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ELASTIC STABILITY OF LAMINATED, FLAT AND CURVED, 
LONG RECTANGULAR PLATES SUBJECTED TO COMBINED INPLANE LOADS 

by A. V. Viswanathan, hf. Tamekuni, and L. L. Baker 
Boeing Commercial Airplane Company 

1.0 SUMMARY 

A method is presented to predict theoretical buckling loads of long, rectangular flat and curved 
laminated plates with arbitrary orientation of orthotropic axes in each lamina. The plate is 
subjected to combined inplane normal and shear loads. Arbitrary boundary conditions may be 
stipulated along the longitudinal sides of the plate. In the absence of inplane shear loads and 
“extensional-shear” coupling, the analysis is also applicable to finite length plates. 

Numerical results are presented €or curved laminated composite plates with various boundary 
conditions and subjected to various loadings. These results indicate some of the complexities 
involved in the numerical solution of the analysis for general laminates. The results also show that 
the “reduced bending stiffness” approximation when applied to buckling problems could lead to 
considerab!e error in some cases and therefore must be used with caution. 



2.0 INTRODUCTION 

Fiber-reinforced composite materials are finding increased applications in aerospace structures. 
Capability to predict the buckling behavior of thin laminated plates made from the= materials, 
when subjected to combined inplane normal and shear loads, is of prime interest t o  thz structural 
analyst. A particular characteristic of these laminated plates, in contrast to homogeneous plates, is 
the possible coupling between inplane extension and out-of-plane bending, references 1 and 2. Such 
coupling can significantly affect the load response of these plates, reference 3. 

Considerable literature exists on the buckling of isotropic and orthotropic plates with various 
boundary conditions and subjected to various loadings. References 4 through 12 are examples of 
analysis for isotropic plates. Reference 13 presents an extensive treatment of orthotropic plates, 
where the axes of orthotropy do not coincide with the plate axes, resulting in “mixed-order 
derivatives” in the stability equations. A summary of this and other similar work is given in 
references 14 and 1 5 .  

Buckling of laminated composite plates has been receiving increased attention in the recent 
past. References 16 through 21 are examples of the analysis for flat plates. The phenomenon of 
possible bending-stretching coupling in these plates is known to have a detrimental effect and adds 
to the complexity of the buckling analysis. The use of “reduced bending stiffness” as formulated in 
references 1 and 22 has been used in conjunction with classical orthotropic plate buckling analysis, 
to allow for coupling effects, references 18, 20, and 21. The inplane boundary conditions do not 
enter into this type of analysis. These boundary conditions are known to significantly influence the 
buckling of flat plates in the presence of bending-stretching coupling, references 19 and 23. 
Therefore, caution has to be exercised in applying the “reduced bending stiffness” concept. As the 
number of laminas increases, the exact solution for certain types of lamina layups approaches the 
orthotropic plate solution, reference 3. 

Few analytical results are available for laminatzd composite rectangular curved plates. The 
analysis of reference 24 may be readily applied to curved plates which are subjected to biaxial 
inplane normal loads and wherein no “shear-extensional” coupling is present. For such laminates, 
reference 25 considers the effect of the stacking sequence on buckling. 

The buckling analysis presented here considers rectangular flat or curved general laminates 
subjected to combined inplane normal and shear loads. The analysis is applicable to  (i) finite length 
plates, when the plate is “specially orthotropic” (i.e., “16” and “26” elernenis in equgtions (A-6) 
and (A-7) are zero) and the combined inplane loads do not include shear, and (ii) infinitely long 
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plates, for all other cases. Arbitrary boundary conditions may be specified along the sides (y= 
constant). See figure 1. For finite length plates, simply supported boundary conditions are 
stipulated along the ends (x = constant). 

The method of analysis is such that it may be readily extended to longitudinally stiffened 
structures, subjected to combined inplane normal and shear loads, in a manner analogous to that of 
reference 24. A stiffness matrix is derived (from a solution of the “stability equations”) relating the 
buckling displacements and the corresponding forces along the sides (y = constant) of the plate. The 
elements of this matrix are transcendental functions of the external loading and the half-wavelength 
of buckling, X, in the x-direction. In general, the stiffness matrix is complex and Hermitian in form. 
The buckling criterion is formulated in a determinantal form, after enforcing the desired boundary 
conditions along the sides of the plate. For a chosen half-wavelength, L a  buckling load is evaluated 
by an iteration procedure using the algorithm discussed in reference 26. Therefore a series of 
half-wavelengths must be investigated to determine the minimum buckling load. 

The assumptions made in the analysis are: 

0 Small deflection theory is used. 

0 Effects of prebuckling deformations are ignored. At buckling the plate is in a state of 
uniform stresses corresponding to the external loads. 

0 The material is linearly elastic. 

A computer program, “BUCLAP2”, reference 27, based on thc present analysis has been 
written for the CDC 6600 computer. 
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3.0 SYMBOLS 

a 

Aij 

A* 

b 

Bij 

d 

Dij 

E 1 1 3 2 2  

f 

G12 

hk 

length of the plate 

extensional stiffnesses (i, j = 1, 2, 6), equation (A-6) 

matrix for strain calculation, equation (A-56) 

developed width of the plate 

stiffnesses (i, j = 1, 2, 6) associated with bending-stretching coupling, 
equation (A-6) 

displacement vector 

bending stiffnesses (i, j = 1, 2, 6), equation (A-7) 

Young’s moduli of orthotropic lamina 

force vector 

shear modulus of orthotropic lamina 

distance to kth lamina from the reference plane 

spring constants 

direction cosines 

. .  
linear differential operators, equations (A-25) to  (A-27) 

displacement ratio coefficients, equations (A-38) and (A-39) 

moment resultants, equation (A-7) 

moment resultants, equations (A- 18) and (A-29) 

n number of laminas 



Nx, Ny’ Nxy stress resultants, equation (A-6) 

applied inplane loads 

effective stress resultants, equations (A-1 9) and (A-24) 

buckling displacement parameter 

orthotropic material constants (i, j = 1, 2, 6) with respect to material axes, 
equation (A-5) 

orthotropic material constants (i, j = 1, 2, 6) with respect to plate axes, 
equation (A-3) 

effective transverse shears, equations (A-1 7) and (A-21) 

vector of displacement coefficients, equation (A-45) 

reference plane radius of curved plate 

elements of coefficient matrix R, equation (A-37) 

reduced bending stiffness 

stiffness matrix for the plate, equation (A-53) 

modified merged stiffness matrix, equation (A-54) 

thickness of k* layer of the laminate 

laminate thickness 

effective inplane shear, equations (A-20) and (A-23) 

buckling displacements of the reference plani: 

buckling displacement coefficients, equations (A-34) through (A-36) 

volume fraction 

. . R33 



x, Y 7  

xd7 xf 

aj7 P 

yXY 

6 

EX’ ‘y 

8x7 8, 

KX’ Ky, Kxy 

x 

v12. ”21 

P 

0x7 ay 

OXY 

@k 

Subscripts 

j 

k 

orthogonal coordinates 

displacement and force matrices, respectively, equations (A-45) and (A-5 1 ) 

buckling displacement parameters, equations (A-34) through (A-36) 

shear strain 

vector corresponding to  modified merged stiffness matrix, equation (A-54) 

normal strains 

rotations, equations (A-18) and (A-22) 

changes in curvatures 

half-wavelength of buckling in the x-direction 

Poisson’s ratio 

density 

normal stresses 

shear stress 

angle defining orthotropy directions of kth lamina, with respzct to plate axes 

index corresponding t o  characteristic roots 

layer index 

A subscript preceded by a comma indicates partial differentiation with respect to the subscript. 
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Superscripts 

T 

0 

+ 

- 

matrix transpose 

quantities in the reference plane of the plate 

quantities along the side y = +%of b the piate 

quantities along the side y = --of the plate b 
2 
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4.0 RESULTS AND DISCUSSION 

The details of the buckling analysis are presented in appendix A. The numerical results from 
the associated computer program “BUCLAP2” were initially verified with other available results. 
They included both flat and curved plates with various boundary conditions and various loadings. 
Good correlation was obtained with results from references 4, 5, 8, 13, 15, 21, 24, and 28 through 
30. These are not further discussed here. The computer program “BUCLAP2” was then used to  
study the buckling behavior of some laminated composite long plates. These results are discussed 
below. In all examples the maximum value of X/b is limited to 250, except in cases where the 
variation of the buckling load with X/b is investigated. Table 1 gives the material properties used in 
this study. 

4.1 INFLUENCE OF CURVATURE AND INPLANE BOUNDARY CONDITIONS 
ON THE BUCKLING BEHAVIOR OF A LAblINATED CURVED PLATE 

The cross-sectional geometry and the layup of a symmetrically laminated boron/epoxy plate 
are shown in figure 2. For this laminate, the stiffnesses A1 6 = A26 = 0 and all Bii ( i j  = 1, 2, 6 )  = 0. 
The various boundary conditions considered along the two sides of the plate and the corresponding 
codes used to designate them are also tabulated in figure 2. The buckling of the plate is investigated 
for these boundary conditions, when subjected to variqus combinations of inplane loads, with the 
curvature parameter b2/Ryranging from 1 to 1000. 

The results for axial loading fix are shown in fi,we 3. The numbers designating the curves 
correspond to the boundary condition numbers tabulated in figure 2. For this example 
simultaneously releasing the restraints to the inplane displacements u and v along the two sides of 
the plate while reducing the buckling load by 15% to  2 0 5  in the intermediate range of b2/Rx has a 
very detrimental effect in the higher range of b’/RT Thz X/b values corresponding to the buckling 
loads are shown in table 2. 

Figure 4 shows the variation of the buckling load with respect to X/b, for the various boundary 
conditions, when the plate with b /RT= 300 is subjected to transverse loading fiy. The curves show 
a general trend of nearly reaching an asymptotic buckling load in the region of the “humps”, 
followed by a marked drop in the buckling load with further increase in X/b. It is thought that a 
change in buckle mode is possibly associated with each “hump” region. It is feasible to  verify this 
by obtaining eigenvector solutions corresponding to buckling loads, which was not done here. 
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A comparison of the different curves in figure 4 shows the significance of the inplane 
boundary conditions, in particular the restraint to the v displacement. For boundary condition 



code uNy (BC-uNy) the results obtained from using Donnell-type stability equations are also shown 
in the figure. They deviate significantly from the results of the present analysis for high X/b values. 

The results for BC-uNy further show that the buckling load is continuing to  decrease in the 
region of X/b = 250. Perhaps this is the little significance, since plates of such high aspect ratio are 
not used in practical structures. However, the "humps" in the curves are indicative of the care 
necessary in interpreting the results when an upper limit of A/b is arbitrarily chosen. Figure 5 shows 

the plot of X/b versus R, when b2/RT= 1 .O (i.e., a nearly flat plate) for BC-NyNxy. A sharp drop in 
the buckling load is noticed in the region of X/b = 100, perhaps caused by a change in the 

buckling mode. 

The variation of the buckling load Ry with the change in curvature parameter b2/R"is shown 
in figure 6 for various boundary conditions. These results are based on an upper limit of 250 for 
A/b. As seen earlier in figure 4, for the plate with b2/R?= 300 the buckling loads for BC-uNy could 
drop down to  that for BC-NyNxy at higher values of X/b. Thus, with a higher cutoff for X/b, the 
curve for BC-uNy in figure 6 would drop down to that of BC-NyNxy in the higher range of b2/RT 
values. In any case, the results show the significance of the inplane boundary conditions. Further, 
for this example, the curves have an intermediate region where the buckling load varies very little 
with respect to b2/R?: These results are also given in table 3. 

The next loading considered is the inplane shear gxy. The plot of RXy versus A/b, for a plate 
withb2/RT= 700 and BC-uNy is shown in figure 7. The two minimums seen indicate that one has to 
be cautious in choosing the A/b range to  be investigated in order to establish the minimum buckling 
load. Figure 8 shows the change in the buckling load with respect to b2/Rx for various boundary 
conditions. The corresponding A/b values are given in table 4. It is observed that, with some 
exceptions, the X/b values are in general small and thus point to the first minimum seen in figure 7. 
Boundary conditions uN and NXyVy are essentially the same as BC-uNy and NyNxyy with the 
inplane displacement v completely restrained along one side of the plate. Figure 8 indicates that 
such a restraint raises the curves for BC-uNy qnd Ny_NXy to the level of those for BCuv and vNxy. 
From this it may be conjectured that at high b2/Rt values the buckling modes corresponding to 
E-uNy  and NyISxy involve large inplane displacements. I t  is pointed out that the use of the 
"engineering strain" zs given by equations (A-1 1) through (A-13) in deriving the stability equations 
(A-14) through (A-16) permits such buckling modes. 

v y  

The theoretical buckling loads for the combined loading of R, and RXy with mx %xy are 
plotted in figure 9, for b2/R'iranging from 1 .O to  1000 and for various boundary conditions. The 
corresponding X/b values are given in table 5.  These results indicate considerable reduction in the 
buckling load compared to  the individual load case results in tables 2 and 4. A closer study of the 
results in the latter tables, for high b*/RTvalues, shows that this laminate has a much lower critical 
load in shear (Nxy) than in axial compression (fix). Thus, for the combined load case of RXy = R,, 
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the shear load Rxy may be expected to  govern thz laminate behavior a t  high b2/RTvalues. This is 
confirmed by the striking similarity between figures 8 and 9. 

- 
Similar results for other combined load cases of NY = Rxy, my = N,, and Rx = R = Rxy are 

shown in figures 10, 11, and 12, respectively (and in tables 6 ,  7, and 8, respectively). For all these 
loading cases and at most b2/RT values the laminate has a much lower critical load in transversz 
compression (N ) than in axial compression (mx) or shear (qXy). Thus the results for the 
above-mentioned combined load cases show the same trend as the results for the R loading case in 
figure 6. In this respect, a more appropriate choice of the loading ratios for these combined load 
cases would have better indicated the interaction effects. 

Y 

Y 
Y 

4.2 BUCKLING OF CURVED LAMINATES WITH INCREASING 
NUMBER OF LAYERS 

Figure 13 shows the cross section of a curved laminate. The sides along A and B are simply 
supported. The laminate is built up from alternating layers of +45’ and -159 As the number of 
layers is increased, the laminate is symmetric for odd numbers of layers (B.. = 0) and is 

1J 
antisymmetric for even numbers of layers (A16 = A26 = D16 = D26= B l l  = B22 = B I 2  = 0). 
Theoretical buckling loads for the load cases mx only, my only, RXy only, and mx = are given 
in table 9 and figure 14 for odd numbers of layers and in table 10 and figure 15 for even numbers of 
layers, as the number of layers is increased from 1 to 15. The results in these tables designated “16, 
26 = 0” are obtained by setting to zero the “16” and “26” elementsin equations (A-6) and (A-7). A 
comparison of the results for odd numbers of layers in table 9 shows that thz presence of the A I  6,  
A26, DIG, and D26 terms for the laminate considered increases the buckling load by about 10% for 
the load cases NXy only and Nxy = N,. This increase can be attributzd to the significance of the 
shear stress direction in buckling of fiber-reinforced composites, as pointed out in reference 3. 

XY 

The results in table 10 for even numbers of layers (antisymmetric laminates) show that the 
presence of B16 and B26 causes a reduction in the buckling load for all load cases considered. 
However, as the number of layers increases, this reduction becomes insignificant. 

The “reduced bending stiffnzss” (RBS) approximation, references 1 and 22, was applied to 
the antisymmetric laminates considered here. The corresponding results are also given in table 10. 
They show that the RBS approximation is valid for these examples. The validity of the RBS 
approximation is further considered in Section 4.4. Some of the results from tables 9 and 10 are 
plotted in figures 14 and 15. 



4.3 EFFECT OF FIBER ANGLE ON SHEAR BUCKLING OF A 
CURVED LAMINATE FOR FOUR DIFFERENT CO~ffpoSIlE SYSTEMS 

Figure 16 shows the cross-sectional geometry of a curved Isminate, the fiber directions being 
the same in all layers. One side of the plate is clamped; the other side is simply supported. The 
equivalent weight thicknesses of the four composite systems considered, together with that for 
2024 aluminum alloy, are also tabulated in fimwe 16. The results for the shear buckling load Hxy as 
the fiber angle is varied from -9@ to +90" are shown in fi,gure I 7. Also shown are the results for the 
equivalent weight aluminum curved plate and a similar boron/epoxy flat plate. 

The boronlepoxy and the graphite/epoxy systems appear to bz more sensitive to the fiber 
angle than the boron/aluminum or borsicfaluminum systems. This behavior may be attributed to 
the large differences in the E1 1/G12 ratios. In relation to the boron/epoxy curved plate the 
corresponding graphite/epoxy plate is seen to be superior at all fikr angks, based on resistance to 
shear buckling. This is due to  the higher modulus/density ratio of the graphite/epoxy system. It is 
interesting to note that at small fiber angles the critical loads for the two epoxy systems fall below 
that for aluminum. The boron/aluminum and the borsic/aluminum plates are seen to be superior in 
the intermediate range of fiber angles. A comparison of the results for the flat and curved 
boron/epoxy plates indicates that the optimum fiber angle can be expected to be a function of 
m a t u r e .  

Figure 18 shows the variation of 8xy with respect to half-wave length for some fiber angles in 
the graphite/epoxy system considered above. These curves, in general, show two relative minimum 
buckling loads at different half-wave lengths, as previously noted in fi-me 7. It is seen that the 
absolute minimum buckling load at  $J = 15" corresponds to tht  first relative minimum, whereas at 
e= 30" the absolute minimum corresponds to the second relative minimum. It is therefore 
reasonable to expect a fiber angle between 15"and 30° at which the two relative minimums have the 
Same buckling load. A study of the other curves in figure 18 indicates similar behavior a t  more 
than one fiber angle. Hence, for the curved laminate of figure 16, a plot of the half-wave length 
corresponding to the absolute minimum buckling load versus fiber angle can be expected to  have 
discontinuities at the above-mentioned fiber angles. The results for a simply supported flat plywood 
plate presented in figure 40 of reference 13 do not show such discontinuities. 

The effect of the fiber angle on the shear buckling of angle ply curved laminates is considered 
next. Boron/epoxy and boron/aluminum composite systems are chosen for this study. The 
laminates have four layers and are symmetric, [+@/-#I,. The basic gcometry and the equivalent 
weight thicknesses of the curved plates are as shown in figure 16. The sides A and B are either both 
clamped or both simply supported. Shear buckling loads Rxy as Q is varied from -90" to +90° are 



shown in figure 19. The corresponding results for the boron/epoxy flat plate are also shown for 
comparison. The results show the same basic trend as in figure 17. If the total number of layers is 
increased while keeping the angle ply layup symmetric and also the total thickness constant, the 
curves can be expected to become symmetric with respect to  Q = 0” 

4.4 A STUDY OF SOME SIMPLIFYING ASSUMPTIONS 
FOR COUPLING EFFECTS IN LAMINATES 

A general laminate exhibits bending-stretching coupling and shear-extension coupling. Such 
coupling effects not only add to the complexity of the buckling analysis, but also affect the 
buckling characteristics of the plate. “Reduced bending stiffness” (RBS) approximation, (refs. 1 
and 22) has been often used to allow for the bending-stretching coupling effects. For the type of 
laminates considered in Section 4.2, the use of RBS is s e a  to be satisfactory. No approximation has 
been suggested in literature t o  allow for shear-extension coupling. 

The above coupling effects and the use of the RBS are now further investigated. The general 
curved laminate shown in figure 20 consists of 0.051-cm-thick aluminum sheet (2024) reinforced on 
one side only with alternate layers of +45O and - 4 5 O  boron/eposy composite. Such a laminate 
exhibits full coupling effects. The buckling loads as the number of composite layers is increased in 
pairs of +45”/45” and when subjected to individual loads of Rx. Ry and Rxy are shown in figures 
21, 22, and 23, respectively, by the curves marked ‘‘exact”. The figures also show the buckling 
loads obtained from using the following approximations, individually: 

1) RBS-“Reduced bending stiffness” to allow for bending-stretching coupling 

2) “16” and “26” = 0-Ignoring shear-extension coupling while retaining any bending- 
Stretching COUplblg, i.e., A1 6 = A26 = B 16 = = D 16 = D?6 = 0 - 

3) B.. = 0-Ignoring completely bending-stretching coupling only i.e., B1 = B22 = B66 = ?I 
B12= B16’ B26= 0 

It is seen that the results from the second approximation (i.e., “16” and ‘‘3 -6 ” = 0) are fairly 
close to the “exact” solution except for the shear loading Exy. For the latter case, the error is of 
the order of 5% above the “exact” solution. The RBS approximation results are about 20% higher 
for Rx loading, about 6% lower for the loading, and about 10% higher for the mxy loading, in 
comparison with the “exact” solution. For the laminate considered, the B.. = 0 approximation 
while yielding reasonable results for the loading is seen to have maximum error for the Nx and - Y 
Nxy loadings. 

Y 
?I 



In order t o  study a combined load case, the general curved laminate shown in figure 20 kvith 
three pairs of +45O/-45” boron/epoxy composite reinforcement is tonsidered. The laminate is 
subjected to combined loads of Rx and Rxy. The results are przsented in figure 24 in the form of an 
interaction curve. Rxo and Nxyo are the buckling loads when these loads are acting individually. 
The curves clearly show the difference between the three approximations and the “exact” solution. 
The latter interaction curve is seen to  be closely represented by thz interaction equation given in 
reference 10, namely, 

- 

The results discussed indicate that all the three approximations considered, in general, predict 
buckling loads differing from the “exact” splution. Neglecting shear-extcnsion coupling appears to  
involve minimum error. The results also indicate that the RBS approximation could lead to 
considerable error in certain buckling problems. In the light of the results presented, further 
detailed study is warranted. 
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5.0 CONCLUDING REMARKS 

A method has been presented to predict theoretical buckling loads of long, rectangular flat and 
curved laminated plates with arbitrary orientation of orthotropic axes in each lamina. The plate can 
be subjected to combined inplane normal and shear stresses. The longitudinal sides of the plate can 
be arbitrarily restrained. In the absence of the inplane shear loads and the “extensional-shear” 
coupling, the analysis is also applicable to  finite length plates. 

Few results are available in the literature for laminated curved plates. Thus, the analysis 
presented here together with the associated computer program BUCLAP2 is expected to aid in 
achieving a better understanding of the buckling behavior of these curved plates, in addition to 
supplementing the available results for laminated flat plates. 

Some results are presented for curved laminates. These indicate the complexity of the 
numerical solution of the buckling analysis for general laminates and the care needed in choosing 
the h/b range to determine the minimum buckling load. They also indicate that an eigenvector 
solution to determine the buckle mode would have been useful in answering some of the questions 
raised by the analytical results. 

The analysis has been used to make a preliminary study of the efficiency of curved plates in 
buckling made from various fiber-reinforced composite systems, when subjected to inplane shear 
loads. Results of a study of some simplifying assumptions for coupling effects in gzneral laminates 
are also presented. 



APPENDIX A 

DETAILS OF THE ANALYSIS 

This appendix describes the method used in the elastic stability analysis of curved and flat lam- 
inated rectangular plates subjected to combined inplane n o d  and shear loads. The equations 
given are for the laminated curved plate. They readily degenerate to those of the flat plate when the 
curvature becomes zero (infinite radius). 

A.l BASIC EQUATIONS FOR THE LAMNATE 

The curved laminate considered here has constant curvature with zero Gaussian curvature. 
Figure 25 shows the basic geometry and sign conventions. The x-, y-, and z-ases are the structural 
axes of the laminate, the x- and y-axes being parallel to the tides of the plate. Each lamina is orthro- 
tropic with respect to axes 1 , 2, and 3. The orthotropy directions for lamina k are defined by the 
angle @k between the axes x and 1 , measured positive in the clockwise direction from the x-axis. In 
general, @k could vary from lamina to  lamina. For fiber-reinforced composites, Ok, as defined above, 
is the fiber angle of the kfh lamina. The midplane of the laminate is chosen as the reference plane. 
The strains and curvature changes in this plane, in terms of its displacements u, v, and w, are (ref. 31): 

W 
E = VYY -.x 

1 
K =- WYw -x V,y 

K iy = - 2W,,y - K V , ~  2 
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The radius R is measured from the reference plane t o  the center of curvature and is positive 
when in the positive direction of the z-axis, as in figure 25. By the Kirchhoff-Love hypothesis, the 
strains in any place distance z from the reference plane are: 

The stress-strain equations for a lamina are (ref. 32): 

f 
uX 

Y 4 u  

\ 

f 2  (A-2) 

(A-3) 

The lamina stiffnesses Gij (i, j = 1, 2,6),  which are with respect to the axes x, y, and z, may be 
readily obtained from the corresponding lamina stiffnesses Qij with respect t o  the orthotropic axes 
1, 2, and 3. The details are to be found in reference 32. The resulting equations are: 



The stress resultants N and the moment resultants M in thz reference plane are written as: 

The elements of the A, B, and D coefficient matrices are (ref. 32): 

(A-7) 



where hk and hk+l are the distances from the reference plane to the upper and lowtr surfaces, 
respectively, of the kth lamina, and n is the number of laminae. 

n e  ‘‘stability’’ equations for the laminated curved plate subjected to combined inplane normal 
and shear loads nx, Ey,  and Exy are derived here by variational methods (refs. 33 and 34), using 
the following expressions for the nonlinear “en&Ieering” strains 1 to evaluate the potential energy : 

€; = u,x + $ (v,x2 + w,x2) (A-1 1) 

(A-1 2) 

Terms of third or higher degree have been ignored in the above equations. The resulting stability 
equations are: 

- 
Nx,x + Nxy,y - Ny Wyy - N x y ( .  - v,xx - v,*) = 0 

) -  - Nx v,xx Ny,y + Nxy,x - E (MY,Y + 2Mxy,x 
1 

+ 2 (WY + ;) + Rxy (u,,, + u’yy + w,X n>= 0 

(A- 14) 

(A-1 5 )  

- V v,x u,\r + - 1 N - Rx w , ~ ~  - Ny ( w , ~ ~  + 2)- gXy (2wtXy + -- -) = 0 (A-1 6) 
Mx,xx + My,yy 2MxY,xY R Y R R  

The consistent boundary conditions are given below. Along any side y = constant: 

A - 
w =  0 or Q =  My,y + 2Mxy,x-Ny (A-1 7) 

‘This was communicated to  the authors by Dr. Manuel Stein, Structures Division, KXSX Langley 
Research Center, Hampton, Virginia 23365. 
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A 
g Y =  ( w , y + s ) = ~  or M = M ~ = O  (A-18) 

A 
v =  0 or N = Ny + sxy u , ~  = 0 (A-1 9) 

(A-20) 
A - 

u = O  or T = N X y - N  u, Y Y  

similarly, along any side x = constant: 

(A-2 1 ) V N - - 
w = 0 or Q = M,,, + 2MXyyy - N, wYx - NXy (wY + R) = 0 

(A-22) 
CI 

9,=w,,=O or M = M x = O  

(A-23) 
N - - 

v = 0 or T = NXy - N, v , ~  + NXy u , ~ =  0 

(A-24) 
N - 

u = O  or N=N,+N,y~ ,x=O 

On substituting equations (A-l), (A-6), and (A-7), the “stability” equations (A-14) to (-4-1 6) may 
be written as: 

LlU + L2v + L3w = 0 (A-25) 

L2u + L4v + Lgw = 0 (A-26) 

The differential operators Li (i = 1, 2,. . . 6) are commutative and are expressed as: 

(A-28) 

(A-29) 

(A-30) 
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A.2 BUCKLING ANALYSIS 

(A-3 1 ) 

(A-32) 

(A-33) 

Linear theory is used in the buckling analysis described below. All prebuckling deformations 
and any initial imperfections are ignored. At buckling, the plate is in a state of uniform external 
loading. The solution is applicable to (1) finite length plates, when the plate is “specially ortho- 
tropic” [i.e., “16” and “26” elements in equations (A-6) and (A-7) are zero] and the combined 
inplane external loads do not include shear, and (2) infinitsly long plates for all other cases. For 
all plates, arbitrary boundary conditions may be prescribed along the longitudinal sides y = +- b 

and y = -2. For finite length plates, simple support conditions (w = M, = v = (Nx + Rxy v,~) = 0) 
are stipulated along the sides x = 0 and x = a. 

b 2 

In the light of the above comments, it is correct to assume buccling displacements that are 
sinusoidal in the longitudinal (x) direction. A stiffness matrix for a late strip relating the buckling 
displacements (w, 0 v, u) and the corresponding forces (Q, A A A K  51, N, T) along the sides y = +-and b 

y = --is derived. These forces and displacements are indicated in figure 36). The elements of the 
stiffness matrix are transcendental functions of the external loading and half-wavelengths of buck- 
ling A in the x direction. In general, the stiffness matrix is complex and Hermitian in form. 

b Y’ 2 
2 



The stiffness matrix is used in formulating the buckling criterion in a determinantal form 
after enforcing the desired boundary conditions along the sides y = + 
half-wavelength A, the buckling load is evaluated by an itsration procedure wing the algorithm 
described in reference 26. A series of half-wavelengths are investigated t o  determine the minimum 
buckling load. 

b b and y = --. For a chosen 2- 2 

The analysis method is such that it can be readily extmded to longitudinally stiffened struc- 
tures subjected to combined inplane normal and shear loads, in a manner analogous to reference 24. 

The buckled shape of the laminated plate is defined by the displacement functions: 

8 i -y $x 

j= 1 
w =  2 w j e ?  e (A-34) 

(A-35) 

(A-36) 
J j= 1 

a n d i =  fi. where m.j = a, /3 =x PjY T 

The pj are the roots of the characteristic equation obtained by substituting a typical term of 
the above displacement functions in equations (A-25) to (A27). This substitution yields: 

(A-3 7) 

The characteristic equation mentioned earlier is obtained by expanding the determinant of the 
matrix [ R] . This equation is an eighth order polynomial in pj (or 7 )  with real coefficients and 
hence has real or complex conjugate roots. 

Also from equation (A-37), Uj and Vj can be readily expressed in terms of 'IVj as: 
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u j  = 2 2j w j (A-3 8 )  

(A-39) v. = . \v. J 11 J 

It is evident that the roots pj (or ctj) are functions of the external loading (Rx: my, and F4 
and the half-wavelength of buckling X. At selected values of these quantities, using appropriate 
values of y (+? or -?), the buckling displacements defined by w, OY, v, and u along the sides of 
a plate strip are evaluated from: 

) XY 

b b  

w =  

- 
- 

v =  

u =  

Defining the vector { d}as 

iaay $x 8 
c E1j e J !vj e 

j= 1 

iwy ipx 8 
z Lzj e J \vj e 

j= 1 

displacements from equations (A4O) and (A-41) may be written in matrix form as: 

T 
where { r }  = { W1 e$', W2 eipx, . . . \v8 eipx} and [X,] is a 4 x 8 submatrix. The superscripts 
- and t are used to denote the sides of the plate strip corresponding to y = -T b and y = +5, b 

- L 
respectively. 



The forces conespunding to the above buckling displacemznts are, from equations (A-1 7) to 
(A-20): 



Again defining a vector { f} as 

(A-50) 

the forces corresponding to  the buckling displacemznts in equation ( A 4 5 )  may be written in matrix 
form as: 

where [Xf] is a 4 x 8 submatrix. 

Equations (A45)  and (A-5 1) are combined to yield: 

(A-5 1 ) 

(A-52) 

or 
(A-53) 

[SI in the above equation is the stiffness matrix (8 x 8) of the laminated curved plate and defines the 
force-displacement (due to buckling) relationship along the two sides y = -- and y = +-. The 
stiffness matrix is in general complex and Hermitian in form. 

b b 
2 2 

Equation (A-53) is used in formulating the buckling criterion after enforcing the desired bound- 
ary conditions along the above-mentioned sides. The boundary conditions arc stipulated by specified 
restraints to  freedoms in the directions of w, 0 , v, and u displaczments along each side. It is evident 
that, if a displacement is chosen to be unrestrained, the stiffness matrix remains unaltered since the 
corresponding force is zero. Similarly, if complete restraint to a chosen displacement is desired, the 
corresponding row and column of the stiffness matrix may be dekted, as is often done in discrete 
(finite) element method of structural analysis. 

Y 

Since plate buckling is primarily an out-of-plane phenomenon, the components w and By of 
the displacement vector and the corresponding stiffness terms in equation (A-53) are of utmost s i g  

hificance. Hence, difficulties could arise in cases where these degrees of freedom are completely 
restrained along both sides of the plate, and the Corresponding rows and columns of the stiffness 



matrix are deleted. In the buckling formulation used here, the ‘‘full plate” is considered as an assem- 
bly of two “half-plates” joined along the longitudinal midline. Tl-ius, all the four degrees of freedom 
(w, 0 , v, and u) are always retained along this line, thereby avoiding the above-mentioned difficulty. 
Finally, if any of the boundary conditions stipulated along the two sides are arbitrary and specified 
by spring constants (kw, kg, k,,, or ku), the latter may be readily added t o  the corresponding diag- 
onal elements of the stiffness matrix in equation (A-53). 

Y 

The buckling formulation may be summarized to consist of the following steps: 

1) Evaluate the stiffness matrix (8 x 8) as in equation (A-53) for one half-plate. The stiffness 
matrix for the other half-plate is identical. 

2) Form the merged stiffness matrix (1 2 x 12) for a full plate. 

3) Enforce the specified boundary conditions along the two sides of the plate by modifying 
the merged stiffness matrix, as discussed earlier. 

The above procedure results in the equation: 

(A-54) 

where {&} is the vector of buckling displacements corresponding to  the modified merged stiffness 
matrix [SI. A nontrivial solution of the above equation is expressed in the determinantal form: 

IS1 = 0 (A-55) 

The elements of IS] are transcendental functions of the applied loads @fx, gY, and yxy) and 
the half-wavelength of buckling X in the x direction. The lowest ltvel of the applied loads a t  which 
equation (A-55) is satisfied is the buckling load of the laminated plate for a chosen h. This load is 
determined using an iteration algorithm discussed in reference 26 and further illustrated in reference 
24. The algorithm requires an upper bound to the buckling load defined as the buckling load of the 
half-plate when both of its longitudinal sides are completely restrained. Such an upper bound load 
may be readily obtained using the Galerkin method (ref. 3 9 ,  in the manner of reference 24. 

A series of half-wavelengths have to be investigated, and the lowest of all the corresponding 
buckling loads is the critical load for the laminated plate. The strains in the plate a t  thz critical load 
are obtained from equations (A-6) and (A-7) as: 
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(A-56) 

where A* = A - B D-I B 

The above strains are with respect to the x, y coordinates. For fiber-reinforced composite 
plates, appropriate coordinate transformation yields the fiber strain at the critical load. 

For flat plates, certain simplifications in the numerical solution, similar to that described in 
reference 24, are possible when the elements of the B matrix in equations (A-6) and (A-7) are 
identically zero. 
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APPENDIX B 

CONVERSION OF U. S. CUSTOMARY UNITS TO SI UNITS 

The International System of Units (SI) was adopted by the Elzventh General Conference on 
Weights and Measures, Paris, October 1960, in Resolution No. 12. (See ref. 36). Conversion factors 
for the units used herein are given in the following tables: 

Physical quantity 

Area . . . . . . . 

Force . . . . . . 

Length . . . . . . 

Moduliandstren. . . 

Stressresultant . . . 

Density . . , . . . 

US. customary 
unit 

2 in. 

kip = 1000 Ibf 

In. 

ksi = 1000 Ibf/in.’ 

I bf /in. 

3 I bm /i n . 

Conversion 
factor 
(4 

6.452 x 

4.448 x 103 

2.54 x lo9 

6.895 x lo6 

175.1 

27.68 x lo3 

SI  unit 
(*+I 

square meters (rn 2 

newtons (N) 

meters (m) 

newtons per square 
2 meter (Nlm ) 

newions per meter 
(N/m) 

kilograms per 
cubic meter (kg/m3] 

*Multiple value given in US. customary unit by conversion factor 
t o  obtain equivalent value in SI unit. 

*‘Prefixes t o  indicate multiple of units are as follows: 

I Prefix Multiple 

rnilli (m) 
centi (c) 
kilo (k) 
giga (GI 
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TABLE 1.-MATERIAL PROPERTIES - 
E l l  x 10-l' 

N/m2 

Material 

Boron/epoxy 

G x 10-l' 
1? 

E 2 2 ~  10- l o  v12 
_ _  
N/m2 N/m2 

20.69 

20.69 

"f 

0.5 

0.5 

0.6 

0.5 

1.86 0.21 0.48 

13.1 0.23 6.55 2. 

3 .  

4. 

5. 

Boron/aluminum 

High modulus 

graphite/epoxy 

Borsic/aluminurn 

Aluminum 2024 

17.24 I 1.17 I 0.3 1 0.45 

20.69 1 

28 

2006.8 1 
27 12.6 

1605.4 

2712.6 I 
2768.0 
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TABLE 3.-BUCKLING RESULTS FOR CURVED LAIVINATEA.~ 
LOADING: a,, 

b2 - 
F?? 

1 

5 

10 

30 

50 

100 

300 

500 

700 

loo0 

L 

1 

b 

-- 

Buckling loads, N/m 

aAll buckling loads are a t  limiting value of 250. b 
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TABLEg.-BUCKLING RESULTS FOR CURVED LAMINATE B 
(ODD NUMBER OF LAYERS) 

aLirniting value altowed 
TABLE 10.-BUCKLING RESULTS FOR CURVED LAMINATE B 

(EVEN NUMBER OF LAYERS) 

aLirniting value allowed 
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Boundary 
condition 
code 

uv 

VNxy 

UNY 

NYNxY 

U!Y 

NxY,NY 

r'cmi 
R 1 [ 0/90/+45/-45 3 

S 

Material: borodepoxy 

Thickness of each lamina: 0.014 cm 

Total thicknessr= 0.1 12 cm 

lnplane boundary conditions on clamped edge A 

u = v = o  

v = N  = O  
XY 

u = N  = O  Y 

N = N  = O  
Y xv 

u = N  = O  
Y 

NXy = Ny = O  

lnplane boundary conditions 
on clamped edge B 

u = v = o  

v = N x y = O  

u = N  = O  Y 

N y = N X y = O  

u = v = o  

NXy = v = 0 
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~ 2 5 . 4 c m ~  

A 4 7  
L R  = 76.2 cm 

Material: boron/ePoxY 

tayer thickness: 0.014 crn 

Boundary conditions along sides A and B: 

w = M  = N  = u = O  
Y Y  

FIGURE 13.-CURVED LAMINATE B 

, 
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l I  2 

Symmetric laminate 

---a-- - Present analysis 

4- 16.26 terms = 0 
(*16. A 2 6  D16, D26) 

I I I I I 1  I I 
3 5 7 9 1 1  13 15 1 

Number of layers (odd numbers only) 

FIGURE I4.-BUCKLING RESULTS FOR CURVED LAMINATE B 
(ODD NUMBER OF LAYERS) 
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1 I I 

I 

Antisymmtric laminate 

_ _  --- 
4- 16,26terms = 0 

Present analysis and "RBS" 

(B16 B26' 

Number of layers (even numbers only) 

FIGURE 15.-BUCKLING RESULTS FOR CURVED LAMINATE B 
(EVEN NUMBER OF LAYERS) 
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A 

-~ 

Borsic/aluminum 0.031 57 

Aluminum 2024 0.03094 

' B  

Boundary conditions along A: w = 6 = N = u = 0 

Boundary conditions along B: w = M = N = u = 0 

Y Y  

Y Y  

~~ 

I I 

Material I Equivalent weight I thickness, t, cm 

0.04267 I I Boron/epoxy 

I 0.03157 I Boron/aluminum I 
I I High modulus graphite/epoxy I 0.05334 

FIGURE 16.-CURVED LAMINATE C 
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7000 

5001 

300 

1 I I I I I 
100 150 200 250 300 0 50 

A, halfwave length 

FIGURE 18.-BUCKLING FOR CURVED LAMINATE C. 
LOADING: mxy ONLY 
MA TERIA L : GRAPH1 TE/EPOXY 
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25.4 crn * 

I 
Radius = 76.2 cm 

Aluminum 

+45%/E 
-45O B/E 
+45'B/E 1 

1 
B 

Number of layers 
as required 

Boundary conditions along A and B: 
w = M  = N  = u = O  

Y Y  

FIGURE20.-GENERAL LAMINATED 
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GENERAL LAMINATE \, 

ORTHOTROPY AXES (FIBER 

DEFINITION 
ANGLE) 

NGURE 25.- LAMINATE GEOMETRY AND SIGN CONVENTIONS 

61 



C 

Y 
A I B Y I 

FIGURE 26. -DISPLACEMENTS AND FORCES DUE TO BUCKLING 
ALONG SIDES. OF PLATE-STRIP 
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