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INTRODUCTION

The results included in this report were previously released as a company report, see Reference 1, and

this report is intended to formalize that analysis and to document the results of a validation study that

was performed later and included here as Appendix B. Prior to that analysis, the stresses in the joints

of the model support systems were resolved by assuming the moment in the joint was reacted about

the center of the joint and the stresses were the result of this moment that were reacted over a plane

parallel to the horizontal centerline. The new analytical technique was developed to better define the

loads and stresses in typical sting joints found in the model support systems at the National Transonic

Facility at NASA LaRC and to provide a design tool that could easily be used during the design of new

model support systems. To be more precise, the original objective was to provide a method of

determining the loads and stresses in concentric, tapered, socket type joints found in wind tunnel model

support systems. Once completed, the analytical method was found to be applicable to any

overlapping type joint. Some joints for which the method is applicable are illustrated in Figure 1 and

includes general configurations where one of the joint members can be considered to be basically

supported by the contact pressure from the other joint member. The forward end of a model support

system engages with and is supported by an aft support system, which is the subject of this report. A

lamppost is supported by the ground and the analytical technique included herein can be used to

determine if the depth of penetration is sufficient for the bearing pressure of the soil to laterally

support the lamppost during high wind conditions. The strength of a clamped round bar assembly and

the strength of a tongue and groove type joint that are subjected to external forces and moments can

both be evaluated using this analytical technique. The tongue and groove joint would, however,

require some additional development to determine the proper stress relationships which could be

accomplished by a similar analysis to what is included here by using strip theory to evaluate the

strength of a unit width of the joint.

The results in this report are in the form of equations that are for a concentric, tapered socket type

joint and can be used during the design of new model support systems to determine the strength of

socket joints and for most applications the need of more lengthy analyses can be avoided. Results are

provided for both a joint where the joint members are in continuous contact along the full length of

the joint and for a joint with intermediate contact relief. The joint with intermediate contact relief has

a gap between the joint members along about one-third of the midsection of the joint, typical of



NASALaRCstingjoints,andthejoint membersarein full contactforeandaft of thismidsectiongap.

Illustrationsof bothjoint typesaregivenin Figures2 and3. Analytically,theapproachfor bothwas

to useStrengthof Materialsprinciplesto analyzethejoint membersby idealizingthejoint astwo

rigid, parallelbeamsthat arejoinedby an infinitenumberof springsalongthe contactingsurfaces.

Thecontactloadscanbepicturedasbeingequivalentto theloadsdevelopedin thespringsalongthe
lengthof thejoint attributedto thedifferentialslopebetweentworigidjoint members.Thecontact

loadsbetweenthejoint membersarerepresentedasexternallyapplied,linearlyvarying,distributed
loadsandareasshownon thefreebodydiagramsin Figure2and3. Eachjoint memberis treatedlike

a simplebeamandthecontactloadsbetweenthebeamsaretakento act likeexternalloadsthat are

independentlyappliedto eachof thetwobeams.Forthefirst joint member,depictedin Figures2b

and3b, theexternallyapplied loadsarebalancedbytheapplicationof thecontacttypeloadsandfor

thesecondjoint member,depictedin Figures2cand3c,thecontactloadsaretheonlyloadsthat act

on theendof thecantileveredbeams.Thesecontactloads,in conjunctionwith theexternallyapplied

loadsfor the forwardjoint membersareusedto developindependentexpressionsfor the bending

momentalongthelengthof thejoint for thetwojoint members.Thejoint stressrelationshipsfor the
joint membersare determinedfrom the bendingmomentequationsby includingthe effectsof

appropriatesectionpropertiesfor a givengeometry.Thegeometryof thecontactingsurfacesfor the

joint in this reportis in theshapeof a frustumof a coneandis representativeof thetaperedsocket
typejointsfoundin modelsupportsystemsin NASALaRCwindtunnels.

Theresultsin this report can be used to determine the distributed contact loads and stresses in sting

joints directly from joint dimensions and externally applied loads. As a design aid, the key equations

have been programed for a personal computer to automatically compute all the results given in this

report. A copy of an IBM BASIC program that was developed to evaluate the results for a concentric

tapered, socket type joint is included as Appendix A.



ANALYSIS

FORWARD JOINT MEMBER WITH CONTINUOUS CONTACT

Load Development

To identify the stresses in the joint, the contact loads can be used to evaluate distributed bending

moments and ultimately the stresses. Expressions for distributed loads can be developed in terms of

the externally applied loads by assuming a linear load variation along the longitudinal axis of the beam

members attributed to the contact pressure and solving for maximum magnitudes of the distributed

loads required to achieve equilibrium. The direction of the loading reverses at some intermediate

location which is literally where tile contact loads shift from the upper mating surface to the lower

mating surface and this load reversal location can be used as a dependent variable to simplify other

expressions. To solve for this load reversal location, consider that there are two other unknowns which

are the maximum magnitudes of the distributed loads at each end of the joint, or the concentrated

loads that are equivalent to the distributed loads, and three equations will therefore be required for a

unique solution. Summation of forces and moments provide two of the equations and an assumption

that the distributed loads are linear provides the basis for a third equation. For an illustration of the

loads and relevant dimensions refer to Figure 2b. Summing forces in the vertical direction for the

forward joint member yields

F 0 - W 1 + W 2 = 0 (X)

Summing moments about the load center of the externally applied loads, F 0

[ (b c)l E :°M 0 + W 1 L - b + 3 - W 2 L - a -

and M0, provides

(2)

For the linear variation assumption, the loads can be related by using the geometric properties of

similar triangles (the ratio of all corresponding sides of similar triangles are equal)

Wl _ w2 (3)
(l_a-c) c



To equate the preceding equations, expressions for the distributed loads given in equation (3) can be

determined in terms of concentrated loads, using a basic definition that an equivalent concentrated

load for a linearly varying distributed load that goes to zero is half the product of the peak distributed

load times the distance over which the load acts. The following relationships are rearranged to solve

for the distributed loads in terms of the concentrated loads.

2W 1
Wl - b-a-c (4)

2W 2
w2 - c (5)

substituting equations (4) and (5) into equation (3) gives the following relationship between the

equivalent concentrated loads after grouping

[(b-a)2 - 2c(b-a) + c2] W2 - c2W1 : 0 (3a)

Three linearly independent equations, (1), (2), and (3a) are now available that can be solved

simultaneously for the three unknowns (c, W 1 and W2) in terms of the externally applied loads (F 0

and M0) and the joint dimensions as shown in Figure 2. The load reversal location would be

3(b-a) [M 0 + F0(L-a)] - 2(b-a)2F 0

6[M 0 + F0(L-a)] - 3(b-a)F 0
(6)

To simplify the following expressions for the equivalent concentrated loads, the equations are expressed

in terms of the load reversal location, c, which is defined in the preceeding equation

W 1
3[M 0 + F0(L-a)] - cF 0

2(b-a) (7)

3[M 0 + F0(L-a)]- [c + 2(b-a)] F 0

W2 -'- 2(b-a) (8)



The dimension identifying the load reversal location, c, can also be used to simplify the expression for

the varying contact load and will be used in the following development as an independent variable.

The dimension identifies the physical location where the contact loads shift from the upper mating

surfaces to the lower mating surfaces and distinguishes where separate governing equations are required

for the downward acting loads and for the upward acting loads, see Figure 2.

Forward Bending Moment Equation

Expressions for the bending moment at

any location along the length of the joint

can be developed in terms of the

downward acting contact loads by

considering the forward load

segment as a function of the x-distance

along the beam, see adjacent figure.

Again, using similar triangles, the

magnitude of this partial distributed

load at some general distance "x" from

the external loads would be

_L-b

w 1

Wx

x-L+b __

L-o-c

/'L-a-c-X_wl for L- b<x < L-a-c (9)Wx = \ b-a-c /

The variable concentrated load in terms of the partial distributed load up to the point of evaluation

would be

_ Wl [L-x+b-2(a+c).]
Wx - -2- L b-a-c j (x-L+b) for L - b < x < L - a - c (10)

expressing in terms of the total concentrated load, W1, using equation (4)

[L-x+b-2(a+c)]}(x_L+b) for L-b<x< L-a-c (11)W x = W 1 (b_a_c)2

The distance from the center of this variable concentrated load to the section at which the bending

moment is being evaluated, see above figure, can be evaluated as if it was a homogeneous plane section

by using the distributed loads as equivalent to any other dimension.



XX

Wx xL+b 1(w1Wx) xL+b   xL+b 
w x (x-L+b) + l(wl_ Wx ) (x-L-t-b)

forL-b<x<L-a-c

Simplifying

(x-L+b) (w x + 2Wl)

Xx = 3(Wx + Wl ) for L- b < x < L- a- c (12)

substituting for w x, using equations (9), and simplifying yields the following expression for the distance

to the load center location.

(x-L+b) [3(b-a-c) - (x-L+b)]
Xx - 3 [ L-2-_b:2(a-_ J for L-b < x < L-a-c (13)

The expression for the general bending moment at any location along the forward end of the joint

would be the product of the variable concentrated load, Wx, and the distance to its respective load

center, Xx, in combination with the moment attributed to the externally applied loads M 0 and F 0

M x = M0 + FoX - Wx_ x for L-b <__ x < L-a-c

Substituting for W x and gx, using equations (11) and (13), and simplifying provides the final

expression of the bending moment for the forward end of the joint (note that a similar expression can

be found in Reference 3 for a cantilever with a partial triangular load)

_-_ I 3(x-L+b)2 (x-L+b)3lMx = MO + FoX - (b-a-c) (b_a_c)2 j for L-b <_ x <_ L-a-c
(14)

where c and W 1 are determined from equations (6) and (7).



Aft Bending Moment Equation

For the aft end of the joint, a similar

expression is required which is a

function of the preceding terms

and also the upward acting

distributed load that starts at

the load reversal location, see

adjacent figure. The general

bending moment aft of the

load reversal location in terms

of a newly defined variable

concentrated load, Wx, and the

distance to its load center, _x, can

then be expressed as follows:

w1

L-b

L-a-c

Xl -Wl

-- b-a-c---

_x

4

[_--0

Mr= MO+ (

where (b - a- c)
3 is _1"

b-a-c)]3 + Wx2x for L-a-c < x < L-a (15)

To determine a new expression for the variable concentrated load at the aft end of the joint start with

a general expression of the partial distributed load at the location of the evaluation in terms of the aft

distributed load

' -'(,x-L'_a+C)w 2 for L-a-c < x < L-a (16)W x = -- __ __

which in terms of the equivalent concentrated load from equation (5) would be

2(x-L+a+c)

w x - c2 W 2 for L-a-c <_ x < L-a (17)

The general expression for the variable concentrated load at the aft end of the joint can then be

expressed in terms of the distributed load as

W x = 21-Wx(X-L+a+c) for L-a-c < x < L-a (18)



and in terms of the total concentrated aft load would be

W x = W2\(x-L+a+c_2_ j for L-a-c _< x _< L-a (19)

The distance from the location of the evaluation to this aft centroid would be

_x = _ (x-L+a+c) for L-a-c < x < L-a (20)

The final expression of the general bending moment at any location along the aft end of the joint, after

substituting equation (19) for the concentrated load into equation (15) and equation (20) for the

centrodial distance, can be expressed as

(x-L+a+c) 3

Mx : n 0 + FoX-Wl[(X-L+b) - (-_)] + W 2 3c 2

forL-a-c < x < L-a (21)

where c, W 1 and W 2 are determined from equations (6), (7) and (8).

Note that at x = L - a - c either equation (14) or equation (21) can be used to evaluate the bending

moment since they are algebraically identical.

BENDING MOMENT EQUATIONS FOR AFT JOINT MEMBER WITH CONTINUOUS CONTACT

For the aft joint member, the loading is purely through the contact loads and the external loads, M 0

and F0, would not appear directly in the expressions for the bending moment equations, see Figure 2c.

The bending moment equations for the aft joint member would be similar to the equations for the

forward joint member with the only differences being the omission of the externally applied loads, M 0

and F0, and a sign change to indicate that the loads act in the opposite direction. The general

expression for the bending moment equations for the aft joint member can therefore be obtained

directly from previous equations by simply omitting the external load terms and by changing the sign

of the concentrated load terms to reflect loads are in the opposite direction. Revising equation (14)

yields the following general bending moment equation for the forward end of the aft joint member



Wl[3(x- L +b) 2
Mx = -3--L _)--a_-c

for L-b<x<L-a-c (22)

where e and W 1 are determined from equations (6) and (7).

Revising equation (21) yields the following general bending moment equation for the aft end of the aft

joint member

(x- L+a+c)3 forL-a-c<x<L-a
Mx = W I[(X-L + b) - (_)] - W 2 3c 2 (23)

where e, W 1 and W 2 are determined from equations (6), (7) and (8).

FORWARD JOINT MEMBER WITH INTERMEDIATE CONTACT RELIEF

Load Development

Expressions for the loading between two beam members that are not in contact along the full length of

the joint can be developed similar to the preceding for the joint with continuous contact. The primary

difference is that a third set of independent bending moment equations will be required for the

intermediate region where the joints are not in contact, see Figure 3 for dimensions and an illustration

of the joint. The load reversal location will again be used even though for this ease it is a hypothetical

dimension based on a projection of the linearized distributed load and would define where the loading

would be zero, if the contact were continuous, see Figure 3b. The load reversal location will generally

occur along the intermediate relief region and an expression for its location will be developed later.

Summing forces in the vertical direction for the forward joint member would provide the same results

as given in equation (1) and summing moments about the load center of the externally applied loads,

F 0 and M0, provides

M0+ Wl(L-b+Xl) -W2(L-a-x2)= 0 (24)

Solving equations (1) and (24) simultaneously for the concentrated loads, W 1 and W2, in terms of the

externally applied loads, F 0 and M0, and the load center locations, 21 and 22, yields

9



M 0 + (L-a-x2)r0

W1 = (b- a)- Yl- _2 (25)

M0 + (L-b+21)Fo

W2 = (b-a)-_l-._2
(26)

Tile load center locations, 21 and 22' can be determined as before by considering the distributed

loading as if it were a homogeneous plane section and the location of the concentrated loads can be

evaluated as if they were the centroid locations, see Figure 3 for illustration of dimensions. Solving for

the load centers in terms of the distributed loads yield

e(w 1 + 2Wl/)

_1 = 3(Wl + Wl, ) (27)

f(w 2 + 2w2/)
_,) = (28)

" 3("2 + "2')

Tile intermediate distributed loads terms, Wlt and w2_ , can be eliminated from the above expressions

by again using the properties of similar triangles to relate them to the maximum magnitudes of the

distributed loads. For an assumed linear variation along the length of the joint, the intermediate

distributed loads in terms of the maximum magnitudes of distributed loads and related joint

dimensions would be

b a-c-e) wlwit = t-)-a-c (29)

(30)

Substituting equation (29) into (27) into equation (30) into (28), yields the following expressions for

the load center locations, after simplifying

e [3(b- a_-_ c) -__]
21 -- gL-:2( b-a_ c)- eJ (31)

10



Notethat in thefinalexpressionsfor the loadcenters,all thedistributedloadtermshavecanceledout

andtheonlyremainingtermsarethejoint dimensions.Theseexpressionsfor theloadcenterscannow
be substitutedinto the expressionsfor the concentratedloads,equations(25) and (26), to obtain

expressionsthat are only functionsof the externallyappliedloads,F0 and M0, and the joint
dimensions

W1
M0+[ a

(b-al- L2ib_a_cl:

(33)

W 2 =

f eF3(b-a-c)-2e] 
M0 + _L- b + 5L2(b_ a- c)- e jj Vo

e [3(b-a-c)-_l

(34)

The only joint dimension included in the above equations that is not yet known is the load reversal

location, e, and it can be determined by starting with the assumption of linear variation in the

distributed loads that relates the distributed loads to the joint dimensions, again based on properties

of similar triangles.

Wl _ w2
b-a-c c

(35)

Relationships between the distributed loads and the concentrated loads are needed and can be obtained

by considering the concentrated loads are equivalent to the product of tile average distributed load

times the respective lengths, again see Figure 3b for illustration.

w + Wlt)Wa = 2 e (36)

w + w2t )W2 = 2 f
(37)

11



Substitutingtheexpressionsin equations(29)and(30)into theaboveequationsfor the intermediate

distributedloads,Wl_andw2_,andsolvingfor thedistributedloads,w1 and 2' yields

2Wl [ .b.:__:__ ]
Wl = e [2(b- a- c) - eJ (38)

2W2 / '_c

f (39)

where W 1 and W 2 are determined from equations (33) and (36) and the load reversal location, c, is

determined below.

Substituting equations (38) and (39) into equation (35) and reducing yields

Wlf(2c- f) = W2e[2 (b-a-c)-e] (40)

Substituting for W 1 and W2, using equations (33) and (34), simplifying, and solving for the load

reversal location in terms of the externally applied loads and joint dimensions as illustrated in Figure

3b yields

C

2(e + f) M 0 + {2[f(L-a) + e(L-b)] + e2- f2} F0

[2e(b_a)+f2_ e 2] M0+{f2(L_a)- 2 (f3+e3)+e2[(b_a) - (L-b)]+2(b-a)(L-b)e} F 0
(41)

Forward Bending Moment Equation

The development of the general bending equation for the joint with intermediate contact relief would

be similar to the preceding development for a joint with continuous contact as illustrated on Page 5.

For the forward end of the joint, the distributed load, Wx, would be the same as in equation (9), the

variable concentrated load, Wx, in terms of the distributed load, would be the same as in equation

12



(10),andthe load center location 2x, would be the same as in equation (13). At this point, however,

to simplify the expressions of the bending moment equations for tile joint with intermediate contact

relief, the equations are expressed in terms of the maxinmm distributed loads, w 1 and w2, in lieu of

the concentrated loads, W 1 and W2, as was done previously. The general expression for the bending

moment at any location along the forward end of the joint with relief contact can be expressed as a

combination of tile moment attributed to tile externally applied loads, M 0 and F0, together with the

product of tile variable concentrated load, Wx, given in equation (10), and the distance to the load

center location 2x.

Mx = M 0 + FoX - W x2 x for L- b < x < L- b+e

Substituting for W x and Kx using equations (10) and (13) yields, after simplifying

M x = M 0 + FoX- 3(x-L+b) 2
(x-L+b)31

-j for L-b < x < L-b+e
(42)

where w 1 and c are determined from equations (38) and (41).

Central Bending Moment Equation

Similarly the general expression for the t>endit_g mo_.ent at any location along the intermediate section

of tile joint with contact relief would be the sutll of the product of a concentrated load, W1, and the

distance to the load center location, combined with the moment attributed to the externally applied

loads M 0 and F 0

Mx = M0 + FoX - W 1 (x- L + b- Xl) for L- b+e <x < L-a- f

Substituting for W1, obtained by rearranging eqtmlion (38), and for 21, using equation (31) yields the

following, after simplifying

13



Mx= M0 2el}[ wle ](3(x-L+b)[2(b-a-c)-e]-e[3(b-a-c)-+ FoX -I J

forL-b+e<x< L-a-f (43)

where w I and c are determined from equations (38) and (41).

Aft Bending Moment Equation

To obtain a general expression of lhe

bending moment at any location

along the aft end of the joint with

contact relief, see adjacent figure,

an expression for the variable

concentrated load for the partial

section, Wx, and its relative

location, Xx, are first needed. The

variable concentrated load call be

obtained by first using the

properties of similar triangles to

determine the magnitude of the

distributed load at the end of the

t
partial section, w x

W 1

L-a

w2

w 2
w' x= _ [x- (L-a-c)] for L-a- f<__ x < L-a (44)

The variable concentrated load for the partial section would then simply be the product of the average

of the distributed loads at the two ends times the length of the section

w2' W'x) (x- L +a+ f) for L-a- f< x < L-a (45)
+

Wx = 2

substituting for w2_ and Wxt, using equations (30) and (44), yields the desired expression for the

concentrated load, after regrouping

14



w2
Wx = _-- (x-LWa+2c-f) (x-L+a+f) forL-a-f<x< L-a (46)

To obtainthe relative location of this load, 2x, a similar development that was used to determine the

load centers 21 and 22' given in equations (27) and (28), can be used to provide the following

expression for the relative location of the load

= (x-L + a +f) {W'x+ 2w__2' 
3 \Wx'+W2' ]

for L-a-f< x< L-a (47)

which after substituting for w2t and Wx' , using equations (30) and (44) yields, after simplifying

Xx -- (x-L+a+f) (x-L+a+3c-2f_
- 3 \x:L-+-_-+%--_(] for L-a- f< x < L-a (48)

The general expression for the bending moment at any location along the aft end of the forward joint

member of the joint with contact relief can now be expressed as the sum of the product of the variable

concentrated load, Wx, and the distance to its respective load center, 2x, in combination with the

moment up through the intermediate section, as given in equation (42).

Mx = M 0 + FoX- W 1 (x-L+ b-_l) + Wx2x for L-a-f<x<L-a

Substituting for W x and 2x, using equations (46) and (48) yields, after simplifying

[ wle l{3(x-L+b)[2(b-a-,:)-e]-e[3(b-a-c)-2e]} +M x = M 0 + F0x-[_ j

w 2
6---_(x- L +a+ f)2 (x- L+a+3c-2f) for L-a-f< x < L-a (49)

where Wl, w2, and c are determined from equations (38), (39) and (41).

15



BENDING MOMENT EQUATIONS FOR AFT JOINT MEMBER WITH INTERMEDIATE

CONTACT RELIEF

As was done for the joint with continuous contact, the bending moment equations for the aft joint

member can be obtained directly from the equations for the forward joint member by simply omitting

terms that include the external load F 0 and M0 and changing the sign of the remaining terms, see

Figure 3c for an illustration of the loads.

The following general expression for the bending moment equations along the forward end of the aft

joint member is obtained by revising equation (42).

wi[Mx = T 3 (x- L + b) 2
(x- L + b) 3]

(-tJ --a : c) _] forL-b<x<L-b+e
(5O)

where w 1 and c are determined from equations (38) and (41).

Revising equation (43) yields tile general bending moment equation along the intermediate section of

the aft joint member.

wle {3(x- L + b) [2(b- a- c)- eI - e [3(b- a- c)- 2e]}
Mx - 6(b 2-a- c)

for L-b+e <x<L-a-f

(57)

where w 1 and c are determined from equations (38) and (41).

The final expression is for tile bending moment equation along the aft end of the aft joint member and

was obtained by revising equation (49).

16



wle
Mx - 6(b-a-c) {3(x- L +b) [2(b-a-c)-e]-e[3(b-a-c)- 2el}

W2(x L+a+f)2(x L+a+3c 2f)forL-b+e <x< L a f
6c

(52)

where Wl, w 2 and c are determined from equations (38), (39) and (41).

JOINT STRESS RELATIONSHIPS

To evaluate the strength of a typical socket type joint of a model support system, tile previously

developed results can be combined with appropriate geometric properties to determine the respective

stresses. The previously developed results were independent of the overall geometry of the joint, except

for using the length of the joint for distributing the loadings, but for the following development of the

stress equations, specific cross sectional shapes are needed. For the typical socket joints found in NASA

LaRC wind tunnel model support systems, shown in Figure 4, a frustum of a cone would be

representative of the geometry and is therefore used here to determine typical sectional properties. The

resulting stresses are based on a force and moment such as a normal force and pitch moment and if

other combined loads are to be considered simultaneously, such as a side force and yaw moment,

results must be obtained veetorily. Results for joint geometries other than a frustrum of a cone can be

developed similar to the following by substitution of appropriate sectional properties.

Bending Stress

Because of variations in geometry, the affect of the sectional properties interacting with the affect of

the bending moment change along the length of the joint and the locations of the maximum bending

stress and the maximum bending moment do not necessarily coincide, particularly for the first joint

member as is illustrated in Figure 4. For the second joint member the bending moment is increasing

as a function of "x" and generally the maximum stress occurs at the end of the joint where the bending

moment is a maximum. The bending stress in either joint member can be evaluated from the

following relationship

m X

_b - I/c (53)
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whereMx is the respective bending moment, determined from the previously developed bending

moment equations, and I/c is the section property at the cross section being evaluated. Note that for

tapered joints, the cross-sectional properties vary along the length of the joint and the effect of this

variation has to be considered concurrently with the changes in the bending moment in order to obtain

the absolute maximum. Generally the maximum for the forward joint member occurs within the

forward ten percent of the length, and for the aft joint members the maximum is at the aft end of the

joint, but it is recommended that the relative bending stresses be evaluated iteratively at a sufficient

number of locations to identify where the absolute maximum bending stress occurs.

Traamverse Shear Stress

The maximum shear stress for each of the two joint members occurs at opposite ends of the respective

joints and is where the full shear force is carried totally by only one of the beam members, see Figure

4. For the distribution through the cross section, the maximum occurs at the neutral axis with respect

to bending flexure and for solid circular beam cross section the maximum shear stress would be as

given in Reference 2

4V 4F0

r - 3A s - 3A s (54)

where the shear force, V, is equivalent to the externally applied force, F 0 and the area, As, is the

sectional area of the respective joint member. For a hollow circular cross section the maximum would

be similar

2V 2F0

= = As (55)

Note that the maximum shear stress, with respect to the distribution through the cross section, would

be where the bending stress is zero and the maximum bending stress is where shear stress is zero so

combining the maximum shear stress with the maximum bending stress is not necessary, see Reference

4 for further detail.
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HoopStress

The hoop stress is an expression of how the peripheral tensile loads are carried tangentially in the wall

of the outer joint member and is a result of the contact loads. Consider a section of the outer joint

member sliced horizontally, and the hoop stress can be physically interpreted as the lateral forces that

are tending to separate the joint along this section cut.

p (56)
ah - Ah

Where the local lateral force in the joint, p, would be the product of a distributed load, w, and some

differential length and the area of the material resisting this force would be the product of twice the

wall thickness, 2t, to account for the two sides of the joint, multiplied by the same differential length

as in the numerator. Rewriting the previous equation in terms of these definitions and canceling the

differential length from both the numerator and the denominator yields

w (57)
ah=_

Note that both the distributed load, w, and the wall thickness, t, vary along the length of the joint

and although generally the maximum occurs at the free end of the outer joint member, for w 1 as given

in either equation (4) or equation (38), it is best to at least spot check some other locations to verify

that the thinner wall sections do not result in an even larger stress. The equation is valid along the

length of the entire joint and can be used to evaluate the local hoop stress at any location along the

length of the joint by simply using the appropriate distributed load together with the corresponding

wall thickness at the same respective location.

Contact Pressure Stress

The previously developed expressions were for the linear distribution along the length of the joint and

to obtain a true distribution of the contact loads a lateral distribution across the width of the joint is

needed. In general for elastic, curved bodies that are in compression, an elliptic load distribution is

assumed that considers mutual deflections between the contacting bodies. To obtain the maximum

contact pressure stress, also known as the Hertz contact stress, the elliptical load distribution can be
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integratedover the width of the joint and the result then solved for the maximum. The integral can be

set up by using the maximunl pressure as one of the parameters in the equation of an ellipse to

determine the limits of integration. Setting up the integral and integrating yields an expression for the

linear distributed load in terms of the maximum pressure

--_-r

f Pmax_r2 z2 dz Pmax[_[ r 2 z 2 r 2 z--]+r 7rrPmax (58)w = - - 2r z - + sin-I rj -r - 2
-r

Solving this expression for the maximum contact pressure, Pmax, in terms of the local joint diameter

of the contacting surfaces, d, and linear distributed load, w, provides the desired expression for the

maximum bearing stress between the mating surfaces of the joint members which is equivalent to the

maximum contact pressure

O'p Pmax 4w (59)= ___ -_

For a tapered joint, the maximum can occur at either end of the joint, depending on the worse case

combination of the distributed loads w 1 and w2, as determined from either equations (4), (5), (38) and

(39) and the local diameter of tile contacting surfaces, d. Note that the bearing stress acts in the radial

direction and actually can only exists where the joint members are in contact.
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CONCLUSION

The results included in this report were originally developed to evaluate the stresses in concentric,

tapered, socket type joints for wind tunnel model support systems and tile stress equations included in

this report reflect this application. Although the analysis was for a specific geometry, the method is

applicable to other joints as shown in Figure 1 and discussed in the Introduction. As pointed out in

the Introduction, the key feature of this method was that the loading be transferred from one joint

member to the other by the mutual contact pressure between the joint members and that the

distribution vary linearly along the length of the joint from some maximum at one end to a minimum

at the other end. The assumed linear load distribution of the contact pressure would be applicable to

other configurations, because the Strength of Materials principles used in the analysis is independent of

the geometry, but the stress equations would depend oll a specific geometry and may need to be revised

for new geometries of different configurations. The expressions for the distributed loads and bending

moments included in this report can be used to develop new bearing pressure and stress equations for

other geometries by simply substituting the appropriate sectional properties for any new geometry. In

general, the development of new stress equations for different geometries would be similar to the

development of the included stress equations and the only differences would be attributed to the

differences due to the new sectional properties. A restriction that must be considered when developing

new pressure/stress relationships is that tile geometry of the joint must consist of all overlapping

arrangement of the joint members such that tile loads transfer from one joint member to the other

solely by the mutual contact pressure. Any attachments to the joint that can alter the assumed linear

load distribution such as threaded draw nuts would affect tile computed results and the use of this

analytical technique would then not be applicable for such configurations.

To verify the assumption of linearity in the load distribution, a finite element analysis was performed,

see Appendix B. A finite element model of a typical joint from a wind tunnel model support system in

the National Transonic Facility was generated complete with loads that are typical of a representative

model. To study the effect of differences in the relative bending stiffnesses of the joint members the

thickness of the outer joint member was varied with two subsequent finite element models. The

reference configuration was modified to generate two new finite element models, one with a thicker

outer joint member and one with a thinner outer joint member, but the dimensions of the inner joint

member was the same in all the finite element models. The results of the finite element analysis
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indicatethe calculated results from using the equations in this report would be conservative for the

range of variations in the thickness of the joint members considered. It should be noted, however, that

the best calculated results would be obtained when the stiffness of the outer joint member is a couple of

orders of magnitude greater than the stiffness of the inner joint member.

With regard to an appropriate aspect ratio for the length to diameter of the contacting surfaces of the

joint members, consider the joints illustrated in Appendix B. For the joints that were analyzed, the

aspect ratio was slightly less than two, based on the larger diameter of the inner joint member and the

contact length of the joint members. If the aspect ratio is much smaller than two, the inner joint

member will physically tend to rotate within the outer joint member and increase the concentrated

loads at each end of the joint. If the aspect ratio is much larger than two, the actual load distribution

would tend to decrease basically exponentially toward the small end of the inner joint member and the

small end of the inner joint member would not carry its fair share of the load. Neither of these effects

can be evaluated from the results in this report, since the loads were assumed to vary linearly, and as a

general rule it is recommended that the aspect ratio be kept as close to two as possible to avoid any

needless problems.

In general, the calculated results obtained from using the equations in this report are considered to be

conservative but relatively coarse. If a more complete description of the stress state in the joint is

desired, it is suggested that a more detailed analytical method such as finite element analysis be used.

The results presented in this report were not intended to replace the need for more detailed analytical

methods but instead, the results are considered acceptable for use in conservatively evaluating the

strength of joints in new model support systems.
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IBM BASIC PROGP_AM

I00 REM

ii0 REM

120 REM

130 REM

140 REM

150 REM

160 REM

170 REM

180 REM

Latest program revision: August 14, 1984.

Program computes Joint Loads and Stresses in Socket-type joints

that have a circular cross section. For additional detail refer

to "Contact Loads and Stresses in Socket Type Joints", Wyle

Report WSA02.I-NTF, by L.C.Rash, Dec.22,1983.

Program computes bending moments and stresses only for the

length of engagement of the joint. For a joint with relief the

190 REM number of computations would be 3(N+I) and for no relief they

200 REM would be (N+I), where N is the input "No. of divisions". For

210 REM additional bending calculations, a restart option is available

220 REM at the end of the program to allow entering a new value of N.

230 REM

240 REM Program is adaptable to tapered or nontapered joints that may or

250 REM may not have surface relief:

260 REM * The respective taper is established by entering the inside

270 REM diameters, Di, mean diameters, Dm, and outside diameters, Do,

280 REM for both ends of the joint (end i is near the loads and end 2

290 REM is near the support). If Dml and Dm2 are equal, the program will

300 REM ask for the Beam No. of the male joint member, otherwise the

310 REM program determines the respective joint type from the geometries.

320 REM * The surface relief is the magnitude that the radius is to be

330 REM decreased and is defined by entering the depth,R, and the distance

340 REM from the ends, e & f, where the relief is to start and stop.

350 REM

360 PRINT "PROGRAM TO COMPUTE LOADS AND STRESSES IN CIRCULAR JOINTS"

370 PRINT

380 DEFDBL A-Z

390 PRINT "Enter date and Problem Description (commas not allowed)"

4O0 INPUT PRB$

410 PRINT "Enter No. of divisions. (Controls number of bending calculations)"

420 INPUT N

430 IF N<=.99 THEN N=I

440 PRINT"Enter depth of surface relief (in). (0 if none)"

450 INPUT R

460 IF R=>.00001 GOTO 520

470 E=O#

480 F=0#

490 PRINT "Enter dimensions: l-a, l-b (in) (Socket Joint with NO relief)"

500 INPUT LA,LB

510 GOTO 540

520 PRINT "Enter dimensions: l-a, l-b, e, f (in) (Socket Joint with Relief)"

530 INPUT LA,LB,E,F

540 PRINT "Enter joint diameters : Di, Dm, Do (in) (location i: near loads)"

550 INPUT DII,DMI,DOI

560 PRINT "Enter joint diameters : Di, Dm, Do (in) (location 2: near support)"

570 INPUT DI2,DM2,DO2

580 IF DMI<DM2 THEN BM=2: GOTO 600

590 BM=I

600 IF ABS(DMI-DM2)<.001 THEN PRINT "Enter Beam No. of male joint member":INPUT

BM

610 PRINT "Enter loads: Fo (Ibs), Mo (in-lbs)"

620 INPUT FO,MO

630 IF R<.00001 GOTO 800

640 REM Calculate Load Reversal Location (Joint with relief)

650 BA=LA-LB

660 CM=2*E*BA+F^2-E^2

670 CF=LA*F^2-2*(F^3+E^3)/3+(BA-LB)*E^2 +2*BA*LB*E

680 CD=2*(E+F)*MO+(2*(F*LA+E*LB)+E^2-F^2) *FO
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690 C=(CM*MO+CF*FO)/cD

700 REM Calculate Joint Loads (Joint with relief)

710 BAC=BA-C

720 E3=(E/3)*(3*BAC-2*E)/(2*BAC-E)

730 F3=(F/3)*(3*C-2*F)/(2*C-F)

740 WI=(MO+(LA-F3) *FO)/(BA-E3-F3)

750 W2=(MO+(LB+E3)*FO)/(BA-E3-F3)

760 WIPL= (2*WI/E) * (BAC/(2*BAC-E) )

770 W2PL=(2*W2/F)*(C/(2*C-F) )

780 GOTO 890

790 REM C-location and Loads (Joint with NO relief)

800 BA=LA-LB

810 MF=MO+FO*LA

820 C=(3*BA*MF-2*FO*BA^2)/(6*MF-3*BA*FO)

830 WI=(3*MF-C*FO)/(2*BA)

840 W2=(3*MF-(C+2*BA)*FO)/(2*BA)

850 BAC=BA-C

860 WIPL=2*W1/BAC

870 W2PL=2*W2/C

880 REM Calculate Hoop and Pressure Stresses

890 PI=3.141592654#

900 C!=C

910 HPI!=WIPL/(DOI -DMI)

920 HP2!=W2PL/(D O2-DM2)

930 PRI!=-4*WIPL/(PI*DM1)

940 PR2!=-4*W2PL/(PI*DM2)

950 WI!=WI

960 W2!=W2

970 WIPL!=WIPL

980 W2PL!=W2PL

990 PRINT

i000 PRINT

1010 PRINT PRB$

1020 PRINT

1030 IF R<.00001 GOTO 1060

1040 PRINT " ANALYSIS OF SOCKET TYPE JOINT WITH INTERMEDIATE SURFACE RELIEF"

1050 GOTO 1070

1060 PRINT " ANALYSIS OF SOCKET TYPE JOINT WITH CONTINUOUS CONTACT"
.____H

1070 PRINT ""

1080 PRINT " Joint Dimensions:

1090 PRINT "

ii00 PRINT "

iii0 IF R<.00001 GOTO 1150

1120 PRINT "

1130 PRINT "

1140 PRINT "

1150 PRINT

1160 PRINT "

1170 PRINT "

1180 PRINT "

1190 PRINT

1200 PRINT "

1210 PRINT "

1220 PRINT "

1230 PRINT

1240 PRINT "

1250 PRINT "

1260 PRINT "--

l-a =" LA"in"

l-b =" LB"in"

b-a =" BA"in"

e =" E"in"

f =" F"in"

Relief =" R"in"

Joint Diameters:

(at location i)

Di =" DIl"in"

Dm =" DMl"in"

Do =" DOl"in"

Joint Diameters:

(at location 2)

Di =" DI2"in"

Dm =" DM2"in"

Do =" DO2"in"

Applied Loads: Force =" FO"ibs"

Moment =" MO"in-lbs"

1270 PRINT " Load Reversal Location =" C!"in (from location 2)"

1280 PRINT " Equivalent Concentrated Load 1 =" Wl!"ibs"
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1290 PRINT " Equivalent Concentrated Load 2 =" W2!"ibs"

1300 PRINT " Distributed Load 1 =" WlPL!"ibs/in"

1310 PRINT " Distributed Load 2 =" W2PL!"ibs/in"

1320 PRINT " ................. .

1330 PRINT " Hoop Stress (at location i) =" HPl!"psi"

1340 PRINT " Hoop Stress (at location 2) =" HP2!"psi"

1350 PRINT

1360 PRINT "Pressure Stress (at location i) = " PRl!"psi"

1370 PRINT "Pressure Stress (at location 2) = " PR2!"psi"

1380 PRINT " ........... "

1390 PRINT " BEAM # 1 (BENDING) BEAM # 2 (BENDING)"

1400 PRINT " X,in MOMENT,in-lbs STRESS,psi MOMENT,in-lbs STRESS,psi

1410 IF R<.00001 GOTO 2140

1420 PRINT

1430 REM Initializing x-variables (Joint with relief)

1440 X=LB

1450 DXI=E/N

1460 DX2=(BA-E-F)/N

1470 DX3=F/N

1480 XLB=X-LB

1490 X!=X

1500 REM Determine relative diameters (Joint with relief)

1510 DIX=DII+(DI2-DII)*XLB/BA

1520 DMX=DMI+(DM2-DMI)*XLB/BA

1530 DOXfDOI+(DO2-DOI)*XLB/BA

1540 DRX=DMX-2*R

1550 REM Determine relative Section Properties (Joint with relief)

1560 ICI=PI*(DMX^4-DIX^4)/(32*DMX)

1570 ICO=PI*(DOX^4-DMX^4)/(32*DOX)

1580 ICR=PI*(DRX^4-DIX^4)/(32*DRX)

1590 REM Calculate Bending Moments (Joint with relief)

1600 LBE=LB+E

1610 LAF=LA-F

1620 IF X>LBE GOTO 1650

1630 MX2=(WIPL/6)*(3*XLB^2-(XLB^3)/BAC)

1640 GOTO 1690

1650 MX2=(3*XLB*(2*BAC-E)-E*(3*BAC-2*E))*WIPL*E/(6*BAC)

1660 IF X>LAF GOTO 1680

1670 GOTO 1690

1680 MX2=MX2-(X-LA+F)^2*(X-LA+3*C-2*F)*W2PL/(6*C)

1690 MXI=MO+FO*X-MX2

1700 MXI! =MXI

1710 MX2 ! =MX2

1720 IF MXI!<.O01, THEN MXI!=O!

1730 IF MX2!<.001, THEN MX2!=0!

1740 IF ((BM-1.5)>.001) GOTO 1920

1750 REM Calculate Bending Stresses for Dml > Dm2 (Joint with relief)

1760 BDGI !=MX1/ICI

1770 BDG2!=MX2/ICO

1780 BDG3!=MXI/ICR

1790 IF BDGI!<.0001, THEN BDGI!=0!

1800 IF BDG2!<.0001, THEN BDG2!=O!

1810 IF BDG3!<.0001, THEN BDG3!=0!

1820 REM Print Bending Moments and Stresses for Dml>Dm2 (Joint with relief)

1830 IF (LBE-X)>.00001, THEN PRINT X!,MXli,BDGI!,MX2i,BDG2!

1840 IF ABS(LBE-X)<=.0001, THEN PRINT X!,MXli,BDGI!,MX2!,BDG2!

1850 IF ABS(LBE-X)<=.0001, THEN PRINT: PRINT Xi,MXli,BDG3I,MX2I,BDG2!

1860 IF ((X-LBE)>.0001) AND ((LAF-X)>.0001) THEN PRINT Xi,MXI!,BDG3I,MX2!,BDG2!

18"70 IF ABS(LAF-X)<=.0001, THEN PRINT Xi,MXI!,BDG3!,MX2i,BDG2!

1880 IF ABS(LAF-X)<=.0001, THEN PRINT: PRINT XI,MXli,BDGI!,MX2!,BDG2!
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1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

2290

2300

2310

2320

2330

2340

2350

2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470

2480

IF ((X-LAF)>.0001) AND ((X-LA)<.0001) THEN PRINT X!,MXI!,BDGI!,MX2!,BDG2!

GOTO 2070

REM Calculate Bending stresses for Dml < Dm2 (Joint with relief)

BDGI!=MXl/ICO

BDG2i=MX2/ICI

BDG3!=MX2/ICR

IF BDGI!<.0001, THEN BDGI!=0!

IF BDG2!<.0001, THEN BDG2!=0!

IF BDG3!<.0001, THEN BDG3!=0!

REM Print Bending Moments and Stresses for Dml<Dm2 (Joint with relief)

IF (LBE-X)>.00001, THEN PRINT XI,MXI!,BDGI!,MX2!,BDG2I

IF ABS(LBE-X)<=.0001, THEN PRINT X!,MXI!,BDGII,MX2i,BDG2!

IF ABS(LBE-X)<=.0001, THEN PRINT: PRINT X!,MXI!,BDGI!,MX2!,BDG3!

IF ((X-LBE)>.0001) AND ((LAF-X)>.0001) THEN PRINT XI,MXII,BDGI!,MX2I,BDG3!

IF ABS(LAF-X)<=.0001, THEN PRINT X!,MXI!,BDGI!,MX2I,BDG3!

IF ABS(LAF-X)<=.0001, THEN PRINT: PRINT X!,MXI!,BDGII,MX2!,BDG2!

IF ((X-LAF)>.0001) AND ((X-LA)<.0001), THEN PRINT X!,MXIi,BDGll,MX2!,BDG2!

REM Incrementing x-variable and restarting (Joint with relief)

IF((LBE-X)>.0001), THEN X2=X+DXl

IF ((LBE-X)<=.0001) AND ((X-LAF)<.0001), THEN X2=X+DX2

IF ((LAF-X)<=.0001), THEN X2=X+DX3

IF ((X-LA)>.I) GOTO 2510

X=X2

GOTO 1480

REM Initializing x-variable (Joint with NO relief)

X=LB

DX=BA/N

XLB=X-LB

X!=X

REM Determine relative diameters (Joint with NO relief)

DIX=DII+(DI2-DI1)*XLB/BA

DMX=DMI+(DM2-DM1)*XLB/BA

DOX=DOI+(DO2-DOI)*XLB/BA

REM Determine relative Section Properties (Joint with NO relief)

ICI=PI*(DMX^4-DIX^4)/(32*DMX)

ICO=PI*(DOX^4-DMX^4)/(32*DOX)

REM Calculate Bending Moments (Joint with NO relief)

IF XLB>BAC GOTO 2290

MX2=(WI/3)*(3*XLB^2/BAC-XLB^3/(BAC^2))

GOTO 2300

MX2=(WI/3)*(3*X-2*LB-LA+C)-(W2/3)*(X-LA+C)^3/(C^2)

MXI=MO+FO*X-MX2

MXI!=MXI

MX2I=MX2

IF MXI!<.001 THEN MXI!=0!

IF MX2!<.001 THEN MX2!=0!

IF ((BM-I.5)>.001) GOTO 2410

REM Calculate Bending Stress for Dml < Dm2

BDGIi=MXl/ICI

BDG2I=MX2/ICO

GOTO 2430

REM Calculate Bending Stress for Dml > Dm2

BDGIi=MXI/ICO

BDG2!=MX2/ICI

IF BDGI!<.001 THEN BDGI!=0!

IF BDG2!<.001 THEN BDG2!=0!

PRINT X!,MXI!,BDGI!,MX2!,BDG2!

REM Incrementing x-variable and restarting

X=X+DX

IF ((X-LA)>.I) GOTO 2510

(Joint with NO relief)

(Joint with NO relief)

(Joint with NO relief)
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2490 GOTO 2160

2500 REM Concludes bending calculations for both types of joints
2510 PRINT " ........... - ....................... "

2520 PRINT

2530 PRINT "To restart bending calcs., re-enter No. of divisions (0 to stop)"
2540 INPUT N

2550 PRINT

2560 IF ((N-.999)>.0001) GOTO 1380
2570 END
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VALIDATION OF LOADING WITH FINITE ELEMENTS

A finite element analysis, FEA, was performed to validate the profile of the assumed load distribution

that was used in the socket joint analysis of this report. The results of the FEA were correlated with

the linear variation in the load distribution, that was the premise of the analytical approach in

evaluating the strength of socket joints, to demonstrate that the assumed load distribution provides

conservative results. In order to show the interrelated effect of the relative stiffness of the respective

joint members on the load distribution, three different joint configurations were independently

evaluated with FEA. This evaluation was accomplished by increasing and decreasing the outer wall

thickness from a reference configuration and then comparing the FEA results of all three configurations

to the assumed linear variation in the load distribution.

The finite element model, FEM, that was developed as a reference for the analysis was representative of

a typical socket joint found in NASA LaRC wind tunnel model support systems at the National

Transonic Facility. The FEM is shown in Figure 5 and represents the joint between a two inch

diameter balance, the inner joint member, and a three inch diameter sting, the outer joint member.

This was the same balance and sting joint that was included as a Sample Problem for illustrating the

analytical results in Reference 1. The FEM consisted of three dimensional "brick" elements that were

used to generate a symmetric half-model that included 2291 nodes and 1548 3-D elements. The loads

for the FEM were the design loads of the balance from the Sample Problem: a 6500 lb normal force

and a 13000 in-lb pitch moment acting at a location equivalent to the moment center of the balance.

Nonlinear FEA results were equivalent to the moment center of the balance. Nonlinear FEA results

were obtained by iterating with the FEM manually until only compressive reactions were obtained at

the interface of the inner and outer joint members. To obtain these nonlinear results, the connectivity

of the inner and outer joint members had to be released at any location where tensile type reactions

were found, reconnected for any previously released location where the inner and outer joint members

were found to overlap, and the FEA rerun until only compressive reactions were obtained with no

overlapping of the joint members. Overlapping was detected by comparing the static deflection results

from the FEA to see if the final
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deformed position of either the inner and outer joint member extended across the geometric boundary

of the other member. This overlapping condition could occur if connectivity was required at a location

that had previously been released, due to a shift in the load distribution, and would allow a

compressive load to once again be developed at that location. Once a solution was obtained that

included only compressive loads or separation between the inner and outer joint members, the FEA

results were accepted and the results were correlated to the profile of the distributed load that was

assumed in the socket joint analysis.

The iterative process that was required to obtain a nonlinear solution had to be repeated for each of the

three different configurations because the differences in the thicknesses of the outer joint member

produced variations in the distribution of the compressive reactions that had to be considered

independently. The results of the FEA for each configuration are shown in Figure 6 and include load

distributions and illustrations of each of the three joint configurations. At the center of the figure is

the reference configuration, taken from Reference 1, and at the top and bottom are the configurations

for decreasing and increasing, respectively, the wall thickness of the outer joint member. The FEM

that was based on the reference configuration was developed first and then copies of the input data file

were modified to develop the FEMs of the other configurations. The other configurations that were

selected to study the effects of variations in the wall thickness of the outer joint member on the load

distribution were obtained by decreasing the diameter of the outer joint member to 2.25 inches for one

FEM and by increasing the diameter of the outer joint member to 4.0 inches for another FEM. The

inner joint member was kept the same for all three configurations. Key dimensions of each

configuration and the resulting load distributions are shown in Figure 6.

To transform the radial reactions obtained from the FEA into equivalent vertical loads and to perform

validations of the FEA results, a computer program was developed. The computer program not only

provided tabulated results that could be directly compared to the distributed loads but also allowed

complete equilibrium checks to readily be performed that provided confidence in the data obtained

from the FEA. The reactions obtained from the FEA were normal to the surface between the inner

and the outer joint members and the computer program transformed these reactions into vertical,

lateral, and axial components. The distribution of the vertical components about the perimeter were

lumped at the centerline, the lateral components were matched by the mirror image loads, and the
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axial components were counterbalanced with loads equivalent to those developed by the locking devices

that secure the balance to the sting. Also the sum of the vertical components was in equilibrium with

the externally applied normal force and the sum of the moments of the vertical components and the

axial components about the equivalent moment center location was in equilibrium with the externally

applied pitch moment. The vertical components that were lumped along the centerline are plotted in

Figure 6 adjacent to the illustrations of the three joint configurations. The equivalent loads obtained

from applying the results of the linearly distributed load obtained from the socket joint analysis, as in

the Sample Problem of Reference 1, are also included for comparison.

A physical interpretation that illustrates the relative effect of the wall thickness would be to consider

the thinner outer joint member as a thin wall tube and the corresponding inner joint member as

basically a stiff round bar. As the load is applied, the contact loads near the end of the inner rod, the

loads would be more concentrated at the end of the inner rod, and eventually lead to a failure mode of

the inner rod punching through the thinner outer joint member. This is depicted by a sharp spike as

shown on the right hand side of Figure 6a which is for the distributed load for the joint with thin outer

member. For the thicker outer joint member, the thick wall would act more like a rigid support that

would in effect be like cantilevering the inner joint member from the end of the outer joint member.

The loads would be more concentrated at the end of the outer joint member and would tend to be

more uniformly distributed near the end of the inner joint member. This is depicted by the sharp spike

shown on the left hand side of Figure 6c which is for the distributed load for the joint with thick outer

member. Note the similarity between the distributions is turned upside down and rotated end for end.

The similarity in the distributions could be interpreted for the thinner outer joint member as the outer

joint member is being cantilevered off of the end of the more rigid inner joint member and for the

thicker outer joint member, as the inner joint member is being cantilevered off of the end of the more

rigid outer joint members.
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LIST OF SYMBOLS

a

A h

A s

b

C

d

dz

e

f

F o

I/e

L

M 0

Mx

P

Pmax

r

t

V

W 1

W 2

Wx

W

w 1
/

w 1

w 2

Dg 2t

W X

X

_2

XX

g

reference dimension to aft end of joint a b

effective hoop stress area r

effective shear stress area _rh

reference dimension to forward end of joint ap

reference dimension t,o load reversal location

general diameter of joint member

differential length for integral

reference length of forward contact surface

reference length of aft contact surface

externally applied force

bending section modulus

reference length of model support system

externally applied moment

variable bending moment

local lateral force ill joint

maximum contact pressure

general radius of joint member

wall thickness of outer joint member

shear force

concentrated load equivalent to distributed load at forward end of joint

concentrated load equivalent to distributed load at aft end of joint

variable concentrated load equivalent to partially distributed load

general distributed load

maxinn, m magnitude of distributed load at forward end of joint

magnitude of distributed load at forward end of contact relief

nmximum magnitude of distributed [oa<t at aft end of joint

magnitude of distributed load at aft end of contact relief

magnitude of distributed load at section being evahmted

variable distance between external loads and section being evaluated

load center location for forward end of joint

load center location for aft end of joint

variable load center location for partially distributed load

general circular coordinate

bending stress

shear stress

hoop stress

bearing pressure/stress
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