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FOREWORD

This program, the development of the isogrid design handbook, was

conducted by the McDonnell Douglas Astronautics Company at Huntington

Beach, Cal.;fornia und_,r NASA Contract NAS 8-Z8619. The contract was

administered under the direction of John Key, Marshall Space Flight Center,

NASA.

The I_cDonnell Douglas program was conducted under the direction of

Dr. George Moe, Direct:or, Research and Development, with M. B. Harmon

acting as principal investigator. Dr. Robert R. Meyer was the principal

contributor to this document, being responsible for Sections 2 and 4, basic

theory and analytical techniques. Other major contributors include

Mr. O. P. Harwood and Mr. J. I. Orlando.

The information in the document was obtained from: (1) the results of

analysis, test, and advanced manufacturing studies of Independent Research

and Development progcams, (2) a phase B space shuttle booster study funded

by the NASA Marshall Space Flight Center, (3) an isogrid tank test program

funded by the NASA Marshall Space Flight Center, and (4) the Delta program

isogrid structural tests funded by the NASA Goddard Space Flight Center,

Appreciation is expressed to Mr. Jack Furman of the NASA Marshall Space

Flight Center for his continued interest in the development and application of

isogrid to aerospace structures.
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b =

d =

c =

w =

s =

h :

a =

[32

ISOGRID DEFINITIONS

thickness of skin

width of rib web

depth of web

depth of flange

width of flange

t+d = plate thickness of unflanged isogrid

height of triangle

leg of triangle, i.e.,

d
:= m

t'

K

D

teff

distance center to center of nodes

T

c bd wc
× = _' _- W ' _ : t-ff

non-dimensional parameters

(l+_ +_I [3(I+6_z +-3_I*×)z + I + _62 * _×z]

3 [(1+6)-b_(l+k)] 2

bending stiffness parameter. (For unflanged isogrid, X:_t -. O,

_z : [3_(1+6)z + (1+_)(1+_62)].)

Et
2 (1 + a +_)

1 - v

isogrid)

: extensional stiffness (Iz = 0 for unflanged

=(Et312)((l.v2) 1 + a +

isogrid)

: t (I + a + _)

bending stiffness (g : 0 for unflanged

: equivalent thickness for membrane stresses

(1_ = 0 for unflanged isogrid)

t (1 + 3a ÷ 3t_) = equivalent weight thickness (_ : 0 for

unflanged isogrid)

vlll



_L

t

E _ =
01t 1 + _ + _ Equivalent thickness and Young's modulus

= to obtain correct K and D (_ = 0 for unflanged

E (1 + a + _)Z isogrid)

Use of E* and t* in monocoque equations gives correct stress
resultants, couples, strains, curvature changes and
displacements.
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Section 1

IN TR ODU C TION

1. 1 BACKGROUND

The establishment of new, lightweight, economical, and efficient structural

concepts for aerospace structures has long been an objective of NASA and

the industry.

Lightweight, compression-load-carrying structures form part of all air-

craft, booster, and space vehicle structures. Aircraft such as the DC..6 or

DC-7 used mechanically attached stringer, frame, anct skin construction,

which are of course 9'l-degree stiffened structures. Boosters, however,

were designed as int(:graliy stiffenec} structures because of leakage con-

siderations. In the Saturn vehicle, the S-II second stage duplicated aircraft

0- to 90-degree pat=erns with an integral, constant-height machined pattern.

The S-IVB stage, as well as the Thor, used square patterns rotated through

45 degrees.

The 0- to 90-def;ree and 45-degree stiffening patterns u_ed in the stages of

the Saturn vehi,:le are extremely efficient in certain load regimes. However,

they are inherently four bar lin,<s prevented from collapsing by the integral

skin and as a result have little in-plane torsional resistance capability.

In 1964, Dr. Robert R. Meyer under a NASA-MSFC contract, Reference 1-1,

set out to find the optimum stiffening pattern for compressively loaded

domes. A goal was to find a structural arrangement that negated the short-

comings o, the 0- to 90-degree and 45-degree patterns without introducing

other penalties such as increased weight. The concept that was found to be

the most promising was triangulation of the stiffening members. This

patterr took advantage of the simple fact that triangular trusses are w, ry

efficient structure. This work show,,'d significant promise and was extended

to cylinders as an Independent Research and Development program. After

1.0.001



many years of development, this stiffening concept is now being used as

structure for Delta vehicle tanks and interstages (Reference 1o2), Delta

shrouds, orbital shrouds, and Orbital Workshop interiors.

The new structure is caUed "Isogrid" since it acts like an isotropic material.

In a recent phase B design study funded by NASA for a recoverable space

shuttle booster, isogrid (triangular integral stiffening) was used in the

fuselage design. The vehicle requirements included (1) the capability of

carrying high torques from the wings, (2) supplying multiple attach points

for an external thermal protection system, and (3) the need to resist very

high point loads from the at_aclled piggyback orbiter. The isogrid con-

struction l_ad (1) high torsional _'esistance, (2) many nodal points, which

could be used as attach points for the thermal protection system 3tandoff

structures, and (3) the capability of resisting the orbiter attach loads with

local stiffening of the isog_'id pattern and a few added internal compression

members. Full-scale and model testing was conducted to supplement test

results previously obtained for the Delta vehicle. These tests served to

verify the structural concept.

It is important to note that studies have shown that the lowest structural cost

is associated with structure having the fewest parts. Relative costs of

major subassemblies of the Saturn S-IVB stage, Figure 1-1, are indicative

of this cost pattern. The tank cylinder was designed with integrally

machined 45-degree waffle panels to assure leak tightness, not to save

money. The cost difference between the aft skirt and interstage, both built

in the same structural style, must be attributed mainly to the installation of

equipment in non-standard fashion in the former compartment (see Fig°

ure 1-2). Evidently, these secondary functions cannot Oe ignored in the

selection of a concept for primary structure. The evidence suggests that a

waffle type of structure, much as isogrid, with a pattern of rib intersections

usable for equipment attachment is an economical way to design structure if

its efficiency is to be fully realized.

1.0.002
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Figure 1-1. S-IVB Relative Costs

FORWARD SKIRT

TANK DOMES

SKIN AND STRINGER 3.8

WEt.DE D MONOCOQUE 1.8

TANK CYLINDER WELDED INTEGRAL 1.0
WAFFLE

COMMON BULKHEAD BONDED HONEYCOMB 3.3

THRUSTSTRUCTURE SKiN AND STRINGER 4.9

(CONICAL)

AFT SKIRT SKIN AND ";TRINGER 4.3

INTERSTAGE SKIN AND STRINGER 14
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• ,- USE OF TIIE tL,kNI)t_()C)t,,.

This handhoot< pr,,sunts inforr;_,;t:o:l lu't'e!_,d to design is,)firid, triangular

integral stiffened structur4,s. Sots1.. k,,'>- points al)()ut is(,uri({ ar,, .,,t_)\vn in

Table 1- 1.

The handbook ('(},.'_.rs both unflan,.:,_.(', _tnd flaF=_vrl is()_t'id with thv inl(_rzll,,tioz'i

on flanged iso_ri(l h_,in,,: so ct,.sien.tt,,d. -\11 ()th,,r iIlt'(_rzl,nli_,n npt)li,,s l(,

unflanRed iso,_ rid.

The basic theory f,,r th,, analysi._ ol ,s()_'.'id is pr,'_,_'p.t,,rt in ,":,_'cti(>n 2, "]h¢'

user should acquaint Izill_s,,lt xxllh thi_ analysis nnd its a,_._tllilpti()llS l)('i'Ol'("

usinR the handl)n()l<. B()th tlllIl;tllt2_,('] all(l l'lnn_ed iso,L:rid a r_. covered t)y this

section. Th(- basic th(,ory i- su,'_11_ilrix_,d at th{, cn([ ()t th,, ._,cti(_i1 t_) s(,r\_,

as a ready r,'f(,renc(,o
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Table i- 1

ISOGRID

0

0

A lattice of intersecting ribs forming an array of equilateral

triangh, s

Characteristics:

- Isotropic (no directions of inst,,bilitv t) r weakness)

- Poisson's ratio 1/

- Efficient in conlp,,-cssi_n and bcndint,

Advantages:

- Easily analyzed

- Can be optimized for wide rang_, of loading intcp.sities

- Standard pattern for attachment Inodt,_ a:'commodate

equipm,,nt _nountine, witlmut chan_t.)

- Readily reinforced for conccntratt, d loads anti cutouts

- Redundant load paths

- Less structural dt, pth

In use on two n_aior .- t,,,_cc proorams, 'lilot'-l)clta and Skylal_,

and cxtunsix'cly invcsti_alud and tested on space shuttle study

effort

Section 3 describt, s the chl, raclt'ristics and advantal2,'s of isogrid, including

some current and lttlurt, application:, !or vt, hiclt, structure.

Section 4 presents thv analysis m,,Ihods fo," typical strucluru found ira at, to-

space vehicles, l'ypical tit,sign siluatit, ns at,, described for" each type of

structure, anti nwthods _f optiTr:i.<in,.: the struclttr't, for nainimutal w,'ight art,

Riven where such mvtheds exist. "l h,, nwthod of analx'sis is followed by

worked examples, which art, gix',,n to ,e,,,fi ( l_, tht, trs,,r in llu, application of the

equations and of the graphs, "Ih,, tzraphs ,,nal)lu the, u,-,,r to quickly and

accurately size isogrid slruclur,,. "l'h,, structural Ix, pus prest, nt,,d arc:

• Spherical cat)with r,,','(,rs(, prt, ssuru

• Cylinders in cotlq)rG.ssion. 1)_,ndin.tz

• Cylinders und_,r torsion,_! sh_.ar

'1.0.006



9

Cylinders under uniform external pressure

In-plane concentrated load in an infinite sheet

In-plane concentrated load at the edge of a sheet

Cutout reinforcement

Open isogrid shear w_.bs

Open isogrid cylinders in compression, bending

Open and skinned isogrid plates

Other structural types such as cones have not been analyzed to date and are

not included.

To comph, te the sections., information is given on: (1) the minimum overall

weight for cylinders subjected to axial compres,_ion and bending, and (2) off-

optimuna isogrid. Section 4. 12 is a very important note on the use of the x,

y. a, and 6 curves to ensure accuracy.

Section q d,..-cribes the effect of node flexibility on the local stress distri-

butions in isogrid anti recommends methods of analysis. Section 6 presents

information o,a model, sub-scale, and full-scale testing. Finally, Section 7

presents information on manufacturing techniques developed on production

hardware and in advanced manufacturing research protarams to date. The

topics covered are:

• Machining

• Power brake forming

• Creep and age forming

• Compound curvatures

Referenct s used in tht, text are listed.

This handbook is set up to allow the user to insert new pages of data or

entire new sections by using the decinlal page number's. Care should be

taken to remove obsoh.te material innnediately and to add test information as

it becomes available to the user from research or development in his com-

pany or NASA agency.

i_ 1.0.006 "



Section 2

BASIC THEORY

The isogrid rib-grids are analyzed by "smearing out", averaging, or taking

mean values of the grid properties so that the gridwork is considered as a

solid continuous sheet of material with appropriate elastic properties.

It is shown that if one assumes a uniaxial state of stress in the bars, the

smeared-out elastic constants are identical'to those of an isotropic material

in plane stress.

When ribs and skin are combined, the co,nposite construction is treated as

an isotropic layered material, with appropriate elastic constants for each

layer, viz., rib-grid and skin.

The key to the analysis is strain in the construction. The internal strains

in the composite construction are determined by the stress resultants and

couples in the composite construction. These relations are shown to be

isotropic in character. From the composite strains, the stresses in th."

elements of the individual layers may be determined. For the bars, these

depend upon the bar orientation. For the skin, they are dependent upon the

orientation of the normal of the plane upon which the stresses are assumed

to act.

2. 1 HOOKE'S LAW FOR ISOGRID RIB-GRID

The isogrid rib pattern consists of a network of equilateral (60 degree) tri-

ar_gles. The Hooke's law relations are developed by isolating an elen_ent of

the gridwork and assuming that the individual bars are ir, a state of uniaxial

stress.

2.0.001
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i

P3 P2

×
/\

Element of Isogrid Rib Crid

X

By means of the strain transformation law,

2
2 sin O.

e cos O. + Y sin O cos O. + e
ei x x xy i x Y x

(2.1. I)

one obtaina the rela:ion between the uniaxial bar strains, e i, and the x, y

and _ •
grid coordinate strains, ex, ey xy

e l

e 2

'3!

4 0
I -q_

(Z. I.2)

determined.

Note that the strain transformation is invertable,

known (for example from strain gage readings} then (e x,

In fact,

ey

t'O i'''1 0 2q'_-2 • 2

-1 Z e3

so that if (e l, e 2, e3) are

Yxy' ey) may be

(2. I, _)



The uniaxial bar loads are:

P. = bee.
1 1

i -- 1,2,3

{2. I.4}

Resolutes of the bar loads in the x and y directions divided by the periodic

lengths, a and _tTa give the "smeared-out" or mean value stresses in the

grid element.

ff
X

2PI + (P2 + P3 } cos 60 ° 4Pl + P2 + P3 (2. I. 5)

Ha 2 _a

(P_ + P_) sin 60 ° _ (P2 + P3 }

y a 2a

(2. 1.6)

(P2 - P3 ) sin 60 ° P2 - P3 (2. 1.7)
-- T -- --

TXy yX '_a 2a

Using eq. (2. 1.4_ and _2. 1.2), thrse become,

{x}yih3 3]{}eyeX 12. I.81

3 bE
v -r -

xy yx 8 h xy
(2. I.9)

whe rt_

h - _- a, the triangle height.

1.0.005



By comparing eq. (2. 1.8) and (2. 1.9} with the Hooke's law relation for

isotropic materials in plane stress,

(ry 1 - v2 v y

xy

E

ryx - 2 (l+v}Xxy

it is evident that eq. (2. 1.8), (2. 1.9} are a special case of (2. 1. 10),

whe "e

1

3

b

(2. 1.10)

(2.1.11)

(2. 1. 11)

(2. 1. 12)

and the barred quantities indicate the equivalent Poisson's ratio and Young's

modulus of the gridwork.

2. Z ENTENSIONA L AND BENDING STIFFNESS FOR
COMPOSITE RIB-GRID AND SKIN CONSTRUCTIONS

Many con,-tL-uctions may be idealized as elastic plates and shells. This con-

cept is a two-dimensional approximation of three-dimensional elasticity,

which replaces the three-dimensional body by a two-dimensional surface.

Th( loading on thc surface is considL red to be resisted by stress resultants

anti stres_ couph's obtainod by integrating the stresses and ,laoments in the

thickness direction, Ov

Ny My

i y_ Y _i'iy x
Z

Nx Z Mx

x Mxv

$TREB RESULTANTS 8TREU COUPLE8 ON

ON REFERENCE gURFACE PEFERENCE EURFACE x
ELEMENT ELEMENT

2.0.004
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These are computed per unit length of the reference surface coordinates, x

and y. If the small differences in length of a surface parallel to the refer-

ence surface at a distance Z from the reference surface is neglected, these

stress resultants and cour)les may be written as follows.

V
N

X

N

N
Y

Q
x I

Qy

i

f
Z

o"
x

T

xy

_y
T

ZX

"rzy

: f'le:YJ
Z

dz (2.2. 1)

ZdZ (2.2. Z)

whe re

N = N and M = M
xy yx xy yx

By use of the Kirchhoff-Love assumption of linear strain,

(z)
x

^ (z){
Y

f
IE X

I

_xy

E
Y

L

-Z

_x

2×
xy

Xy

(2.2. 3)

\vhere (_x, _xy' Ey) are reference surface strains and (×x' 2Xxy' X_) are

reference surface changes of curvature, together with the appropriate

Hooke's law relation for each layer. The relations between stress results

and couples and refe fence surface strains and changes of curvature may be

expressed in the following form.

2.0.0U



i:/[i0o0:=lt
x] 0 vD
Y Xy/

,.v[:ol
,,_xyj= _MyxJ _

K is the extension_ i sti'fness,

K "--L-ll- v2 f E (z) dz

z

D is the bending stiffness

(2.2.4)

(2.2.5)

(2.2.6)

D
- 1----_vl J E (z) z2dz !

z

and the reference surface has been chosen so that

(2.2.7)

J E (z) zdz : 0
Z

(2.2.8)

E(z) of course is the appropriate Young'a modulus of ribs or skin as a

function of the thickness coordinate, z.

The integrals (2.2.6) - (2.2.8) may be evaluated geometrically by a device

known as the method of the "transformed section."

Let E o

K

be a constant reference modulus.

Z

_tO.m

(Z. 2.9)
t



D E/
I - i..2 E o

zdz
(2.2. 10)

0 --/ _ z2dz ,E o (2.2, 11)

The quantity E(z)/E ° may now be thought of as a "transformed width" of the

unit section. It is convenient to take Eo as the modulus of the skin. The skin

width will then be 1.00. Only the rib will be transformed.

_ " -I_L
i® ]_

i®
d12

bib _ d/2

TRANSFORMED SECTION OF hSOGRID WITH FLANGE

Let

t : skin thickness

b, d =: rib web thickness and depth

w, c : flange width and depth

h : triangle height

2.0.007



The transformed rib width is b/h. The trar_sformed flange width is w/h.

Choose an initial normal coordinate, g, from the midpoint of the rib web.

The final normal coordinate, z, will be chosen to satisfy the condition,

_ EE-_ zdz = 0
O

z

This is equivalent to saying that z -- 0 is the centroid of the transformed

s e c ti on.

Define the following non-dimensional parameters.

d -- 6t

c = kt

bd
{X -- th

Using the parallel axis theorem,

ties of the transformed section appears as follows:

A. _i Aig! Ai_iZ
Part 1

- t 2 t 3
Q t t (1+5) (1+5) -- (1+5)2T 4

Q ta 0 0 0

t t 2 3
t_ _ (l+x) --f_(l+_l _ _(l+×_2

i

a tabular analysis of the geometric proper-

2
A.d.

1 1
I
o 12

(tz)

t 3
_-_[l+ab2¢vk 2]

2.0._
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Then

_iAi_i

A

S 2 _ io i= Ai_ i 4

i

_A_ _

A and I are respectively the area and nloment of inertia of the transformed

sectio .

A = t (1 * a _ u/

[(1+6_ - ._(l +kl]
__ t__

2 1 + ,_ + t_

tZ
IZ

,)

3(1+812 + _,p.(l_X.t 2 + 1 + o, _2 + pk"

_[_l _ -,(! _>,I]2 [

I + c* 4 bt t

OF

t 3 _z
I - 12 (l + _.+..'_'

wher e

(1 + a +-g) _(1._6)"_3t*(1+kl + 1 + c,t, v}_X. - (1+6}-p

The number of independent non-dimensional paran..ters is four: a, b, k,

a nd g.
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From eq.

D =

t( =

(2.2.9) and (2.2. 10) one obtains

_8Eo I

EoA

(2.2.1 2)

since

v : 1/3.

The foregoing analysis assumes that the Poisson's ratio of the skin material

is also 1/3. If this condition is not satisfied, it will not be possible to

express eq. (2.2.4) and (2.2.5) in the simple form shown, Reference 2-1.

For aluminum materials v = 1/3.

Certain small terms not obtainable from the foregoing integration process

and arising from the twisting rigidities of the bars may be added to

eq. (2.2.4) and (2.2.5). For thin rib, these terms are negligible,

Reference 2- 1.

Z, 3 NON-DIMENSIONAL STIFFNESSES FOR UNFLANGED

ISOGRID

For unflanged isogrid, k =_t = 0 in the equations developed for flanged isogrid

on the preceding pages.

1/2

: _(_,a) : [3_(1+6) 2 + (1+_,) (l+,_a2)] (z. 3. 1)

For construction consisting of skin alone (monocoque),

a =: b : o,

13 = 1

(z. 3.2)

L
2.0.010



In terms of a and [3,

E t
o

K : _ (l+a)
1-v

(2. 3. 3)

E t 3o LD =
12(1. v2) l+a (2.3.4)

It will be noted that E t/1-v 2 and E t3/12(1-v 2) are the extensional and
o o

bending stiffnesses of the skin alone, while the non-dimensional factors (l+a)

and [52/(1+a) represent the relative increases in extensional and bending stiff-

nesses due to the ribs.

A plot of _(a,b) is shown in Figure 2-1. This graph is useful when [5 is known

and it is required to determine a and 6.

Suppose, for example, the required D and t are known. Ti_en,

[52
= C

1+o

where C is some constant: value. Solving for [3,

If this relation is plotted on transparent paper to the same [3, a scale as the

[3(a, 6) graph and superimposed on the [5(a, 6) graph, acceptable values of a

and 5 may be read off.

The [5(a, 6) graph will also be found very useful for off-optimum perturbation

from optimum construction.

2.4 MEMBRANE STRESSES

For many conditions the changes of curvature and associated bending stresses

are negligible. The membrane stresses may be determined by sinl_,le

2.0.011
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equilibrium conditions or may be known from plane stress solutions in

classical elasticity, Reference 2=2. Thus N x, Nxy, and Ny may be regarded

as given. The problem now is to solve for the skin and rib stresses.

Eq. (2.2.4) reduces to,

Ny [.1/3 1 e

(2.4. 1)

while

1
Nxy = _-K _xy (2.4.2)

and

K = 9Et(l+a)

solving for the strains,

(2.4.3)

}1 1 -1/3
ex Et(l+a) Ny
ey =1/3 1

(2.4.4)

N
8 ×y

_xy = "3 Et(l+a) (2.4.5)

2.4. 1 Skin Stresses

These are given by this Hooke's law relation for the skin.

{x) [ 3]{}exOy = _ 1/3 1 ey
(Z. 4.6)

E

_y 2(l+u) _xy
(2.4.7)

2.0.01;S



By use of (2.4.4) and (2.4.5) one obtains the skin stresses,

_y t(l+a) N

_x' O'y, rxy"

(2.4.8)

1
•1" - IXl

xy t ( 1 + _) xy
(2.4.9)

If the quantity tef f = t(l+a) is defined, then, (2.4. 10)

N N N

_0" t , 0 : , T -"
x eff Y xy

(2.4. 11)

These stresses must be equal to or less than the allowable stresses in the

construction. If the stresses are tensile, they may be compared with yield

or ultimate allowable stress. If the stresses are compressive, one may

consider constructions with buckled or unbuckled skin. In the case of

buckled skin, the problem is to determine the effective stiffness of the panel.

One may use effective width concepts in this case where the effective skin

material is treated as a portion of this rib. In the case of unbuckled skin,

the problem is to determine the buckling allowable in the skin panel. This

depends upon the size of the triangle, the skin thickness, the stress field in

the skin, Young's modulus and the edge fixity of the triangle. The edge

fixity, in turn, depends upon the geometry of the ribs and the stress field in

the ribs. Sorer tests have been conducted to determine conservative esti-

mates of edge fixity and more are under development.

Triangle sizes will vary considerably depending upon buckled or unbuckled

skin requirements and edge fixity values.

2.4. 3 Rib Stresses

The rib stresses are a little more complicated than the skin stresses. This

is due to tbe fact that the bat's are not all oriented in the coordinate directions

x and y.

i,

2.0.014
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From eq. (2. 1.3) and (2. 1.4),

P
1

= _ = Ee
0.1 b x

0" _-

2

132

b

E
4 (ex + ff-_ '_xy + 3 ey)

133

°"3 - b - E (ex_ _ ,¢ + 3 e )4 ' xy y

Using eq. (2.4. 1} and (2.4.2) these become,

1 - N ,)
°l : 3t (l+a) (3Nx

2
a2 : 3t (1+a) (Ny + ,J3 Nxy)

2 #3 N
a3 : 3t (l+a) (Ny xy)

(2.4. 12)

and N are principal stress resultants, Nxy 0One notes that if N x y

0.1 : t(l+=='=='=_),x -'_

2
0.2 : 0"3 : 3t(14 Ny

(2.4. 13)

If, in addition, Ny :: 0, then 0.2 : 0.3 : 0

and

N
x

m

0.1 :: tel f

(2.4. 14)

Note in the application of eq. (2.4. 12) that the 1 bar is oriented in the direc-

tion of the x axis and that the, 2 and _ bars are at ±60 degrees to the × axis,

see sketch on Page 2. O. 019.

2.0.011S



For example, consider a cylinder with internal pressure with one set of ribs

in the circumferential direction. In this case, xis the hoop coordinate and

y is the longitudinal coordinate.

N = pR,
x

N = 0
xy

and,

=P_h
x tef f

_2 03 pR
- - 3tef f

2. 5 EQUIVALENT MONOCOQUE E* AND t::"

Because of the isotropic properties of the construction, it is possible to use

all the established isotropic solutions from extensively developed theory for

plates and shells, References 2-2 to 2-8.
in

In .many cases, these are expressed in terms of the bending and extensional

stiffness. In other cases, however, the solutions have been reduced to more

primitive parameters. For such cases, it is possible to determine an

equivalent monocoque thickness, t* and Young's modulus, E":', _hich will

give the same bending and extensional stiffnesses as (2.2.7) and (Z. 2.6).

2.0.016



Thus,

E A E t

K = E":"t_:_ o o: 2 -- z (i+_)
1-v 1-v l-v

(2. 5. l)

D

E ':-"t::'- 3 E I E t 3o o
- - 2 I+_

i2(l_v 2) l-v 2 12(l-v )

(2.5.2)

where A and I are the transformed area and moment of inertia and where the

expressions in a and [5 arc valid for unflanged isogrid.

Solving (2. 5. 1) and (2. 5.2) for t::' and E ::',

t-':-" : _= t--_l+_ (2.5.3)

A _ (Z.5.4)
E':-" - E_,:, = E

Note that once again, the first factor pertains to the skin property and that

the second non-dimensional factor represents the influence of the rib grid.

Thus for no ribs,

t ',_ = t

E':¢ = E

Since c_ = 0 and _ = I for no ribs.

In using eq. (2.5. 3) and (2. 5.4) a word of caution is required. Since t _:_and

E':' reproduce the requir(d bending and extensional stiffnesses, D and K,

it is important to note that these are related to stress resultants and stress.

couples only and no__t to stresses. Thus, the equations into which t':" and E*

are to be substituted must be expressed in terms of stress resultants_ and

couples,

_.0.017
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Use of t::= and E::: for deflections is also permissible since deflections aro

geometrically related to strains.

To obtain a quantitative idea of the magnitude of t$ and E':% it is found by

experience that for many optimum constructions, one has approximately,

a = 1/3,

: 16

Since the equivalent weight thickness, i-, is given by

t" : t(l+3a) (2. 5.61

this implies an equal distribution of rib and skin material.

Thus,

: (,4)Eeop t (-_) E = _- E °

E,(4)Kop t = _ -_
l_v 2

(2.5.9)

E t 3
O

Dop t : 12il-v Z)

E t 3
O

Dop t - 12(1.. v 2 )
19Z

(2.5. 10)

1.0.0111



Thus the extensional stiffness for many optimized constructions is increased

by a factor of 4/3, and the bendin_ stiffness is increased by a factor of 19_._Z

by the addition of an equal weight of material in ribs to the original skin

mate r ia I.

Z. 6 SUMMARY OF BASIC THEORY

1

RIB ORIENTATIONS

I" ;3-a

= m

2

GRID GEOMETRY

r

COORDINATES

t
q

t

!
b "="---

Z. 6. l Non-dimensional Param¢'te,'s

bd
a = th'

[3 -- [3a(l -I-6) '_ 4 (1 _,_,= (]_,&4)] I/Z

2.0.010



2.6.2 Grid Moduli

-- b
E = _E,

7_ = 1/3

Z. 6. 3 Rigidities

Extensional, K

......... T ....

9K : -_ (z) dz : _E A : Eot(l+a)O

z

Bending, D

D : _" rE(z) z2dz = 9EoI 9- 8

Z

Neutral Axis

E(z) zdz

Z

= 0 = centroid of transformed area, A.

Z. 6.4 Equivalent t ',_ and E",'

t::' = _ : t -_l+a

A (l+a)
E:'.' : E -- EoV o--T-

Z.6.5 Composite Stress-Strain Relations

N = K 1/3 e

2.0.m



l} [Mx = - D ×y
My 1/3

K

Nxy - 3 Xxy'

D

Mxy = _ (2Xxy)

Z. 6.6 Membrane Skin Stresses

N
x

x t eff

N

O" = t'_. )
Y eff

N
= -._

Txy tef f

= t(l+o) = A = Transformed area
teff

2.6.7 Membrane Rib Stresses

I Ny)
teff

Z
02 ------ (Ny + x/_ N= 3tel f xY )

2

_3 ==_ (Ny - _N )

2.6.8 Ec_uivalent Weisht Thickness

E : t(l+3o)

2.0.021



Section 3

ISOGRID CHA RACTERISTICS AND ADVANTAGES

Isogrid is a lattice of stiffening ribs forming an a:'ray of contiguous

equilateraltriangles. This is the simplest arrangement of bar elements that

exhibits isotropic properties, hence the name "isogrid 't. Intersecting ribs

so arranged make a complete structure whether attached to a skin as

stiffening or used as an open lattice.

Because of the isotropic property and an effective 1Doisson's ratio of 1/3,

like most homogeneous structural metals, isogrid can be mathematically

transformed to an equivalent homogeneous material layer {see Figure 3-11.

The transformed expression can be substituted into the shell equations in

available literature to analyze the gross behavior of isogrid structures.

More detailed finite element analysis is needed to examine local stresses in

the critical areas of nodal intersections and the bars.
CRIG_

-'_ _- bl " 0.51) E - 10 11061

/

- 0.10 EOUIVALENT 3-LAYER

SANDWICH

I$OGRID PLATE

Figure 3-1, Ilogrid Is Simple to Aoalyze
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Being easy to analyze, the construction is also readily optimized as will be

shown in Section 4. Dasic structure sizi._.gover a wide range of load

intensities can be accomplished rapidly, allowing a quick and accurate study

of the effect of standardizing geometry. As shown in Section 4-13, this

technique has been applied to a large integrally stiffened propellant tank to

prove that the penalty of geometric standardization is very small -- about half

of o_-.epercent, in a recent phase B shuttle design.

As originally applied in a hardware program (the Orbital Workshop module

of the Skylab), ;.sogrid open lattice of standardized geometry forms the walls

and floors of the crew quarters and internal experiment space. The intention

here was to provide a "pegboard" pattern of equipment mounting points,

readily adaptable to change. As can be seen in Figures 3-Z and 3-3, the

equipment components are attached at the waffle nodes without structural

rework. It is evident that removal of the mounted equipment leaves the sub-

structure exactly as it was, permitting installation of any other installation

designed to fit the pattern. This scheme has advantages for a long-term

space base that will be periodically refurbished and updated with newly

developed advanced equipment.

The design requirement for this construction was a limit load capability of

250 pounds applied normal to the surface at any nodal point. Failure occurred

at 750 pounds in static test although the panels are equivalent in weight to a

continuous 0.025 aluminum sheet (0.36 pounds per square foot}. The geom-

etry is depicted in Figure 3-4.

While substantial local load capability is inherent in unreinforced isogrid,

occasionally local reinforcement is required to handle large concentrated

loads. How this can be accomplished with minimum weight is shown in Sub-

sections 4.5 and 4.6. As an example of the _fficiency provided by ribs and

skin working together dissipating load, an 8-foot-diameter cylinder designed

ior a compressive load intensity of 2, 500 pounds per inch required only

4.3 pounds of additional weiffht to handle a concentrated tangential load of

20_ 000 pounds. This was distributed within a hexagon 24 inches across the

flat (see Figure 3- 5).

_hP ' ' "'
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• OPEN LATTICE 0.400 THICK

• WEIGHT EQUIVALENT TO

0.025 SHEET

0.070

CRI_

0.22R

4.200

0.438 DIA

Figure 3-4. Skylab Floor and Wall Grid

As has been mentioned, the iso8rid lattice is a complete structur,.' by itself:

that is, it can effectively resist tension, compression, shear, and bending

loads. Stiffened by such a lattice, a skin has the same capabilities. Thel'e-

fore, either skin or lattice can be locally reinforced to handle local loads or

discontinuities from cutouts. This choice offers more design flexibility than

available with rectangular stiffening systems.

Similarly, this redundancy should offer exceptional opportunities to design

fail-safe struc_re. If for example, the lattice is made separate from the

skin and then assembled to it, a crack in either lattice or skin cannot be

propagated across the joint. Shear and t,_-nsile loads in the skin can be

carried around the flaw by the redundant lattice system. Since this is not the

case with present rectangular stiffening systems, it should be possible to

obtain fail-safe design at lower weight in isogrid, Figure 3-6.
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REDUNDANT STIFFENING GRID
AND SKIN (ADHESIVE BOND +

MECHANICAL ATTACHMENT)

CR169

/

BOND LINE

Figure 3-6. Fail-Safe Concept

The rib lattice, carrying shear load and with its centroid spaced away from

the skin, in effect forms a second surface of a torque box. Therefore,

triangularly stiffened panels are torsionally stiff. This means that situations

where torsional stiffness is needed can be met with an isogrid open con-

struction instead of a closed torque box. The advantages of inspectability,

access to all surfaces, and elimination of moisture entrapment are obvious.

This kind of design can be applied to structural components such as access

doors, landing gear doors, door jambs, and speed brakes. Figures 3-7 and

3-8 show typical examples.

In compression-loaded cylinders, isogrid bas been found advantageous in

another respect: it occupies less depth for the same compressive capability

as a rectangular stiffening system. This is true in the case when both kinds

of stiffening are in the form of constant depth waffle, even more so when the

orthotropic construction is optimum- with frames deeper than th¢, stringers.

In a purely structural sense this is not important, but many designs require

clear space inside the frames. The deeper they are, the larger the con-

taining shell and therefore the weight. As an example, a recent study

&0.0_/
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substituted isogrid for conventional construction in a transport airplane,

permitting reduction in fuselage structural depth from 4 inches to 1.5 inches.

The depth of construction noted above was that obtained by the simple optimi-

zation technique described in Subsection 4.2. Both weight efficiency and

structural space efficiency can be improved if the isogrid ribs are flanged.

This was proved in a space shuttle booster study where the depth of construc-

tion for a 198-inch radius and 10, 000 pounds per inch compressive loading

was 2.25 inches. Figures 3-9 and 3-10 show manufacturing samples of this

construction and a larger formability test specimen. The analysis does not

in this case optimize in a single step with a unique solution. Iterative

techniques must be employed. As a design progresses from the preliminary

sizing to the final configuration, refinements of this kind are in order.

The practical applications of the advantages of isogrid mentioned above are

a few of the cases so far encountered. More are sure to be uncovered with

time.
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Section 4

ANALYTICAL TECHNIQUES

4. I SPHERICAL CAP WITH REVERSED PRESSURE

P

The spherical cap with reversed pressure consists of a portion of a sphere

cut off by a plane and loaded b'] uniform external pressure.

The load/in, in the sphere is uniform in all directions and is given by the

equation,

Nob = N : pR
x 2

4. 1. 1 Typical Design Situations

This situation in design occurs most frequent}y for common bulkheads used

for separating propellants, such as LOX and LH 2 tanks. Considerable vehicle

length and skirt material may frequently be saved by such designs. Gener-

ally, the bulkheads are designed for tension. For some loading procedures,

however, reversed compressive pressure may act upon the bulkhead so that

it must also be designed for stability under the compression loading. :::

::'It was this design condition which initiated the development of isogrid in

1964. (Reference 2-9)

4.1.001



Other design possibilities might be spherical end closures in cylinders

subjected to external hydrcstatic pressure such as vacuum tanks or

submersibles.

4. 1.2 Method of Optimization

The optimization technique used assumed that minimum weight occurs when

all modes of buckling i.e. , general instability, rib-crippling, and skin buck-

ling are equally likely. This optimization principle is popularly known as the

"one-horse shay" design principle. It assumes, in particular, that the var-

ious modes of buckling failure are uncoupled.

General Instability_

Buckling of a complete sphere may be written in the form, Reference 2-4,

1 E tz (4. I. I)

Ncr(1) =

3 (I - vz)

Since eq. (4. 1. 1) is "_n the form of a stress resultant, the equivalent re-

and E-".' of (2. 5.3} and (2. 5.4) may be used to transform {4. 1.1) into an

isogrid formula.

l E t

Ncr(1) = _ R(1 - vz)

E t 2 (1 + a) 2

Et 2

Ncr(1) --

3 (1 - v2)

4.1.002
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This equation shows the typical form of isogrid equations using a, 13 and b, in

_hat the first factor gives the strength of the skin and the second factor shows

the nondimensional increase due to the addition of the ribs. For typical

optimum designs, _ = 16.

Since test values generally fall below theory, it is customary t._ apply a

',knockdown _ or "correlation factor," Y, to eq. (4. 1.2), Reference ?--8.

,_ Et 2

Ncr(1) = --_ ._

_]3 (1 - v 2)

Et 2

Ncr(1) = c o _
(4. 1. 3)

With a proper interpretation of c o to account for the reduction due to boundary

effects, eq. (4.1.3) may also be used for spherical caps under external

pressure.

Skin Buckling

From Reference 2-9, the buckling stress in an equilateral triangle under

equal biaxial loading with simply supported edges is given b7 the equation,

(7
cr

k _2E 2
= c t

lz - .z/
(4. 1.41

k = 5.0
C

Thus

2
k

C

12 (1 - v2)

2
5 0_

= "_'-- = 4.62

4.1.003



From eq.

X

(2.4. 11) the skin stress in terms of the pressure is:

p Rc r
ff =

y -2t (:i + o/
(4. 1.5)

Using eq. (4. 1.4),

R t 2
Pcr = 4.62 Et (1 +a)(a)Ncr(2) - 2

N (2)
cr

t 2

= c 1 Et (1 + o) -_
(a. 1.6)

where

c 1 4.62 = 3.47

Rib Crippling

From Reference 2-4, the buckling stress in a long plate simply supported

on three edge' and free on the fourth edge is,

k 2 E 2

c (b) ,4 1 7'
: 2) _ ....cr 12 {1 - v

k = 0.456
C

Thus

2
k n

C

12 (1 v 2)

0.456 2
: 0.422

4.1.004



From eq. (2.4. 12) for

p R
cr

N = N -
x y 2 - Ncr(3 )

N =0
xy

ff --':- O- _ O" =
cr 1 2

2
g3 - 3t (1 +o} Ncr(3) (4. I. 8)

Using (4. 1.7),

Ncr(3) =

= C

3.,,. ,[o 2]
2

Et (I +o)_) (4. I. 9)

3
c 2 = -_(0.422) = 0.634

optimum Requirement s

Collecting formulas, one now has the system of equations,

t2 p R

Ncr(1) = co E _--_3 _ cr2

t 2

Ncr(2) = c 1 E t (1 +o)y

(4. I. I0)

(4.1. II)

2
b

Ncr(3) = c 2 E t (1 + o) d 2
(4. 1. 1 2)

For optimum requirements, (4. I. 10) to (4. I. lZ) must be simultaneously

satisfied. Now these equations are indeterminate, in that four parameters

are to be determined, b, d, t, and h, while only three equations are give.-.

4.I.0_
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As a fourth equation, one may consider the burst condition,

_ pR
Ftu 2t (I +a) (4. I. 13)

where p is the burst pressure and Ftu is the tensile strength of the material.

Strictly speaking, eq. (4. 1. 13) holds only in the elastic region of loading.

Its use for burst conditions is conservative, since in the plastic state the

ribs _.ll be more highly loaded than for elastic predictions.

It will be found fcr many design conditions that pressures higher than those

given by use of eq. (4. ]. 13) will yield lower weight designs! For example,

there may be n__0.internal pressure. Obviously: some finite skin thickness,

t, is required while use of eq. (4. I. 13) will give t = 0. The physical inter-

pretation of this phenomenon is that higi_er pressures mean thicker skins.

which in turn implies larger grid sizes, a, so that deeper ribs may result

for a given amount of rib material. This will occur for increasing pres-

sures until the increase in skin weight counteracts the increase in general

instability due to deeper ribs.

As a consequence, an optimum burst pressure exists which divides all

designs into two classes. In the first class are all designs whose burst pres-

sure is less than the optimum pressure. These designs are called " corn-

pression-critical" designs. They will have the very desirable property that

burst margins are in excess of requirements. This can be a very important

effect for prevention of critical growth of flaws in cyclic loading. In the

second class are all designs whose optimum pressure is less than the burst

pressure. In these cases, the burst pressure dominates. These designs

are called "pressure-critical. "

To solve eq. (4. 1. 10)-- (4. 1. 13) simultaneously, introduce tile non-dimensional

loading parameter, N.

N - E -- (4. I. 14)

4.1.11@6



from (4. 1. 11), (4. 1. 13) and (4. 1. 141,

-- (_)2N = c I (4. 1. 1 5)

From (4. I. 12), (4. I. 13 and (4. I. 141,

(4. I. 16)

Multiplying (4. 1. 151 and ()t. 1. 16/,

-_Z = ClC2 h2d _ = ClC2 th ]

2

= ClC 2 74-

Thus, since o and b are positive,

o

(4. 1. 17)

Eq. (4. 1. 17) satisfies the conditions of simultaneous rib-crippling, skin

buckling, and burst.

From eq. (4. 1. I0), (4. 1. 13) and (4. 1. 14),

t _.__ Co p_" = Co N" 1 +_ =
Ftu ( 1 + a) _

or

p Co
( i. + o) 2

(4. 1. 181

4.1.007



Eq. (4. 1. 18) satisfies the condition of simultaneous general instability and

bur st.

If the non-dimensional loading parameters

-()N 03x = _ l (4. 1. 19)

_fc 1c 2

Y

w

2 N Ftu (4. 1 20)
-: .

CoP

are defined, then eq. (4. 1. 17) and (4. 1. 18) become,

°(0,)
b2

(4. I. 21)

2
(I + a)

(4. 1.22)

It is noteworthy that the right-hand sides of these equations are pure func-

tions of the geometry. Boundary conditions for the plate elements and

correlation factor are not involved. For this reason it is convenient to stop

at this point and consider the solution as a mapping of the o, _, domain into

the x, y domain instead of attempting a simultaneous solution. Tile mapping

solution will thus have a validity that is independent of c O , c 1, and c 2.

i

The equivalent weight thickness, t, is,

Usln_ eq. (4. 1. 13) this becomes,

}- : pRIl _ 3a) , i.e.,

2 Ftu (1 * o)

L

l< ? Ftu _ _]l +

4.1.0{m



One now has the complete solution in terms of the nondimensional loading

parameters, p/ Ftu and p cr / E.

By varying p/ Ftu for a given value of p cr / E,

curve may be constructed.

the nondimensional weight

I
I

FOR
I
6

v

P

MINIMUM WEIGHT CURVE
Ftu

Define the pressure for {_min/R} as Po" If (_'min/R), and (Po/Ftu) are

computed for a sequence of values of (per/E), a master curve of ffrnin/R).

and associated optimum pressures, (Po/Ftu) may be constructed. The graph

is given in Figure 4. 1-1. As may be seen, these curves plot as straight lines

on log-log graph paper.

If only (t-rain/R) is desired and if P/Ftu < Po/Ftu this graph is sufficient.

Such information is usually all that is required in preliminary design weight

studies. On the other hand, if the complete geometry is required, 9.2 if the

design burst pressure, p, is greater than the minimum weight pressure, Po,

i.e., if the design is pressure critical, it will be necessary to use the x,

y; _, 5, graph given on Figure 4. 1-2 to obtain t. This is done in the following

steps:

A. Compute x ,,nd y and from the graph read ,_f'f the correq-onding a

a nd ,'.

4.1,000
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SUMMARY OF DESIGN EQUATIONS FOR SPHERICAL CAP

Co = 0.260

C 1 = 3.47

C2 0.634

(103 )

1.482

PR
=

2Ftu (1+ a )

d = St

b = _- d

h = _ t

AS A CHECK,

bd
=

th

_" = t (1 * 3a)

REF PAGE

4.1.011

4.1 .O03

4.1.004

REF EO

(4.1.14)

(4.1.19)

(4.1.20)

(4.1.13)

14.1.26)

(4.1.27)

(4.1.25)

F,gure 4.1-2. Design of t togr id Spherical Bulkheads
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B. t may now be computed from the burst condition or from the minimum

weight pressure, Po"

pR
t - 2 Ftu (1 +_) (4. 1.24)

C. Knowing t, the triangle height, h may be computed from eq. (4. 1. 15).

(4. 1.25)

D. The rib depth, d, is given by t and 6,

d = 6t (4. 1.26)

E. The rib width, b, is computed from eq. (4. 1. 16).

(4. 1.27)

As a check on the computed values, the ratio, bd/th, should agree with the

value of a read off the x, y: a, 6 graph.

Finally, the value to be used for the correlation factor, ¥, may be taken

from Reference 2-8 as a function of the ratio, t*/R for lightly stiffened

domes. For heavily stiffened domes the result of test in Reference 1-1,

gives,

¥ = O. 425

c o = 0.612 Y = 0.26___._0

This is the value used for the x, y; o, 6 curve in Figure 4. 1-2.

4.1.012
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4. 1.3 Worked Examples

Worked Example 1

Pcr = 21 psi

= 60 psiPbur st

R = 96 in.

E = 11.6 (106) p si

Ftu = 78.5 ksi

Pc____r 21 6
E = 1-T_.6 (10-) = 1.81 (lO 6 )

From graph,

103 = 1 12 mi.____n = 0.000805
" R

Po = 1.1Z (78.5) = 87.9 psi 60.0 psi.

The design is compression-critical and the (tmin/R) value is valid.

= 0.000805 x 96 : 0.0772 in.
rain

If this is all that is desired, the analysis is completed. However, if the

geometry is required,

-- Pcr IFtu/ : 1.81 (10 -6 ) : 1.617 (10 -3 )
N = _ _Po / 1. 12 (10 -3 )

- o 3 )x N (1 1. 617
= 1.482 = _ : 1.09

4.1.013
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_..._#__{__,_1.617(lO
: o. _30k-Co/= o. 130

=II.I

From graph, a = 0.275 8 = 16

Po R I. 12 (10 -3) (96)

= 2 Ftu (l+a) = 2 (1.275)

= 0. 04?-2 in.

d = bt = 16 (0.0422) = 0.675 in.

b = 0.634 d = %_-- 0.634 (0.675)

= 0.0505 (0.675) = 0.0341

4 3.47 (103)t = 1.617 _0. 0422)

= 46. 3 (0.0422) = 1,95 in.

2h 2 (1.95) = 2.25 in.
a = _'-- I. 732

As a check,

bd = 0.0341 (0.675) = 0.280
th 0.0422 (1.95)

This is very close to the graph value,

value,

a= 0. Z75. As a check on the "t-
rain

train.
= t (I + __a) = o. 0422 [I _ 3 (0. 280)]

= O. 0777 in,

., 4.1.014
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Use of the burst pressure, 60 psi, instead of the optimum pressure,

87.9 psi, would have resulted in thinner skin, smaller triangles, and heavier

weight.

Worked Example 2

Pcr = 8 psi,

Pbur st :

R =

E

75 psi,

1 Z0 in.

11 (106 ) psi,

Ftu

Per
E

= 76 ksi,

8 6
=--(In- ) :

11
0.726 (10 -6 )

From graph,

10 = 0.644 (train/R) : 0.000466

Po = 0.644 (76) = 48.9 psi, < 75 psi.

This design is l)ressure-critical since the minimum weight pressure is les__.__ss

than the burs__.__tpressure. In this case it will be necessary to use the a,

6 curves to obtain _.

Pcr (_)= 0.726 (10 -6) [76 (103)]N = --_-- 75

-3
= 0.735 (10)

(103 ) O. 735
x =-1.482" = 1.'T-./////_ = 0.496

4.1.016



o.73511o3,[76i,o3,1y o13op 0.,3o
= 5.73

]_rom graph, a = 0.066, 6= 11.6

t = pR _ 75 (120) (10 "3)

2 Ftu (I + a) 2 (76) (I.066)

= 0. 555 in.

d = 6t = 11.6 (0.0555) = 0.644 in.

b = _/_d _ .7,'35 (10"4)= 0.634(0.644)

= 0.0341 (0.644) = O. Z19 in.

N N 0.735 (103) (0.0555)

= 68.8 (0.0555) = 3.82 in.

2h 2. (3.82)
a =_,= _ = 4.41 in.

As a check,

bd 0,0219 10.644)th - 0.0555 3.82) = 0.0666

This is close to the graph value, o = 0. 066.

The t"is given by,

_" = t (1 + 3a) = O. 0555 [1 + 3 (0. 0666)]

= 0. 0666 in.

4.1.01e



If the design had been compression-critical, one would have had,

t-rain. = 0.000466 (120) = 0.0560 in.

It will be found, for many designs, that theT/R curve is fairly flat beyond

the optimum Po/FtuPressure. This means that the skins may be made

somewhat thicker than optimum so that larger grid sizes result without

excessive weight penalties.

4. 1.4 Spherical Grid Layout

The analysis leading to the tables used to lay out the grid is described in

detail in Reference 1-1.

The tables developed there and the description of their usage is repeated

here for convenience.

Layout of Isogrid

The layout of the triangular gridwork on the spherical surface is accom-

plished by the following routine.

Consider an icosahedroninscribed in the spherical surface. This regular

geometric solid has 20 equilateral triangular faces and is shown in the

figure.

N

/

4.1.017



A typical face is labeled NAB, where N is the apex (North Pole) of the sphere.

A view of the equilateral triangular whose base plane is NAB is shown in the

figure as seen from the apex, N.

N

B

E

The midpoint of the arcs NA, AB, BN, are designated as C, E, and D. This

further subdivides the basic triangle into one central equilateral triangle CED,

and three congruent isosceles spherica! triangles NCD, AEC, and BDE. The

arc lengths, a and b, are symmetrically subdivided from each vertex, i. e_

from N_or C, etc. and are labeled a i, b.1 for n subdivisions.

From each vertex, corresponding points along the adjacent arcs are cor.-

nected by great circles.

C
D 1 2 3

1

E

The arcs will intersect in points which define the vertices of the elementary

triangles.

4.1.018



The subdivision a i, b. have been computed for unit radius, for n = 5 to g0,1
and are shown, cumulatively added from a vertex, in Table 4-1, to facilitate

lay out.

For spheres of radius R, multiply tabular values by R.

4. 1. 5 Summary of Design Equations for Spherical Cap

Ref. Page

C o = O. 260

C 1 = 3.47

C z = O. 634

4. I. OIZ

4. !.004

4. 1. 005

Ref. Eq.

(4. 1. 14)

X

Y

(103)
I. 482

-N
0.130 \p !

(4. 1. 19)

(4. 1.20)

= pR
2 Ftu (I + a)

d = 6t

(4. 1.13)

R ef. Eq.

(4. 1.26)

b =__d
(4. I. 27)

(4. 1. 25)

As a check,

}- =t (1 + 30)

4.1.019
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4.2 CYLINDERS IN COMPRESSION, BENDING

The compression on the cylinder has a resultant force, F, and resultant

moment, lvi, at the two ends of the cylinder. The internal axial load/in.,

N x, in the cylinder, is given by the equation,

F M
N = _ * _ cos

x 2 _I_ nR 2

The maximum value of N occurs for cb= 0 °
X

F M
N (max) = -- +

x 2-R. 2
-R

4.2. 1 Typical Design Situations

A very common application occurs in design of fuselages, interstages,

tankage, payload and living com_artmeHts of space vehicles that arc

cylindrical in shape and are subjected to maneuver and thrust loading.

The cylindrical configuration is especially attractive from the fabrication

point of vie,', since the isogrid may be machined in the fiat and then formed

i_to the cylindrical shape.

4.2. Z Method of Optimization

The optimization assumes that minimum weight occurs for simultaneous

failure modes in general instability, skin buckling, and rib crippling.

4.2.001



General Instability

In Reference 2-1, it is shown that theoretical values for general instability

due to bending may be written in the form,

2
N (1) - 1 Et (4. 2. 1)

cr _3 (1 - v 2 ) R

This theoretical formula is independent of the length of the cylinder.

In the case of uniform compression, the theoretical critical load is highly

length dependent and is described by a looped "festoon curve, " Figure 4.2-1.

This curve is dependent on both R/t;:: and L/R and has been plotted from

Reference 2-1 for an R/t ::_ ratio of 85.5, a typical value for isogrid. The

length dependence was first noted by R.V. Southwell in 1914 and later by

W. Fl(igge in 1932.

If, however, internal pressure is present or if the loading consists of

combined bendin_ and axial compression where the bending component is at

least 25 percent of the value given by eq. (4.2. 1) and the L/R ratio is equal
r

to or less than 10, then the combined loads are on the linear portion of the

interaction curve, then the axial component may also be expressed by

eq. (4.2. 1) (see Figure 4.2-2).

F .._

I

4.2.002
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|

Nb

NCL

0.6

0.4

0.2

I Et "2

NCL =_ R

= (CLASSICAL VALUE)
R

= 85.5
t*

-_ =6.04
L

_ - 4.2.

0.2 0.4 0.6 0_ 1.0 1.2 1.4

NCL

Figure 4.2-2. Interaction Curve Showing the Effect of Length

C R IC'-"

The axial load/inch, N a, is given by,

F (4. 2. 2)
N

a 2_R

The bending load/inch, N b, is given by,

M (4.2. 3)

Nb= R-_

Assuming the v_lidity condition for uniform compression to be met so that

N may be given by eq. (4. 2. 1), the combined loading condition is,
a

2
1 E':,'t ':_ (4. 2.4)

+Nb=N (l)=_ RNa cr 2)3(1-v

4.2.004



The theoretical values of eq. (4. 2.4) must be multiplied by a "correlation"

or "knockdown" factor, ¥, ( ¥ < 1.00) to convert theoretical values to

allowable compressive loads/inch. This factor accounts for deviation of

geometry, material properties and boundary conditions of test specimen from

the ideal condition assumed in the theory. These deviations always reduce

the test values below theoretical predictions.

Using the values of E ::_and t _:-"from eq. (2.5. 3) and (2. 5.4),

N + N b N (1) = _/ Et2= ---_-- _ (4. 2. 5)

a cr _ 2)3(1-v

where 7 is an appropriate correlation factor. For very lightly stiffened

cylinders, one may use a 7 from Reierence 2-6 as a functionof t'::/R. For

moderate or heavy stiffening a value of

is recommended by Reference 2-11.

optimization. Thus,

2
t"

Ncr (1) = c o E_-

This is the value assumed in the

(4. 2.6)

where

c o
= 0.612 (_) = 0.397



Skin Buckling

The critical stress for skin buct::':ng is given in the form, Reference 2-9,

1a - ....r'2E _a (4.2.7)
cr 12 (1-v 2i '

Using the formulae for isogrid the critical skin buckling load/inch may be

written as,

t 2

Ncr (2} = Cl Et (1 + a)
(4. 2.8)

An appropriate value for c 1 established by test on optimum structure,

Reference 2- 1 2,

c = 10.2
1

Rib Crippling

Since the maximum stresses will occur for principal stress conditions,

N = 0, and eq. (2.4. 12) become,
xy

x, 1 )al = teff_ /Nx - _ Ny

2N

2, 3
(4.2.9)

These equations show that ifx is chosen as the axial direction, i.e., the

1 ribs are oriented axially, then since

+Nb=NNa x

and if internal pressure is present, then

N =.pr
y 2

4.2.IXN!



thus

_1 tel f
(4. 2. I0)

In this case, the internalpressure is contributing an additive load to the

1 rib. It is apparent, that in this case, it would be better to orient the

1 rib in the hoop direction. Then,

]:_ +-_(N _ N b)
z 1 tef f _ a

2
- (N + (4 2. 1 I)

2, 3 3 telf a Nb)

This is a much better arrangement since the 1 rib is now in tension and the

2, 3 ribs are less highly stressed.

In the optimization, it will be assumed that the rib stresses are given by the

relation,

Na + Nb
- (4. 2. 12)cr t

eff

thus

b 2

Ncr (3) = c2Et (1 + a) j
(4. 2. 1 3)

where

Ncr (3) = Ncr (I)

4.2.007



From Reference 2-12, an appropriate value for c 2 is

: 0.616
c z

This coefficient is very close to the value for simple support boundary condi-

tions at the attached edges of the plate.

In going from unflanged isogrid ribs to flanged isogrid ribs, the "free" edge

would become supported by the flange and the value for c z may be expected

to improve by a factor of 10.

Collecting formula, one has the system of equations,

t z
Ncr(1 ) = c O E_--f5 (4. 2. 1_)

t 2
N (2) = c Et (1 + o) (4. 2. 15)

cr 1 h-_

b 2

Ncr(3 ) = c 2 Et (1 + _) -7 (4. Z. 16)
d

where

Ncr(ll. = N (Z) : Nor(3)_ _ = N + N b : Ncr a cr

Eq. (4. 2. 14}to (4.2. 16) are formally identical to the equations for buckling

of the spherical cap and the optimization procedure proceeds in exactly the

same way.

To eq. (4.2. 14) to(4. Z. 16) append the "burst" condition where the burst

pressure may be regarded as a "free parameter. "

= pR
Ftu t (1 + o)

(4.2. 17}

4.2.01J



Define the non-dimensional loading parameter, N.

cr

(4. 2.18)

From eq. (4.2. 15), (4.2.17) and (4.2. 18),

2

-N=c 1 (4. 2.19)

From eq. (4.2. 16), (4.2. 17) and (4. 2. 18),

2

(4.2.20)

Multiplying eq. (4.2. 19) and (4.2.20),

b2t 2 (bd 2 t 4 a2
_2= ClC2 h2d 2 _ ClC2 th ) (d) = ClC2 6--4

and since o and 5 are positive,

_- 1c2 (4. 2.21)

Eq. (4. 2. 20) satisfies the condition of simultaneous rib crippling, skin

buckling and burst.

From eq. (4.2. 14), (4.2. 17) and (4.2. 18),

- ±_L
N= c o R l+a Co .2._

: Ftu ( 1 +ai 2-



or

x p / il+o)2 (4.2.2z)

Eq. (4. 2.22) satisfies the condition of simultaneous general instability and
burst.

Define the non-dimensional loading,

I

N
x = (10 3)

_]c I c 2 (4.2.23)

i

N Ftu

c O P (4.2.24)

then eq. (4. 2.21) and (4.2.22) become,

x - (103)
6 2 (4. 2.2 5)

(1 +,_)2 (4.2.26)

The right hand side of eq. (4. 2.25) and (4. 2.26) are identical to equations

of the spherical cap and the same x,y; a, 6 mapping graphs may be used.

The equivalent weight thickness, t', is

t = t (1 + 3a)

Using eq. (4. 2. 16) this becomes,

[-=loR 1 + 30
Ftu 1 + a

4.2.010



or

±=.._ 1 +3..........._

R Ftu I + a (4.2.27)

As in the case of the sphere, the quantity t--/R may be minimized as a

function of P/Ftu for a given value of N r/ER
C

R

u

I
I
I
I

6

MINIMUM WEIGHT CURVE

As before this will divide all design into two classes.

A. For

P
L

v Ft u

p bur st Po

Ftu < Ftu

the minimum weight is given by Po and the construction is

"compression-critical. ,, Use of Po will thus give lighter weight

designs and additional burst safety factors so that crack propagation

effects due to cyclic loading on flaws are less severe.

B. For

Pbur st >

Ftu Ftu

the burst pressure must be used. These designs are

"p1 essure-critical. "

4,2.011
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If a family of (tL_in/R) and associated (po/Ftu) values are computed for

different N ER) a master non-dinlensional curve may be constructed.
( cr /

This is shown _n Figure 4. 2-3.

The complete geometry is determined by the following procedure:

A. Compute x and y and from Figure 4. 2-4 read off the corresponding

a and 5.

B. t may now be computed from the burst condition or from the mini-

mum weight pressure, Po'

t = pR
Flu (1 +a)

(4. Z. Z8)

where p is the larger value _f Pburst or Po"

C. Knowing t, the triangle height, h, may be computed from (4. 2. 19)

D. The rib depth, d, is given from t and 5.

(4. 2.29)

(4. 2.30)

m.

d= 6t

The rib width, b, is computed from eq. (4. 2.20).

As a check on the computed values,

read off the a, 5 graph.

bO/th should agree with the value of a

4. 2.3 Worked Examples

Worked Example 1

R : 48.0 in.

E : 11.0 (106) psi

F : ._O0 k

Pburst : 55 psi

Ftu = 67.0 ksi.

M : 8000 k in.

4.2.012
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SUMMARY OF DESIGN EQUATIONS FOR CYLINDER UNDER AXIAL

COMPRESSION AND BENDING

REFPAGE

P.^ 0.397 4.2,005

C 1 = 10.2 4.2.00G

C2 = 0.616 4.2.008
REF EQ

_, 14.2.171

Y

(103) (4.2.22)

2.505

0.397

PR
t =

Ftu (1 +li)

d 81

b = . n_n_n J

AS A CHECK,

bd

01 = th

T t (1+3101)

(4.2.27)

(4.2.291

(4.2.19)

(4.2.28)

Figure 4.2.4. Design of Isogrid Cylinders

4.2.014



F 300
N a = _-_ - 27r(48) - 0. 993 k/in.

M 8000
= - = 1, 106 k/in.

Nb _ rr(48)2

N = 2. 099 k/in.
cr

Since N b > Ncr(1)/4 ,

N +Nb=N -a cr

the assmnption for validity of

1 E-':_t*2

_3 (1-v 2) R

is fuJ filled.

cr 2099
ER - 11 (48) 10"6 = 39.7(10 -7 )

From the graph,

ooo  ,
(F_u)104

= 10.3

Po = 1.03 (67.0) = 69.0 psi > 55 psi.

The design is compression-crltical since Po > Pburst and the minimum

weight is obtained by using Po" Also, the (t--rnin/R) graph, based upon Pc)
is valid and,

tmin = 0.00149(48) : 0. 0715 in.

-
N - ER\ Po]

= 3.97(10 "6) _6_7.0 (10 -'3)
69.0

= 3.8_ (I0 "3 )

4.2.01fl



X

y

(103i 3.85
2. 505 - 2.50_ = 1.535

0. 397 _ P I 0.397 L 69.0 J

= 9.42

From thea, 6 graph,

a = 0. 273, -- 13. 5

Po R 69. 0 (48. 0)
t - "--

Ftu(l +_ 67.0(1.273)( 10"3 )
= 0.0388 in.

d = 6t = 13.5(0. q388) = 0. 524 in.

b -4) _"_d = 38.5 (I0
0. 616 (0. 524) = 0.0791 (0. 524) = 0.0415 in.

h: t = d._'5 (1°2) 10.0388) = 51.5(0.0388) = z. OOtn.

a.
2 h = 2(2.00) = 2.31 m.

I. 732

As a check,

bd

th
0.0415 (0. 5,.24) = 0.280
O. 0_88 (2.00)

- [ ]t = t (1 ¢ 30) = 0.0388 1 + 3 (0.280) = 0.0714 in.

Worked Example 2

R = 150 in.

F. : 10. 5 (10 6) psi.

M = 59. 5 (i06 ) lb in.

4.2.016
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Pburst = 60 psi.

Ftu = 71.0 ksi.

M 59. 5 (106)

N b =_-_R z - _(1502)

= 59.5 (106) = 842 lb/in.
70700

N (10_6) (10_7)cr 842 = 5. 35
E-'-'R = I0. 5 (150)

From the graph,

= 0. 000444, Ftu ]

Fo =0.310 (71.0) --22.0psi < 60psi =Pburst

In this case the cylinder is pressure-critical and Pburst must be used.

-- cr = 5.35 (I0" = 6.33 (10 -4 )

N - ER \Pburst/

X ""

(103 ) 0. 633
- ------- = 0.Z6Z

2. 505 2. 505

iF,u 0.633171o _
Y - 0.397 _P--I= 0. 397 _60.0 I-

1.89

From graph, a = 0.0118, 5= 6.8

= Ftu (I ÷ _) 71 (I.011d) (I0"3) = 0. 1252 in.

d = 6t = 6.8 (0. 1252) : C. 852 in.

4,2.017



_ _I6.33 (10 -4 ) (0 852) = 0.0321 (0.0852) = 0.0273 in.b= _ d= _ 0.616 "

_f10.2 ,[ 10.2 (104 ) 1252)= 127 (0 1252)= 15.9 in.h = _ t =w6.3---'_ (0. •
N

z z (15.9)

a - _ h - 1. 732
= !8.38 in.

As a check,

bd O. 0273 (0. 852) = O. 0117
t'-ff : O. lZ52 (15.9)

For the equivalent weight thickness,

T=t(l +32)

= O. 1252 [I + 3 (0.0117)]

_"= O. IZ97 in.

If the c,/linder had been compressive critical,

t--rot n = 0.000444

: 0.0666 t,_.

(15o)

4.2.018

one would have had,



4.2.4 Summary of Design Equations for Cylinder Under Axial

Co__m_ression and Bending

Ref. page

c o

c
1

c Z

= 0. 397 4.2. 005

= 10. Z 4. Z. 006

= 0.616 4.2.008

Kef. eq.

N (4. 2.18)

N (103 )

2. 505
(4. 2. Z3)

Y
N

= 0. 397
(4. 2. _4)

pR

Ftu (I + a)

(4. Z. Z8)

d = 5t (4.Z. 30)

b = 16
(4. Z. Z0)

h (4.Z. zg)

As a check,

t" = t(l+3a)

4.2.019



4. 3 CYLINDERS UNDER TORSIONAL SHEAR

1
The cylinder is loaded by a resultant torque, T, on the two opposite ends.

The internal shear load/in. , Nx_ , is given by the equation,

T
N - = V
x¢ Z _ R.2 cr

where R is the cylinder radius.

4. 3. 1 Typical Design Situation

High torque may occur because of maneuver loads control fins or because

of spin torques applied for flight stability purposes. The analysis may also

be used to approximate the required dimensions around the neutral axis due

to transverse shear accompanying bending, References ;)-13 and _-14. rZef-

erence 2-1 shows that the shear buckles are located in neutral axis region.

4. 3. Z Method of Optimization

The optimization method assumes simultaneous general instability, skin

buckling, and rib crippling. An auxiliary burst pressure is introduced

which is varied to obtain minimum weight of the design. This defines an

optimum pressure which divides thedesign into t_vo classes. In the firstclass

are all designs whose burst pressure (which may be zero) is less than the

optimum pressure. In the second class are alldes_gns whose burst pressure

4.3.001



exceeds the optimum pressure. In these cases, the higher pressure must

be used for the design.

General Stability

From Reference 2-6, the general instability torsional shear,

by,

V (1} ----.
cr

Vcr, is %iven

(4. 3. 1)

where

co = 0.747_ 3/4

The recommended value for 3/4 is 0.67.

Thus

c o = O. 50

Note that E,:-"and t:::may be used since eq.

resultant, V
cr

(4. 3. 1) is in terms of a stress

Sub stituting

E:'.:= E

t::: = t
l+a

into eq. (4. 3. 1),

4.3.002



v (1) -
cr

c Et p5/40

Skin Bucklin_

The skin buckling equation appears in the form,

k _ZEt Z
S

cr 12(1 - v Z) h 2

(4. 3.Z)

An unpublished investigation by B.R. Lyons indicates that

k = 35.0 for clamp-=d edges
%, S

k = Z0. 1 for simply supported edges
S

It will be assumed, for the purpose of the section, that the edge fixity is such

that

k = 25.0
S

then from eq. (Z.4. 11)

(Z) = t(l +@) = c E(I + @) t3 (4.3. 3)
Vcr _cr 1 h 2

where

C "

l

25.0

IZ

(_ Z)

(8/9)" = 23.1

Rib Crippling

From eq. (2.4. 12)

_Z = " _3

2N

=4"_I +a)

Nxy - 2
- --- t(1 +o) _Z

4.3.003



x

From eq. (4.2. 1 3) one then obtains:

v (3) = c 2 Et (I +_) b2
cr

(4. 3.4)

where

c - (0.616)
2 2

= 0.533

A summary of the critical load is,

v (1) -
cr

v (2) = c
cr 1

c o Et ,. IB514

(1 + a) 1/4
L )1/2

t 2

E t (1 + a)-_

b 2

Et (I +a) V

4.3.5)

4.3.6)

V (3) = c 2 (4 3 7)er " "

To these are nowadded the burst pressure, p, which is regarded as a free

par amete r.

= pR
Ftu t (I + a) (4.3.8)

Define the non-dime_, sional parameter,

ER

From eq. (4.3.6), (4.3.8),and (4.3.9),

(4.3.9)

4,3,004
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From eq. (4.3.7), (4. 3.8),and (4.3.9),

2
(4.3. 111

Multiplying (4. 3. 10) and (4.3. 11)

t 2 b 2

1 c2 h 2 d 2

= ic2

4
't

(4. 3. 1 2)

From eq. (4.3.5) and (4.3.9)

V
cr

=_ ER
R 5/4

• T)

Et

1/z
_5/4

(1 + _)1/_

or

c o Ftu
9/4(L)1/2 K =

_5/4

I0/4
(I +_)

Using eq. (4.3.8),

c 0 Ftu P /

/4

(1 + _)9/4 _ {35/4
10/4

(I 4_)

or

"_0 '_ p (1 + a,) 10/4

4.3.11_

i



4/5

%f-_- ] FtuP - (1 + _)2
(4. 3. 13)

Now set

x (4. 3. 14)

4/5

Y = P (I + a) 2

The x, y; a, 6 dependence is seen to be the same as previous graphs. The

equivalent weight thickness, t-, is

m

t = t (1 + 3a)

Using eq. (4. 3. 8) this becomes,

m

R Ftu 1

As in previous cases, the quantity, t'/R,

P/Ftu for a given value of Vcr/ER and

R

(4. 3. 16)

may be minimized as a function of

L/R.

I

I
I
I

MINIMUM WEIGHT CUFIV§

iv) '.
4.3.006



This will again divide all designs into two classes:

I. For
Pburst < Po_

Ftu Ftu

These are the compression-critical cases.

_,. For

Pburst Po

Ftu Ftu

In this case the design is pressures-criticai and the boost pressure

must be used.

A master curve may nov¢ be constructed of (t--rain/R) and associated

_,,IPo/Ftu_ values for different Vcr/ER and L/R. This i_ shown in

Figures 4.3-1 and 4. 3-Z.

The complete geometry is determined by the following procedure:

1. Compute x and y, and from the graph read off the corresponding o

and 6, Figure 4.3-3.

t may now be computed from the burst condition or from the

minimum weight pressure, Po' whichever is larger.

pR

t =

Ftu (1 +a) (4.3. 17)

4.$.00"/
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SUMMARY OF DESIGN EQUATIONS FOR CYLINDER UNDER TORSIONAL SHEAR

REF PAGE

CO = 0.50 4,3,002

C1 23.1 4.3.003

C2 0.533 4.3.004vc,
= _ __-/_ (4.3.9)Er

(103) 14.3,14)

3.51

Y

d tit

F _ _141s F,uL_-_ _
(4.3.15)

pR i4.3.17)

Ftu (1 + ¢l )

(4.3.18)

b = _ d (4.3.19)

=Fh _ t (4.3.20)

AS A CHECK.

=___a
th

"_" = t (1+3el)

Figure 4.3-1. X,Y, a, d Curves for Cylinders Under Torsional Sheer

m]tDou_vJ_,,_
4.2.001
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3. Knowing t, the rib depth, d, is obtained from 5.

d = 6t (4. 3. 18)

4. The rib width, b, is computed from eq. (4. 3. 11).

(4. 3. 19)

5. The triangle height, h, is computed from eq. (4. 3. 10).

(4. 3. 201

As a check on the computation and graph reading, now compare the computed

value of a from

bd
Qf = m

th

with the value read off from the graph

4.3. 3 Worked Example

R = 48.0 in.

E = 11.0 1106) psi

T = 30 (106)lb in.

L = 198 in.

L/R = 4. o

Pburst = 40.0 psi

Ftu = 67.0 ksi

T 30
V - -

cr 2_R 2 2_
= 2075 lb/in.

4.3.011



I
q

(

/

/

V

cr 2075 (10-6) (i0=6)Z_ = II.0 {48.0) = 3.93

From graph,

P
o

_'_tu (10-) - 1.67

t
nlin.

R = 0.00247

w

.Q

Po = 1.67 (67. 0) = 112 psi > 40

The design is compression-critical,

tmi n = 0.00247 (48) = O. 1186 in.

u

V

Y

Vcr( u)393,06
= _ _ 1.67 (10 -3)

I

415

2.35 (lO -3)

2.35 (2)
0.50 (I0"3)]

415

= 14. 38

3.51 = 3.5---_ = 0.668

From _, 6 graph,

a = 0.285,

6 = 20.7

4.3.012



_ pR 1.67 {10-3! (48.0)
Ftu (1 +or) - 1.285

d = 6t = Z0.7 (0.0525) = 1.290 in.

= O. 0625 in.

b
V- O. 533 (1. 290)

b = O. 0858 in.

v V 2.35 (0. 0625)

h = 6.!9in.

As a check on the dimension,

a = b._dd 0.0858 _ = O. 287
th = " II 0 . 06 _ _ (6. 19)

m

t
= t (1 + 3a) = 0.0625 (1.862) = O. 1163 in.

Aa an additional check on all strength calculations, from the _ curve, Figure 2-I.

= 0. 287

6 = 20.7

= 24.0

From eq. (4. 3.5), (4. 3.6), and (4. 3.7),

V (I) =
cr

c o Et

2

0.50 (11.0} (lO 6) 0.0625 (24.0) 5/4

__ 514 48.0) (1.287)(o.o6z5) - -

4.3.013

= 2030 Ib/in,



V (Z) = c Et (1 +a) (t Zcr ! h')

= z3.1(11.o_(io6)(o.o625)(1.287)(°'°6z5)z6.19

: 2080 lb/in.

V (3) = c 2 Et (1 +a)(_-)2
cr

: o._ Ill. O__1o61Ioo_,_1 (°'°8_8)_1.29 = Z080 lb/in.

4.3.4

c o

c 1

c 2

Summary of Design Equations for Cylinder Under Torsional Shear

Kef. page

= 0.50 4.3.002

= 23. 1 4.3.003

= 0.533 4.3.004

m

V

Ref. eq.

Vcr- ER (4.3.9)

X
V (lO 3)

= 3. 51 (4. 3. 14)

Y

415

(4. 3. 15)

pR

- Ftu( i +&')
(4.3. 17)

4.3.014



d = 6t

b = d. 33

(4.3. 18)

(4. 3, 19)

h (4. 3.20)

As a check,

t = t (1 + 3_)

4.3.016



4.4 GYLINDER UNDER UNIFORM EXTERNAL PRESSURE

-qP

P
Q .|

4--

4-

41-- p

4--

4-

The loading of the cylinder consists of a condition of uniform external pres-

sure over the side walls and ends of the cylinder.

If N x is the internal axial load/in, and N_ is the internal hoop load/in, in the

cylinder, then,

N@ = pR

where p is the uniform external pressure and R is the radius of the

cylinder.

4.4. I Typical Design Situations

The most common design situations for this conditiGn of loading occur for

submersibles or vacuum tankm In some cases, small additional axial loads

or more commonly small bending loads are superimposed upon the external

pressure loading. In these cases, the subsequent analysis may be used for

a "first cut" at the design. Usually only small modifications are necessary

to accommodate the additional loading.

4. 4. Z Methc, d of Optimization

The method of optimization assumes simultaneous failure for rib-crippling,

4.4.001



W . . , . .

skin buckling, and general instability. A burst pressure parameter is intro-

duced and is varied to obtain minimum weight of the cylinder. This deter-

mines an allowable burst pressure for minimum tank weight and divides all

designs into two classes. In the first class are all designs whose actual

burst pressure (which may be zero) is less than the minimum weight pres-

sure. In the second class are all designs whose burst pressure exceeds the

pressure for minimum weight. In these cases the actual burst pressure

must be used.

General Instability

Two cases are considered. These are,

1. The "long" cylinder

2. The "intermediate length" cylinder.

According to Keference 2-6, the intermediate length cylinder lies in the

range,

_0_0_0z(_(_/__. :_ :, (10_/
and sin ce

1-v Z = _f_- 0.943

1+_ ' - t

(4.4. l)

For the Ion s cylinder, the general instability pressure, Pcr' is given by

Reference Z-6.

3

Pcr = Co EI_-)

4.4.002



I

}
where

O. 90

c O = =
= O. 253

Thu s,

3

Ncr (la) = Pcr R = c o E*R(-_")

t 3
Ncr (la) = c o ER(-R- ) --_1+_ (4.4. Za)

For the intermediate length, cylinder, Reference 2-6

c o E

(÷) L

where

c o

0. 855 _ 0. 855 (0.75)
.-- _-- = O. 70Z

T hu s,

N
cr

N
cr

co E*R

(Ib) = Pcr R = (__)R5/2 (__)L

(lb)
= c o ER (4.4. Zb!

4.4.003



Skin Buckling

Tests by Jenkins, Reference 2-13 have shown that the biaxial interaction

curve for skin buckling is linear in the range of interest.

N x

URE LOADING

2 !

N¢_

SKIN SUCKLING INTERACTION CURVE

From the interaction diagram,

Z
N_ (External Pressure) = _- N_ (Uniaxial)

Thus taking Z/3 of the allowable from Reference 2-1Z.

t 3

Ncr (Z) = c 1 E (1 + a)'_-

(4.4. 3)

where

Z
cl = T (1°"z) - 6.80

Rib Crippling

Eq. (Z. 4. IZ) shows that one may conservatively set Ncr (Z) = Nx for the

1 ribs in either circumferential or longitudinal direction. In this case, one

has the same rib crippling allowable as for unlaxial loading,

4.4.004



!

z

Ncr (3) - c Z E (1 ÷ _)(b.) t (4.4.4)

where

c 2 - 0.616

BurB_.___t

The burst pressure is given by the equation, Ftu = pR/t (] + a)

Collecting formula,

= t 3
Nor (lal Pcr R = coER/_) --_1 + or (4.4. 5a)

Ncr (lb) = Pcr R
c o ER

R .s/2
(T)

[33/2
1/2

(1 +o)
(4.4.5)

Ncr (2) = c I
t 3

E (1 t o)
(4.4.6)

N (3)
cr

bEt

= c__ E (I +_) 7
(4.4.7)

pR

Ftu - t (I +a) (4.4.8_

Define the auxiliary variable, _.

N =-- E -- (4. 4.9)

#.4.005



From (4. 4.6), (4.4.8),and (4.4. 9),

t 2

N = c 1 h2

(4.4. 10)

From (4.4. 7), (4.4. 8),and (4. 4. 9),

.m

N
(4.4. 11)

Multiplying (4.4. 10) and (4. 4. 1 1)

= c 1 hZd 2 = c I

4 Z

(_) clc2 _-54

{y

_ c_¢rVS-V
(4.4. 1Z)

The positive root is taken since _, a, and 5 are all positive.

Equation (4.4. 12) satisfies skin buckling, rib crippling and burst conditions.

From eq. (4.4. 5a), (4. 4. 8),and (4.4.9),

$

E -

= Co Ftu (1 +a)4

.%_)3 2
• (1 + a) 4

4.#.0_

k._



.__3 I_l 2 = _Z
c o (l + _ )4

I _o "iI z F t-u p
P (1 + _)2

(4.4. 1 3a)

Eq. (4. 4. 1 3a) satisfies burst and general instability for a lon_ cylinder.

From eq. (4. 4. 5b), (4. 4. 8), and (4. 4.9),

CoER

,,u (÷
3/z ]

Co (._..R)5/2 (I +a) I/2

But

R F____.__
T = P (1 + a),

Thus

or

z/3

(4.4. 1 3b)

41,4.007



I

Eq. (4.4. 13b) satisfies burst an_ general instability for buckling of an

intermediate length cylinder

Equations (4.4. 12), (4.4.13a), and (4.4. 13b) satisfy all instability and burst

conditions, moreover, they are seen to be similar to eq. (4. Z. 25) and

(4. Z. Z6) for buckling of the cylinder. As a consequence, the same x, y; _,

5 curves may be used. Thus define the quantities,

(4.4. 14)

and

Ya

1/2

1 = (4.4. lSa)
Co J P (1 + a) 2

or

2/3

= [ l-q L] F_____= _)2Yb c0 R P (1 +a
(4.4. 15b)

to be used with the x, y; a, 5 curves.

m

The equivalent weight thickness, t, is

m

t = t (1 + 3a)

4.4._



t
i

Using eq. (4.4.9) this becomes,

= Ftu _ I + a

or

( )
t t_ u l+3a= ] (4.4. 16)

As in the previous cases, the quantity t/R may be minimized as a function

of P/Ftu for a given value of Pcr/E and L/K.

T
R

_- AND L

I
I

I °o

PlFtu

MINIMUM WEIGHT CURVE

If a family of {t--rain/R)and associated (Po/Ftu) valued are computed for

different Pcr/E and L/R, a master nondir,,ensional curve may be con-

structed. This is shown on pp. 4.4. 01g and 4. 4.0Z0.

The complete geometry is determined by the following procedure:

1. Compute x aud y and from the graph read off the corresponding

and 6 , Figure 4. 4-1.
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SUMMARY OF DESIGN EQUATIONS FOR CYLINDER

UNDER UNIFORM EXTERNAL PRES_>URE

INTERMEDIATE CYL LONG CYL

102_A <_ 4 (103 ) A>4 X 103

REFPAGE

Co = 0.702 0.253 4.4.003

C I = 6.80 6.80 4.4.004

C2 = 0.616 0.616 4.4.005

Pc.

( LONG CYL)

REF EQ

"_ (103)
X =

2.04

PR
t =

Ftu (1 + = )

d = _t

b " _ d

h = _ t

AS A CHECK,

bd
0' = t--h'-

T = t(1+3¢1)

(4.4.9)

(4.4.14)

(4,4.15a)

(4.4.17)

(4.4.18)

(4.4.20)

(4.4.19)

Figure 4.4,1. X, Y, a,lJ Curves for Cylinders Under Uniform External Pressurem

_,=m=

lP0U)017 

4.4.010



i

Z. t may now be computed from the minimum weight pressure, Po,

or the burst pressure, whichever is larger.

pR (4.4. 17)
t =

Ftu( 1 +_)

3. Knowing t, and 6, the rib depth, d, is computed from,

d = bt (4.4. 18)

4. The triangle height is computed from eq. (4. 4. 11)

t (4.4. 19)

5. The rib width is computed from eq. (4. 4. lZ).

(4.4. Z0)

As a check on the computed values of b, d, t, h and the accuracy of the

reading of the graph, the quantity (bd/th) should equal the value of _ :ead

off from the x, y; a, 5 graph, Figure 4. 4-1.

4. 4. 3 Worked Examples

Case of Long Cylinder

Pcr = 600 pel

Pbur st = 0

IA = 10.5 in.

E = 18.0 (106) psi

Long cylinde r.

4.4.011



Per 600 33.3
T (106) - 18.0 -

From long cylinder graph, Figures 4. 4-2 and 4.4-3

D

t = o. 016
R

PO (lO3) : lO.7
F_

m

t = 0.016 (10. 5) = 0. 168 in.

Dcrw

N E
Ftu_ 33.3 (10 -3 )

p I = 10.7
= 3.11(10 -3)

Ya = 0. _53

llZ

Ftu ,0
_:_ ] ,_o.-_-)

= 10. 37

X - 1. 523

From graph,

= 0. 320

6 = 14.5

pR 10. 7 (10-3)(10. 5)
C " "

Ftu (1 +_) 1.320
= O. 0852 in.

d = 5t = 14. 5 (0.0852) = 1.235in.

4.4.012
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i b

h

r

_]3.11(103 ) (1. Z35)d = 0.616
= O. 0877 in.

6_ _ 6"80(103) (0.0852) : 3.99in.= _ t = 3.11

As a check,

bd _ 0.0877 (1. 235) = 0.318
th 0. 0852 (3.99)

w

t = t (1 + 3a) = 0.0852 (1.953) : 0. 1665 in.

Pcr g = 600 (10. 5) = 6300 lb/in.

From the _, 5, _ graph, Figure 2=I,

a = 0.318, 6 = 14.5, _ = 18

Using eq. (4.4. 5a), (4.4.6) and (4. 4.7)

3__L_ cr'l) : 0ZS3 l+o

N
cr

= 6250 Ib/in.

(2) =
t 3

6.80 E (1 +a)-_

6. 80(18.0)(106)(1. 318)
(0 0852) 3

(3.99) 2

0,0.0_

= 6250 lb/in.



-I

N (3)
cr

Worked Example 2

Pcr

Pburst =

I) 2

0.61b E (I * o_) t d2

0877 ) 20.616 (18.0)(it) 6) (1.318)(0.0852) 0_.235

6260 lb/in.

100 psi Ftu :: 67. 0 ksi

0 I_ :- 192 in.

R :- 48.0

E = 10.7 (10 6 ) psi

1_2
:_ 4 0L/R = _ _.

Pc r 0 6 I O0
"-if- (I ) - 10.7

- 9.35

Fre.,, graph)

PO
--(lO 3 )
Ftu

= 4.55

m

t
...mi__9.n

R
= O. 0065

The optirpurn burst pressure, Po is,

Po = 4.55 (67. 0) = 305 psi.

The minimunl equivalent weight thickness, train, is,

t- = 0.0065 (48) = 0.312 in.
m i n

4.4.010



m

N
Pcr

m

E _ 9. 35 I10-6)
4. 55 (10 -3 )

= 2.05 (10 `3 )

X
= _ (,1o3) =

2.04
2.05
2.0"_'4" = 1.01

Yb O. 702

2/3

[.O.o7.1°"4,]
2/3

From x, y; o,

a= 0.27

6= 16.6

6 graph, Figure 4.4- 1

t "
pR = 4.55 (lO-3). 48. o

Ftu (1 + a) 1.27
= O. 172 in.

d = 6t = 16.6 (0. 172)= 2.85 in.

b = J-_OO_ d = J2.05 (I0 "3)_.616 (2.85) = O. 1645

h = ._.80 t =_6.8(; (103 )_/ _ 2. o5
(0. 172) = 9.91 in.

As a check,

bd 0.1645 (2.985 _ae = _ = 0. 172 (9. = 0.275

4.4.017



m

t = t (I + 3a)

N : Pcr R =cr

= 0. 172 (I.81) -- 0.311 in.

100 (48) = 4800 lb/in.

From the 13 graph, Figure 2-1

a = 0.275, 6 = 1.6.6, 13 -- 18.8

Using eq. (4. 4.5b), (4.4.6) and (4.4.7),

N (l) -
cr 0.702 ER [ 133/25/Z L_ (1 + c_

R

0.702 (!0.7) (106 ) (48. O) (18.8) 3/2

5/2 ]/z

(48.0) 19._.z (1. 275)O. 172 48

: 4980 Ib/in.

t 3
N (2) : 6 80E (1 + a)--

c r " h 2

6.80 (10,7) (106 ) 1.275 (0. 172) 3

(9.91) 2
: 4800 lb/in.

b 2

Ncr (3) :: 0.616E (! + a) t d2

0 616 (I0.7) (I06) (I 275) (0 172) (0. 1645, 2
• * • 2

(?..85)

: 4820 Ib/in.

o

&
4.4.01M



4.4.4

A

Summary of Design Equations for Cylinder Under Uniform
_F_ternal Free sure

Ref. page

= 0. 530 1 +
4.4.002

Intermediate Cyl Long CyI

102 _. A <_ 4 ( 103 )

c o = 0. 702

A > 4 (10 3)

O. 253

Intermediate Cyl

c -- 6.80
1

c 2 = 0. 616

m

N

X Z. 04

1/Z

[ ]_N__
0.253

z/3

P

Long Cyl

6.80

0.616

(Long Cyl)

(Inter reed. Cyl)

R.ef. page

4.4. 004

4.4. 005

Ref. q.

(4.4. 9)

(4.4. 14)

(4.4. 15a)

(4.4. 15b)

d = bt

(4.4. 17)

(4.4. 18)

b
(4.4. ZO)

4.4.010



h (4.4. 19)

As a check,

bd
0t " th

_" = t(1 + 3a)

4.4._
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4. 5 IN-PLANE CONCENTRATED LOAD IN INFINITE SHEET

As noted in Subsection 2.4, if changes of curvature are negligible, the

stresses in isogrid may be easily determined if N x, Nxy, and N are known.Y
For the case of the in-plane concentrated load for an isotropic sheet in

plane stress, the solution, due to Mitchell, is immediately obtainable from

Reference 2- 2.

¥

0

Q

X

Let the point O, at which the stresses are to be computed, be a distance r

from the origin and make an angle 0 with the x axis. The concentrated load,

P, is applied at the origin, 0, and is directed along the positive x axis.

The stress resultants are given by the expressions,

P cos8 [. (3 +v) + 2 (1 .v) sin 28] (4.5.11Nx = 4_ r

N = P cosO F1 _ v. 2(1 +v) sin 20 ] (4.5. 21
y 4_ r L j

Psine [1.v + z(1 +v)cos Ze] (4.5.3)Nxy = " 4 v r

Although N x, Ny, and Nxy become infinite at r = 0, this is no problem

since stresses will not be computed closer than the reinforcing around the

hole in the node. At this point, all stresses are finite. The solution will be

used to size ribs and skin around the attachment_ Strictly speaking,

eq. (4. 5. 1) to (4.5.3) were developed using an Airy stress function in polar

coordinates for constant sheet thickness; however, if the thickness variation

is rotationally sy:nmetric and not too drastic, it may be expected to give

results sufficiently accurate for the majority of design problems.

4_.001
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4. 5. 1 Typical Design Situations

Main structural loads carried by the shell of the vehicle arise from thrust,

airload, inertia, and gravity effects. The inertia and gravity loads resulting

from mass properties of the component parts may be directly transmitted to

the shell wall or through intermediate floors or bulkheads. For most cases

it is desirable to avoid bending stresses to minimize weight. In general,

this may be done if the loads are transmitted tangentially into the wall of

the isogrid plate or shell.

Typical design situations will arise from equipment in interstages between

tanks, tank baffles, pipe supports, etc. In one case (Figure 4. 5-1), a side

load on a tank was transmitted tangentially into the tank by means of an

internal A-shaped frame in a strucbxral test, Reference 2-12.

P/2 P/2

SECTION "'A- A'"

Figure 4.5-1 Concentrated Load

.mAJ*

A_

CR169

F

The reinforced region in the first pocket and first set of ribs away frona tht,

loaded node was designed according to the analysis developed in this section.

No extra reinforcing was indicated beyond this point, tlowever, from the

point of view of fabrication, in pz.rticular for bending from a flat sheet to

circular curvature, the "beef up" was feathered out for another 5 pockets to

prevent a flat spot in forming. This extra material served a double purpose

to distribute the local load as well as to provide local reinforcement.

A more exact shell analysis using Fourier series was able to account for the

changes of curvature of the shell wall. This analysis is sensitive to the size

of the loaded region. Strain gage readings showed that the reinforcin_ served

4.8.002
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as a "hard pad" tc distribute the load over the entire reinforced area. The

total pad weight involved was very small.

The cylindrical wall of the 8-foot-diameter tank was designed for an axial

loading of 2, 500 lb in. withouz any side loading. The reinforcing at each pad

amounted to only 5 lb with a pad diameter of 24 in. The failure load was

40,000 l o side loading, i.e., 20,000 lb at each pad and an axial loading of

2,400 lb/in., only 100 lb/in, less that the design load for no side loading.

Moreover, failure did not penetrate the reinforced region.

4.5.2 Method of Analysis

Since v = 1/3 for isogrid, eq. (4.5. 1) to (4.5.3) become,

P cose (-5 ÷4 sin E 0) (4.5.4)
Nx - 6_ r

1_ - P cos 0 (1 - 4 sin 3 e) (4. 5.5)
y 6_ r

P sin e (1 + 4 cos 2 0) (4.5 6)
S ..= _ •

xy 6_ r

Skin Stresses

These are immediately obtainable from eq.

?

ay = 6--_ rt (1 + a) 1 - 4 sin 2 e

(2.4.11)

(4. 5.7)

P sin 0 (1 + 4 cos E e)
rxy 6_ rt (1 + a)

(4, 5.8)

Stresses will be a maximum along the load direction w'._ere 0 = 0.

5P 1

ax,ymax = ax (_ = 0) = " 6_ t (1 + a)

4k6._$



1

Behind the load, where 0 = 180 degrees,

5P 1
a (e = 180 ° ) -- + 6_ rt (1 +a)x

(4.5.9)

Rib Stresses (P in x direction)

2

V Q

8
1,x

Rib stresses are obtainable from eq. (2.4. 12)

8 P cosec

_r2, 3

1 9_ rt (I + a)

9_ rt (1 +a) cos 8 - 4 sin z 6 cos0 +_]_

(sin0 + 4 sine cos Z{})}

(4. 5. 10)

(4. 5. II)

Rib Stress (P in y direction)

V 2

p Q

RIB STRESS (P IN V DIRECTION)

4.5,004



In this case exchange of x and y is eq. (4.5.4) to {4.5.6) gives

N _ P cos e (1 - 4 sin 20) (4.5. 12)
x 6v r

P cos0
Ny - 6_r r (-5 + 4 sin 2 01 (4. 5. 13)

P sin 0 Z
Nxy = - 61v r (1 + 4 cos 0) (4. 5. 14)

Note that 8 is ,_ow measured from the y axis toward the x axis.

Eq. (2.4. 12) now gives

4 P cos 0
Grl = "9 .'rrt (1 +_) (1 - 2 sin20) (4.5.14

P [-5 cos0 + 4 sin 2 O cos0 v %/__Z, 3 = 9_rt (1 +a)

(sin 0 + 4 sin0 cos z O)}
(4.5.15

Recommend Design Procedure

The maximum rib stresses willocc_zr for the l ribs for loads in the

x direction.

8 P
_1 max : 9-'-_" rt (1 +a) (4. 5. 16)

From eq. (4. 5.9) the maximum skin stresses are,

5 P
q - (4. 5 17)x,y max 6n rt (1 +a)

As previously explained, the reinforcing of ribs and skin will be in such a

manner that the reinforcing is rotationally symmetric with respect to the

4.S.006



loaded point. It is further recommended that the nominal value of o,

saY.o, in the unreinforced region be maintained in the reinforced region.

Since

8
9Tr

\

and

- 0.283

ah = b._d A._6_
o t t

where A = bd = rib area,

then a conservative sizing of skin and ribs will be given by the equations,

t = O. 283
req

Ftu r (I +So) (4. 5. 18)

A = a ht
req o (4. 5. 19)

or

A : 0.283a h - P

req o Ftu r (1 +_o) (4. 5. 20)

Eq. (4. 5. 18) and (4.5.20) will satisfy dimensional requirements for loads

in either x or y directions. Since tre q and Are q are inversely proportional

to r, the reinforced regions and additional weights are yery small. If the

loads are applied as in Figure 4.5-1, where some curvature changes may

i
_dr

4.11.0_1



be expected, the increase in dimension may be "feathered out" over a larger

region than that required by (4.5. 18) and (4.5.20) to "spread" the load and

reduce the curvat_,re changes. If this is done the additional weight will still

be small.

It may be necessary to check for local skin buckling or rib crippling

using the equations:

a (skin allowable}
t 2

m

= 10.2 E h2
(4. 5.21}

_. (rib allowable) = 0.616 E b2
d--_ i 4. 5 2 _.}

4.5.3 Worked Example

/ / g

 2k/"

I

P = 30k

a = 0.31
o

h = 4.1in.

Ftu = 61.0 ksi

a h = 0.31 (4,1) :
0

A
1.27 = N

t

0.283 P = 0.383 (30) : 0. 116 in. 2
Ftu(1 + a o) 61.0 (1.31)

4.6.007



Rib

a

b

h
= 1. 365

4.1

4
sh = 5.47

A Skin

0.0988 a

0. 0329 c

0. 0247

r

h
._ = 1.365

4
-_h= 5.47

0.0778

0.0194

On the actual design it will be necessary to check the final dimensions for

skin buckling and rib crippling according to eq. {4. 5. 21) and (4.5.22).

4rr

4_.m
%



4.6 IN-PLANE CONCENTRATED LOAD AT EDGE OF SHEET

4.6. I Typical Design Situations

Typical design situations where this type of loading occurs are interstage

attachments and local edge load due to engine thrust. Many connections

are l::edorninantly loadings of this type.

4.6.2 Method of Optimization

For the case of the concentrated in-plane load at the edge of an isogrid

sheet in generalized plane stress, the solution, due to Flamant, is obtainable

from Reference 2-2. It should be noted that eccentricity of load is not

included.

Let the point O at which the stresses are to be computed, be a distance r from

the origin, 0, and make an angle 0 with the x axis. The concentrated load,

P, is applied at the origin, 0, and is directed along the positive x axis.

From Reference 2-Z, the stress - resultants are,

2 P cos0 2
N = cos 0 (4.6. !_

X _r

N _ 2 P cos0 sin20 14.6.2_
y nr

N = _ sine cos0 ,4.6. '
xy nr

4.0.001



Although N x, Ny and Nxy become infinite at r = 0, the stresses will not be

evaluated closer than the reinforcing around the hole at the node. At th;s

point all stresses are finite. The solution will be used to size ribs and

skin around the attachment. Although the solution assumed constant thick-

ness, it is probably a very good approximation for reinforced sheet pro-

vided that the reinforcing does not depend upon the angle 0, i.e., at each

half circle, r = ri, the reinforcing is constant around the half-circle.

Skin Stress

The skin stress is immediately obtainable from eq. (Z.4. II).

I (Tx

_y

_'xy

Z P cos{}

_r t (1 +a) 2 /
cos e

sin 2 e

sin {}cos 8

(4.6.4)

Rib Stress (1-Bars in x direction)

The rib stresses will depend upon whether the 1 bars are in the x direction

or in the y direction.

P

\\\\\\\_

O

LOADING

v

Y

BAR ORIENTATION

From eq. (2.4. 12),

o"l
2 P cos 8

3nrt (l +a)
( 4 cos

4.8.002

(4.6.51



_2,3 = 43_rtP sin(iO+a)cosO (sinO± %/_-cos8) (4.6.6)

Rib Stress (I = Bars in y direction)

In this case the subscripts x and y in eq. (Z. 4. IZ) must be interchanged.

BAR ORIENTATION

P

,\\\\\\\\\\q

'\
Q

t OADING

ZPcos8
_r --,

1 3,rrt (1 +a)
(4 sin 2 8 - I) (4.6.7)

4 P sin (} cos(}
#T

v2,3 3_rt (1 +a) (cos {) ± _/3"-sin e ) (4.6.8)

Recommended Reinforcement

The maximum value of the stresses computed from eq.

not exceed the value, _, from the eq.

(4.6.4) to (4.6.8) will

ZP
cr =

_rt (1 +a )
(4.6.8)

It is recommended thata be held constant at the nominal value, a
O

Then,

tre q = 0.637

P

_'tu r (1 +a o)
(4.6. q_

4.1.003



_-=_:

-_ and

A
th

= u
o

where

A

Thus

= bd = rib area.

P

h Ft u . )Are q = 0.637 _o r (1 + Oo
(4.6. 10)

If P is a compression load it will be necessary to check the ribs and skin for

rib crippling and skin buckling using the equations,

t7-

_x (skin allowable) : I0.2 E-_
(4.6. 11)

b_-

_rib (allowable) = 0. 616 E d--_-
(4. 6. 12)

where • is computed from eq. (4.6.4) and _rib is computed from the
X

maximum value ¢. from eq. (4.6. 5) and (4.6.6) or (4.6.7) and (4.6.8)
1

dependent upon the rib orie1_tation. Maximum rib stresses will lie in the

load direction, x.

4.6.3

Ftu

h

0

Worked Example

= 67.0 ksi

= 3.5 in.

= 0.30

I Bars parallel to edge.

4A.004
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i

A
h =- = 0 30 (3 5)= 1 05 in.• o t " " •

From eq. (4.6.9) and (4.6. 10)

0,637 P _ 0.637 (40.0)

Ftu(l +_o) 67.0 (1.3)
- O. 293 in.

2

No. Pockets r t A = 1.05 t

1 3.5 0. 0837 0. 0880

2 7.0 0. 0420 0. 0440

3 I0.5 0.02C0 0.0293

4.0._
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4.7 CUTOUT REINFORCEMENT

4.7. I Typical Design Situations

Cutouts are provided for access and are assumed to be hexagonal in shape

to match the grid. It is assumed that the plate is uniaxially loaded.

\

\

/
/

2

3

T

CUTOUT IN ISOGRID

Although the grid hole is hexagonal, the bar pattern around the hole will

concentrate the forces at the bars and the stress concentrations at the

nodes should be of the order of secondary stresses. The analysis used the

solution ofG. Kirsch for the stress around a circular hole in generalized

plane stress, Reference 2-2.

It should be noted that the use of rectangular or square cutguts in isogrid

is inefficient. Large doublers are required to redistribute the load around

these cutouts when it is more effective to use the hexagonal rib pattern

already provided by isogrid, stiffening these ribs if required. In additions,

if circular holes are needed, the skin material should be removed to the rib,

again making a hexagonal cutout, to prevent stress concentrations and pos-

sible tearing of the unsupported skin.

4.7. 2 Method of Optimization

The Kirsch solution, in polar coordinates, is

4.7,001



COORDINATES AND LOADING

2)= -- 1 -
rr 2

r
+ _ 1-4 _ 3

r

cos 2 0 (4.7. I)

ff O"

=OO-- _ 1+ -
r

a,)1,3- 
r

cos 2 0 (4.7. z)

2_q 1 + 2a__
Cro =- 2 r 2

4)- 3 _-_ sin 2 0
r

(4.7.3)

where • is the nominal stress and a is the hole radius.

In order to apply the solution to isogrid, it will be necessary to express

(4.7.1)-{4.7.3) in cartesian coordinates to obtain the bar stresses.

Consider the rotation of axes,

Y

O

#

_x

COORDINATE AXE8

4.7.002



i
Define the direction cosines, a.,

J

r
a = cos 0 = c

x

r
a = sin e = s

Y

¢h
a v = -sin 6 = -s

X

a
a v = cos 8 = c

Y

(4.7.4)

The transformation equations are:

r r r a 0
ff : ff a a + _r{} a +xx rr x x x x

8 e
a O a r + a a

aO r x x aOO x x

Z Z
= ff C Z SC + s

rr - _rO _88 (4.7. 5)

r r r a 8 8 r 8 O
ffxy = ff a a + a + a a + _OO a arr x y _r8 x y _Or x y x y

(=rr _eo) sc + ere (c z Z)-- - - S (4.7.6)

r r r a 8 O r 8 O
_y = (rrr a a + a + a a + a ay y _rO y y _Or y y _60 y y

2 2
: _rr s + 2 _re sc + _OO c (4.7.7}

Now define the quantity,

a I_r (4.7.8)

The eq. (4.7. 1)-(4.7.3) become,

2
-- ¢
¢rr

= (1- _Z) + (I- 4_ Z + 3_4) (cz . sZ)

4.7.003
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2 = 2_OO (1 + _2) _ (1 + 3_ 4) (c - s 2)

2 - 3 _ (2 sc)_ro : " (1 +2_2 4)

Multiplying by the plate thickness and using (4.7.5)-(4.7.7) these become,

2 2) _4 s 22 N = 2 + _2 (1 - 6 c 2 + 16 s c + (3 - 24 c 2) (4.7.9)T x

2 N = _2 2) _4"T xy sc (6 - 16 c - 12 sc (1 - 2 c 2) (4. 7. 10)

2 2 2)-2' N = _2 (3 - 2c - 16 s c + _4 (_3 + 24 s2c 2) (4.7 11)
T y

where(2/v) axx =(2/T)Nx, etc. N X

T is the nominal stress resultant.

is stress resultant around the hole while

Skin Stresses

The skin stresses are immediately obtainable from eq. (4.7. 9)to (4.7.11) or

from eq. (4.7.1) to (4.7.3) expressed in stress resultants by substituting

into eq. (2.4.11), e.g.,

N N N
a = x y xy

x t (1 +a) ' _r - v = ' (4.7 12)y t (I +a) ' xy t (I +a)

Rib Stresses

The rib stresses for the 1 bars in the x direction are obtainable from

eq. (2.4. 12).

1

_1 : 3 t (1 +a) (3 N x - Ny)

2
a2 = 3t (1 +a) (Ny , I/3Nxy )

4.7.004



2
°3 = 3 t (1 + a) (Ny - _/_Nxy)

(4.7. 13)

If the 1 bars are in the y direction, exchange x and y in eq. (4.7. 13).

Recommended Reinforcement

Solution (4.7. 1) to (4.7.3) was obtained under the as surz/ption of const_'nt plate

thickness using polar coordinates. One may expect this solution to give a

good approximation to the reinforced plate provided that the reinforcement

does not depend upon 0 and that the variation in the r direction is not too

rapid.

For this purpose, the reinforcement will be computed along the line where

stresses are a maximum. This will be along the y axis, Refer ence 2-2.

Along this line, s = 1 and c = 0.

Along the y axis (4.7.9) to (4.7.11) become,

2 N = 2+_2+3_ 4
T x

2 N = 0 (Principal stress requirement)
xy

2 = 392 3g 4
Ny - (4. 7. 14)

Skin Stress along y axis

. T f2 (4 7 15)
• °x - 2t (1 +a) (2 + + 3g 4) ' "

ay = 2t (1 +a) ( " )

v = 0
xy

4.? .006
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At the edge of the hole, _ = 1 and

3T
(y _-

x t(! +a)
(4.7. 16)

= v = 0 (Boundary condition)
y xy

1 Rib Stress along y axis

From eq. (4.7. 13) and (4.7. 14)

_ T
al t (1 +_) (1 + Z_ 4) (4.7. 17)

At the edge of the hole, _ = 1 and

ff
3T

1 t (1 +a) (4.7. 18)

It is recommended that a be held constant at nominal value, a

required skin thickness is thus,

The
o

t : T (2 • _2 + 3_4)
req 2 Ftu (1 + a o)

(4. 7. 19)

A
= m

_o th

whenA = rib area --bd

A : a th
O

4.7.00e



or

ao h T 2 4)A = (2+_ +3_
req 2 Ftu (l + _o I

Equations (4.7. 19) arid (4.7.20) can be simplified if one notes that:

(4.7.20)

then

o

T

Ftu (1 +_ )

treq t (1 + 1 2 3= o ._ +_4) (4.7. 21)

and since

A
A

=-- =c_oht t
0

A
req

I

= A (1+ 1 2 3 4) I

o _ + __

4.7.3 Worked Examp!e

_t v k/ _ %t .

v/k/k_ ,/V_
'k/k/k, _.

V/X/% .,_
,/k/hA /k/

vV',,/VVV
'_/VVVV\

,X,,'v
V;,,A

\/

X/v
,AA

/\
r% •
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Let the a bars be the bars around the edge of the hole,

The c and e bars are parallel to the a bars.

The skin and the b bars are in the first set of triangles around the hole.

The skin and the d bars are in the second set of triangles around the hole.

The skin and the f bars are in the third set of triangles around the hole.

For the skin and skin-related bars, b, d, and f, the distance from the hole

will be calculated at 1/3 of the triangle height.

Assume the hole radius equal to the triangle height and the ioad in the direc-

tion of the 1 bars.

The following ratio_ of A/A and t/t
o o

and (4.7.22).

_ay be calculated from eq. (4.7. 21)

Bar _ A/A o

a 1 3.0

b 3/4 1.745

c i/2 1.219

d 3/7 1.142

e I/3 1.075

f 3/10 1.046

Skin _ t/t o

b 3/4 1. 745

d 3/7 1.142

f 3/10 1.046

4.7.@_



4.8 OPEN ISOGRID SHEAR WEBS

The open isogrid construction consists of a gridwork of ribs alone. This

may be desirable from the point of view of free flow of fluid or air or for

access, routing of control lines, etc.

Unlike the 0- to 90-degree grid pattern, the isogridpattern is structurally

stable and possesses a remarkab.:e degree of torsional rigidity.

The stress strain properties are immediately obtainable either by consider-

ing it as a sheet of solid material with Young's modulus, E, given by

b (4.8. 1)
E = E _

and Poisson's ratio, v = 1/3, or by considering the limiting cases in

previous formula when t --* 0.

For example, for stress calculations,

/ bd\ bd (4.8.2)

t _0 t-_0 \ "/ h

and for weight calculation,

Lira t-: Lim (t + 3_): 3 b_d (4.8.3)
t --0 t -0 h

Eq. (4.8.2) may be used in eq. (2.4. 12) to obtain the stresses in the ribs.

h (4. 8 4_
_1 = _ (3N -N )x y

2h
¢r2,3 = 3 b"-_ (Ny • '_'Nxy)

4,8.51
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The twisting strength of isogrid plate may be calculated from eq. (4.8. 1),

(2. 2. 5) and (2. 2. 10).

E'-d3 3 Ebd 3
D = = (4.8.6)

12 (1 - v 2) 32 h

I

Mxy = _ D (2Xxy)

1 Ebd 3

Mxy 32 h (2×xy) (4. 8.7)

The bending and extensional stiffness of open isogrid has been verified by

test.

4.8. 1 Typical Design Situations

This sort of design situation usually occurs for webs of beams, such as

wing spars, girders, etc. In some cases, the entire panel, such as a

wall, is required to carry the shearing forces. When solid members are

used, it is frequently necessary to penetrate the shear web by holes which

_lsually have to be reinforced around the edges to prevent edge crippling.

Isogrid provides for great flexibility in hole location as well as considerable

redundancy in case of damaged members. Because of its high twisting

rigidity and strength, it can easily accommodate unanticipated wracking

loads.

Open grid construction for shear webs would be useful for wing rib and

spar webs when fuel containment is not a concern, for transport aircraft

floor beams where cables, wires, and ventilation ducts are routed down

the fu3elage {Figure 4. 8-1), and for beam systems distributing thrust from

multiple engine clusters in large space boosters.

Apart from the general need for structural efficiency, these design

situations require a structure which can be penetrated without excessive

penalty as well as one with frequent opportunities for attachment of

4.8.00_
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support brackets or equipment components. Open construction is also

desirable for free flow of ventilation or purge gases.

Support beams extending over long spans also tend to be laterally unstable,

requiring several supports along the span to prevent rolling under load.

This requirement can be minimized if the beam is a symmetrical section

and torsionally stiff. Both of these characteristics are inherent in

integrally machined open isogrid panels.

4.8.2 Methods of Optimization

The method of optimization assumes that general instability and in-plane

Euler column buckling of the ribs are equally likely, see Yigure 4.8-1.

Under these ass,,mptions the weight, plate thickness, d, and the ratio,

_-b = rib width/grid spacing, see Figure 4.8 l, are determined.
a

The magnitude of the rib width, b, and grid spacing, a, are determined to

satisfy _ and make the plate depth, c, and integral multiple of the triangle

height, h, and so that d > b to prevent Etller column buckling of the ribs out

of the plane of the plate.

4.8.003



Consider a rectangular plate of length f, width c and thickness d,

General Instability

From reference 2.9 for gross buckling of the plate, Ncr(1),

k n2 _ d 3
8

: (]) : z) zNxy Nc r 12( 1 - v c

14.8. 8)

where k _s the buckling coefficient of the plate which depends upon c/f and
s

the plate boundary conditions.

Using the effective modulus E and Poisson's ratio from (4.8. 1),

3_r 2 Ebd 3

Nor (1) - 32 k s c2h

3
Ebd

= 1.10k s
ac

(4.8.9)

since

Now define

b
{3 .-- --

a

N (1) : 1. 10 k
cr

E 0d___._ 3
s 2

C

(4.8. I01

(4.8. 11}



In-Plane Euler Column Buckling of Rib

From eq. (4. 8. 5)

¢1 = 0

±2h P2, 3

¢2,3 = ± Nxy = b_
%r_ bd

(4.8. 12)

P2,3 = ± a Nxy

P3 will be critical for compression.

The Euler column load for P3 is,

2
k _ EI

E
p -

3 2
a

where k is the column fixity for in-plane buckling.
C

Thus,

k _2 Edb 3 k Edb 3
C C

= 0. 822 "'
Z Z

IZa a

=aN
xy

or using (4.8. I0),

Nxy = Ncr(Z) = 0.8ZZ kc Edf_

Equating (4.8. 1 3) and (4.8. 1 1),

3
d

I. I0 k _ -- - 0. SZZ k
8 Z c

C

d_ 3

4.$ .006

(4.8. 13)
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2 k
1 10k 2 c s" s =13 -- = 1.34 --
0. 822 k d Z k

C c

i. ee

J k
d 1.34

_=c k
C

(4.8. 14)

Substituting (4.8. 14) into (4.8.1 1),

: E -$ .3 ._s
Nxy 1. 10 k s c k

C

N k3/Z
xy= 1. 272 (d; sEc

C

Solving for d,

d093i :cl/211/43/z c

8

(4.8. 15)

Since c is given and d is determined by (4.8. 15); _ may be computed

from d/c and eq. (4.8. 14).

The equivalent weight thickness,

bd b.._d
_ = 3-g-= zC'T a

_, is determined using eq. (4.8. 3) and ¢_ .

(4.8. 16)

4_.00e
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t

Since both _ and d have been determined, _ has been determined.

4.8.3 Worked Example

N = 8000 lb/in E = 10.5 (106)psi
xy

c = 20 in

d >> c and simple support boundary.

From Reference 2-4.

k = 5.35
S

Since eq. (4.8.4) and (4.8.5) show that the 1 bars are unloaded and the

2 bars have tensile loads equal to the compressive loads in the 3 bars,

assume that the bar fixity, k c is 2.0.

Thus

k 3/2 = 12.40
S

k !,2L = 1.414
C

k I/2
c 1.414 1

k 3/2 : _ - 8.77
S

From eq. (4.8. 15),

1.72 \ Ec c

1/4

[8°°°1_°-6_]s12o_c -- 0 548L-_...

o : 4.30I,o-Zl
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d = 0.860 in.

From eq. (4.8. 14),

_: __o,_o_,/_ _ (_?o_)

b
= 0.0814 =-

a

From eq. (4.8. 16)

= 3.47 (0.0814) (0.860) = 0.243 in.

As a check, from eq. (4.8. 11),

Ncr(l) = 1.10 (5.35)(10.5)(106 ) (0.0814) ( 0.202860)

= 8000 Ib/in

From eq. (4.8. 13),

r(Z) = 0 8ZZ (Z) (10.5) (I06) (0.860) (0.0814) 3N
C

= 8000 Ib/in.

For the b/a dimensions, try 4 pockets.

4h = c = ZO in.,

h = 5.00 in.

2
a ---- h = 5.77 in.

VT

b = Da = 0.0814 (5. 77)

b : 0.473in.

4.8.008
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Since b/d = 0.473/0.860 = 0.551, this should be sufficient to prevent

buckling 6f the bars out of the plane of the figure between the nodes.

For a weight comparison with monocoque construction,

d,
o

Ed 3
o

Ncr(1) -- 0.924 k I 2
c

for a monocoque

8000 = 0.924 (5.35)
10.5 (106) (do 3)

202

].2.98 (I04) d 3
o

d = 3/ 8 (103)

o o. 129 : o. 395 in.

The relative weights are,

t O. 243
T -- O. 39------5- 0.616

o

The isogrid shear panel weighs approximately 61.6 percent of the weight of

a solid sheet neglecting nodal weight.

In the case of a built-up tension field beam, the web gage is determined by

the ultirrlateshear strength of the material corrected for loss of material

(about Z0 percent) caused by penetrations for attachment.

For a 7075-T6 web where

F -': 46, 000 peisu

4.11.0_1



N 8oo0t xy =
= (46000)(0.8)w Fsu

= 0.217

If the beam is efficiently designed,

is approximately 0.35.

Applying this correction,

= 1.35 t = 0.293
W

the ratio of stiffener weight to web weight

For this case, then, the relative weights are,

_' O. 2.93
t O. 395

0

= 0.7i2

Relative weights of the 3 shear web constructions are:

Shear Ttesistant 1. 000

Tension Field 0.74Z

Open Isogrid O. 6 1_',

If the tension field design were ";o be evaluated without less of r_:aterial for

attachment, that is, as an integrally stiffened structure, its weight would

theoretically be only 0o 593 times that of a shear resistant web. However,

integral constructions need to be shear resistant because the interruption of

tension field wrinkles at the -_tiffener produces u_desirably high locai stress

concentrations, particularly} risky when fatigue life is a consideration.

In any case. as mentioned previoL, sly, the continuous shear web designs

suffer severe weight penalties when, as internal structure, they must

inevitably be penetrated for useful service in a real-life vehicle.

4.8.010



4.9 OPEN ISOGRID CYLINDERS IN COMPRESSION, BENDING

>

/

LI 3

The open isogrid cylinder, consisting of a gridwork of ribs without skin, is

loaded by a resultant force, F, and resultant moment, M, at the ends of the

cylinder. The internal axial load/inch, N x, is given by

F M
N - + cos
x ZrlR _-_

The max._.mum value of N occurs for _ : 0 degree.
x

F M
N (Max.) -- + _u

x 2IIR HR 2

The elastic properties of the gridwork are obtained by considering it as a

sheet of solid material with Young's modulus, ]_, and Poisson's ratio, v,

given by:

v : 1/3 (4. 9. 1)

For flanged isogrid, each flange and the web is treated as a layer whose

individual modulus is given by (4.9. 1) for each b.

The rib stresses are g_ven by eq. (4. 8.4) and (4. 8. 5).

For the I ribs in tbe x direction,

h and -- 0 (4.9.2)
o"1 = _-- N x CZ, 3

O

4.0.001



where A is the rib cross sectional area.
o

For the 1 rib in the 4_ direction,

h
_1 = " 3-_" Nx

0

2h

2, 3 3A x
O

A = bd for unfl_nged isogrid.
O

(4. 9.3)

The preferred direction for the ribs is the 1 ribs in the _ direction.

4.9. 1 T_I Design Situations

Typical uses for open isogrid cylinders would be for interstages and thrust

structures where accessibility is important. Isogrid slosh baffies would be

another good potential application. The openisogrid pattern will reduce the

aumber of parts, complexity, and _ost for such structures, compared to

built-up design, as well as provide a regular pattern of attachment points

for equipment. Refer to Section 5 for information on nodal geometry and

to Section 7 for information on machining of isogrid, including the nodes.

4.9.2 Method of Optimization

The method of optimization assumes that minimum weight occurs when

general instability andEuler column buckling of the ribs within the cylindrical

profile are equally likely.

EULER COLUMN BUCKLING

4.9.002
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Under these assumptions, equivalent weight thickness,

d, and the ratio of rib width, grid spacing,

T, the plate thickness,

b

a

are determined. The magnitude of the rib width, b, and the grid spacing, a,

are determined to satisfy _, make the triangle size an integral multiple of

the circumference and make the rib depth, d > b, the rib width, so that

local Euler column buckling of the ribs in the radial direction of the cylinder

will not occur.

Ge ne ral Instabi!.i_tv

In Reference 2-1 it is shown that general instability due to bending may be

written in the form,

1 E* t.2

Ncr(1) = R (4.9.4)

_l-v 2)

wkich is independent of the cylinder length.

For uniform compression, F, the cylinder is highly length dependent,

see Figure 4. Z-l.

Let

N = N + N bx a

_vhe re

F Nb = Ivi . Nb__. N
Na - 211R ' IIR 2 ' a

then it is shown in Reference 2-1 that the buckling strength of the cylinder is

independent of the cylinder length and may be given by the simple formula,

N x : Na+Nb. = Ncr(l) (4.9.5)

4.9.003



t* and E::" from eq.

eq. (4.9. 4).

(2. 5.3) and (2. 5.4) may be substituted into

Ncr(1) _ 2Y _E_-

1-v

_tE
= 2.12 .__ r_- (4.9.6)

where Y is the '1correlation factor". In eq. (4.9.6) A and I are the

'_transformed'l area and moment of inertia.

If A and I are the actual rib area and moment of inertia, then since A
O O

and I are linearly proportional to the width,

A I
o I - o

A - h ' h

giving,

Ncrtl_,, _ 2. 12_/ERh _--/'_o Io (4.9.7)

For Rectangular Stiffeners

d

L

Ncr_l } = 0.613 N E bd2Rh

A ° - I_

Io " 1--_-

(4.9.8)

4.0._



For All Material in Flanges

,I !
Ao = ZAf

Io = 2Af {_-/2v!

A I =A2d 2
o o f

Afd 2

2

From (4.9.7},

2.12NE
N - Ad

cr Rh f (4.9.8)

Only the Rectangular Stiffeners Will Be Optimized

From (4.9.8) for Y = 0.65 and

Ncr(l} = 0.460

Ebd 2

Define the ratio,

then,

Ncr(l) = 0.460
R {_.9.9)

Euler Column Buckling o, F :bs

Assume the I ribs in the cbdirection

From eq. (4.9.3)

2h P

3bd x bd

2 a

P -- "_h N : _ N
x _ x

4.9._



By the Euler formula,

k I12 EI fl Z Edb 3p c - k
2 c

a

whe re k
c

Thus

is the column fixity.

kc I12 Edb 3

N - 2
x a 12a

= 1. 422

k E db 3
c

3
a

I Ed _3Ncr (2) = 1.42Z kc

|

(4. 9. 10)

Equating (4.9. 9} for general instability and (4.9. 101 for Euler column

buckling, .... ..

d0.460 -- = 1 422 k -pZ
R ' c

^2 O. 323 d
P = k R

C

(4.9. 11)

Equation (4.9. 11) for _ may now be substituted into eq.

Z O. 2i2 (0. 323) E 2 d 5

Nx k c

(4. 9. 9)

O. 0683

\ER] = kc

4.$ .006



d [- 14.6z kc \ER/

l/5

(4. 9. 12)

After d has been found fromeq. (4.9. 12), d/R can be substituted

into (4.9. 11) and _ = b/a may be determined.

Since

_" = 3 bd _ p_ x_- b___d
h a

So that the equivalent weight thickness, "t,

(4. 9. 13)

has now been determined.

4.9. 3 Worked Examples

Isogrid with flanges

Since this case is not optimized,

of the bars is not critical.
it is assumed that Euler column buckling

N x = 9,000 lb/in

E = I0.6 (106) psi

R = 198 in.

d = 2.00 in.

h = 10. 00 in.

= 0.65

4.9.007



From eq. (4. 9. 8)

_ 2.12 (0.6s)(I0.6) (2.00Af)Ncr i98 (10. 00)

9000 = 1.475 (104 ) Af

Af 9.00 0 610 in. 2= 14. 75 :: "

The equivalent weight thickness, t, is

6Af 6.0

t = h 10.0 (0 610) = 0. 366 in.

For comparison with monocoque with the same ¥, (actually ¥ = 0.65, Refer-

ence 2-11 is valid for stiffened cylinders on:y; for unstiffened cylinders,

Reference 2-6, _ values are lower), usinr_ t o for the monoccque thickness,

from eq. (4.9.4).

2
Et

N = 0. 612 o
cr R

9000 0. 612 (10.6) 106 2
- 198 to =

0. 328 (I05.) t 2
O

2 9.00
t o = _ = 0. 275

t = 0. 524
O

The ratio of open isogrid/monocoque is,



Unflan_e_ ;sogrid (Optimized)

N = 9,000 Ib/in.
X

E = 10.6 (lO 6) psi

R = 198 in.

= 0.65

From eq. (4.9. 12)

d
w __--

P,.

1IS

Assume k = Z. O0
c

[ il_.l _ 9.o i,o' )
\EF,/ = 1o 6 (i0 _') (198)

2

: [4.28 (I0-6) 3 = 18.35 (I0 =Iz)

(_)s _ -
= 14.6Z (P) 18.35 (10"12 ) = 537 (10 IZ) .-:5.37 (10 10)

d _ 1.40O (I0 -z)
K

d = 1. 400 (198) 10 -2 = 2.77 in.

From eq. (4.9. 11).

0. 323
z.--TV6(l. 4) 10

-z : o. ZZ6 (I0"2)

b
: O. 0475 = --

a

4.g._



Since one should have d > b, it is evident that a value of a < 40 in. would

be about right.

The circumference c, is,

c = 211R = 2II (198) = 1243 in.

Take 35 pockets around the circumference::'

Then

a
1243

= _ = 35. 5 in.35

and

b = _a = 0.0475 (35. 5) = 1.690 in. < 2.77 in.

The equivalent weight thickness is,

-- bd - ?. x_-_ dt = 3 h

"_ = 3.47 (0.0475) 2. 77 = 0.456 in.

m

The relative t's are now:

n

Construction t

Monocoque O. 524 in.

Unflanged Isogrid 0. 456 in.

Flanged Isogrid O. 366 in.

':'If the spacing a,
frame buckling.

is too large, itwill be necessary to check for between

4.9.010



The unflanged isogrid example sho_,s that the grid spacing of the flanged iso-

grid may be opened up considerably.

As a check on the unflanged example, substitute the derived dimension into

eq. (4.9.9) and (4. 9. 10).

2.772
Ncr (l) = 0. 460 (10. 6) (10 6) (0. 0475) --]-_j_- _- 9o00 lb/in.

N (2) = 1. 422 (2. 0) (10. 6) (106) (2. 77) (0. 0475) 3cr

= 8950 lb/in. (close enough)

4,9.011



4. 10 OPEN AND SKINNED ISOGRID PLATES

For stiffened plate supported or loaded locally with rectangular, circular,

triangular, or irregular boundaries, the isogrid construction possesses some

important structural advantages. Specifically, these are the high twisting

rigidity of the construction which acts to distribute the loading over a wide

region; its isotropic character so that no weak directions exist; and the

uncoupling of the bending and in plane stress resultants, M and IN. These

latter two properties make it possible to immediately apply the many avail-

able solutions of classical plate theory, Keference 2-3.

4, 10. 1 Typical Design Situation

Some typical design situations would be doors, floors, walls, containers,

etc. , in short, all flat surfaces which are subjected to bending loads. If

accessibility and free flow of fluids is required, the construction is unskin-

ned. The construction may be integral for thin plates two inches or less in

depth or it ,-nay be built up with an isogrid pattern web. Open face isogrid

sandwich plates may be constructed with mechanically attached ribs since

the web area is accessible. In such construction the reliability is high since

all areas are open for fabrication and inspection.

Frorr_ the constructional point of view, lightening holes drilled out at the

centers of the grid points where the fillet material tends to build up, serve

as natural attachment points for stnld insert to secure equipment and transfer

local loads to the plate.

4. 10.2 Analyses

Skinned Isogrid

From eq. (Z. 2.4) and (Z. Z 5),

 Mx}Di:
My : 1

×
x

Y

(4. I0. I)

-- I-L'

Mxy -_ D (2Xxy) (4. 10. 2}
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Solving for the change af curvature,

/:/ [::]X = - D(1 - v 2) _ My

2
(z Xxy) - D (1 - u) Mxy

Using eq. (2.2.3) these become,

× D (1-v 2) -u M
Y

2Z

_xy = -Z (2 Xxy) = -]3(1 v) M- xy

Now define the section modulus, S, by,

ES

9

-_- D(1-v-) (4. 10. 3)
Z

then,

x} [ li1 1 -v M x

= b_
_y -v lj , My

(4. 10.4)

2 (1 + v) M (4. 10.5)
Yxy ::" ES xy

Section Moduli

The maximum fiber stresses requires

to the extreme fibers.

the distance, Z, from the neutral axis

t

4.10.002 t_



1.00

I

i

TRANSFORMED SECTION

Part

©

®

A i

bd
h

_e

1

-t/2

d/2

Ai_i

-t2/2

bd 2/ 2h

bd
A = ZA. = t + -- = t (I +_)

i h

bd 2

A% = zAi_i = _-
A : - (4. 10.6)

The neutral axis at a distance Z o from _ = o is given by,

ZA.C.
Z = ,, I _ = t a6- I

o ZA. 2 "1 + a
1

The fiber distance, Cl, of the skin from the neutral axis is,

c 1 = - (t + Z ) =_(t 2a+ a 5 + 1)o _ 1 + _ (4. 10.7)

The section modulus, SI, of the skin is given by (4. I0.7), (4. I0. 3) and

(2.3.5).

t 2 132

1 6 2c,+ c_ 6 + 1 (4. 10.8)
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The fiher distance, e 2, of the ribs from the neutral axis is,

c2 = d - Z : t_._ Z6 + a 6 + 1 (4. I0.9)o 2 l.a

The section modulus, Sz, of the ribs is given by (4.10.7), (4.10.3), and (2.3.5).

t2 _Z

S2 ----
6 Z 6 +a6 + I (4.10.10)

Note that the first factor of (4. 10.8) and (4. 10.10) is the section modulus of

the skin without ribs and the second factor is a nondimensional amplification

factor due to the rib grid.

Thas for monocoque construction,

tz

_--I , a--O , 5 --0 and S 1 = - S 2 = -_

the familiar value.

Skin Stresses

From Hooke's law for the skin {2.4.6)

1-v 2

O'y

(4. 10. 1 1)

E

"rxy - 2(1 +v)
_xy (4. 10. lZ)

Substituting (4. 10.4) and (4. 10. 5) into this relation,

= -S1

(T

(4. 10. 1 3}
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M

xy S 1
(4. 10. 14)

Rib Stresses

Because of the uniaxial character of the ribs, the rib stresses are given

by,

_. = E e.
1 1

where e i is obtained from (2. 1. Z)

o_1

o-2

o-3

E
4 00]_r_ 3

r _ X /

Vxy (4. 10. 15)

From (4. 10.4), (4. 10.5)

{X}I10Yxy - ES 0 Z( 1+ v)

+y -v O

-L,]

°j1

M_y

My )

(4. 10. 16)

Substituting (4. 10. 16) ir'o (4. !0. 15),

o"1

_Z

_3

1

4S z

"4

(l-3v)

(l-3v)

0 -4v

Z_(I+v) (3-v)

-Z _ _l+v) (3-v)
M x

Mxy

M
Y

4.10.006



and since u = 1/3,

o-2 ,

o.3

m

1 0

l 2V- _
s2 o $

2V_
0--_

m

i

.1
Q_

3

2

2 M x

M
xy

M
Y

(4. 10. 17)

Section Modulus Graph

To facilitate the calculation, the section moduli are written in the form,

t 2
S 1 - k6 1

4. 10. 18)

{32k =
1 20 +ab + 1 4. !0. 19)

t 2
2 = _ k2 (4. 10. 20)

k - a2
2 25,o6+1 4. 10.21)

t 2where /6 is the section modulus of the skin alone and

k I .--. k l (a, 6)

k 2 = k 2 (r_, 5 )

are the rib amplification factors in non-dimensional form which are given

by the graphs in Figures 4. 10-1 anti 4. 10-2.

When a --..0 but 6 = constantS0, the ribB have constant depth but the rib

width becomes very small.
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In such cases, stresses at the outstandin,_ ed,,e of a very thin deep rib

attached to the skin actually weakenthe structure, stresswise. These

pathological cases on tile graph occur in the domain where k <1.00 and

should be avoided for stress critical structure.

Open Isogrid

In this case, the skin eq. (4. 10. 13) and (4. 10. 14) drop out.

equations are now given by (4. 10. 17} where S 2 is _iven by (4. 10

limiti n,a case,

The rib

I O) from the

Froa_ eq. (4. 10. 10) and (2. 3. 2).

l
) : -7-

3 1--!(t.dlt , (t : -TT_ (_ , _- }

dt _ bd/ t 2
h

m

S,
1 bd 2

S
Z (, h

(4. 10.Z2)

and

gl " gz (4. 1o.2 _
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4. 10. 3 Worked E,:amp!es

Skinned is_grid

Simply supported

Circular plate

R : 36in.

q - 3psi

Ftu -- 60 ksi

From Reference 2-3, the maximum stresses at the center of the plate are,

M :,)vl _ _ +v 2
x y 16 qR

3.333
16 (3) 362

808 lb in

Assume b : 10, (_- 0.20

From the kl, k 2 graphs,

k -- 28.8
1

k 2 : 4.25

2

t 28.8 2 t2S 1 :- --_- k,, _ t - 4,81

t 2 4.25 2 t 2
S 2 : "_- k 2 - --'_-- t : 0.710

Assume ribs on tension side. Then, from eq. (4. 10. 17)

2 808
_1 'r2 : _3 T 2 60 000

0. 710t

t z  su8) .- ! zs7 (1o "z)
3 (0. 710) 60 000-

4.:0,010



t = O. ll3 in

d 6t 10 (0. 113) : 1. 13 in.

h -- 5 b - 10 b = 50b
a 0.20

Let

d
b :: 1--0 say. Then

b : O. 113 in.

h : 50 (0. 113) : 5.65 in.

The grid size, a. is given by,

h, 5.65
a --: 6.53 in

Oo 866 O. _¢,6

As a check on the skin stresses, from (4, 10. 13)

808
: _ - = -13, 150 psi.

fix
4.81 (0. 113) 2

The allowable skin buckling stress, Rcfer-,ncc 2 9, is

t 2(-;/2 l,.,0E (=)o" : 2
cr 12(1- ,

(0. 113_ g
:= 11 10 {10.7)(106 ) \6.53 l

ffC r '

_5, 000 psi > 1 {, 500

The equivalent wright thickm,_s, 1-, is.

= 0.113 (1.60; : 0.181 in.
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4. 11 MINIMUM OVERALL WEIGHT FOR CYLINDER SUBJECTED

TO AXIAL COMPRESSION AND BENDING
as well will vary alongand

In general, the envelope of maximum Ncr Pburst

the length of the cylinder. Although b, d and t may be varied to reflect

the variation of load, the grid triangle height, h, must usually be held

constant, for fabrication reasons and the problem becomes that of minimiz-

ing the weight for h held constant along the length of the tank. To accom-

plish this, select N (i) at i points along the tank axis where Ncr is
cr

changing nmst rapidly and determine the associated distance, Ai at mid-

stations between the _oint. f_

Ncr _

Nc r Ncr (t + 1)

LOAD ENVELOPE

TANK AXIS

Next construct a set of graphs of _ vs h as functions of p for each station,

i, for the given value of Ncr {i).

i h

R GIVEN ]

I
I
I ""

t'/h GRAPH

4.11.001



_ . th
From the set of t, h graphs for the : station along the tank axis,

relative tank weight may be determined for various value of h.

the

"T¢h}=

n

i-I

_m_n

Ai

I

v

hG hMl N h

._

T (h) GRAPH

The initial value of h, called h , must be selected as the smallest valueo

of h which satisfied all the burst conditions at the n stations alon_ the

-- (the value for
tank axis. Since the graph of t in the neighborhood of t o

minimum weight at each station) is quite flat, considerable variation :n h

may be allowed with only minor changes in _ so that the requirement that

h remain constant over the entire tank does not impose a significant weight

penalty on the design.

• i

4.11.002
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4. 12 NOTE ON USE OF x, y; _, ,5 CURVES

Although the a, 6 curves are fairly easy to interpolate along the _, direc-

tion, by eye, since the variation is approximately linear, it is not easy to

interpolate by eye along the a' direction. This is because the variation is

appvo×imatety expon ential.

It will be found that distance in the a direction along the curves 5 = Z or

5 :: 30 at the extreme edges of the graph are practically identical. Moreo_'er,

these scales almost coincide with the portion of the x scales at the bottom

of the _raph betwecn the values :< = 0.50 and x = 3.0.

A procedure which wilI be found to be most convenient is as follows:

A. Locate the o, 6 point by pencil and then move up a small piece

of paper so that its edge is aligned along the _ curve direction.

B. Mark the edge of the paper at the _, _ point and also mark the

C_

_rid values of a to the left and right of the point.

The edge of the paper may now be transferred to the x

the _rid values superimposed upon the _ sca!e values.

intermediate a may now be readily interpolated on the

scale wit)-,

The

x scales.

If the above procedure is not followed, checked calculated values of a frmn

computed bd/th wil! rarely agree with initial graph values since the graph

cannot otherwise be read with sufficient precision,

4.12.001



4. 13 OFF-OPTIMUM !SOGRID

For many applications, constraints due to plate thickness availability, cost

of machining etc., require that the gridwork design be other than tt_at

indicated by the optimum. Usually it is required that the plate thickness be

less than the optimum thickness and that the gridwork triangle size be

larger than tbc optimum. These are the basic assumptions underlying the

following off-optimum analysis.

4. 13. 1 Method of Analysis

When the to[a! plate thickness is less than the optimum and the grid triangle

size is greater than the optimum, it follows that the rib dimensions will be

thicker than optimum and consequently not critical for rib cripphng.

The critical requirements are general instability and skin freckling.

General Instability

The critical loading condi ions assumed are either the sph,,-rical cap under

external pressure or the circular cylinder under combined axial compression

and bending. (Reference Subsecticms 4. 1 and 4.2.) Thus,

)

E t '_

cr ' o R (4. 13. 1)

whe re

N ( 'L _t !
cr

P R

C 0.2h0 (4 1 _. 21
O

for the spherical cap.

N (lb) : N
cr x

F M
)

Z "R -1t _"

C O. 1397 14 I _. _)
(1

4.13.001
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for the circular cylinder.

Skin Buckling

For skin buckling,

N (2a) : C
cr 1

C - 3.47
l

(4. 13.4)

for the spherical cap,

C 1 = 10.2

and,

(4. 13. 5)

for the circular cylinder.

Collecting requirements,

Z

N (I_ = c E--!-tO (4. 13o6)
cr ' o R

t2
N i2) ---C Et(l+a)---_-

cr I h z-

(4. 13.7)

Given: S = t+d _< S
o

(4.1 3.8)

Given: h ._ h
O

(4. 13o 9)

Equations (4. 13.6)to(4. 13.9) consist of four equations for the four required

geometric dimensions, b, d, t and h. Of these, h is already given. The

remaining three dimensions are determined as follows:

From (4. 1 3.8)

S :: t*d :: t(l+6)

14. 1 3. 10)
t :

4.13.002



Substituting 14, 13. 10) into (4. 13.6),

N = C E s2_2
cr o R (1+6)

N R
cr _3

C E
o

2 (I+6)
s

(4. 13o 11)

From 14. 1 3. 10) and (4. 1 3.7),

N -- C E
cr 1

3
s

(1+o_) h2 (I+6)3
(4. 13. 12)

N h 2
cr

C E
1

s

l+a,

11+6) 3

Define,

N h 2
cr

C E s
1

N R
cr

C E s
O

3 (4. 13. 13

2 (4. 13. 14

then

l+a
x -- (4. 13. 15

(1+6) 3

v :: 13 (4 13.16
• ---- 2 •

(1+6)

This defines a mapping of the or, 6 domain into the x, y domain and is given

in Figure 4. 13-1 on a log plot. This mapping, it may be noted, is purely

geometric and does not depend upon the values used for C and Co 1"

4.13.003
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SUMMARY OF OFF.OPTIMUM EQUATIONS

NORMAL PRESSURE ON

SPHERICAL CAP

C0 - 0.260

C 1 - 3.47

C 2 = 0.634

S = d + t _S OPTIMUM

h >_h OPTIMUM

CYLINDER UNDER AXIAL

COMFRESSION AND BLENDING

0.307

10.2

0.616

REFERENCE

p. 4.13,001

p. 4.13,002

P. 4.13`008

X - Ncr h2

C 1 E S 3

y = Ncr R

S

1+8

d " 8t

th
b = (Z ---_-

AS A CHECK,

Ncr (RIB CRIPPLING) - C2 Et (1 +41) Net

Eq. 4.13.13

Eq. 4.13.14

Eq.4.13.10

p. 4.13.006

p.4.13.006

Figure 4 13-1. X, Y, {n, _1Curves

4.13.004



The design procedure is as follows:

A. Calculate x and y from eq. (4. 13. 13} and (4. 13. 14).

13. Read off a and 6 from the a, 6 graph. (Logarithmic

interpolation is required here.)

C. Calculate t from equation (4. 13. 10} t ,: --_
1+5

D. Calculate d from d : 6t

E. Calculate the rib width from a, b : a th
d

Thus all dimensions have been determined.

crippling from the equation,

2

N (3) = C 2 E t {l+a){-_)cr

whe re

C 2 -- 0o634 for the

As a check, determine rib

(40 13. 17)

spherical cap and,

C 2 = 0.616 for the

circular cylinder°

4. 13.2 Worked Example

Spherical cap with the following reqmrements:

Per = 33.6 psi

R = 198 in

Ftu - 71.2 ksi,

E 11.6 ( 106)psi

An optimum design will first be obtained and the weight penalty involved in

holding the plate thickness constant while opening up the grid will be

determined.

4.13.005



Pcr 33.6
"E" -- TT_ (10-6) = Z.90 (10 .6 )

From the graph in Figure 4.1-1.

Po train 0. 00107
(103 ) -- 1.48 , --R-- =

Ft u

t hu s

Po = 1.48 (71.2) = 105.3 psi

t" = 0.00107 (189)= 0.202in.

m

N -
Pcr Ftu 2.90 (10 "6)

E p I.48 (I0"3i

1.96 (I0 "3)

(103) _ 1.96
x = 1.482

= 1.323

Y
Ftu

= _ 130 p

1.96 (10 -3) 103
0. 130 _ = 10.2

From the a, 8 graph in Figure 4.1-2.

o = 0.29, 5 = 14.6

the n,

1.48 (10 "3) 189pR
t = 2Ftu(l+a ) = 2 (1.28)

- 0. 1092 in.

d = 6t = 14.6 (0. 1092) = 1.594 in.

./1.96 (10 "3)b = N d : _ 0.634 (1.594)

L

lh

= 0.0888 in.

f '

J

4.13.001



_ 3.47 (0. 1092)h = _ t = 1.96 (10 -3)

= 4.59 in.

as a check,

bd 0. 0888 (1. 594) = 0.Z8Z
o _ th - 0.1092 (4.59)

t-= t(1 ÷ 3e) = 0. 109Z (1.846) = 0.202 in.

As a check from the off-optimum curve, Figure 4. 13-1.

S = d , t = 1.594 + C. 1092 = 1.703 in.

N
cr

y __

X

Pcr R _ 33.6 (189) = 31801b/in.
2 2

NcrK 3.18 (I. 892 105

0. Z60ES z - 0. Z60 (II.6) (I0v) (1.703) z =

0. 0678

hz
Ncr 3.18 (103 ) (4.59)2 = 0.337 (10-3 )

3.47 ES _ = 3.47 (II.6_ (106 ) (1.703) 3

From the o, 5 curve,

a = 0.28, 6 - 14.7

This checks with the previous values using the graph from Subsection 4.1.

For the first off-optimum design,

S : 1.703 in. h = 10.0 in.

S = SO h > ho

4.15.007



then,

y -- 0. 0687 as before, and

x -- 0.337 (10-31(1°'°_ 2
\4-:-_/ : 1.6o (lO'31

From the a, 6 graph, Figure 4.13-1.

,_ = 0.085, 6 _- 7.8

t

s 1. 703
1 + 6 = _ = 0.1935 in.

¢

d -- 6t = 7.8 (0. 1935) = 1.510 in.

th [0.1935 110, 0)]b = _-- = 0.085
d 1.Sl0

O. 109 in.

m

t = t(l + 3a) = 0.1935 (I.Z55)

= O. 243 in.

As a check on strength,

From the _3curve, Figure 2-I

N
cr

0 =- 0°085, 6 = 7,8, _ " 5, 2

2
A'-

(l)-- CoE _

- 0.260 111.611_061Io. _93st2 (5.21

= 3110 lblin.

t 2

Ncr(Z) = ClEt{l + °)h- _

4.13.00e



I

= 3.47 (11 6) (106 ) (1.085) (0.1935[ 3
• (10. O)"_

= 3160 lb/in.

Ncr(3)-- c2

b2

Et (I + a) 7

= 0.634 (11.6) (10

-- 8050 lb/in.

<,08,,0,93, 2

Note that the rib crippling allowable, Ncr(3) is not critical.

For the seco_ld off-optimum design,

s : 1.703 in. , h = 15.0 in.

s = s h >h
O o

y : 0.0687, as before, and

2
- . 15.0

x : 0.337 (10 3) _ = 3.60 "110=3)

From the a, 5 curves, Figure 4. 13-1.

a = 0.05, 5 = 5.6

s 1. 703
t - 1+6 - 6.6" : 0.258 in.

d = bt = 5.6 (0.258) = 1.445 in.

th (0.258) (15.0)
b = a-- d- = 0.05 1.445

- O. 1340 in.

t" = t(l + 3a) = 0.258 (1.15) = 0.296in.

4.15.00e



Summary of results

s = d + t = 1.703 in.

h b d t a 5 T

':: 4.59 0.0888 1.594 0.1092 0.282 14.6 0.202

10.0 0.109 1.510 0.1935 0.085 7.8 0.243

15.0 0.1340 1.445 0.258 0.05 5.6 0.296

*Optimum design

Note that b increases while d decreases. This is the reason why the ribs

become non-critical.

4. 13.3 Summary of Off-Optimum Ec_uations

Normal Pressure on Spherical

Cap

Cylinder Under Axial

Compression and Bending

c -- 0. 260
O

Cl= 3.47

: 0.634
c 2

s : d + t -< S optimum

h > h optimum

Reference

N h 2
cr

X - 3
C Es

1

N R
cr

Y = " 2
c E s

O

0.397 Eq. 4. 13.2,
4.13.3

10.2 Eq. 4. 13.4,
4.13.5

0.616 p. 4. 13.005

Eq. 4. 13. 13

Eq. 4. 13. 14

S

t - 1 + b Eq. 4. 13.10 i

d = 6t p. 4. 13.005

4.13.010
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th

d
p. 4. 1_.00_

As a check,

Ncr (Rib Crippling} : C 2 Et(l_a)(--_-) 2
_> N

cr

4.13.011



Section 5

NODA L GEOMETRY

The point azhere the isogrid ribs intersect is called a node, Figure 5-1. In

the manufacture of isogrid, extra material is left at the nodes because the

milling cutters cannot cut to the center of the intersection without cutting

into the ribs. The weight penalty of this extra material is reduced by drilling

a hole in the center of each node. These node holes are ideal points of

attachment for other structures or for fittings carrying concentrated loads.

Examples of their use in current practice are given in Section 3.

The nodal region in isogrid deserves special considerati3n because the nodes

are flexible and cause a local redistribution of stresses in the area. As

stated in Sections 2 and 4, the analysis of isogrid is based on "smearing out"

the ribs so that the stiffened structure can be analyzed as a solid continuous

sheet of material with appropriate elastic properties. This method has the

advantage of being able to use the equations which have been developed for

monocoque structures while providing accurate information for the sizing of

isogrid structure. However, the "smeared-out" analysis ignores the flexi-

bility of the nodes and its effect on the stress distribution. These local

stresses may be very important in the detail design of critical areas. For

example, in an area experiencing a considerable amount of cyclic loading,

Figure 5-1. Isogrid Node

CFI169
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the stress concentrations should be determined to assess the possibility of

initiating and growing cracks which could adversely affect the st,rx'ice life

of the structure.

There are at least two methods which can be used to accurately detern_ine

the local stress distribution in the nodal area. One method is to use a finite

element analysis and another is to use three-dimensional photoelasticity.

There are many excellent general references on finite element analysis

methods in the literat_tre, e.g., References 5-1 and 5-2, which the reader

may refer to for basic information. Reference 5-3 describes NASTRAN, a

widely-used general-purpose computer code for structural analysis based

on the finite element method. An application of NASTRAN to isogrid analysis

is described in Reference I-Z for the Delta launch vehicle. A description oi

photoelastic ,nalysis can be found in Refe,'ence 5-4.

The amount of stress redistribution due to node flexibility is, of course, a

function of the geometry of the stiffening pattern and must be determined for

each design. However, the following example from Reference 5-5 will

illustrate the effect of flexibility for one particular geometry. The analysis

method used was three-dimensional photoelasticity.

Two identical isogrid panels were fabricated from tiysol 4290 epoxy re:;in.

Both panels were loaded in uniaxial tension, one in the direction of the 0 degree

stiffening rib and the other 90 degree to the 0 degree rib. Three-dimensional

photoelastic analysis was used to determine the stresses in the panels and the

values were then compared with analysis, Reference 5-5. The panel skin

was 0.075 inch thick. The ribs were 0.045 inch thick with a flange at the

top that was 0. 300 inch wide and 0. 162 inch thick. The nodes were 5-inch

on-centers with a node hole of 0.75-inch dian_eter. The milling cutter radius

of the ribs at the node was 0. _75 inch and was 0._a8 inch at the flanges. F'or

this configuration, the skin stresses were approxit_ately S0 percent greater

than "naonocoque" analysis and the rib stresses were approxin_ately

_0 percent less. For uniaxial loading, a stress concentration of approxi-

mately 2. 1 times the skin stress occurred at the node. Using superpositi,m

for a one-to-two biaxial loading, the stress concentration at the node was
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I. 3 times the skin stress. Finally, using superposition for a one-to-one

biaxial loading, a stress concentratio- of approximately 1.2 times the

stress in the skin away from the ribs occurred in the skin directly beneath

the 0=degree and 60=degree ribs. Other values would, of course, be found

for panels with a different geometry. For example, adding material at

the nodes of the test panels described above, could significantly alter the

results.

In addition to the local stress distributions, the bi-ndlng and extensional

stiffnesses of isogrid configurations should be verified by test for designs

with very flexible nodes, e.g., very large center holes. This determination

can be made simply and economically using a Lexan plastic panel subjected

to a tension load to verify the extensional stiffness and to a bending load to

verify the bending stiffness. Stiffness is, of course, essentially a gross

property of a structure and is not as sensitive to local concentration effects

as is the stress distribution. Buckling tests of Lexan isogrid cylinders,

Reference 5-7, showed excellent agreement v,"ith theory for an isogrid con=

figuration in which the hole diameter was 60 percent of the total distance

across the node.
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Section 6

TESTING

i

In order to verify as. umptions of the theory and assess the effect of

fabrication variables on the design, it is necessary to test representative

components and shells in small scale, subscale or full-scale size. Buckling

tests, in particular, are very sensitive to fabrication variables of a random

nature which can only be assessed by subscale or full-scale testing. On the

other hand, small scale model tests in polyvinyl chloride, or Lexan plastic

can be made virtually free of random fabrication variables. Moreover, such

Lexan model tests are non-destructive so that small, relatively cheap ;_odels

may be repeatedly tested to check out interaction and multiple loading affects.

6. 1 MODEL TESTS

Since fabrication variable effects are generally insignificant for models, it

is recommended that verification of theoretical assumptions be made by

model tests. For example, effects of nodal geometry on the elastic con-

stants, reinforcement around holes, stress concentration around nodes,

interaction curve verification and influence of thermal gradient on buckling

values, are all examples of tests which are best conducted on small scale

models. In some cases, where buckling effects of the order of l0 or 1 5 per-

cent are to be investigated, such models are the only practical means of

obtaining objective data which would be entirely masked by the random

effects of fabrication typical of larger scale metal specimens which is of the

same order as the effect to the investigated.

Instrumentation of the models may vary widely ranging from simple load

deflection readouts to elabo,'ate three dimensional photoelastic investigations.

Because of the low elastic moduli of polyviny[ chloride and Lexan, internal

pressure effects may be obtained by pulling a vacuum on the interior of the

mode 1.
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Temperature control and an accurate determination of elastic moduli are

important features of model testing. The influence of glued joints may

present problems in softening the moduli of the material and should be

accounted for. z 1
//

/

J
j/

Thejpr_oper scaling factor for the models is also important. For models

.-'_vith uniform walls, it is necessary to obtain the correct bending stiffness,

D and extensional stiffness, K. As shown in Section Z, an equivalent

monocoque model may be substituted for isogrid using the equivalent E':" and

t ':_. In buckling of cylinders it may be shown that the buckling strength

depends upon the R/t and L/R ratios in a non-linear manner and upon E

linearly. Thus the proper modeling is

R R

t monocoq,le t*

L L

R monocoque = _-

and

N N
cr

cr monocoque -
E E ':"

The N /E effects may thus be ratioed from the test values by analysis
cr

while the proper R/t and L/R must be built into.the model,

Rib crippling andSskin buckling effects, of course,

equivalent monocoque models which are of value,

instability characte ristics.

cannot be obtained from

primarily, for general

6.2 SUB-SCALE AND FULL-SCALE TESTS

Since sub-scale and full-scale tests can be very expensive, it is important

to examine all aspects of the influence of fabrication and peculiarities of

the test setup on the expected test results. Reference 2-1Z gives a good

account of typical problems to the expected. Some of these are repeated

here for convenience.
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A. Examine the specimen carefully for bent and undersize ribs

and skins. Straighten bent ribs and patch understrength

defects. Make sure the specimen is protected from

atmospheric corrosion°

B. Check specimen for roundness and straightness.

C. Conduct analysis to assess the effects of tolerance en the

various modes of failure. Very local undersize regions may

be "bridged over" by the high degree of redundancy of isogrid

provided that fatigue is not an important consideration.

D. Check bearing fit between specimen and loading head. "ttigh spots"

can result in large local overloads in the specimen°

E. Monitor rib crippling and skin buckling by back-to-back strain

gages located on outstanding edges of ribs and centers of skin

panels.

Back-to-back gage rc_douts on monitoring equipment should be read together

so that divergence of gages indicating local change' of ct:rvature or ribs and

skin may be directly identified.

STRAIN

I

I.j_ NO BE D NG t l BENDII_IGI

LOADING
I1=,,=

In specimens which are weaker in rib crippling and skin buckling than in

general instability, such gage readings, properly located on the specimen,

are invaluable in predicting not only rib crippling and skin buckling but are

excellent indication of the ultimate load to be expected.

I
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Section 7

MANUFACTURING TECHNIQUES

7. 1 INTRODUCTION

To date, waffle construction, unless it is very shallo,_ and used for parts

with compoand curvature, has been machined in the flat and s.abseq'aently

formed. The open grid in the Orbital Workshop of the S[<ylab, since it

forms walls and floors, was left flat. The same woald apply to beams,

frames, and wing ribs. The shallow ribs on compound curved parts are

usually chem._.cally milled. In one known case, a small spherical segment

dome constructed for testing under NASA contract NASS-11542, a compound

curved spun par£ was sculptured alter forming with a template-guided han_J

operated router. In general, therefore, integral structure deep enough to

be structurally competitive with built-up structure has been applied to simple

fiat or singly curved shapes - fiat elements, cylinflers, cones ann the

slightly curved surfaces of wings and control surfaces in aircraft.

7.2 MACHINING

In the aerospace industry, integral construction generally means

machining. Intricate shapes are most economically produced by casting,

but the mechanical properties are not competitive with wrought material.

Forging properties are usually the best obtainable, but the pro_'ess does not

deliver the close tolerances and thin stiffening ribs required for weight

effective structure. This is particularly true for very large structural

elements in the sizes necessary for achievement of economy and combining

enough structural features to legitimize the word "integral". Forgings

require finish machining. Machining limitations are, therefore, of prime

importance in the design of integral structures, especially so for waffle

construction.
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Isogrid, like all o_her types of waffle, L._ pocket milled. An end mill traces

_he inside contour of the pocket and clea_ls out all the material in the center.

See Figure 7.2-1. When the stiffening ribs are flanoed, a fashioned cutter

is used wherein the cutter extends beyond it shank, Nigure i. 2-2. These

are the two basic variations so far employed; they have providod ad_q'-_ate

geometric latitude to cover a wide range of design load intensities and local

reinforcement.

Six abutting tria_agular pockets, with corners appropriately rounded by cutter

dimensio:as, define the geometry of a waffle node. When the l_ockets are

small and th," waffle nodes large severe weight penalties result, l'herefore

carefl, l attention m tst be given to :aodal geometry. Holes are drilled m the

nodes to red.tee weight, it should be noted that other methods may be used

to make the ho!e, e.g.,milling, electrical d_scharge machining.

For adeq-late cutter rigidity, the deeper a cutter penetrates to cut a waffle

pocket, the larger Lhe ct,tter diamater m_lst be, Rigidity is required to

obtain close toleran_es or the reasonably smooth sqrface finishes which

CUTTER PATH DURING

FINAL POCKET SIZING

CUT

CUTTER ROTATION
FOR "CLIMB" MILLING

(BETTER SURFACE

FINISH, GREATER

ACCORA¢-Y) _

CRICC

CUTTER CROSS

SECTION (RADIUS
SMALLER THAN

CORNER RADIUS

PREFERRED)

Figure 7.2-1. Machimng I$ogrid With Unflanged Hibs
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1¸

CR16_

CUTTER OVERHANG

Figure 7.2-2. Machining Isogrid With Flanged Ribs

contribute to structural fatigue resistance. Cutter diameter shoald

therefore be about 0.75 times the pocket _lepth or 0.5 as an absolute minimllm.

The smaller cutter diameters require a light finishing pass at high cutter

rotational speed.

When the pocket corner radius is the same as the cutter radius, the cutter

path stops on a point before resuming its movement down another leg of the

triangle. During this "dwell" a cutter, especially a small one, drags against

the wall of the pocket, chatters, enlarging the holc it occupies, and under-

cuts one of the stiffening ribs. This undesirable situation is best avoided

by making the corner radius larger than the cutter radius. The path of the

cutter centerline then describes a small radius at each ,Grner. Slow cutter

feed rates at the corner also contribute to better finish and accuracy

especially in numerical controlled machining.

7.0.003



tilt" llan._od ribs.

lo oo

Figure 72.3. A T_nk Wall ConhOt,,tt_on
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weight are in order. Electrical discharge or electro-chemic_l machining

may provide a means of achieving s,ach refinennent. Beca,ase the shape of

an electrode determines the shape of an impressio_l :ather than a rotating

cutter, an almost unlimited range of shapes can be produced. The designer

is cau*.ioned, however, to apply this versatility with restraint. Sach stress-

raising configurations as keyways and spliced holes are not recommended;

nor is complete elimination of the hole with attendant sharp corners at

the rib intersections. Some practical recommendations are shown in

Figure 7.2-4.

CR169

_.--SHAPE OF ELECTRODE _ MAINTAIN PROr_ORTIONS _"_'_"

\ / __ OFCORNERRADIiAND ._" I I I "_

\ [ I ]I( J•| HOLE IN NODE K I ! I._

I "AS MACHINED" //_:;

SHAPE

Figure 7.2.4. Eleczrical Discharge (EDM) or Electrochemical (ECM) Machining

to Reduce Isogrid Nodal Size and Weight

7. 3 FORMING

7. 3. I Power Brake Forming

One of the more con:mon provesses for formin_ sin_ply curved surfaces is

progressive pinching, in a power brake. Still el ft,¢'tive and often used. It

accomplishes its objective by suct'essively (reasing line elenlent s c_l" tht.

curved surface, Figure 7. _-1. The line elerm.nts may I)e parall..I as in
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the case of a cylin<lcr or converging as they are on a cone or the surface

of a tapered wing.

The fundamental limitation in this type of forming is the permissible

elongation without fracture of the material being formed. Room temperature

properties apply since the final formed shape is that assumed after the

material springs back, considerable (and somewhat unpredictable) over-

forming is necessary. The process m_tst therefore be carefully developed

for each stiffening confignration. In general, forming difficulties may be

expected if the plate depth exceeds aboat 1. 5 percent of the final formed

radius, internal ribs are s-lbject to buckling at higher ratios, external

ribs are likely to crack at the nodal inlersections. Local high pressure on

the tops of the ribs can accentuate either of these problems. Removable

support blocks in the pockets have been su,ccessful in alleviating these

conditions, but they complicate the process.

The highest ratio of plate depth to radius so far attempted is 1.5 percent.

This was the ratio on a compression cylinder tested ander NASA Con-

tract NAS 8-26016. The ribs were external and the forming was accomp-

lished with no support blocks in the pockets, Figure 3-5. While some

of the ribs were slightly deformed in the process, they were straightened

quite easily and adeq:lately, Figare 7.3-2. The size and geometry of the

waffle shell is shown in Figure 7, 3-3. It should be noted that the metho:t

ased to straighten deformed ribs depend upon the amount of deformation.

e.g. ribs can be "bridged" to maintain column buckling capability. The

internal ribs configtlration o¢ the Thor-Delta vehicle required widening ot

the stiffening ribs from 9. 060 to 9.080 to avoid compression backling,

Figures 7.3-4 and 7.3-5. in this _-ase, the plate depth was 1.04 pertent

of the shell radius of curvature.

Fortunately optimized isogrid in cases typical for space boosters and

aircraft tends to stay within these geometric limitations. Where simple

unflanged rib designs tend to be deeper, the depth _an be reduced by

incorporating flanges.
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92.66 ID
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Figure 7.3-3 T_st Cylinder
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SECTION A-A

I:::::::

NODE
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0.755
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,0.063

0.083 TYP

Fiyure 7.3.4. Thor Delta I$ogrid Geometry
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Altho'agh the brake forming process is in some respects more of an art than

a science, tile res.alts after a few development parts have been made, are

quite good. This has been verified by the successful production of waffle

skins for the Thor-Delta boosters, the Saturn S-IV and S-IVB and the crew

compartment shell of MOL. For such work quite large and powerful equip°

merit is needed. An example of this is the 40-foot power brake illustrated

in Figure 7.3- 1.

An additional forming method that may be applicable is roll forming. For

this method the isogrid pockets should be filled with a suitable filler material

to prevent buckling of the members.

7.3.2 Creep and Age Forming

A more advanced forming method, which treats the material more gently,

promises more accuracy and consistency, and may produce parts with com-

pound curvature, is creep forming. When the part, usually alumin-_m,

creeps to final shape at the heat treatment aging temperature, two processes

are performed simultaneously and the part is said to be age formed. It

should be noted that this is not a standard 'day-to-day' process but one that

must be developed by the individual user.

In this process, the part to be formed is clamped to a fixture and held at

elevated temperature until it creeps to its predetermined final shape.

Allowance for some springback is made in the shape of the fixture. S,l,'h a

fixture and the part formed on it is shown in Figures 7.3-6 and 3-10.

In this case, a segment of a cylindrical wall, it was found that springback

was practically eliminated and _:onsistency improved by applying a tensile

force along the edges of the part. Though the final tensile elongation was,/

small, allowance would have to be made in the machined shape for an

accurate production part. Where the part must assume a final shape q'aite

different than its machined starting point (e.g., a 120-degree arc}, the

process may require multiple staging, either in sevezcl creep forming

steps (preferably in the same 'ixture), with appropriate constd-ratio;_ of

over-aging, or by initial rough forming ,_ith the power brake. Cr_-p form-

ing offers, among other advantages, an opportunity to reduce residual

stresses.
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2zig-T37 Alumin,.lm isogrid has been successfully formed by this process.

7.3.3 Compound Curvature

Co,npound curvature is difficult to achieve with integrally stiffened parts

mainly because a flat pattern cannot be developed for such shapes. This

means that parts machined in the flat are subject to unpredictable, and

sometimes unrepoatable, distortions. Each configaratiota m,lst therefore be

developed individually. Each curvature has special problems requiring

special solutions.

Machining after form;_ng offers similar difficulties. Even moderate forming

leaves resid,lal stresses in parts. Sabseq-ten _. lnachining, lo,'ally relieving

these stresses, causes distortio_as. Tolerances are difficult, if not impos-

sible to hold. Costs are escalated by rigid - and probably naultiple- ho!ding

fixttlres as well as the higher amor_izatioz_ costs of the more elaborate

ma,:l_ines capable of doing the work.

Fairly large contour changes can be approximated with _runcated cones as

shown in Figure 7.3-7. This diagram is representative of ogive noses o:a

large missiles or aircraft; s_milar geoctaetry defhaes taper of the aft end. A

very small bulge outside the straight conical line element is eno,_gh to pro-

d_l_e an accurate faired final conto'ar. This much do-lble curvature should be

achievable with creep forming. Whether s.ach an accurate co-sieur is

actually worth making is a question to be raised in these circumstances.

In summary, standard manufacturing techniques have beexa applied to the

fabrication of isogrid structures. Machining. power-brake forming, and

creep and age forming ha\'e been used to successfully for_ strutture which

ts flat or has a single curvature. The l'ortllin:- el coll11):)',111"] curvature ca'n

b," difficult b, lt the problems art, tho,;e _ss_iate<l with all integrally stiffela..-d

strtl, tures an:t art, i_'. peculiar _t) ts,)grid.

7.4 NON-I_ESFRt;CTIVI£ INSPEt: I'ION t"Ol_
MANU I.'A(:TI, RING A(:CI'|YI'ANCE

S*.aT_dard io:_-destru,'tive in_l),_'ctio:_ tech_aiq,lt, s sho,lld be s-litable Il_r at _ept-

ing nlanafa_'tured iso_rid parts, l,'luorcs, e_at dye pot_t, tra_t was tl_ed to

7.0.013



SPUN MONOCOOUE

NOSE

jL__

CONTOU R APPROX IMATE O

BY TRUNCATED CON_.S OVER

THIS LENGTH. PARTS INITIALLY

FORMED WITH SINGLE

CURVATURE ON POWER BRAKE /

FINAL CONTOUR, INCLUDING ,'

SLIGHT BULGE. ATTAINED / .

BYCREEPFORM,NG /
FLAT PATTERN OF /

TYPICAL CONICAL s

SEGMENT "--.-...-_/,/_

GRID PATTERN ANDSIZEOF / _ /

POCKET_D,STORTEDBY "-..'--CJ7 "
TAPER /

Figure 7.3-7. Contour Changes Using Cones

_. SYMMETRY

CYLINDRICAL
CONSTANT SECTION

CR 169

BASIC MATERIAL

STOCK SIZE

)
#

/

inspect isogrid par_s for Delta. The par_s were han.'tled in an at_tomatic

penetrant facility in which the paris were handled and the penetrant applied

automatically. Visual inspectio;a o.r the par_s was then used; sometimes

with 5x-!0x magnification. Other inspectio._ techniques may be developed

by the individual user, e.g., dye penetrant which was ,ased ::o loo'< for forming

cracks in the S1VB waffle skins.
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Section

LXPLklMENTAL RESULTS FROM MOUEL TESTS

Analyses of _soqrid as presented in this handbook are primarily concerned with

tileprediction of bucklinq instability and of states of stress that occur in

isogrid under the action of loads, singularly applied or applied in combination.

The validity of such analyses can only be verified by tests conducted on isogrid

structures. Tt|ese tests may be either tests of full-scale metal structures or

tests J. subscale ,_dels. Full-scale metal tests of structural components have

certain ci_aracteristics which make them undesirable for theory verification,

e._., pl,Jstic deformation upon buckling, slnall buckling "knock-down" factors,

and wIG_ data scatter. During recent years, the fabric;ition and testing of

_odeis, t_L_deiro,_ Lexan polycarbonate plastic, have shcwn that the use of such

,:_o,lels_a_ sevL;ral auvantaqes over the use of full-scale metal test models.

Tt_eseddvanta_es are SUln,_arizedas follows:

a. Lexan ,_)dels are relatively inexpensive compared to full-scale

_net_l models

I_. ir_e larqe ratio of strain-to-yield stress of Lexan results in

el,_ti_: bucklinq of the models, thereby allowing the repeated

testi_a of a sinqle model

c. Past {)roqra_s with Lexan models nave shown that such models

have bucklinq "knock-down" factors approaching unity versus

typlc,_l rletal "knock-down" factors of c).u to 0.7

,,. Past proqrams have shown that buckling data from Lexan models

r_aw neqliqible data scatter



,'. L_'xd,,,a, I_e ilonded witn so]vent adhesives (etny'lene dichloride or

_(,thyI,,r,:ch]orid(') thereby facilitating the construction of models

,Is wull as a11owln9 tl_e simulation of weld joints.

f. Lexan, unlike other plastics, is an extremely tough material and does

not require special handling during machining or special handling of

tr}ecomp|eted moaei.

;,_issectlon wili be devoted to a documentation of the results of such subscale

plastic model tests and a comparison of the results of these tests with the

results from analyses as presented in Section 4 of this handbook.

_.2 L_X,, '40JLL hbCKLi_G TESTS OF SKINNED AND UNSKINNED ISOGRID CYLINDERS

S_6JLCTLu Tu COMBINED LOADING OF COMPRESSION, BENDING, AND TORSION

3./. 1 {)ackqrG_nd

Generai_v, a venicie structure will be subjected to a combination of loading

_n the _,,Ifiliment of its mission objectives. As is well known, the buckling

,,tabliltv oF a structure under sucn loads is affected by the proportions of

t_e ind_v_d_<_l types of loads applied to the structure at any given moment.

i.e., c÷_;press_on, Oending, si_ear, torsion, and internal pressure. The manner

in _nic,. t_Le ,oads interact to affect the buckling stability are characterized

in :ntt.rac_o,: e.iuat_ons as presented in Reference 8-I. As this reference

_ndic,tes, t:_e _nteraction equations are empirically determined. It is tnerefore

i_,_porL_:;'.:o ._';,_ssthe accuracy of such equations in tne prediction of ti_e

r_,,.,:_>,:,_ ;_qrld cylinders.
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,,. ,_ _,,, l,.,i _,.rLI i(.,_ti,_ L_I ',_t:_l interaction equations, a prograln was conducted

ct_|sistlrl(| ()l tile design, fabrication, and testing of two isogrid cylinders.

:_,i_,wi_;_out skin (unskinned) and one with skin (skinned) for the determination

of bucKlinq i,ehavior under the action of compression, compression-bending and

torsion.

,,._.2 Des_qr, and Fabrication of Models

L_oti_cyllr;Jers were desig_e(l to buckle in general instability. This was

accoL_;alis,_edusing the analyses given in Section 4 of this handbook for the

sKiu_ed cylinder for compression, compression-bending, and torsion buckling

and for t,_eunsKinned cylinder for compression and compression-bending buckling.

;ors_o__,i)uc_lin!lof the unskinned isogrid cylinder was determined by an analy-

sis ,.it,velope_i ',_y;4cDonnell Douglas Astronautics Company. All equations employed

,:_-t,,,_+_:_:_,_._ze,iin Table ,5.2-I. In all cases, the "knock-down" factors were

ta_.et_a_ u_t,l. Circumferential isogrid was used in both cylinders to minimize

ri_ stresses. For the case of the skinned cylinder, an external isogrid con-

fiquration was employed. I_o attempt was made to optimize either cylinder.

t_:+tor._aryunits were used in all calculations. In this section, all results

._f ,_.xper_:,(:nL,+._and theoretical calculations are given in both the International

,.+>c.,_.-" LJnits _d i_ custol_ary units.

,,,....,-_,:._+i..,oT eac_ ,:ylinder consisted of the machinir_g of t_e appropriate

,,,r.,,,,;(::_:,+_'.it_,)__ t_r,_e flat plates of Lexan. These plates were sub-

...,.;,v ' .,,,",' ,r_,_ ;_to curved configu ration_, constituting one-third of a

.,.;,, ,::. i.Dra qiven cylinder, three of these curved pieces, hereinafter

.+ ,. :r;,,,,_'_',,_(re solvent bonded SUCh that each cylinder had three Iongi-

LUG;,.* ;,;_'L:,. T_,) pr,ilosopny of the desiqn of the longitudinal Joints was
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t_ dt,,._,:r.,_)(_int Lhat would realistically simulate the weld joint of a full-

,,,,_i,.....L,J]_coL()type. The final measured dimensions of the cylinders are

s,(_v_ Jr_Fiqures _).2-I and 8.2-2. The calculated buckling stress resultants

for tr,:se dimensions using the equations of Table 8.2-I are shown in Table _.2-2.

,ks can _,eseen fron this table, Doth cylinders were conservatively designed to

buckle in qeneral instability before eitner rib or skin buckling.

J.2. J Test Set-up

Gotn v_odels were mounted in aluminum end fixtures that penetrated into the

cylinders a distance of 5.08 cm (2 inches). To assure the transfer of torsion

loa_s to the cylinder, end bands were used to clamp the cylinders to the end

fixt,Jres. Compression and compression-bending were applied to the test

cylinders by a compression test machine acting through a steel sphere located

in conical depressions in tileupper end fixture. Application of the load in a

,lepression at the center of the end fixture resulted in pure compression to

the cylinder. Combined compression-bending of the cylinders was achieved by

off-axial loading of the cylinders at depressions located approximately one-

quarter the radius (R/4) and one-half the radius (R/2) from the cylinder axis.

_or a r_oz_ocoquecylinder, such off-axial loading would correspond to an fb/fc

ratio ot u.b af_u 1.0, respectively, where fb is the maximum bending stress anu

f i_ tr_eaxial stress. Torsion load was applied by a hydraulic jack acting
C

t_)rOuQh J_ionlerltarms on the upper end fixture. The manner in which these loads

were applied is shown in Fiqure 8.2-3. As also silown in this figure, three

lOd,Jcells were employed in monitoring the loads applied to the cylinders, one

f,_r t,,eaxial load and two for the torsion loads. During cylinder loading,

t:_eodtputs of these cells were continually recorded on a dual pen X-Y recorder.

4
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. .,i _;_.:_';;.;_.rlce,r<,:_al_.s,,,nd Discussion of Results

k,,T.,_(yli_ders were ir_itially buckled in pure axial compression and in pure

,'orslon to deter_.ine bucklinq behavior for these loadings. The resulting

_ucklin,l patterns for tt_e skinned cylinder are shown in Figures 8.2-4 and

._..'-b. As can be seen in Fiaure 8.2-4 the post-buckle pattern of the skinned

cylir_der _jT_derpure axial compression indicated that buckles occurred in the

jnints as well as in tne isogrid. Subsequent tests of the cylinder, using a

dual Dea_: osc_,ioscope and electrical contacts at buckle centers, indicated

tnat tne buckles were initiating in the isogrid rather than in the joint. The

_uc,les i(',the joints were therefore of no further concern. Figure 8.2-5

inoicazes t_at considerable deformation to the skinned cylinder occurred in

t,_rsion._ _ucK_ing'. A subsequent examination of this cylinder indicatea that

one circun_ferential rib had fractured and the possibility existed that other

r_bs had experiencea plastic deformation. Although the fractured rib was

re_.1_r,),iby solvent bondinq, average _ximum axial load after rib fracture was

7bb7 h (1699 pounds) compared to a maximum load of 8095 N (1820 pounds) before

rid fracture. To prevent further damage to this cylinder, the hydraulic system

_sed to apply torque to tne cylinder was configured in such a manner that the

torsion load could be immediately released at the onset of buckling, thus

preventing the cylinder from undergoing large displacements. Interestingly,

the n_a_i_:,_,_torsion buckling load was found not to have been affected by the

rib fracture.

,x}al _ucKlin!l of the unsKinf:ed cylinder indicated _r_a_ uuckling was initiated

.,. ,.:_,_.iolnts. T_is problem was overcome by the bonding of longerons, shown

,,_i_(,_ce _;.Z-C, to t_e _nside and outside of the joints. These longerons nad

_e effect of qreatly increasing the bending stiffness of the joint without a
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.,,r,.",_,,r_,l_f,, _1_(re,_',,,in extensional stiffness. Measurementsmadeon tensile

sample_, desiqned to simulate the joint, indicated that the addition of the

double lon_erons increased the effective extensional stiffness of the joints

by approximately 53 percent. The buckling patterns of the modified unskinned

isoqrid cylinder for pure axial loading and pure torsion loading are shown in

Figures _].2-7 and 8.2-8. No damage occurred to this cylinder from torsion

bucKllncl as nad occurred for the skinned cylinder. Nevertheless, all subse-

quent tests for torsior_ buckling of the unskinned cylinder employed the quick

load release system previously described for the skinned cylinder.

A total of 54 bucklinq tests were performed on each cylinder to determine the

E_ucklinq interaction of combined compression, compession-bending, and torsion.

TJ_is was accor_,_lisnedby the application and maintenance of a torsion load

w_1_le a×i._i load was applied until buckling occurred. Torsion loads were

varied from zero to 100 percent of maximum torsion load in approximately 20

percent increments. Axial loads were applied along the cylinder axis, for

zero Dendinq, and at two off-axial load points (R/4 and R/2), for combined

coi:_pression-bending. To prevent anomalies in the data from local trisector

variatior_, a_l load combinations w_re performed for buckling on each trisector

and tne results were averaged. The data from these tests are summarized in

tt_e(iraphs of Fiqures ,).2-9 and 8.2-10 in terms of average compression stress

r,ltio_ , _ f/F c wr_ere f is the compression buckling stress and F is theC C C

_;_axi_U_:_compression bucklin 9 stress) and averaoe torsion stress ratios

(_st = i_t_st wi_ere fst is the torsion bucklino stress and Fst is tne maximum

to_-sior;_,_cK_q stress) as functions of the compression-bending ratio fb/fc.

6
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It_,l,,t_.rmii_r'lh('_,ff:'(I (_t th('order in which Inads werp applied, both cylinders

_,,i,.._I..,,l_,,L,h,,lbV ,il,l,li(:,Itiorlof axial compression foll(lwed by torsion. The

:-,_,ultsof this reverse load order were essentially identical to the original

loading order.

Reference 8-I gives an interaction equation for compression, bending, and

torsion of

2 l
Rc + Rb + Rst =

where Rb is the bending stress ratio.

(8.2.1)

This interaction equation is plotted in

Figure 8.2-II for ratios of fb/fc of O, 0.5, and I. A comparison of Figure

8.2-II with the experimental data of Figures 8.2-9 and 8.2-I0 indicate that

eYcellent correlation is obtained for an fb/fc ratio of zero but that the

experimental curves for fb/fc of 0.5 and l both lie above the theoretical

curves. The excellent correlation for fb/fc = 0 partially results because

the end points of the experimental results are defined to be the same as the

theoretical values, i.e., Rc l at Rst 0 and Rc 0 at Rst I. In like

manner the end point for Rst = l and Rc 0 is by definition the same for both

theory and experiment for the two remaining ratios of fb/fc.

The e,d points of the theoretical curves may be equated to the remaining

experimental end points by modifying Equation (8.2.1) as follows

2 = l (8.2.2)
k(Rc + Rb) + Rst

where k = (Rc)th/(Rc)ex p and (Rc)th and (Rc)ex p are the Rc values for theory

and experiment, respectively, for Rst = 0 and for the appropriate ratio of

A comparison of the results of Equation (8.2.2) with the experimental
fb/fc •

r_su_ts indicate excellent correlation as shown in Figures 8.2-12 and 8.2-13

for all ratios of fb/fc for both cylinders.

_CL,":' ' ":I_ITI'"_- C,iF,....... "'"' ' "Ft l t,I



;',_i', v\_ ,'_ I_'F_t ,t,lv't','l:,'tll. Jsl,li_,_Ll_:, th(IL Lh(: shape' of Lh(' curvt,_, _iivt-'n by

L,lUatlon (_l.?.l) is essentially correct for both skinned and unskinned isogrid

Lylind,:rs. There are a number of reasons wi_y the original data varies from

te_e theoretical values. These reasons will be mentioned in later paragraphs

tnat deal _ith correlation between theoretical and experimental buckling loads

for pure ,_xial conlpression and pure torsion. The practicality of the excellent

corrula_ion of the adjusted data is that only the end points of the interaction

curves need be ascertained in order to completely define the entire interaction

curves.

Tlle averaqe values of axial load were 755? N (1699 pounds) and 7167 N (1611 pounds)

_or the skinned and unsKinned cylinders, respectively, and the average values of

the torsion loads were 479 M-N (353 ft-lbs) and 353 M-N (260 ft-lbs) for the

skinned and unsKinned cylinders, respectively. The comparison of these measured

_alucs _vith the theoretical values of Table _.2-2 require the reduction of the

total loads to equivalent stress resultants. Tills is necessary in that the

cylindPr joints supported a portion of the load applied to the cylinders. This

reduction is relatively straight-forward for exial compression in that a uniform

axia_ strain may be assumed by virtue of the rigid aluminum end fixtures. Given

a uhiform axial strain, the stress resultant in the isogrid may be shown to be

P
= cr

(Icr _ t (l + _) (8.2.3)

_r_ere , is t,_ecritical buckling force per unit length, A is the total effect-
r

_vt.exte,sionai area, Pcr is the total bucklinq load, and t and _ are as

previously defined in tnis handbook.
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APi_l},,itiL_l_! tht.ai_l,r()l,ri,_t(_values from Fiqur(_ ;'.;'-If(_r the skinned cylinder

and fr_m ii_iLir¢'_i.;'-;'f{)r the u_iskinned cylinder will qive

N (skinned)
cr

Ncr (unskinned) =

(0.728 M"I) Pcr

(0.417 M-l) Pcr

An average load of 7557 N (1699 pounds) for the skinned cylinder will then give

an ;_ of 550C ;(IM (31.4 Ib/in) corresponding to 76.1 percent of the theoretical
cr

values of 7230 _/H (_I.3 Ib/in). As previously mentioned, the maximum load

carried by the skinned cylinder was 8095 N (1820 Ibs) prior to cylinder damage

from torsion loading. This iqad corresponds to 81.5 percent of the theoretical

load. In like manner an average axial load of 7167 N (1611 Ibs) for the

unskinned cylinder gave an )icrof 2990 N/M (17.1 Ib/in) for 89.5 percent of

tile theoretical values of 3340 N/M (19.1 Ib/in).

A comparison of the theoretical torsion buckling loads to the experimental

values is not as straight-forward as the axial case just treated in that the

relationship between torsional shear strain and the torsional load carried by

the joints is _ot known. If the assumption is made that the isogrid buckles

in torsion at a critical shear strain (i.e., Vcr(1) is the proportional to

Ocr(1) where ,)or(1) is the critical shear strain) then the following relation-

ship can be aerived that relates the experimentally determined torsional

rigiuity, aefined as the shear strain per unit torque, to the theoretical

torsional rigidity ot d 360-degree isogrid cylinder.

_ne-_ T _s the expected torsion load, (OIT)th is the theoretical torslonal

rlgi_ity, (_,/T)exp is the experimentally determined torsional rlqldlty, a,ld

(8.2.4)

9



! I,,,, _,,,,(_r,,Li(.al Lrll. l(,lI torsion load.

If,._)r_'ti_:,_ltorsional rigidities will give

APl)licatiorlof the measured and

T (skinned) = 1.19 Tcr

T (unskinned) = I.36 Tcr

Ri::PZ-_oDUCIBILITY OF THE

ORIGL-NAL PAGE IS POOR

For the skinned cylinder tne calculated value of Vcr is 1460 N/M (8.31 Ib/in)

(Table _._-_) corresponding to a Tcr of 374 M-N (276 ft-lbs), for an expected

torsion buckling load of 445 M-N (328 ft-lbs). The experimental value was

4GO _.I-_(354 ft-lbs), a value 8 percent greater than the expected value. In

1_ke mariner, tile calculated Vcr for the unskinned cylinder is 786 M/N (4.49 lb/in)

for a T of ?04 M-N (151 ft-lbs), giving an expected torsion load of 278 M-N
cr

<2t)bft-l_s). Actual torsion load was 353 14-N (260 ft-lbs), 27 percent greater

titan tne expected value.

There are a number of buc_ling considerations that relate to the discrepancies

between tne ti_eoretical and experimental compression and torsion buckling loads

ana tne discrepancies between the theoretical and unadjusted experimental

interaction curves.

The b_ckilr_q equations, given in Table 8.2-I and taken from Section 4 of this

hanJL_c,,, ,_s_u,:,esimply supported end conditions. Furthermore, these equations

.v) f_c)t, _s:.:,_,"one effects of prebucklin9 bending, rib torsional rigidity,

,._(:._;c_,signs Jf joints, or the festoon curve predicted by tl_eFl{Jgge equations.

i_)r t u ;,,aeis tested in this program the ends of tne cylinders were clamped

,r,,)r_,erto transn.it tne torsion loads to the cyllnders. Clamped end conditions

will increase :_e buckling loads for both torsion and compressioh over simply

lO



REPRO!'_ :_.'LBII._'I"v 0!:' '['H e;

'.==i'P,-=,.,l ,.,_,i ,,mdltl(m'.. It i', Li_ouqllt that these clamped end conditions were

F,".p_Jli',ll,i,' l_t" Llle _?xill,rilli_'flLdl torsion load of the skimled cylinder being

8 percent qreater tt_a,_ti,eexpected torsion load. As can be seen in Figure

_.2-5, tim torsion buckle pattern traverses a joint in the skinned cylinder.

For the unskinned cylinder, on the other hand, the bending stiffness of the

joints was increased by the longerons to the point that buckling in the joints

did not occur, thereby restricting all buckles to the isogrid portion of the

cylipJer (Figure 8.2-8). It is thought that this restriction, in conjunction

with the effect of the clamped ends, resulted in the 27 percent increase in

tne torsion bucklinq load over the expected value.

Ti_e festoon curve effect, mentioned in Section 4.2, as well as prebuckling

bending, will tend to decrease the compression buckling for pure axial com-

pression. These effects do not apply to torsion loading and have little or

no effect for off-axial loading (compression-bending).

It is thought that these effects were responsible for the displacement of the

unadjusted experimental data away from the theoretical interaction curves.

For example, tl_eskinned cylinder under off-axial loading for fb/fc = U.5

buckled at °9.5 percent of tile load for pure axial compression but classical

t,_eorb'iudicates tnat this ratio of compression bending should result in a

:,acklin,.l_,_adof t,_.7 percent of tnat for pure axial compression.

;,_etorsiorml riqidity of the isogrid ribs contribute to the load carrying

capa:_ility of an isoqrid cylinder but t_is effect is not included in the

equations of this l_andbook. In the majority of cases, suc, torsional rigidity

would nave a minor effect as the cross sectior_ of typical isogrid ribs is

II
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rei,iIiv,,Iv_,mali. For the unskinned cylinder of tills program, however, the

v;iutt_of the ribs was approximately 90 percent of the depth of the rib, tilereby

__)ivln!_tiluribs of tz}is cylinder significant tbtsional rigidity. It is thounht

ti_at _t_t_iflcrease in buckling load by tills torsional rigidity resulted in the

r_,iaLlveiy _i1gr__i for the unskinned cylinder of 89.5 percent of the calcu-
Cr

l,_te,Iv_iuc versus the Ncr of 81.5 percent of the calculated value (prior to

r'ibJa_,_a!;e)or the skinned cylinder.

T._,:prcvious paragraphs indicate that the theory of Section 4 is conservative

in reia_on to tne effects of clamped ends and rib torsion rigidity and also

.;or tr'_.effest_ of joints, provided that buckling is not initiated in the

_.c,-nt._._ c t._eory is unconservative in relation to the FlUgge festoon-curva

_+;,;ct ,IT:,It:.L_ffects of prebuckling bending. In practice, account is

",,,_,.-,_':_.t,_,,of tr.,,,__:ff(,cts,as well as the effects of structural i,,_per-

l__t_,_:_'; 'L_' ai] Inciusive "kr_ock-dowll" factors determined i)y tests on

re:_,'..,_,'nt,_t}v?full-scale ,_etal _tructures.

_._,,_:e,v,,_,'i;,_rturesfrom the theories presented in this handbook as related

t,_ t.,is ",",L >r,.,.';raF._,as well as the specifics of the test program described

;r_.t.i, ,,.:;._n CSe_tion 8.2), are presented in detail in the engineering test

,, r. " ; r'.,:nce _ _'

• tn_-,<-xp,:r_;'_(:l;talprogram indicate _l_at tne interaction curves

,.,. .... ,,_..,_,_,.',._'._)adequately describe the response of skinned and

,.....,.,',,,u,r,,; (.;v,;r.._erssubjected to combined compression, compression-

,,_,i;.I_r_:,,iil,iL,_rSlOF.,_rov_Jed the end points of the theoretical curves are

12



_',it_,_L,',lI,J t,,,' ('xl),'r'li,_'i,L,JlddLd. Irl practice, this llleans that tests must be

i,,,r'I_n,a,l _)11i;i'.td_ "_;:'.;til.lt_l_SOf a proposed copfigur'ation for buckling loads

.JnJer pure torsion and under various combinations of compression-bending. The

Ja:,,_/roJL_these tests combined with Equation (8.2.2) in the manner described

_n :,cction 3.2.4 _vill completely define the interaction curves.

£t sr_o.iJ also be reallzed that effects other than those analyzed in Section 4

inf1_(_nce t_e bucklinq stability of a configuration and that these secondary

tffects are qenerally handled by a "knock-down" factor determined by tests of

rei)rcsL'ntat,ve full-scale metal structures.

13



REFEREI_CES

'.;ru:,_, !. i., "Analysis and Desiqn of Flight Vehicle Structures,"
ir1-_I,_',_._ifset Company, Cincimlati, Ohio, 1965.

,_,.i.._. ,., "Lxper i_ental Oetermination of the Buckling Interaction
,,f .',Ki,,n,_.,1and linskin_('dIsogrid Cylinders Subjected to Compression,

_,_,_p,._,,,_ion-_,endin(l,and Torsion," McDonnell Douglas Report MDC G5238,

.',uqust I,!74.

14



L_,

.I

r-

C.-)

= .

(. _"

*--,

_4

L. _)_.

C " "::,C

_. ,'-3

__. L_

-.9

- .;

, • 4

ill

g
(._

>,..

O

..J

Z

o

Hd-
l.._J

•¥ it-

|1

U

_D

c"l_ £"1

_ "d-

)

Ie,) _ e_

LL, II

, U
2,_.

I

; L_J

)

)

t
)

)

(,,)

r _ _ •

c" eO _l '!" "

c" ,--. _

0 0'_ e"--

c.._ _ eO * *

(.) 0 _,,' )-.* O"

i CM

e---
A

,"," I.-J

C3C 0'_

v

i!

U

"1

t._

+ +
le.-.- e.--

,-- 4-_ ¢v-)

r--* (*_ ¢%J *

U ¢%J (J Q

ii ii II il

¢%J _ 0'1

s.. s..
u u

('_

• 0_ °¢%J •¢%J

"t- • "T- C_ *3" ,
°q. • ° _::l"

L_J _ IJJ

L_J

¢%1

I!

U
Z

L_I

z

I-"

..J ¢._

L_ l---

_JZ_

+ +

• _

_ U 0

II II li II

u
z z

r'_

Z Z

Z Z

z

w.,, (j

"_iil

% m
,,C" ,--- _

0 0'_ "--"

"o

ii

U

o
P

v

W

U

_ N

II II
_-_ U

0'1 .._

u
;E

(:3
L_J

Z
Z

v_
z

15

REPRODUCIBILITY OF THE
OI_IGINAL PAGE 18 POOR

A • •



1 •

t

_C

W

C',,J
!

('_

CO

t_

I"-

t--- .--d

,-_ ¢._)

; _LI

t

16

\



+0:,_,

u_

,r.p
-- u

+

B_

,-+ _
: c_,_

+_,_m
L.,+--

c"

: +
, ......, ++

J c ,o.,l

III

,_,
..+.,+

\

f_o X._ +,,.+

, /
/+

#

+ll..me-- .- -_+

_,...
,.. e ++
o

.-..t'
• ql"+

Ill

++ t,
\

in+,-4
• o

_0

i "+

,+:_W,,,.....

_._ i // _'\\

I_._ I '/
//

/ /
i,-1_-- _ • "11 -

,'

i,!,,,i+.t

• °
O0

E_-

_r+++,4
v

',, 1
.i

r-" ........... _.....

, _

yo

++__I-i

-I-4

<_, I_,

' i_ ""
0

i _+; =H

.,, t +
+

;+-_. ",_- I

,1 I _ o

!,i !

I

,, +._<_-_

I
I

i

.._J

0

4-i

8

I

17
I?.J:._P£_.,,,j.UU.L.,.£.,.,,I.j.I UJl,' J:li.P..,

OCOn_ALPAOmIS PO0_



i%

!

L

-0

c" c"

i

!

;-_

<" c'<

A

• o

tl

i
L

_.

u

o.

_ / , _,

I _--D '" !/''_"'//" "-_--_ _ "'_- _-'I

_ ! ,)t-,t, o K t,, it, i °_

_7 / ,,',.'._,\•_ /,'_-=,\' ,.

<-J"j
">. _ oc>i "

_x_, _
. _- _.

I
" i

ta ._

i

e_

• °

I

tp

I:I

0

i-i

0

I

_ o_

.,+.k'+,/, "

' I 0

i
18 OI_IGIN_LPAOB_ J_



l.'i×ture _n i'ositlons

for Cc_Dresslon-BendinF

l_.Oh em

c -

dnlversal Joint

Typ - ,_ nlcs

Load Cell

Typ - 2 plea

\

[i

I

_, x

/

- 15.Ph em
(6.ooin)

Axl81 I_d Cell

Pulley in Clevl8

Typ - 2 plea

Upper End Fixture in
Position for Pure Axial Lo_dlng

TOP VIEW

A>."n ',

_ .

'.e._t

i,,ydr,_u 1 _,e jack

"j_. • .'.i _.,"

/

n_,'r Knd

i

• , ,

/ |

t,

Whlffle l_r

MetellJ e Cable

_soRrid Cyll nder

SIDE VI_

,' _ "_lr( '_ {_.
,__ _hemet ic of Teat :_t-_P

19

REPRODUCIRII,ITy OF THE
'_[_I or, ,



r .... T- _1

t

I

!

].'t_,urp ;.:-'-,_ }b:cklln_ i_,ttern _¢ ,qk_Nned Cylinder Subjected to, I_re Axla] ]_ad

2_,

d



Figure _.2-5 Buckling Pattern of Skinned Cylinder Subjected to l_lre Torsion I_d
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