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ABSTRACT 

The basic objective of this study was to develop and compile a manual which 
would include practical and up-to-date methods for analyzing the structural 
stability of sandwich plates and shells for typical loading conditions which 
might be encountered in aerospace applications /)> The methods proposed for 
use would include known analytical approaches as modified for correlation 
with applicable test data. 

The data prcsented-he-re covers recommended design equations and curves 
for a wide range of structural configurations and loading conditions^includ- 
ing combined loads.   In a number of cases, actual test data points are in- 
cluded on the design curves to substantiate the recommendations made. For 
those items where little or no test data exists the basic analytical approach 
is presented along with the notation that this represented the 'best available" 
data and should be used with some caution and judgment until substantiated 
by test. 

The following subjects are among those covered in the manual: 

Local Instability 

General Instability of Flat Panels 

General Instability of Circular Cylinders 

General Instability of Truncated Circular Cones 

General Instability of Dome-Shaped Shells 

Instability of Sandwich Shell Segments 

Effects of Cutouts on the General Instability of Sandwich Shells 

Inelastic Behavior of Sandwich Plates and Shells 
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E Tangent modulus of facing, psi. 
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E1'E2 

e. 
l 

F 
V 

(Fv) cr 

F 
c 

Young's moduli for facings 1 and 2 respectively, psi. 

Strain intensity defined by Equation (9.2-2), in./in. 

Transverse shear force, lbs. 

Critical transverse shear force, lbs. 

Flatwise sandwich strength (the lower of flatwise core compressive, 
flatwise core tensile, and flatwise core-to-facing bond strengths), 
psi. 

G Transverse shear modulus of core, psi. 
c 

G Core shear modulus associated with the plane perpendicular to the 
facings and parallel to side a of panel, psi. 

G Core shear modulus associated with the plane perpendicular to the 
cb facings and parallel to side b of panel, psi. 

G Elastic shear modulus of facing, psi. 

G.. Core shear modulus associated with the plane perpendicular to the 
ij facings and parallel to the direction of loading, psi. 

G Secant shear modulus of facing, psi. 
s 

G Core shear modulus associated with the plane perpendicular to the 
xz facings and parallel to the axis of revolution of a cylinder, psi. 

G Core shear modulus associated with the plane perpendicular to the 
axis of revolution of a cylinder, psi. 

h Distance between middle surfaces of the two facings of a sandwich 
construction, inches. 

K Buckling coefficient for an isotropic (non-sandwich) flat plate, 
dimensionless.    Buckling coefficient for flat rectangular sandwich 
panel under edgewise compression (Kc), edgewise shear (Kg), or 
edgewise bending (K.).   K = K    + K   . 

K Theoretical flat panel buckling coefficient which is dependent on 
facing stiffness and panel aspect ratio, dimensionless. 
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K Theoretical flat panel buckling coefficient which is dependent on 
M sandwich bending and shear rigidities, panel aspect ratio, and 

applied loading, dimensionless. 

K Buckling coefficient for sandwich cylinders under axial compression 
c and sandwich domes under external pressure, dimenionless. 

K' Buckling coefficient for short sandwich cylinders under axial com- 
pression, dimensionless. c 

K Parameter defined by Equation (4.4-2), dimensionless. 
P 

K Buckling coefficient for sandwich cylinder subjected to torsion, 
s 

X 

cr 

dimensionless. 

K Parameter defined by Equation (2.2-4), dimensionless. 
6 

k Buckling coefficient, dimensionless. 

k Buckling coefficient associated with compressive stress acting in 
x the x direction, dimensionless. 

k' Loading coefficient for applied compressive stress which is acting 
in the x direction, dimensionless. 

k Buckling coefficient associated with compressive stress acting in the 
y y direction, dimensionless. 

k' Loading coefficient for applied compressive stress which is acting in 
^ the y direction, dimensionless. 

L Over-all length, inches. 

L Effective length, inches, 
e 

M Applied bending moment, in-lbs. 

M Critical bending moment, in-lbs. 
cr 

M.S. Margin of safety, dimensionless. 

N Critical compressive running load, lbs/inch. 

Number of circumferential full-waves in the buckle pattern, 
dimensionless. 
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p Axial load, lbs. 

p' Equivalent axial load defined by Equation (5. 6-32), lbs. 

P Critical axial load, lbs. 
cr 

cr 
(p   ) Empirical lower-bound value for critical axial load when acting 

Empirical    aione, lbs. 

p External pressure, psi. 

p Critical value for external pressure, psi. 
cr 

(p    ) Experimental value for critical external pressure, psi. 
rcr Test 

(p j Classical theoretical critical pressure for a cylinder subjected to 
X CL external pressure acting only on the end closures, psi. 

% 

q 

*b 

(Rb) 
CL 

External pressure acting only on the lateral surface of a cylinder, 

psi. 

(p j Classical theoretical critical pressure for a cylinder subjected to 
y CL external pressure acting only on the lateral surface, psi. 

Q The relative minimum, with respect to £, of expression (2.2-2), 

dimensionless. 

Quantity defined by Equation (2.2-3), dimensionless. 

R Degree of core shear modulus orthotropicity = G
ca/

G
cb' 

dimensionless.    Radius to middle surface, inches. 

Stress ratio defined by Equation (4.7-9), dimensionless. 

Stress ratio defined by Equation (4.7-5), dimensionless. 

R Load, stress, or pressure ratios as defined in appropriate sections 
c of this handbook, dimensionless. 

(R ) Stress ratios as defined in appropriate sections of this handbook, 

CL dimensionless. 

R Effective radius, inches, 
e 
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R. Stress or load ratio for the particular type of loading associated with 
the subscript i, dimensionless. 

R. Stress or load ratio for the particular type of loading associated with 
3 the subscript j, dimensionless. 

R Radius to middle surface at the large end of a truncated conical shell, 
measured perpendicular to the axis of revolution, inches. 

R Maxium radius of curvature for middle surface of a dome-shaped 
shell, inches. 

R Pressure ratios as defined in appropriate sections of this handbook, 
dimensionless. 

(R^) Pressure ratio defined by Equation (4.7-15), dimensionless. 
CL 

R Load or stress ratios as defined in appropriate sections of this 
handbook, dimens ionle s s. 

(R ) Stress ratio defined by Equation (4.7-29), dimensionless. 
s CL 

R Radius to middle surface at the small end of a truncated conical shell, 
measured perpendicular to the axis of revolution, inches. 

R Stress or load ratio corresponding to the x direction, dimensionless. 

R Stress or load ratio corresponding to the y direction, dimensionless. 

R Middle-surface radius of curvature in the plane perpendicular to the 
meridian, inches. 

r Parameter defined by Equation (4.2-37), dimensionless. 
a. 

s Cell size of honeycomb core, inches. 

T External torque, in-lbs. 

T Critical external torque, in-lbs. 
cr 

(Tcr) Empirical lower-bound value for critical torque when acting alone, 
Empirical    in-lbs. 

t Thickness, inches. 
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t 
R 

t 
c inches 

*f 

t 
P 

t 
o 

t ,t 
1' 2 

U 

V 

V 
c 

V 
p 

V 
s 

V 
xz 

V 
yz 

w 

w 
c 

Z 

Z 

Total thickness of the cylindrical panel shown in Figure 7.1-1, inches. 

Thickness of core (measured in the direction normal to the facings), 

Thickness of a single facing, inches. 

Total thickness of the flat panel shown in Figure 7.1-1, inches. 

Thickness of material from which corrugated core is formed, inches. 

Thicknesses of the respective facings of a sandwich construction 
(there is no preference as to which facing is denoted by the subscript 

1 or 2), inches. 
h2 

Sandwich transverse shear stiffness, defined as U = — Gc ~hGc, 

lbs. per inch. 

_ v D 
Bending and shear rigidity parameter which is defined as V - — , 

dimensionless. 

Parameter defined in Sections 4.2 and 6.2, dimensionless. 

Parameter defined by Equation (4.4-4), dimensionless. 

Parameter defined by Equation (4.5-4), dimensionless. 

Parameter defined by Equation (4.7-13), dimensionless. 

Parameter defined by Equation (4.7-14), dimensionless. 

Bending and shear rigidity parameter for flat sandwich panels with 

corrugated core which is defined as W = —- -       > 
dimensionless. Xb   Gcb(Eiti+E2t2) 

Running compression load, lbs/inch. 

Length parameter defined by Equation (4.2-33), dimensionless. 

Length parameter defined by Equation (4.5-3), dimensionless. 
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a Angle of rotation at appropriate joint in corrugated-core sandwich 
construction (see Figure 2.1-5), degrees.    Vertex half-angle of 
conical shell, degrees. 

ß Angle of rotation at appropriate joint in corrugated-core sandwich 
construction (see Figure 2.1-5), degrees. 

y Knock-down factor, dimensionless.   Ratio = a /a , dimensionless. 
y   x 

y. Knock-down factor associated with general instability under pure 
bending, dimensionless. 

y Knock-down factor associated with general instability under axial 
compression, dimensionless. 

y. Knock-down factor associated with the general instability of a dome- 
shaped shell under external pressure, dimensionless. 

(7i)T    , Knock-down factor determined from a test specimen subjected to the 
loading condition corresponding to the subscript i, dimensionless. 

y Knock-down factor associated with general instability of a cylinder 
under uniform external lateral pressure, dimensionless. 

y Knock-down factor associated with general instability under pure 
torsion, dimensionless. 

ö Amplitude of initial waviness in facing, inches. 

€ Normal strain in the x direction, in/in. x '     ' 

C Normal strain in the y direction, in/in. 

C Shear strain in the xy plane, in/in. 

C Parameter involving the core elastic moduli, core thickness, and 
buckle wavelength, dimensionless. 

t] Plasticity reduction factor, dimensionless. 

T?T   t Plasticity reduction factor corresponding to an experimental critical 
stress value, dimensionless. 

X 2 
(1 - n p. ) = (1 - pi.) for isotropic facings, dimensionless.   Ratio = 

a D i 

T/CT  , dimensionless. x 
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V 
e 

Ratio of transverse shear moduli of core [see Equation (4.2-1)], 

dimensionless. 

Actual Poisson's ratio of facing, dimensionless. 

Elastic Poisson's ratio of facing, dimensionless. 

p Radius of gyration for shell wall of sandwich and non-sandwich 
constructions (p « h/2 for sandwich constructions whose two 

facings are of equal thickness), inches. 

CT Stress, psi. 

a Peak compressive stress due solely to an applied bending moment, 
b psi. 

(CT ) Classical theoretical value for the critical peak compressive stress 
CL under a bending moment acting alone, psi. 

a Classical value of critical stress, psi. 
CL 

a Uniform compressive stress due solely to an applied axial load, 
c psi. 

CT' Effective compressive stress defined by Equation (4.7-38), psi. 
c 

(CT ) Peak axial compressive stress due solely to an applied bending 
c 

b moment, psi. 

(CT ) Uniform axial compressive stress due solely to an applied axial 

c load, psi. 

(CT ) Classical theoretical value for the critical uniform compressive 
CL stress under an axial load acting alone, psi. 

cr Critical stress, psi. 
cr 

cr Experimental critical stress obtained from a particular test speci- 
cr 

test men, psi. 

CT' Experimental critical stress which would have been attained had 
test the test specimen remained elastic, psi. 
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1 2 

crimp 

H 

M 

Max 

MIN 

predicted 

R 

wr 

a. 
x 

Px) 

<CTx> 
CL 

P ) x 

Critical value for the compressive stress acting in the x direction, 
psi. 

Compressive stresses in facings 1 and 2, respectively, in the pres- 
ence of the critical loading for general instability (there is no prefer- 
ence as to which facing is denoted by the subscript 1 or 2), psi. 

Uniaxial compressive stress at which shear crimping occurs in sand- 
wich constructions, psi. 

Stress intensity defined by Equation (9.2-1), psi. 

Hoop membrane stress, psi. 

Meridional membrane stress, psi. 

Maximum possible critical stress corresponding to a particular 
material, psi. 

Minimum value of stress for the post-buckling equilibrium path, psi. 

Predicted value for critical stress, psi. 

Critical buckling stress for a flat plate, psi. 

Critical buckling stress for a complete cylinder, psi. 

Facing wrinkling stress, psi. 

Stress acting in the x direction, psi.   Uniform axial compressive 
stress due to an applied axial load, psi. 

Effective compressive stress defined by Equation (4.7-37), psi. 

Peak axial compressive stress due solely to an applied bending 
moment, psi. 

Classical theoretical value for critical uniform axial compressive 
stress when acting alone, psi. 

stress due solely to an applied axial 

Stress acting in the y direction, psi. 

Uniform axial compressive 
load, psi. 
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7 Shear stress, psi. 

T' Effective shear stress defined by Equation (4.7-39), psi. 

(T) CL 

cr 

T    . 

TV 

Classical theoretical value for critical uniform shear stress when 
acting alone, psi. 

T Critical shear stress, psi. 

T' Critical shear stress for an equivalent cylinder subjected to an 
cr applied torque, psi. 

Pure shear stress, acting coplanar with the facings, at which shear 
crimp crimping occurs in sandwich constructions, psi. 

T Uniform shear stress due solely to an applied torque, psi. 
T 

Peak shear stress due solely to an applied transverse shear force, 
psi. 

$ Angular dimension of corrugated core (see Figure 2.1-4), degrees. 
Quantity defined by Equation (4.2-10), dimensionless. 

>£ Angle of rotation at appropriate joint in corrugated-core sandwich 
construction (see Figure 2.1-5), degrees.    Parameter defined by 
Equation (4.4-3), dimensionless. 
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CONVERSION OF U.S. CUSTOMARY UNITS TO THE 
INTERNATIONAL SYSTEM OF UNITS1 

(Reference:   MIL-HDBK-23) 

Quantity 
U.S. Customary   Conversion 

Unit Factor2 SI Unit 

Density 

Length 

Stress 

Pressure 

Moduli    ßlaS^Clty 

(Rigidity 

Temperature 

in. jlbm/ 
(lbm/ft3 

ft 
in. 

psi 

(lb/in.2 

jlb/ft2 

psi 

(°F + 460) 

3 3 3 
27.68 x 10 kilograms/meter   (kg/m ) 
16.02 kilograms/meter   (kg/m ) 

0.3048 meters (m) 
0.0254 meters (m) 

3 2 2 
6.895x10 newtons/meter   (N/m ) 

6.895 xlO3 newtons/meter2 (N/m2) 
47.88 newtons/meter2 (N/m2) 

3 2 2 
6.895x10 newtons/meter   (N/m) 

5/9 degrees Kelvin (°K) 

kg cal/hr m °C Thermal conductivity    Btu in./hr ft   °F   0.1240 

Prefixes to indicate multiples of units are as follows 

Prefix Multiple 

giga (G) io9 

mega (M) io6 

kilo (k) 103 

milli (m) io"3 

micro tyj) io"6 

The International System of Units [Systeme International (SI)] was adopted by the 
Eleventh General Conference on Weights and Measures, Paris, October 1960, in 
Resolution No. 12. 

'Multiply value given in U.S. Customary Unit by conversion factor to obtain 
equivalent value in SI unit. 
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1 
INTRODUCTION 

1.1   GENERAL 

This handbook presents practical methods for the structural stability analysis of 

sandwich plates and shells.   The configurations and loading conditions covered here 

are those which are likely to be encountered in aerospace applications.   Basic equa- 

tions, design curves, and comparisons of theory against test data are included. 

For the purposes of this handbook, a structural sandwich is defined as a layered 

construction formed by bonding two thin facings to a comparatively thick core as 

depicted in Figure 1.1-1.   The facings provide practically all of the over-all bending 

and in-plane extensional rigidity to the sandwich.   The core serves to position the 

faces at locations removed from the neutral axis, provides virtually all of the trans- 

verse shear rigidity of the sandwich, and stabilizes the facings against local buckling. 

Thus the structural sandwich concept is quite similar to that of a conventional I 

beam.   The sandwich core plays a role which is analogous to that of the I beam web 

while the sandwich facings perform a function very much like that of the I beam 

flanges.   The primary difference between these two types of construction lies in the 

Numbers in brackets [ ] in the text denote references listed at end of each major 
section (1; 2; etc.). 
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fact that the transverse shear deflections are usually significant to the sandwich 

behavior; whereas, for I beams, these deflections are only important for the special 

case of relatively short, deep beams. 

FACING 

FACING 

Figure 1.1-1.   Typical Sandwich Construction 

The sandwich is an attractive structural design concept since, by the proper choice 

of materials and geometry, constructions having high ratios of stiffness-to-weight 

can be achieved.   Since rigidity is required to prevent structural instability, the 

sandwich is particularly well suited to applications where the loading conditions are 

conducive to buckling. 

The use of sandwich construction in aerospace vehicles is certainly not a recent 

innovation.   The British de Havilland Mosquito bomber of World War II employed 
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structural sandwich throughout the airframe.   In this case, the sandwich was in the 

form of birch face sheets bonded to a balsa wood core.   Many other airplanes, includ- 

ing the B-58, B-70, F-lll, C-5A, etc., have taken advantage of the high strength-to - 

weight ratio enjoyed by sandwich construction.   Space vehicle applications have 

included the Apollo spacecraft, the Spacecraft LM Adapter (SLA)   fairings on the 

Centaur and other launch vehicles, as well as propellant tank bulkheads. 

In view of the ever increasing application of structural sandwich, it has become desir- 

able to assemble a handbook which presents latest design and analysis criteria for the 

stability of such construction.   The practicing designer and stress analyst need this 

information in a form suitable for easy, rapid use.   This document is meant to fulfill 

that need.   However, it should be kept in mind that, in many areas, all practical 

problems have not yet been fully resolved and one can only employ what might be re- 

ferred to as a "best-available" approach.   In these cases it is advisable to supplement 

numerical computations with suitable testing.   Such areas of uncertainty are identified 

in this handbook in the sections dealing with the appropriate configurations and loading 

conditions. 

In the sections to follow a discussion is given of the basic principles behind the design 

equations along with conclusions derived from an analysis of available test data.   This 

is followed by the design equations along with any limitations on their use.   Also, to 

facilitate their use, a table of these equations and restrictions immediately precedes 

the list of references in Sections 2, 3, 4, and 5 since these sections cover a wide 

range of loading conditions and considerations. 
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1.2   FAILURE MODES 

Structural instability of a sandwich construction can manifest itself in a number of 

different modes.   The various possibilities are as described below and as shown in 

Figures 1.2-1 through 1.2-3. 

Intracellular Buckling (Face Dimpling) - This is a localized mode of instability 

which occurs only when the core is not continuous.   As depicted in Figure 1.2-1, in 

the regions directly above core cells (such as those of a honeycomb core), the 

facings buckle in plate-like fashion with the cell walls acting as edge supports.   The 

progressive growth of these buckles can eventually precipitate the buckling mode 

identified below as face wrinkling. 

Face Wrinkling - This is a localized mode of instability which manifests itself in the 

form of short wavelengths in the facings, is not confined to individual cells of 

cellular-type cores, and involves the transverse (normal to facings) straining of the 

core material.   As shown in Figure 1.2-1, one must consider the possible occurrence 

of wrinkles which may be either symmetrical or antisymmetrical with respect to the 

middle surface of the original undeformed sandwich.   As shown in Figure 1.2-2, 

final failure from wrinkling will usually result either from crushing of the core, 

tensile rupture of the core, or tensile rupture of the core-to-facing bond.   However, 

if proper care is exercised in the selection of the adhesive system, one can reason- 

ably assume that the tensile bond strength will exceed both the tensile and com- 

pressive strengths of the core proper. 
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A - Intracellular Buckling (Face Dimpling) 

SYMMETRIC ANTISYMMETRIC 

B - Face Wrinkling 

^f 
^ 

C - Shear Crimping 

Figure 1.2-1.   Localized Instability Modes 

A - Core Crushing 

B - Tensile Rupture 
of Bond 

C - Tensile Rupture 
of Core Proper 

Figure 1.2-2.   Ultimate Failures Precipitated by Face Wrinkling 
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Shear Crimping - Shear crimping is often referred to as a local mode of failure but 

is actually a special form of general instability for which the buckle wavelength is 

very short due to a low transverse shear modulus for the core.   This phenomenon 

occurs quite suddenly and usually causes the core to fail in shear; however, it may 

also cause a shear failure in the core-to-facing bond.   Crimping will sometimes 

occur in cases where relatively long-wave general instability first develops.   In such 

instances the crimp appears because of severe local transverse shear stresses at 

the ends of buckle patterns.   As the crimp develops, the general buckle may dis- 

appear and a post-test examination would then lead to an erroneous conclusion as to 

the mechanism which initiated failure. 

General Instability - For configurations having no supplementary stiffening (such as 

rings) except at the boundaries, the general instability mode is depicted in Figure 

1.2-3A.   The phenomenon involves over-all bending of the composite wall coupled 

with transverse (normal to facings) shear deformations.   Usually, transverse exten- 

sional strains do not play a significant role in this behavior.   Whereas intracellular 

buckling and wrinkling are localized phenomena, general instability is of a more 

gross nature.   Except for the special case cited under the identification "Shear 

Crimping", the wavelengths associated with general instability are normally con- 

siderably larger than those encountered in intracellular buckling and face wrinkling. 

For configurations having supplementary stiffening at locations other than the bound- 

aries, the term general instability takes on new significance and reference is also 

made to an additional mode identified as panel instability.   For this case, general 
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instability is as defined above but with the added provision that the buckle pattern 

involves simultaneous radial displacement of both the sandwich wall and the inter- 

mediate stiff eners.   As shown in Figure 1.2-3B, the appropriate half-wavelength of 

the buckle pattern must therefore exceed the spacing between intermediate stiff eners. 

The example used in Figure 1.2-3B is that of a sandwich cylinder stiffened by a 

series of rings which have insufficient stiffness to enforce nodal points at their re- 

spective locations. 

Panel Instability - This mode of instability applies only to configurations which have 

supplementary stiffening at locations other than the boundaries.   Figure 1.2-3C 

depicts this mode by again using the example of a sandwich cylinder stiffened by a 

series of rings.   However, in this case the rings have sufficient stiffness to enforce 

nodal points at their respective locations.   The rings experience no radial deforma- 

tion.   Therefore, the half-wavelength of the buckle pattern cannot exceed the spacing 

between rings.   As in the case of general instability, this mode involves over-all 

bending of the composite wall coupled with transverse shear deformations.   Here 

again, transverse extensional strains do not play a significant role in the behavior. 
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2 
LOCAL INSTABILITY 

2.1  INTRACELLULAR BUCKLING (Face Dimpling) 

2.1.1  Sandwich with Honeycomb Core 

2.1.1.1  Basic Principles 

From a practical viewpoint, intracellular buckling can be regarded as flat-plate 

behavior.   Even where curvature is present, as in the cases of cylinders and spheres, 

the honeycomb core cell size will normally be sufficiently small to justify such an 

assumption.   As noted from Reference 2-1, the critical stress for flat plates can be 

expressed in the form 

^=12(1-,/)    \T) <2-1"1) 

where 

ccr    =  Critical compressive stress, psi. 

k    =  Coefficient which depends on the plate geometry, boundary 
conditions, and type of loading, dimensionless. 

V   =  Plasticity reduction factor, dimensionless. 

Ef    =  Young's modulus £or facing material in the case of intra- 
cellular buckling), psi. 

ve    =  Elastic Poisson's ratio (for facing material in the case of 
intracellular buckling), dimensionless. 
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tf    =  Thickness of plate (Facing thickness in the case of intra- 
cellular buckling), inches. 

s    =  A selected characteristic dimension of the plate, inches. 

It is convenient here to combine several of the constants in Equation (2.1-1) to obtain 

O-     = K     ^a    (—| (2.1-2) 

or 

2. 
o; rcr 0-~Ve ) 

*?Ef 

= KM) (2.1-3) 

To apply these equations to the case of intracellular buckling, it is only necessary to 

define the dimension  s   and establish a corresponding value for K.   In Reference 

2-2, Norris took  s  to be equal to the honeycomb core cell size.   By convention, 

this is taken equal to the diameter of the largest circle that can be inscribed within 

the cell.   Based on the analysis of test data, Norris then chose  K = 2.0 for the 

case of uniaxial compression.   This provides a reasonably good fit to the test results 

as shown in Figure 2.1-1 which was taken directly from Reference 2-2.   It should be 

noted that the choice of  K = 2.0  does not provide a lower bound to the data.   Six of 

the test results fall significantly below the values predicted by the recommended 

formula.   This situation can be tolerated since the dimpling of several cells in a 

honeycomb sandwich construction will not lead to catastrophic failure so long as a 

sufficiently large number of cells remain unbuckled.   As indicated by the scatter in 

Figure 2.1-1, one could reasonably expect the majority of unbuckled cells to possess 

considerably greater buckling strengths than would be indicated by the proposed 

design curve.   Under these conditions, some redistribution of stress would occur 
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since 

can 

but the structure could continue to support the applied load.   In addition, it is pointed 

out that the dimpled regions retain significant post-buckling load-carrying capability 

they behave essentially as flat plates.   This does not mean, however, that one 

permit the dimples to grow without bound.   The point can be reached where these 

deformations precipitate wrinkling and this cannot be tolerated. 

It is also of importance to note here that most of the test data shown in Figure 2.1-1 

were obtained from sandwich plates having a solid spruce core through which a 

single circular hole was drilled to represent a core cell.   It is questionable that 

such specimens truly simulate the cell edge support likely to be encountered in 

practical honeycomb configurations.   Only three data points were obtained for speci- 

mens actually having honeycomb cores and, as shown in Figure 2.1-1, these points 

lie in the lower region of the total band of scatter. 

In view of the foregoing discussion, it is evident that the use of Equation 2.1-3 

together with the selection of  K = 2.0  is certainly not a rigorous approach to the 

analysis of intracellular buckling.   However, until further work is accomplished in 

this area, it is recommended that this criterion be employed as a "best-available", 

approximate design tool. 
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2.1.1.2  Design Equations and Curves 

The facing stress at which intracellular buckling will occur under uniaxial compres- 

sion is given by the following semi-empirical formula: 

V Ef    /tf\s 

^ = 2'°ä^)W (2.1-4) 

The dimension  s  is the diameter of the largest circle that can be inscribed within 

the cell shape.   For example, in the cases of hexagonal and square cells,   s   is 

measured as shown below. 

y \ 
( 
i# S     ' '^ 

/ 
. ^ 

Figure 2.1-2.   Definition of Dimension  s 

Solving Equation (2.1-4) for  s  gives the result 

s = tf \l2 
°cr (l-*fe ) 

T7Ef 
(2.1-5) 

This equation may be used to determine the maximum permissible cell size.corre- 

sponding to particular facing materials and thicknesses.   Figure 2.1-3 presents a 

family of plots of Equation (2.1-5) for selected values of  tf  ranging from  tf = 

0.001  to  tf = 0.100. 

For elastic cases, use   T? = 1.   Whenever the behavior is inelastic, the methods of 

Section 9 must be employed. 
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When the facings are subjected to biaxial compression, it is recommended that one 

use the interaction formula 

Rx + Ry = 1 (2.1-6) 

where 

[Applied Compressive Loading] 
 in Subscript Direction      J 

1      [Critical Compressive Loading (when! *'*  ~ ' 
[acting alone) in Subscript DirectionJ 

This straight-line interaction relationship is based on the information provided in 

Reference 2-1 for square flat plates.   For cases involving shearing stresses which 

are coplanar with the facings, it is recommended that the principal stresses first be 

computed and that these values then be used in the above interaction equation.   When- 

ever one of the principal stresses is tensile and the behavior is elastic, the analysis 

should be based on the assumption that the compressive principal stress is acting 

alone. 

2-7 



2.1.2   Sandwich With Corrugated Core 

2.1.2.1   Basic Principles 

This section deals with corrugated-core sandwich constructions whose cross sections 

may be idealized as shown in Figure 2.1-4.   For cylinders, the only case treated 

here is that where the axis of the corrugations is parallel to the axis of revolution. 

For flat plates, however, the corrugations can be oriented in either the longitudinal 

or transverse directions. 

h-bf-H     I h-bf-H   ?* 

t   (TYPICAL) 
o 

^(TYPICAL) 
(»(TYPICAL) 

Single-Truss Double-Truss 

Figure 2.1-4.   Corrugation Configurations 

Each of the following loading conditions is considered: 

a. Uniaxial compression acting parallel to the axis of the corrugations. 

b. Uniaxial compression acting parallel to the facings but normal to the 
axis of the corrugations. 

c. Biaxial compression resulting from combinations of   a   and  b   above. 

The design curves presented here are taken directly from Reference 2-3 and are 

based entirely on theoretical considerations.   No comparisons are made against test 
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data to confirm the validity of these solutions.   Until such substantiation is obtained, 

the recommended design curves can only be considered as a 'best-available" criterion. 

It is pointed out, however, that there does not appear to be any reason to suspect that 

test data would disagree with the curves. 

Although Reference 2-3 is devoted solely to flat plates, the results are considered to 

be applicable to the cylindrical configurations shown in Figure 2.1-4 since the dimen- 

sions  bf  will usually be small with respect to the radius.   Under such conditions, 

curvature influences will be negligible. 

The theoretical development includes consideration of each of the buckling modes 

shown in Figure 2.1-5.   Both of the following possibilities are covered: 

a. The face sheets are the unstable elements and are restrained by the core. 

b. The core is the unstable element and is restrained by the face sheets. 

Buckling is assumed to be accompanied by rotation of the joints but with no deflection 

of the joints.   The angles between the various elements at any one joint are taken to 

remain unchanged during buckling.   It is also assumed that the over-all sandwich 

dimensions are sufficiently large such that end effects are negligible. 
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ClompedJ 

-ß o- -ß 

lamped 

.supported 

Single-Truss-Core Double-Truss-Core 

(a, ß, and \]J denote angles of rotations at the appropriate joints) 

Figure 2.1-5.   Buckling Modes 
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2.1.2.2  De sign Equations and Curves 

The theoretical stress at which intracellular buckling of the facings or buckling of the 

corrugated core will occur is given by the following formula: 

JTT
Z
VE   /tf\3 

2(l-^e3) \bf j 

kiir8»?E 
°cr = ,.8> (r) (2.1-8) 

where 

crcr    = Critical compressive stress, psi. 

kj    = Coefficient which depends upon the geometry and loading 
conditions, dimensionless. 

V    =  Plasticity reduction factor, dimensionless. 

E    = Young's modulus of facings and core, psi. 

Pe    - Elastic Poisson's ratio of facings and core, psi. 

tf    =  Facing thickness, inches. 

bf    =  Pitch of corrugated core (see Figure 2.1-4), inches. 

The only case considered here is that where the two facings are of the same thickness 

and the entire sandwich construction (facings and core) is made of a single material. 

Figures 2.1-6 through 2.1-12 give values for  kj for each of the following loading 

combinations: 

1?^ when k^.  =  0 

kx when ky =  0.5 

kx when ky =  1.0 

d.      ky when kx =  0 

The coefficients  kx and  ky  are defined as follows: 
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12(1-i/e
2) /bf\s 

kx = s^r (—1    (Applied Compressive o-x) (2.1-9) 

12(1-14?) /bfV 
kv =  s  h-)     (Applied Compressive o-„) (2.1-10) 

The subscript  x   (for  k and  k') is used to identify cases where the loading is 

directed along the axis of the corrugations (x direction).   The subscript y   (for  k 

and k') is used to identify cases where the loading is acting in the  y direction which 

is parallel to the facings but normal to the axis of the corrugations.   For combinations 

a through c , separate plots are furnished for single-truss-core and double-truss- 

core configurations.   For combination d , a single family of curves covers both 

arrangements since all of the corresponding applied load is transferred through the 

facings.   The dashed lines in Figures 2.1-6 through 2.1-11 divide the charts into two 

regions.   Above the dashed lines, the face sheets are the unstable elements and are 

restrained by the core.   Below the dashed lines, the core is unstable and is restrained 

by the face sheets. 

To clarify the design charts given in Figures 2.1-6 through 2.1-12, the following 

additional definitions are provided: 

t0  =  Thickness of material from which the corrugations are formed 
(see Figure 2.1-4), inches. 

<f> - Angle shown in Figure 2.1-4, degrees. 

In addition, the sample problem given below should be helpful to the user of this 

handbook. 
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Given:    Sample Problem Data for Single-Truss Core Type Sandwich Panel 

E = 30 x 10* psi t0 = .016" bf = .700" 

ve = .30 tf = .020" 0 = 65° 

Proportional Limit CT= 90,000 psi oy = 16,300 psi (Compression) 

Required:    Find   0"cr   ;      Assuming '7 = 1,  one obtains 

k, _ l2yi- V)/V\2   _    12 x 16,300 x .910    ATOOY _ 
y 7T2TjE \tf/    "    9.87 X lx 30 X106    \.020/°,7db 

t0 .016 
IT = ^iT = -800 

Using linear interpolation between values given on Figures 2.1-7 and 2.1-8 one 

obtains 1^ = 2.68. 

Hence,  the critical stress in the x direction (parallel to the corrugation axis) is 

kx ir2t]E kv T2nrc   / tf \
2 

acrx       12(l-ve
2)lbf 

and,  assuming V = 1,  one obtains 

2.68 x 9.87 x  1 x 30 x 106,.,_., , 
°crx =     12 x 1910  (^l)  = 59»300 Psi (Compression) 

/.020V      rft 

The stress intensity o*j (See Section 9) can now be computed as follows: 

°i = Vax"  +cry
2  - (TxOy + 3T2 

= loV  (59.3)2 +   (16.3)2  - (59.3 x 16.3) + 0 = 53,100 psi 

Since this value is below the proportional limit,  the assumption TJ = 1 is valid. 

In cases where the C7j value exceeds the proportional limit,  the methods of Section 

9 must be employed. 
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2.2   FACE WRINKLING 

2.2.1  Sandwich With Solid or Foam Core (Antisymmetric Wrinkling) 

2.2.1.1  Basic Principles 

The problem of face wrinkling has been treated by many investigators dating back as 

far as 1940.   The most important publications on this subject are listed as References 

2-4 through 2-14.   For the purposes of this handbook, it was decided that the results 

in References 2-7 and 2-9 would be the most useful.   The latter applies only to sand- 

wich configurations which have solid or foam cores.   The development there includes 

consideration of both the symmetric and antisymmetric modes along with the influences 

from initial waviness of the facings.   It is pointed out that, when the core is sufficiently 

thick, the wrinkle patterns of the two facings will be independent of each other and the 

same critical load is obtained for the symmetric and antisymmetric modes.   However, 

for sandwiches having thinner cores, the core strains introduced by one facing influ- 

ence the wave pattern in the other facing.   Under these conditions, it was found that 

sandwiches having solid or foam cores can be expected to wrinkle antisymmetrically. 

The following governing equation was derived to predict this form of wrinkling for 

isotropic facings subjected to uniaxial compression: 

*7Ef Ef.Gr, 

<l-"ea> 

l 
T3" 

ffwr = Q 

where, 

o-wr = Facing wrinkling stress, psi. 

rj = Plasticity reduction factor, dimensionless. 

Ef = Young's modulus of facing, psi. 
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Ec  = Young's modulus of the core in the direction normal to the facings, psi. 

Gc  =  Core shear modulus associated with the plane perpendicular to the 
facings and parallel to the direction of the applied load, psi. 

ve  =  Elastic Poisson's ratio of facings, dimensionless. 

The quantity  Q  is the relative minimum, with respect to  £ , of the expression 

30 q" 

16 q /   cosh £ - 1   \ 
£   111 sinh £ + 5/ 

„  A   ,  , /  cosh r - 1   \ 
1 + 6.4 Ks£ (——r~r^—=-) o* \n sinh £+5/ 

(2.2-2) 

where 

tf 
Gc 

[   (l-^e2)  " 
1 
3 

r?Ef Ec Gc 

Kg = 
SEC 

tcFc 

(2.2-3) 

(2.2-4) 

and 

£ =   Parameter involving the core elastic moduli, core thickness, and 
buckle wavelength, dimensionless. 

tc  =  Thickness of core, inches. 

tf  =  Thickness of facing, inches. 

§  =  Amplitude of initial waviness in facing, inches. 

Fc  =  Flatwise sandwich strength (the lower of flatwise core compressive, 
flatwise core tensile, and flatwise core-to-facing bond strengths), 
psi. 

The initial waviness plays an important role in the wrinkling phenomenon since it 

causes transverse facing deflections to develop even when the applied loading is very 

small.   As the load increases, these deflections grow at steadily increasing rates and 

lead to transverse tensile or compressive failure of the core or tensile rupture of the 
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core-to-facing bond.   These failures occur, of course, at load values below the pre- 

dictions from classical theory in which it is assumed that the facings are initially 

perfect (Kg = 0). 

The results from Reference 2-9 can be summarized in the form of Equation (2.2-1) 

accompanied by plots of  Q  vs  q with Kg  as a parameter.   A family of such curves 

is given in Reference 2-9 and they are of the general shape shown in Figure 2.2-1. 

The limiting values established by the straight line  0A  correspond to the shear 

crimping mode of failure (see Section 2.3).   All other points on the curves are for 

antisymmetric wrinkling.   In actual practice, curves of this type do not prove to be 

very helpful since the  Kg values appropriate to particular structures are rarely 

known.   Therefore, in order to provide a practical means for the prediction of face 

wrinkling in sandwich constructions having solid or foam cores, it has become com- 

mon practice to select a single conservative lower-bound  Q based on available test 

data.   This approach is followed here.   Elastic test data selected from Reference 2-9 

are plotted in Figure 2.2-2 from which the value  Q  =  0.50 has been selected as a 

safe design value.   Additional data are given in Reference 2-6 which are not shown 

here but lead to the same value for a lower-bound Q.   This is in conformance with 

the observation made by Plantema in Reference 2-15 that the value Q = 0.50 has 

often been recommended for practical design purposes.   However, since much of the 

existing test data were obtained from specimens that were not very representative of 

configurations likely tobe encountered in realistic structures, the selection of Q =0.50 

can only be regarded as a "best-available" approach.   In view of the uncertainties 
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KS = 0 

K8 = 
Constant 

K8 = Constant 

Figure 2.2-1.   Typical Variation of Q vs.   q 

amended that for the verification of final designs, wrinkling tests 

which are truly representative of the actual configuration. 

involved, it is recor 

be performed on specimens 

The method presented here for the prediction of wrinkling should only be regarded as 

an approximate guideline. 
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2.2.1.2  Design Equations and Curves 

The following equation may be used to compute the approximate uniaxial compressive 

stress at which face wrinkling will occur in sandwich constructions having solid or 

foam cores: 

ffwr = Q 
"»ZEf Ec Gc 

L (l-^e3) 
(2.2-5) 

In cases where the amplitude of initial waviness is known, one can use the curves of 

Figure 2.2-3 to establish Q.   Whenever such information is unavailable, it is recom- 

mended that the value  Q = 0.50 be used to obtain a lower-bound prediction. 

For elastic cases, use Tj= 1.   Whenever the behavior is inelastic, the methods of 

Section 9 must be employed. 

When the facings are subjected to biaxial compression, it is recommended that one use 

the interaction formula 

Rx + Ry = 1 (2.2-6) 
where 

Ri 
Applied Compressive Loading in Subscript Direction, 
Critical Compressive Loading (when acting alone) in 

Subscript Direction 

(2.2-7) 

and the  y  direction corresponds to the direction of maximum compression.   This inter- 

action relationship is based on the information provided in Reference 2-1 for rectangular 

flat plates having very large aspect ratios.   For cases involving shearing stresses which 

are coplanar with the facings, it is recommended that the principal stresses first be 

computed and that these values then be used in the above interaction equation.   When- 

ever one of the principal stresses is tensile and the behavior is elastic, the analysis 

should be based on the assumption that the compressive principal stress is acting alone. 
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2.2.2   Sandwich With Honeycomb Core (Symmetric Wrinkling) 

2.2.2.1  Basic Principles 

As noted in Section 2.2.1.1, the results of Reference 2-9 apply only to sandwich con- 

figurations which have solid or foam cores.   However, the basic theory of that report 

is capable of extension to constructions having honeycomb cores and this is accomplished 

in Reference 2-7.   The extension is achieved by incorporating conditions which recog- 

nize that the honeycomb core elastic moduli in the plane parallel to the facings are 

very small in comparison with the core elastic moduli in the direction normal to the 

facings.   Full consideration was given to both the symmetric and antisymmetric wrin- 

kling modes along with the influences from initial waviness of the facings.   However, 

in this case it was found that, except for the region controlled by shear crimping (low q), 

symmetric wrinkling develops at stress levels which are lower than those at which the 

antisymmetric mode will occur.   Based on this observation, the development of Refer- 

ence 2-7 resulted in the following equation for the prediction of wrinkling for isotropic 

facings in sandwich constructions having honeycomb cores and subjected to uniaxial 

compression: 

<W = yEf!°/   „  (2-2-8) 

where 

wr 1 + 0.64 Kg 

SEC 
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and 

<Twr     =  Facing wrinkling stress, psi. 

Ec      =  Young's modulus of the core in the direction normal to 
the facings, psi. 

tf = Thickness of facing, inches. 

r\ = Plasticity reduction factor, dimensionless. 

Ef = Young's modulus of facing, psi. 

tc = Thickness of core, inches. 

S = Amplitude of initial waviness in facing, inches. 

Fc      =  Flatwise sandwich strength (the lower of flatwise core compres- 
sive, flatwise core tensile, and flatwise core-to-facing bond 
strengths), psi. 

Equation (2.2-8) can be used to plot a family of design curves of the form shown in 

Figure 2.2-4.   It should be noted that the curve for  Kg = 0  is an upper-bound classi- 

cal value which is based on the assumption that the facings are initially perfect.   This 

particular curve agrees very closely with the following symmetrical wrinkling equation 

recently obtained by Bartelds and Mayers [2-14] : 

«I* 
LOETTJ   <'■*> (2-2-10) 

Comparison of Equations (2.2-8) and (2.2-10) shows that, when Kg = 0, the former 

gives critical stresses which are approximately 5 percent less than those obtained by 

Bartelds and Mayers [2-14]. 

<rwr = 0.86 

Numbers in brackets [ ] in the text denote references listed at end of each major 
section (1; 2;  etc.) 
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'wr' 
»7Ef 

K«5 = 0 

-  K«5 = Constant 

Kö = Constant 

^Eftcy 

Figure 2.2-4.   Typical Design Curves for Face Wrinkling in Sandwich 
Constructions Having Honeycomb Cores 

In actual practice, curves of the type shown in Figure 2.2-4 do not prove to be very 

helpful since the  K,   values appropriate to particular structures are rarely known. 

Therefore, in order to provide a practical means for the prediction of face wrinkling 

in sandwich constructions having honeycomb cores, a lower-bound approach is taken 

in this handbook.   For this purpose, test data selected from References 2-7 and 2-10 

are plotted in Figure 2.2-5.   All of the specimens from Reference 2-7 failed within the 

elastic range.   Several of these failures occurred by means of shear crimping and 

these data were discarded.   For the remaining tests reported in Reference 2-7, three 

data points are plotted in Figure 2.2-5 for each group of nominally identical specimens. 

One point is plotted for the maximum test value for the group, one point for the mini- 

mum, and one point for the average.   The data from Reference 2-10 were selected in 

a similar manner with several added restrictions.   A number of these specimens 

wrinkled under highly inelastic conditions.   Since rather crude plasticity reduction 
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factors  (77= E^/Ef) were used in the data reduction, it was decided to plot data only 

for those specimens which wrinkled at stress levels where  (E^/Ef )   ? 0. 85.   In addi- 

tion, many of the test specimens of Reference 2-10 had very poor core-to-facing bonds 

as measured by flatwise tensile strengths.   It was therefore decided to plot data only 

for those specimens whose flatwise tensile strengths were at least equal to the flatwise 

compressive strengths.   Adhesive technology has now advanced to the point where, with 

proper care, one can usually select an adhesive system which satisfies such a require- 

ment. 

Based on the plot of Figure 2.2-5, the relationship 

/Ec tf \ 
°w = °-33Ui~H   (7?Ef) (2-2_11) 

has been selected here to provide safe design values.   This implies that a knock-down 

factor of approximately 0.4 is applicable to this v/rinkling phenomenon.   Obviously, 

this is not a rigorous approach to the problem and it would be advisable to base the 

design equation on a much wider selection of test data of specimens which were truly 

representative of contemporary practical designs.   Therefore, Equation (2.2-11) can 

only be regarded as a 'best-available" approach and it is recommended that, for veri- 

fication of final designs, wrinkling tests be performed on specimens that actually dup- 

licate the selected sandwich configuration.   The method presented here should only be 

regarded as an approximate guideline. 
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2.2.2.2  Design Equations and Curves 

The following equation may be used to compute the approximate uniaxial compressive 

stress at which face wrinkling will occur in sandwich constructions having honeycomb 

cores: 

where 

/ Ec % \* 
°-82[wrJ (7?Ef> 

O-      = N '  (2.2-12) wr i + 0.64 Kö 
v ' 

(5EC 

"-C x c 

In cases where the amplitude of initial waviness is known, one can either use these 

equations or the curves given in Figures 2.2-6 and 2.2-7 to establish the wrinkling 

stress.   Both of these figures are taken directly from MIL-HDBK-23 [2-16].   When- 

ever the initial waviness is unknown, it is recommended that the following equation be 

used to obtain a lower-bound prediction: 

a. wr °-S3vwd(7?Ef) (2-2_14) 

For elastic cases, use V = 1.   Whenever the behavior is inelastic, the methods of 

Section 9 must be employed. 

When the facings are subjected to biaxial compression, it is recommended that one use 

the interaction formula 

^x T ^y R^ + Ry = 1 (2.2-15) 

where 

Applied Compressive Loading in Subscript Direction Ri = Critical Compressive Loading (when acting alone) in' 
Subscript Direction 
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and the  y  direction corresponds to the direction of maximum compression.   This 

interaction relationship is based on the information provided in Reference 2-1 for 

rectangular flat plates having very large aspect ratios.   For cases involving shearing 

stresses which are coplanar with the facings, it is recommended that the principal 

stresses first be computed and that these values then be used in the above interaction 

equation.   Whenever one of the principal stresses is tensile and the behavior is elastic, 

the analysis should be based on the assumption that the compressive principal stress 

is acting alone. 
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2.3   SHEAR CRIMPING 

2.3.1  Basic Principles 

To understand the phenomenon of shear crimping, one must keep in mind that this 

mode of failure is simply a limiting case of general instability.   The equations for 

predicting shear crimping emerge from general instability theory when the analytical 

treatment extends into the region of low shear moduli for the core.   For example, the 

theoretical derivation of Reference 2-17, as reformulated in Section 4.2.1.1 of this 

handbook, yields the result that, when the two facings are of the same material, shear 

crimping will occur in axially compressed sandwich cylinders whenever 

Vc H   2 (2.3-1) 

where 

Vc = —— (2.3-2) 
"crimp 

h 2^/Ms 

°°=7?Efi   ^V(t1 + ts) <2'3-3> 

-        h8 

°"crimp      (t1 + t3)tc     xz (2.3-4) 

V =  Plasticity reduction factor, dimensionless. 

Ef  =  Young's modulus of facings, psi. 

h  =  Distance between middle surfaces of facings, inches. 

R  =  Radius to middle surface of cylindrical sandwich, inches. 

ta. and tg =  Thicknesses of the facings (There is no preference as to which 
facing is denoted by the subscript  1 or 2.), inches. 

Ve  =  Elastic Poisson's ratio of facings, dimensionless. 
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tc  =  Thickness of core, inches. 

Gv.7  =  Core shear modulus associated with the plane perpendicular to the 'xz 
facings and oriented in the axial direction, psi. 

The critical stress can be determined from the equation 

o-cr = Kccr0 (2.3-5) 

and, when the Inequality (2.3-1) holds true, Kc can be computed as follows: 

K„ =— (2.3-6) 
C       V vc 

Hence, 

^rimp ^ /o Q 7\ 
^cr =       op     ao = °crimp (2-3_7> 

Therefore, when the two facings are made of the same material, the following equation 

can be written for the critical stress for shear crimping in a circular sandwich cylinder 

under axial compression: 

a-     -  a- = 
n    G (2.3-8) 

°cr - ^crimp      {i, + l^) tc      xz l ' 

An equivalent result can be obtained from Reference 2-18 for sandwich cylinders sub- 

jected to uniform external lateral pressure. That is, where the two facings are made 

of the same material, one can write 

hs 

where 

°cr = °crimp = (tl + Ud t0    °yZ (2'3"9> 

G„,  =  Core shear modulus associated with the plane perpendicular to the 
axis of revolution, psi. 
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In addition, the development of Reference 2-19 leads one to the following formula for 

circular sandwich cylinders under pure torsion and having both facings made of the 

same material: 

h8 
rcr ~ Tcrimp _ /t   + t \ t       v

Gxz Gyz (2,s 10) 

It should be noted that, although Equations (2.3-8) through (2.3-10) were derived for 

sandwich cylinders, all of these final expressions are independent of curvature.   Thus, 

these equations have a general applicability which is not limited to the cylindrical con- 

figuration. 
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2.3.2  Design Equations 

The following equations may be used to compute the facing stresses at which shear 

crimping will occur in sandwich constructions having both facings made of the same 

material: 

a.       For uniaxial compression acting coplanar with the facings (see Figure 2.3-1), 

use 

where 

or- CM 
crimp      (h + ta)tc     ^ 

(2.3-11) 

Gij   = 
Core shear modulus associated with the plane perpendicular to 
the facings and parallel to the direction of loading, psi. 

cr, psi 

o-, psi 
a-, psi 

o-, psi 

Figure 2.3-1.   Uniaxial Compression 
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b.       For pure shear acting coplanar with the facings (see Figure 2.3-2), use 

h2 j  
Tcrimp = (t   + t ) t„  VGxzGyz 

(2.3-12) 

Figure 2.3-2.   Pure Shear 

The foregoing equations are valid regardless of the overall dimensions of the structure, 

in addition, no knock-down factors are required since shear crimping is insensitive to 

initial imperfections.   The predictions from these equations will be somewhat conserva- 

tive since their derivations neglect bending of the facings about their own middle sur- 

faces.   Although such bending is of negligible importance to most sandwich buckling 

phenomena, in the case of shear crimping this influence can be considerable. 

Further mention of the shear crimping mode of failure is made in the various sections 

on general instability included in this handbook. 
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3 
GENERAL INSTABILITY OF FLAT PANELS 

3.1    RECTANGULAR PLATES 

3.1.1    General 

As previously noted, one of the potential modes of failure for sandwich panels is that 

of general instability.   This occurs when the panel becomes elastically unstable under 

the application of certain types of in-plane loads.   Further, it should be noted, the 

loads which are critical for instability may or may not be of such magnitude as to 

cause a failure of the basic materials. 

The flat, rectangular sandwich panel represents that configuration for which the vast 

majority of fabrication and test data has been accumulated over the past decade.   This 

is probably due to the fact that this configuration was best adapted to the structural 

needs for a number of applications and that it represented the minimum in fabrication 

problems and costs as far as this type of construction is concerned.   By the same 

token, analytical solutions have been developed for a wide range of loading applications 

for flat panels, and an appreciable amount of testing for correlation with these solu- 

tions has been accomplished. 

As a consequence of this past work, it is now possible to employ the analytical solu- 

tions for flat panels, as given in MIL-HDBK-23, [3-1], with a high degree of con- 

fidence.   This view is supported by recommendations given in References 3-2 through 

3-7, inclusive, for basic panel design.   Therefore, with this background in mind, the 
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buckling coefficients, K, which will be given in this section for the various plate loading 

conditions will be those taken from the applicable sections of Reference 3-1, with no 

"knock down" factor to be applied to them. 

The development of plate buckling coefficients for sandwich construction requires the 

consideration of a number of factors, some are:   1) the degree of orthotropicity of the 

face plates, 2) the use of the same or of dissimilar materials for the face plates and, 

3) the degree of orthotropicity of the core material.   The general equations given in 

the following sections account for these possibilities; however, the curves showing K 

as a function of (a/b), V, the type of loading and edge support conditions will assume 

the use of isotropic faceplate materials since this is largely typical of aerospace 

vehicle design practices. 

In all cases, the final design of the sandwich panel must comply with the following four 

basic design principles, Reference 3-1; 

a. The sandwich facings shall be at least thick enough to withstand the chosen 
design stresses under the application of the ultimate design loads. 

b. The core shall be thick enough and have sufficient shear rigidity and 
strength so that over-all sandwich buckling, excessive deflection, and 
shear failure will not occur under the design loads. 

c. The core shall have high enough moduli of elasticity, and the sandwich 
shall have great enough flatwise tensile and compressive strength such 
that wrinkling of either facing will not occur under the design loads. 

d. If the core is a cellular honeycomb or constructed of corrugated material 
and dimpling of the facings is not permissible, the cell size or corrugation 
spacing shall be small enough so that dimpling of either facing into the 
core spaces will not occur under the design loads. 
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Other requirements include the use of moduli of elasticity and stress values repre- 

sentative of those values which prevail under the conditions of use.   Also, where the 

stresses are beyond the proportional limit, the appropriate reduced modulus of elas- 

ticity should be used. 

The following sections on specific types of panel loads define the appropriate equations 

for each particular situation and discuss useful limits and other considerations, as 

applicable.   A summary table, (Table 3-1), listing the panel instability equations given 

in the various parts of this section, along with a definition of terms, equation limitations 

if any, and references for the appropriate buckling curves immediately precedes the list 

of references to facilitate use of the manual for specific problem solution. 

Figure 3.1-1 shows elastic properties and dimensions for the typical sandwich panel 

under consideration in this section. 
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Figure 3.1-1.   Elastic Properties and Dimensional Notations 
for a Typical Sandwich Panel 
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3.1.2    Uniaxial Edgewise Compression 

3.1.2.1 Basic Principles 

The buckling coefficient equations and curves given here for uniaxial edgewise com- 

pression are those originally developed by Ericksen and March,  [3-8], and are in- 

cluded in the MIL-HDBK-23 documents, issued since then.   The basic principles and 

assumptions employed in the development of these general instability equations are 

noted in the references and are not repeated here except where required to limit their 

use because of the original restrictions imposed. 

The basic equations for calculation of the allowable sandwich panel edgewise com- 

pression loads are given in the following section.   Curves for panel buckling coeffi- 

cients for panels having isotropic faceplates and both orthotropic and isotropic cores 

for various panel edge support conditions follow the equations. 

3.1.2.2 Design Equations and Curves 

As previously noted, the equations presented in this section are those developed by 

Ericksen and March, and presented in MIL-HDBK-23, as well as in other documents. 

Supporting data such as pertinent assumptions and definition of terms are also in- 

cluded along with the equations. 

Sandwich Panels With Honeycomb Cores 

One of the basic assumptions used in the design and analysis of sandwich panels is 

that the face plates carry the inplane loads applied and that the core provides that 

shear support to the face plates required for them to act as a unit in preventing early 
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individual buckling.   From this, the edgewise compression capability of the panel is 

given by the following equations, which are taken from Section 5.3, Reference 3-1: 

N      =   (7T3/b8)(K)(D) (3.1-1) 
cr 

where D is the sandwich bending stiffness.   Solving this equation for the facing stres- 

ses gives the following: 

(E(t1)(E^t2) 2        , 
F = ^K          iiLl   l^s* (3.1-2) 
*ci,2       ff *    (Et.+E^)2    (b2)       X 

For equal facings: 

Tc 4      (bp X 

where 

^K SE' 
F     = .-—JM--1 (3.1-3) 

K   = buckling coefficient  =  K   + K , (see definitions in following 6 F       M 
work). 

E ' =   (E' E')~ =  effective modulus of elasticity for orthotropic v a  b 
facings. 

X =  ^-^Mb) 

„    „    =  Poisson's ratio as measured parallel to the subscript direction. 

f,l,2   =  subscripts denoting facings. 

h,b  =  see Figure 3.1-1. 

Since the buckling coefficient curves to be presented here are being limited to the case 

of isotropic face plates, which is representative of the large majority of structural 

sandwich applications, the affected equations given previously are revised below for 

this situation. 
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For isotropic facings: 

E'    =  E'    = E.' = TJ.E.; andu .   =  M .   =  M 
ai bi l        '1 i' ^ai       %i       Mi 

where r\. = plasticity correction factor (see Section 9.0). 

As noted above the buckling coefficient for the panel under this loading condition is 

given by the equation 

K =  KF+KM 

where 

_   (EjV + E&^pk+Ek) 
K

F I^ETMETyP5— SLO (3-1-4> 

K
M    =  Kj^ for the case where V = 0 [see Figure (3.1-16)] (3.1-5) 

o 

Values of Kp are generally quite small relative to K^, thus a safe first approximation 

is to assume it is equal to zero until a final panel check is made.   On this basis, K 

= ^M may be USed t0 develoP initial face plate and core thicknesses for the panel. 

K^. is a theoretical coefficient which is dependent on the sandwich panel bending and 

shear rigidities and panel aspect ratio.   Other factors which influence the magnitude 

of this coefficient include the panel edge support conditions and the orthotropicity of 

the core.   A discussion of these considerations along with development of the equations 

for calculation of this coefficient are given in References 3-1 and 3-8.   This manual 

does not propose to repeat these equations here; however, the curves shown in Figures 

3.1-2 through 3.1-15 give values of K^ as a function of edge support condition, panel 

aspect ratio, and the bending-shear rigidity parameter, V which is defined as follows 

v=w <3a-6> 
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which further can be written as: 

7T2t   E^E^ 
v=, 2 __ (3.1-7) 

Xb2Gc(E(t1+E^t3) 

7T3t   E't 
V  = C„       (for equal-facings) (3.1-7a) 

2Xb2G    v 

c 

where U is sandwich shear stiffness; Gc is the core shear modulus associated with the 

axes parallel to direction of loading (also parallel to panel side of length a) and per- 

pendicular to the plane of the panel. 

An indication of the influence and importance of the core shear modulus may be obtained 

from inspection of the above equations for V and the curves giving values of K^. given 

later.   Holding all terms constant except G , an increase in its value reduces the value 

of V to be used with the buckling coefficient curves, this reduced value then calls for 

an increased value of K.. 

Sandwich Panels With Corrugated Core 

The equations and formulas previously given are for sandwich panels with honeycomb 

cores; however, they may be adapted to cover the case of panels with corrugated cores 

by means of the following modifications: 

a. For the case where the corrugation flutes are oriented normal to the direc- 
tion of the load application, the shear modulus in the direction parallel to 
the flutes, Gcb, is very high with respect to the shear modulus parallel to 
the direction of loading, G    ; thus, the previous curves may be used by 
letting Gcb = oo and R = Gc°?Gcb = 0. 

b. For the case where the corrugation flutes are parallel to the direction of 
loading, the corrugations may be assumed to carry load in a direct pro- 
portion to their area and elastic modulus.   The parameter V for this case 
is replaced by the parameter W, which is defined as 
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TT3tc(E^)(E^) 

Xb3Gcb(E^+E^ 

c 
W  "  \wn    /T?'+   x T?'+ \ (3.1-8) 

Or, for equal facings, 

W  = T2t
c
EfY2Xb2Gcb (3.1-8a) 

Values of 1^ as a function of (b/a), R = (Gc /G   ), and V, or W, are given for various 

edge support conditions in Figures 3.1-2 through 3.1-15, with Figures 3.1-14 and 

3.1-15 representing the case of panels having corrugated cores. 

Figure 3.1-16 gives values of K as a function of panel aspect ratio and edge support 

conditions for use in determining values of IC in order that final values for K may be 

obtained for specific designs. 

The curves and equations just given may be used in developing a panel design in addi- 

tion to checking the adequacy of an existing design; however, this is a slow iterative 

process.   As a consequence, this manual recommends the use of the design-procedures 

approach described in Reference 3-1 since it was specifically developed to expedite the 

new design process. 
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Figure 3.1-4.   KM for Sandwich Panel with Ends and Sides Simply Supported, 
Isotropie Facings, and Orthotropic Core, (R = 2.50) 
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Figure 3.1-5.   1% for Sandwich Panel with Ends Simply Supported and Sides 
Clamped, Isotropie Facings, and Orthotropic Core, (R = 0.40) 
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Figure 3.1-7.   KM for Sandwich Panel with Ends Simply Supported and Sides 
Clamped, Isotropie Facings, and Orthotropic Core, (R = 2.50) 
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Figure 3.1-8.   KM for Sandwich Panel with Ends Clamped and Sides Simply 
Supported, Isotropie Facings, and Orthotropic Core, (R = 0.40) 
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Figure 3.1-9. KM for Sandwich Panel with Ends Clamped and Sides Simply 
Supported, Isotropie Facings, and Isotropie Core, (R = 1.00) 

3-17 



Figure 3 1-10.   K T for Sandwich Panel with Ends Clamped and Sides Simply 
■ : Supported, Isotropie Facings, and Orthotropic Core, (R-2.50) 
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Figure 3.1-11.   KM for Sandwich Panel with Ends and Sides Clamped, Isotropie 
Facings, and Orthotropic Core, (R = 0.4Ö) ~~ 
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Figure 3.1-12.   % for Sandwich Panel with Ends and Sides Clamped, Isotropie 
Facings, and Isotropie Core, (R = 1.00) 
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Figure 3.1-13.   KM for Sandwich Panel with Ends and Sides Clamped, Isotropie 
Facings, and Orthotropic Core, (R - 2.50) 
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Figure 3.1-14.   \. for Simply Supported Sandwich Panel Having a Corrugated 
Core.   Core Corrugation Flutes are Perpendicular to the 
Load Direction 
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Figure 3.1-16.   KM   for Sandwich Panel with Isotropie Facings 
in~Edgewise Compression 
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3.1.3    Edgewise Shear 

3.1.3.1 Basic Principles 

As noted earlier in Section 3.1.1, sufficient analysis, design, and testing of flat sand- 

wich panels has been accomplished to demonstrate the adequacy of the analytical 

approaches presently in use.   Thus, the panel buckling coefficient equations and 

curves given in the following paragraphs for edgewise shear are those taken from the 

MIL-HDBK-23 documents presently in use.   These equations were originally developed 

by Kuenzi and Ericksen [3-13] and employ the same general assumptions as those 

described in Section 3.1.1.   Specific limitations or restrictions on the use of these 

equations will be noted where these require consideration. 

The basic equations for use in calculation of the allowable sandwich panel edgewise 

shear loads are given in the following section along with applicable background data 

and assumptions.   Design curves and buckling coefficients for panels having isotropic 

faceplates and both ortho-tropic and isotropic cores for both simply supported and 

clamped edge conditions follow the equations. 

3.1.3.2 Design Equations and Curves 

The design equations presented here are taken from Reference 3-1 and 3-13.   Support- 

ing data and design constraints are also noted and discussed as required. 

The edgewise shear load carrying capability of a sandwich panel is given by the follow- 

ing equation: 

NpT,  =   <ffW(K )(D) (3.1-9) 
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where 

N        =  critical edgewise shear load, lb per inch 
scr 

(3.1-10) 

D  =  sandwich bending stiffness 

Solving this for the facing stresses gives the following equation: 

(Ejt1)(E^)(h8)E^2 

Fsi)2  =  ^\     (Ek + E£ya(b^X 

Or, for equal facings 

7T2K (h^Ej 
F    =  L_ L (3.1-10a) 

s 4(b2)X 

where 

E'  is the effective modulus of elasticity of facing at stress Fs = 77E 

r\ = plasticity correction factor (Section 9.0) 

X = 1 - H2 

M = Mi = Ms = Poisson's ratio of facings 

h  = distance between facing centroids (Figure 3.1-1) 

b  = panel width (sa) (Figure 3.1-1) 

K    =  K   +K     (Note:   These terms differ from those of Section 3.1.2) 
s F       M 

where 

Or, for equal facings 

(E^ + E^ME^+E^KM 
K     =   ; j s  (3.1-11) 
*F 12(Et^t,) h2 

K     =     '        ° (3.1-lla) 
HF 3hs 

KM   = value of K    for V = W = 0 
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The equation defining the value of K. is quite complex and involved, being dependent 

on panel aspect ratio, (a/b), the number of half-waves, (n), for the minimum energy 

buckle pattern, and the panel bending and shear rigidity parameter, (V, orW).   This 

manual proposes to follow general practice in the literature and provide curves only 

for the definition of this buckling coefficient.   Those interested in the basic equation 

and its development will find this in Reference 3-13. 

Values of K    are given in Figures 3.1-17 through 3.1-24 as a function of the panel 

aspect ratio and the parameter V, or W, for various panel edge support conditions. 

These figures cover panels with isotropic faceplates and both isotropic and orthotropic 

core, including panels using corrugated flutes for cores.   Values of the buckling coeffi- 

cient, KM , may also be obtained from the same set of figures. 

The equations defining the parameters V and W are the same as those given in the 

previous section for edgewise compression; however, they are repeated below to 

facilitate their use.   The equation numbers previously assigned to them are retained 

below 

(E&)(E^)(r)tc 

V  = XCEft + E^t2) <b") Gca P-1"7* 

V  = 7T2t E't/2Xb2G (equal facings) (3.1-7a) 
C     II C3, 

For a sandwich panel with a corrugated core in which the corrugation flutes are parallel 

to the edge of length a, the parameter V is replaced by the parameter W which is de- 

fined as follows: 

3-27 



T?tc (Eft) (E^) 

xb2Gcb(Ejt1 + E;y W=—^-—77—wTT (3-1-8) 

Or, for equal facings 

W  =  T^t E't72\b8G , (3.1-8a) 
C     f f CD 

In checking a particular design for the critical buckling stress, Fgcr, Figures 3.1-17 

through 3.1-21 should be used for those panels having all edges simply supported. 

Curves of K^ for sandwich panels having all edges clamped are given in Figures 

3.1-22 through 3.1-24.   These curves may be interpolated in order to obtain the 

buckling coefficients for other values of core orthotropicity, (R = G
ca/

G
cb)> and inter- 

mediate values of V or W. 

It should be noted that if the resulting value of F       is above the proportional limit scr 

value, the value of E' shall be an effective value based on that stress level, and this 

effective value shall be used in computing the value of V, Equation (3.1-7) or (3. l-7a) 

or W, Equation (3.1-8) or (3.1-8a), as the case may be.   This same effective value 

for E' shall also be used in Equation (3.1-10), or (3. l-10a) when calculating the criti- 

cal panel buckling stress.   Thus, several interations will be required to establish the 

actual value of F       in those cases where it exceeds the proportional limit, 
scr 

The equations and curves just given may be used in the development of panel designs 

as well as in checking an existing design; however, as was the case for uniaxial com- 

pression, this is a lengthy iterative process.   Thus, this manual recommends the use 

of the design-procedures approach described in Reference 3-1 for those cases where 

the initiation of new designs is required. 
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Figure 3.1-18.   KM for a Sandwich Panel with All Edges Simply Supported, 
and an Orthotropic Core, (R = 2.50) 

3-30 



K 
M 

10 
_».   _*.   -fc.  —ft. 

J 
" 1 
-   1 

1 
•1 

2.5 G 
c 

IT     ,    ■ / 
9 

/ 

1         >'" / 
8 

V—b—H 

7 

^**0 

^ 
5* 

0 

5 

4 

3 

<s 

1 

0 

0.05 

0.10 

0.20 

0.40 

0.2 0.4       , 0.6 
b 

0.8 1.0 

Figure 3.1-19.   KM for a Sandwich Panel with All Edges Simply Supported, 
and with an Orthotropic Core, (R = 0.40) 
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Figure 3.1-20.   KM for a Sandwich Panel with All Edges Simply Supported, 
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Figure 3.1-21.   KM for a Sandwich Panel with All Edges Simply Supported, 
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Isotropie Facings and Orthotrqpic Core, (R=2.50) 
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Isotropie Facings and Ortho-tropic Core, (R = 0.40) 
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3.1.4    Edgewise Bending Moment 

3.1.4.1   Basic Principles 

The application of an edgewise bending moment to a flat, rectangular sandwich panel 

produces a loading condition such as that shown in Figure 3.1-25.   This represents a 

somewhat different situation from the ones previously covered, since the tension loading 

on one half of the panel represents a stabilizing effect.    The edge compression load 

on the other half of the panel varies linearly from zero at the neutral axis to a maxi- 

mum value, N, at the panel edge.   It is this compression loading which can produce 

panel buckling in the same fashion as the uniaxial compression case; however, the 

presence of the panel edge support along the line of maximum loading forces consider- 

ation of a more complex failure mode. 

These failure mode considerations for this type of loading have been covered in the 

development of analytical techniques for the evaluation of flat plates (Reference 3-17). 

Also, as has been previously noted, sufficient analytical development and testing has 

been accomplished on flat, rectangular sandwich panels to enable the use of the buckling 

coefficients given in Reference 3-1 for this loading condition with complete confidence. 

The general equations for the behavior of flat, rectangular honeycomb sandwich panels 

under this loading condition were developed by Kimel [3-15] while whose applicable to 

panels with a corrugated core were developed by Harris and Auelman, [3-14] and [3-16]. 

The assumptions employed in the development of the basic equation for the panel sta- 

bility coefficient for this loading condition are generally the same as those described 
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in Section 3.1.1, with one particular exception.   This exception requires that the 

critical design faceplate stress, Fcr, shall not exceed the elastic buckling stress for 

the faceplates.   This requirement stresses the fact that the analysis is based on a 

linear loading variation across the edge of the panel.   Once the elastic buckling stress 

is exceeded this variation is no longer linear, -md extrapolation to a buckling stress 

beyond the elastic range of facing stresses cannot be done by using an effective elastic 

modulus such as the tangent modulus, in the buckling formulas.   Since the proper 

extrapolation to stresses beyond the elastic range must consider the variation of 

effective elastic modulus across the panel width associated with the stress variation, 

the equations and buckling coefficients given here are thus strictly applicable only to 

buckling at facing stresses within the elastic range. 

The basic equations to be used in the calculation of the allowable sandwich panel edge 

loading are given in the following section.   Design curves and buckling coefficients 

for panels having isotropic faceplates and both isotropic and orthotropic cores based 

on simply supported edge conditions follow these equations. 

3.1.4.2    Design Equations and Curves 

The design equations presented here are those taken from Reference 3-1.   Background 

assumptions and any applicable design constraints ai*e also covered. 

Using a linear stress variation as previously discussed, the value of N at the panel 

edge is given by the equation: 

N  =   6M/b2 (3.1-12) 
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where 

N = load per unit width of edge 

M = edgewise bending moment 

b  = panel width (Figure 3.1-25) 

The edgewise bending load capability of a sandwich panel is given by the following 

equation, taken from Reference 3-1: 

Ncr =  («W^XD) (3.1-13) 

where 

N      = critical edgewise loading, lb per inch 

D  = sandwich bending stiffness 

The critical faceplate stresses are obtained by solution of the previous equation and 

are as follows: 

- ^ 

Or, for equal facings, 

where 

F  =l^Mi (31_14a) 
c 4     (b53) X ( ' 

E = modulus of elasticity of facing 

X = (1-jz2) 

p = Poisson's ratio of facings:  ß  = a  assumed above 

h = distance between facing centroids 

b = length of loaded edge of panel 

K    = K-p + Kjyj (Note: The values for these buckling terms differ 
from those given in Sections 3.1.2 and 3.1.3) 
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(ßtf + E^) (Eltl + E2t3) 
K     =- T^  K,, (3.1-15) 
*F 12(E1t1)(EgtB) (h8) M0 

Or, for equal facings 

(tf^KMo- 
KF            2hs 

where 

s = value of K    for V = W = 0 

(3.1-15a) 

Values of K    for panel buckling are given in Figures 3.1-25 through 3.1-28 as a func- 
M 

tion of the parameter V or W, and the panel aspect ratio. These cover panels having 

Isotropie faceplates using both Isotropie and orthotropic cores, including those using 

corrugated flute-type cores. 

The equations defining the parameters V and W are the same as those given in the 

previous section for edgewise compression; however, they are repeated below to 

facilitate their use.   The equation numbers previously assigned to them are retained 

below; however, values of E' are replaced by those of E for this case. 

(E^ME^H^t 
V  = X(E1t1+Est3)(b

2)G 
(3.1-7) 

ca 

V  =  irH  EiJ2\b2G (equal facings) (3.1-7a) 
c   f r ca 

For a sandwich panel with a corrugated core in which the corrugation flutes are parallel 

to the edge of length a, the parameter V is replaced by the parameter W, which is de- 

fined as follows: 
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T^t   (E1t1)(E2t2) 
w  = 1  (3.1-8) 

Xb«Gcb(E1t1+E3t2) 

Or, for equal facings, 

W = 7T2tcEfy2Xb2Gcb (3.1-8a) 

A particular design may be checked by using the graphs given in Figures 3.1-25 through 

3.1-28 to determine the appropriate value of the buckling coefficient to use in Equation 

(3.1-15), or (3.1-15a) to compute the critical buckling stress, Fcr.   This approach, 

which involves trial and error solutions by iteration, may also be employed to develop 

new panel designs; however, this manual recommends that the design-procedures 

approach described in Reference 3-1 be considered since it was set up to facilitate 

such design calculations. 
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3.1.5    Other Single Loading Conditions 

A search of the literature, as well as contacts with a number of people who have been 

active in the analytical methods field for this type of construction, revealed no other 

single loading conditions which might lead to panel instability problems.   Consequently, 

the previously'described loading conditions represent the extent of the flat panel sta- 

bility data which will be given here for individual loading cases. 
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3.1.6    Combined Loading Conditions 

3.1.6.1    Basic Principles 

A study of the effects of combined loadings on the buckling of flat sandwich panels 

requires the consideration of a number of factors.   Some are: 

a. The mode of failure of the panel under each of the applied loads. 

b. The interaction between different modes for precipitation of panel 

buckling or failure. 

c. The influence of variations in the core shear rigidity values on the 

interaction equations for panel instability failure under combined 

loadings. 

Since little specific testing for biaxial instability modes has been accomplished for 

flat sandwich panels, this part of the manual will provide analytically developed 

equations for combination of the stress ratios which are conservative for most appli- 

cations.   Additionally, some discussion of the considerations involved is included 

along with appropriate references in case more specific solutions or background is 

needed. 

The equations given on the following pages cover the interaction relationships between 

the stress ratios, (R. = N./N.    ), for each of the separate loadings which produce 

failure by overall panel instability under the action of the combined loads.   For the 

stress ratio relationships which produce panel failure by local instability only, refer 

to Section 2.   These latter equations and pertinent discussion are not repeated here 
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although the specific equation number and report page are listed below for each of the 

local instability modes: 

a. Intracellular Buckling:    Equation (2.1-6), Page 2-7. 

b. Face Wrinkling (Asymmetric):    Equation (2.2-6), Page 2-26. 

c. Face Wrinkling (Symmetric):    Equation (2.2-15), Page 2-35. 

It should be noted that there are no known data available for potential panel failures 

which might occur as a result of interaction between a local instability situation 

arising from the loading applied along one edge in conjunction with a general insta- 

bility problem arising from the loading applied along the panel edge perpendicular 

to the first one.   This situation might occur for panels having very high aspect 

ratios; however, most of these would also indicate a potential local instability failure 

under the action of the combined loads.   In all cases, however, as has been previously 

noted, tests should be run to substantiate a final design in all cases where there is 

some question as to the structural adequacy of the sandwich component. 

The effects of plasticity must be accounted for in calculating the stress ratios, R., to 

be used in the interaction equations which are given in later paragraphs.   Reference is 

herewith made to the discussion and recommendations given in Section 9.2, COMBINED 

LOADING CONDITIONS, in this report and in particular to Equation (9.2-1) or (9.2-la). 

Either of these equations define an effective uniaxial stress, CT., for use in determining 

an effective plasticity reduction factor which accounts for the effects of the biaxial 

stress field.    Once the value of a. is known, the plasticity reduction factor, TJ, may 

be calculated by means of Equation (9.2-3). 

3-48 



3.1.6.2    Design Equations and Curves 

The design equations and curves for combined loading conditions are separated into 

those which should be used for sandwich panels having honeycomb cores and those to 

be used with panels having corrugated cores.   Supporting references are given for 

each type and loading condition along with any limitations or restrictions on the use 

of the interaction equation. 

Sandwich Panels with Honeycomb Cores 

The interaction relationships between the stress ratios which define the onset of general 

instability buckling of honeycomb core panels under combined loadings are complex 

functions of a number of factors.   Some of these will be covered briefly here.   One of 

the prerequisites for the development of the interaction equation is the determination 

of the number of half-waves in both the x and y directions for minimum energy plate 

buckling.   Since each of these is a function of not only its relationship with the other 

but is also dependent upon the core shear rigidity parameter, V, the panel aspect 

ratio, panel edge support considerations, etc., the establishment of general equations 

covering all of these influences presents a formidable problem. 

In view of the complexity involved in an exact definition of combined load interactions, 

the writers of this manual propose the use of the following simplified stress ratio 

relationships for panel buckling.   These give somewhat conservative results over the 

typical range of aerospace application and have been recommended for general use, 

[3-1]. 
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A.      Biaxial Compression.    The following formula is recommended for estimating 

buckling of a panel subjected to biaxial compression: 

R      +R     =1 (3-1-16) 
ex        cy 

where 

R    =  N/N 
c cr 

N  =  Loading along panel edge, lbs/inch. 

N      =  Critical loading along panel edge, lbs/inch.   (See Equation 
cr       3.1-1.) 

x,y  =  Subscripts denoting direction of loading.   (See Figure 3.1-1.) 

A plot of Equation (3.1-16) is given in Figure 3.1-29 to facilitiate its use in 

making design checks. 

As noted in References 3-1 and 3-23, the above equation is correct for square, 

isotropic sandwich panels for which V « 0.   It becomes appreciably conservative 

for panels of large aspect ratio, (a/b * 3.0) and for panels bordering on the weak 

core regime (V a 0.3).   For panels with aspect ratios of 2.0 or less, and which 

have reasonably stiff honeycomb cores, Equation (3.1-16) provides a satisfactory 

method for prediction of the onset of panel buckling. 

B.      Bending and Compression.    Equation (3.1-17) provides a sufficiently reliable 

method for the estimation of panel buckling under the action of combined bending 

and compression loads. 

R      +(R     )3/3   =   i (3.1-17) 
ex     v  Bx' 
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where 

R    =  N/N        (See definition of Terms for Equation 3.1-16.) 
C C J7 

R     =   (N/N    ),_     ,. 
B cr bending 

N  =  Load per unit width of edge due to edgewise bending, lbs/in. 

N      =  Critical edgewise loading on panel due to bending moment, 
lbs/in.   (See Equation 3.1-13.) 

Figure (3.1-30) plots the interaction relationship given by Equation (3.1-17) to 

enable its ready use. 

References 3-19 and 3-23 are recommended, in case more accurate analysis 

of this loading combination is desired. 

C.      Compression and Shear.    The following interaction formula furnishes a depend- 

able method for the prediction of panel buckling under this particular combination 

of loads: 

R   +(R )2 =   1 (3.1-18) 
c        s 

where 

R     = N/N        (See definition of terms for Equation 3.1-16.) c cr 

R     =   (N /N      ) 
s s    scr 

N     = Shear loading per unit width of panel edge, lbs/in. 
s 

N =  Critical edgewise shear loading, lbs/in.   (See Equation 3.1-9.) scr 

Equation (3.1-18) is plotted in Figure 3.1-31 to enable it to be more easily used 

in the solution of specific problems.   References 3-21 and 3-23 develop this 

interaction relationship in greater depth for those needing this information. 
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D. Bending and Shear. The following interaction equation represents a close 

approximation of the buckling behavior of panels under combined edgewise 

bending and shear loads. 

where 

(R  )2+(R )2 =   1 (3.1-19) 
B s 

R     =   (N/N    ) These terms are defined as before for 
B cr bending       Equation (3.1-17). 

R    =  (N /N      ) As previously defined for Equation (3.1-18). 
s s    scr; 

Again, as for the previous combined loadings, Equation (3.1-19) is plotted in 

Figure 3.1-32 to make it more easily and readily usable.   Reference 3-19 pro- 

vides additional background information on the development of this interaction 

equation. 

Sandwich Panels with Corrugated Cores 

The interaction equations for predicting the onset of general instability failure for 

sandwich panels with corrugated cores involve the consideration of a number of com- 

plex relationships also, as for the honeycomb core case.   The same influences prevail 

for fluted corrugations as before, with the additional consideration that the core shear 

modulus normal to the direction of flute orientation is negligible in comparison to the 

shear modulus measured parallel to the flutes.   Also, the ability of the corrugations 

to carry axial loading when it is applied along the axis of the flutes, further compli- 

cates the problem since the distribution of this loading between the faceplates and the 

flutes depends on the geometry and material thicknesses. 
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In view of the magnitude of the problem involved in developing specific equations for 

the interaction relationships, this manual will take advantage of the extensive studies 

in this area performed by Harris and Auelman, [3-14 and 3-16].   The latter reference 

presents interaction equations for the prediction of the onset of panel buckling in the 

form-of curves relating the buckling coefficients to each other as a function of panel 

aspect ratio, the core bending-shear rigidity parameter, W, the relation between load 

direction and flute orientation, and the ratio of the loading carried by the flutes with 

respect to that carried by the faceplates.   These interaction curves are repeated here 

in Figures 3.1-33 through 3.1-42 for several values of the shear rigidity parameter, 

W, and for the following additional relationships:   1) Panel aspect ratio, a/b = 1/2, 

1.0, and 2.0, and 2) Amount of axial load carried by the core corrugations is negligible 

with respect to that carried by the faceplates, i.e., D /D = 0.   (D   = bending stiffness c c 

of corrugations, and D = bending stiffness of sandwich panel.) 

A discussion of each of the sets of interaction curves follows. 

A.      Biaxial Compression.    Interaction curves relating the buckling coefficients for 

this combined load condition are given in Figures 3.1-33 through 3.1-35. 

Buckling coefficients for other panel aspe^ ratios and different values of W 

may be obtained by interpolation. 

The following example problem is offered to demonstrate how these curves may 

be used to predict the onset of panel buckling. 

Given:    Panel with N   = 2000 lbs/in, N   = 400 lbs/in, a = 30 in, b = 60 in, 
x y 

D = 3.0 x 10B lbs/in2, use W = 0 for example problem. 
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Figure 3.1-33 is used for this case since (a/b) = 1/2.   The top line of this figure 

applies since W = 0.   The interaction equation takes the following general form: 

or 

R     +R      £l (3.1-20) 
ex       cy 

N N 
—  +       y    si (3.1-21) 

N N 
xcr ycr 

where 

R    ,R      = Stress ratios for loads in subscript directions, dimensionless. 
ex    cy 

N        =   Critical panel loading for loading applied in the x direction, = 
xcr 

(TTW) (K ) (D), lbs per inch. 

N =   Critical panel loading for the y direction, = (iffi)2) (K ) (D), 
^ lbs per inch. 

K , K =  Buckling coefficients for loading parallel to the subscript 
y       direction. 

Ef'(tf)(tc+tf)2 

D = Sandwich bending stiffness  =  2(1-   ^  for equal facings. 

W = IT2 (t ) (Ef') (tf)/2 (1 -fip (b2) Gcb  for equal facings. 

E' =  Effective Young's modulus for faces, psi. 

G =  Core shear modulus in the direction parallel to the flutes, psi. 
cb 

t =  Thickness of core, inches, 
c 

t =  Thickness of faceplates, inches. 

n =  Poisson's ratio of faceplates. 

a,b =  Panel dimensions, inches. 
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Substituting in Equation (3.1-21): 

N                             N 
x    + 1    £1.0 (3.1-22) 

(Kx)(772)D/b2)      (K ) (7r2D/b2) 

and, letting 

then 

r = N /N 
y   x 

Nxb2\r  1 

^D /lKx 
+ — 1 K 

yJ 
£ 1.0 

(3.1-23) 

(3.1-24) 

Since D, b, N , and r will be known for the design in question, and K   and K 

may be obtained from the appropriate curve, Equation (3.1-24) can be used in 

checking the panel stability on the basis that the panel margin of safety is the 

same for each loading direction.   Thus, 

(M.S.)    =  (M.S.) (3.1-25) 
x       v y 

From which 

'Nxcr\     1>0  =   /V\ _ 1>0 

or 

then 

N    / \   N 
x / \    y 

N     )    IN I 
xcr /        \   x / 

(K ) (7T2D/b2) K 

(3.1-26) 

I—: =  r  = -^ (3.1-27) 

(K ) (l7sD/bs) Kx 
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Returning to the data given for the example problem to demonstrate the method 

for checking panel stability: 

r  =  N /N    =   (400/2000)   =  (K20 
y   x 

K /K    =  0.20, from Equation (3.1-27) 
y   x 

Using Figure 3.1-33, erect a line passing through the origin and having a slope 

ofK/K   =0.20 and extend it until it intersects the line for W = 0.   The coor- 
y   x 

dinates of this intersection point, as taken from the figure, are:  Kx = 6.0, 

andK   = 1.2. 
y 

Then, 

N =  K   (ir3D/b2)=   (6.0)^x3.0 x 105/602) 
xcr x 

N        =  (6.0) (822.0)   =  4930 lbs/inch 
xcr 

N =  K   (irsD/b2)   =   (1.2) (822.0)   =  986 lbs/inch 
ycr y 

Solving Equation (3.1-21) for a panel stability check: 

!^°_ +i°l .   0.406   +   0.406   =   0.812 
4930       986 

Since the total is less than 1.0, the panel is stable under the applied loads.   The 

margin of safety for panel buckling is:  M.S. = (1.0/0.812) - 1.0 = +0.232. 
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B. Combined Compression Along Core Flutes and Shear.    Figures 3.1-36 through 

3.1-38 give curves showing the interaction relationships between the buckling 

coefficients for panels loaded in this manner.   Curves for other panel aspect 

ratios and values of the shear rigidity parameter may be developed by inter- 

polation from those given.   Panel stability checks for this combined loading 

condition are made in the same manner as for the biaxial compression case. 

This is accomplished by handling the calculations for the R   term in the inter- 
s 

action equation in the same way as was done for the R     term in the example 

given on page 3-53. 

C. Combined Compression Normal to Core Flutes and Shear.    Interaction curves 

for the buckling coefficients covering this particular combination of loads are 

given in Figures 3.1-39 through 3.1-41.   These curves may be interpolated to 

obtain values for the specific design under study and the stability checks may 

be made in a similar fashion to those for the biaxial compression case.   The 

method to be used in performing design checks on panels loaded in this manner 

is the same as that noted in item (B) above. 

D. Combined Biaxial Compression and Shear.   Figure 3.1-42 shows the relation- 

ships for the compression and shear buckling coefficients for this loading con- 

dition.   These curves are for a square panel only, however, as may be noted 

from the small change in the values of K  between the various values of the 
y 

shear rigidity parameter, W, approximate interpolations may be made on the 

basis of ratios obtained from the curves of Figures 3.1-36 through 3.1-38. 
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Panel stability checks are made in basically the same manner as for the example 

problem given on page 3-53, except that the stress ratio, R    , is handled differ- 
cy 

ently.   The basic interaction equation for this condition takes the following 

general form: 

R     +R     +R    <. 1 
ex       cy       s 

where 

R  and R  are as defined on page 3-54. 
ex    cy 

R  = (N /N  ) = [N /(ir'/bs)(K)(D)] 
s    xy scr     xy       s 

K    = buckling coefficient for shear 
s 

Since, as may be seen in Figure 3.1-42, K   is a function of W only for this case 

and is independent of the values of K   and K , the value for R     may be calcu- 
x s cy 

lated immediately and the interaction equation put in the following form: 

R     + R    =   (1.0 - R    )   :   Or, R     + R    =   C 
ex       s cy' ex       s 

The design check may now be performed in the same way as for the example 

problem on page 3-53, if the R   term and calculations are handled in the same 
s 

wav as the R     term and calculations were handled for the example.   It is to be 
cy 

noted, however, that the term on the right side of the equation, C, has a value 

which is less than 1.0 and this value should be used in place of the 1.0 used in 

the example.   Thus, assuming R    =0.10, then C = 1.0-0.1 = 0.9, and the 

margin of safety for panel buckling as calculated on page 3-57 for the example 

would now become: 

M.S.   =   (0.90/0.812) - 1.0   =   +0.109 
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Figure 3.1-29.   Interaction Curve for a Honeycomb Core Sandwich 
Panel Subjected to Biaxial Compression 
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Figure 3.1-30.   Interaction Curve for a Honeycomb Core Sandwich 
Panel Subjected to Bending and Compression 

3-60 



Figure 3.1-31.   Interaction Curve for a Honeycomb Core Sandwich 
Panel Subjected to Compression and Shear 
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Figure 3.1-32.   Interaction Curve for a Honeycomb Core Sandwich 
Panel Subjected to Bending and Shear 
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Figure 3.1-33.   Buckling Coefficients for Corrugated Core Sandwich 
Panels in Biaxial Compression (a/b = 1/2) 
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Figure 3.1-34.   Buckling Coefficients for Corrugated Core Sandwich 
Panels in Biaxial Compression (a/b « 1.0) 
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Figure 3.1-35.   Buckling Coefficients for Corrugated Core Sandwich 
Panels in Biaxial Compression (a/b = 2.0) 
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32.0 

Figure 3.1-36.   Buckling Coefficients for Corrugated Core Sandwich 
■ Panels Under Combined Longitudinal Compression 

and Shear with Longitudinal Core (a/b = 1/2) 
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Figure 3.1-37.   Buckling Coefficients for Corrugated Core Sandwich 
Panels Under Combined Longitudinal Compression 
and Shear with Longitudinal Core (a/b = 1.0) 
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Figure 3.1-38.   Buckling Coefficients for Corrugated Core Sandwich 
Panels Under Combined Longitudinal Compression 
and Shear with Longitudinal Core (a/b = 2.0) 
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Figure 3.1-39.   Buckling Coefficients for Corrugated Core Sandwich 
Panels Under Combined Longitudinal Compression 
and Shear with Transverse Core (a/b = 1/2) 
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Figure 3.1-40.   Buckling Coefficients for Corrugated Core Sandwich 
~ Panels Under Combined Longitudinal Compression 

and Shear with Transverse Core (a/b = 1.0) 
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Figure 3.1-41.   Buckling Coefficients for Corrugated Core Sandwich 
Panels Under Combined Longitudinal Compression 
and Shear with Transverse Core (a/b = 2.0) 
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Figure 3.1-42.   Buckling Coefficients for Corrugated Core Sandwich Panels 
 "    Under Combined Longitudinal Compression, Transverse 

Compression, and Shear with Longitudinal Core 
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3.2    CIRCULAR PLATES 

3.2.1 Available Single Loading Conditions 

A search of the available literature as well as contacts with others who are familiar 

with sandwich panel stability references and studies in progress uncovered no stability 

solutions for any single loading condition.   This result might have been anticipated 

since the flat, circular sandwich plate has very few applications in aerospace vehicle 

structures in which it must be stable under the applied loads.   Consequently, this 

manual makes no recommendations for techniques to be used in design, and strongly 

suggests that all final configurations be tested as required to demonstrate their ade- 

quacy structurally. 

3.2.2 Available Combined Loading Conditions 

No panel stability solutions were found for any combined loading conditions applicable 

to flat, circular plates in the course of the literature search noted in Section 3.2.1. 

Consequently, this manual makes no recommendations for possible analytical ap- 

proaches which would describe any stability limits for circular, flat sandwich plates. 

3-73 



3.3    PLATES WITH CUTOUTS 

3.3.1    F rame d Cutouts 

While it is highly desirable to avoid cutouts in aerospace structures because of the 

attendant weight problems as well as uncertainties about load pile-up and redistri- 

bution, these are a practical necessity because of access and other requirements and 

every effort should be made to derive reliable design approaches which minimize these 

drawbacks. 

Most generalized solutions for plates with cutouts employ framing members and base 

the analysis on the assumption of buckled skin panels which carry only shear loads. 

Obviously, the solution becomes much more complex when skin buckling does not 

occur, as would be the case for a framed cutout in a sandwich panel.   Despite the 

increased complexity, however, solutions for the load distribution around the cutout 

can be obtained for various load applications away from the opening.   Knowing the 

load distribution adjacent to the cutout does not necessarily provide an answer to all 

questions regarding the adequacy of the design, however, particularly in the case of 

sandwich construction. 

In the case of monocoque or semi-monocoque panels, the lateral moments of inertia 

of the framing members are generally sufficiently greater than those of the skin such 

that they may be considered to provide lateral support for the panel edge.   This is not 

necessarily the case for sandwich panels, thus setting up the case of a free, or nearly 

free, edge for the panel and for which condition no general stability solutions or data 

were found in the course of this study. 
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It may be possible for specific designs to be assessed, on the basis of good engineering 

judgment, to be critical in local instability rather than for general instability.   This 

being the case, design checks may be made on the basis of the equations given in 

Section 2.   This manual makes no recommendations for those cases where the general 

instability mode appears to control beyond the exercise of good judgment in the devel- 

opment of the design, and sufficient testing as needed to insure its integrity. 

3.3.2    Unframed Cutouts 

Unframed cutouts in sandwich panels have all of the disadvantages noted for framed 

cutouts and represent a much more serious design problem locally, insofar as the 

free edge is concerned.   The writers of this manual encountered no instances in which 

such a design approach was used in primary or secondary structure and, in general, 

recommend avoidance of this practice.   This recommendation is based not only on the 

lack of any analytical or test data but also on potential problems of faceplate-core bond 

separation along the free edge due to damage while in use, adhesive deterioration, 

load cycling, etc. 
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4 
GENERAL INSTABILITY OF CIRCULAR CYLINDERS 

4.1  GENERAL 

In the case of axially compressed, thin-walled, isotropic (non-sandwich) cylinders, it 

has long been recognized that test results usually fall far below the predictions from 

classical small-deflection theory [4-l].   These discrepancies are usually attributed 

primarily to 

a. the shape of the post-buckling equilibrium path coupled with the presence 

of initial imperfections 

and 

b. the fact that classical small-deflection theory does not account for pre- 

buckling discontinuity distortions in the neighborhood of the boundaries. 

Neglecting the discontinuity distortions, the equilibrium path for an axially com- 

pressed perfect cylinder is of the general shape shown by the solid curve in Figure 

4.1-1.   This path is linear until point A is reached and general instability occurs at 

a stress level ov,L  equal to the result from classical small-deflection theory 

However, if 

the cylinder is initially imperfect and the discontinuity distortions are considered, the 

behavior will be as shown by curve OB and buckling will occur at the stress crcr.   The 

ratio (CT"cr/°CL) w*^ be dependent upon the magnitude of the initial imperfections pres- 

ent in the cylinder.   However, since this information is not normally available, one 
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usually finds it necessary to resort to either of the following practices to obtain practi- 

cal design values: 

a. Set the allowable compressive stress equal to the value o"-^™- shown in 

Figure 4.1-1. 

b. Use the classical small-deflection value o-^ in conjunction with a suitable 

knock-down factor yc which is based on the results from a large array of 

test data.   The allowable compressive stress is then obtained from 

^cr =  yc °CL (4.1-1) 

Axial 
Compressive 

Stress 

Perfect 
Cylinder 
Imperfect 
Cylinder 

End Shortening 

Figure 4.1-1.   Equilibrium Paths for Axially 
Compressed Circular Cylinders 

For isotropic (non-sandwich) cylinders it is common practice to follow the second of 

these approaches and, for such cylinders, the test data shows that yc is a function of 

the radius-to-thickness ratio  (R/t). 
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In the case of sandwich cylinders having relatively rigid cores, the behavior is similar 

to that of the isotropic (non-sandwich) cylinder and one can expect imperfections and 

boundary disturbances to precipitate general instability at compressive stresses below 

the predictions from classical small-deflection sandwich theory.   However, in most 

practical applications, the sandwich wall will provide an effective relatively thick shell 

so that the discrepancies will not be as large as those normally encountered in thin- 

walled isotropic (non-sandwich) cylinders.   In addition, as the core transverse shear 

rigidity decreases, the differences between test results and classical predictions will 

diminish.   In the extreme case where shear crimping occurs, initial imperfections do 

not appear to have any influence. 

One of the most prominent of the early design criteria developed for axially compressed 

circular sandwich cylinders is that of Reference 4-2.   This solution employed large- 

deflection theory together with approach (a) cited above (crcr = ^JN).   However, it is 

now rather generally agreed that this criterion often provides design values which are 

too conservative.   In addition, the theoretical development of Reference 4-3 indicates 

that CMIN can be decreased to essentially zero by including a sufficient number of 

terms in the large-deflection displacement functions.   Therefore, in recent years, it 

has become common practice to design sandwich cylinders by method (b) cited above 

[4-4 and 4-5].   This approach, which employs small-deflection theory in conjunction 

with an empirical knock-down factor, is likewise followed in this handbook. 

In the treatment of various types of external loading, it is important to note that the 

characteristics of the equilibrium paths are not identical for cases of axial compres- 

sion, torsion, or external radial pressure.   For purposes of comparison, Figure 4.1-2 
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depicts the general shapes of these paths for each loading condition [4-6] assuming 

that the cylinders are initially perfect and that no discontinuity distortions are present. 

Deflection 
Axial Compression 

Deflection 
Torsion 

Deflection 
External Pressure 

Figure 4.1-2.   Typical Equilibrium Paths for Circular Cylinders 

Based on the relative shapes of these curves, one would expect that, under torsion or 

external pressure, the cylinders would be much less sensitive to initial imperfections 

than in the case of axial compression.   This has been borne out by the available test 

data from thin-walled isotropic (non-sandwich) cylinders. 
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4.2  AXIAL COMPRESSION 

4.2.1  Basic Principles 

4.2.1.1  Theoretical Considerations 

The theoretical basis used here is the classical small-deflection solution of Zahn and 

Kuenzi [4-7] which includes the following assumptions: 

a. The facings are isotropic but the core may have orthotropic transverse 

shear properties. 

b. Bending of the facings about their own middle surfaces can be neglected. 

c. The core has infinite extensional stiffness in the direction normal to the 

facings. 

d. The core extensional and shear rigidities are negligible in directions 

parallel to the facings. 

e. The cylinder is not extremely short (a quantitative limit is specified in 

Section 4.2.2). 

f. The approximations of DonneE [4-8] can be applied without introducing sig- 

nificant error. 

In this handbook, the final equations of Reference 4-7 have been transformed into 

equivalent formulations which should be more meaningful to the user.   For those cases 

where the core shear moduli satisfy the condition 

0~S1 (4.2-1) 
Gyz 

the following expression is obtained: 

o-cr=Kco-0 (4.2-2) 
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where 

and 

h 2/M7 
°°= ,Ef R yi-,e2 (tl +18) (4-2-3) 

When Vc* 2 Kc=l-Jve (4.2-4) 

WhenVc*2 Kß = ^- (4>2.5) 

where 

°"o 
Vc - —.  (4.2-6) crimp 

- ha 
°"crimp-  (ti + t3)tc 

Gxz (4.2-7) 

^ = Plasticity reduction factor, dimensionless. 

Ef = Young' s modulus of facings, psi. 

h = Distance between middle surfaces of facings, inches. 

R = Radius to middle surface of cylindrical sandwich, inches. 

*i and ts =   Thicknesses of the facings (There is no preference as to which 
facing is denoted by the subscript 1 or 2.), inches. 

ve =   Elastic Poisson' s ratio of facings, dimensionless. 

tc = Thickness of core, inches. 

Gxz =   Core shear modulus associated with the plane perpendicular to 
the facings and oriented in the axial direction, psi. 

Gyz =   Core shear modulus associated with the plane perpendicular to 
the axis of revolution, psi. 

The relationship between Kc  and Vc  can be plotted as shown in Figure 4.2-1.   It is 

important to note that the value  Vc =  2.0   establishes a dividing line between two 

different types of behavior.   The region where V^2,0  covers the so-called stiff-core 
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1.0 

K, 

Figure 4.2-1.   Schematic Representation of Relationship 
Between Kc  and Vc  for 0 < 1 

and moderately-stiff-core sandwich constructions.   When Vc  is in the neighborhood of 

zero, the core shear stiffness is high and the sandwich exhibits maximum sensitivity to 

initial imperfections.   Hence, for any given radius-to-thickness ratio, the knock-down 

factors applicable to such constructions are of maximum severity.   As  Vc  increases 

from zero to a value of 2.0, the sensitivity to imperfections becomes progressively 

less.   The domain where Vc > 2.0 is the so-called weak-core region where shear 

crimping occurs.   Sandwich constructions which fall within this category are not influ- 

enced by the presence of initial imperfections, and a knock-down factor of unity can be 

applied to such structures.   It should be possible to develop a continuous transitional 

knock-down relationship which recognizes the variable influence of the core rigidity but 

this is beyond the scope of the present handbook. 
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4.2.1.2  Empirical Knock-Down Factor 

As noted in Section 4.1, the allowable stress intensities for axially compressed, thin- 

walled, isotropic (non-sandwich) cylinders are usually computed using the following 

equation: 

o-cr=    yc°cL (4-2-8) 

The quantity   Yc  is referred to as the knock-down factor and this value is generally 

recognized to be a function of the radius-to-thickness ratio (R/t).   Various investi- 

gators have proposed different relationships in this regard.   The differences arise out 

of the chosen statistical criteria and/or out of the particular test data selected as the 

empirical basis.   One of the most widely used of the relationships proposed to date is 

the lower-bound criterion of Seide, et al. [4-9] which can be expressed as follows: 

yc =   1 - 0.901 (1 - e"^) (4.2-9) 

where 

♦- u^jr (4-2-10> 

This gives a knock-down curve of the general shape depicted in Figure 4.2-2.   For the 

purposes of this handbook, it is desired that an empirical means of this type also be 

provided for the design of sandwich cylinders.   One of the major obstacles to the 

achievement of this objective is the lack of sufficient sandwich test data for a thorough 

empirical determination.   Faced with this deficiency, one finds it expedient to employ 

the data from isotropic (non-sandwich) cylinders in conjunction with an effective thick- 

ness concept and correction factors which are based on the few available sandwich test 

points.   Toward this end, it is usually assumed that, when Vc < 2.0, equal sensitivity 
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1.0 -- 

(?) 
Log Scale 

Figure 4.2-2.    Semi-Logarithmic Plot of  Yc vs R/t for Isotropie (Non- 
Sandwich) Cylinders Under Axial Compression 

to imperfections results from equivalence of the shell-wall radii of gyration   p 

(« 2  for sandwich constructions whose two facings are of equal thickness).   There- 

fore, the approach taken here is to rewrite Equations (4.2-9) and (4.2-10) in terms 

of P.   The revised formulations give the plot shown as a dashed curve in Figure 

4.2-3.   Also shown in this figure are the appropriate test points obtained from 

axially compressed sandwich cylinders   [4-2,  4-10,  4-28]  which did not fall into 

the weak-core category.     Eleven such data points are shown.    In addition,  two 

test points are shown for axially compressed conical sandwich constructions 

[4-10] which likewise did not lie in the weak-core region.    The conical data are 

included in Figure 4.2-3 in view of the scarcity of available test results and 

also because the cones were analyzed as equivalent cylinders whose radii were 

taken equal to the  Rs (finite principal radius of curvature) values at the small end 

of the specimens.   Based on this limited amount of sandwich test data, it is recom- 

mended that the solid curve of Figure 4.2-3 be used for design purposes.    This 
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Figure 4.2-3.   Knock-Down Factor  Yc  for Circular Sandwich 
Cylinders Subjected to Axial Compression 
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gives yc values that are 75 percent of those obtained from the dashed curve which was 

based on the empirical formula of Seide, et al.   [4-9]. 

In addition to the test results described above, a considerable number of test points 

are available from cylindrical sandwich constructions which fall into the weak-core 

classification.   As noted in Section 4.2.1.1, the methods recommended in this hand- 

book are such that, in the weak-core region, no empirical reduction will be applied 

to the theoretical results of Reference 4-7.   In order to explore the validity of this 

approach, plots are furnished in Figures 4.2-4 and 4.2-5 which compare the weak- 

core test results of References 4-2 and 4-11 against predictions from the recom- 

mended design criterion.   It can be seen that all but one of the test results exceed 

the predicted strengths, and that the single exception failed at 86 percent of the pre- 

dicted value.   In many of the cases where (°brTest /^Predicted) > *• °> although the 

discrepancies measured in units of psi were not very great, the percentage differ- 

ences were quite large.   This behavior can be explained by the fact that the theoreti- 

cal basis [4-7] proposed in this handbook assumes that bending of the facings about 

their own middle surfaces can be neglected.   As shown in Reference 4-12, this 

assumption can be very conservative in the weak-core region.   However, in the 

interest of simplicity, the methods of this handbook retain this assumption especially 

since it is a conservative practice and most practical sandwich constructions will not 

be designed as weak-core structures. 

In view of the meager compressive test data available from stiff-core and moderately- 

stiff-core sandwich cylinders, the method proposed here is not very reliable when 
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Vc < 2. 0.   Therefore, in such cases the method can only be considered as a "best- 

available" approach.   On the other hand, where the failure is by shear crimping 

(Vc > 2. 0), the method is quite reliable and will, in fact, usually give conservative 

predictions. 

Test Data from Reference 4-2 

20 5 10 15 

Predicted <rcr , ksi 

(Neglecting bending stiffness of individual facings) 

Figure 4.2-4.   Comparison of Proposed Design Criterion Against Test Data for Weak- 
Core Circular Sandwich Cylinders Subjected to Axial Compression 
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Figure 4.2-5. Comparison of Proposed Design Criterion Against 
a Test Result for a Weak-Core Circular Sandwich 
Cylinder Subjected to Axial Compression 

4.2.1.2.1  Interpretation of Test Data 

As indicated in the preceding paragraphs, appropriate test data must be used in order 

to arrive at practical values for the knock-down factor.   However, one can be easily 

misled in this endeavor when the test data and/or the classical theoretical predictions 

lie in the inelastic region.   To demonstrate this point as simply as possible, the pre- 

sent discussion is limited to the case of axially compressed circular sandwich' cylin- 

ders for which   Vc = 0.   Then the recommended design value for the critical stress 

can be expressed as follows: 

°cr yc^?Ef 
2 \/ti ts 

R       Jl^ (t! + t2) 
(4.2-11) 
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For any particular test specimen, the related value for the knock-down factor should be 

computed from the following expression which is obtained by a simple transposition of 

Equation (4.2-11): 

'cr Test 

(?c: 
^Test, 

Test 
*! 

2 y tx ts 

_fR   /i^7    (ti + ta). 

(4.2-12) 

The plasticity reduction factor ^Test  is evaluated at the actual experimental buckling 

stress.   By inspection of the numerator and denominator of Equation   (4.2-12), one can 

conclude that this formula may be rewritten in the following more meaningful form: 

(y0), 

Experimental critical stress value 
which would have been attained had 

the material remained elastic   _ 
Test Classical theoretical critical 

stress value assuming the 
behavior to be elastic 

(4.2-13) 

The example illustrated in Figure 4.2-6 should help to clarify this concept.   In this 

figure, the solid line represents the stress-strain curve for the test specimen mate- 

rial.   Suppose that this particular specimen buckled at a stress equal to °crTest •   As 

indicated in the figure, it is assumed here that this stress lies in the inelastic region 

so that ^rpegt will be less than unity.   For the purposes of this discussion, further 

assume that ^Test = 0.80.   If the material had remained elastic, the experimental 

critical stress would have been somewhat higher than °~CrTest •   T*1*8 greater value 

will be denoted as v'-^    . .   Then it follows that oxTest 

^Test _ °"crTest 

°"crTest "   ^st    ~      °-80 

4-14 

(4.2-14) 

= ^ °"crTest 



<r. CL 

CO 
CO 
<D u 

^cr Test 

'cr, 
Test 

' Max  

Strain 

Figure 4.2-6.   Stresses Involved in Interpretation of Test Data 

Now let it also be assumed that, using elastic material properties, the classical theo- 

retical critical stress equals the value oj-,L indicated in Figure 4.2-6. The following 

formula would then give the proper value for the experimental knock-down factor: 

where 

o'er, 
Ofe), 

Test 
1.25 o> crTest 

Test o-, CL rCL 

-.! 
2yvfe" 

CL f R yi-ife*  (tx + tg) 

(4.2-15) 

(4.2-16) 
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The above discussion is given here since some of the results presented in the literature 

be quite misleading.   That is, comparisons are often shown between the actual test can 

value  o-cr (without regard as to whether elastic or not) and the inelastic classical 

theoretical prediction.   For the case shown in Figure 4.2-6, the latter value cannot 

exceed <r        and this type of comparison might lead one to believe that the appropriate 
Max 

knock-down factor is very close to unity.   However, use of the correct approach as 

expressed by Equations (4.2-13) and (4.2-15) gives a much lower   Yc  value.   For any 

given geometry, one could always show very close agreement between <rCrTest  and 

o- simply by choosing a material with a sufficiently low yield strength and having 
1VL3.X 

a flat post-yield stress-strain curve. 
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4.2.2  Design Equations and Curves 

For simply supported circular sandwich cylinders subjected to axial compression, the 

critical stresses may be computed from the relationships given on page 4-18 where the 

subscripts 1 and 2 refer to the separate facings.   There is no preference as to which 

facing is denoted by either subscript.   These equations were obtained by a simple ex- 

tension of the formulas developed in Reference 4-7 which only considered the case 

where the behavior is elastic and the moduli of elasticity are identical for both facings. 

The extended versions given in this handbook were derived through the use of equivalent- 

thickness concepts based on the ratios of the moduli of the two facings.   For cases 

where the two facings are not made of the same material, these equations are valid 

only when the behavior is elastic  C7 = 1).   Application to inelastic cases (T) * 1) can 

only be made when both facings are made of the same material.   For such configura- 

tions,   Ex and Es will, of course, be equal. 

The buckling coefficients  Kc  can be obtained from Figure 4.2-7.   Curves are given 

there for both 6 < 1  and 0 = 5 where 6 = —— .   Since these two plots are not very 
Gyz 

different from each other, one may use Figure 4.2-7 to obtain rather accurate esti- 

mates of Kc  when  1 < 0 < 5. 

Whenever Vc < 2.0, the knock-down factor   yc  can be obtained from Figure 4.2-8. 

When   Vc > 2.0, use   yc = 1.0. 

For elastic cases, use  i? = 1.   Whenever the behavior is inelastic, the methods of 

Section 9 must be employed. 
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Figure 4.2-8.   Design Knock-Down Factor for Circular Sandwich 
Cylinders Subjected to Axial Compression 
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The critical axial load (in units of pounds) can be computed as follows: 

Per = 27rR ["fen tl + °or2 *a] 
(4.2-26) 

m the special case where tx = ts = tf and both facings are made of the same material, 

Equations (4.2-17) through (4.2-26) can be simplified to the following: 

(4.2-27) °cr =  yC Kc °b 

_ C?Ef)    h_ 
r° "v/l^f R 

(4.2-28) 

'crimp      2 tf tc 
G xz (4.2-29) 

ox 

'crimp 
(4.2-30) 

Pcr = 47TRtf °br (4.2-31) 

Equations (4.2-17) through (4.2-31) and Figure 4.2-7 are valid only when the length  L 

of the cylinder is greater than the length of a single axial half-wave in the buckle pat- 

_ Gxz 

tern for the corresponding infinite-length cylinder.   For the case where   6 - Gyz - l, 

one can apply the following test to determine if the cylinder length is sufficiently large: 

When V„   <  2 

Equations (4.2-17) through (4.2-31) 

and Figure 4.2-7 are valid only where 

(i)*1.57[Co<2-v] 
k 

When V„   > 2 
 ^i  

Equations (4.2-17) through (4.2-31) 

and Figure 4.2-7 are valid for any 

value of  L. 
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For constructions where B * 1, no corresponding numerical criterion is presently 

available.   In such cases, one can only use the above test in conjunction with engineer- 

ing judgement.   It is helpful to point out, however, that most practical sandwich cylin- 

ders for aerospace applications will be sufficiently long for Equations (4.2-17) through 

(4.2-31) and Figure 4.2-7 to be valid.   In addition, it is comforting to note that the 

use of these relationships for shorter cylinders results in conservatism. 

Cylinders which fail to meet the foregoing length requirement are usually referred to 

as short cylinders.   The only means available for the analysis of such sandwich cylin- 

ders under axial compression is the solution of Stein and Mayers [4-13] which is only 

valid 

a. when  0 = 1 

and 

b. when both ends of the cylinder are simply supported 

and 

c. when both facings are made of the same material 

and 

d. the thickness of one facing is not more than twice the thickness of the 

other facing. 

For short sandwich cylinders which satisfy these conditions, one can use the design 

curves of Figure 4.2-9 which involves the following parameters: 

Z=Rh~v/*=^r (4.2-32) 
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ra - L3 Dq 

7r2p (4.2-33) 

,      o-cr (tx + ts) L3 

, _ _cr_^ -/  (4.2-34) 

where 

(E, txXEs ta)h
a (4.2-35) 

D      V^e3)^^ +  (^M 

t D„=^GXZ (4-2-36) 

and 
L = Over-all length of cylinder, inches. 

During the preparation of this handbook, no solutions were uncovered for axially com- 

pressed sandwich cylinders having any degree of rotational restraint at the boundaries. 

However, in most practical aerospace applications, the cylinders will be sufficiently 

long for such fixity to have negligible effects on the buckling loads. 

4-23 



100 

K 

Figure 4.2-9.   Buckling Coefficient for Short Simply-Supported Sandwich Cylinders 
Subjected to Axial Compression   (6=1) 
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4.3   PURE BENDING 

4.3.1  Basic Principles 

4.3.1.1  Theoretical Considerations 

Based on small-deflection theory, investigations were made in References 4-14, 4-15, 

and 4-16 of elastic instability in thin-walled, isotropic (non-sandwich) cylinders sub- 

jected to axial compressive stresses which vary in the circumferential direction.   From 

the results of these references, it can be concluded that, regardless of the nature of 

the circumferential stress distribution, classical instability is reached when the peak 

axial compressive stress satisfies the condition 

Et 
o-a.6— (4.3-1) 

K 

It should be recalled that the value  . 6 Et/R  is also obtained from the small-deflection 

solution for thin-walled, isotropic (non-sandwich) cylinders subjected to uniform axial 

compression.   In view of this result, one might reasonably expect that small-deflection 

sandwich theory would also indicate that only the peak axial compressive stress need 

be considered in cases of pure bending or combined bending and axial compression.   It 

has been shown in References 4-17, 4-18, and 4-19 that this is indeed the case.   Ref- 

erences 4-17 and 4-18 demonstrate this for weak-core sandwich cylinders while Ref- 

erence 4-19 deals with infinitely long cylinders which fall in the stiff-core and moder- 

ately-stiff-core categories.   Therefore, for the purposes of this handbook, it is assumed 

that the theoretical considerations of Section 4.2 (axial compression) apply equally well 

to sandwich cylinders which are subjected to pure bending if the analysis considers only 

the peak value of the applied compressive stress.   The only differences lie in the em- 

pirical knock-down factors recommended for the two cases. 
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4.3.1.2   Empirical Knock-Down Factor 

In the case of pure bending, only a relatively small portion of the cylinder's circumfer- 

ence experiences stress levels which initiate the buckling process.   Because of the 

consequent reduced probability for peak stresses to coincide with the location of an 

imperfection, it is to be expected that the knock-down factors for pure bending will not 

be as severe as the corresponding factors for axial load.   For thin-walled, isotropic 

(non-sandwich) cylinders under pure bending, Seide, et al. [4-9] have proposed the 

following lower-bound relationships: 

yb = 1-0.731 (1-e-*) (4.3-2) 

where 

*-h\fi (4-3-3) 

Comparison against Equations (4.2-9) and (4.2-10) shows that this bending criterion 

does indeed give  yb  values of lesser severity than those which apply to the axially 

compressed cylinders.   Following the same approach as that taken in Section 4.2, the 

h  , 
above equations are rewritten in terms of the shell-wall radius of gyration P(« g  for 

sandwich constructions whose two facings are of equal thickness).   The revised formu- 

lations then give the plot shown as a dashed curve in Figure 4.3-1.   Also shown in this 

figure are the appropriate test points from stiff-core sandwich cylinders subjected to 

pure bending [4-20].   Since only three such data points are available, it was thought to 

be helpful to include the axial compression sandwich data points previously shown in 

Figure 4.2-3.   To fully understand the information given in Figure 4.3-1, it is im- 

portant for the reader to be aware of the data reduction techniques used here.   For an 
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explanation of the procedures used in this handbook, reference should be made to the 

related discussion in Section 4.2.1.2.1. 

Based on the limited amount of available test data, it is recommended here that the 

solid curve shown in Figure 4.3-1 be used for the design of sandwich cylinders sub- 

jected to pure bending.   This gives 7^ values that are 75 percent of those obtained 

from the dashed curve which is based on the empirical formula of Seide, et al.  [4-9]. 

This is consistent with the practice followed in Section 4.2 for the case of axial com- 

pression where the design knock-down factor was likewise taken to be 75 percent of 

the value obtained from the corresponding curve derived from Reference 4-9. 

In view of the meager test data available from sandwich cylinders under pure bending, 

the method proposed in Section 4.3.2 is not very reliable when Vc < 2.0.   Therefore, 

in such cases, the method can only be regarded as a "best-available" approach.   On 

the other hand, when the failure is by shear crimping (Vc > 2. 0), the method is quite 

reliable and will, in fact, usually give conservative predictions. 
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+ Data from Ref. 4-2 (Cylindrical; Axial Compr.) 
• Data from Ref. 4-10 (Cylindrical; Axial Compr.) 
□ Data from Ref. 4-28 (Cylindrical; Axial Compr.) 

A  Data from Ref: 4-10 (Conical; Axial Compr.) 
Inn IIIIIIII.IHII 

mi """"" 

10 10* 

(?) 
Figure 4. 3-1.   Knock-Down Factor ^ for Circular Sandwich 

Cylinders Subjected to Pure Bending 
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4.3.2   Design Equations and Curves 

For simply supported sandwich cylinders subjected to pure bending, one may use the 

same design equations and curves as are given in Section 4.2.2 (for axial compression) 

except for the following: 

a. For the case of pure bending, use Figure 4.3.2 to obtain the knock-down 

factor y^ whenever  Vc < 2.0 (When Vc >2.0, use Y^ = 1.0). 

b. For the case of pure bending, the critical stresses obtained from the 

equations and curves of Section 4.2.2 correspond to the circumferential 

location which lies on the compressive side of the neutral axis and is 

furthest removed from that axis.   Hence the computed stresses are the 

peak values within the variable circumferential distribution.   Therefore, 

when the behavior is elastic, the critical bending moment Mcr  can be 

computed from the following: 

Mcr = irRs [crcri ti + crcr2 ts] (4.3-4) 

where 

Mcr = Critical bending moment, in.-lbs. 

R = Radius to middle surface of sandwich cylinder, inches. 

o-      and arnr,    = Critical compressive stresses in facings 1 and 2, respec- c r\ erg 
tively, which result in general instability of the cylinder, psi. 

ti and ts = Thicknesses of the facings 1 and 2, respectively, inches. 

Note:   There is no preference as to which facing is denoted by the 

subscripts 1 and 2. 
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Figure 4. 3-2.   Design Knock-Down Factor Yb  for Circular Sandwich 

Cylinders Subjected to Pure Bending 
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To compute  Mcr  when the behavior is inelastic, one must resort to numerical integra- 

tion techniques. 

Since the procedure recommended here makes use of the methods of Section 4.2.2, all 

of the limitations of that section are equally applicable to the present case.   That is, 

only simply supported boundaries are considered and the primary solution is excess- 

ively conservative for the so-called short-cylinder constructions.   In addition, only 

very limited means are available to facilitate a quantitative assessment of whether or 

not a particular construction falls within the short-cylinder classification.   Further- 

more, the computation of critical stresses for short-cylinder constructions can only 

be accomplished for rather special cases as cited in Section 4.2.2. 

As noted in Section 4.2.2, during the preparation of this handbook, no solutions were 

uncovered for axially compressed sandwich cylinders having any degree of rotational 

restraint at the boundaries.   However, it was also noted that, in most practical aero- 

space applications, the cylinders will be sufficiently long for such fixity to have negli- 

gible effects on the critical stresses.   The same situation exists for the case of pure 

bending. 
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4.4   EXTERNAL LATERAL PRESSURE 

4.4.1  Basic Principles 

4.4.1.1  Theoretical Considerations 

This section deals with the loading condition depicted in Figure 4.4-1.   Note that the 

sandwich cylinder is subjected to external pressure only over the cylindrical surface. 

No axial loading is applied.   In addition, it is specified that the ends are simply sup- 

ported.   That is, during buckling, both ends of the cylinder experience no radial dis- 

placements and no bending moments. 

M   I   I   II   I 
Both ends ^ ^^ 
simply supported 

I   i   t   t   I   t 
p, psi 

Figure 4.4-1.   Circular Sandwich Cylinder Subjected to 
External Lateral Pressure 

The theoretical basis used here is the classical small-deflection solution of Kuenzi, 

et al. [4-2l] which includes the following assumptions: 

a. The facings are isotropic. 

b. The facings may be of equal or unequal thicknesses. 

c. The facings may be of the same or different materials. 

d. Po is son's ratio is the same for both facings. 

e. Bending of the facings about their own middle surfaces can be neglected. 

f. The core has infinite extensional stiffness in the direction normal to the 
facings. 

g. The core extensional and shear rigidities are negligible in directions 
parallel to the facings. 
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h.       The transverse shear properties of the core may be either isotropic or 
orthotropic. 

i.       The inequality "jj" » 1  is satisfied. 

j.       Several additional order-of-magnitude assumptions are valid, as noted 
below in connection with Equation (4.4-2). 

The solution of Kuenzi, et al.  [4-2l] draws upon the earlier groundwork laid by 

Raville in References 4-22, 4-23, and 4-24.   Norris and Zahn used these reports to 

develop design curves which are published in References 4-25 and 4-26.   The work of 

Kuenzi, et al.  [4-2l] constitutes the latest revision to this series of reports and is 

the most up-to-date treatment of the subject.   However, the format of their results 

has been slightly modified in Reference 4-5 in order to reduce the scope of interpola- 

tion required in practical applications.   The revised format is used here.   However, 

the need for interpolation has not been entirely eliminated since separate families are 

still required for each of the selected values for Vp  [see Equation (4.4-4)]. 

The final theoretical relationships used in this handbook are as follows: 

JLEIL 
pcr = R(i-ve

a)  [(Eltl) + (Esfe)] (4-4-1) 

where 

Cp = Minimum value (with respect to  n) of Kp , dimensionless. 

and 
(4.4-2) 
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a   = (Ex tQ (E3ts)hS 

[(Extx) + (E2t3)]sE3 (  •   " ) 

,.     = _   (Eitx) (Eat3)h 
VP " ^  f(El tl)"+ <Ea t2)] (l-vea, R3 Gyz (4-4"4) 

where 

Per = Critical value of external lateral pressure, psi. 

R = Radius to middle surface of cylindrical sandwich, inches. 

ve =  Elastic Poisson's ratio of facings, dimensionless. 

T) = Plasticity reduction factor, dimensionless. 

Ex and Es = Young's moduli of facings 1 and 2, respectively, psi. 

ti and t3 = Thicknesses of facings land 2, respectively, inches. 

n     = Number of circumferential full-waves in the buckle pattern, 
dimensionless. 

L     = Over-all length of cylinder, inches. 

h     = Distance between middle surfaces of facings, inches. 

Gyz     =  Core shear modulus associated with the plane perpendicular 
to the axis of revolution, psi. 

Note:    There is no preference as to which facing is denoted by the 
subscript 1 or 2. 

For cases where the two facings are not made of the same material, the foregoing 

formulas are valid only when the behavior is elastic (T| = 1).   Application to inelastic 

cases (71 * 1) can only be made when both facings are made of the same material. 

For such configurations,   Ei and  E3 will, of course, be equal. 
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Equation (4.4-2) constitutes an approximate expression for  Kp  since it embodies the 

assumptions cited earlier in this section in addition to the following: 

KPh2 

a. Terms containing  Kp  and     r  a    were neglected. 

■L. 

b. It was assumed that  (1 ± m™) =1, where  m  is a small whole number. 

By using Equation (4.4-2), plots can be generated of the form shown in Figure 4.4-2. 

The design curves of this handbook are of this type and were taken directly from Ref- 

erence 4-5.   It is helpful to note here that lower and upper limits exist for the coeffi- 

cient Cp  and these are identified in Figure 4.4-2.   The lower limit is associated with 

long-cylinder behavior.   Such configurations are unaffected by the end constraints and 

the related critical pressures are equal to those for rings which are subjected to 

external pressure.   For portions of the cylinders that do not lie in the neighborhoods 

of the boundaries, the buckle patterns will be the same as are obtained from such rings. 

In this connection, it should be noted that application of the Donnell approximations 

[4-8] to non-sandwich rings leads to critical pressures which are 33 percent higher 

than the predictions from accurate ring formulations.   This is due to the fact that the 

related number of circumferential full-waves (n = 2) is not sufficiently high to justify 

Donnell's [4-8] assumptions.   It is important to observe that the theory of Reference 

4-21 retains a sufficient number of terms to accurately predict the buckling of long 

cylinders.   That is, when Gyz-► oo  (Vp -* 0) and  L/R  is large, the critical pressure 

is equal to the value obtained from that ring theory which is capable of properly de- 

scribing the behavior where n = 2.   The upper limit to the curve of Figure 4.4-2 is 

associated with the shear crimping mode of failure which involves extremely short 
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circumferential wavelengths (n—oo).   Specialization of Equations (4.4-1) through 

(4.4-4) to this case gives the following formula for the critical compressive running 

load  Ncr  measured in units of lbs/inch: 

Ncr = h Gyz (4.4-5) 

where 

Ncr=pcrR (4.4-6) 

By using the approximation h » tc , it can easily be shown that Equation (4.4-5) is 

equivalent to the crimping formula presented earlier as Equation (2. 3-9). 

Upper Limit (Shear Crimping) 

Lower Limit 
(n =2) 

(*) 

Figure 4.4-2.   Schematic Representation of Log-Log Plot of Cp 

Versus   L/R  for Circular Sandwich Cylinders 
Subjected to External Lateral Pressure 

Another important point which should be noted is that the approximate formula for  Kp 

[Equation (4.4-2)]  does not contain the core shear modulus associated with the plane 

perpendicular to the facings and oriented in the axial direction (G^).   This modulus 

has very little influence on cylinders longer than approximately one diameter and has 
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therefore disappeared through the approximations made in the development of Refer- 

ence 4-21. Thus the theory and design curves presented in this section (Section 4.4) 

of the handbook can be considered applicable to sandwich cylinders having cores with 

either isotropic or orthotropic transverse shear moduli. 
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4.4.1.2  Empirical Knock-Down Factor 

In Section 4.1 it is pointed out that, for circular cylinders subjected to external 

lateral pressure, the shape of the post-buckling equilibrium path is such that one 

would not expect strong sensitivity to the presence of initial imperfections.   This has 

indeed been shown to be the case for isotropic (non-sandwich) cylinders where the 

available test data show rather good agreement with the predictions from classical 

small-deflection theory.   In view of this, it has become widespread practice to either 

accept uncorrected small-deflection theoretical results as design values or to apply a 

uniform knock-down factor  yp of 0.90 regardless of the radius-to-thickness ratio. 

In Reference 4-4 the latter practice is also recommended for sandwich cylinders and 

this approach has likewise been selected as the criterion for this handbook. 

The only available test data for sandwich cylinders subjected to external lateral pres- 

sure are those given in References 4-27 and 4-28.   In the first of these documents, 

Kazimi reports the results from two specimens which were identical except for the use 

of normal-expanded core in one cylinder while the other incorporated over-expanded 

core.   The following results were obtained: 

Comparison of Theoretical Predictions Versus 
Test Results of Kazimi [4-27] 

® © <D ® 

Core Type Test Per 
(psi) 

Theoretical  pcr 

Based on  Ref. 
4-5 and Yp = 1.0 

(psi) 

(Yp^Test 

(Test per) 
(Theo.   Per) 

=     .<D + ® 
Normal-Expanded 
Over- Expanded 

17 
27 

30.5 
30.5 

.56 

.88 
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Kazimi [4-27] attributes the scatter in his test results to the circumstance whereby 

the over-expanded condition gives more uniform core properties than are obtained 

from normal-expanded honeycomb.   The argument put forth on behalf of this viewpoint 

rests on the fact that the over-expanded core exhibits less anticlastic (saddle-type) 

deformation in forming the core to the shape of the cylinder. 

In Reference 4-28 Jenkinson and Kuenzi report the results obtained from five test 

cylinders of nominally identical construction.   These cylinders all had glass-reinforced 

plastic facings.   Each facing was composed of three layers of glass fabric with their 

individual orientations controlled to provide a laminate having in-plane properties 

which were essentially isotropic.   The following results were obtained from these 

cylinders: 

Comparison of Theoretical Predictions Versus 
Test Results of Reference 4-28 

© (D (D © 

Cylinder 
No. 

Test pcr 

(psi) 

Theoretical pcr 

Based on Ref. 
4-5 and Yp = 1.0 

(psi) 

^Test 

_    (Test pcr) 
(Theo. pcr) 

1 
2 
3 
4 
5 

60 
52.5 
52.5 
52.5 
52.5 

55.2 
45.2 
52.6 
45.2 
47.6 

1.09 
1.16 
1.00 
1.16 
1.10 

For specimens 2 through 5 it was reported that initial buckling occurred at external 

lateral pressures which ranged from 50 to 55 psi.   Therefore, in the above tabulation 
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it was assumed that each of these four cylinders buckled at 52. 5 psi.   In general, the 

test values are somewhat higher than the theoretical predictions.   This is probably 

due to 

a. the absence of precise data on the material properties 

b. inaccuracies due to interpolation between the theoretical curves 

and 
c        the fact that the facings were relatively thick in comparison with the 

sandwich thickness 

The foregoing test results from References 4-27 and 4-28 seem to provide added 

justification for the use of Yp = 0.90 as a lower-bound knock-down factor.   However, 

it would certainly be desirable to supplement these data with additional tests on speci- 

mens having small  tf A  ratios which would be truly representative of configurations 

usually found in realistic full-size sandwich cylinders. 

An additional point of interest concerning the use of a uniform value of  Yp = 0.90 is 

the fact that shear crimping failures will be insensitive to the presence of initial im- 

perfections.   Hence, in the region where this mode of failure prevails, one could 

safely use the value  Yp = 1. 0, especially since the theoretical basis used here neglects 

the bending stiffnesses of the facings about their own middle surfaces.   However, in- 

spection of the design curves of Section 4.4.2 shows that this type of failure will only 

occur for extremely low  L/R values.   This fact, coupled with considerations of 

simplicity and the moderate nature of the value  yp = 0.90, led to the selection here 

of a uniform knock-down factor. 
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In view of the meager test data available from sandwich cylinders subjected to external 

lateral pressure, the method recommended here can presently be regarded as only a 

"best-available" approach.   However, there appears to be little reason to doubt that 

further testing would show these procedures to be quite reliable. 
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(Eiti)(E2ta)hS 

<A _ [(Eiti) +(E3ts)]S E3 

(E1t1)(E2t3)h 

4.4.2  Design Equations and Curves 

For simply supported circular sandwich cylinders subjected to external lateral pres- 

sure, the critical pressure may be computed from the equation 

pcr = 1^7) [(El ll) + (E3t3)] (4,4_7) 

where 

Yp = 0.90 

and  Cp  is obtained from Figures 4.4-3 through 4.4-5.   In order to use these curves, 

one must compute the following values: 

(4.4-8) 

v    = f) g—-5  (4.4-9) VP      '' [(E1t1)+(E3t2)] (1-^e)^ %z 

For elastic cases, use   T\ = 1.   Whenever the behavior is inelastic, the methods of 

Section 9 must be employed. 

For cases where the two facings are not made of the same material, the foregoing 

formulas are valid only when the behavior is elastic (11 = 1).   Application to inelastic 

cases (T| * 1) can only be made when both facings are made of the same material. 

For such configurations,   Ei and  Es  will, of course, be equal. 

Since separate families of design curves (Cp vs L/R) are provided for only three 

values of Vp, one will usually find it necessary to use graphical interpolation or 

extrapolation to establish Cp for the configuration of interest.   Where desired, 
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improved accuracy can be obtained by minimizing Equation (4.4-2) with respect to n 

in order to obtain Cp. 

The results given by the procedures specified here apply to sandwich cylinders having 

cores with either isotropic or orthotropic transverse shear moduli. 
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4.5  TORSION 

4.5.1  Basic Principles 

4. 5.1.1  Theoretical Considerations 

This section deals with the loading condition depicted in Figure 4.5-1.   Note that the 

only consideration given to boundary conditions is that, during buckling, it is assumed 

that no radial displacements occur at either end.   Further conditions at these boundar- 

ies are completely disregarded.   This approach should be sufficiently accurate for all 

simply supported cylinders except those which are very short. 

T, In. -Lbs. Torque 

T, In. -Lbs. Torque 

It is assumed that, during buckling, 
no radial displacements occur at 
either end. 

Figure 4.5-1.   Circular Sandwich Cylinder Subjected to Torsion 

The buckling of isotropic (non-sandwich), circular cylinders subjected to torsion was 

treated by Donnell in Reference 4-8 which has become a standard source of information 

concerning reasonable approximations which can be employed in practical thin-shell 

theory.   Using the Donnell approximations, Gerard [4-29] has investigated the buck- 

ling of long circular sandwich cylinders subjected to torsion.   This solution gives no 

consideration whatsoever to the boundary conditions.   Such an approach is valid in 
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view of the assumed extremely long configuration.   On the other hand, in Reference 

4-30, March and Kuenzi develop small-deflection solutions for sandwich cylinders of 

both finite and infinite lengths.   The boundary conditions taken for the finite-length 

cylinders are as indicated in Figure 4. 5-1.   For the purposes of this handbook, Refer- 

ence 4-30 is considered to provide the most up-to-date treatment of the subject.   The 

theoretical design curves given in Section 4.5.2 were taken directly from that report 

and embody the following assumptions: 

a. The facings are isotropic. 

b. The facings are of equal thickness. However, the curves are reasonably 

accurate for sandwich cylinders having unequal facings, provided that the 

thickness of one facing is not more than twice the other. 

c. Young's modulus is the same for both facings. 

d. Poisson's ratio is the same for both facings. 

e. The core has infinite extensional stiffness in the direction normal to the 

facings. 

f. The core extensional and shearing stiffnesses are negligible in directions 

parallel to the facings. 

g. The transverse shear properties of the core may be either isotropic or 

ortho tropic. 

h.       The approximations of Donnell [4-8] can be applied. 

The design curves include separate families which respectively neglect and include 

bending of the facings about their own middle surfaces. However, for both of these 

situations, it is assumed that the facings are thin. 
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The theoretical buckling relationship used here is 

Tcr =KS Tl Ef | (4.5-1) 

which is based on the further assumption that both facings are made of the same mate- 

rial.   The notation used here is as follows: 

7-_    =   Critical value of facing shear stress, psi. 
ex 

Ks = Torsional buckling coefficient, dimensionless. 

T] = Plasticity reduction factor, dimensionless. 

Ef = Young's modulus of facings, psi. 

d = Total thickness of sandwich wall. 

d = t„ +ti + ta (4.5-2) 

tc    =   Thickness of core, inches. 

tx and ts   =   Thicknesses of the facings (There is no preference as to which facing 
is denoted by the subscript 1 or 2.), inches. 

R    =   Radius to middle surface of sandwich cylinder, inches. 

The buckling coefficient Ks   is arrived at by the minimization of a complicated ex- 

pression given in Reference 4-30.   This formulation is not reproduced here.   However, 

it should be noted that the indicated minimization leads to  Ks  values which can be 

plotted in the general form shown in Figure 4. 5-2 where 

zs-5 <4-5-3> 

16 tP titaTl Ef 
V    = -  (4. 5-4) 

s      15 (ti +t8) Rd G 
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G 
xz 

Jyz 
(4.5-5) 

and 

xz 

G 
yz 

n    = 

Over-all length of cylinder, inches. 

Core shear modulus associated with the plane perpendicular to the 

facings and oriented in the axial direction, psi. 

Core shear modulus associated with the plane perpendicular to the 

axis of revolution, psi. 

Number of circumferential full-waves in the buckle pattern, 

dimensionless. 

K 

Upper Limit (Shear Crimping) 

tc/d = Constant 
9  = Constant 

Vs = Constant 

Long Cylinder 
(n =2) 

Figure 4. 5-2.   Typical Log-Log Plot of the Buckling Coefficient KQ 
——-—— —— ■   j? 

for Circular Sandwich Cylinders Subjected to Torsion 

The curves given in Section 4. 5.2 are of this type.   Note that the upper limit for the 

buckling coefficient Ks   corresponds to the shear crimping mode of failure which 

involves extremely short circumferential wave-lengths (n - »).   Specialization of 

the buckling equations to this case leads to the following result when it is assumed 

that tc/disl: 
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h2 

Tcr     Tcrimp - (tl+t2)tc   \/Gxz Gyz (4.5-6) 

where 

h   =   Distance between middle surfaces of facings, inches. 

In connection with sandwich constructions having large values for the parameter Zs 

(long cylinders), it is pointed out that the cylinder will buckle into an oval shape (n = 2) 

for which the Donnell approximations [4-8] are no longer valid.   To illustrate this 

point, attention is drawn to the results obtained for isotropic (non-sandwich), circular 

cylinders subjected to torsion.   By using the Donnell approximations, Gerard [4-31] 

obtains the following result for the critical shear stress of such cylinders: 

0.272      „ /1 \3/ 0.272      ^ /1 r/s 
Tcr = (i-v»)V*   E(i] <4-5-7> (i-ve

8r 

In Reference 4-32, Timoshenko presents the following result from a more rigorous 

solution which does not invoke the Donnell approximations: 

t\3/2 E It \J/2 
Tcr = 3 ^2 (i-v^3Mir) <4-5-8> 3 N/2 (l-ve

2)' 

The more exact result gives a critical stress which is only 87 percent of that given by 

the Donnell approach.   This is similar to the situation encountered in the case of exter- 

nal lateral pressure (see Section 4.4) where the difference is even more pronounced. 

Since the torsional design curves of Section 4.5.2 incorporate the Donnell approxima- 

tions, they must be used with caution in the case of long cylinders (n = 2). 
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4. 5.1.2  Empirical Knock-Down Factor 

In Section 4.1 it is pointed out that, for circular cylinders subjected to torsion, the 

shape of the post-buckling equilibrium path is such that one would not expect the sensi- 

tivity to initial imperfections to be as strong as that encountered in the case of axial 

compression.   On the other hand, the sensitivity in torsion would be expected to be 

somewhat more severe than is exhibited by circular cylinders under external lateral 

pressure.   In the case of isotropic (non-sandwich), circular cylinders loaded in torsion. 

Reference 4-8 indicates that, over an enormous range of sizes, proportions, and 

materials, a lower-bound curve to the available test data can be obtained by taking 

60 percent of the values obtained from classical small-deflection theory (ys = 0.60). 

Average values of the test data can be approximated by using 80 percent of the classi- 

cal theoretical predictions (YS = 0.80). 

To date, no test data has been published for sandwich cylinders which are of the types 

considered in this handbook and are subjected to torsion.   Therefore, no empirical 

basis exists for the determination of reliable knock-down factors in such cases. 

Based on the moderate drop-off of the post-buckling equilibrium path, some sources 

[4-5] recommend that no reduction be employed ( ys =1.0).   However, Reference 4-4 

takes a more cautious approach in recommending the use of Ys = • 80  for the sand- 

wich configuration.   This selection was made largely on the basis of the isotropic 

(non-sandwich) data.   Although this value did not furnish a lower-bound to the isotropic 

test points, it is reasonable to expect that the usually greater thicknesses of sandwich 

cylinders should lead to more moderate reductions than apply to the isotropic (non- 
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sandwich) configurations.   In addition, it should be noted that cylinders under torsion 

will continue to support considerable torque well into the postbuckled region.   Hence 

the torsional buckling mechanism should not be nearly so catastropic as the general 

instability of axially compressed cylinders.   With these several factors in mind, the 

value Ys = 0.80 has been selected for use in this handbook,   m view of the lack of 

sandwich test data to substantiate this selection, the methods proposed here can only 

be regarded as a "best-available" approach. 

4-53 



4. 5.2  Design Equations and Curves 

For simply supported circular sandwich cylinders subjected to torsion, the critical 

shear stress may be computed from the equation 

Tcr = YsKs  HEf § (4.5-9) 

where 

Ys  = 0.80 (4.5-10) 

d = tc + ti + ts (4.5-11) 

and  Ks   is obtained from Figures 4. 5-3 through 4.5-8.   In order to use these curves, 

one must first compute each of the following values: 

ZS=^ (4.5-12) 

V     _      16 tc ti ta  T)Ef (4.5-13) 
Vs       15(t1+t3)RdGxz 

Gxz 
GyZ 

(4. 5-14) 

It is required here that both facings be made of the same material. 

For elastic cases, use  T| = 1.   Whenever the behavior is inelastic, the methods of 

Section 9 must be employed. 

The critical torque  Tcr , measured in units of in. -lbs, can be computed from the 

following for both elastic and inelastic cases: 

Tcr = 2TTR
S
 (tx + ts) rcr (4.5-15) 
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Curves for Ks  are given for values of  6 = 0.4;   1.0;   and 2.5.   Estimates of Ks 

for other values of  6 can be obtained by interpolation. 

In addition, curves for Ks  are given for values of tc/d = 1.0 and 0.7.   The former 

neglect the contribution from bending of the facings about their own middle surfaces. 

The latter may be used to obtain numerical estimates of the conservatism introduced 

by neglecting these stiffnesses. 

As noted in Section 4. 5.1.1, the design curves are somewhat inaccurate in the region 

where  Zg   is large (long cylinders).   Some caution should be exercised in the appli- 

cation of the curves in this region. 

Strictly speaking, Figures 4. 5-3 through 4. 5-8 apply only when the facings are equal. 

However, the curves are reasonably accurate for sandwich cylinders having unequal 

facings, provided that the thickness of one facing is not more than twice the other. 

4-55 



  

N 
X 

1 

5   .   ._     __ 
3 

-o« CM K                     ill 
'tu 4-> 

i-l "to           ail 
J^ ü +                Sim 

CO -(-> i-i         UHU 
CD 
rH 

15
(1

 

II             " II                            II 
JH                 CQ m              U III 

t- 
o N > 

■*   
<-<          c 

II        II 

+J 
U|T3 cr 

00 • 
o 
II    ~j 

CG/1 >J 
CD • 
© 

II 
c D   I      11 

> -V 
o 

"* • 
•             > <M 

/ II 

"          / CO 

^ > 
><\ 

CD 
<M • 

• ■H 
O 11 
II         j CO 

m I > 
> 

© 

II 1      1 rH 

CG   / / II >y / 
CO 

> 

y / 

© 
© 
o 
© 
t-H 

O 

CM 

© 
© 
© 

N 

00 CD ■* (M • • « • 
© © 

4- 

© 
CO 

■56 

O 

ei 
o 
CG 
U 
O 
H 

a 
CD 

I 
CG 

CD 

a 
i—i 

>> 

*} 
U 

• rH 

& 
'S 

CO 
W2 

f-l 
cj 
3 
O 

•i-( 

Ü 
u 
o 

Ö 
CD 

(D 
O 
o 

a 
o 

CO 

■* 

CD 
U 
3 
bO 

•r-l 



c 
.2 
00 
U 
o 
H 

T3 
JS 
O 

•I—* 

CO 

Ü 

Ü 

! 

3 
J-l 

•1-t 

Ü 
u 
o 

0) 
o 
O 

3 u 
3 

t 
LO 

o O 00 «3                rt< (M 

(M r-< o O          B  O © 

4-57 



III! I 
1-H 

w 

(M 

i-l 

Ü 

X I 
xj|p: 

\ 

XJ 

K 

+ 
r- 

+-> 

LO" 
r-i 

1 

CO 
> 

q                   / 

4                          / / I 
er 

II 

s- 
t 

II 

N 

in 
II 

I 
1 

i-l 

11 
1 

CM 

II 

/// -4-» 1 ^ 

y 
' 

._. 

/ 

/ 

1 

O 

II       y 
CO/ >7 

/  CM              / 

/ 
II          / 

CO/ 

> / 
1/ 

© 

■J 
to « o 

II 
CQ 

CO 

© 

II 
CQ 

> 

CM • 

II 
CQ 

to • 
rH 

II 
CQ 

> 

O • 
CM 

II 
CO 

> 
1 

N 

o 
•I-l 
CO 
S-i 
o 
H 

-2 
Ü 
<D 
•r-i 

1 
CQ 
SH 
CD 

1 
I—» >> 
u 
O 

■i-i 

1 
CO 

S-l 
d 

o u 
•r-i 

Ü 

!H 
O 

n-i 

0> 

54H 

O 
O 
faß 
Ö 

•pH 

3 o 
s 
m 

LO 
I 

to 

cu 
S-l 

faß 

o 
CM o 

M 

CM 

O 

00 
o «5 

O 

4-58 



  — 

N 

— -Jf  

t-i X  H o      - - JW/—— 
p T3 

TJ|K                 J" « 
r,^                                           T-l 

^_^ 
W                                           +» CM 

P                                                 Ü + 
to rH-   

4-» 

rH 

ii        ii          ii                    Wll 

hi           CO              co                       llmlll 
l~ °       N             >                         U 

■* t~ 
       o-    -o- 

II      II 

Olli      CD 

00 
•            ///ill 

  o 
' II 

CQ/// //    I 

>"/////    1 
CD V 
O o • 

CO/ II 
>Zl i 

> 
•*        /  / • —f- / LI    I    >» '"" o ■N. 

II     III 
CO • 

<n/   1  1 rH 

>.. II 
(M 

CQ 

©             / > 
II           / 

CQ / 

>    / <M 

rH 

i       II II 
O /       1     1 CQ 
II I       1     I > 

CO/ /       1     1 
>/ Mil 

N 

© 

Ö o 
•i-4 

CQ 
u 
o 
H 

T3 
CD 

Ü 

1 
CQ 
f-< 
CD 

.S 
i—( 

>> 
Ü 

Ü 
•i-t 

'S 

U a 
s 
Ü 

•r-4 

Ü 

O 

C 
CD 

«4-1 
CD 
O 
Ü 

bD 

ü 

ffl 

CD 
I 

LO 

•*" 
CD 
?H 

S 
be 

•i-t 

o 
CM 

©       00 • • 
rH       O 

■* 

M O 

4-59 



o 
o 

a 
1—4 

Ö 
o 

•|H 
o 
o 

CD 
O a 

.s 
2 
o 

ffl 

t-t 

■i-t 
pH 

4-60 



w 

0 

w o 
C T3 

(M w 
iH 

-^M 
■4-» 

O 
+J + 
to l-l 
iH 4-» 

e i-H 

o •w 
!D 
U 
O 
H 

T3 
4-» 
Ü 
<D 

•i—a 

1 
to 

0) 

u 
Ü 

fi 
W 
u 
a 

r—i 3 
Ü 
u 

•iH 

Ü 

o 

0) 

© o 
o 

.S s 
Ü 
3 
ffl 

00 
I 

in 

■*" 

0) 
h 

bß 
•1-4 

4-61 



4.6    TRANSVERSE SHEAR 

4.6.1    Basic Principles 

In Reference 4-33, Lundquist reports the results from a series of tests on isotropic 

(non-sandwich), circular cylinders subjected to combined transverse shear and bend- 

ing.   The same type of data is published in Reference 4-34 for elliptical cylinders. 

Both sets of data were obtained from cantilevered cylinders of varied lengths.   Extrapo- 

lation of these results to the condition of zero bending stress permits a determination 

of critical stresses for pure transverse shear loading.   It has proven useful to com- 

pare these stress values against the theoretical results obtained from small-deflection 

theory for isotropic (non-sandwich), circular cylinders loaded in torsion.   Gerard and 

Becker [4-35] report that, for nominally identical specimens, such comparisons yield 

the following ratios where the theoretical predictions are obtained by using Reference 

4-36: 

Average of Tcr Test Values for 
.Transverse Shear Loading 
Small-Deflection Theoretical T 

Values for Torsional Loading 
cr 

1.6 (4.6-1) 

Lower-Boundrcr Test Values for 
Transverse Shear Loading 
Small-Deflection Theoretical T, 

Values for Torsional Loading 
cr 

1.25 (4.6-2) 

To properly interpret these ratios, it is pointed out that, for torsional loading, the 

shear stress Tcr is uniformly distributed around the circumference.   On the other 

hand, under transverse shear loading, the shear stress is non-uniform and the value 

Tcr then corresponds to the peak intensity which occurs at the neutral axis. 
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For the lack of a better approach, it is recommended that Equation (4.6-2) be used for 

the design and analysis of circular sandwich cylinders that are subjected to transverse 

shear forces.   In such cases, the required small-deflection theoretical Tcr values for 

torsional loading should be obtained as specified in Section 4.5 of this handbook with 

the exception that y   = 1.0 should be used here.   No test data are available to sub- 

stantiate the reliability of this practice.   Until such data do become available, one can 

only regard this procedure as a "best-available" approach. 
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4.6.2    Design Equations and Curves 

For simply supported circular sandwich cylinders subjected to a transverse shear 

force and having both facings made of the same material, the critical shear stress 

may be computed from the equation 

T      -   1.25K  r]E„- (4.6-3) 
cr s '   f R 

where the buckling coefficient K   is obtained from Figures 4.5-3 through 4.5-8 and 

the notation is the same as that employed throughout Section 4.5.   As noted in Section 

4.5.1.1, these figures are somewhat inaccurate in the region where Z   is large (long 
s 

cylinders) and one should exercise some caution when dealing with such configurations. 

Strictly speaking, Figures 4.5-3 through 4.5-8 apply only when the facings are of equal 

thickness.   However, the curves are reasonably accurate for sandwich cylinders having 

unequal facings, provided that the thickness of one facing is not more than twice the 

other. 

For elastic cases, use r\ = 1.   Whenever the behavior is inelastic, the methods of 

Section 9 must be employed. 

For elastic cylinders the critical transverse shear force (Fy)    , measured in units of 

pounds, can be computed from the following: 

(F )      =  7TR (t + Ur (4.6-4) 
v'cr 2    cr 

To compute (Fv)     when the behavior is inelastic, one must resort to numerical inte- 

gration techniques. 
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4.7    COMBINED LOADING CONDITIONS 

4.7.1    General 

For structural members subjected to combined loads, it is customary to represent 

critical loading conditions by means of so-called interaction curves.   Figure 4.7-1 

shows the graphic format usually used for this purpose.   The quantity R  is the ratio 

of an applied load or stress to the critical value for that type of loading when acting 

alone.   The quantity R. is similarly defined for a second type of loading.   Curves of 

this form give a very clear picture as to the structural integrity of particular con- 

figurations.   All computed points which fall within the area bounded by the interaction 

curve and the coordinate axes correspond to stable structures.   All points lying on or 

outside of the interaction curve indicate that buckling will occur.   Furthermore, as 

shown in Figure 4.7-1, a measure of the margin of safety is given by the ratio of 

distances from the actual loading point to the curve and to the origin.   For example, 

assume that a particular structure is subjected to the combined loading condition 

corresponding to point B of Figure 4.7-1. 

Then, for proportional increases in R. and R., the margin of safety (M.S.) can be 

computed from the following: 

M.S.   = —^- -   1 (4.7-1) 
(Rj>B 

As an alternative procedure, one might choose to compute a minimum margin of safety 

which is based on the assumption that loading beyond point B follows the path BM. 

Point M is located in such a position that BM is the shortest line that can be drawn 
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between point B and the interaction curve.   The minimum margin of safety can then be 

calculated as follows: 

,r.   ■ ™  o OB + BM Minimum M.S.   =    -1 
OB 

(4.7-2) 

R. 

Figure 4.7-1.   Sample Interaction Curve 
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4.7.2    Axial Compression Plus Bending 

4.7.2.1    Basic Principles 

In References 4-17, 4-18, and 4-19 it has been shown that, for circular sandwich 

cylinders subjected to axial compression plus bending, the classical theoretical 

interaction curve may be accurately described by the equation 

<VCL + «VOL  -   * <4-'-3) 

where 

(R)nT   =-p-f- (4-7-4) 
C CL       t^CL 

CTb 
,R )        _ __  (4.7-5) 

«VcL  "   «VcL <4-'-6) 

and 

o    -  Uniform compressive stress due solely to applied axial load, 
c 

psi. 

o-    =  Peak compressive stress due solely to applied bending mo- 
ment, psi. 

(ä )       =  Classical theoretical value for critical uniform compressive 
C stress under an axial load acting alone, psi. 

(ä )        =   Classical theoretical value for critical peak compressive 
b CL stress under a bending moment acting alone, psi. 

References 4-17 and 4-18 develop the foregoing result for weak-core constructions 

which fail in the shear crimping mode.   On the other hand, Reference 4-19 deals 

with infinitely long cylinders which fall in the stiff-core and the moderately-stiff- 

core categories.   Since Equation (4.7-3) is written in terms of classical theoretical 
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allowables, it does not include any consideration of the detrimental influences from 

initial imperfections.   For the purposes of this handbook, these influences are treated 

by introducing the knock-down factors y   and y   (see Figures 4.2-8 and 4.3-2, re- 

spectively) to obtain 

where 

R   +R    =   1 
c       b 

a 
R 

c     y„ (<? 

(4.7-7) 

(4.7-8) 
cv c'CL 

^   =  V^CL 
(4.7-9) 

Therefore, the design interaction curve can be drawn as shown in Figure 4. 7-2. Since 

no test data is available for sandwich cylinders subjected to combined axial load and 

bending, the general validity of this curve has not been experimentally verified. Some 

degree of empirical correlation is inherent in the approach since the knock-down fac- 

tors 7   and y  were established, in part, from sandwich test data (see Sections 4.2 

and 4.3).   However, even these data were few in number.   Therefore, until further 

experimental substantiation is obtained, the recommended interaction relationship 

can only be considered a "best-available" method. 

Figure 4.7-2.   Design Interaction Curve for Circular Sandwich Cylinders 
Subjected to Axial Compression Plus Bending 
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4.7.2.2    Design Equations and Curves 

For simply supported, circular, sandwich cylinders subjected to axial compression 

plus bending, the following interaction equation may be employed: 

R   +R=   1 (4.7-10) 
c       b 

where 

a 
R    = ° (4.7-11) 

cv c'CL 

n     =       °-*\ (4.7-12) 

A plot of Equation (4.7-10) is given in Figure 4.7-3. 

In Equations (4.7-11) and (4.7-12), the knock-down factors yc and yb are those ob- 

tained from Figures 4.2-8 and 4.3-2, respectively. 

The quantity (5 )       is simply the result obtained by using y   = 1.0 in the method of 

Section 4.2.2. 

Plasticity considerations should be handled as specified in Section 9.2 except that, 

in this case, one may use 

T?  = 

b.       r? = 

1-VS 

e 
l-vs\ Ef 

Et —     for short cylinders, and 

l-v e 
2~ 2  J E E 

' —L^     for moderate-length through long cylinders. 
Ef 1-y2. 

Equation (4.7-10) may be applied to sandwich cylinders of any length. However, length 

considerations should be included in the computation of <ÖFC)      when the structure falls 

into the short-cylinder range (see Section 4.2.2). 
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R, 

1.0 

Figure 4.7-3.   Design Interaction Curve for Circular Sandwich Cylinders 
Subjected to Axial Compression Plus Bending 
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4.7.3    Axial Compression Plus External Lateral Pressure 

4.7.3.1    Basic Principles 

This section deals with the loading condition depicted in Figure 4.7-4.   The sandwich 

cylinder is subjected to uniform external pressure over the cylindrical surface. Axial 

loading is imposed as indicated by the forces P.   These forces can originate from any 

source including external pressures which are uniformly distributed over the end clos- 

ures,   m addition, it is specified that the ends of the cylinder are simply supported. 

This is, during buckling, the ends are constrained such that they experience no radial 

or circumferential displacements and they are free of bending moments. 

P , PSi 

umnmi.i 
P, lbs    / / \P, lbs 

 J 
llllllllllll 

Both Ends Simply Supported 

Figure 4.7-4.   Circular Sandwich Cylinder Subjected to Axial 
Compression Plus External Lateral Pressure 

The theoretical basis used here is the classical small-deflection solution of Maki 

[4-37].   The design curves given in this handbook were taken directly from that source 

and embody the following assumptions: 

a. The facings are isotropic. 

b. Both facings are of the same thickness. 

c. Both facings have identical material properties. 
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d. Poisson's ratio for the facings is equal to 0.33. 

e. Bending of the facings about their own middle surfaces can be neglected. 

f. The core has infinite extensional stiffness in the direction normal to the 
facings. 

g. The core extensional and shear rigidities are negligible in directions 
parallel to the facings. 

h.       The transverse shear moduli of the core are the same in the circum- 
ferential and longitudinal directions (G     = G   ). 

i.        The mean radius of the cylinder is large in comparison with the sandwich 
thickness. 

The theoretical relationship derived by Maki [4-37] is in the form of a complicated 

sixth order determinant and no significant advantage would be gained by reproducing 

that formulation in this handbook.   However, it is important to note that a sufficient 

number of terms were retained throughout the derivation to obtain accurate results 

when the number of circumferential full-waves equals two (n = 2).   If the derivation 

had been based on the well-known Donnell approximations [4-8], the results would 

not be applicable to structures which buckle in this manner. 

The interaction curves given in Reference 4-37 are of the two different types depicted 

in Figure 4. 7-5 where 

Vfh 
V

xz   ~  2<l-.33a)RaG (4.7-13) 
xz 

Vfh 
V

yz  =  2(1-.33*)R^G (4-7~14) 
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and 

a 
(R )__.   = -j=-£— (4.7-16) 

E = Young's modulus of facings, psi. 

t = Thickness of single facing, inches. 

h = Distance between middle surfaces of facings, inches. 

R = Radius to middle surface of cylindrical sandwich, inches. 

xz 
Core shear modulus associated with the plane perpendicular 
to the facings and oriented in the axial direction, psi. 

G      =   Core shear modulus associated with the plane perpendicular 
vz 

to the axis of revolution, psi. 

p     =  Applied external lateral pressure, psi. 

(p )        =   Classical theoretical value for critical external lateral pressure 
when acting alone, psi. 

a     =  Uniform axial compressive stress due to applied axial load, psi. 
x 

(ä )        =   Classical theoretical value for critical uniform axial compres- 
x CL 

sive stress when acting alone, psi. 

L   =  Over-all length of cylinder, inches. 

Note:   The value .33 appearing in Equations (4.7-13) and (4.7-14) is an 
assumed representative value for the elastic Poisson's ratio of 
the facings. 

Since the curves of Reference 4-37 were developed from a classical, small-deflection 

approach, they do not include any consideration of the detrimental effects from initial 

imperfections.   This is evident from the fact that classical theoretical allowables are 

used in the ratios (R )       and (R )„,. .   For the purposes of this handbook, the effects 
p CL c CL 
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<Rc>CL 

(VGL 

V 
1.0- \> V 

<Rc>CL p 
— =  Constant 
h 

• \ 

^ = Constant 
L 

V                                                  ' 

<VCL 
1.0 

Figure 4.7-5.   Typical Interaction Curves for Circular Sandwich Cylinders Subjected 
to Axial Compression Plus External Lateral Pressure 

from initial imperfections are introduced through the replacement of (R )CL and 

(R )      bv the ratios R   and R   which are defined as follows: 
*  c'CL   J p c 

R P       WCL 
(4.7-17) 

R 
V^CL 

(4.7-18) 

The quantities y and y are the knock-down factors discussed in Sections 4.4 and 4.2, 

respectively. Values for y can be obtained from Figure 4.2-8 while y may be taken 

equal to 0.90. 

No test data are available for sandwich cylinders which are of the types considered 

here and are subjected to axial compression plus external lateral pressure. Therefore, 

the general validity of the design curves recommended here has not been experimentally 

verified.   Some degree of empirical correlation is inherent in the approach since the 
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knock-down factors y   and y  were established, in part, from sandwich test data (see 
c p 

Sections 4.2 and 4.4). However, even these data were few in number. Therefore, 

until further experimental substantiation is obtained, the recommended interaction 

curves can only be considered as "best-available" criteria. 
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= 
Eftfh 

xz 2(1-.332)R2G v                      xz 

= 
Eftfh 

yz 2(1-.333)R2G v                       yz 

R 
P 

py 
ypVcL 

R 
c 

a 
X 

V^CL 

4.7.3.2    Design Equations and Curves 

For simply supported, circular, sandwich cylinders subjected to axial compression 

plus external lateral pressure, one may employ the interaction curves of Figures 

4.7-6 through 4.7-15 where 

V      =  ——=  (4.7-19) 
xz       2(1-.332)R2G 

XZ 

Et  h 
v       = __ *^ OR ^ (4.7-20) 

(4.7-21) 

(4.7-22) 

In Equations (4.7-21) and (4.7-22), the knock-down factor y^ is that obtained from 

Figure 4.2-8 while y   may be taken equal to 0.90. 

The quantity (p )       is simply the result obtained by using y   = 1.0 in the methods of 

Section 4.4. 

The quantity (5 )      is simply the result obtained by using y= 1.0 in the methods of n x CL c 

Section 4.2. 

Plasticity considerations should be handled as specified in Section 9.2. 

Figures 4.7-6 through 4.7-12 give interaction curves only for cases where V^ = 

V     =0(G     = G    -» »).   Separate families are provided for each of three selected 
yz xz       yz 

values for the parameter ^ (^ = 50; 160; and 50o\.   Graphical interpolation may be 
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used to obtain results for intermediate values of this parameter.   Each family includes 

separate curves for ten different values of the ratio —  (— = 0.1; 0.2; — l.OJ .   In 

view of the restrictions on V     and V    , these curves can only be used to describe the 
xz yz 

behavior of stiff-core constructions.   For the purposes of practical design and analysis, 

it is proposed here that Figures 4.7-6 through 4.7-12 be considered applicable only 

when 

Rt 
C V      ^0.05 (4.7-23) 

h2      xz 

Rt 

h2      yz 

where 

t    =  Thickness of core, inches, 
c 

CV      £0.05 (4.7-24) 

It is expected that many realistic sandwich configurations will satisfy these requirements. 

Figures 4.7-13 through 4.7-15 present a partial picture of the effects which variations 

in V     (= V    ) will have on the interaction relationships.   These figures only treat 
xz yz 

cases for which — = 0.1.   However, the trends displayed furnish some basis for one 
L 

to coniecture that the curves given for V     = V     =0 would result in conservative pre- J xz       yz 

dictions if they were applied to sandwich configurations which do not satisfy the In- 

equalities (4.7-23) and (4.7-24).   However, one should be cautioned against making 

sweeping application of this observation in view of the limited scope of the information 

shown in Figures 4.7-13 through 4.7-15. 
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It should be kept in mind that the interaction curves given in Figures 4.7-6 through 

4.7-12 include C   values ranging only from 0.1 through 1.0.   Since 
L 

C     = — (4.7-25) 
L L 

it follows that these curves only embrace the range where 

3.14 i-^Ä 31.4 (4.7-26) 
R 
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0.8 1.0 

Figure 4. 7-6.   Interaction Curves for Circular Sandwich Cylinders 
Subjected to Axial Compression Plus External 
Lateral Pressure 
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£.„. 
_ V     = v     = =   0.0  
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c    =•£ CL        L 

yz 

\   \ o 
\ \v 

C_ = 0.6. 
J-J 

C    = 0.7- 

C    = 0.8- 

C    =0.9- 
1J 

0.2 0.4 0.6 
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P 

0.8 1.0 

Figure 4.7-7.   Interaction Curves for Circular Sandwich Cylinders 
Subjected to Axial Compression Plus External 
Lateral Pressure 
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Figure 4. 7-8.   Interaction Curve for Circular Sandwich Cylinders 
Subjected to Axial Compression Plus External 
Lateral Pressure 
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Figure 4. 7-9.   Interaction Curves for Circular Sandwich Cylinders 
Subjected to Axial Compression Plus External 
Lateral Pressure 

4-82 



1.0 

Figure 4.7-10.   Interaction Curves for Circular Sandwich 
Cylinders Subjected to Axial Compression 
Plus External Lateral Pressure 
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0.4 

0.2 

>CL 

1 
= 0.4 

C_ =0.2 
1J 

1 
R 
— =   500 
h 

V       = V       =0.0 

C    =0.5 c    =1 
L         ] 

R 

C    =0.1 

°L = 0. 5   *^ 

C    =0.3 

0.2 0.4 0.6 
R 

0.8 1.0 

Figure 4. 7-11.   Interaction Curves for Circular Sandwich Cylinders 
Subjected to Axial Compression Plus External 
Lateral Pressure 
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Figure 4. 7-12.   Interaction Curves for Circular Sandwich Cylinders 
Subjected to Axial Compression Plus External 
Lateral Pressure 
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1.0 
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0.2 

Figure 4. 7-13.   Interaction Curves for Circular Sandwich Cylinders 
Subjected to Axial Compression Plus External 
Lateral Pressure 
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1.0 

R 

Figure 4. 7-14.   Interaction Curves for Circular Sandwich Cylinders 
"~ Subjected to Axial Compression Plus External 

Lateral Pressure 
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Figure 4. 7-15.   Interaction Curves for Circular Sandwich Cylinders 
Subjected to Axial Compression Plus External 
Lateral Pressure 
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4.7.4    Axial Compression Plus Torsion 

4.7.4.1    Basic Principles 

This section deals with the loading condition depicted in Figure 4.7-16.   The sandwich 

cylinder is subjected to end torque T plus axial loading indicated by the forces P. 

T, in-lbs Torque T, in-lbs Torque 

P, lbs /    / /       \   \ P, lbs 

Both Ends 
Simply Supported 

Figure 4.7-16.   Circular Sandwich Cylinder Subjected to 
Axial Compression Plus Torsion 

In Reference 4-18 Wang, et al. treat this type of problem but only consider the case 

of weak-core configurations which fail in the shear crimping mode.   In addition they 

assume that the cylinder is long so that the boundary conditions can be ignored.   This 

small-deflection analysis makes use of the Donnell approximations [4-8] to arrive at 

the following interaction relationship: 

<Rc>CL + (R/CL =  ' (4'7-27) 

where 

«■VCL  - ifc 
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(R)        =—L— (4.7-29) (VCL        (f)CL 

and 
a    =  Uniform axial compressive stress due to applied axial load, psi. 

c 

(5 )        =   Classical theoretical value for critical uniform axial compres- 
c CL       sive stress when acting alone, psi. 

T  =  Uniform shear stress due to applied torque, psi. 

(f)        =   Classical theoretical value for critical uniform shear stress 
CL       due to torque acting alone, psi. 

Because Equation (4.7-27) was developed from a classical, small-deflection approach, 

it does not include any consideration of the detrimental effects from initial imperfec- 

tions.   That is evident from the fact that classical theoretical allowables are used in 

the ratios <R„)„T and (R ) „ .   For the purposes of this handbook, the effects from 

initial imperfections are introduced through the replacement of (Rc)CL and (Rg)CL by 

the ratios R   and R   which are defined as follows: 
c s 

o c 
R 

c yo «VCL 

R 
s 

T 

7s <f)CL 

(4.7-30) 

(4.7-31) 

The quantities y   and y   are the knock-down factors discussed in Sections 4.2 and 4.5, 
c s 

respectively. Values for 7Q can be obtained from Figure 4.2-8 while yg may be taken 

equal to 0.80. Incorporation of the foregoing substitutions into Equation (4.7-27) then 

gives the following interaction relationship for weak-core constructions: 

R   +R2   =   1 (4.7-32) 
c       s 
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In Reference 4-38, Batdorf, et al. deal with the subject loading condition for thin- 

walled, isotropic (non-sandwich), circular cylinders.   Since, for such constructions, 

transverse shear deformations of the shell wall are of negligible importance, one 

might conjecture that this work could be applied to sandwich cylinders which fall into 

the stiff-core category.   Based on theoretical considerations modified by test results, 

Batdorf, et al. [4-38] arrived at the same interaction expression as that given above 

as Equation (4.7-32).   In view of this, one might choose to view Equation (4.7-32) as 

a comprehensive interaction formula for sandwich cylinders.   However, some caution 

should be observed in implementing this viewpoint, partially because of the fact that 

only the extremes of transverse shear stiffness of the core have been considered,   m 

addition, although the interaction relationship for the subject loading condition should 

probably be dependent upon a length parameter, no investigations were made to estab- 

lish the sandwich cylinder lengths over which Equation (4.7-32) is a reasonable repre- 

sentation of the actual behavior.   Furthermore, no test data are available for sandwich 

cylinders which are of the types considered in this handbook and are subjected to axial 

compression plus torsion.   Therefore the general validity of Equation (4.7-32) has not 

been experimentally verified.   Some degree of empirical correlation is inherent in the 

approach since the knock-down factor y   was established, in part, from sandwich test 

data (see Section 4.2).   However, even these data were few in number.   Therefore, 

until further theoretical and experimental investigations are accomplished, the inter- 

action relationship cited here can only be considered as a "best-available" criterion. 
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4.7. 4.2    De sign E quati ons and Curve s 

For simply supported, circular, sandwich cylinders subjected to axial compression 

plus torsion, one might choose to employ the interaction formula 

R   +R2 =   1 (4.7-33) 
c      s 

which is plotted in Figure 4.7-17 and where 

R    = ° (4.7-34) 
C       WCL 

R    = Z  (4.7-35) 
S       ^s (f >CL 

In Equations (4.7-34) and (4.7-35), the knock-down factor y^ is that obtained from 

Figure 4.2-8 while y   may be taken equal to 0.80. 
s 

The quantity (ä )       is simply the result obtained by using y   = 1.0 in the methods of 
C    \*i J_i 

Section 4.2. 

The quantity (f)       is simply the result obtained by using y   = 1.0 in the methods of 
CLi ° 

Section 4.5. 

Plasticity considerations should be handled as specified in Section 9.2. 

Attention is drawn to the fact that, in Section 4. 7.4.1, several factors are cited which 

shed considerable doubt upon the reliability of results obtained from the indiscriminate 

use of Equation (4.7-33) and Figure 4.7-17.   In view of these uncertainties, one might 

often choose to employ the straight-line interaction formula 

R   +R    =   1 (4.7-36) 
c       s 
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which is plotted in Figure 4.7-18.   This relationship can be used with confidence for 

any length of cylinder and for any region of transverse shear rigidity of the core since 

experience has shown that the linear interaction formula is never unconservative for 

shell stability problems.   However, in many cases it will, of course, introduce exces- 

sive conservatism. 

1.0 

0.8 

0.6 

P5 

0.4 

0.2 

1.0 

Figure 4.7-17.   Conditional Interaction Curve for Circular Sandwich Cylinders 
 "       Subjected to Axial Compression Plus Torsion 
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R 

Figure 4.7-18.   Conservative Interaction Curve for Circular Sandwich Cylinders 
Subjected to Axial Compression Plus Torsion 
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4.7.5    Other Loading Combinations 

4.7.5.1    Basic Principles 

In Sections 4.7.3 and 4.7.4 the following combined loading conditions are treated: 

a. Axial Compression plus External Lateral Pressure. 

b. Axial Compression plus Torsion. 

The corresponding interaction relationships can be used for certain additional com- 

binations by recognizing that 

a. the peak axial stress due to an applied bending moment can be converted 

into an equivalent uniform axial stress, and 

b. the peak shear stress due to a transverse shear force can be converted 

into an equivalent uniform torsional shear stress. 

With this in mind, the design equations and curves of Section 4.7.3.2 can be used for 

the combination of AXIAL COMPRESSION PLUS BENDING PLUS EXTERNAL LATERAL 

PRESSURE if one simply substitutes the quantity a' for a   where 

</   =   (a )   +(—)(a ), (4.7-37) ux x'c    \y /    x b 

and 

(a )    =  Uniform axial compressive stress due solely to applied axial 
x c 

load, psi. 

(a )    -  Peak axial compressive stress due solely to applied bending 
x b 

moment, psi. 

v    =  Knock-down factor associated with axial compression and as 
c 

given in Figure 4.2-8, dimensionless. 

y    =  Knock-down factor associated with pure bending and as given in 
b 

Figure 4.3-2, dimensionless. 
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This formula is based on the findings reported in Section 4.3. 

In addition, the design equations and curves of Section 4.7.4.2 can be used for the 

combination of AXIAL COMPRESSION PLUS BENDING PLUS TORSION PLUS TRANS- 

VERSE SHEAR FORCE if one simply substitutes the quantities </ and / for OQ and T, 

respectively, where 

a'   = (CT)   +(—W)u (4I7
~

38) 

c       V c'c    \7hJ   ch 

/       T    +^°T     =T    +O.64T (4.7-39) T        TT     1.25    V T V 

and 

(a )     =  Uniform axial compressive stress due solely to applied axial 
c c load, psi. 

(a )     =  Peak axial compressive stress due solely to applied bending 
c b moment, psi. 

T     =  Uniform shear stress due solely to applied torque, psi. 
'T 

T     = Peak shear stress due solely to applied transverse shear forced 
V 

psi. 

v   and y    =  Knock-down factors specified above. 
' c b 

Equation (4.7-38) is based on the findings reported in Section 4.3 while Equation 

(4.7-39) stems from a comparison of Equations (4.5-9) and (4.6-3). 

Since no sandwich test data are available to substantiate the foregoing procedures, they 

can only be regarded as "best-available" criteria. 
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4.7.5.2    Design Equations and Curves 

For the combination of AXIAL COMPRESSION PLUS BENDING PLUS EXTERNAL 

LATERAL PRESSURE, substitute a' for a   and use the design equations and curves 
X x 

given in Section 4.7.3.2.   The quantity a' is defined as follows: 

a'   = (a )   + (—\(a ). (4-7-40) 
x x;c    \yj    x'b 

However, the quantity (5 )„T used in Section 4.7.3.2 remains as defined in that 

section. 

For the combination of AXIAL COMPRESSION PLUS BENDING PLUS TORSION PLUS 

TRANSVERSE SHEAR FORCE, substitute a' for a   and r' for T in the design equations 
c c 

and curves given in Section 4.7.4.2.   The quantities <TJ and T' are defined as follows: 

CT'  =  (CT)   +(—\(aX (4-7"41) 

c c c    \yhJ    c b 

T' +°_l^T     =  T    +0.64T (4.7-42) T        TT     1.25    V T V 

However, the quantities (öycL and (f)CL used in Section 4.7.4.2 remain as defined 

in that section. 

The foregoing criteria will still apply, of course, where one or more of the specified 

applied loads equal zero. 
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5 
GENERAL INSTABILITY OF TRUNCATED CIRCULAR CONES 

5.1    AXIAL COMPRESSION 

5.1.1    Basic Principles 

It appears that no significant theoretical solutions have been published for axially com- 

pressed sandwich cones.  Therefore, for the purposes of this handbook, the equivalent- 

cylinder concept of Seide, et al. [5-1] has been adopted as a practical expediency. 

Based on a large array of test data from thin-walled, isotropic (non-sandwich), trun- 

cated cones, Seide, et al. concluded that the critical stresses for such cones can be 

taken equal to the values for circular cylinders which satisfy the following conditions: 

a. The wall thickness of the equivalent cylinder is equal to that of the cone. 
In the case of sandwich constructions, the logical extension of this con- 
dition is that the equivalent cylinder have the same facing and core thick- 
nesses found in the cone. 

b. The radius of the equivalent cylinder is equal to the finite principal radius 
of curvature at the small end of the cone. 

c. The length of the equivalent cylinder is equal to the slant length of the 
cone. 

In Reference 5-2, Baker presents test data from two axially compressed, truncated 

sandwich cones having vertex half-angles equal to 15 degrees.   These data were used 

in conjunction with the foregoing equivalent-cylinder concept to arrive at knock-down 

factors yc<   The results are shown in Figure 5.1-1, along with data obtained from 
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1 

axially compressed sandwich cylinders. This figure also includes the design curve 

recommended in Section 4.2.2 for such cylinders. It can be seen that the data from 

the cones are in favorable agreement with the results obtained from cylinders. This 

provides at least a small degree of experimental substantiation for application of the 

equivalent-cylinder approach to sandwich cones. However, in view of the scarcity of 

test points from conical specimens, this method can presently be considered as only 

a "best-available" criterion. 
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r 
5.1.2   Design Equations and Curves 

For simply supported, truncated, right-circular, sandwich cones subjected to axial 

compression, the critical stresses a       ander       (for facings 1 and 2, respectively) 
cri crs 

may be computed from the equations and curves of Section 4.2.2, provided that the 

following substitutions are made: 

a. The values t^ t,, t    and h are measured as shown in Figure 5.1-2. 
(There is no preference as to which facing is denoted by the subscripts 
lor 2.) 

b. The radius R is replaced by the effective radius R   shown in Figure 5.1-2. 

c. The length L is replaced by the effective length L   shown in Figure 5.1-2. 

Both Ends 
Simply Supported 

p, lbs 

View A 

NOTE:       t      t      t  ,  h,  R       ,„  R ,  and 
I    v.    c small     c 

Le are all measured in units of 
inches while a is measured in 
degrees. 

Figure 5.1-2.   Truncated Sandwich Cone Subjected to Axial Compression 
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The applied axial load P and the computed stresses are associated with the directions 

indicated in Figure 5.1-2.   In addition, since the maximum stresses occur at the small 

end of the cone, the critical values are associated with this location.   For both elastic 

and inelastic cases, one can therefore write 

P      = 27TR   (a     t, +cr      t,) cos2« (5.1-1) 
cr e \   CT1 ^      cr2 

äi 

where 

small ,r ->  0s R    =   (5.1-2) 
e cos a 

It is recommended that the approach specified here be applied only to cases where 

a < 30 degrees. 

Plasticity reduction factors should always be based on the stress at the small end of 

the cone (see Section 9). 

1 
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5.2    PURE BENDING 

5.2.1    Basic Principles 

It appears that no significant theoretical solutions have been published for sandwich 

cones subjected to pure bending.  Therefore, for the purposes of this handbook, the 

equivalent-cylinder concept of Seide, et al. has been adopted as a practical expediency. 

Based on a large array of test data from thin-walled, isotropic (non-sandwich), trun- 

cated cones, Seide, et al. concluded that the critical peak stresses for such cones can 

be taken equal to the corresponding values for circular cylinders which satisfy the 

following conditions: 

a. The wall thickness of the equivalent cylinder is equal to that of the cone. 
In the case of sandwich constructions, the logical extension of this condi- 
tion is that the equivalent cylinder have the same facing and core thick- 
nesses as are found in the cone. 

b. The radius of the equivalent cylinder is equal to the finite principal radius 
of curvature at the small end of the cone. 

c. The length of the equivalent cylinder is equal to the slant length of the cone. 

No test data are available for sandwich cones which are of the types considered in this 

handbook and are subjected to pure bending.   Therefore, the validity of the method 

recommended here has not been experimentally verified and can only be considered as 

a "best-available" approach. 
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5.2.2    Design Equations and Curves 

For simply supported, truncated, right-circular, sandwich cones subjected to pure 

bending, the critical peak stresses a      and a       (for facings 1 and 2, respectively) 
crx cr2 

may be computed from the equations and curves of Section 4.3.2, provided that the 

following substitutions are made: 

a. The values t1, t,, tc, and h are measured as shown in Figure 5.2-1. 
(There is no preference as to which facing is denoted by the subscripts 
1 or 2.) 

b. The radius R is replaced by the effective radius R& shown in Figure 5.2-1. 

c. The length L is replaced by the effective length Le shown in Figure 5.2-1. 

M, in-lbs 

Both Ends 
Simply Supported 

i M, in-lbs       R small 

View A 

Note:    t , t, t , h, R , R , and L 
12c small     e e 

are all measured in units of inches 
while a is measured in degrees. 

Figure 5.2-1.   Truncated Sandwich Cone Subjected to Pure Bending 

1 
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The applied bending moment M and the computed stresses are associated with the 

directions indicated in Figure 5.2-1.   In addition, since the maximum stresses occur 

at the small end of the cone, the critical values are associated with this location. 

When the behavior is elastic, one can therefore write 

M 
cr 

irR2(a      t  +or      t„\ cos3« (5.2-1) 
e   \  crx *       cr2 

3/ 

where 

R    «ÜS25Ü (5.2-2) 
e        cos a 

To compute M    when the behavior is inelastic, one must resort to numerical inte- 
cr 

gration techniques. 

It is recommended that the approach specified here be applied only to cases where 

a £ 30 degrees. 

Plasticity reduction factors should always be based on the peak compressive stress at 

the small end of the cone (see Section 9). 
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5.3    EXTERNAL LATERAL PRESSURE 

5.3.1    Basic Principles 

The loading condition considered here is depicted in Figure 5.3-1.   As shown, the cone 

is subjected to a uniform external lateral pressure. The axial component of this loading 

P. psi 

P. psi 

wc,   lbs/in 

Both Ends 
Simply Supported 

lbs/in 

Figure 5.3-1.   Truncated Cone Subjected to Uniform External Lateral Pressure 

is reacted by a uniform compressive running load at the large end of the cone. This 

results in principal membrane stresses which may be computed as follows, when the 

core has a relatively high extensional stiffness in the direction normal to the facings: 

.     PRs 
CTH (tl+y 

\         small/ 
R 

M (tj +12)      2 cos a 
small 

R    I 

(5.3-1) 

(5.3-2) 
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where 

and 

R    = -JL_ (5.3-3) 3      cos a 

a     = Hoop membrane stress, psi. 
H 

a     = Meridional membrane stress, psi. 
M 

p  =  Uniform external lateral pressure, psi. 

R   =  Finite principal radius of curvature of middle surface, inches. 

\ and t2   =  Thicknesses of the facings, inches.   (There is no preference as 
to which facing is denoted by the subscripts 1 or 2.) 

R  =  Radius of middle surface measured perpendicular to the axis of 
revolution, inches. 

R =  Radius of middle suriace, at small end of cone, measured per- 
small      pendicular to the axis of revolution, inches. 

R = Radius of middle surface, at large end of cone, measured per- 
arge      pendicular to the axis of revolution, inches. 

a  = Vertex half-angle of cone, degrees. 

Since the radii R and Rg vary with the axial location, the stresses aR and aM are non- 

uniform over the conical surface.   The maximum values for each of these quantities 

occur at the large end of the cone. 

It appears that no significant theoretical solutions have been published for the stability 

of truncated sandwich cones which are subjected to uniform external hydrostatic pres- 

sure.   Therefore, for the purposes of this handbook, the equivalent-cylinder approach 

suggested in Reference 5-11 has been adopted as a practical expediency.   Based on 

this method, the critical lateral pressure for the truncated cone may be taken equal 
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to that for an equivalent circular sandwich cylinder which satisfies the following 

conditions: 

a. The facing and core thicknesses of the equivalent cylinder are the same 
as those found in the cone. 

b. The length of the equivalent cylinder is equal to the slant length of the cone. 

c. The radius of the equivalent cylinder is equal to the average finite principal 
radius of curvature of the cone.   That is, 

R       .. + R, 
R    -     Smf       large (5.3-4) 

e 2 cos a 

The critical lateral pressure for the equivalent cylinder can be obtained by using the 

equations and curves of Section 4.4.2. 

Since no test data are available from truncated sandwich cones subjected to external 

lateral pressure, the reliability of the foregoing approach has not been experimentally 

verified and can only be considered as a "best-available" technique. 
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5.3.2    Design Equations and Curves 

For a simply supported, truncated, right-circular, sandwich cone subjected to uni- 

form, external, lateral pressure, the critical pressure may be taken equal to the 

critical lateral pressure for an equivalent sandwich cylinder which satisfies the 

following: 

a. The values t:, t , t , and h are measured as shown in Figure 5.3-2. 

b. The length is taken equal to the slant length L . 

c. The radius is denoted R   and is computed from the formula 
e 

R    = 
e 

R       „ + R, small       large 
2 cos a 

where Rgman> Ria      > and <* are as shown in Figure 5.3-2. 

(5.3-5) 

BOTH ENDS 
SIMPLY SUPPORTED 

NOTE: 

VIEW A 

t , t     t , h, R, R , R , R 
12c 2     small,    large 

and Le are all measured in units of 
inches while Oi is measured in degrees. 

Figure 5.3-2.   Truncated Sandwich Cone 
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The critical lateral pressure for the equivalent sandwich cylinder can be obtained by 

using the equations and curves of Section 4.4.2. 

Plasticity considerations should be handled as specified in Section 9.2.   The plasticity 

reduction factor r) should always be based on theprincipal membrane stresses at the 

large end of the cone where 

a     =  large (5.3-6) UH       (t.+tjcosry 

ff      -2ÜL-    (l-^A (5.3-7) aM     (t1+y  V    Rlarge/ 

It is recommended that the approach specified here be applied only to cases where 

a £ 30 degrees. 
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5.4    TORSION 

5.4.1    Basic Principles 

It appears that no significant theoretical solutions have been published for sandwich 

cones subjected to torsion.    Therefore,   for the purposes of this handbook,  the 

equivalent-cylinder concept of Seide [5-3] has been adopted as a practical expediency. 

Based on the analysis of his numerical computations for thin-walled, isotropic (non- 

sandwich), truncated cones, Seide concluded that the critical torques for such shells 

can be taken equal to the values for circular cylinders which satisfy the following 

conditions: 

a. The wall thickness of the equivalent cylinder is equal to that of the cone. 
In the case of sandwich constructions, the logical extension of this condi- 
tion is that the equivalent cylinder have the same facing and core thick- 
nesses as are found in the cone. 

b. The length of the equivalent cylinder is equal to the axial length of the cone. 

c. The radius of the equivalent cylinder is computed from the relationship 

R =   (RsmallC0Sa) 

R 
large \ 

R 
small/ 

R 

R 
large \ 

small/ - 
(5.4-1) 

where 

R     =  Radius of equivalent cylinder, inches. 

R 
small 

R 
large 

Radius at small end of cone, inches (measured perpendicular 
to the axis of revolution). 

Radius at large end of cone, inches (measured perpendicular 
to the axis of revolution). 

a   =  Vertex half-angle of cone, degrees. 
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In Reference 5-1, Seide, et al. present test results from ten isotropic (non-sandwich), 

truncated cones which were subjected to torsion.   These tests included specimens 

having vertex half-angles (<y) of both 30 and 60 degrees.   The agreement of these 

results with equivalent-cylinder predictions was similar to that obtained from com- 

parisons of test data from isotropic (non-sandwich) cylinders against the corresponding 

small-deflection theoretical solutions.   For conical sandwich constructions it was 

therefore decided to use the same knock-down factor (y   =0.80) as was selected in 
s 

Section 4.5 for sandwich cylinders under torsion. 

No test data are available for sandwich cones which are of the types considered in this 

handbook and are subjected to torsion.   Therefore the method recommended here has 

not been experimentally verified and can only be considered as a "best-available" 

approach. 
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5.4.2    Design Equations and Curves 

For simply supported, truncated, right-circular sandwich cones subjected to torsion, 

the critical torque may be computed from the equation 

where 

T      =  2TTR 
2 (t, +t„)T' cr e      1     2    cr 

(5.4-2) 

T      =  Critical torque for sandwich cone subjected to torsion, in-lbs. 
cr 

R 

tx and tg 

cr 

Radius of equivalent sandwich cylinder, inches [ see Equation 
(5.4-3)]. 

Thicknesses of the facings, inches.   (There is no preference 
as to which facing is denoted by the subscript 1 or 2.) 

Critical shear stress for equivalent sandwich cylinder when 
subjected to torsion, psi.   (It should be noted that this value is 
not equal to the critical shear stress of the conical sandwich 
construction.) 

The radius R   is computed from 
e 

R (R      „cos a] 
\ small        / 

1 + i(1 + 
R 

2 \        R 
large \ 

small/ 

1 

l(l 1    larse 

2 I        R small /. 
(5.4-3) 

where R       „, R,        , and a are as shown in Figure 5.4-1. 
small     large 

The stress r'    may be computed from the equations and curves of Section 4.5.2 pro- 
cr 

vided that 

a. The values t^ ts, t , and d are measured as shown in Figure 5.4-1. 

b. The radius R is replaced by the effective radius R . 

c. The length L is taken equal to the axial length of the cone (see Figure 
5.4-1). 
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Both Ends 
Simply Supported 

T,  in-lhs View A 

NOTE: t1§ t2. tc. h. d. I.. R,mall. 
and Riarge are a^' measured 
in units of inches while Oi is 
measured in degrees. 

Figure 5.4-1.   Truncated Sandwich Cone Subjected to Torsion 

In a truncated cone which is subjected to torsion, the maximum shear stress will occur 

at the small end.   Hence, for sandwich constructions of this type, the critical stress 

value is associated with that same location.   One can therefore write 

T 
cr 

Cr      ^small^ 
(5.4-4) 

where 

T     =  Critical shear stress for truncated sandwich cone when subjected 
cr 

to torsion, psi. 

It is recommended that the approach specified here be applied only to cases where 

a £ 30 degrees. 

Plasticity reduction factors should always be based on the stress at the small end of 

the cone (see Section 9). 
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5.5    TR ANSVE RSE SHE AR 

5.5.1    Basic Principles 

The case considered here is that of a truncated sandwich cone which is subjected only 

to transverse shear forces as shown in Figure 5.5-1.   Note that all transverse sec- 

tions, such as A-A, are subjected to the same magnitude of shear load. 

F , lbs 

Both Ends 
Simply Supported 

Figure 5.5-1.   Truncated Cone Subjected to Transverse Shear 

This, of course, is a purely hypothetical loading condition since it does not result in 

over-all static equilibrium of the structure.   To obtain the necessary balance of forces 

and moments, it is required that an external bending moment also be present.   Never- 

theless, the hypothetical unbalanced loading system does prove to be of interest since 

the combined effects of transverse shear and its associated bending are usually analy- 

zed by using an interaction equation.   Such a relationship involves both the critical 

peak meridional stress under a bending moment acting alone and the critical peak 

shear stress corresponding to the subject artificial loading condition. 

It appears that no significant theoretical solutions have been published for sandwich 

cones subjected to transverse shear.   Therefore, for the purposes of this handbook, 
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the concept used for sandwich cylinders (see Section 4.6) will also be adopted here as 

a practical expediency.   As noted in Section 4.6, the results from a series of tests 

[5-4 and 5-5] on isotropic (non-sandwich), circular and elliptic cylinders led to the 

conclusion [5-6] that 

Lower-Bound Tcr Test Values for 
Transverse Shear Loading 

1.25 (5.5-1) 
Small-De flection Theoretical 
T     Values for Torsional Loading 
cr 

To properly understand this ratio, it should be observed that for torsional loading of a 

thin-walled circular cross section the shear stress Tcr is uniformly distributed around 

the circumference.   On the other hand, under transverse shear loading, the shear 

stress is nonuniform and the value Tcr then corresponds to the peak intensity which 

occurs at the neutral axis. 

For the lack of a better approach, it was recommended in Section 4.6 that Equation 

(5.5-1) be used for the design and analysis of sandwich cylinders that are subjected to 

transverse shear forces.   For the same reason, it is recommended here that Equa- 

tion (5.5-1) also be used for truncated sandwich cones.   In the latter case, the re- 

quired small-deflection theoretical T     values for torsional loading should be obtained 

as specified in Section 5.4, with the exception that y   must now be taken equal to unity. 
s 

No sandwich test data are available to substantiate the reliability of this practice. 

Until such data do become available, one can only regard this procedure as a "best- 

available" approach. 
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5.5.2    Design Equations and Curves 

For simply supported, right-circular, truncated sandwich cones subjected to trans- 

verse shear forces, the critical peak shear stress may be computed from the equation 

T      =   1.25 (T   ) (5.5-2) 
cr cr Torsion 

= 1.0 
's 

where 

y 's 

(T   ) =  The critical torsional shear stress obtained by substituting 
Cr Torsion       y_ = 1.0 throughout the methods cited in Section 5.4, psi. ' s 

y   - 1.0 
's 

In a truncated cone which is subjected to transverse shear, the maximum shear stress 

will occur at the small end.   Hence, the critical stress value is associated with that 

location. 

Plasticity reduction factors should always be based on the stress at the small end of the 

cone (see Section 9). 

When the behavior is elastic, the critical transverse shear force (F )     can be com- or 

puted from the following: 

<Pv>      =^Rsmall^+t
3
)Tcr (5-5"3) 

cr 

To compute (Fv)     when the behavior is inelastic, one must resort to numerical inte- 

gration techniques. 
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5.6    COMBINED LOADING CONDITIONS 

5.6.1    General 

For structural members subjected to combined loads, it is customary to represent 

critical loading conditions by means of so-called interaction curves.   Figure 5.6-1 

shows the graphic format usually used for this purpose.   The quantity ^ is the ratio 

of an applied load or stress to the critical value for that type of loading when acting 

alone.   The quantity Rj is similarly defined for a second type of loading.   Curves of 

this form give a very clear picture as to the structural integrity of particular con- 

figurations.   All computed points which fall within the area bounded by the interaction 

curve and the coordinate axes correspond to stable structures.   All points lying on 

or outside of the interaction curve indicate that buckling will occur.   Furthermore, 

as shown in Figure 5.6-1, a measure of the margin of safety is given by the ratio of 

distances from the actual loading point to the curve and to the origin.   For example, 

assume that a particular structure is subjected to the combined loading condition 

corresponding to point B of Figure 5.6-1. 

Figure 5.6-1.   Sample Interaction Curve 
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Then, for proportional increases in R. and R., the margin of safety (MS) can be com- 

puted from the following: 

'D 
MS   *-jöJ- -1 (5.6-1) 

J I 

VE 

As an alternative procedure, one might choose to compute a minimum margin of safety 

which is based on the assumption that loading beyond point B follows the path BM. 

Point M is located in such a position that BM is the shortest line that can be drawn 

between point B and the interaction curve.   The minimum margin of safety can then 

be calculated as follows: 

...   . „.„        OB + BM      , 
Minimum MS  =  —   -1 (5.6-2) 

5-22 



5.6.2    Axial Compression Plus Bending 

5.6.2.1    Basic Principles 

In Section 4.7.2 this loading condition is treated for the case of circular sandwich 

cylinders.   For such configurations, it was concluded that one may use the following 

interaction relationship: 

R   +\ =  1 <5-6-3> 

where 

a 
R     =  ~  (5.6-4) 

C       yc 
(ffc>CL 

^  =  ^ ^CL 

cr, 
D (5.6-5) 

and 

a    =  Uniform compressive stress due solely to applied axial load, 
c 

psi. 

a    = Peak compressive stress due solely to applied bending moment, 
b 

psi. 

(a )        =  Classical theoretical value for critical uniform compressive 
CL       stress under an axial load acting alone, psi. 

v    = Knock-down factor given by Figure 4.2-8, dimensionless. 
'c 

y    = Knock-down factor given by Figure 4.3-2, dimensionless. 
b 

In this handbook it is proposed that for truncated sandwich cones the cases of pure 

bending and of axial load acting alone both be treated by means of an equivalent- 

cylinder concept (see Sections 5.1 and 5.2).   For both types of loading, the radius 

of the equivalent cylinder is taken equal to the finite principal radius of curvature at 

the small end of the cone.   It should be noted that the maximum stresses from both 
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bending and axial compression occur at this same location.   In view of these several 

considerations, it is assumed here that Equations (5.6-3) through (5.6-5) can be 

applied to truncated sandwich cones if 

a. g   and a,  are both computed for the meridional direction and at the small 
end of the cone, and 

b. the values for yc, and y^, and (äc)CT are those which apply to the equivalent 
sandwich cylinder described in Sections 5.1 and 5.2.   (It is important to 
keep in mind that yQ must be taken equal to 1.0 when computing the value 

Since no test data have been published for truncated, sandwich cones subjected to axial 

compression plus bending, the recommended approach has not been experimentally 

verified and can only be regarded as a "best-available" method. 
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5.6.2.2    Design Equations and Curves 

For simply supported, truncated, right-circular sandwich cones subjected to axial 

compression plus bending, the following interaction equation may be employed: 

(5.6-6) 
c        u 

where 

R    =  JL  (5.6-7) 

R 
c + Rb 

= i 

a c 
c 

yc 
(<? ) c CL 

CTb 

b 
\ «5J c CL 

(5.6-8) 

Equation (5.6-6) may be used for cones of any length.   A plot of this equation is given 

in Figure 5.6-2. 

The quantity ac is the uniform meridional compressive stress, at the small end of the 

cone, due to the axial force acting alone. 

The quantity a,  is the peak meridional compressive stress, at the small end of the 

cone, due to the bending moment acting alone. 

The quantities yc, y, , and (CTC)       are those which apply to the equivalent sandwich 

cylinder described in Sections 5.1 and 5.2. 

In Equations (5.6-7) and (5.6-8), the knock-down factors y   and y.  are those obtained 

from Figures 4.2-8 and 4.3-2, respectively. 

The quantity pc)      is simply the result obtained by using y   = 1.0 in the method of 

Section 4.2.2. 
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Plasticity considerations should be handled as specified in Section 9.2 except, that in 

this case, one may use 

E, 
(a)     77 

(b)     T) 

E 
for short cones, and 

f 

W* for mode rate-length through long cones. 

The plasticity reduction factor 77 should always be based on the peak compressive stress 

at the small end of the cone. 

1.0 

1.0 

Figure 5.6-2.   Design Interaction Curve for Truncated Sandwich Cones 
Subjected to Axial Compression Plus Bending 
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5.6.3    Uniform External Hydrostatic Pressure 

5.6.3.1    Basic Principles 

The loading condition considered here is depicted in Figure 5.6-3.   As shown, the cone 

is subjected to a uniform external pressure over the lateral surface and both end closures. 

p, psi 

Both Ends 
Simply Supported 

p, psi 

Figure 5.6-3.   Truncated Cone Subjected to Uniform 
External Hydrostatic Pressure 

This results in principal membrane stresses which may be computed as follows when 

the core has a relatively high extensional stiffness in the direction normal to the 

facings: 

PR3 

H       <t+t) 

where 

M 

R 

pRe 

2(tl+t2) 

R 
cos a 

(5.6-9) 

(5.6-10) 

(5.6-11) 
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and 

a     =  Hoop membrane stress, psi. 

a      =  Meridional membrane stress, psi. 
M 

p  =  Uniform external hydrostatic pressure, psi. 

R   =  Finite principal radius of curvature of middle surface, inches. 

\ and t,   =  Thicknesses of the facings, inches.   (There is no preference 
as to which facing is denoted by the subscripts 1 or 2.) 

R   =  Radius of middle surface measured perpendicular to the axis 
of revolution, inches. 

Q,  =   Vertex half-angle of cone, degrees. 

Since the radii R and R3 vary with the axial location, the stresses CTH and CTM are non- 

uniform over the conical surface.   The maximum values for each of these quantities 

occur at the large end of the cone. 

It appears that no significant theoretical solutions have been published for the stability 

of truncated sandwich cones which are subjected to uniform external hydrostatic pres- 

sure. Therefore, for the purposes of this handbook, the equivalent-cylinder approach 

of Seide, et al. [5-1] has been adopted as a practical expediency. Based on a large 

array of test data from thin-walled, Isotropie (non-sandwich), cylinders and truncated 

cones, Seide, et al. concluded that the critical hydrostatic pressures for such cones 

can be taken equal to the values for equivalent circular cylinders which satisfy the 

following conditions: 

a.       The wall thickness of the equivalent cylinder is equal to that of the cone. 
In the case of sandwich constructions, the logical extension of this condi- 
tion is that the equivalent cylinder have the same facing and core thick- 
nesses as are found in the cone. 
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b. The length of the equivalent cylinder is equal to the slant length of the cone. 

c. The radius of the equivalent cylinder is equal to the average finite principal 
radius of curvature of the cone.   That is, 

R       ,   + R 
R     =     sma11 ^Eli (5.6-12) 

e 2 cos a 

where 

R    =  Radius of middle surface for equivalent cylinder, inches, 
e 

R =  Radius of middle surface at small end of cone (measured 
sma perpendicular to the axis of revolution), inches. 

R =  Radius of middle surface at large end of cone (measured 
arge       perpendicular to the axis of revolution), inches. 

The critical hydrostatic pressure for the equivalent cylinder can be obtained by using 

the equations and curves of Section 4.7.3. 

The only available experimental results for conical sandwich shells under uniform 

external hydrostatic pressure are the data from two tests conducted by North American 

Rockwell, Corp. [5-7 and 5-8] in conjunction with the Navajo missile program.   To 

assist in the preparation of this handbook, an analysis was made of the result published 

in Reference 5-7.   The other specimen was not studied since it was stressed too deeply 

into the plastic region.   The specimen of Reference 5-7 was also inelastic but the 

stresses in this instance were low enough to permit reliable computations.   Using the 

approach of the present section in conjunction with the plasticity reduction criteria of 

Section 9, the design critical pressure was computed to be 36.4 psi.   This is in satis- 

factory agreement with the experimental value of 43.6 psi. 
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The foregoing substantiates, to a very small degree, the reliability of the equivalent- 

cylinder concept recommended here.   However, in view of the lack of a sufficient 

number of test results, this approach can presently be considered as only a "best- 

available" method. 
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5.6.3.2    Design Equations and Curves 

For a simply supported, truncated, right-circular sandwich cone subjected to uniform, 

external, hydrostatic pressure, the critical pressure may be taken equal to that for an 

equivalent sandwich cylinder for which 

a. The values t1, ts, tß, and h are measured as shown in Figure 5.6-4. 

b. The length is taken equal to the slant length L   of the cone as shown in 
Figure 5.6-4. 

c. The radius is denoted R   and is computed from the formula 

R 
R       .. + R 

small       large 
2 cos a 

(5.6-13) 

where R       .., R,        , and a are as shown in Figure 5.6-4. 
small     large 

u^__ 

VIEW A 

BOTH ENDS 
SIMPLY SUPPORTED 

NOTE:   t ,  t      t ,  h,  R,  R     R R 
12c 2     small     large 

and Le are all measured in units of 
inches while 01 is measured in degrees. 

Figure 5.6-4.   Truncated Sandwich Cone 

The critical hydrostatic pressure for the equivalent sandwich cylinder can be obtained 

from the equations and curves of Section 4.7.3 if the ratios R   and R   are now defined 
c p 

as follows: 
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R     = I  (5.6-14) 
C       ?c (Px>CL 

R     = ^—- (5-6-15) 

where 

p   =  Uniform, external, hydrostatic pressure applied to lateral 
surfaces and end closures of the equivalent sandwich cylinder, 

psi. 

In Equations (5.6-14) and (5.6-15), the knock-down factor yQ is that obtained from 

Figure 4.2-8, while y   may be taken equal to 0.90. 

It should be noted that 

or 

to) =     XCL    e (5.6-16) 
1 x'CL      2^+y 

2 (a )Cl(t1 + ts) 
(p ) =  —  (5.6-17) 
"VCL R 

e 

where 

(a )        = Classical theoretical value for critical uniform axial com- 
X CL       pressive stress when acting alone on the equivalent sandwich 

cylinder.   This value can be obtained by using y   = 1.0 in the 
equations and curves of Section 4.2. 

The value (p )       can be obtained by using y  = 1.0 in the equations and curves of 

Section 4.4. 

Plasticity considerations should be handled as specified in Section 9.2.   The plasticity 

reduction factor r\ should always be based on the principal membrane stresses at the 

large end of the cone where, 
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large (5.6-18) 
H       (\ + t2) (cos a) 

p R. 
a      = ^  (5.6-19) 

M      2 (\ + %) (COB a) 

It is recommended that the approach specified here be applied only to cases where 

a ^ 30 degrees. 
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5.6.4    Axial Compression Plus Torsion 

5.6.4.1    Basic Principles 

The loading condition considered here is depicted in Figure 5. 6-5.   The axial load P 

can originate from any source including external pressures which are distributed 

uniformly over the end closures. 

T,  in-lbs torque 

P, lbs 
•^—^  

Both Ends 

Simply Supported 

Figure 5.6-5.   Truncated Cone Subjected to Axial 
Compression Plus Torsion 

It appears that no significant theoretical solutions have been published for the stability 

of truncated sandwich cones under this combination of loads.   However, MacCalden 

and Matthiesen [5-9] have arrived at certain conclusions for non-sandwich shells under 

such loading and, for the purposes of this handbook, these results provide the basis for 

an expedient engineering approach to the case of conical sandwich constructions.  Based 

on a large array of test data from Mylar specimens, MacCalden and Matthiesen con- 

cluded that the following interaction relationship could be applied to thin-walled, iso- 

tropic (non-sandwich), truncated cones: 

R   + R2 =   1 (5.6-20) c       s 
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where 

R    =  1  (5.6-21) 
C        (P    ) v  cr'Empirical 

R    =  (5.6-22) 
S        (T    ) cr Empirical 

and 

(P   )        _ = Empirical lower-bound value for the critical axial load 
" when acting alone, lbs. 

(T    ) =  Empirical lower-bound value for the critical torque when v  cr Empirical , .    ,, acting alone, in-lbs. 

This result is identical to that given in Reference 5-10 for thin-walled, isotropic (non- 

sandwich) cylinders subjected to axial compression plus torsion.   One might, therefore, 

conjecture that in the case of sandwich constructions the interaction curves for trun- 

cated cones under the subject loading condition are of the same shape as those pre- 

sented in Section 4.7.4.2 for circular cylinders.   The design equations and curves 

recommended here are based on this premise.   That is, one might choose to view the 

formula, 

R   +R2 =   1 (5.6-23) 
c       s 

as a comprehensive interaction equation for truncated cones of both isotropic (non- 

sandwich) and sandwich construction.   However, it is important to note here that 

MacCalden and Matthiesen observed that the presence of even a very small axial load 

made the torsionally-loaded conical shell much more sensitive to imperfections than 

was the case when no axial load was applied at all.   They, therefore, recommended 

that whenever Rc is non-zero, the same knock-down factor be employed in computing 
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(Tcr>Empirical as is used in the calculation of (Pcr)Empirical-   
:t was further speci- 

fied that this single knock-down factor should be taken equal to that which applies for 

the case of axial compression acting alone.   The same practice is adopted here. 

Caution should be exercised in implementing the foregoing recommendations, partially 

because only the extremes of transverse shear rigidity of the core have been consid- 

ered (see Section 4.7.4.1).   In addition, although the interaction relationship for the 

subject loading condition should probably be dependent upon a length parameter, no 

investigations were made to establish the sandwich lengths over which Equation (5.6-23) 

is a reasonable representation of the actual behavior.   Furthermore, no test data have 

been obtained for sandwich cones subjected to axial compression plus torsion.   There- 

fore, the general validity of Equation (5.6-23) has not been experimentally verified 

and can only be regarded as a "best-available" approach. 
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5.6.4.2    Design Equations and Curves 

For simply supported, truncated, right-circular sandwich cones subjected to axial 

compression plus torsion, one might choose to employ the interaction formula, 

R   +R2  =1 <5-6"24> c       s 

which is plotted in Figure 5.6-6 and where, 

P 
R 

C     (Pcr>Empirical 

Rs = 

(5.6-25) 

(5.6-26) 

(V) 
\0.80/ ^Tcr^Empirical 

P  = Applied axial load, lbs. 

T  = Applied torque, in-lbs. 

{p    ) =  Lower-bound value for the critical axial load when 
cr'Empirical      acting aione.   This value can be obtained by using the 

equations and curves of Section 5.1.2, lbs. 

(T   ) = Lower-bound value for the critical torque when acting 
cr Empirical      alone>   TMs value can be obtained by using the equa- 

tions and curves of Section 5.4.2, in-lbs. 

y    = The knock-down factor obtained from Figure 4.2-8 
C       (dimensionless).   For the purposes of the present 

case, the quantity R (see Figure 4.2-8) must be set 
equal to the equivalent radius Re which is computed 

as follows: 

R 
sma11 (5.6-27) 

e        COS« 

R = Radius at small end of cone, inches (measured per- 
smaU       pendicular to the axis of revolution). 

a   = Vertex half-angle of cone, degrees. 
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1.0 

Figure 5.6-6.   Conditional Interaction Curve for Truncated Sandwich Cones 
Subjected to Axial Compression Plus Torsion 

The factor ( —_j should be introduced into the demoninator of the ratio Rs only when 

Rc is non-zero.   For the special case where no axial load is present (Rc = 0), R 

should be taken equal to T * (T„v) 
0i Empirical 

Attention is drawn to the fact that in Section 5.6.4.1, several factors are cited which 

shed considerable doubt upon the reliability of results obtained from the indiscriminate 

use of Equation (5.6-24) and Figure 5.6-6.   In view of these uncertainties, one might 

often choose to employ the straight-line interaction formula, 

(5.6-28) 

which is plotted in Figure 5.6-7.   This relationship can be used with confidence for 

any length of cone and for any region of transverse shear rigidity of the core, since 
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experience has shown that the linear interaction formula is never unconservative for 

shell stability problems.   However, in many cases it will, of course, introduce 

excessive conservatism. 

Plasticity considerations should be handled as specified in Section 9.2.   The plasticity 

reduction factor r) should always be based on the stresses at the small end of the cone. 

Figure 5.6-7.   Conservative Interaction Curve for Truncated Sandwich Cones 
Subjected to Axial Compression Plus Torsion 

5.6.5   Other Loading Combinations 

5.6.5.1   Basic Principles 

In Section 5.6.4, the combined loading condition of axial compression plus torsion is 

treated.   The interaction relationships presented there can be used for an additional 
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loading combination by recognizing that at any given axial location on the cone the 

peak meridional stress due to an applied bending moment can be converted into an 

equivalent uniform meridional stress.   With this in mind, the design equations and 

curves of Section 5.6.4.2 can be used for the combination of axial compression plus 

bending plus torsion which is depicted in Figure 5. 6-8. 

M, iii-lbs 
M,  in-lbs 

T,  iri —lbs 
T.  in-lb 

Bolh Hüls 

Simply Supponeil 

Figure 5.6-8.   Truncated Cone Subjected to Axial Compression 
Plus Bending Plus Torsion 

To accomplish this it is simply required that the quantity R   be redefined as follows: 

where 

and 

P' 
R 

c     (P    ) 
v  ^Empirical 

(5.6-29) 

P<WI^ 2M      \ 

,R 
small ; 

(5.6-30) 

P  = Applied axial load, lbs. 

M   = Applied bending moment, in-lbs. 

JC ■= Axial compression knock-down factor from Figure 4.2-8, 
dimensionless. 

Note:   For the purposes of the present case, the quantity R (see 
Figure 4.2-8) must be set equal to the equivalent radius R   which 
is computed as follows: e 

5-40 



„ small 
Re=-^r <5-6-31> 

yb  = Bending knock-down factor from Figure 4.3-2, dimensionless. 

Note: For the purposes of the present case, the quantity R (see Figure 
4.3-2) must be set equal to the equivalent radius Re which is computed 
as follows: 

„ small 
R   =  /5 6-32) e      cosa ' 

Rsmall  = Radius at small end of cone (measured perpendicular to the 
axis of revolution), inches. 

a   = Vertex half-angle of cone, degrees. 

The foregoing formula for P7 is based on the principles cited in Section 5.2 

Since no sandwich test data are available to substantiate the recommendations made 

here, they can only be regarded as a "best-available" criterion. 

5.6.5.2   Design Equations and Curves 

For simply supported, truncated, right-circular sandwich cones subjected to the 

loading condition depicted in Figure 5.6-8, one may use the design equations and 

curves of Section 5.6.4.2, except that the quantity Rc must now be defined as follows: 

P' 

(PcÄ 
Rc=  7P~)  (5.6-33) 

cr Empirical 

where 

<y. 
P' -P+£C\/SL-.\ 

Jb/ 
R— ) (5.6-34) 

small/ 
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6 
GENERAL INSTABILITY OF DOME-SHAPED SHELLS 

6.1    GENERAL 

This section deals with dome-shaped shells whose contours are surfaces of revolution. 

Figure 6.1-1 shows the shapes considered here, all of which are truncated at the equa- 

tor.   Note that the torispherical shape consists of a lower toroidal segment which 

blends into a spherical cap.   It is expected that the configurations shown here will 

cover the large majority of the dome structures likely to be encountered in aerospace 

applications.   One should observe that for each of 

2       2       2 
x   + y   = R 

-Boundary Simply- 
Supported or 
Clamped 

(a)   Hemispherical 

Spherical 
ortion 

-Boundary Simply- 
Supported or 
Clamped 

(b)   Ellipsoidal 

Toroidal 
portion 

-Boundary Simply- 
Supported or 
Clamped 

(c)   Torispherical 

Figure 6.1-1.   Structural Dome Shapes 

these domes the maximum radius of curvature R]y[ax occurs at the apex.   As a practi- 

cal engineering expediency, analysis of all the illustrated configurations will be based 

on this radius. 
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In the case of externally pressurized, thin-walled, isotropic (non-sandwich) domes, it 

has long been recognized that the test results normally fall far below the predictions 

from classical small-deflection theory for the axisymmetric buckling of complete 

spheres.   The discrepancies are usually attributed to, 

a. the shape of the postbuckling equilibrium path coupled with the presence of 
initial imperfections, 

b. the fact that large-deflection analyses of asymmetric behavior yield criti- 
cal stresses approximately 20 percent lower than the small-deflection axi- 
symmetric values, and 

c. the fact that classical small-deflection theory does not account for pre- 
buckling discontinuity distortions in the neighborhood of the boundary. 

This is analogous to the situation described earlier in this handbook (see Section 4.1) 

for the case of circular cylinders,   For the latter, it has become common practice to 

base stability analyses and design procedures on the use of classical small-deflection 

theory modified by empirical knock-down factors.   This approach was selected in 

Section 4.1 for sandwich cylinders and is also adopted here for sandwich domes. 
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6.2    EXTERNAL PRESSURE 

6.2.1    Basic Principles 

6.2.1.1    Theoretical Considerations 

This section deals with the loading condition depicted in Figure 6.2-1.   That is, a uni- 

form external pressure acts over the entire surface of the sandwich dome.   The net 

I    I     J 
P, psi 

Figure 6.2-1.   Sandwich Dome Subjected to External Pressure 

vertical component of this loading is reacted by a uniform running load on the boundary. 

From Figure 6.1-1, note that the domes can have either simply-supported or clamped 

edges.   That is, during buckling the boundary is constrained such that no radial dis- 

placements occur.   In the simply-supported case, the shell wall is free to rotate along 

the boundary whereas for clamped edges such rotations are completely suppressed. It 

follows, of course, that intermediate restraints to edge rotation are also acceptable. 

The theoretical basis used here is the classical, small-deflection solution by Yao [6-1] 

as reformulated by Plantema [6-2].   This result embodies the following assumptions: 

a. The facings are isotropic. 

b. Both facings are of the same thickness. 

c. Both facings have identical material properties. 
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d. Bending of the facings about their own middle surfaces can be neglected. 

e. The core has infinite extensional stiffness in the direction normal to the 

facings. 

f. The core extensional and shear stiffnesses are negligible in directions 

parallel to the facings. 

g. The transverse shear properties of the core are isotropic. 

R 
h.       The inequality — » 1 is satisfied, 

c 
where 

R  =  Radius to middle surface of sandwich sphere, inches. 

t    =   Thickness of core, inches, 
c 

i.        Approximations equivalent to those of Donnell [6-3] can be applied. 

Strictly speaking, this solution was derived for complete sandwich spheres which 

exhibit small buckles that are axisymmetric with respect to a radius of the sphere. 

The development isolated one such buckle as a free body so that shallow-shell theory 

could then be employed.   Yao presented his results in a form which is not conducive 

to a ready physical interpretation of the phenomena involved.   Therefore, Plantema 

undertook to express the final relationships in a manner which would foster some 

insight in this regard.   He was able to show that, when the core has isotropic trans- 

verse shear stiffness, Yao's solution is identical to the equations given earlier in this 

handbook for axially compressed circular sandwich cylinders [see Equations (4.2-27) 

through (4.2-30) and Equations (4.2-4) and (4.2-5)].   That is, when the knock-down 

factor, y,, is included, 

o-       =  y,K a (6.2-1) 
er d   c  o 
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where 

and 

When V   <2 
c 

When V   ä 2 
c 

7]E 

V1^ 
f      h_ 

R 

K    =  1--V 
c 4    c 

K    = 7T c       V 

(6.2-2) 

(6.2-3) 

(6.2-4) 

where 

V    = 
C        CT 

crimp 

(6.2-5) 

cr 

r\ = 

Ef = 

h = 

v = 
e 

R = 

G    = 

    fi 

crimp       21 t     c 

Critical compressive stress for sandwich sphere, psi. 

Plasticity reduction factor, dimensionless. 

Young's modulus of facings, psi. 

Distance between-middle surfaces of facings, inches. 

Elastic Poisson's ratio of facings, dimensionless. 

Radius to middle surface of sandwich sphere, inches. 

Thickness of a single facing, inches. 

Thickness of core, inches. 

Transverse shear modulus of core, psi. 

(6.2-6) 
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The equivalence between an axially compressed sandwich cylinder and an externally 

pressurized sandwich sphere has been analytically demonstrated only for the case 

where the two facings have identical material properties and are of the same thickness. 

If one assumes that this equivalence still holds true when the facings are of different 

thicknesses, Equations (4.2-2) through (4.2-7) can then be used here if G^ is replaced 

by G   so that, when the knock-down factor y   is included, 

where 

a      = y,K a 
er        d   c  o 

°o  = *Et R 

'^Tv£ 

^J^+y 

(6.2-7) 

(6.2-8) 

and 

When V   <2 
c 

1 
K    =   1-T-V 

c 4     c 
(6.2-9) 

When V   > 2 
c 

Kc=T- (6.2-10) 

where 

V 
crxmp 

(6.2-11) 

h3 

crimp        (^ + t2) t 
G (6.2-12) 

t   and t 
X Li 

Thicknesses of the facings (There is no preference as to 
which facing is denoted by the subscript 1 or 2.), inches. 
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The relationship between K„ and V. can be plotted as shown in Figure 6.2-2.   It is 

important to note that the value Vc = 2.0 establishes a dividing line between two 

different types of behavior.   The region where V   < 2.0 covers the so-called stiff- c 

core and moderately-stiff-core sandwich constructions.   When V   is in the neighbor- c 

hood of zero, the core transverse shear stiffness is high and the sandwich exhibits 

maximum sensitivity to initial imperfections.   As V   increases from 
c 

SHEAR CRIMPING 

Figure 6.2-2.   Schematic Representation of Relationship Between K   and V 

zero to a value of 2.0, this sensitivity becomes progressively less.   The domain 

where V   s 2.0 is the so-called weak-core region where shear crimping occurs, 
c 

Sandwich constructions which fall within this category are not influenced by the pres- 

ence of initial imperfections and a knock-down factor of unity can be applied to such 

structures.   It should be possible to develop a continuous transitional knock-down 

relationship which recognizes the variable influence of the core rigidity but this is 

beyond the scope of the present handbook. 
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6.2.1.2    Empirical Knock-Down Factor 

As noted in Section 6.1, for the purposes of this handbook, the allowable stresses for 

externally pressurized sandwich domes are established by applying an empirical knock- 

down factor (y,) to the results from classical small-deflection theory.   However, since 

the available test data from sandwich dome constructions are very scarce, one cannot 

yet determine y   values with a high degree of reliability.   The only useful data un- 

covered during the preparation of this handbook are those which were obtained by 

North American Rockwell [6-4] in conjunction with the Saturn S-II development pro- 

gram.   These results give the y   values shown in Figure 6.2-3 which includes two data 

points from hemispheres and six data points from domes that were approximately 

ellipsoidal.   Reference 6-4 includes specimens whose membrane stresses at failure 

ranged all the way from the elastic to the deeply plastic zones.   In three cases it was 

felt that these stresses were too high to permit the computation of reliable plasticity 

reduction factors.   Therefore, these particular data were discarded and they do not 

appear in Figure 6.2-3.   Still another experimental point was discarded because of a 

faulty edge condition in the test.   In addition, as noted in Figure 6.2-3, two specimens 

were subjected to a thermal gradient along with the external pressure.   For each of 

these domes, the inner facing was at roughly +280°F while the outer facing was at 

approximately +10°F.   This gradient was completely neglected in the analysis per- 

formed to arrive at the related yd values.   Nevertheless, these results are retained 

in Figure 6.2-3 since they fall within the scatter band displayed by the other speci- 

mens having the same basic contour. 
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Figure 6.2-3.   Knock-Down Factor yd for Sandwich Domes 
Subjected to Uniform External Pressure 
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To fully understand the information given in Figure 6.2-3, it is important for the 

reader to be aware of the data reduction techniques employed here. For an explanation 

of these procedures, reference may be made to the discussion in Section 4.2.1.2.1. 

Although that section is concerned with sandwich cylinders, the same basic approach 

was used in analyzing the domes. 

Based on Figure 6.2-3, it is recommended that, except where shear crimping occurs, 

the following values may be used for y• 

y    =  0.20 for hemispheres (6.2-13) 

y    =  0.35 for ellipsoids and torispherical domes (6.2-14) 

Insufficient data are available to discern any dependence of the knock-down factor on 

the ratio R       /p.   However it is quite possible that even a large array of data would 

lead to the same conclusion. This would be consistent with the practice usually accepted 

for isotropic (non-sandwich) domes. 

It is thought that there is physical justification for the use of a y^ value for hemispheres 

which is lower than that for ellipsoids and torispherical domes.   This justification lies 

in the fact that, for the latter two configurations, the maximum membrane stresses 

occur at the apex which is well-removed from the boundary disturbances.   On the other 

hand, the membrane stresses in a hemisphere are uniform over the entire surface. 

Discontinuity distortions at the boundaries are ignored in classical small-deflection 

stability theory but, in reality, these deformations can act somewhat like initial im- 

perfections and precipitate buckling.   This fact, coupled with the uniform membrane 
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stress in the hemisphere, can lead to earlier failure than would be encountered for 

shapes where the peak membrane stresses do not extend into the boundary regions. 

Since the recommended values for y^ are based on meager test results, the method 

proposed here is not very reliable and can only be regarded as a "best-available" 

technique.   It should only be used as a rough guideline and final designs must be 

substantiated by test. 
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6.2.2    Design Equations and Curves 

For sandwich domes of the types shown in Figure 6.1-1 and subjected to uniform 

external pressure, the critical apex stresses may be computed from the relationships 

given in the equations on page 6-14 where the subscripts 1 and 2 refer to the separate 

facings.   There is no preference as to which facing is denoted by the subscript 1 or 2. 

The equations on page 6-14 were obtained by a simple extension of the formulas pre- 

sented in Section 6.2.1.1.   The extension was accomplished in order to cover some 

situations where the two facings are not made of the same material.   This was achieved 

through the use of equivalent-thickness concepts based on the ratios of the moduli for 

the respective facings.   For cases where the two facings are not made of the same 

material, the resulting equations are valid only when the behavior is elastic (r\- 1). 

Application to inelastic cases (r?^ 1) can only be made when both facings are made of 

the same material.   For such configurations, Ea and E2 will, of course, be equal. 

The buckling coefficients K   can be obtained from Figure 6.2-4. 

The knock-down factor y   may be chosen as follows: 

When V 
c 

Use y    =   0.20 for hemispheres. 

Use y    =   0.35 for ellipsoids and 
torispherical domes. 

When V   > 2.0 
c 

Use y    =   1.0 for hemispheres, 
ellipsoids, and tori- 
spherical domes. 

The quantity R is the maximum principal radius of curvature for the dome and is 

measured in units of inches. For all of the shapes shown in Figure 6.1-1, this value 

occurs at the apex. 
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The formulations given here are based on the assumption that the transverse shear 

stiffness of the core is isotropic.   However, in most practical sandwich constructions, 

this stiffness will vary with direction.   In order to apply the given criteria to such 

structures, one must select a single effective Gc value.   Whenever the shear crimping 

mode is critical (V*c ^ 2.0), Gc must be taken equal to the minimum value for the core. 

In all other cases one must rely on engineering judgment in making an appropriate 

selection. 

The plasticity reduction factor should always be based on the stress at the apex of the 

dome. For elastic cases, use 77=1. Whenever the behavior is inelastic, the methods 

of Section 9 must be employed. 

Apex a 
cr. 

Facing 1 

y, K   CT 
d   ci   °i 

<*      =  t7EiC, 

(6.2-15) 

(6.2-17) 

Apex a 
cr„ 

Facing 2 

d     C2    °2 

t?EpC 

y (EA) <E2y 

Max yi-^e
2[(E1t1) + (E2ts)] 

hs 

crimp 

MtH] 
G       (6.2-20) 

V     = V     =   (6.2-22) 
crimp 

(6.2-19) 

h8 

crimp 

[©^} 

(6.2-16) 

(6.2-18) 

•G       (6.2-21) 

V 
ci        c2      0" 

(6.2-23) 
crimp 
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The critical pressure p     (in units of psi) may be computed as follows: 
cr 

2 

Max 
[a     t+a     t,] (6.2-24) 

cr,  1      cr^ s 

In the special case where 1^ = t, =t and both facings are made of the same material, 

Equations (6.2-15) through (6.2-24) can be simplified to the following: 

(6.2-25) 

(6.2-26) 

Apex a 
cr = yd 

K a 
c  o 

(T?Ef) h 

1-1/8 

e 
Max 

0"     .           = crimp 
:        "S         G 

V    = 
c 

O 

a crimp 

(6.2-27) 

(6.2-28) 

p       =_i—(a    t.) (6.2-29) 
*cr       R„        er r 

Max 

6.3    OTHER LOADING CONDITIONS 

No information is available concerning the general instability of dome-shaped sandwich 

shells under loading conditions other than that of uniform external pressure which is 

covered in Section 6.2. 
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7 
INSTABILITY OF SANDWICH SHELL SEGMENTS 

7.1    CYLINDRICAL CURVED PANE LS 

7.1.1   Axial Compression 

7.1.1.1    Basic Principles 

It will be helpful here to first consider the case of axially compressed, isotropic 

(non-sandwich) skin panels for which all four boundaries are simply supported.   In 

such cases, the Schapitz criterion [7-1] furnishes a practical means for the com- 

putation of critical stresses.   This criterion accounts for the effects of skin-panel 

geometry as the transition is made from wide panels, which behave essentially as 

full cylinders, to narrow panels which approach the behavior of flat plates.   In par- 

ticular, Schapitz proposed that one use the following relationships which have been 

verified by the rederivation of Reference 7-2: 

When 

then 

when 

then 

aR^2ap (7.1-1) 

aR2 

a      = a   +-A— (7.1-2) 
er        p    4a 

P 

aR>2a (7.1-3) 
it p 

acr = aR (7.1-4) 
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where, 

R 

Critical stress for buckling of a simply supported flat plate of the con- 
figuration shown in Figure 7.1-1, psi. 

Critical stress (in units of psi) for buckling of a simply supported complete 
cylinder of radius R, length aR, and thickness tR (see Figure 7.1-1).   The 
quantities R, a R' and tR are all measured in units of inches. An empirical 
knock-down factor should be incorporated here to account for the detri- 
mental effects from initial imperfections. 

aR 
= a 

P 
= a 

bR 
= b 

P 
= b 

*R 
= t 

P 
= t 

Figure 7.1-1.   Cylindrical Panel and Associated Flat-Plate Configuration 
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Although derived specifically for the case of simple support, this criterion has been 

successfully employed [7-3] where the boundaries provide various degrees of rotational 

restraint along with the condition of no radial displacement.   This was accomplished by 

simply adjusting the value for ap to correspond with the appropriate edge restraints. 

For the case under immediate discussion (non-sandwich skin panels), the Schapitz 

criterion can be graphically represented as shown in Figure 7.1-2.   A series of design 

curves of this type are given in Reference 7-3.   The transition curve defined by Equation 

(7.1-2) becomes tangent to the full-cylinder curve whenaR = 20^.   For (R/t) values 

greater than that of the tangency point, the skin panel behaves as a complete cylinder. 

For all other (R/t) values, the transitional relationship applies.   Note that the transition 

curve asymptotically approaches the line for crp.   The quantity K denoted in Figure 7.1-2 

=  Constant 

=  Constant 

=  Constant 

© 

(f) 
Figure 7.1-2.   Schematic Logarithmic Plot of Schapitz Criterion 

for Non-Sandwich Cylindrical Skin Panels 
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is the conventional flat-plate buckling coefficient which is dependent upon the aspect 

ratio (a/b), boundary conditions, and type of loading.   From this figure, it can be 

seen that, if the critical stress were taken equal to the higher of the two values a 

and a      one would only be neglecting the transitional strength associated with the 

R /CTR\ 
cross-hatched region.   When / —) = 1, neglect of this contribution would result m a 

design value which is 80 percent of the Schapitz prediction.   For all other values of the 

ratio (—), the differences would be less significant. Indeed, for most ranges of ( — j , 

the conservatism introduced by neglecting the cross-hatched area would be quite small. 

Since the Schapitz criterion is dependent solely on the values a and aR, the speculation 

is made here that one might extend its application to cylindrical sandwich panels merely 

by computing a   and a    from the sandwich design equations and curves which are pro- 
P R 

vided in Sections 3 and 4.   However, in making such an extension, one must recognize 

that the behavior of a sandwich panel is dependent upon the core stiffness.   For stiff- 

core constructions (see Section 4.2), it should be possible to make direct application 

of Equations (7.1-1) through (7.1-4).   On the other hand, in the weak-core region, the 

sandwich panel will fail by shear crimping, and curvature will not contribute to the 

buckling strength.   In such cases, Equations (7.1-1) through (7.1-4) would yield uncon- 

servative predictions.   The situation for sandwich constructions having moderately- 

stiff cores would, of course, fall somewhere between the foregoing limiting cases. 

Consequently it is recommended here that, 

a.    For stiff-core sandwich panels, Equations (7.1-1) through (7.1-4) can be 

applied. 
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b.       For sandwich panels which fall in the moderately-stiff or weak-core cate- 
gories, o     should be taken equal to the higher of the two values ap and CXR. 

In the course of preparing this handbook, no analysis was made of test data from sand- 

wich panels.   Therefore, the reliability of this approach has not been established, and, 

until experimental substantiation is obtained, one can only regard the method as a "best- 

available" technique. 

In view of the lack of sandwich data comparisons, it is informative to note that a large 

collection of test results from isotropic (non-sandwich) specimens is evaluated in 

Reference 7-3 and it is shown there that the Schapitz criterion is a reliable approach 

for such panels.   The test configurations embraced a wide range of (^-J , (—j , and(—j 

ratios.   Narrow, wide, and intermediate panels were included.   The Rvalues fell 

between those for the case where all four boundaries are simply supported and the case 

where all four boundaries are fully clamped.   The results are summarized in the qual- 

itative presentation of Figure 7.1-3.   This figure shows the general characteristics 

and relative positioning for each of the following when displayed in a nondimensional 

logarithmic format: 

a. The theoretical buckling relationship for flat plates. 

b. The classical, small-deflection, theoretical buckling relationship for 
complete cylinders. 

c. A lower-bound buckling relationship for complete cylinders.   This is 
obtained by multiplying the values from b; above, by the empirical 
knock-down factor of Reference 7-4. 

d. The design curve based on the Schapitz criterion. 

7-5 



a er t 
•v. r —— = .606 — 

..    \      f   E R 

Design Curve Based 
on Schapitz Criterion 

(I) 

Figure 7.1-3.   Schematic Logarithmic Plot of Test Data for Cylindrical Isotropie 
(Non-Sandwich) Skin Panels Under Axial Compression 
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Also shown in Figure 7.1-3 are the approximate locations of the test data from the 

non-sandwich cylindrical panels of References 7-5 through 7-8.   During the course 

of the study reported in Reference 7-3, quantitative plots were made for each of these 

specimens and the corresponding test points were accurately located on the appropriate 

graph.   Based on these many different plots, the test points were inserted in Figure 

7.1-3 in approximation to their actual positions relative to the several basic curves 

and regions of behavior.   This figure shows that all but four of the test points which 

fall below the design curve lie within the region where the panel behaves essentially 

as a flat plate.   Except for those four points, all of the test data for the regions of 

transitional and full-cylinder behavior fall between the following two bounds: 

a. The recommended design curve. 

b. The values which would have been predicted if OR did not incorporate 
an empirical knock-down factor. 

It is concluded that Figure 7.1-3 verifies the reliability of the Schapitz criterion 

for the case of isotropic (non-sandwich) skin panels, even where the boundary con- 

ditions include some rotational restraint in addition to the requirement of no radial 

displacement.   This conclusion is based partly on the fact that the character of flat- 

plate buckling is quite different from that exhibited by wide cylindrical panels and 

complete cylinders.   The flat plate can continue to support steadily increasing in- 

plane loading well into the postbuckling region.   This is in contrast to the sudden 

drop-off in load usually observed for wide panels and full cylinders.   Consequently 

the Schapitz criterion utilizes full theoretical predictions as the limiting case of a 
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flat plate is approached.   One might, therefore, expect that within this region test data 

will display some small degree of scatter on both sides of the design curve.   However, 

because of the physical behavior cited above, this generally will not lead to any serious 

structural deficiencies. 
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7.1.1.2    Design Equations and Curves 

For cylindrical sandwich panels subjected to axial compression, the critical stress 

may be computed from the following: 

When 

then 

when 

then 

where, 

Stiff-Core Constructions 

<T   £2a 
R        P 

(7.1-5) 

a      =cr   +T— , and    (7.1-6) 
cr        p     4cr 

P 

<T    >2a 
R p 

a     = a 
cr        R 

(7.1-7) 

(7.1-8) 

Weak-Core and Moderately-Stiff- 
Core Constructions 

ex cr 

The higher of the two 
values a   and CT„ 

p R 
(7.1-9) 

a    = 

R 

Critical axial compressive stress (in units of psi) for the buckling of a 
flat sandwich plate which has the same boundary conditions as the cylindri- 
cal panel and, except for curvature, is of the same geometry as the cylin- 
drical panel (see Figure 7.1-1).   No knock-down factor is required in com- 

puting this value. 

Critical axial compressive stress (in units of psi) for the buckling of a 
complete sandwich cylinder which, except for the circumferential dimen- 
sion, is identical to the curved panel.   An appropriate empirical knock- 
down factor should be incorporated here to account for the detrimental 

effects from initial imperfections. 

As a rule-of-thumb, one may assume that stiff-core constructions are those which 

satisfy the inequality 

V   £0.25 
c 

where V„ is computed as specified in Section 4.2. 
c 

(7.1-10) 
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The quantity o_ should be computed by using the design equations and curves given in 

Section 3. 

The quantity aR should be computed by using the design equations and curves given in 

Section 4. 

A graphical representation of Equations (7.1-5) through (7.1-8) is provided in Figure 

7.1-4. 

The method given here applies only where all four boundaries are completely restrained 

against radial displacement.   Therefore, no free edges are permitted.   Any or all of 

the four boundaries may include rotational restraint of any degree ranging all the way 

from a hinged condition to fully clamped. 

4.0 

3.0 

cr 

2.0 

1.0 

0 1.0 2.0 

vv 

) _ z z z_zz:: 

 . 3z_zzzzzzizzzzzzzzzz~ 
 ZL zz~z_ ZZZZZZZZZZZZZZZZZZZI 

 Z—ZZZZZZZZZZZ 

3.0 4.0 

Figure 7.1-4.   Graphical Representation of Equations (7.1-5) through (7.1-8) 
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7.1.2    Other Loading Conditions 

7.1.2.1    Basic Principles 

In the preparation of this handbook, almost no consideration was given to the buckling 

of cylindrical sandwich panels subjected to loadings other than axial compression. 

Therefore, no firm recommendations can be made here concerning design equations 

and curves.   However, the suggestion is offered that, for such cases, one might con- 

sider an extension of the concepts presented in Section 7.1.1.   In particular, for all 

regions of core stiffness, it might be possible to apply the equation 

a cr 
The higher of the two 
values CT   and (T 

p R 
(7.1-H) 

if one simply computes the values o   and a   for the loading condition of interest. 

In conformance with the restrictions of Section 7.1.1, the foregoing suggestion applies 

only when all four boundaries of the panel are completely restrained against radial dis- 

placement.   Therefore, no free edges are permitted.   Any or all of the four boundaries 

may include rotational restraint of any degree ranging all the way from a hinged con- 

dition to fully clamped. 

7.1.2.2    Design Equations and Curves 

No recommendations are made here. 

7.2    OTHER PANE L CONFIGURATIONS 

No information is available concerning the instability of sandwich shell segments of 

shapes other than the cylindrical configurations considered in Section 7.1. 
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8 
EFFECTS OF CUTOUTS ON THE GENERAL INSTABILITY OF 

SANDWICH SHELLS 

In many practical aerospace shell structures, it is required that cutouts be incorporated 

for purposes of access, lightening, venting, etc.   However, no theoretical solutions or 

experimental data have been published for the general instability of sandwich shells 

having such penetrations.   Even in the case of isotropic (non-sandwich) shell struc- 

tures, this problem has received little attention.   Some theoretical solutions have been 

accomplished concerning the stress distributions around cutouts in isotropic shells 

but the authors of this handbook are aware of only one paper (8-1) dealing with the 

general instability problem, and this paper is not sufficiently comprehensive to pro 

vide a practical design criterion. 

An obvious need exists for further theoretical and experimental work to be accomplished 

in this area, and, in view of this situation, no related design recommendations can be 

made at the present time. 
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9 
INELASTIC BEHAVIOR OF SANDWICH PLATES AND SHELLS 

9.1    SINGLE LOADING CONDITIONS 

9.1.1    Basic Principles 

For structural members stressed beyond the proportional limit of the material, it is 

customary to compute critical loads or stresses through the use of so-called plasticity 

reduction factors.   In this handbook, such factors are denoted by the symbol 7).   In 

many cases, appropriate formulas for tf are established by theoretical derivations 

based on plasticity theory but, when this approach proves impractical, one must some- 

times resort to empirical expressions.   Section 9.1.2 gives the formulations for i) 

which are recommended in this handbook for various sandwich configurations, types 

of loading, and modes of instability.   These equations are based on the information 

provided in References 9-1 through 9-5 for isotropic (non-sandwich) plates and shells. 

Application of these reduction factors involves the trial-and-error procedure outlined 

below: 

a. First, assume r\ = 1 and compute the critical stress for the appropriate 
configuration, loading condition, and mode of failure. 

b. If the critical stress computed in a, above, is less than the proportional 
limit of the facing material, no further computations are required.   How- 
ever, if the computed critical stress exceeds the proportional limit, one 
must continue as specified below. 

c. Assume a new value for the critical stress which is in excess of the pro- 
portional limit but less than the value computed in a, above. 
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d. Based on the stress level assumed in c, above, and the stress-strain curve 
for the facing material, compute a value for the appropriate plasticity re- 
duction factor.   The formulas of Tables 9.1-1 through 9.1-3 can be used 
for this purpose. 

e. Using the rj value computed in d above, recalculate the critical stress. 

f. If the critical stress calculated in e, above, is in reasonable agreement 
with the value assumed in c, no further computations are required.   How- 
ever, if such agreement is not achieved, one must then repeat the compu- 
tation cycle starting with c.   This iterative procedure must be continued 
until acceptable agreement is attained between the assumed and the calcu- 
lated critical stresses. 

A numerical example of the foregoing procedure is provided in Section 9.1.2. 
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9.1.2    Design Equations 

Recommended formulas for plasticity reduction factors are given in Tables 9.1-1 

through 9.1-3 where 

E    =  Compressive Young's modulus of facings, psi. 

E     =  Compressive secant modulus of facings, psi. 
s 

E    =  Compressive tangent modulus of facings, psi. 

G   =  Elastic shear modulus of facings, psi. 

G    =  Secant shear modulus of facings, psi. 
s 

V    =  Elastic Poisson's ratio of facings, dimensionless. 
e 

V =  Actual Poisson's ratio of facings, dimensionless. 

Values for v can be obtained by using 

V =  0.50 -Upj(o.50 -i/J (9.1-1) 

or 

/3 G \ 
V =  0.50 -( —-Wo.50-y \ (9.1-2) 

The technique for applying the plasticity reduction factors is demonstrated below by 

means of a numerical example for an axially compressed sandwich cylinder which is 

assumed to be of sufficient length to fall outside the short-cylinder range.   It is further 

assumed that 

a. both facings are of the same thickness, 

b. both facings are made of the same material, and 

c. the transverse shear properties of the core are isotropic so that 
0= (G   /G    )= 1. 

\ xz    yz/ 
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For such cylinders, Section 4.2.2 specifies that the critical stress for general in- 

stability may be computed from 

a     = y K a (9.1-3) 
cr ceo 

where 

(T)E> 
1 (9.1-4) 

°     n—§ R 

y   is obtained from Figure 4.2-8.   K   is obtained from Figure 4.2-7 where 

and 

V     = 
c 

cr 
o 

a   . crimp 

a    . crimp 
,     "a     G 

2t,t      xz 
f c 

For the purposes of the present sample problem, assume that 

E    =   10 xlO   psi 

V     =   0.30 
e 

R   =   32.0" 

h = .320" 

h = .020" 

t 
c 

= .300" 

G 
xz 

= 20,000 psi 

p - — = .160" 
2 

R 

P 
= 

32.0" _ „ 
.160" 

200 

Facing Proportional Limit =  25,000 psi 
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By using these values and assuming that T) = 1, it is found that 

yc 
— 0.49 

°o = 104,900 

crimp 
= 170,800 

V 
c 

- 104,900/170,800   = .614 

K 
c 

= 0.85 

Therefore, 

a      =  y K a    =   .49 x .85 x 104,900  = 43,600 
cr       'ceo 

Note that the computed critical stress (43, 600 psi) is higher than the proportional limit 

(25,000 psi) of the facings.   Hence the use of 77 = 1 cannot be valid and one must now 

proceed on a trial-and-error basis.   That is, one must select an assumed critical 

stress value which exceeds the proportional limit.   For the purposes of this sample 

problem, suppose that the value a     = 30,000 is selected.   By using the stress-strain 

curve for the facing material, the corresponding plasticity reduction factor can then 

be computed from the following formula which is taken from Table 9.1-3: 

V = 
1 -v"V  JE E 

e if   t   s 

1-y2 

Suppose that this gives the result that 

17 =  0.900 

so that one now obtains 

y    =0.49 (remains unchanged) 

a    =   .900 x104,900  =  94,400 o 

Ef 
(9.1-7) 
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a =   170,800 (remains unchanged) 
crimp 

V     =   94,400/170,800   =   .553 
c 

K     =   0.86 
c 

Therefore, 

n      = y  K a    =   .49 x .86 x94,400   =   39,800 
cr       'ceo 

Note that the computed critical stress (39, 800 psi) does not agree very closely with 

the assumed value (30,000 psi).   Therefore, another iteration will be performed by 

selecting a new assumed critical stress, say 35,000 psi.   Suppose that by using 

Equation (9.1-7) the corresponding plasticity reduction factor is found to be 

rj  =  0.790 

so that one now obtains 

y    =0.49 (remains unchanged) 
'c 

a     =   .790 x104,900   =   82,900 

a =   170,800 (remains unchanged) 
crimp 

V     =   82,900/170,800   =   .486 
c 

K     =  0.87 
c 

Therefore, 

a       =  y  K a     =   .49 x .87 x 82, 900   =   35,400 
cr        'ceo 

Note that the computed critical stress (35,400 psi) is now in reasonable agreement 

with the assumed value (35,000 psi).   Therefore, no further iterations are required 

and the design value for the critical stress is 35,000 psi. 
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Table 9-3.   Recommended Plasticity Reduction Factors for the General Instability 
of Circular Sandwich Cylinders, Truncated Circular Sandwich Cones, 
and Axisymmetric Sandwich Domes 

Loading Condition 

Axial Compression 

Pure Bending 

External Lateral Pressure 

Torsion 

Transverse Shear 

External Pressure 

Plasticity Reduction Factors 

Short Cylinders 
and Cones 

1- ■V» e 
1 -v\ 

l-va 

e 

1-!/ 

Moderate Length 
Through Long Cylinders 

and Cones 

1-V- 

1-v' 
\   t  s 

77 = 

1-V 

1-V 

\   t  s 

r\ = 
l-v 

l-V 

Es   (l       3   Et 
E    \4       4   E 

f   \ s 

1- e 
1 -v3 

G 

G, 

V = 

1- e 
1- ■Vs 

*    /G 

G, 

Hemispherical, Ellipsoidal, and 
Torispherical Domes (All trun- 
cated at the equator) 

1-1/' 

1-V 
TFF, 

*This formula for T) is not valid when the cylinder or cone is so short that it 
behaves essentially as a long, flat plate.   However, it is unlikely that such 
configurations will be encountered in aerospace applications.   Furthermore, 
it is informative to note that, for such constructions, the given formula for 

rj is conservative. 
**This formula for T) is not valid when the cylinder or cone is so short that it 

behaves essentially as a long, flat plate.   However, it is unlikely that such 
configurations will be encountered in aerospace applications.   Furthermore, 
it is informative to note that, for such constructions, the given formula is 
approximately 13-percent unconservative. 

9-9 



9.2   COMBINED LOADING CONDITIONS 

9.2.1   Basic Principles 

As noted in Reference 9-6, only limited information is available on the inelastic sta- 

bility of shell structures subjected to combined loading conditions.   A similar situation 

exists for flat-plate constructions.   Very little theoretical work has been done in these 

fields due to the complexity of the problem and, in general, related plasticity reduc- 

tion criteria have not been established.   However, in many practical engineering 

applications, one is confronted with this type of problem and it becomes necessary to 

determine at least a rough estimate of the critical loading conditions.   Toward this 

end, one should note a fundamental hypothesis of plasticity theory which specifies that, 

for a given material and when the stress intensity is increasing (loading condition), the 

stress intensity (Xj is a uniquely defined, single-valued function of the strain intensity 

ej.   Whenaj is decreasing (unloading condition), the relationship between 0^ and ei 

is linear as in a purely elastic case.   Based on the octahedral shear law for plane 

stress conditions, the stress and strain intensities cr, and ei can be defined as follows 

[9-1]: 

o\ = Vcr3 + crs - a a   +3T
2 (9.2-1) 

i     f   x      y      x y y ' 

.=7=-Je3+es+ee   +'<r2 /4 (9.2-2) 
i/3fxyxyxy ' 

e 
y        x y       xy 

It should be noted that Equation (9. 2-1) is sometimes written in the following form to 

facilitate its use: 

Oi = (ox)^l-y + yi +3\3 (9.2-la) 
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where 

a = Normal stress in the x direction, psi. x 

a = Normal stress in the y direction, psi. 

T = Shear stress in the xy plane, psi. 

e = Normal strain in the x direction, in/in. 

e = Normal strain in the y direction, in/in. 

e = Shear strain in the xy plane, in/in. 
xy 

y = a /a 
y    x 

X  = T/CT x 

From the foregoing discussion it can be concluded that, for the case of increasing 

a. (loading condition), the relationship between a^ and e. is identical to the conven- 

tional stress-strain curve obtained from a uniaxial loading test.   It should therefore 

be evident that although each individual stress component may be less than the propor- 

tional limit of the material, the combination of these stresses can give a Oi value which 

lies above the proportional limit so that the behavior is actually inelastic.   It is im- 

portant to keep this phenomenon in mind when deciding whether or not plasticity effects 

must be considered. 

Lacking a rigorous approach to the subject stability problem, it is conjectured here 

that the foregoing generalization of the stress-strain relationship might be used in 

conjunction with the plasticity reduction factor 

Et 
TJ=— (9.2-3) 

f 
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to obtain conservative predictions of inelastic instability under combined loadings.   The 

quantities Et and Ef are as follows: 

Et   -  Tangent modulus of facing material obtained from the curve of 
0-. vs e- at a prescribed value of o^, psi. 

Ef  =  Young's modulus of facing material, psi. 

The above formula for T) was selected in view of its conservative nature.   Since the 

overall procedure suggested here is based purely on an engineering estimation, it is 

thought that this conservatism is well justified. 

The details of the suggested approach are outlined in Section 9.2.2.   It is important 

to keep in mind that this method does not give a rigorous solution, and its reliability 

has not been evaluated by comparisons against test data.   Therefore, this can only be 

regarded as a "best-available" technique and one should be cautious in its application. 
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9.2.2   Suggested Method 

The method suggested here for analysis of the inelastic stability of sandwich plates 

and shells first requires that the conventional stress-strain curve for the facing ma- 

terial have the stress coordinates relabeled as oj and the strain coordinates relabeled 

as e..   By completely ignoring all plasticity considerations (77 = 1), one should then 

proceed to establish a first-estimate for the critical combined stress condition.  This 

can be achieved by using the appropriate interaction relationships provided in earlier 

sections of this handbook.   In performing this computation, the assumption should be 

made that for the critical combined stress condition the individual stress components 

are in the same ratios to each other as exist for the actual applied loading condition. 

That is, during loading, proportionality between the several individual stress compo- 

nents is maintained.   The stresses from the elastic first-estimate computation must 

then be inserted into the equation 

a. = Jcts + a2 -a a  +3T2 (9.2-4) 1     T  x      y      x y v ' 

to determine the associated stress intensity value.   If this value does not exceed the 

proportional limit of the c^ versus e^ curve, the first-estimate stress values are in 

fact the critical combination.   However, if the related cr. value exceeds the propor- 

tional limit of the 0^ versus e. curve, the first-estimate results are not valid and one 

must then resort to the following trial-and-error procedure which is similar to that 

outlined in Section 9.1: 

a.       Assume a new value for o^ which is in excess of the proportional limit 
for the ofj versus e, curve. 
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For the a- value assumed in a, above, compute the plasticity reduction 

factor 

E 
r?=i: 

(9.2-5) 

where 

Et  =  Tangent modulus of the o^ versus ei curve, psi. 

Ef  =  Elastic modulus of the o^ versus ei curve, psi. 

c. 

d. 

Using the TJ value from b, above, recalculate the critical stress intensity 
a..   This is accomplished by simply multiplying the first-estimate cr. value 

by TJ. 

If the new value for cr- computed in c, above, is in reasonable agreement 
with the (Tj value assumed in a, above, the related plasticity reduction 
factor TJ is valid.   Then the critical combination of stresses is obtained by 
multiplying each of the first-estimate stress components by this TJ value. 

If the value of csi computed in c, above, is not in reasonable agreement 
with the o-i value assumed in a, the related plasticity reduction factor is 
not valid.   One must then repeat the computation cycle starting with a. 
This iterative procedure must be continued until acceptable agreement is 
attained between the assumed and the computed o\ values. 
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