraction in the former.

All the following remarks reflect the current status of textiles and their

manufacturing technology. The reader should be prepared to update the relative merits of

textiles as research and development progress. This is an active and dynamic field.

3 . 1 Handling and Fabricability

The main handling advantage of textiles is that they are manufactured as dry fiber

preforms that hold together when they leave the textile machinery without any polymer or

other matrix. The textile preform can be shipped, stored, draped (within limits that depend

on the kind of fabric), and pressed into shaped molds. As described in Section 2, the

finished product can be formed in the mold by resin transfer molding (RTM), reaction

injection molding, resin film infusion (RFI), or the melting of commingled thermoplastic

fibers, which are all cost competitive processes. Separate preforms can easily be joined by
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co-curing if joints of moderate strength suffice; or by stitching if joints must be very

strong. The handling advantages of textiles are so considerable that even when the finished

product is intended to be a 2D laminated structure, for example a laminate of uniweave

plies, with no special demand for the excellent delamination resistance of textiles, there is

still a case for preferring textile fabrics over tape laminates.

But textiles allow designers to step beyond conventional laminate concepts. For

example, with conventional tape layup, a laminar skin is stiffened against buckling by

nonintegral ribs, which must be attached in a separate process. The use of textile preforms

and processes such as RTM allows the manufacture of integral parts to net shape. Thus the

skin and stiffeners can be manufactured as one piece. Some other examples of integral

structures were recalled in Sect. 2. Net shape manufacture of integral structures provides

considerable potential cost savings over tape layup, because forming complex shapes via

layup is difficult and integral structures eliminate joining steps. Integral structures are

superior in performance too, because failure by debonding of attached parts should be

eliminated as a mechanism of failure, given correct design.

3 . 2 Consistency of Fiber Content

Since the stiffness and strength of polymeric composites are dominated by the

reinforcing fibers, maintaining accurate positioning of fibers tows during all steps of

manufacture is paramount. Poorly made textile preforms can have considerable variance in

tow spacing, which translates directly into total fiber volume fraction and thence mechanical

properties (e.g. [3.1]). In contrast, well made preforms, especially those manufactured by

well established textile processes, such as 2D braiding and weaving, regularly achieve a

high degree of consistency. However, even in the best cases, poor handling and processing

after textile manufacture can destroy this uniformity. Uncontrolled material handling, laying

material over curved tools, debulking, and tool closure can spread or distort tows.

Manufactured prove-out parts should be examined to establish that minimum fiber volume

fractions have been met throughout, with particular attention paid to geometric details such

as joints.

The problem of maintaining the designed fiber content is most challenging when

fabrics are draped. Fabrics are therefore often chosen for complex geometries because of

their handling characteristics. The draping characteristics of a fabric over a singly curved

(e.g., cylindrical) surface are directly related to its shear flexibility. Satin weaves have

fewer cross-over points than a plain weave; and therefore have lower shear rigidity and are
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found to be more easily draped over a cylinder. Draping characterictics over a doubly

curved surface (i.e., a surface that requires nondevelopable transformation strains for snug

coverage) also depend on in-plane extensibility and compressibility. This is difficult for

fabrics containing high volume fractions of more or less straight in-plane fibers, as required

for most airframe applications. For these textiles, only mild double curvature can be created

by draping without significant loss of fiber regularity. However, double curvature can be

achieved via net shape textile processes, such as braiding onto a mandrel (Section 2), thus

avoiding the problems of draping.

3 . 3 Stiffness

Compared to tape laminates, quasi-laminar textile composites with equal volume

fractions of in-plane fibers will usually have slightly lower in-plane stiffness because of

tow waviness. In a 2D textile, such as a plain weave or triaxial braid, waviness is

topologically inevitable: tows must be wavy to pass under and over one another. The

waviness can be reduced by selecting a satin weave rather than a plain weave, or using

tows with flat cross-sections; but not eliminated. In a 3D textile, such as an interlock

weave, in-plane tows are nominally straight. But even still, waviness is always greater in

practice than in an equivalent tape laminate, because of the disruptive effects of through-

thickness reinforcing tows.

Various more or less complicated models will be described in Sections 4 and 5 for

calculating the knockdown in composite stiffness due to tow waviness. Here a simple rule

is presented, which illuminates the essential trends and gives a fair estimate.

Suppose the waviness takes the form of sinusoidal oscillations in the path of an in-

plane tow, with wavelength λ and amplitude d. If either the stress or the strain remains

uniform along the length of the tow, then under an aligned load its stiffness is knocked

down by the factor [3.2]
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where Ex and Gxy are the axial and shear moduli of the tow and νxy is its axial Poisson's

ratio. For carbon/epoxy composites, the anisotropy factor in square brackets in Eq. (3.1)

takes a value near 40. The fractional loss of modulus, 1-η, rises approximately as (d/λ)2.
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Equation (3.1) also holds if the waviness takes the form of a continuously varying,

normally distributed random misalignment angle, ξ, with variance σξ = √2πd/λ [3.2].

For measured degrees of tow waviness, Eq. (3.1) yields knockdown factors of just

a few percent for nominally straight stuffers in well made 3D weaves [3.2]; and 2-10 % for

nominally straight axial tows in 2D triaxial braids [3.1]. For nominally straight fillers in 3D

weaves, the knockdowns are usually 10 - 30%. The knockdown is higher because fillers

are untensioned during weaving and therefore significantly less regular than stuffers [3.2].

For bias tows in triaxially braided glass-fiber composites, knockdowns are between 30%

and 50%, which are high values because the braid architecture demands that bias tows

follow wavy paths. Knockdowns for plain weaves would be similarly high for the same

reason. For a satin weave, knockdowns can be estimated by applying Eq. (3.1) just to the

exchange region, assuming no knockdown over the much straighter float, and taking a

weighted average. For typical satin weave, knockdowns of ~ 10% result.

Experimental measurements of elastic constants generally confirm the order of

magnitude predicted by Eq. (3.1). While stiffness measurements have not been reported for

equivalent tape laminates, stiffness knockdowns can be estimated by comparing

measurements for textiles with rule-of-mixtures estimates based on fiber and resin data or

data for unidirectional laminates. Knockdowns ≈ 5% are found in the warp direction for 3D

interlock weaves with reasonably straight stuffers [3.2,3.3] and for the axial direction in

triaxial braids [3.1,3.3]; and 10-40% in the weft direction of many 3D interlock weaves

(the fillers frequently being much more distorted by the through-thickness warp weavers)

or the bias direction of a triaxial braid [3.1-3.3]. Equation (3.1) is concluded to be a

reasonable guide to the stiffness of quasilaminar textile composites relative to equivalent

tape laminates, assuming that the latter have negligible stiffness knockdown due to

waviness.

Experimentally measured moduli for various 2D braids and equivalent tape

laminates are compared in Fig. 3-1. The braid and laminate specifications are given in Table

3.1. Fiber volume fractions were measured for all the panels used in these experiments and

the results normalized to 60% fiber volume fraction, assuming a proportional variation. The

longitudinal (0° direction) modulus for tension and compression agree closely. There is a

larger reduction in transverse tensile modulus, as would be expected from the greater

waviness of the braiding yarns. It is surprising that the transverse compressive stiffness of

all the braids is higher than their transverse tensile stiffness, even though the tape

equivalent modulus decreases in compression. This trend is not reported elsewhere.
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 Table 3.1  Braid and Equivalent Tape Laminate Specifications for Fig. 3-1

Braid Braid Designation Equivalent Laminate

1 [036K,±4515K] 46% Axial [(45/0/-45/0)2/45/0/-45]S

2 [030K,±706K] 46% Axial [(70/0/-70/0)2/70/0/-70]S

3 [075K,±7015K] 46% Axial [(70/0/-70/0)2/70/0/-70]S

4 [06K,±4515K] 12% Axial [(±45)2/0/(±45)3/0/(±45)3/0/(±45)2]T
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Figure 3-1.  The Moduli of 2D Braids and Equivalent Tape Laminates

3 . 4 In-Plane Strength

Unnotched tensile and compressive strength are usually lower in quasi-laminar

textiles than in equivalent tape laminates. Part of the reason for this is the tow architecture

in textiles, which imparts waviness to tows and generates off-axis local stresses; and part is

due to damage sustained by fibers in the rigors of textile manufacture.

The role of waviness in the compressive failure of polymer matrix composites is

well established. Compressive failure when loads are aligned with one set of tows occurs

via kink band formation (see Sect. 4). The critical load for kinking falls in inverse
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proportion to the maximum misalignment angle of a wavy tow. Since waviness in textiles

is usually higher than in tape laminates, the compressive strength is likely to be lower.

However, it need not be much lower. In 3D architectures that permit nominally straight in-

plane tows (e.g. the interlock weaves of Sect. 2.3.1.6), waviness can be controlled by high

quality processing.

How waviness might lower tensile strength is less clear, but some experiments

suggest that it does. Unfortunately, verified models are unavailable for estimating waviness

effects on tensile strength; and, in most data sets for tensile strength, it is difficult to

identify trends with degree of waviness amidst the noise of the data. Knockdowns due to

fiber damage are much more important in tension than they are in compression (Sect. 4)

and will always give some scatter in strength.

3D textiles are often equal or superior in notched strength to equivalent tape

laminates. The large strain to failure of many 3D textile composites allows the development

of extensive damage process zones next to stress concentrators, which decreases notch

sensitivity. This superiority is not generally shared by 2D textiles, which lack some of the

energy absorbing mechanisms present in 3D textiles (Sect. 4).

3 . 4 . 1 2D Weaves

The ultimate tensile strengths of woven graphite/epoxy laminates and equivalent

tape laminates are compared in Figure 3-2 (from [3.4] and [3.5]). The data represent 5-

harness satin weave fabric manufactured with 3k yarns of carbon and consolidated with

two resin systems. The woven laminates had a fiber volume fraction approximately 10%

lower than in the tape laminates and a higher areal weight, and were accordingly 12-17%

thicker. The ratio of the fabric strength to the tape laminate strength appears in parenthesis

above each pair of bars.

The unnotched strength of the textiles (Fig. 3-2(a)) is significantly lower (15-23%)

when the load is aligned with the 0° fiber axis. For a ±45° laminate, the difference

disappears. Tensile axial tow strength, which is fiber dominated, is most affected by

waviness and fiber damage. Shear strength, which is resin dominated, is affected less. The

quasi-isotropic laminates have knockdowns similar to the 0/90° laminates. Notched strength

(Fig. 3-2(b)) shows similar trends, although the knockdowns for the 0/90° laminates are

greater (30-33%).
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Figure 3-2.  Comparison of (a) unnotched and (b) notched tensile strengths of 5-harness
satin weave laminate and equivalent tape laminate.  Material 1: Gr/MY720 epoxy.
Material 2: T300/Ciba Geigy BSL914C.  Notched strengths are from open hole tension
tests, with hole diameters as shown.
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While crimp effects on shear are small, they can sometimes give consistent

variations. Figure 3-3 shows that the length of the float (the uncrimped length of yarn

between cross-over points) in satin weaves affects shear strength. In this figure, the Oxford

weave has the shortest float, followed by the 5-harness satin, and the 8-harness satin. The

shear strength increases as the float length increases.
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Figure 3-3.  Comparison of in-plane shear strengths of various T300/934 weaves,
showing effect of crimp.  (From [3.6].)

3 . 4 . 2 2D Braids

As for 2D weaves, the relationship between fiber architecture and strength for 2D

braids must also involve the degree of waviness of the primary load bearing tows. In

addition, braids introduce several further variables, whose roles are still poorly understood.

These include the relative sizes of inlaid tows and braider tows, the spacing of inlaid tows,

and the size of the unit cell.

The tensile strengths of two triaxial carbon/epoxy braids and equivalent tape

laminates are compared in Fig. 3-4. The braid notation is defined in Section 2.3.1.3. The

unnotched strength of the braids is 10-30% less than that of the tape laminates. However,

the notched strengths are much closer, with the braids in one case even being superior. The

braids overall are considerably less notch sensitive.
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Figure 3-4.  Comparison of unnotched and open hole tensile strengths for two triaxial
braids and equivalent tape laminates (from [3.7]).

Strength knockdowns for unnotched triaxial braids have also been estimated by

other means. Aligned axial tows in triaxial glass/urethane braided composites are found to

fail at about 70% of the strain to failure of unidirectional tape laminates, indicating a 30%

reduction in strength for the tows in the braided architecture [3.1]. This reduction is

consistent with Fig. 3-4.
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Data for triaxial braids occasionally show variations that are not readily correlated

with architecture or waviness. For example, Table 3.2 (from [3.8]) shows that the tensile

strengths for {[0°18k/±66.5°6k]37.6% Axial} and {[0°18k/±70°6k]34% Axial} braids differ

by far more (30%) than the small differences in their fiber distributions would imply. No

significant differences in the degree of waviness were observed on cut sections [3.9]. It is

possible that the small change in orientation and packing of the bias tows caused more

damage during braiding to the axial tows in the braid with 70° bias orientation. Further

research must define the process parameters involved, so that consistent strength can be

achieved. Bringing quality control to the levels common in tape laminates remains a

challenge in textile processing, although well made textiles show that it is an attainable

goal.

Table 3.2 Comparison of Unnotched Tensile Strengths for Various
AS4/1895 Triaxial Braids.

Longitudinal Tension Transverse Tension
BRAID Strength Ultimate Strength Ultimate

(MPa) Strain, % (MPa) Strain, %

[0°24k/±63°12k]31.5% 432 ± 25 1.16 ± 0.13 243 0.67

[0°18k/±66.5°6k]37.6% 556 ± 10 1.36 ± 0.07 288 ± 25 0.67 ± 0.12

[0°18k/±70°6k]34% 394 ± 10 0.96 ± 0.12 321 ± 39 0.70 ± 0.14

3 . 4 . 3 Stitched Laminates

The unnotched and open hole tension strengths of some typical stitched and

unstitched laminates are compared in Figure 3-5, while Fig. 3-6 shows similar data for

compression, including compression after impact (CAI). The results show that stitching

hardly affects tensile strength, but reduces the unnotched compression strength by 10-20%.

However, stitching dramatically improves the CAI strength, being even more effective than

the toughened resin system IM7/8551-7.

Compression strength is reduced by stitching because the stitching misaligns in-plane

fibers near the surface [3.10].  Misalignment always facilitates fiber kinking (Sect. 4).  If it

affects entire plies of fibers, it will also soften those plies and increase the stress born by

straighter plies. On the positive side, stitching provides preform debulking before the fabric

is placed into a tool, which helps maximize fiber volume fraction.
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Fig. 3-6.   Compression strengths and CAI data for stitched and unstitched laminates
(from [3.10]).

3 . 4 . 4 3D Interlock Weaves

Substantial data exist for the tensile and compressive strengths of 3D interlock

weaves when loads are aligned with either stuffers or fillers, although no data are available

for equivalent tape laminates. Using instead strength estimates based on the strengths of
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unidirectional tapes reduced according to the volume fractions of stuffers or fillers, it is

characteristically found that tow strengths are knocked down by about 30% [3.11-3.13].

3 . 5 Out-of-Plane Strength; Delamination and Impact Resistance

The great weakness of tape laminates is their vulnerability to delamination.

Delamination failure can be caused in undamaged laminates by excessive through-thickness

loads, which arise whenever the laminate is attached to some other structural member, such

as a stiffener, near holes or edges, and under in-plane loads if the laminate forms a curved

part. Once a laminate is damaged by impact and contains even a limited delamination crack,

the critical through-thickness stress for failure drops dramatically, since the composite

relies on the matrix toughness alone to resist delamination crack growth. A delamination

crack of length, a, grows essentially as a Griffith crack, with the critical through-thickness

stress falling as a-1/2 to arbitrarily small values. Under in-plane loads, a partially

delaminated tape laminate will still fail all too readily. It has poor resistance to buckling of

the plies in delaminated areas, which leads to unstable delamination crack growth and

failure. The critical buckling stress again falls as a-1/2.

Through-thickness reinforcement in a quasi-laminar textile composite changes the

picture entirely. Even if delamination flaws exist in advance, through-thickness

reinforcement will arrest their growth as long as the stress remains above some critical

value, σ1, which is a material constant for the composite and independent of the

delamination crack length, a. By proper design, delamination crack growth driven by

through-thickness loads in curved parts and buckling of delaminated layers under in-plane

compression can thus be eliminated. Some bounding formulae for the minimum required

volume fractions of through-thickness reinforcement are provided in Sect. 4. The required

volume fractions turn out to be at most a few percent for most applications [3.13-3.15].

3 . 6 Work of Fracture and Notch Sensitivity

Many textile composites, especially those with 3D reinforcement but also some with

2D reinforcement, have very high values of work of fracture and are exceptionally notch

insensitive. Work of fracture values exceeding 1 MJ/m2 have been reported for 3D

interlock weaves [3.16], which are an order of magnitude higher than values for tape

laminates or high toughness alloys. High work of fracture generally translates into notch
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insensitivity. Around any stress concentrator, such as a round hole or sharp notch, a

damage band forms in a ductile material, redistributing stress in such a way as to minimize

stress concentration. The size of the damage band dictates the notch sensitivity. It has a

characteristic length, lch, given to order of magnitude by

lch = E Wf / σc2 (3.2)

where W f is the work of fracture and σc is the critical stress for the onset of damage.

When the notch size, co, is much greater than lch, the strength of the part falls as co
-1/2.

When the notch size, co, is much smaller than lch, the material is notch insensitive: the

strength falls only as the net section stress rises. For tape laminates, lch ~ 1 mm. For 3D

interlock weaves, lch ~ 10-100 mm [3.16].

Two factors in these high measures of damage tolerance have already been

identified. First, the large tow diameter typical of most textiles favor crack deflection and

increase the pullout lengths of broken tows that continue to carry load across the primary

fracture plane. (It is fortuitous that large diameter tows also lower production costs.)

Second, the wrapping of through-thickness tows around in-plane tows clamps the latter

together even after they have failed, raising pullout stresses to unusually high values. These

mechanisms are discussed in more detail in Sect. 4.

High work of fracture and notch insensitivity will create many opportunities for

textile composites in applications demanding exceptional damage tolerance. These

opportunities have only begun to be explored.
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4 . FAILURE MECHANISMS

In Section 2, textile composites were categorized as quasi-laminar and nonlaminar,

depending on whether or not they can be considered as laminates modified by the inclusion

of relatively few through-thickness fibers. This distinction is particularly useful in

discussing failure mechanisms. Through-thickness reinforcement was in most cases

introduced to combat undesirable failure mechanisms in 2D laminates. The suppression of

these mechanisms should often still be described in the language of laminate mechanics,

with the effects of the through-thickness reinforcement treated as a perturbation. The reader

is therefore encouraged to review the categorization in Section 2 before proceeding here.

However, the terms quasi-laminar and nonlaminar should be used with care. Some

textiles may appear geometrically and behave elastically as obvious quasi-laminates, yet

show stress-strain characteristics and mechanisms of stress redistribution and damage

accumulation that have no parallel in 2D laminates. A prime example is 3D interlock

weaves, which show extraordinary damage tolerance and other properties related to the

work of fracture by mechanisms that are intimately associated with their 3D nature, as will

be seen in the following.

4 . 1 Shear

Axial shear failure in bundles of fibers in a polymer matrix begins with arrays of

ogive microcracks aligned between pairs of fibers (Fig. 4-1 and [4.1,4.2]). These cracks

grow and sometimes coalesce amidst considerable microplasticity, which probably involves

crazing and fibril tearing. At higher strains, the damaged matrix divides into pieces of

rubble. The corresponding macroscopic constitutive behaviour can be measured

conveniently and fairly representatively by loading ±45° laminates in uniaxial tension. Since

the deviatoric stresses within such a specimen are pure shear within all plies, the specimen

stress/strain response is proportional to that of a single ply under axial shear. Viewed over

the range of strains relevant to ultimate failure, the measured response is often
approximately linear/perfectly plastic, with plasticity occurring above a threshold stress, τc

(Fig. 4-2(a) and [4.1,4.2]).

For composites in which the fibers have much higher modulus than the matrix, the

shear behaviour represented by Fig. 4-2(a) is controlled entirely by the properties of the

matrix deforming under the geometrical constraints imposed by the fibers [4.3,4.4]. Thus
τc should be regarded primarily as a matrix property, with some dependence on parameters
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of the fiber arrangement such as volume fraction. Little is known about variations of τc

with volume fraction, but the available evidence suggests they are small for the ranges of
volume fraction typical of aerospace composites. Representative values of τc are 75 MPa

for the aerospace resin Shell 1895 [4.1] and 30 MPa for automotive urethanes [4.2].

(a) (b)

Figure 4-1.  Arrays of ogive microcracks in (a) an AS4/1895 tape laminate (from
[4.1]) and (b) a glass/urethane triaxial braid (from [4.2]).  The fiber direction is
parallel to the bands of microcracks.
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Figure 4-2.  Typical stress-strain response of a polymer composite when the
deviatoric stress in plies is pure shear.  (a) AS4/1895 tape laminate (from [4.1]).  (b)
AS4/3501-6 plain weave (from [4.5]).

Textile composites under shear loading show stress-strain properties very like Fig.

4-2(a). Figure 4-2(b) shows a typical curve for a short shear specimen of a plain woven,

AS4/3501-6 laminate superimposed on a theoretical prediction based on a progressive
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failure model (both from [4.5]). The model attributed nonlinearity in shear to degradation

of the matrix stiffness. Once the matrix had yielded (critical maximum principal stress), the

shear stiffness in the model was reduced to 20% of its original value. This approach does

not specify the physical nature of the resulting cracks.

In assessing failure mechanisms in textile composites beyond the proportional limit,

the possibility of shear failure can usually be predicted quite well by comparing the axial

shear stress within individual plies or tows with τc. In computing the stress-strain

response, reasonable results can usually be obtained by regarding individual plies or tows

as elastic/perfectly plastic in axial shear.

4 . 2 Monotonic Compression

Quasi-laminar textile composites almost always fail under aligned, monotonic

compression by one of two mechanisms: kink band formation; and delamination, which is

often followed by Euler buckling.

Kind band formation is illustrated by Fig. 4-3. It is a local shear instability in which

a bundle of fibers rotates and ruptures, causing almost total loss of axial strength for the

bundle. The bulk of data confirms that Argon's Law [4.6,4.7]

σc = τc/φ (4.1)

is a serviceable approximation for kink band formation in polymer composites, where σk is

the critical axial stress for kinking, τc is the critical shear flow stress of Fig. 4-2(a), and φ is

the misalignment angle of the fibers with respect to the applied load (measured in radians).

As Eq. (4.1) shows, the crucial manufacturing issue in optimizing compressive strength is

minimizing the misalignment angle; or, in other words, minimizing fiber or tow waviness.

Fiber defects have a marginal effect on the dynamics and kinetics of shear flow and

fiber rotation; and therefore a negligible effect on the critical stress for kink band formation

in compression. In contrast, the tensile strength of tows is strongly influenced by fiber

defects and therefore handling damage during processing (see Sect. 4.3).
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Figure 4-3.  Micrograph of a typical kink band in an aligned tow in an AS4/1895 3D
interlock weave (from [4.1]).

Delamination has been the most serious weakness of conventional tape laminates,

especially around edges or in association with impact damage. When a stress singularity at

an edge or an impact event causes limited delamination, failure can ensue via Euler buckling

of the delaminated plies under in-plane compression; or by delamination crack growth

under shear induced by bending. In the absence of through-thickness reinforcement, the

critical load for buckling and delamination crack growth under in-plane compression falls in

inverse proportion to the size of the delamination to arbitrarily small values; as does the

critical load for delamination crack growth in bending. In either case, resistance to

delamination crack growth depends entirely on the fracture resistance of the matrix.  Well

established, low-cost polymer matrices are generally not very tough. Even toughened

polymers and thermoplastics, which are usually relatively expensive, provide only modest

increases in toughness.

In quasi-laminar textile composites such as stitched laminates or 3D interlock

weaves, delamination resistance is greatly enhanced by through-thickness reinforcement.

The through-thickness reinforcement does not entirely eliminate delamination, especially

during impact, but by suppressing buckling under subsequent compressive loads, it

eliminates the driving force for delamination crack growth under in-plane compression; and
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by bridging the delamination crack, it greatly increases resistance to shear loads (Sect. 4.5).

The minimum load for buckling or delamination crack growth does not fall indefinitely with

increasing delamination size, but approaches a constant value which depends on the

parameters of the through-thickness reinforcement [4.8-4.11]. Given adequate provision of

through-thickness reinforcement, ultimate failure must revert to the kink band mechanism,

which is largely unaffected by delaminations, and the compressive strength is then usually

close to that of pristine material.

Thus a transition exists in failure mechanism from delamination to kinking

depending on the efficacy of the through-thickness reinforcement. Rough estimates of the

minimum volume fraction, V t, of through-thickness reinforcement required to suppress

buckling and assure failure by kinking can be deduced from the theory of buckling plates

on an elastic foundation [4.8-4.10]

V
E E Vt

k

x t x

=
σ

θ

2

2cos
(mid-plane delamination) (4.2a)

V
E E V

t

ht
k

x t x

=
σ

θ

2

2cos
(surface delamination) (4.2b)

where σk is the applied stress at which kinking occurs, Ex and Et are the stiffnesses of the

in-plane and through-thickness fibers; Vx is the volume fraction of aligned, in-plane fibers;

and the dimensions h and t and the angle θ are defined in Fig. 4-4. Values found for V t

from Eq. (4.2) are ~ 10-3, considerably less than the volume fractions of stitching or

interlock fibers in current composites. Equation (4.2) is based on the simplistic assumption

that the through-thickness reinforcement behaves as a linear spring with strain uniformly

distributed through the thickness of the composite. If loads were transferred by shear into

the surrounding laminate, the through-thickness reinforcement would provide a stiffer

foundation and even lower volume fractions would be required. Thus, for this particular

transition in failure mode and provided the through-thickness reinforcement remains intact,

Equation (4.2) should be a conservative estimate. However, if through-thickness

reinforcement is damaged, perhaps by impact, or crimped during manufacture, then

buckling will occur much more readily. Design rules for such situations have not yet been

established.
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Figure 4-4.  Schematic of buckling under in-plane compression following
delamination due to impact.

4 . 2 . 1 2D Weaves and Braids

Under aligned compression, 2D weaves and braids without prior damage typically

fail by a combination of shear plasticity and delamination [4.2,4.12]. Shear failures may

appear as kink bands, although the evidence for kinking is often obscured by the extent of

damage that immediately ensues tow failure. Nevertheless, clear evidence exists for kinking

in plain and satin weaves [4.12-4.14] and in nominally straight axial tows in triaxial braids

[4.2,4.15]. Large scale delaminations occur between plies [4.12]. Localized delaminations

may occur between tows within the same ply, especially along the float in 2D weaves (Fig.

4-5).

Representative compression strength data for four carbon/epoxy triaxial braids are

shown in Table 4.1 [4.16]. The braid with a low percentage of axial yarns,
{[06k/±4515k]12% Axial}, failed by extensive shear cracking in the bias rovings with a

very nonlinear stress-strain curve similar to Fig. 4-2 (see also similar data in

[4.2,4.14,4.17]). The strength of the remaining, axially dominated braids was controlled

by splitting and buckling of the axial fiber bundles, which presumably involved kink bands

like those reported in [4.2,4.14,4.15]; and the stress-strain curves were nearly linear to

failure.
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Figure 4-5.  Schematic of delamination and shear failure events in a typical 2D weave.

Because tows in 2D weaves pass over and under one another, the primary load

bearing fibers suffer unavoidably large misalignments with respect to the applied load axis.

Therefore, axial shear stresses are high under nominally aligned loads and the critical load

for plasticity (probably leading to kinking) is relatively low. In triaxial braids, the axial

tows can be straight in principle, but in practice they are much more wavy than plies in a

tape laminate [4.2]. Critical loads for kinking are again relatively low [4.2,4.17].

Table 4.1 Compression Data for Gr/Ep Triaxial Braids (from [4.16]).

Braid Modulus
(GPa)

Ultimate Strength
(MPa)

Ultimate Strain
(%)

[06k/±4515k]12% 32.4 ± 1.0 353 ± 37 1.56 ± 0.22

[036k/±4515k]46% 69.7 ± 1.8 621 ± 17 1.03 ± 0.04

[030k/±706k]46% 62.0 ± 0.3 503 ± 43 0.86 ± 0.08

[075k/±7015k]46% 63.4 ± 2.1 439 ± 752 0.77 ± 0.14

Once kinking or other shear failure occurs, inter-ply delamination usually ensues

immediately. If inter-ply delamination is already present, as after impact, failure may occur

via delamination crack growth and Euler buckling without kink band formation. Because

the delamination stress following impact or the kinking stress otherwise is low, 2D weaves

and braids appear to be inferior choices for applications involving significant in-plane

compression.
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4 . 2 . 2 Stitched and Stitched-Knitted Laminates

Stitching, either alone or in combination with weaving (usually uniweave plies) or

knitting, is very effective in suppressing delamination. In the absence of delamination,

failure in monotonic compression commonly occurs via kink band formation [4.18]. The

critical stress for kinking is generally much higher than in 2D weaves and braids, because

the in-plane fibers in stitched uniweave or stitched-knitted laminates tend to be better

aligned. Stitched uniweave and stitched/knitted laminates are good candidates for

applications involving compression.

When a kink band forms in a stitched laminate, it propagates unstably through the

thickness of the specimen [4.18]. The load-bearing capacity of the material drops

immediately to zero; the material exhibits brittle failure.

4 . 2 . 3 3D Weaves

Under aligned loads, 3D interlock weaves also fail by kink band formation

[4.1,4.18]. However, the failure is generally not nearly as brittle as in a stitched laminate.

Each kink band that forms is confined to a single aligned tow and does not spread

catastrophically into neighboring tows. Ultimate failure is only achieved by the cumulative

effect of many distinct kinking events, which may be spread over a substantial volume of

the composite. Strains to ultimate failure of 3-15% have been measured, depending on the

details of the architecture and the test configuration [4.1,4.18].

Misaligned tow segments constitute geometrical flaws, with the strength or critical

local stress for each flaw depending on the misalignment angle via Eq. (4.1). The statistics

of kink formation depend on how these flaws are distributed in strength and space. Broader

distributions favour delocalized kinking sequences and high strain to failure [4.18].

The peak compressive stress also depends on the statistics of the misalignment

fluctuations in the aligned tows. The highest values of misalignment tend to be somewhat

higher than in tape laminates, at least in current 3D interlock weaves [4.1]. The peak load is

commensurately lower than in equivalent tape laminates.

Local delaminations are frequently observed in 3D weaves under compression. But

delamination crack growth is limited and Euler buckling of delaminated tows is not a failure

path provided the through-thickness reinforcement is not heavily crimped during
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fabrication.  With this proviso, delamination is not the strength limiting mechanism even

after impact [4.19].

4 . 2 . 4 3D Braids

Detailed observations of the mechanisms of failure in 3D braids have not been

reported. Experiments have been conducted in load control rather than displacement

control, which frustrates attempts to identify kink bands post mortem. However, if the

braid architecture contains significant proportions of nominally straight, aligned tows, it is

very likely that their kinking will be the primary mechanism of composite failure. By

delocalizing mechanisms similar to those operating in 3D interlock weaves, one might again

expect very high strains to ultimate failure in favourable cases.

4 . 3 Monotonic Tension

Under aligned tension, almost all load is borne by the aligned fibers. Their rupture

is the primary failure mechanism and determines ultimate strength. However, depending on

the fiber architecture, tensile or shear failures of the matrix can cause nonlinearity at much

lower loads.

Tow rupture strengths in weaves or braids are usually ~30-50% lower than would

be expected from the properties of pristine fibers or comparable unidirectional tape

laminates (Sect. 3). For example, AS4 carbon tows with an internal volume fraction of

70% apparently have rupture strengths near 1.5 Gpa in 3D interlock weaves [4.1]. The

manufacturer quotes 4 GPa for the strength of AS4 fibers1 while data for equivalent tape

laminates [4.17] imply tow ply strengths exceeding 2 GPa.

Unidirectional composites have lower strengths than implied by bare fiber strength

data because flaws on neighbouring fibers in a composite are coupled by the matrix. When

one fiber fails in a bundle of bare fibers, the load it sheds is picked up equally by all

surviving fibers, without any small group of them bearing excessive loads. This favours

higher bundle strength. When one fiber fails in a polymer composite, in contrast, there is a

significant stress concentration acting on its neighbours [4.20]. Nearby flaws in separate

fibers are thus grouped into larger flaws and composite strength tends to be lower.

Various mechanisms can be conjectured to explain why tow strengths in textiles are

even lower still. 1) The rigours of textile processing are always likely to damage tows. 2)

                                                
1 Data sheets of Hercules Inc., Wilmington, Delaware.
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Tow waviness creates fluctuations in the stiffness of short segments of tows, which results

in uneven load distributions. For the waviness typical of 3D interlock weaves, for example,

this will cause strength knockdowns of up to 10% [4.21]. 3) Misaligned or pinched tows

may be weaker than straight tows. 4) Lateral loads imposed on tows by neighbouring

interlaced tows may reduce their strength.

One common manifestation of shear plasticity under tensile loads is plastic

straightening of wavy tows. The criterion for the onset of tow straightening is essentially

the same as that for kink band formation under compression. The resolved axial shear

stress, which is proportional to the local misalignment angle, φ, must exceed τc, the shear

flow stress, leading again to Eq. (1), with σp, the critical axial stress for shear plasticity,

replacing σk. Since tow misalignment is a continuously varying random variable, tow

straightening commences at different stresses for different locations on the same tow.

Unlike kinking, tow straightening leads to hardening and can therefore propagate

along a tow.  Its progression can be estimated simply by calculating the local rotation of the

tow, which leads to evolution in φ and therefore σp. Tow straightening ceases when the

axial plastic strain equals the fractional difference between the initial arc length of the wavy

tow and its projected length in the axial direction. The contribution to strain to failure from

this source rises as the square of the average misalignment angle [4.22].

When a tensile load is not aligned with a primary group of tows, tow rupture may

give way to failure by shear or transverse cracking [4.2,4.14,4.23]. For loading at ±45°
with respect to two orthogonal sets of tows, which might be tows in the plain weave of

Fig. 4-2(b) or in a 3D interlock weave, the problem reduces to one of deviatoric shear in

those tows. The stress-strain response will be similar to those shown in Fig. 4-2. Figure 4-

6(a) shows stress-strain curves for a plain weave composite loaded at various orientations.

Response in the 0/90° orientation is nearly linear to failure, while considerable plasticity and

high strains to failure are exhibited for off-axis loads. Figure 4-6(b) shows similar trends

for open hole specimens. The failure stress for off-axis loads can be higher in the notched

than in the unnotched specimen. The authors of Ref. [4.24] attribute this curious result to

plastic tow straightening occurring near the hole. In tubular braided specimens, interesting

lockup mechanisms can come into play when tows interfere with one another at very high

strains, causing pronounced hardening. The hardening enables a form of cold drawing to

progress along the entire specimen, with high levels of plastic work required to achieve

ultimate failure [4.25].
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a) b)

Figure 4-6.  Stress-strain curves for plain woven carbon/eopxy laminate. (a)
Unnotched.  (b) Notched (d = 4 mm).  (From [4.24].)

The rest of this section will be directed mainly to failure mechanisms under loads

aligned with a primary set of tows. This is the configuration of most interest for

applications such as airframes where stiffness and strength are paramount.

4 . 3 . 1 2D Weaves and Braids

In 2D woven laminates, including plain weaves, satin weaves, etc., the earliest

softening under aligned loads is caused by microcracking within transversely oriented

tows, around tows of both orientations, and between plies. The systems of microcracks are

often complex [4.14], linked to irregularities in geometry, and difficult to correlate with

estimates of local stresses (see Sect. 5). Plastic tow straightening is inhibited by the

interlacing of tows.
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In triaxial braids loaded along the axial tows, microcracking similar to that depicted

in Fig. 4-1 usually occurs first in the bias rovings, where the dominant stress is shear

[4.2]. At higher strains, plastic straightening of the aligned tows may generate further

measurable nonlinearity prior to peak load. Whether plastic tow straightening is significant

depends on the degree of waviness of the aligned tows, which depends strongly on

architecture and processing.

4 . 3 . 2 Stitched, Stitched-Woven, and Stitched-Knitted Laminates

The principal systems of microcracks in stitched prepreg, stitched uniweave, and

stitched-knitted laminates are roughly periodic cracks normal to the applied load in the

transverse plies; and shear cracks in off-axis plies. These crack systems are very similar to

those found in tape laminates, although their shapes and spacing are influenced in a

complicated way by the stitches. Ultimate failure accompanies rupture of the aligned plies,

much as in a tape laminate.  The stitching minimizes delamination during large strains, but

this has a minor effect on the ultimate strength or strain to failure. Because the in-plane

fibers lie in approximately flat plies, tow straightening is not evident.

4 . 3 . 3 3D Weaves

In 3D interlock weaves, the first cracks observed usually run orthogonal to the

applied load between transverse tows [4.1]. Cracks within the transverse tows are

comparatively rare. Other cracks develop along the trajectories of warp weavers (interlock

tows). At loads typically exceeding half the peak load (~500 MPa in typical graphite/epoxy

composites), significant softening occurs because of plastic tow straightening. Although

the stuffers and fillers (the in-plane load bearing tows) are nominally straight in interlock

weaves, they tend in current materials to be substantially more wavy than the majority of

plies in stitched-woven or stitched-knitted laminates. Plastic tow straightening may

contribute 0.1-0.25% to the strain to peak load [4.22].

The strength limiting process in 3D interlock weaves is the rupture of aligned tows.

Tows fail as discrete entities. When one tow fails, the damage does not generally propagate

into neighboring tows. Rather, tow rupture sites are broadly distributed, leading to tow

pullout over 5-10 mm lengths across the ultimate fracture plane [4.1,4.22].

Following the attainment of peak load, a sharp drop occurs in tensile tests, after

which tow pullout sustains much smaller loads (Fig. 4-7). However, the load drop occurs

at remarkable high strains, typically 2.5-4% for loads aligned with the stuffers in
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specimens with gauge lengths of 20-30 mm. All the primary load bearing tows have failed

well before this strain. Thus the composite possesses mechanisms for transferring loads

around failure sites during substantial further straining. It is believed that the key factors are

tow waviness or other irregularities and the clamping effect of the interlock tows, which act

together to create a lockup effect which restricts sliding displacements of failed tows

[4.22]. Because loads near the peak load (~ 1 GPa) are sustained over nonlinear

displacements of ~ 1 mm, the work of fracture of interlock weaves can exceed 1 MJ/m2.

Figure 4-7.  Stress-strain data for a 3D interlock weave tested in uniaxial tension
aligned with the stuffers (from [4.22]).

4 . 4 Delamination under Through-Thickness Tension (Curved Structures)

Through-thickness tension arises in curved panels whenever the sense of in-plane

moments creates in-plane compression, σ(o), on the outer surface of the panel (Fig. 4-8 and

[4.26]). For polymer composites, the maximum magnitude of the tensile stress, σo, which

occurs near the panel’s midplane, can be written

σo = σ (o) h
rm

 η h
rm (4.3)

where h is the half-thickness of the panel, rm is its median radius, and η is a dimensionless

function given approximately by η ≈ 1 + 0.6h/rm + (h/rm)2 [4.27,4.28].

In the presence of a delamination crack of length 2a, which may be a pre-existing

flaw or damage induced by impact, the stress σ(o) will cause failure if it exceeds the critical

critical value, σ1, for delamination crack growth. Since σ1 falls as a-1/2, the critical value of
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σ(o) can be arbitrarily small for sufficiently severe flaws or damage. The maximum in-plane

stress for which the part can be designed falls commensurately.

rm 2h

SC.4112T.102695

M M

Figure 4-8.  Stitching bridging a delamination crack in a curved part.

Through-thickness reinforcement such as stitching bridges delamination cracks,

shields the crack tip from the applied load, and thus can suppress delamination crack

growth. A simple, conservative bound to the effect of the stitches can be found by

considering them to be linear springs of length equal to the panel thickness [4.28]. For

such bridging springs, the critical stress for crack growth approaches a constant value, σ1,

independent of crack length for sufficiently long delaminations [4.28,4.29]. The stress, σ1,

can be related analytically to the properties of the stitches. Since σ1 is a lower bound to the

critical value of σo, a design rule can be deduced for the minimum volume fraction of

stitching fibers required to suppress delamination crack growth. One way of expressing the

rule is to require that σo < σ1 as long as σ(o) < σc, where σc is the critical stress for in-plane

failure. If delamination is suppressed, the latter will probably be via kink band formation.
Then the volume fraction, fs, of stitching fibers must satisfy [4.28]

fs >  
η2

4
 σc

2 h
2

rm2
 h
EsGIc (4.4)

where Es is the modulus of the stitching fibers and GIc is the critical Mode I strain energy

release rate for a delamination crack in an unstitched laminate.
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The strength of the stitches must also be sufficient to ensure that the through-

thickness tension cannot rupture them. This enforces a second condition on the stitch

density [4.28]:

fs >  
η
3

 h
rm

 σc
σs (4.5)

where σs is the strength of a stitching tow and it has been assumed that the fiber volume

fraction within a stitch = 0.67. Which of Eqs. (4.4) and (4.5) is the more stringent

condition depends on the relative curvature of the panel and the various material parameters

involved. The possible failure modes for a curved part are mapped in Fig. 4-9.

I. h/rm < 0.2  =  kink failure under in-plane compression

h/rm > 0.2  =  ply rupture under in-plane tension

II. rupture of stitching
fibers

III. delamination crack growth

1

fs

(fs  , fs  )
(C) (R)max

3η
4

h
rm

σc σs h
Es GIc

SC.4142T.110995

~

~

0

Figure 4-9.  Map of failure modes for a curved panel.  The transition from failure on
the compressive side to failure on the tensile side in Domain I depends on the relative
values of the critical stresses for tensile rupture and kinking.  The critical value of h/rm
shown corresponds to a tensile rupture stress that is 50% higher in magnitude than the
kinking stress.

Through-thickness tension can also arise around joints and in thick, shaped

sections. If these structures are built up from laminated plies, there is again severe risk of

delamination. However, while textile composites may be the only practicable means of

overcoming such delamination problems, experimental observations of failure mechanisms

in parts of general shape with triaxial stresses are still being gathered.
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4 . 5 Shear Delamination in Bending

When shear stresses are created by bending near a free edge or notch, delamination

crack growth can ensue under pure Mode II or mixed mode conditions. In a 2D laminate,

the crack growth is catastrophic for common loading configurations, with the critical stress

falling with the length of the initial delamination length.

Through-thickness reinforcement changes the mechanics of Mode II delamination in

a similar way to its effect on Mode I delamination, bridging the crack and imposing

shielding shear tractions on the fracture surfaces. The resulting fracture behaviour has been

well illustrated by models and tests of stitched laminates, especially using the end-notch

flexure test configuration [4.30-4.32]. Provided the stitches remain intact, the critical

applied load, τd, for delamination crack propagation approaches a steady-state value, τss,

which is independent of the delamination crack length for long enough cracks.  Like the

critical stress, σ1, for bridged Mode I delaminations (Sect. 4.4), τss is a material property

of the composite. Since all delaminations must remain relatively short for smaller values of

the applied shear stress, τss can be used as a design limit.  However, the stitching must also

be strong enough to remain intact. If it fails, catastrophic delamination crack growth will

resume, but the Mode II delamination toughness will still be enhanced by the work required

to stretch and break the stitches [4.30,4.32].

4 . 6 Notch Sensitivity

Textile composites are generally remarkably notch insensitive. In both tension and

compression, cohesive or nonlinear process zones form at the notch and redistribute loads

in such a way as to reduce the stress concentration factor and minimize the degradation of

ultimate strength. Stress concentration factors can also be limited by splitting cracks

running from the notch root parallel to the load axis, which isolate the material ahead of the

notch from the notch stress fields.  Both of these mechanisms are familiar in tape laminates,

but they can both be much more effective in textile composites.

4 . 6 . 1 Cohesive Zones

The effectiveness of a cohesive zone in redistributing loads around a notch is

determined by mechanisms that permit significant local displacements without complete

loss of strength. The cohesive zone is characterized by the relation between the tractions, p,

it supports and the displacement discontinuity, 2u, it introduces into the elastic material
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around it [4.33]. The notch sensitivity of the composite depends mainly on the strength of

the tows and the work of fracture [4.34]

Wf = ∫ p du . (4.6)

Very few observations of the mechanisms in cohesive zones have been made in

notched specimens. However, detailed observations during uniaxial tension tests of 3D

interlock weaves [4.22], which were summarized in Sect. 4.3.3, are probably an excellent

guide to what to expect in a notched specimen. The nature of the observed phenomena

themselves also suggests that they are likely to be found in nearly all textile composites

containing significant volume fractions of aligned tows.

Figure 4-10 shows a schematic of a cohesive zone as inferred from the observations

for 3D interlock weaves. At the furthest distances from the notch, the earliest damage in the

band consists of matrix cracking, for example transverse cracks between the orthogonally

disposed tows in an interlock weave. Because this cracking occurs at relatively low loads

and strains, it makes a relatively small contribution to Wf and therefore to notch effects.

Nearer the notch, the plastic straightening and rupture of aligned tows occurs. As far as

these effects are confined to a band associated with the notch, they may be subsumed in the

relation p(u). (If damage is spread more or less uniformly over the whole composite, this is

large scale yielding and the cohesive zone is no longer an appropriate depiction of events.)

Tow rupture will define the maximum traction, pmax, supported by the cohesive zone.

Following tow rupture, cohesive tractions will continue to be supported as the broken tows

are pulled out of the composite across the eventual fracture plane. When the tows are fully

pulled out, a traction free crack exists, which occurs first at the notch root.

Tow pullout lengths can be exceptionally large in textile composites. Part of the

reason is the large tow diameters preferred in textiles to minimize manufacturing costs.

When a single tow breaks, debonding from the surrounding composite occurs over a slip

length, ls, which scales as the ratio of the tow’s area and circumference, i.e. as its diameter

[4.1]. Pullout lengths also depend on the spatial distribution of flaws in the aligned tows.

since tow strength is probably impaired by tow crimp and pinching, there is scope for

designing a favourable distribution of flaws into the composite by controlling the extent to

which aligned tows are impinged upon by other tows.

After tow failure in 3D interlock weaves, there is an interval where pullout of the

broken tow ends is opposed by unusually strong friction, an effect dubbed lockup (Section

4.3.3; [4.22,4.35]). This peculiarity of textile composites is intimately linked to the
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irregularity endemic to textile products. Lockup is the impingement of irregular features on

neighbouring tows as they are dragged by one another during the pullout process. It is

abetted by the through-thickness compression generated by the through-thickness

reinforcement in a 3D composite when it is loaded in in-plane tension. Through-thickness

compression forces sliding tows into close contact.  Lockup allows the cohesive traction,

p, to remain near its peak value, pmax, while displacement discontinuities 2u ~ 1 mm are

developed. The resulting contribution to Wf is of the order of 1 MJm-2 in some 3D

interlock weaves. The characteristic length, lch, of the cohesive zone will correspondingly

be ~ 100 mm. Notch sensitivity will be found only for notches exceeding this dimension,

as discussed in Section 3.6.  For tape laminates, Wf ~ 100 MJm-2 and lch ~ 3 mm at most.

Figure 4-10.  Schematic of a nonlinear damage band growing from a stress
concentrator in a textile composite.

4 . 6 . 2 Splitting at a Notch

The mechanics of splitting cracks running parallel to the load axis from notches

have been much studied (e.g. [4.36]). A splitting crack will be energetically favoured when

the toughness, Gs, of the material through which it must propagate is much lower than the

composite toughness, GIc, for propagation of a mode I crack normal to the applied load. In

a textile composite, GIc is large; e.g., ~ 1 MJm-2 for 3D angle interlock weaves, as

discussed above. But the arrangement of fibers into discrete tows also lowers Gs, since it

creates resin rich layers which are easy paths for fracture. The mechanics of splitting cracks

in textile is a subject of current research.
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4 . 7 Fatigue

Reported accounts of fatigue mechanisms in textile composites are few and

incomplete. For 3D textile composites, even basic fatigue data, without any observations of

mechanisms, are unavailable for some important loading conditions, especially non-aligned

or multi-axial loads. This survey is correspondingly imperfect. Nevertheless, the available

data do reveal some consistent mechanisms in many classes of textiles, inviting

generalizations that may turn out to apply to all or at least most cases.

1. For cyclic loads aligned with one primary fiber orientation, the local failure events

are much the same as they are in monotonic loading, viz. microcracking; delaminations,

including interply and intraply delaminations in 2D composites; kink band formation; and

tow rupture.

2. In high cycle fatigue, microcracking tends to be less abundant than in monotonic

loading, because damage accumulates inside aligned tows at a few favourable locations at

stresses below the threshold for damage elsewhere. The favourable locations are

determined by the textile architecture and by geometrical imperfections (especially tow

misalignments).

3. At least in 3D interlock weaves, fatigue damage accumulates more rapidly on the

compressive phase of the loading cycle.

4. In parallel with their damage tolerance in monotonic loading, 3D textiles gradually

accumulate spatially distributed fatigue damage. In strain control, they may have extensive

life beyond the first tow failures or the first significant loss of stiffness.

4 . 7 . 1 2D Weaves and Braids

Observations for triaxial braids are available for tension-tension fatigue only [4.15].

For loading aligned with the axial tows, fatigue damage commences with tensile

microcracking in resin pockets and microcracking within bias tows that may be driven by

either tension or shear, depending on the bias angle. The composite stiffness declines

rapidly during this phase. After further cycles, the decline in stiffness slows, but axial tows

become disbonded from the bias tows, eventually splitting and rupturing.
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4 . 7 . 2 3D Interlock Weaves

Just as under monotonic loading, the principal failure mechanism for interlock

weaves subject to aligned cyclic compression is kink band formation [4.37]. The kinks

form in segments of nominally straight tows that have unusually high misalignment (e.g.,

Fig. 4-11). Fatigue damage accumulation apparently consists of damage to the resin within

individual tows. This may either allow rotation of fibers and an increase of the

misalignment angle, φ, of the affected segment; or a gradual lowering of the critical shear

flow stress, σc [4.37,4.38]. Some evidence indicates that the latter is more likely in

interlock weaves [4.37]. In either case, the criterion for kink band formation, Eq. (4.1),

will eventually be satisfied and kink failure will occur in the tow.

Figure 4-11.  A kink band formed in fatigue in a misaligned segment of a stuffer in
an AS4/1895 layer-to-layer interlock weave (from [4.37]).

Just as in monotonic loading, a kink failure in one tow does not usually propagate

unstably into neighbouring tows. The failed tow debonds from the surrounding composite

via a peripheral matrix crack, minimizing local stress concentrations. Since misaligned

segments, which act as geometrical flaws, tend to be broadly distributed in space in 3D

interlock weaves, subsequent kinking tends to occur elsewhere in the composite [4.18].

Ultimate failure under strain control might involve a widely distributed accumulation of

separate kink events.
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5. PREDICTION OF ELASTIC CONSTANTS AND THERMAL EXPANSION

5.1 Concepts

The great challenge in modeling the elastic properties of textile composites is

dealing sufficiently well with the very large variations in stress and strain that can occur

within a textile even under uniform applied loads. A textile composite is a highly

heterogeneous structure. It may be viewed (and is often modeled) as a three-dimensional

tessellation of grains, each of which is an approximately unidirectional composite and

therefore transversely isotropic, with the plane of isotropy lying normal to the local fiber

direction. In polymer composites, the anisotropy factor for each grain is high, with

Eaxial/Etransverse ≈ 20 for typical graphite/epoxy. The distribution of stresses among the

different grains therefore depends very strongly on their relative sizes and orientations

and on the degree of order in their organization. In other words, it depends on the textile

architecture.

All models deal with this difficult situation by simplifying the description of the

textile geometry and restricting the allowable internal stress variations. Models can be

categorized into a few main groups according to how this is done. In choosing a

particular model for some class of composites, the user should first ask whether the

simplifying steps are valid for the given architecture. The following discussion of

essential concepts will provide a guide to answering this question.

5.1.1 Isostrain and Isostress

In infinite 2D laminates, uniform in-plane loads cause identical in-plane strains in

each ply. Thus laminate theory for non-bending plates is based on an isostrain condition

for the in-plane coordinates. The analysis of macroscopic elasticity is reduced to the

simple analysis of a few macroscopic stress or strain components. Bending flat laminar

plates causes a gradient in the in-plane strains through the thickness, but since the

gradient is uniform, the relationship between stresses and strains in different plies

remains trivial [e.g., 5.1].

If an infinite 2D laminate is subjected to a uniform through-thickness load,

identical through-thickness stresses arise in each ply and an isostress condition exists for

the through-thickness coordinate. Of course, through-thickness loads are always

nonuniform (unless they are zero); but if they vary slowly over distances comparable to
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the thickness of a single ply, isostress conditions may be considered to prevail locally in

estimating the lumped stiffness of many plies.

The isostress or isostrain assumption works in 2D laminates because of

translational invariances in the laminar structure. For example, when an observer scans

along the load axis in Fig. 5-1, the composite he sees does not change. This translational

invariance implies that planes normal to the load axis have no cause to deform under the

load; they remain plane and the isostrain condition prevails. Translational invariance

along two orthogonal in-plane axes is required for isostrain conditions to hold under in-

plane shear; for isostress conditions to exist locally under through-thickness loads; and

for strain gradients to be uniform in bending.

loading
direction

SC.4059T.072795

Figure 5-1.  Translationally invariant 2D laminate.

Textile composites are frequently analyzed by assuming an isostrain or isostress

condition. Under combined in-plane and bending loads, quasi-laminar textile composites

are also usually represented by laminate theory. Whether these steps are valid will be

determined by the extent to which the textile composites are translationally invariant on

the scale over which stress variations are being modeled.

5.1.2  Tow Properties

With no exception known to the writers, it is always adequate in modeling the

elastic properties of textile composites to regard tows as being internally homogeneous.

The fibers and resin within tows need not be modeled separately. Furthermore, in every

case studied, the distributions of the fibers in any two directions normal to the tow axis

are equivalent, whatever the tow aspect ratio. Therefore, in the absence of twist, the tows

are transversely isotropic over any gauge length significantly greater than the fiber

diameter.

Thus tow properties can be equated to the macroscopic properties of an equivalent

unidirectional composite. Various closed form approximations for estimating the latter
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from the fiber volume fraction and the fiber and matrix properties are available in the

literature. The simplest are rules of mixtures (e.g., [5.1,5.2]). Better models offer more

realistic partitioning of stress between fibers and resin [5.3-5.7]. The main features of

some important models are compared in Table 5.1 and some tow properties computed for

AS4/1895 are shown as functions of fiber volume fraction in Fig. 5-2. Each model

predicts five elastic constants corresponding to the five degrees of freedom allowed by

transverse isotropy. Only Hashin's model admits anisotropy in the fibers themselves; all

the other models assume the fibers and resin are separately isotropic. Assuming glass

fibers are isotropic is very plausible. But the anisotropy in common carbon fibers is

substantial and Hashin's model should then be preferred [5.8].

Figure 5-2.  Comparison of the elastic constants predicted for tows in an AS4/1895
composite using various models from the literature (Table 5.1).  Hashin I: assuming
the same isotropic fiber elastic constants as in the other models.  Hashin II: using
anisotropic fiber elastic constants for AS4 fibers.
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Table 5.1  Some Models of Unidirectional Fiber Composites

Model Remarks

1. Rule of Mixtures [5.1, 5.2] Simplistic stress partitioning
2. Hill [5.4] Inaccurate for polymer composites
3. Christensen [5.5] Accurate for isotropic fibers only
4. Van Fo Fy [5.7] Accurate for isotropic fibers only

Relatively cumbersome
5. Hashin [5.3] Bounds only; but narrowly spaced for

unidirectional composites
Allows fiber anisotropy

Computer codes for the micromechanical models in [5.3-5.7] can be found as

FORTRAN subroutines in program WEAVE (Section 8).

Properties computed for AS4/epoxy and other carbon/polymer systems are

compared in Table 5.2 (computed by Dr. R. Naik using a finite element model and the

constituent data of Table 2.1).

Table 5.2  Estimated Mechanical Properties of Tows

Fiber Matrix Vf E11
(GPa)

E22
(GPa)

ν12 ν23
G12

(GPa)
G23
(GPa)

AS4 Epoxy 0.65 154 11.8 0.32 0.42 5.2 4.1
AS4 Epoxy 0.70 165 12.8 0.32 0.42 6.0 4.5
AS4 Epoxy 0.75 177 13.8 0.32 0.41 7.0 4.9
AS4 Epoxy 0.80 188 15.0 0.31 0.4 8.2 5.4
IM6 Epoxy 0.65 177 10.3 0.35 0.45 5.2 3.6
IM6 Epoxy 0.70 190 11.0 0.35 0.44 5.9 3.8
IM6 Epoxy 0.75 203 11.8 0.35 0.44 6.8 4.1
IM6 Epoxy 0.80 216 12.5 0.35 0.43 8.0 4.4
AS4 PEEK 0.65 154 12.4 0.34 0.49 4.8 4.1
AS4 PEEK 0.70 165 13.4 0.33 0.48 5.5 4.6
AS4 PEEK 0.75 177 14.4 0.33 0.46 6.4 4.9
AS4 PEEK 0.80 188 15.4 0.32 0.45 7.6 5.7

AS4* ~ ~ 234 22.4 0.3 0.35 22.1 8.3
IM6* ~ ~ 269 17.2 0.34 0.39 20.7 6.2

~ Epoxy** 4.0 0.37
~ PEEK** 3.6 0.42

*Bare fiber bundle properties (strength gauge length dependent)

**Neat resin properties
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In reality, the tows in textile composites do usually have more complicated

internal structure than unidirectional composites. Fibers within single tows follow

tortuous, tangled paths, rather than being perfectly aligned. Large filament count tows

are formed by combining several smaller tows, which usually leaves resin rich

internal boundary layers. The smaller tows may also be twisted separately and the

larger tow they form may be twisted as a whole, either deliberately or inadvertently.

The tow will then not strictly be transversely isotropic. Yet these complications will

not violate overall symmetry significantly. Minor deviations from transverse isotropy

in individual tows will not alter the symmetry of the tow architecture on the scale of

the textile. Local biases cancel one another out over larger scales. The effects of twist

and other fiber irregularities within tows on macroscopic elasticity are never more

than a modest reduction in the effective axial stiffness of a tow; perhaps ~ 1%. They

are generally insignificant compared to the effects of tow waviness (Section 3).

5.1.3 Fiber Packing and Resin Pockets

Because textile composites are manufactured with relatively large fiber tows

which curve around one another in complex patterns, they contain significant volumes of
resin pockets. The density of fibers, Vt, within tows is therefore higher (typically 0.65 ≤
Vt ≤ 0.7) than the fiber density, V, averaged over representative volumes of the composite

(typically 0.5 ≤ V ≤ 0.6). It is the latter density that is measured by standard tests of fiber

volume fraction, e.g. measuring the areal weight of preforms; or measuring the fiber

content of composites by matrix dissolution [5.9].

Direct measurement of the volume of resin held in resin pockets requires

painstaking sectioning of specimens. In engineering design situations, it will probably

always be the case that resin pockets will be incompletely characterized. The volume

fraction of fibers within tows will therefore not be known exactly.

Nevertheless, in textile composites designed for high stiffness, this uncertainty

will always have a negligible effect on computed macroscopic properties. In high

stiffness applications, a good fiber architecture is one in which all critical elastic moduli

are fiber dominated; in other words, nearly straight fibers are so oriented that any

extensional or shear strain is opposed by the axial extension or compression of fibers.

Now the axial stiffness of a tow is very nearly proportional to the fiber volume fraction,
Vt, assumed to exist within it; while the fraction of the whole composite constituted by

the tow is inversely proportional to Vt for fixed fiber counts. Therefore, the contribution
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of the tow to composite stiffness is nearly independent of Vt. The critical characteristic is

simply the total number of fibers in the tow, not their density of packing [5.8].

In the looping geometry of knitted fabrics made of yarns of approximately equal

weight1, on the other hand, all yarns have significant curvature over most of their lengths.

Macroscopic properties are not fiber dominated, but depend more strongly on the

response of tow segments to local transverse and shear stresses. Because transverse and
shear tow moduli depend nonlinearly on the assumed value of V t (Fig. 5-2), the

composite elastic constants can be influenced by the assignment of Vt to a modest degree

[5.10].

5.1.4 Unit Cells and Periodic Boundary Conditions

Many textile processes yield patterns of interlaced tows or yarns that repeat in one

or two directions; they are periodic. A large volume of such a structure can be generated

in a model by stacking together unit cells, each of which represents the tows in one

period or cycle. (The term unit cell has been borrowed from crystallography, e.g. [5.11].)

The response of the textile composite to external loads can then be computed by

analyzing the behavior of a single unit cell with suitable boundary conditions.

For any periodic structure, there are infinitely many ways of choosing a unit cell.

For example, if a cuboid aligned with the axis system (x1, x2, x3) is one possible unit cell,

then so too is the rhombohedron obtained by shearing the faces normal to any one of

these axes in the direction of either of the other two axes through a displacement equal to

a multiple of its original length (Fig. 5-3). Equally, either unit cell outlined in Fig. 5-3

will remain a unit cell if it is displaced to the right or left by any distance.

Under uniform external loads, the stress and strain distribution in a periodic

textile composite must also be periodic. The analysis of a single unit cell should therefore

be subject to periodic boundary conditions for stresses or strains. The solutions obtained

for different unit cells chosen to represent the same periodic structure should in principle

be the same, although small differences may arise in practice because of inconsistent

approximations in the numerical methods used, especially in the definition of

computational grids. The choice of unit cell is usually guided by other symmetry

properties of the textile. For example, choosing the unit cell to be symmetric about a

                                    
1 When warp knitting is used to tie together heavy yarns (e.g., of carbon fibers) with a light thread (e.g., of
polyester), the heavier yarns are often kept as straight as possible by design.  Generalizations intended for
fabrics with highly curved yarns are then inapplicable.
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plane of mirror symmetry in the textile allows the use of a reduced cell in calculations,

halving the size of the problem that has to be solved (solid line rectangle in Fig. 5-3).

SC.4054T.121895

Figure 5-3.  Alternative unit cells (short and long dash lines at upper left) in a plane
woven laminate. The smaller, solid-lined rectangle (lower right) shows a reduced cell
that takes advantage of reflection symmetry about a vertical plane.

The interior of the unit cell is often modeled in fine detail. In typical unit cell

calculations, grids are defined to replicate each tow segment bounded by the cell and

each resin pocket between tows. Interior stresses and strains are computed by a finite

element simulation subject to periodic boundary conditions on the cell walls. Since the

unit cell is a 3D structure with heterogeneous and highly anisotropic components, even a

mildly complex textile architecture requires a large number of interior elements. Unit cell

calculations are usually computationally intensive. The output of unit cell calculations

includes both the spatially averaged response of the cell and details of stress distributions

among tows and resin pockets.

Some workers have minimized computational cost by introducing simplified

models of tow segments within the unit cell. For example, tow segments can be

represented crudely as bending or shearing beams; or the unit cell of a quasi-laminar

textile can be modeled by a variant of laminate theory. The properties of the unit cell are

then computed relatively easily. However, the quality of calculations of the details of

interior stress distributions is impaired.

When external loads are nonuniform, periodicity no longer exists in stresses and

strains; and periodic boundary conditions are no longer correct for the unit cell. The

strain in one cell of the composite has no simple relation to the strain in any of its

neighbors (Fig. 5-4). One approach to modeling such cases is to calculate and store the

response of a unit cell to uniform strains and uniform strain gradients; and then compute

the response of an assembly of such cells when the strains and strain gradients are

constrained to be compatible. In other words, the averaged response of the unit cell is
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used to define a special element for a finite element calculation on a coarser scale. But

the coarser finite element calculation should not be categorized as a unit cell calculation.

SC.4177T.010596

Unloaded Loaded

Fig. 5-4.  Nonperiodic strains in a periodic structure under nonuniform external
loads.  Schematic of two unit cells in a larger array.

Several other factors limit the usefulness of the unit cell approach. If the textile

architecture is periodic but complicated, the unit cell can become prohibitively large. In a

2D plain weave, a computational cell can be defined that contains just a handful of tow

segments (e.g. Fig. 5-3). In a 3D interlock weave, in contrast, the unit cell may contain

segments of ~100 tows. One example is the angle interlock woven panel of Fig. 5-5, in

which the phase of the warp weavers is staggered in the filler direction. This architecture

has a period of ten fillers in the stuffer direction and ten stuffers in the filler direction.

The unit cell also contains ten warp weavers; and, because of the absence of translational

invariance in the through-thickness direction, it must span from top to bottom of the

panel. In all, it contains segments of 140 different tows. Finite element calculations of

such a cell, with grids fine enough to represent the details of each tow's geometry, are not

viable. To proceed, further assumptions about the distributions of stresses must be made

to break the cell down into smaller constituents.

5.1.5 Macroscopic Length Scales

The analysis of a structure is greatly simplified if the structural material can be

treated as homogeneous over length scales comparable to any feature of the structure.

Identifying the minimum length scales for homogeneity defines the term macroscopic in

discussing elastic or other mechanical properties. A measured elastic constant is only a
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meaningful material property if it is measured over gauge lengths that are macroscopic

according to this definition. If the property is measured over smaller gauges,

unacceptable variance will occur in the measurement. In textile composites, macroscopic

length scales are unusually large and their consideration is therefore unusually important.

3, 7, 11, 15
9
1
13
6
5
14
2
10
4, 8, 12, 16

(a)

body warp weaver
surface warp weaver

filler (weft) stuffer (straight warp) warp weaver

layer-to-layer angle interlock

SC.4170T.121595

Figure 5-5.  Schematic of a 3D interlock weave.  The numbers at the right show the
sequence of occurrence of warp weaver tows encountered on progressing into the
plane of the figure.

Let λi, i=1,2,3, denote macroscopic length scales along three linearly independent

directions. Almost always, the three λi will take different values. An effective empirical

definition of macroscopic length scales is that all sets of measurements of elastic

constants or strains over different gauge lengths greater than λi will have the same

variance. Some experiments demonstrating the convergence of variance as the gauge

length is increased were discussed in Section 3.

It would also obviously be useful to be able to estimate the λi from the geometry

of a textile composite alone, avoiding the expense of the empirical approach.

Unfortunately, because of the complexity and variety of textiles, there is no single

definition applicable to all cases. The following remarks are therefore a guide to a

decision that must be made on a case by case basis.

If the textile is periodic, each λi could be identified with the width of the unit cell

in that direction. If the geometry is ideal and the loads uniform, measurements of strain
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over gauge lengths that are different integral multiples of the unit cell width must give

equal results. Measurements over nonintegral multiples of the cell width will show gauge

length dependence, but the variations will fall inversely with the number of unit cells

spanned by the gauge. In 2D braids, for example, variations in elastic modulus are a few

percent at most if the gauge length exceeds three unit cell widths (Fig. 5-6). But this

definition of λi can also be an unnecessarily conservative rule. If the textile architecture is

very complex, the unit cell will be large (e.g., Fig. 5-5). Yet large unit cells are often

divisible into subunits whose elasticity is similar but not identical; then homogeneity may

exist to a satisfactory degree over gauge lengths comparable to the subunits. Since the

degree to which subunits differ is continuously variable in many textile processes, no

general rule of thumb is possible.

Figure 5-6.  Coefficient of variation of Young's modulus measurements as a function
of the size of the gauge used relative to the unit cell dimension in that direction (from
[5.12]).  Gauge sizes shown in inches in inset; 1 in. ≈ 25.4 mm.

Rather than being periodic, i.e. invariant under certain nonzero translations, a 2D

laminate is invariant under translations of any size. It could be regarded as having a unit

cell of vanishing size in the in-plane directions. Applying the definition of λi suggested

for periodic textiles, a 2D laminate therefore may be considered to be homogeneous in

the in-plane directions over length scales that are vanishingly small. Similarly, a quasi-

laminar textile, which may have a large unit cell on geometrical considerations alone,

may be assigned vanishing values of λi for in-plane directions if it is sufficiently
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dominated by nominally straight in-plane tows. In a triaxial braid, for example, λi in the

direction of the axial tows may be effectively zero if the axial tows contain a sufficiently

high fraction of all fibers.

5.1.6 Fundamentals of Heterogeneous Elastica

The concept of homogeneous effective elastic properties existing over

macroscopic length scales is based on some fundamental theorems regarding stresses and

strains in heterogeneous materials. They are summarized here in the notation of Ref.

[5.13].

     Average Strain Theorem

Consider a heterogeneous body of volume V consisting of an aggregate of different

phases. If the displacements on its external surface, S, are

ui(S) = ui
0

(5.1)

and displacement continuity is enforced on the internal boundary, S12, between phases in

such a way that

ui
(1) = ui

(2)
 (on S12) (5.2)

then the average strain, ε ij , in the body is

( )ε ij i j j i
SV

u n u n dS= +∫
1

2
0 0$ $ (5.3)

where n is the unit normal to S. Further, if

ui(S) = εij
0 xj (5.4)

then

εij = εij
0

(5.5)

     Average Stress Theorem

For an average stress, defined as
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σ σij ij
V

V
x dV= ∫

1
( ) (5.6)

the average stress theorem states that

σij j i
S

j
V

iV
x TdS x FdV= +









∫ ∫

1
(5.7)

where Ti is a surface traction and Fi a body force. If

Ti = σij
0 nj

Fi = 0 (5.8)

then

σij = σij
0

(5.9)

     Average Virtual Work Theorems

If the homogeneous displacements

ui(S) = εij
0xj (5.10)

are applied to the boundary, S, then the average virtual work, J, can be shown to be

J = σij εij
0 V , (5.11)

with summing implied over repeated indices. Alternatively, if on the bounding surface, S,

Ti = σij
0 nj (5.12)

then

J = σij
0 εij V (5.13)

    Effective Elastic Moduli

Assume that the displacement distribution within the heterogeneous body subject to the

homogeneous boundary conditions of Eq. (5.10) is given by

ui x  = εkl
0 ui

(kl)(x) . (5.14)
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Then the stress at any point is given by

σij(x) = εkl
0  Cijmn(x) εmn

(kl)(x) (5.15)

where

εij
(kl)(x) = 1

2
 u i,j

(kl) + uj,i
(kl)

. (5.16)

Taking a volume average of Eq. (5.15) gives

σij = Cijkl εkl
0

(5.17)

where

C
V

C x x dVijkl ijmn mn
kl=

1
( ) ( )( )ε (5.18)

(If the strain multipliers εmn
(kl )  are uniform and of value unity, then Eq. (5.18) reduces to

the volume averaging of stiffness.  This is the isostrain case.)  From the average strain

theorem, Eq. (5.5), Eq. (5.17) can be written as

σij = Cijkl εkl , (5.19)

By a similar derivation, if an elastic body is subject to the homogeneous tractions of Eq.

(5.12), then

εij = S ijkl σkl . (5.20)

where S  is the inverse of C. Assuming homogeneous boundary conditions of either Eq.

(5.10) or Eq. (5.12), it can be shown from the definition of C that strain and stress

energies are given respectively by

U ε = 1
2

 Cijkl εij εkl V

U σ = 1
2

 S ijkl σij σkl V
. (5.21)

Thus there is an exact correspondence between volume averaging and the definition of

effective macroscopic properties based on energy expressions [5.14].
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5.1.7 Orientation Averaging

"Orientation Averaging" is based on two tenets: that the textile composite can be

represented geometrically as a tessellation of grains of unidirectional composite; and that

either isostress or isostrain conditions apply [5.15-5.19].

Grains are usually defined according to the ideal fabric geometry implied by

geometrical models of the textile process. Irregularities such as pinching, waviness, or

crimp are not modeled. Curved tow segments are usually divided into just a few grains in

each of which the fiber orientation takes a single, spatially averaged value. Because

curved tows are ubiquitous in textiles, the definition of grains is obviously not unique.

Each grain is assigned the elastic properties of a unidirectional composite using a

model of the kind discussed in Section 5.1.2. Let C(α) denote the stiffness matrix for

grain α; and S(α) the corresponding compliance matrix. The components of C(α) and S(α)

refer to an axis system aligned with the local fiber direction. Denote the composite

stiffness matrix C and the compliance S, both defined relative to a global coordinate

system common to all grains. Then

Cij ≈ αΣ Vα Cij
α *

(isostrain conditions) (5.22a)

or Sij ≈ αΣ Vα Sij
α *

(isostress conditions) (5.22b)

where C α * and S α * denote C(α) and S(α) respectively transformed into the global

coordinate system:

C α * = Tσ
-1 C (α) Tε (5.23)

where Tσ and Tε are the stress and strain transformation matrices, respectively, given by

( )T

a a a a a a a a a

a a a a a a a a a

a a a a a a a a a

a a a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a

ε =
+ + +
+ +

11
2

12
2

13
2

12 13 11 13 11 12

21
2

22
2

23
2

22 23 23 21 21 22

31
2

32
2

33
2

32 33 33 31 31 32

21 31 32 22 23 33 22 33 23 32 23 31 21 33 21 32 22 31

11 31 12 32 13 33 32 13 33 12 11 33 13 31

2 2 2

2 2 2

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

a a a a

a a a a a a a a a a a a a a a a a a
31 12 32 11

11 21 12 22 13 23 12 23 13 22 13 21 11 23 11 22 12 212 2 2

+
+ + +



























(5.24)
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where the aij are the direction cosines between the local tow coordinate system and the

global system; and

T T T
σ ε
− =1 , (5.25)

which follows from orthogonality. (These transformations are well known results of

tensor algebra [5.20,5.21].) For a tow whose axis is orientated at angles θ and β  with

respect to the global system, as shown in Fig. 5-7, the aij are given by

aij  = 

cosθ cosβ sinθ cosβ sinβ

-sinθ cosθ 0

-cosθ sinβ sinθ sinβ cosβ . (5.26)

The tow is assumed to be transversely isotropic. Therefore, there is a degree of freedom

in the definition of the local coordinate system. Without loss of generality, Eq. (5.26)

refers to coordinate systems in which the 2 axis of the tow is perpendicular to the global

z-axis.

θ

β

x

z

y
1

3
2

Figure 5-7.  Coordinates for transformation of tow properties.

Orientation averaging preserves the symmetry inherent in the tessellation of

grains over large gauge lengths. Thus, using an example common in flat textile sheets, if

three orthogonal planes of symmetry exist in the pattern of grains, then the macroscopic

stiffness and compliance tensors derived by orientation averaging will exhibit orthotropic

symmetry (e.g., Fig. 5-8).

Whether either Eq. (5.22a) or (5.22b) is a good approximation depends on the

textile architecture. Isostrain conditions apply when translational invariance obtains in the

direction of the applied load. Isostress conditions apply when translational invariance
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obtains normal to the applied load. From energy considerations, the isostress result, Eq.

(5.22b), always provides a lower bound to the stiffness; the isostrain result, Eq. (5.22a),

an upper bound.

SC.4053T.072595

Figure 5-8.  Three orthogonal symmetry planes (two marked by dashed lines and the
third being the plane of the figure) in a stack of woven plies, implying orthotropy
over gauge lengths that are larger than the ply thickness and the period of the weave.

Good design in airframes, which must be very stiff, requires positioning as many

straight fibers as possible in the directions of the largest anticipated stresses. Isostrain

conditions are then by far the better approximation.

In a 2D laminate, orientation averaging with isostrain conditions is equivalent to

standard laminate theory for in-plane deformations. Thus orientation averaging models

and models in which a textile is approximated geometrically as a laminate will yield

similar results for quasi-laminar textiles [5.8,5.22].

5.1.8 Bending or Axial Shear?

The response of a curved tow element to lateral loads is sometimes modeled as

that of a simple beam that can bend but not shear. The beam may be anchored at points

where the locus of the tow has extrema, usually at points where it is impinged upon by

other tows (perhaps at the boundary of a unit cell). However, this modeling approach is

valid only if the beam represents a tow segment whose length, L, is many multiples of its

thickness, 2 t. If the tow segment is short, the primary contribution to its lateral deflection

will be axial shear deformation, not bending.
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Fig. 5-9 shows a simple paradigm for estimating the relative importance of

bending and shear in a tow that is subject to lateral loads. Elementary calculations show

that the bending and shear deflections, vb and vs, are in the proportion

v

v

L

t

G

E
b

s

xy

x

=




χ

2

2

. (5.27)

where Ex and Gxy are the axial and shear moduli of the tow and χ is a geometrical factor

of order unity. For carbon/epoxy, for example, Ex/Gxy ≈ 40 [5.23]. Shear will dominate

deflections for tow segments of aspect ratio less than 5; and in this case simple bending

beam models should not be used. Simple bending beam models may be appropriate for

satin weaves with long float or braids with flat tows, but they are inappropriate for plain

weaves or 3D interlock weaves [5.23].

SC.2875CS.051894

L

2t x

F

Figure 5-9.  A simple paradigm for estimating the contributions of shear and bending
to the deflection of a tow.

Axial shear deflections (i.e., shear deflections in a plane containing the beam axis)

are admitted in thick beam models, which incorporate rotational as well as bending

degrees of freedom. However, to date thick beam models have not been applied to

textiles.

Segments of tows are also sometimes represented as simple beams supported

continuously by an elastic foundation, rather than anchored at discrete points. This can be

a useful method of modeling delamination (loss of the foundation) and its effect in

buckling during axial compression. The foundation may also represent the constraining

effects of through-thickness reinforcement, in which case it will usually be much stiffer

and may be modeled as discrete rather than continuous (Fig. 5-10). However, the

foundation does not have the same effect as internal shear and therefore a similar

restriction of validity to long tow segments must apply. For many 3D composites,

including 3D weaves and braids, this means that a simple beam model will be useful only
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if the buckling deflection has a wavelength that is long compared to the spacing of the

through-thickness yarns (Fig. 5-10a). If the through-thickness reinforcement is stiff

enough to limit buckling to intervals between through-thickness tows (Fig. 5-10b),

buckling will occur primarily via axial shear.

This leads to an interesting conjecture about what really matters in modeling the

ultimate strength, including compression strength, of a 3D textile composite when the 3D

reinforcement is sufficiently stiff and closely spaced to inhibit long wavelength lateral

deflections, including buckling (Fig. 5-10b). In this case, the composite can be regarded

as an assembly of tows whose collective strength comes from their internal stiffness.

Only damage that occurs inside tows is significant to the composite's integrity. The most

important interior damage is shear softening, kinking, and tow rupture. Damage between

tows, i.e. matrix cracking, has minimal effect on composite strength, because the

interaction of tows does not depend strongly on their connection via the resin. If the resin

is cracked, friction will still lock tows together as a macroscopic structure, with very little

relative movement of tows permitted by the 3D nature of the tow arrangement. This is

very different to tape laminates or 2D textiles, where interply delamination can

completely detach plies and lead to catastrophic failure at low loads.

5.1.9 Geometrical Irregularity

Geometrical irregularity is found in all textile composites. Common types were

listed in Section 2.3.3. They include inconsistency in tow spacing, tow waviness, and tow

pinching.

Inconsistent tow spacing causes variance in fiber volume content. If fiber content

falls, stiffness falls proportionately. In most models, the effects of variable tow separation

is simply calculated by adjusting input parameters that describe the textile geometry.

Tow waviness and pinching cannot usually be dealt with in this way. Most codes

are based on the assumption that the textile architecture is ideal, as laid out in the design

specifications of the textile manufacturer. Fortunately, the effect of waviness and

pinching on macroscopic elastic constants is almost entirely restricted to reducing the

effective axial stiffness of tows. A simple and reasonably accurate estimate of this

knockdown was presented in Section 3.3.

However, geometrical irregularity has one other very important implication for

modeling stress distributions in the elastic regime. Because irregularity is by nature
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stochastic, it always reduces the symmetry of the textile composite. In particular, the

translational invariance of nominally periodic textiles will be violated; and periodic

boundary conditions applied to a unit cell will no longer be strictly valid. Broken

symmetry has a relatively minor effect on estimates of macroscopic elastic constants

[5.22], but it can have very important implications for predicting the onset of failure,

which will be taken up in Section 6.

 L

 L
2t

2t

(a)

(b)

SC.4188T.011896

Figure 5-10.  Schematics of buckling of an aligned tow under compression.  (a)
When relatively soft through-thickness reinforcement acts as a soft elastic
foundation, allowing deflections over relatively long wavelengths.  (b) When stiff
through-thickness reinforcement restricts lateral deflections to the intervals between
successive through-thickness tows.

5.2 Summary of Available Codes for Analyzing Stiffness

This handbook presents annotated documentation for various computer codes that

can predict the properties of textile composites. Some of the codes were developed by the

Textiles Working Group within the Advanced Composites Technology (ACT) Program

sponsored by NASA Langley Research Center. Others were developed outside the ACT

program. All are available for public use. The codes represent a wide range of approaches

and capabilities and cover most of the classes of textile composites currently perceived to

be valuable in aircraft manufacture. This section provides prospective users with a guide

to selecting the best codes for analyzing the stiffness or thermal expansion of a given
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textile composite. A similar guide for properties related to strength, ultimate failure, and

fracture toughness appears in Section 6; and for fatigue in Section 7.

The codes covered in the handbook and their capabilities in predicting stiffness

and thermal expansion are summarized in Table 5.3. The modeling approach each is

based on and a comparative assessment of their accuracy, ease of use, and calibration are

found in the remainder of Section 5.2. More complete details on the individual codes,

including lists of the input data required, are presented in Section 8. The user's guides

written by the codes' authors can be found in the appendices.

Table 5.3  Summary of Code Capabilities

Code Textile Forms 3D
Stiffness

Thermal
Expansion

Plate
Stiffness

PW
SAT5
SAT8

plain weave
5 harness satin
8 harness satin

Yes Yes

CCM-TEX 3-D Weave
2-Step and 4-step
braids

Yes

µTex-10

µTex-20

general
user defined

Yes Yes Yes

SAWC plain weave
(FE code general)

Yes

TEXCAD 2D weaves
2D braids
user defined

Yes Yes Yes

WEAVE 3D weaves Yes
BINMOD 3D weaves Yes

5.2.1 Quasi-laminar and Nonlaminar Textiles

Many of the codes recognize that the textile composites they deal with are quasi-

laminar, because the fiber architecture is either a 2D structure or a 3D structure

dominated by in-plane fibers arranged in layers (Section 2). The geometry will then be

described in a way that bears out its quasi-laminar character; and the analysis of stresses

and strains will usually include steps based on standard laminate theory. Other codes

have been designed to deal expressly with nonlaminar textiles. Their descriptions of

geometry and methods of predicting mechanical properties are necessarily quite different.
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5.2.2 Geometry

Defining the geometry of a textile composite in sufficient but not overwhelming

detail is one of the most challenging tasks in its analysis. Various approaches have been

implemented in the computer codes (Table 5.4).

     Units Cells

Several codes use unit cells to describe textile geometry for both quasi-laminar

and nonlaminar cases, since a periodic textile may be either quasi-laminar or nonlaminar.

If the textile is quasi-laminar, then the unit cell may be defined to lie entirely within one

ply or to span the whole thickness (Fig. 5-11). The former choice is strictly valid only if

all layers are exactly equivalent, which can only be true if the textile is also 2D (Section

2). But since the volume fraction of through-thickness fibers is always relatively small in

a quasi-laminar 3D textile, it is often a good approximation to regard such a structure as

layers of mainly in-plane fibers that are equivalent in the elastic regime. Choosing a unit

cell that spans the whole thickness will generally allow more detailed analysis. For

example, the effects of stacking layers with features in and out of registry can be studied

directly (Fig. 5-11b and 5-11c).
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SC.4190T.012295

(a) (b)

(c)

Figure 5-11.  Choices of unit cell in quasi-laminar textile composites.  (a) and (b):
two approaches to modeling laminate properties.  (c): variant of whole thickness cell
in (b) for analyzing stacking effects.

The simplest unit cell approach is sometimes called the fiber inclination model

[5.18]. A related concept is the diagonal brick model [5.24]. In these models, only the

straight portions of the tows are represented; and the sole geometrical characteristic used

for each such segment is its angle of inclination to a global frame of reference. The

inclination angles may be contained in a single plane (especially for quasi-laminar textile

composites) or in all three spatial dimensions. Relatively simple closed-form expressions

are available for determining these angles from the weaving or braiding parameters

(Section 2.3). This approach was one of the first formulated specifically for textile

composites [5.18], but no codes implementing it have been included here.

In the next level of detail, tows and their cross-sections are represented as solid

entities with some simple geometry defined by just a few parameters. For example, a

plain weave may be modeled as a combination of straight yarn segments and cross-over

regions that follow an assumed sinusoidal path (Section 2.3). TEXCAD, CCM-TEX,

and PW are examples of codes that use this approach. SAWC uses a similar idealization

to generate a finite-element mesh. In the more complex textile preforms, tows must twist

and change cross-section with position as they pass around one another. Simple
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parametric functions that represent such effects are difficult to derive. These effects are

not represented in the codes.

Another level of idealization of unit cells is provided by codes that compute the

preform geometry by analyzing mechanical conditions during the textile forming process.

Reference [5.24] describes a code (BRAID; not included in the handbook) which

determines yarn paths based on the tensile forces applied during the textile process,

contact relations between the yarns, and the dry yarn stiffness. The yarn path and twist

are predicted in terms of spline functions. BRAID is currently restricted to considering

yarns that remain uniform in cross-section, which is not always realistic.

Finally, there are commercial solid modeling tools that may be used to create

bodies with complex geometry on a grid suitable for finite element analysis. These tools

use sophisticated Boolean operations and computer graphics to aid model generation.

Their application to textiles has been demonstrated [5.25], but the approach is not well

developed and appears too time consuming for practical use. Textile preforms involve

multiple yarns touching at many cross-over points, which makes them difficult to mesh in

such detail. Moreover, the agreement in the elastic regime of experimental data and

models based on much simpler geometrical representations implies that the extra level of

detail is unnecessary in predicting elastic constants. It may even be misleading in

analyzing local stress distributions, because of the neglect of geometrical irregularity.

All of the approaches described above assume that the unit cell geometry is

deterministic and repeatable.

     Modified Laminates

Instead of using a unit cell, an alternative approach to modeling the geometry of

quasi-laminar textiles is to represent them simply as laminates of continuous,

translationally invariant plies, just like a conventional tape laminate. The geometry of the

laminate is then completely described by the thicknesses, orientations, and stacking

sequences of the layers.
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Table 5.4  How Codes Represent Textile Geometry

Code Geometry

µTex-10
µTex-20

Unit cell for full thickness
Yarn paths defined as piecewise linear, lying in planes
Yarn cross-sections defined as polygons

TEXCAD Unit cell for single layer
Yarn paths defined as straight and sinusoidal segments

PW
SAT5
SAT8

2D or 3D unit cells for single layer
Yarn paths defined as straight and sinusoidal segments
Yarn cross-sections rectangular

SAWC Unit cell for single layer of plain weave
Yarn paths defined as sinusoidal
Complex geometries formed by stacking units

CCM-TEX Unit cell for full thickness
Yarn paths defined by simple analytical functions
Geometry computed from idealization of textile process

WEAVE Quasi-laminar 3D interlock weaves reduced to laminates
BINMOD Nonperiodic representative volume element

Piecewise linear 1D elements for axial properties of tow segments
Solid effective medium elements for all other properties

Describing the layers of a textile composite as translationally invariant is, of

course, an approximation. Stitching or other through-thickness reinforcement is always

discrete and disrupts translational invariance. The validity of the approximation then

depends on whether the contribution of the through-thickness reinforcement to

macroscopic elasticity can be calculated well enough by replacing the discrete tows by a

smeared out continuum. Experience suggests an affirmative answer for quasi-laminar 3D

interlock weaves [5.8]. In a 2D textile composite, translational invariance is violated by

the internal structure of layers, which is typically that of a plain or satin weave. The

adequacy of the approximation then depends on the extent to which periodic variations of

the fiber orientation within layers can be represented by a uniform, spatially averaged

reduction of the effective layer stiffness. This seems to work quite well in practice for

laminates of triaxially braided plies [5.26].

An example of this alternative approach to quasi-laminar textile composites is the

code called WEAVE, which models 3D interlock weaves. Alternating layers of fillers

and stuffers are modeled in WEAVE as continuous plies. Stuffer and filler waviness can

be allowed for by including an estimate of waviness, which is then represented as a

knockdown in ply stiffness by a rule similar to Eq. (3.1). The estimate of waviness might

come from a theoretical model of the textile geometry, especially if waviness arises from

textile architecture, as in a plain weave; or from measurements of tow loci in
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photomicrographs. The estimates need not be very precise, since the knockdowns are

small in most systems (see Section 3). Thus ply properties in WEAVE are defined

without assuming periodicity. A similar code was reported in [5.26] for triaxial braids,

but it is not included in this edition of the handbook.

     Nonperiodic, Nonlaminar Textile Composites   

When a textile composite is nonperiodic and nonlaminar, a different approach

must be taken to describing its geometry. In the Binary Model (BINMOD), the axial

properties of yarns are represented by two-noded line elements, while the transverse

stiffness, shear stiffness, and Poisson’s effects are represented by solid “effective

medium” elements. Thus the tow architecture is represented by piece-wise straight line

segments in one-to-one correspondence with the positions of tow axes in the real

composite. Details of yarn cross-sectional shape and curvature over gauge lengths less

than the center-to-center tow spacing are omitted: by minimizing the degrees of freedom

in the model, much larger pieces of the textile composite can be simulated. Tow waviness

can be introduced by offsetting nodes on the tow elements in the stress-free configuration

of the model. There is in principle no restriction on the arrangements the tows may have

or any requirement of symmetry or periodicity. However, the code has been developed so

far to deal only with 3D interlock weaves.

Models such as the Binary Model appear to offer the best approach to modeling

integral textile structures (Section 2.4), which are nearly always nonperiodic and

nonlaminar. Neither are the tows in textile composites small relative to the external

dimensions expected in typical integral structures. Therefore, the representation of tows

as discrete entities would appear to be the minimum required level of detail.

5.2.3 Modeling Thermo-Elastic Properties

The approach to evaluating macroscopic stiffness tensors and coefficients of

thermal expansion once again naturally depends on whether a textile is classified as

quasi-laminar or nonlaminar. It is also useful to distinguish methods of analysis

according to the degrees of freedom permitted for local stress variations.

    The Isostrain Approach (Orientation Averaging)

The isostrain assumption uses the lowest number of internal degrees of freedom

possible in elasticity calculations without introducing symmetry elements not present on
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the macroscopic scale. Under the isostrain assumption, the determination of the effective

or macroscopic stiffness tensor becomes a simple volume averaging of the constituent

stiffnesses, transformed from the local material coordinate system to the global

coordinate system (Section 5.1.7); i.e. the method of orientation averaging. Following the

formal mechanics reviewed in Section 5.1.6, this is equivalent to coupling homogeneous

displacement boundary conditions (Eq. (5.4)) with an assumption of linearly varying

displacements throughout the enclosed volume and finding the relation between average

stress and average strain.

In most of the codes in Table 5.3, the textile is treated as being periodic and the

averaging is performed over the volume, V, of the unit cell. In simple models that include

only straight yarn segments (e.g., the diagonal brick model), orientation averaging then

leads to a closed-form summation of volume weighted stiffnesses. In the more general

codes, such as TEXCAD, numerical integration is performed to account for the curvature

of tow paths.

When quasi-laminar textiles are approximated as translationally invariant in-

plane, orientation averaging leads to a simple sum over layers. Indeed, standard laminate

analysis applied to in-plane loads can be regarded as an instance of orientation averaging.

Orientation averaging can be applied just as well to nonperiodic textiles. This may

be done by substituting a periodic approximation for nonperiodic elements of the textile

architecture, defining a unit cell, and proceeding as above. Alternatively, some other

representative volume element can be defined and analyzed, large enough that spatial

variations associated with nonperiodic elements of the reinforcement have a small effect

on the calculated macroscopic (spatially averaged) stiffness tensor.

The isostrain assumption that leads to stiffness averaging also yields simple

expressions for thermal expansion coefficients. For example, the effective thermal
expansion coefficients, αij , of the unit cell of a periodic textile follow according to [5.27]

 α αij ijkl ijkl
V

klS
V

C dV= ∫
1 * * (5.28)

where an asterisk again indicates transformation of local properties to the global

coordinate system and S  denotes the spatially averaged compliance (the inverse of C).
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    Finite Element Methods

Isostrain or isostress assumptions are unnecessary in codes based on finite

element formulations, since these codes compute internal stress distributions in detail,

using arbitrarily many degrees of freedom. The stiffness matrix is built up by imposing

homogeneous displacement boundary conditions and either integrating the internal

stresses to obtain the average stress or integrating the boundary tractions. The average

stress can be related to the boundary tractions via the average stress theorem (Eq. 5.7).

Building the complete stiffness matrix requires solving for six independent sets of

boundary conditions. Because of the potential lack of symmetry of a general unit cell, the

stiffness matrix can be fully populated (generally anisotropic). Although it can be proven

that the stiffness matrix for any heterogeneous unit cell must be symmetric, finite element

calculations can yield a nonsymmetric matrix due to the approximations involved. A

symmetric result, Csym, is usually created by the averaging operation

( )C C Csym
T= +

1

2
, (5.29)

where the superscript T denotes transpose.

There is no requirement for a finite element mesh to map directly to the unit cell's

internal geometry. For example, the mesh may be a regular array of cuboidal elements,

independent of the yarn paths. When the element stiffness matrix is generated, the code

must determine the local material stiffness at each Gaussian integration point. This gives

rise to so-called heterogeneous elements, which greatly simplify the meshing problem.

However, the stresses in heterogeneous elements may converge slowly with respect to

mesh density.

Finite element methods are used to solve unit cell formulations in the codes

SAWC, µTEX-10, and µTEX-20.

    Laminate Analysis: Quasi-Laminar Textile Composites

The properties of quasi-laminar textile composites are usually and most

conveniently represented by the conventional A, B, and D matrices of classical lamination

theory. The matrix A defines the coupling between in-plane strains and in-plane force

resultants; and B and D the coupling between in-plane strains and bending moments or

bending curvatures and in-plane force resultants [5.1]:
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where the axes x and y lie in the plane of the plate; εx, εy, and γxy are mid-plane strains;

κx, κy, and κxy are bending curvatures; αx, αy, and αxy are plate thermal expansion

coefficients; βx, βy, and βxy are plate thermal bending coefficients; Nx, Ny, and Nxy are

in-plane force resultants; and Mx, My, and Mxy are bending moments.

Table 5.5 summarizes the way the codes presented in this handbook deal with the

application of laminate theory to quasi-laminar textile composites. There are essentially

two approaches to determining the matrices A, B, and D :

(i) The properties of the entire plate can be computed at once, usually by defining a

unit cell spanning the whole thickness; e.g. Fig. 5-11b. The response of the cell is

computed under sufficient sets of boundary conditions representing in-plane loading

and bending to determine all components of the stiffness matrix. This is the approach

followed in the codes µTEX, CCMTEX and SAWC. In a nonperiodic or irregular

textile, the calculation over a unit cell can be replaced by a calculation over some

representative volume element of sufficient size to give consistent results for the

macroscopic stiffness. This is the approach of the code BINMOD.

(ii) The properties of a single ply can be determined first and the plate properties then

built up using laminate theory. The ply properties can be calculated by defining a unit

cell within a single ply (Fig. 5-11a) or by the methods of spatial averaging described in

Section 5.2 under "Modified Laminates." The code TEXCAD follows the unit cell

approach. PW, SAT5 , and SAT8 also use unit cells to compute the matrices A, B, and

D for a single 2D layer, but leave to a subsequent application of conventional laminate

analysis the determination of the plate stiffness of a stack of such layers.



PREDICTION OF ELASTIC CONSTANTS AND THERMAL EXPANSION

5-29

Table 5.5  How Codes Model Quasi-Laminar Plates

Code Summary of Method

µTex-10
µTex-20

Full thickness FEM calculation
Traction free surfaces included in boundary conditions
A, B, and D matrices computed for full thickness

TEXCAD 3D stiffness matrix computed for single layer
A, B, and D matrices calculated by standard laminate theory
Plane stress assumed

PW
SAT5
SAT8

A, B, and D matrices computed for a single layer
Stack of layers not treated (subsequent laminate analysis required)

SAWC 3D stiffness matrix computed for single layer
Macro elements can be used to make stacked laminate
Surface boundary layer effects handled by FE solution.

CCM-TEX 3D stiffness matrix computed for whole thickness
WEAVE Plate treated as homogeneous, orthotropic body

Layer dimensions used to compute flexural rigidity only.
BINMOD Full thickness FEM calculation

Boundary conditions, including traction-free surfaces, defined by
user.

If the 3D compliance tensor, S , of a composite is available from one of the codes,

then the A matrix for a plate in which plane stress conditions prevail can be computed as

follows:

A h
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S S S

S S S

/ =

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
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−

1111 1122 1112

1122 2222 2212

1112 2212 1212

1

(5.31)

where h is the plate thickness. The codes PW, SAT5, and SAT8 assume plane stress

conditions to evaluate the properties of individual plies.

Thus the codes TEXCAD, PW, SAT5, SAT8, µTEX-10, and µTEX-20 can all

be used to predict plate properties.

     Nonlaminar, Nonperiodic Textile Composites

For nonlaminar, nonperiodic composites, neither plane stress conditions nor unit

cells should be part of the modeling approach. A more general method is required. To

date, the only candidate is the Binary Model (implemented in code BINMOD), whose

treatment of geometry has already been described (see above). Stiffness matrices are

computed in the Binary Model by simulating some representative volume element (not a
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unit cell), which typically represents a few cubic centimeters of material and contains a

few thousand tow and effective medium elements. (The representative volume element

needs only to be larger than the macroscopic length scales, λi, of Section 5.1.5. These

may be defined by experiments or by exercising the Binary Model itself for simulations

of different size.) The whole assembly is analyzed as a finite element calculation. The

effective medium elements are implemented as eight-noded isoparametric solid elements;

the tow elements as 1D springs.  If geometrical irregularity has been introduced by

randomly offsetting initial node positions, a single simulation becomes a Monte Carlo

calculation. The effects of irregularity on macroscopic stiffness are determined by

averaging over many Monte Carlo calculations.

5.3 Comparison of Code Predictions for a Plain Woven Textile Composite

Several of the codes in Table 5.3 can predict the stiffness of a plain woven textile

composite. These codes were each run with the input parameters for a typical

carbon/epoxy composite shown in Tables 5.6 and 5.7. In Table 5.6, "yarn" properties are

those of a unidirectional composite having the "yarn fiber volume %" of Table 5.7. They

are quoted for a coordinate system in which the x-axis lies along the fiber direction and

the x-y plane is the plane of isotropy. The matrix properties are assigned to any volume of

the textile composite not assigned to a yarn. The test case matches the parameters in Ref.

[5.28], which also provides experimental data.

The codes were used to compute the properties of a single ply of plain woven

composite. They yielded the predictions for the 3D stiffness matrix shown in Table 5.8

and the thermal expansion coefficients shown in Table 5.9. In these tables, x3 is the

through-thickness direction of the composite, and x1 and x2 its in-plane directions, which

are equivalent in a plain weave. The stiffness predictions for the axial stiffness, E1, fall

within a narrow band. The largest variation is in Poisson’s ratio, ν12. The out-of-plane

stiffnesses are not available from codes such as PW, which are purely plate analyses. The

results labeled CLT (classical laminate theory) are provided for comparison. These were

obtained independently of the codes by volume averaging the stiffness matrix for a stack

of flat layers corresponding to warp and weft fibers, with a resin layer added to obtain the

correct overall fiber volume fraction.
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Table 5.6 Constituent property input used in code comparisons
(Transverse isotropy assumed in the y-z plane )

Component E1 E2 ν12 ν23
G12 α1 α2

(GPa) (GPa) (GPa) (10-6 K-1) (10-6 K-1)
Yarn 145 11.7 0.23 0.30 5.52 -0.32 14.0
Matrix 3.45 3.45 0.35 0.35 1.28 40.0 40.0

Table 5.7  Geometric parameters assumed for code comparisons

Yarn Spacing (mm) 1.41

Layer Thickness (mm) 0.26

Yarn Fiber Volume (%) 75

Total Fiber Volume (%) 64

The codes also give plate stiffnesses, computed assuming plane stress conditions

(or using traction-free surfaces) and including bending. Plate stiffnesses are provided in

the form of the A, B, and D matrices of classical laminate theory. Representative elements

are shown in Table 5.10. There is a surprising variation in these results for both the in-

plane and bending stiffnesses. For example, µTex-10 and µTex-20 give much lower

values for the in-plane stiffness than the other codes. The authors attribute this difference

to the way in which the B matrix terms (bending-stretching coupling) are handled. The

effective in-plane modulus of an asymmetric laminate can be much less than a simple

volume average would indicate, because the laminate curves under in-plane load. A

single ply of a plain weave is indeed asymmetric, the upper and lower halves being

orthogonal at any point. Most codes assume that the moment constraints of neighboring

unit cells prevent bending, but this is not assumed in µTex-10 or µTex-20. If many plies

were stacked into a thicker laminate, the discrepancy between the codes would

presumably diminish, since the interactions of adjacent layers would suppress the

development of curvature in any one layer.



ANALYTICAL METHODS FOR TEXTILE COMPOSITES

5-32

Table 5.8 Comparison of homogenized, 3D elastic constants for a plain weave
fabric, using various codes

Code Notes E1 E3 ν12 ν13
G12 G13

(GPa) (GPa) (GPa) (GPa)

µTex-10 1 58.1 11.0 0.097 0.363 4.83 4.39

µTex-20 2 63.4 11.1 0.027 0.402 4.24 3.79

TEXCAD 64.4 11.5 0.027 0.395 4.87 5.63
PW 3 58.0 ~ 0.041 ~ 4.66 ~
CLT 4 68.9 11.9 0.038 0.307 4.89 4.46
FEM [5.28] 63.8 11.4 0.031 0.329 4.82 4.97
Experiment [5.28] 61.9 ~ 0.110 ~ ~ ~

Table 5.9 Comparison of homogenized, 3D thermal expansion coefficients for a
plain weave fabric, using various codes

Code Notes αxx αzz

 (10-6 K-1) (10-6 K-1)

µTex-10 1 1.47 22.7

µTex-20 2 1.36 21.5

TEXCAD 1.33 20.7
PW  4 1.81 ~
CLT 1.55 21.6

Table 5.10 Comparison of plate stiffnesses for a plain woven composite, using
various codes

Code Notes A11 A12 A66 D11 D12 D66
(MN/m) (MN/m) (MN/m) (N/m) (N/m) (N/m)

µTex-10 1 12.7 3.32 1.24 0.0432 0.00041 0.00603

µTex-20 2 12.1 5.74 1.08 0.0423 0.00268 0.00422

TEXCAD 17.0 0.963 1.25 0.0926 0.00525 0.00679
PW 14.9 0.607 1.19 0.0782 0.00325 0.00616
CLT 5 17.3 0.643 1.25 0.1092 0.00377 0.00767
Experiment 6 16.0

Notes for Tables 5.8 - 5.10:
1.  10 x 10 x 7 mesh
2.  20 x 20 x 20 mesh
3.  PW is a plate (plane stress) code and cannot compute z-direction properties
4.  Summed stiffnesses of flat layers representing warp and weft fibers, with a resin layer included to

obtain the correct volume fraction. Resin layer thickness equals 0.60/0.75 x (total thickness).
5.  Stacking sequence of [0/0 r/90]T assumed, where 0r is the resin layer. B matrix ignored, which is

equivalent to averaging with reversed stacking sequence.

6.  Implied from the quoted experimental results: A11=E1/(1-ν12
2
) h
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5.4 Code Calibration

The macroscopic elastic constants of any continuous fiber polymer composite can

be loosely divided into those that are fiber dominated and those that are matrix

dominated.2 The fiber dominated constants are those for which the associated material

deformation involves axial straining, either in tension or compression, of some group of

fibers. The matrix dominated constants are the rest. In a composite designed for any

application requiring high stiffness, the critical elastic constants should all be fiber

dominated.

5.4.1 Fiber Dominated Elastic Constants

The most important geometrical consideration in predicting fiber dominated

elastic constants is simply the number of fibers per unit volume that point in any given

direction. For example, in estimating the in-plane stiffness of a quasi-laminar textile,

getting the correct fiber count for in-plane directions is paramount. Out-of-plane

components of the fiber orientations, whether they are a necessary consequence of the

architecture or arise as accidental waviness, are secondary. They introduce relatively

small modifications to predicted in-plane elastic constants. If the fiber count is right, then

fiber dominated elastic constants will be predicted to within experimental scatter,

regardless of how well the details of stress partitioning throughout the textile are

computed. A simple scheme such as orientation averaging, i.e. the assumption of isostrain

conditions, will suffice.

While corrections to in-plane elastic constants due to out-of-plane components of

fiber orientation should not be ignored, the level of precision required in specifying the

out-of-plane components is not high. Any error will cause an error in a small contribution

to the overall stiffness. Therefore, there is generally not much difference between the

predictions of models in which the geometry of quasi-laminar textile composites is

treated by different approaches.

                                    
2 The division is clearest if most fibers are straight or almost straight.  Exceptions to this rule obviously
arise.  In a knitted composite, all fibers follow highly curved paths, which nevertheless may contain
significant if short straight and roughly aligned segments.  The straight segments collectively will raise the
modulus in the direction of their alignment an order of magnitude above that of the matrix; yet not so high
(because they are short) that the contribution of the surrounding matrix dominated material is unimportant.
The modulus is neither clearly fiber nor matrix dominated.  But such exceptions arise in composites whose
macroscopic stiffness would not meet the requirements of airframe structures, for this very reason.
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Neither is it especially critical to determine the packing density of fibers within

tows. Composite elastic constants depend only slightly on the volume that is assigned to

tows (the remainder being interstitial resin) provided the overall fiber count is correct.

Recall Section 5.1.3. For carbon tows in well compacted composites with overall fiber

volume fractions of 50-60%, the packing density has consistently fallen in the range 65-

70%. Any value in this range will return consistent results.

5.4.2 Matrix Dominated Elastic Constants

Only a few elastic constants in most textile composites could be regarded as

matrix dominated. They include the through-thickness modulus in 2D and quasi-laminar

3D textiles; and the in-plane shear modulus in a weave consisting of orthogonal warp and

weft yarns. Accurate prescription of fiber orientations and tow irregularities are not

especially important in predicting these constants. They change relatively slowly with

fiber orientation, because the stiffness of a unidirectional composite (i.e. a tow segment)

is very insensitive to the orientation of the load when the load is nearly transverse (e.g.,

[5.2]). The only essential geometrical characteristic is the average fiber volume fraction.

5.4.3 Calibrating the Fiber Volume Fraction

Thus being certain of fiber volume fraction is a critical issue in running predictive

codes. Because there is no single method of describing the geometry of a textile

composite and because reality so often differs from the idealizations of geometrical

models, particular care must be taken. Some of the factors distinguishing real composites

from popular geometrical models include the ability of tows to deform and fill space

more efficiently than possible if they are constrained to have a particular cross-section;

inconsistency in the spacing of tows, especially if a fabric is draped; and unpredictability

in the crimp factor (ratio of arc length to projected length) of tows, especially if they are

woven or braided. Generally, the best guide to fiber volume fraction is an experimental

measurement. Volume fractions predicted a priori from the manufacturer's specifications

for a textile preform are vulnerable to error.

It is therefore necessary to adjust the input for any analytical code to match the

experimentally measured fiber volume fraction. In TEXCAD, fiber volume fraction is an

input quantity. The unit cell geometry is adjusted internally to accommodate the specified

value. CCMTEX  attempts to calculate fiber volume fraction based on process

parameters. This is a useful feature in the early design of a textile, but is not preferred

once the actual material has been made and better information is available. Finite element
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codes such as µTEX and SAWC use an externally generated idealized geometry. This

should be adjusted to the ensure the correct overall fiber volume fraction.

Standard measurements of fiber volume fraction, e.g. by matrix dissolution,

include all fibers without distinguishing their orientation or host tow. This leaves the

problem of apportioning the fibers to the various components of the architecture.

Fortunately, the proportions of fibers in each type of tow (e.g., weaver, stuffer, warp

weaver in an interlock weave; or warp and weft in a 2D weave) can be deduced from the

manufacturer's setup and they may be regarded as unchanged during processing, even if

the overall fiber volume fraction changes. If the predicted proportions are combined with

a measurement of total fiber volume fraction, the textile is well specified for the purpose

of calculating elastic constants.

5.4.4 Calibrating Fiber Waviness

Fiber waviness is difficult to calibrate. Unless it is excessive, in which case

changes should be made to the processing methods, it leads to knockdowns in composite

stiffness that are too modest to be clearly distinguished from other sources of variance.

Direct measurements of waviness require destructive inspection, which is laborious and

expensive.

Nevertheless, waviness will always be present to some degree and its effects

should always be monitored. A viable approach might include stiffness knockdown

estimates based on simple formulae such as Eq. (3.1); combined with occasional

destructive inspection of parts and control of relevant processing parameters, such as yarn

tensioning.
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6 . NONLINEAR STRESS-STRAIN BEHAVIOUR AND STRENGTH

Predicting the response of a textile composite beyond the proportional limit requires
knowledge of how loads are distributed among different tows.  Depending on their
orientation and location, tows will show markedly different degrees of plasticity1 and will
fail at different external loads.  Only some of the elasticity codes described in Section 5
calculate local stresses in the required detail; and of these, only a few have been developed
to deal with evolving, heterogeneous plasticity to peak load or ultimate failure.  Even in
these few, the nonlinear constitutive properties of tows are either assumed ad hoc or built
up from barely adequate experimental measurements.  There is clearly a need for further
model development.

Most of the following discussion and the codes themselves are concerned with
progressive failure in which damage is distributed continuously throughout the composite,
at least on gauge lengths that are larger than the characteristic scale of the textile
architecture, e.g. the unit cell size in a periodic structure or the macroscopic length scale,
λi, of Section 5.1.5.  Uniform damage is a reasonable assumption in predicting unnotched
strength and nonlinearity up to peak load.  However, stress-strain response beyond peak
load and notched strength are dominated by localized damage bands or cohesive zones.
For these phenomena, a different class of model is needed altogether.

6 . 1 Nonlinearity Beyond the Proportional Limit

As discussed in Section 4, nonlinearity prior to peak load in textile composites
arises from matrix failure mechanisms: transverse failure of tows or transverse interply
cracks; plastic straightening of wavy tows loaded in axial tension; and matrix-mediated
axial shear deformation (which may include microcracking or crazing).  A general model of
these phenomena will take the form of a yield locus for the material in a single tow defined
in a triaxial stress space together with some hardening rule.  No detailed constitutive laws
of this kind based on experimental data have yet been presented.  Progress to date relies
instead on simple assumptions.  In some work, the validity of the assumptions has been
checked by comparing output of the textile model with limited macroscopic property data;
but whether the assumed constitutive laws are uniquely defined by those data and whether
they will hold up for multi-axial loading or parts of complex geometry remain unanswered
questions.

6 . 1 . 1 Tensile (Transverse) Matrix Cracking

Matrix cracking among tows that are loaded in transverse tension is similar to
cracking seen in tape laminates in plies oriented normal to the load axis.  However, the
factors determining crack spacing and crack saturation are different.  In the tape laminate,
crack spacing is determined by the mechanics of stress relief around each crack.  Saturation
is achieved when the zones of stress relief around successive cracks overlap.  Further

                                                
1 Here plasticity is used in the general sense of irreversible damage, from which a material cannot recover to
its original state upon unloading.  Thus plasticity is distinct from nonlinear elasticity.  In a polymer
composite, plasticity does not arise from the motion of dislocations, as in a metal, because the polymer is
generally noncrystalline.  It comes instead from microcracking, especially arrays of cracks such as those
depicted in Fig. 4-1, coupled with irreversible matrix damage (crazing and tearing of polymer chains) and
possibly friction.
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increases in the applied load cannot then increase the average axial stress in the cracked ply.
In textile composites, transverse matrix cracks form most easily between tows aligned
normal to the load.  Indeed, in many textiles, cracks may not form within the tows at all.
In such cases, the crack spacing is simply determined by the tow diameter.  Transverse
cracking of this kind is seen between tows in 2D weaves and 3D interlock weaves under in-
plane tension [6.1].  A credible approach to predicting the associated softening of a cracked
layer of transversely oriented tows would be to embed the same mechanics used in
analyzing matrix cracking in 0/90° laminates [6.2] in a quasi-laminar model of the textile.
However, none of the codes available to date performs this operation.

In other textiles, transverse matrix cracks do form within tows.  The effect of such
internal crack systems has been modeled with some success by simply knocking down the
transverse stiffness of the affected tows to some arbitrary, small value [6.3].

6 . 1 . 2 Shear Deformation

Figure 4-2(a) showed shear deformation data acquired in a test of a ±45° tape
laminate in uniaxial tension.  Such approximately elastic/perfectly-plastic behaviour is
common to most polymer composites loaded in shear, including textile composites (Fig. 4-
2(b)).  The ±45° laminated test specimens yield reasonable constitutive laws for tow
segments in textile composites made of the same fibers and matrix and with the same fiber
volume fraction.  For modeling textiles, the data could be fitted with a simple
elastic/perfectly plastic law with flow stress τc (Fig. 4-2(a));2 or a numerical, parametric
curve such as a Ramberg-Osgood strain hardening law [6.4],

γ = τ/Gxy [1 + 3(τ/τc)n-1/7] (6.1)

where τ is the axial shear stress, γ the axial shear strain, Gxy the shear modulus, and n is a
hardening exponent.

6 . 1 . 3 Plastic Tow Straightening

Waviness in nominally straight tows allows nonlinear axial strain when the tow
straightens (Section 4.3).  Constitutive laws for axial plasticity due to tow straightening can
be based on the constitutive law for axial shear discussed above.  The resolved axial shear
stress, τs, due to the tensile stress, σx, in the nominal tow direction in the presence of

misalignment, φ, is approximately

τs = σx φ (6.2)

where φ is the local misalignment angle.  When τs exceeds the flow stress, τc, the tow
segment will begin to straighten.  The evolution of the straightening depends on the
distribution of φ.  An analytic constitutive law is readily developed for the common case

that φ is normally distributed.  The law is completed by specification of the width, σφ, of
the distribution, which usually requires an experiment.

                                                
2 “Shear flow” here refers to the regime of nearly perfectly-plastic shear deformation visible over large
strains in Fig. 4-2.  The deformation is mediated by microcracking, crazing, and frictional slip, as already
noted.
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Tow straightening can arise in nominally straight tows with irregularity; or in tows
possessing regular oscillations, such as in plain weaves. If wavy but nominally straight
tows are represented as ideally straight in a code (the most common case - see Section 5.2),
tow straightening should be considered independently of axial shear due to far-field shear
loading.  It must be introduced as a modification of the response of the tow to axial tension,
in which the tow stiffens with increasing tensile strain. Similarly, if the geometry of regular
oscillations is not modeled explicitly (as in the code WEAVE), but introduced in the elastic
regime via in-plane stiffness knockdowns, then tow straightening will again be represented
as a modification of the axial properties of the tow.  If, on the other hand, the paths of
regularly oscillating tows are represented more or less literally in a code, the axial shear
strains associated with tow straightening will usually be computed as part of the general
analysis of internal stresses and strains.  The constitutive laws assigned to the tows need
not then be modified.

Because a tow segment stiffens when it straightens, tow straightening under tension
will progressively encompass all segments of a tow.  Under axial compression, in contrast,
a wavy tow becomes increasingly wavy and softens. Softening will occur first in the most
misaligned segments, increasing the misalignment and thus the preference for softening in
the same locations.  This mechanism of localization will lead to kink band formation.

6 . 2 Tessellation Models

To predict nonlinear composite behaviour and strength, the partitioning of stress
amongst tow segments with different orientations must be calculated and local stresses
compared with the known yield and failure characteristics of tows under general states of
stress.  As recounted in Section 5, macroscopic elastic properties are often approached by
modeling a textile composite as a tessellation of grains within each of which the fiber
orientation is approximately constant.  (The grains may be finite or infinite.  For example,
each ply in a tape laminate or infinitely long, nominally straight stuffers in a 3D interlock
weave would be described in a tessellation model as single grains.)  The elastic constants of
a unidirectional composite are assigned to each grain.  Using the same tessellation model in
predicting nonlinearity and strength, the nonlinear constitutive laws and failure criteria
appropriate to each grain might also be guessed to be those of a unidirectional composite,
modified to account for the higher degree of irregularity endemic to textiles.  The status of
our knowledge of the details of these constitutive laws and failure criteria will be
summarized below.

In most of the models of nonlinearity in the codes collected here, matrix plasticity or
damage is assumed to be uniform within any tow or set of equivalent tow segments, i.e.,
within equivalent grains.  This reduces the number of degrees of freedom to a manageable
level.  If isostress or isostrain conditions are also assumed (more reasonably the latter when
predicting nonlinearity in fiber-dominated strain components), the resulting models are
straightforward generalizations of the orientation averaging models used with frequent in
success in the elastic regime, with incremental stiffnesses replacing constant stiffnesses.

Assuming isostrain conditions implies displacement continuity across grain
boundaries.  Even when matrix cracks appear between neighbouring tows, friction inhibits
sliding, especially in 3D architectures, where tow separation is opposed by their
interlacing.  Neglecting sliding between tows, i.e. assuming coherent tow interfaces,
probably has a negligible effect on macroscopic nonlinearity, at least until high strains
(typically > 0.05) bring severe damage.
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6 . 3 Ultimate Strength

In many aerospace applications, loads are predominantly uniaxial and will be
oriented with one set of tows in the textile.  In such cases, ultimate strength will be
dominated by those primary load bearing tows.  The first task in predicting strength is to
compute the stress partition between these tows and all other tows in the textile.  But the
contribution of off-axis fibers to composite stiffness is lower in proportion to the degree of
anisotropy of individual tows; and the axial modulus of a tow is typically twenty or more
times its transverse modulus, depending on the fiber material and the fiber volume fraction.  
Therefore, when loads are uniaxial and aligned, useful estimates of the stress partition can
be based on very simple models of the stress distribution; and estimates of strength follow
by imposing failure criteria for locally aligned loads, which are reasonably well
understood.

Ultimate strength predictions under off-axis and biaxial loads are also important in
design.  Since tow segments of all orientations may contribute significantly under general
loads, the problem of computing stress partitions must usually be solved in more detail.
The failure criteria for individual tow segments must also be those for multiaxial loads.
Once again, experience with unidirectional composites is probably a reasonable guide,
although verification for textiles remains a topic for research.  Given the state of
uncertainty, computational codes that predict strength under multiaxial loads can be relied
on at most for identifying trends.  Absolute values of strength will have to be measured.

6 . 3 . 1 Ultimate Tensile Strength

For aligned loads, consistent but high estimates of ultimate tensile strength have
been found for 2D braids and 3D weaves, among other materials, by comparing the local
axial stress predicted for the aligned tows with the measured strengths of either bare fiber
tows or unidirectional composites [6.1,6.5-6.7].  The local stresses are calculated for given
applied stresses by models equivalent to orientation averaging (Section 5).  The off-axis
tows may be assumed undamaged to peak load (elastic) or to be progressively damaged,
e.g. elastic/perfectly plastic, with relatively little effect on the outcome, because they carry a
small proportion of the total load.

Table 6.1 compares predictions of ultimate strength for some triaxial
glass/urethane braids and 3D interlock carbon/epoxy weaves with measured strengths.  The
predictions are based on the assumption that the local axial stress in the aligned tows
reaches the strength of an equivalent unidirectional composite (in the case of the AS4/1895
composites) or the strength quoted by the manufacturer for the bare fibers reduced by the
fiber volume fraction (glass/urethane composites).  They exceed the measured ultimate
strengths for each textile composite by 20-50%.  The difference is greater when the bare
fiber strength is used in the predictions.  This is to be expected, since the presence of a
compliant matrix will generally weaken a bundle of fibers by concentrating stresses around
the sites of first fiber failures.3  Since the bare fiber bundle strength is also strongly gauge
                                                
3 The ratio of the dry fiber bundle strength and the strength of a unidirectional composite depends strongly
on the gauge length used for testing the former.  However, for typical gauge lengths of a few centimeters,
the stress concentrating effect of a compliant matrix is probably the dominant factor.  It leads to stress
concentrations of approx. 15% in fibers neighbouring a fiber break in a typical polymer composite
[6.8,6.9].  The dry fiber bundle strength is then often greater than the strength of the unidirectional
composite.  In contrast, in a composite with a stiff matrix, such as a ceramic matrix composite, the stress
concentration in fibers neighbouring a broken fiber is negligible.  Furthermore, the ability of the matrix to
restore the axial load in a broken fiber over a relatively short distance via interfacial friction introduces a
material gauge length, much shorter than the specimen length, which becomes the relevant length for
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length dependent, the more consistent estimates of textile strength will be those based on
the measured strengths of equivalent unidirectional composites.  From this datum, strength
knockdowns of 20-30% seem typical.

Various reasons for the lower measured strengths were summarized in Section 4.3.
The most important is probably damage suffered by the fibers in tows during the textile
process.  Irregularity in geometry, including waviness and pinching in aligned tows, has a
relatively small influence on tensile strength [6.11].  Correlation between tensile strength
and degree of waviness has been claimed in one report [6.12], but based on rather few,
noisy data points; while it did not appear elsewhere [6.7].

Table 6.1.  Predicted and measured ultimate strengths o f
some triaxial glass/urethane braids and 3D carbon/epoxy
interlock weaves (from [6.1,6.7]; see these references for
nomenclature and detailed descriptions of composites).

Composite Measured Predicted Ratio
(MPa) (MPa)

AS4/1895 3D interlock weaves:
h-L-1 980 1350 0.73
h-L-2 935 1200 0.78
h-T-1 840 1300 0.65
h-T-2 895 1250 0.72
h-O-1 1070 1360 0.79
h-O-2 850 1220 0.70

triaxial glass/urethane braids:
45-1-G 200 350 0.57
45-1-A 270 400 0.68
40-1-G 180 300 0.54
35-2-G 155 220 0.70
55-0.5-G 280 470 0.60
45-0.5-G 275 360 0.76
30-0.5-G 290 400 0.73

6 . 3 . 2 Compressive Strength

For aligned loads, compressive failure is either by delamination and Euler buckling
of delaminated plies, especially in 2D textile composites, or, if delamination is suppressed,
by kink band formation (Section 4.2).  Predicting strength for delaminating composites is
essentially the same problem for 2D textiles as it is for conventional tape laminates.  It is
therefore not an appropriate topic for this handbook.  Delamination models and codes for
tape laminates abound in the literature.  They can be employed just as well for 2D textile
composites, with the stiffness of individual plies calculated by the models described in
Section 5.2 for quasi-laminar textiles.

Delamination and Euler buckling of delaminated layers can also be the mode of
failure of quasilaminar 3D textiles in compression, especially following impact damage.
However, if adequate yet modest volume fractions of through-thickness reinforcement are
                                                                                                                                                
analyzing the statistics of flaw distributions [6.10].  Since the strength of a material with a Weibull
distribution of flaws rises as the gauge length shortens, a stiff matrix can raise the composite strength
above that of the dry fiber bundle.
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incorporated, laminate buckling is suppressed, regardless of the size of the delamination
(Section 4). Failure then reverts to kink band formation in in-plane tows or plies, which is
the desired mechanism of failure in a well designed 3D textile composite.  Therefore, this
section focuses on predicting failure by kinking.

According to Argon’s Law, Eq. (4.1), estimates of compressive strength for
aligned loads can again be based on simple calculations of the local axial stress in aligned
tows for a given applied load, along with independent measurements of the critical shear
stress, τc, for axial shear flow within a tow and the distribution of the misalignment angle,

φ.  Measuring τc is relatively straightforward [6.1], but measuring the distribution of φ is
laborious and its prediction from models of the textile process is at present and probably
always will be impossible.

Whereas misalignment angles in tape laminates are typically 3° or less, they are
usually larger and subject to wider variations in textile composites.  Some data for 3D
interlock weaves are shown in Fig. 6-1.  Two groups of composites are represented, one
characterized by higher fiber volume fraction and higher degree of geometrical regularity,
which reflect superior textile processing methods [6.1].  In these better processed
composites, the maximum misalignment angles measured by destructive methods within
typical specimen gauge sections were approximately 3-5°.  In the inferior composites, they

were approximately 8-11°.  The measured compressive strengths were in inverse
proportion to the misalignment angles.  Thus the critical local axial stress for kink band
formation could be predicted remarkably well by inserting the measured misalignment
angles and the measured value of τc into Eq. (4.1).  Good estimates of composite strength
follow at once from the relation between the local and applied loads, which can be found
accurately enough by orientation averaging (isostrain) models.
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Figure 6-1.  Measured compressive strengths of 3D interlock weaves compared with
predictions based on measurements of misalignment angles and the critical shear flow
stress (from [6.1] and [6.13]).

Knowledge of the distribution of misalignment angles and their control during
processing are obviously critical to compressive strength.  Unfortunately, there are at
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present no certified methods of monitoring misalignments in textile composites.  Design
limits for compression currently depend on being able to place upper bounds on
misalignment angles if certain processing conditions are met, such as control of tow tension
during manufacture of a fiber preform.  This is clearly an area for further work in
developing manufacturing technologies.

6 . 3 . 3 Shear Strength

Just as for tape laminates, the in-plane shear strength of a quasi-isotropic textile
composite is dominated by the strength of tows (or plies) deforming in tension or
compression.  To estimate shear strength is then to estimate the critical axial stress in tows
for rupture in tension or kink band formation in compression.4

In contrast, shear strength in composites reinforced in two orthogonal directions
only is determined by the resistance of the matrix within tows or plies to axial shear.  For
example, a tensile test of a ±45° laminate, such as that reported in Fig. 4-2(a), creates
conditions of pure deviatoric shear within plies. Figure 4-2(a) implies an ultimate shear
strength of 75 MPa for the typical aerospace resin, Shell 1895.  Compact shear tests have
also been reported for 3D interlock weave composites containing the same resin [6.15].
The shear response of these composites is dominated by alternating layers of orthogonal
stuffers and fillers. The ultimate shear strength in this test configuration was found to be
65-80 MPa for a range of different interlock architectures and filler and stuffer filament
counts.  The coincidence of these strengths with the shear flow stress of Fig. 4-2(a)
suggests that shear failure also occurs in the interlock weaves of [6.15] when the axial
shear in stuffers and fillers reaches the critical value, τc.

Thus shear strength can be approached via the critical shear flow stress, τc.
Micromechanical arguments suggest that this strength should be influenced negligibly by
the fiber stiffness, provided the fibers are much stiffer than the matrix [6.16,6.17].  It is
also unlikely to vary much with the fiber volume fraction for the ranges of fiber packing
expected in well consolidated composites.

6 . 3 . 4 Multi-Axial Loads

Figure 6-2 shows feasible failure loci for individual tows in a textile composite
under multi-axial loads.  Since these are the failure criteria that would be applied to
individual tow segments when the textile composite is represented as a tessellation of
unidirectional grains, the failure boundaries are similar to those that might be expected in a
unidirectional polymer composite.  

Figure 6-2(a) shows the failure locus for combined aligned loads and axial shear.
The local fiber direction is the x-axis.  Combined axial compression and shear lead to kink
band formation at a reduced critical axial stress given approximately by [6.18]

                                                
4 Experimental evidence confirms that shear strength rises with the volume fraction, Vθ, of off-axis fibers
for small to moderate values of Vθ.  However, when Vθ rises above approximately 45%, the strength
saturates and no longer increases [6.14]. This saturation has been attributed tentatively to easier kink band
formation in the off-axis plies when they are dominant; they are conjectured to kink more easily as plies of
other orientation become thinner and impose less constraint.  However, most aerospace applications require
material stiffness under load states that are predominantly compressive or tensile, with modest shear loads.
Most fibers must then be aligned with the primary load axis and the saturation of shear strength at large Vθ

will not be relevant.
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τk = (τc − τxy)/φ (6.3)

which leads to the sloping boundaries for negative axial stress in Fig. 6-2(a).  The
maximum sustainable axial shear stress, τxy, is τc, which imposes the horizontal boundary
in Fig. 6-2(a).  Fiber rupture under aligned tension is approximately unaffected by
simultaneous shear, so that the right hand boundary in Fig. 6-2(a) is vertical.

Figure 6-2(b) shows the situation for combined axial shear and transverse tension
or compression.  Once again, the failure locus is bounded on the shear axis by τc, the axial
shear flow stress.  The right hand boundary is limited by matrix cracking under transverse
tension, imposing a critical stress σy

(c) in the absence of axial shear. Transverse

compression will probably lead to transverse shear failure in tows at some stress σts,
although direct observation of the failure mechanism has not been reported.  The failure
locus in the space (σy,σxy) has been completed as an ellipse, following the quadratic
strength rules popularized for unidirectional composites [6.19].  Fleck and Jelf defined an
effective stress consisting of a quadratic combination of σxy and σy in developing a model
of plasticity in polymer composites under combined transverse tension and axial shear
[6.20].  They also suggested an elliptical failure locus, reasoning that failure under such
biaxial loading is a plastic instability (kinking), but their experimental confirmation is
sparse and indecisive.

Swanson et al. propose the simple failure criterion in 2D braids under multiaxial
loads that the axial strain in any tow system should exceed a critical value.  This leads to
failure loci that are parallelograms, with encouraging but imperfect correspondence with
experiments [6.21].  Their proposal, which is similar to a first ply failure condition, is
reasonable as long as one set of approximately straight tows with significant volume
fraction is aligned with the major stress axis.  In aerospace applications, where structures
must be strong and stiff, this situation will usually be the preferred design.   However,
their approach will be of dubious value for any textile architecture that admits failure by
matrix-mediated shear.

6 . 4 Codes for Predicting Nonlinear Stress-Strain Behaviour and Ultimate
Strength

The capabilities of the codes collected in the handbook for predicting nonlinear
stress-strain behaviour and ultimate strength are summarized in Table 6.2.

6 . 4 . 1 Nonlinearity

Different approaches have been used for modeling nonlinearity due to plastic shear
and tensile microcracking.   Nonlinearity due to shear plasticity is generally accompanied
by material hardening (e.g. Fig. 4-2), which is modeled by replacing the shear terms of the
local stiffness matrix with a strain-dependent function that approximates the experimentally
measured response.  Computation proceeds incrementally, following some algorithm to
insure convergence to a self-consistent, equilibrium state.  TEXCAD implements this
approach.  Nonlinearity due to tensile microcracking is usually handled by monitoring each
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tow segment or grain for matrix failure.  When it occurs, selected terms of the local
stiffness matrix are reduced or set to zero.   The code must then iterate to re-establish
equilibrium before incrementing the load.  TEXCAD and SAWC employ versions of this
approach.  One limitation of these codes is that the user has no control over the stiffness
discount rule or the criteria for onset of nonlinearity.

Figure 6-2.  Failure loci for individual tows or plies in terms of the local stress state.
(a) Combined aligned and axial shear loads.  (b) Combined transverse and axial shear
loads.  The x-axis is aligned with local fiber direction.  The axes are not to scale.

6 . 4 . 2 Ultimate strength

In most of the codes, ultimate tensile strength is estimated by simply comparing
maximum local stresses with tow or fiber strength data, using calculations in which the
textile is assumed to remain wholly elastic.  This is analogous to the first-ply failure method
of determining the strength of laminates.  In most of the codes, no provision is made for
entering the tow or fiber strength data (Table 6.2); but several codes provide values for
internal stresses as output.  These internal stresses could be compared with empirical failure
loci similar to Fig. 6-2 to predict strength.  TEXCAD prints tables of internal stresses
determined using the isostrain assumption.  The finite element codes  µTex-10, µTex-
20, SAWC, and BINMOD all provide internal stresses as output, typically in the material
axes (orientated with the local fiber direction).

CCM-TEX makes the coarsest of all estimates of composite strength, simply
summing the strengths of the tows weighted by their areas.  This can nevertheless be a
useful estimate of tensile strength for a textile containing a dominant set of nominally
straight tows under aligned uniaxial loads, e.g. the 3D interlock weaves studied in
[6.1,6.5.6.6]; or the triaxial braids studied in [6.7], when loads are in the axial tow
direction.  It is not useful for compressive strength, since the strength of the tow is
undefined without reference to misalignment angle distributions.
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Table 6.2.  Code capabilities for predicting nonlinear
behaviour  and strength.

Code Textile Forms Local Stress Nonlinearity Strength
PW
SAT5
SAT8

plain weaves
5 harness satin
8 harness satin

CCM-TEX 3-D Weave
2-step braids
4-step braids

yes

µTex-10
µTex-20

general
user provides

yes

SAWC plain weave
(FE code general)

yes stiffness
discount

yes

TEXCAD 2D weaves
2D braids
user defined

yes shear
hardening,
stiffness
discount

yes

WEAVE 3D interlock weaves

BINMOD 3D interlock weaves yes not
directly

6 . 5 Notched Strength

Notch sensitivity in textile composites is limited by two mechanisms: splitting
parallel to the load axis, which isolates the notched material from adjacent material; and the
formation of blunting damage bands (Section 4).  Models for splitting have been developed
extensively to deal with a similar effect in continuous fiber ceramic matrix composites and
layered systems, including tape laminates [6.22].  Nonlinear damage bands can be modeled
as cohesive zones or bridged cracks, much like craze zones in polymers or damage zones in
concrete [6.23-6.27].  Unfortunately, very few models have been formulated for dealing
with either splitting or cohesive zones in textile composites, where they are generally far
more important than in any other class of material.  In fact, their unusual characteristics in
textile composites are the source of the extraordinary notch insensitivity these materials
possess (Section 4).

The crucial material property in a cohesive zone is the relation, p(u), between the
tractions, p, acting across the damage band and the effective opening displacement, 2u.
One would expect that the characteristics of p(u) that are essential to notch sensitivity
should be contained in no more than two parameters, for example, the critical stress, pc, for
the onset of damage and either the work of fracture, Wf = 2∫pdu, or the critical opening
displacement, uc, beyond which p vanishes.  The length of the cohesive zone is then
characterized approximately by the length scale, lch, of Equation (3.2).  Notch sensitivity is
generally restricted to holes or notches that are larger than lch.  The parameters (pc, Wf) or
(pc, uc) should be evaluated by a set of standard tests, for example of notched strength.
Strength in parts of general shape should then be predicted by application of the calibrated
cohesive zone model.  In the absence of developed codes, notched strength in textile
composites can receive no further treatment in this edition of the handbook.  This problem
requires further work.
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7 . FATIGUE LIFE

None of the codes reported in this handbook provides fatigue life predictions.

Nevertheless, some of the principles by which such a prediction could be made have been

discussed in the literature; and the output of codes that calculate the distribution of stresses

in different tows could be combined with test data to make predictions at least for the flat

panel composites that are the focus of this first edition.

7 . 1 Kink Formation in Compression-Compression Fatigue

As discussed in Section 4, in a well-designed 3D composite delamination and Euler

buckling are suppressed in compression and failure under aligned loads occurs by kink

band formation. This is true for both monotonic and cyclic loads. The kink bands form at

locations where tows (or plies) are most severely misaligned because the topology of the

textile architecture necessitates misalignment or some irregularity has been introduced

during manufacture. Damage apparently accumulates through nonlinear processes inside

the tow in proportion to the magnitude of the axial shear stress in the misaligned segment.

It appears to be weakly correlated with features of the reinforcement architecture other than

the local misalignment angle.

Two mechanisms have been proposed by which damage may accumulate [7.1,7.2].

Cyclic axial shear may exhibit ratchetting, causing the tow to rotate to greater misalignment

angles; or accumulating plastic damage in the resin within tows may lower the effective

flow stress, τc. In 3D interlock weaves, the absence of observed rotations before kinking

supports the latter mechanism, but this remains a topic of research. In either case, the

elapsed cycles to kink band formation can be modeled by steps analogous to those

commonly used for low cycle fatigue. For example, a law for the rate of accumulation of

damage consisting of changes in τc in some misaligned tow segment can be written [7.2]

( )d

dN
Ac

s

mτ
σ φ= − ∆ (7.1)

for some material constants A and m, with σs the local axial stress. For a fixed local cyclic

stress amplitude, ∆σs, this leads to an expression for the total cycles, Nk, to kink band

formation:
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    Load        Control

In applications where the applied load rather than the applied strain is constrained,

fatigue failure follows the formation of just a few kink bands. Test specimens of 3D

interlock weaves containing 200-300 mm3 of material fail when two or three kink bands

have formed in separate aligned tows [7.2]. In stitched laminates, the first kink band to

form is usually catastrophic. The fatigue life of load controlled textile structures that fail by

kinking can accordingly be estimated by substituting a value for the misalignment angle, φ,

in Eq. (7.2) that is representative of the extremes of the distribution of misalignment

angles.

Equation (7.2) leads to fatigue load-life curves that are not far from straight on log-

log plots, with slope ≈ m. Typical values of m for carbon/epoxy systems are 30 [7.2]; for

glass/urethane systems, 15 [7.3]. Comparison of predicted and measured load-life curves

in carbon/epoxy 3D interlock weaves and glass/urethane triaxial braids supports the

adequacy of the power law of Eq. (7.1) and the low cycle fatigue approach.

If the material constants A , φ, and m are known, fatigue life thus follows from

prediction of the local axial stress, σs. As long as the applied loads are sufficiently small

that widespread plasticity is not induced, which will be a design condition in an airframe,

the required prediction of local stresses can be made by one of the computer codes

presented in Section 5.

In practice, neither the constants A and m nor the distribution of misalignment

angles will be known a priori. They will be evaluated for a particular material by calibrating

tests. The life prediction method outlined above would then be used to assess the effects of

variations in load or structural geometry, provided the latter are confined to operations such

as cutting out holes that would not affect the distribution of misalignments.

    Strain        Control   

In applications where strain rather than load is constrained, structural failure in 3D

textile composites such as interlock weaves may not follow the formation of the first few

kink bands. Under strain control, these materials exhibit exceptional damage tolerance in

cyclic as well as monotonic loading. Life predictions based on substituting values of the

distribution of misalignment angles into Eq. (7.2) would then be unduly conservative.

Ultimate failure could be the combined effect of many separate kink bands. Better

predictions should account for the gradual evolution of the population of kink bands in
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individual tows, calculating the effects of load redistribution following each new kink

event. The code BINMOD is currently being enhanced to perform such calculations.

7 . 2 Tension-Tension Fatigue and Load Ratio Effects

Computational models relating fatigue life to textile architecture have not yet been

developed other than for compression-compression loading. Limited data suggest that

damage rates during a tensile cycle are much lower than during compression cycles (e.g.,

[7.4]).  The most dangerous mode of damage is presumably shear plasticity leading to

kinking, which is a compression failure.  Tensile failure requires fiber rupture, which is

brought about relatively slowly by fatigue.

Load ratio effects on the fatigue life of textiles remain a subject for research.

7 . 3 Delamination Crack Growth in Quasilaminar Textile Composites

The initiation of delamination fatigue cracks in a 3D quasilaminar composite, such

as a stitched laminate, will be similar to initiation in a conventional tape laminate. Initiation

sites will include delaminations caused by impact and points of stress singularity where

anisotropic plies meet a free edge. However, propagation following initiation will be very

different, with through-thickness reinforcement playing a strong and crucial role.

Delamination cracks may then propagate with various mode mixtures, from pure

Mode I under out-of-plane loads in certain symmetric specimens or parts to pure Mode II

under bending loads. Through-thickness reinforcement will supply bridging tractions

across the delamination crack, shielding the crack tip from the applied load. The mechanics

of bridged delamination cracks in polymer composites have been extensively studied in

recent years, especially in reference to stitched laminates [7.5-7.8]. If the bridging

reinforcement (stitching) remains intact, a steady state configuration will be reached when

the crack is sufficiently long in which the net crack tip stress intensity factor is independent

of the crack length (e.g., [7.9,7.10]). For cyclic loading, application of the J integral yields

an analytical relationship between the applied stress range, ∆σa, and the range of the net tip

crack intensity factor, ∆Ktip. For example, for a delamination crack growing in the curved

stitched laminate shown in Fig. 4-8, where the bridging tractions follow a linear law, one

has [7.7]

∆Ktip = [E´h/FsEs]1/2 ∆σr, . (7.3)
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where ∆σr = η∆σa is the cyclic amplitude of the through-thickness stress corresponding to

∆σa and fs and Es are the spatially averaged volume fraction and axial modulus of the

stitching fibers. Since ∆Κtip is independent of crack length, the delamination crack growth

rate should take a constant value, vss, in this limit. Furthermore, provided there is no

delamination notch or region of failed stitches, vss will be an upper bound to the growth rate

for all crack lengths. Thus Eq. (7.3) provides the basis for simple, rigorous bounding

estimates to fatigue life. Similar relations can be demonstrated for Mode II and mixed mode

fatigue crack growth.

A fatigue life strategy based on Eq. (7.3) is currently being developed.
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8 . SUMMARY OF AVAILABLE CODES

Many codes are available for computing the properties of textile composites,

especially their macroscopic stiffness, their strength, and occasionally aspects of their

damage tolerance.  The following brief descriptions summarize the capabilities of the codes

that are documented in this handbook.  The information given here is intended to introduce

the reader quickly to each code’s capabilities, the types of textiles it analyzes, the method of

analysis, and the range of output produced.  More complete details will be found in the

user’s guide in one of the handbook’s appendices or in the cited references.

Even where a user’s guide has been provided, it will often be found not to explain

all theoretical aspects of the analysis.  It is highly recommended that the listed references

also be read before using any code.  In some instances, the required input will not be clear

unless the reference material is used.

Not all references to relevant papers by the authors are listed in this section.  They

may be found either in the user’s guide or in the papers that have been cited.
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8 . 1 µTex-10

    Authors   : Ramesh V. Marrey and Bhavani V. Sankar

    References      :   

B.V. Sankar and R.V. Marrey, “A Unit-Cell Model of Textile Composite Beams

for Predicting Stiffness Properties,” Composites Science and Technology, 1993,

49, pp. 61-69.

B.V. Sankar and R.V. Marrey, “Micromechanical Models for Textile Structural

Composites,” Proceedings of 13th Army Symposium on Solid Mechanics, 1993,

pp. 189-200.

R.V. Marrey and B.V. Sankar, “Evaluation of Finite Element Micromechanical

Analysis Methods for Textile Composites,” Proceedings of the 1994 ASME Winter

Annual Meeting, 94-WA/AERO-1, Nov. 6-11, 1994.

     User         Manual      :   

User Manual for µTex-10 and µTex-20. Includes well documented description

of input and output; instructions for compiling on different computers; limited

discussion of theory.

    Format:

FORTRAN code which can be recompiled for the target machine. A parameter file

is provided for changing the maximum problem size.

     Geometric         Model:

The user must provide a series of points describing the locus of the centre of each

yarn. An additional set of points must be provided to give the cross-section of each

yarn in terms of an n-sided polygon. The yarn path is assumed to lie in a single

plane, which can be rotated to an arbitrary orientation. Multiple yarn paths can be

defined to generate various textile forms. Fiber volume fraction is computed from

the given geometry.
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    Stiffness         Model:

Finite element analysis is used to determine a general displacement field. Periodic or

cyclic-symmetry boundary conditions are applied to the edges of the unit cell. The

finite element code is integral to the program. The user can select the degree of

mesh refinement (number of elements on an edge). Heterogeneous elements are

used, in which the material (yarn or matrix) may be different at each integration

point. The user may select a 3D solution or a plate solution. In the plate solution, A,

B, and D matrices are computed using traction free surfaces to represent the plane-

stress condition.  Average stiffness is computed using both volume averaged

stresses and the summation of edge forces.

    Strength         Model:

No strength prediction is given, but stress and strain distributions from the linear

analysis are available. Stresses are computed for unit applied strains (6

components).

    Data        Required:

Yarn and matrix linear elastic stiffness. Different yarns may have different

properties. Points describing yarn paths and cross-sections must be generated

external to the program.

    Output:

6x6 average stiffness matrix, A, B, and D matrices (plate option), thermal

expansion coefficients, and yarn volume fractions. Point stresses available for unit

strains. Finite-element nodal coordinates and connectivity arrays are also given.

    Experimental        Validation       :   

None offered.

    Comments:

- Since the problem is solved by finite elements, no assumptions are made

regarding the internal displacement field. Point stresses are available. Unlike

isostrain models, the strains corresponding to these stresses may vary within a

constituent.
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- Convergence of stresses is slow as the number of elements is increased when

heterogeneous elements are used.

- Some inconvenience results from the code needing point-by-point yarn path and

cross-section data as input. As a practical matter, this is preferably obtained from

another code or solid modeler.

- The assumptions that cross-sections are constant and yarn paths lie in a single

plane prevent the code from being used for some textile forms, such as 3D braids.

- The code is computationally intensive. If computational speed was important, the

code would at least be useful for generating reference solutions for comparison to

faster, simpler approaches.
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8 . 2 µTex-20

    Authors   : Ramesh V. Marrey and Bhavani V. Sankar

    References:

B.V. Sankarand R.V. Marrey, “Micromechanical Models for Textile Composites,”

to be published in the Proceedings of the Mechanics of Textile Composites

Conference, Dec. 6-8, 1994, Hampton Va.

     User         Manual      :   

User Manual for µTex-10 and µTex-20. Includes well documented description of

input and output; instructions for compiling on different computers; limited

discussion of theory.

    Format:

FORTRAN code which can be recompiled for various target machines. A parameter

file is provided for changing the maximum problem size.

     Geometric         Model:

User must provide a series of points describing the locus of the center of each yarn.

An additional set of points must be provided to define the cross-section of each yarn

in terms of an n-sided polygon. The yarn path is assumed to lie in a single plane,

which can be rotated to an arbitrary orientation. Multiple yarn paths can be defined

to generate various textile forms. Fiber volume fraction is computed from the given

geometry.

    Stiffness         Model:

Implements a procedure called the Selective Averaging Method. The unit cell is

discretized into slices normal to the load direction or parallel to the plane of shear.

Slices are further divided into elements that are somewhat smaller than the yarn

diameter. A combination of isostrain and isostress assumptions is used to determine

an average stiffness of the slices and thence of the unit cell. Periodicity is not

enforced.
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    Strength         Model:

None.

    Data        Required:

Yarn and matrix elastic constants. Different yarns may have different properties.

Points describing yarn paths and cross-sections must be generated external to the

program.

    Output:

6x6 average stiffness matrix, A, B, and D matrices (plate option), thermal

expansion coefficients, and yarn volume fractions. Finite-element nodal coordinates

and connectivity arrays are also given.

    Experimental        Validation       :   

None offered.

    Comments:

- Combining isostrain and isostress can be physically justified in a composite.

However, the user should be aware that there is no way to tell if an upper or lower

bound is being obtained.

- Like µTex-10, this code computationally intensive. A solution for µTex-20

using a 20x20x20 mesh required about an hour on an HP 7000 workstation. The

authors report a quarter of this time using a different computer.

- Stress output is not available.

- Given that the effort to set up data files is identical for µTex-10 and µTex -20 ,

the advantages of µTex-20 are not obvious. It may be preferable to obtain an

upper bound solution from µTex-10, which is known to converge with increasing

mesh density, rather than to introduce the uncertainty of the selective averaging

method.
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8 . 3  TEXCAD

    Author:   Rajiv A. Naik

    References:

R.A. Naik, “Analysis of Woven and Braided Fabric Reinforced Composites,”

NASA CR 194930, June 1994

R.A. Naik, “Failure Analysis of Woven and Braided Fabric Reinforced

Composites,” NASA CR 194981, Sept. 1994.

     User         Manual      :   

TEXCAD - Textile Composite Analysis for Design, Version 1.0 User’s Manual,

NASA CR 4639, Dec. 1994. Includes extensive documentation; example problems

for each of the predefined textile forms; and on-line graphics files to aid in

understanding the geometric relations and input parameters.

    Format:

Executables are available for Apple Macintosh and Microsoft Windows.

     Geometric         Model:

TEXCAD uses a series of predefined geometric models for plain weaves, 5-

harness satin weaves, 8-harness satin weaves, 2x2 2D triaxial braids, 1x1 2D

triaxial braids (with two different axial patterns), and 3D, multi-interlock, 5-layer

braids. These models require input of a limited number of parameters, including

yarn spacing, yarn count, filament diameter, and braid angle. From these, the code

generates an idealization using straight and sinusoidal segments that matches the

specified yarn volume fraction. A method is provided for entering customized unit

cells. In addition, conventional laminates and n-directional 3D reinforced materials

may be analyzed (the orthogonal weaves of Section 2).

    Stiffness         Model:
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Macroscopic stiffness is computed by orientation averaging (isostrain conditions).

Each yarn is discretized into slices. Volume averaging is effected by numerical

integration along yarn paths, using the local material properties and spatial

orientation. The code also gives laminated plate stiffness matrices (A, B, and D)

and can stack multiple layers using lamination theory. Nesting patterns are not

accounted for when layers are stacked.

    Strength         Model:

TEXCAD has several nonlinear features that aid in estimating failure.

- The nonlinear shear response of the impregnated yarns and resin is represented by

a power-law relation.

- Bending of undulating yarns is modeled as the response of curved beams on

elastic foundations. Yarn splitting is also accounted for in this model.

- There is a stiffness reduction algorithm that is applied when local damage is

detected.

- First order effects of geometric nonlinearity due to yarn straightening or wrinkling

are included.

- Failure is based on the constituent stress obtained from an isostrain model. Failure

may also occur if the bending stresses in the models of beams on elastic

foundations reach a critical value.

    Data        Required:

Stiffness and strength for yarns and matrix. Geometric parameters depend on the

textile analyzed. They generally include yarn spacing, fiber volume fraction in yarn,

yarn filament count, filament diameter, overall fiber volume fraction, and braid

angle.

    Output:

Three-dimensional stiffness matrix, plate stiffness elements, thermal expansion

coefficients, nonlinear stress-strain response (tabulated), failure sequence.

    Experimental        Validation       :   
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Comparisons to measured elastic properties, nonlinear response, and strength data

are tabulated in the documentation. Parametric trends for strength with respect to

braid angle, crimp angle, yarn spacing, and volume fraction are presented with

available data.

    Comments:

TEXCAD is well documented and easy to use. It is a thorough implementation of

the isostrain approach. It performs failure analysis as well as can be expected in the

context of an isostrain model. The parametric input for geometry is logical, using

data that are typically available when designing with textiles.
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8 . 4 PW, SAT5, SAT8

    Author   : Ivatury S. Raju

    References:

I.S. Raju and John T. Wang, “Classical Lamination Theory Models for Woven

Fabric Composites,” J. of Composites Technology and Research, 16[4], 1994, pp.

289-303.

     User         Manual      :   

None. Example data files provided with code.

    Format:

FORTRAN code which may be compiled for the target machine.

     Geometric         Model:

2-dimensional unit cells are defined for plain weaves, 5-harness satin weaves, and

8-harness satin weaves. Non-rectangular, minimal unit cells are used for the satin

weaves. Within the unit cells, regions are defined in which the yarns are either

straight or undulate sinusoidally. Yarn cross-sections are effectively rectangular.

The length of the undulating cross-over points is computed to match the specified

fiber volume fraction.

    Stiffness         Model:

Isostrain assumptions are used to derive plate stiffness matrices (A, B, and D).

Thermal expansion coefficients are computed.

    Strength         Model:

None.

    Data        Required:

Yarn and matrix stiffness properties. Yarn spacing, tow thickness, ply thickness,

yarn volume fraction, yarn packing fraction.
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    Output:

Plate stiffness matrices, thermal expansion coefficients. Various intermediate

results.

    Experimental        Validation       :   

Comparisons to measured fabric elastic properties are given in the cited reference.

    Comments:

- These codes implement an analysis similar to the classical fabric models, such as

the fiber undulation and bridging models, without some of the simplifying

assumptions used in previous presentations. In principle, the more general

TEXCAD should supersede these earlier isostrain codes. However, the actual

results for plate stiffness are significantly different for the two codes.  (See Tables

of results in Section 5.)  There appears to be some difference in the way in which

plane stress assumptions are implemented.

- The 2D materials analyzed by these codes would usually be stacked to form a

structure. The stiffness for the stacked laminated must be computed elsewhere.
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8 . 5 SAWC (Stress Analysis of Woven Composites)

    Author:

John Whitcomb

    References      :   

J. Whitcomb, K. Woo, and S. Gundapaneni, “Macro Finite Element Analysis of

Textile Composites,” J. of Composite Materials, 28[7], 607-618, 1994.

J. Whitcomb, G. Kondagunta, and K. Woo, “Boundary Effects in Woven

Composites,” J. of Composite Materials, 29[ 4] , 507-524, 1995.

J. Whitcomb, K. Srirengan, and C. Chapman, “Evaluation of Homogenization for

Global/Local Stress Analysis of Textile Composites,” presented at

AIAA/ASME/ASCE/AHS/ASC 35th Structures, Structural Dynamics, and

Materials Conference, Hilton Head, SC, April 18-20, 1994.

     User         Manual      :   

“Stress Analysis of Woven Composites.” The manual lists the input required for

each of the three programs included in this package. The input required for the

mesh generation code, PWMeshGen, is straight-forward, although some terms

are not defined. The finite element code Flex94 involves some complex,

nonstandard input. For the plain weave geometry, the input file for Flex94 is

automatically generated by PWMeshGen. Many of the concepts and terms are not

defined in the manual. The user must be familiar with the reference material to grasp

the analysis the code is performing.

    Format:

FORTRAN, C, and C++ code. Graphics utilities require the use of the openGL

graphics library, and the MOTIF user interface.
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     Geometric         Model:

The mesh generator PWMeshGen is limited to a plain weave fabric in which the

tow path is assumed to be sinusoidal. This basic unit cell can be converted into a

macroelement which may then be stacked and assembled to form more complex

assemblies of the underlying plain weave units.  The finite element code, Flex94 ,

is general. However, for any geometry other than a plain weave, the user must

provide nodal coordinates, connectivity arrays, and material orientations.

    Stiffness         Model:

Flex94 can be used to generate a conventional average stiffness matrix for the unit

cell using the finite element method and periodic boundary conditions. However,

the strength of this approach is the ability to generate macroelements which include

the internal microstructure, but may be used like conventional elements.

    Strength         Model:

The finite element code can be used to perform a progressive failure analysis by

reducing material stiffness at integration points when the local stress exceeds a

given strength value. There is no control over which stiffness components are

affected or the degree of reduction.

    Data        Required:

Mesh generation for a plain weave requires the layer thickness, waviness ratio,

number of elements, and number of resin elements above and below tows. Loads,

boundary conditions, and material properties are needed for the finite element

analysis. Utilities are provided for conveniently setting up boundary conditions,

including periodic displacements.

    Output:

Point-wise stresses are generated. These stresses may be viewed using the graphics

routine Plot94. Contour maps of failure locations may also be generated.

    Experimental        Validation       :   

None offered.
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    Comments:

Orientation averaging (stiffness averaging) approaches are valid when strains do

not vary significantly over the scale of the unit cell. The macroelement approach

will be more accurate when stress gradients, such as bending effects, are important.

This code demonstrates a powerful methodology that may be used to generate

structural models when textile preforms cannot be accurately homogenized.

However, the code has limited applications in its present form.
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8 . 6 CCM-TEX

    Author:

Kishore Pochiraju

    Ref      erences      :

     User         Manual      :   

None provided. Data input is interactive with prompts.

    Format:

FORTRAN code which may be compiled for target machine.

     Geometric         Model:

The code treats 3-dimensional weaves and braids. Geometric idealizations are used

to compute yarn angles and fiber volume fraction.

    Stiffness         Model:

Orientation averaging of stiffness (isostrain model).

    Strength         Model:

Prints a predicted strength in the warp and weft directions. Strength calculation is

based on local stress in isostrain model and the specified tow strength.

    Data        Required:

Yarn and matrix elastic constants and tow strength. Geometric input for 3D weave

includes weave pitch, width of unit cell, thickness of plate, number of axial yarns

per unit width and thickness, number of wefts per unit length and thickness, and

number of z weavers per unit width and thickness. Code distinguishes between

layer-to-layer and through-the-thickness angle interlock. For 2-step and 4-step

braiding, the code requires the braiding angle, tow size ratio (axial/braider), and

either the column and row numbers of axial yarns (2-step) or number of axial and

braider yarns (4-step).
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    Output:

Three-dimensional stiffness matrix. Strength estimates for tension in warp and weft

directions.

    Experimental        Validation       :   

None offered in code documentation.

    Comments:

The strength of CCM-TEX is in converting parameters used to specify braids and

3D weaves into a geometric representation, including a prediction of the fiber

volumes in each yarn. Lack of documentation is a problem. Although the code is

usable in the interactive mode, most users will need to know the internal mechanics

of the program before applying to real problems. The strength estimates are based

on isostrain calculations of internal stress distributions.
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8 . 7 WEAVE

    Author:

Brian Cox

    Ref      erences      :

B.N. Cox and M.S. Dadkhah, “The Macroscopic Elasticity of 3D Woven

Composites,” J. Composite Materials, 29[6], 785-819, 1995.

B.N. Cox, “Failure Models for Textile Composites,” NASA CR 4686, August,

1995.

M. S. Dadkhah, J. G. Flintoff, T. Kniveton, and B. N. Cox, “Simple Models for

Triaxially Braided Composites,” Composites 26[8], 561-77 (1995).

     User         Manual      :   

Brief description of required input provided as electronic file with program.

    Format:

FORTRAN code which may be compiled for target machine.

     Geometric         Model:

The volume fraction assigned to stuffers, fillers, and warp weavers is required. The

code covers orthogonal interlock, layer-to-layer angle interlock, and through-the-

thickness angle interlock. Waviness of stuffers and fillers is accounted for by

allowing the user to input statistical data for angle variation. Warp weaver

orientation is assumed to be either normal to plane (orthogonal interlock), or at 45°
for the angle interlocks (controlled by an internal data statement).

    Stiffness         Model:

Orientation averaging, with tow stiffness knockdowns based on statistics of

waviness. Tow stiffness is computed from constituent data (fibers and matrix)

using one of five standard micromechanical models.
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    Strength         Model:

None.

    Data        Required:

Fraction of all fibers lying in stuffers, fillers, and weavers. Total fiber volume

fraction. Second moment of normal distribution of misalignment angles, yields of

stuffers and fillers, number of ends and picks, thickness of plate.

    Output:

Tow elastic constants computed by micromechanical model. Three-dimensional

stiffness matrix for homogenized plate. Plate bending stiffness.

    Experimental        Validation       :   

Large data base of measured elastic constants for several weaves is given in the

references.

    Comments:

WEAVE offers several novel features.

- WEAVE incorporates micromechanical models for tows. The elastic constants of

an impregnated tow are not generally available from experiments. The user must

predict values to use any of the codes. It is convenient to have the prediction tool

built-in.

- WEAVE (and MLM for braids - see third listed reference) incorporates a simple

rule (Eq. (3.1) of this handbook) for reducing the stiffness of tows to account for

stochastic waviness integration of the yarn stiffness over the specified distribution

of angles. The distribution may be obtained by analyzing micrographs or assigned

typical values in a sensitivity study.
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8 . 8 BINMOD

    Author:

B. N. Cox, W. C. Carter, N. A. Fleck, J. Xu, M. A. McGlockton, and R. M.

McMeeking

    Ref      erences      :

B. N. Cox, “Failure Models for Textile Composites,” NASA CR 4686, August,

1995.

B.N. Cox, W.C. Carter, and N.A. Fleck, “A Binary Model of Textile Composites.

I Formulation,” Acta Metall. Mater. 42[10], 3463-79 (1994).

J. Xu, B.N. Cox, M.A. McGlockton, W.C. Carter, “A Binary Model of Textile

Composites: II The Elastic Regime,” Acta Metall. Mater. 43[9], 3511-24 (1995).

     User         Manual      :   

NASA CR 4686 includes operating instructions. Comments are also included in

electronic form.

    Format:

FORTRAN, which may be compiled for target machine.

     Geometric         Model:

The binary model consists of line elements to represent the tow axial properties, and

three-dimensional “effective medium” elements to represent the transverse and shear

properties. General configurations of tows can be modeled, but only 3D interlock

weaves are handled automatically.

    Stiffness         Model:

The code uses the finite element method. By applying forces or displacements to

various planes, all macroscopic elastic constants can be found. Cyclic symmetry is

not automatically imposed. In addition to the line and 3D elements, there are springs
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to account for transverse stiffness at yarn crossing points. Waviness can be

accounted for by randomly offsetting nodes in the model according to a specified

normal distribution.

    Strength         Model:

The binary model prints the stresses and strains for the effective medium elements

and tow elements. The code is designed to handle nonlinear behavior. With these

capabilities, it should be ideal for studying progressive failure. Indeed, it is the only

code available that should be able to model events at large strains, where mechanical

lockup between yarns starts to occur. However, use of the code for progressive

failure is not currently documented.

    Data        Required:

- Mesh data for effective medium elements (element size and mesh density), grid

data for line elements. Automatic meshing assigns line elements to nodes based on a

regular pattern defined by first position, last position, and increment.

- Axial stiffness of yarns and stiffness of effective medium elements

(documentation describes how to assign latter). Standard deviation in z axis location

of nodes for stuffers and fillers can be entered, which the code uses to assign

random z offsets. Loading conditions are prescribed strains or forces applied to

specific planes.

    Output:

Iteration summary, total forces acting on loaded plane, stress and strain at each

element quadrature point.

    Experimental        Validation       :   

Large database of elastic properties for several weaves provided in references.

Failure data and observed failure progression are also documented.

    Comments:

Given the difficulties of making 3D finite element models of plain weaves, the

binary model makes a reasonable compromise between geometric fidelity and

practicality. The simplification of the geometry allows representation of complex
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weaving patterns, while retaining many important aspects of the physics. The

authors have used the code to simulate a variety of complex failure phenomena.

However, the progressive failure capability is unavailable in the version of the code

provided here.
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9. SELECTIVE ANNOTATED BIBLIOGRAPHY

This bibliography samples recent papers on the mechanics of textile composites,

especially those dealing with modeling issues.  In this rapidly evolving field of study, any

bibliography will soon be incomplete.  Significant new results are already being presented at

conferences or in preprint form.  However, as a partial assurance of quality, papers in conference

proceedings or still awaiting publication in refereed journals are not listed here, except for some

that have been cited in the handbook.

Comments are provided to indicate the kind of information to be found in each paper.

The comments are not intended to be criticisms, but merely to point readers to appropriate

sources.

The table has been sorted by the “key” entry, which classifies the type of textile, and

then by author.  If the table is available electronically, Microsoft Word will allow sorting by

other criteria.


