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DESCRIPTION OF STRESS-STRAIN CURVES BY THREE PARAMETERS

By Walter Ramberg and William R, 0sgood

SUMMARY

A simple formula is suggested for describing the
stress-strain curve in terms of three parameters: namely,

Young_s modulus and two secant yield strengths. Dimension-
less charts are derived from this formula for determining

the stress-strain curve, the tangent modulus, and the

reduced modulus of a material for.which these three param-

eters are given. Comoarison with the tensile and compres-
sive data on aluminum-alloy, stainless-steel, and carbon-

steel sheet in NACA Technical Note No. 840 indicates that

the formula is adequate for most of these materials. The

formula does not describe the behavior of alclad sheet,

which shows a marked change in slope at low stress. It

seems probable that more than three parameters will be

necessary to represent such stress-strain, curves adequately.

INTRODUCTION

An assembly of the tensile and compressive stress-
strain .curves for sheet materials characteristic of air-

craft construction is being obtained at the National

Bureau of Standards as the principal objective of a re-

search project for the National Advisory Committee for
Aeronautics. Stress-strain, stress-devlation, secant-

modulus, tangent-madulus, and reduced-modulus curves have

° been presented in reference 1. for various grades of sheet

materials of aluminum alloy, carbon steel, and chromium-

nickel steel. A second objecti_e of the same research

project is a search for yield parameter,a that give a better
description of the stress-strain curve than those in use

at present.

The conventional descripti-on of the s.tress-strain

curve of metals by the two parameters, Young_s modulus and

yield strength, iS .inadequate for the efficient design of
members unless the material follows Hooke's law up to. a
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yiel_ point at which it yields indefinitely under constant

stress. This special behavior is approached, for example,

by certain steels (fig. l) and by certain low-strength

magnesium alloys, but it is not characteristic of many

high-strength alloys for aircraft.

Examination of the stress-strain curves for aluminum-

alloy sheet and chromium-nickel-steel sheet given in ref-

erence 1 shows, particularly for the compressive stress-

strain curves (figs. 2 and 3), a gradual transition from

the elastic straight line for low loads toward the horizon-

tal line characterizing plastic behavior. The type of

transition varies widely. Hence there is no hope of reduc-

ing all stress-strain curves to a single typ_ of curve by

uniform stretching, or affine transformation of coordinates.

This rules out the possibility, which exists for affinely

related stress-strain curves (reference 2), of complete

description in terms of only two parameters, Youngts mod-

ulus and secant yield strength. A minimum of three param-

eters will be required to describe the changes in shape

for different materials.

Several proposals have been made for describing the

stress-strain curve in terms of three or more parameters°

Donnell (reference 5) suggests as two yield parameters

the stresses s I, s_, at which the slope of the stress-
strain curve is equal to 3/4 E and 1/4 E, where _ is

Young_s modulus. The stress-strain curve is then derived

from these two parameters on the assumption that the

slope varies linearly with the stress. This procedure

gives a good descriotion of many tensile stress-strain

curves of aluminum alloys, but it does not seem adequate

for the highly curved tangent-modulus curves found for

the compressive stress-strain properties in reference l,

from which figure 4 is taken. Furthermore there are

practical difficulties in determining the stresses corre-
sponding to a tangent modulus of 8/4 E and 1/4 E

quickly from the stress-strain curve.

Esser and Ahrend (reference 4) noticed that the

stress-strain curves for many materials may be approxi-

mated by two straight lines when they are clotted • on log-

log paper. They orooosed to define yield strength as

the stress at the intersection of these two lines.

Description of the stress-strain curve above the yield

strength _ould be obtained from the slope of the upper

straight line. The proposal is doubtless an advance over

the description by an offset yield strength. It has the

.... • ................................ . • . . ................
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disadvantage, however, of requiring the plotting of suf-

ficient stress-strain data on log-log paper to determine

a straight line through the points. Furthermore it gives

no informationabout the shape of the important transition
region near the intersection of the two straight lines.

An analytical expression for the stress-strain curve
which is suited for theoretical studies of plastic buck-

ling was proposed by Nadai in 1939 (reference 5). The

expression is

e = s- s'< SpE

e = ..... S > s-

ey- Sp

-\

[
/

(i)

where

e strain

s stream

ey

Sp

n

strain corresponding to yield strength

proportional limit

constan_

Sy

If the iogarithmof both sides is taken in equation (_),

it can be seen that equation (1) approaches Esser and

Ahrendls two straight lines as asymptotes for low and for

high stress, respectively. The description of the transi-

tion region is obtained by increasing the number of param-
eters from three to four.

In the study of plastic bending, the second author

found an analytical expression containing three parameters

that appeared to be well adapted for representing stress-
strain curves. Further examination of the exoression in

the light of the data given in reference 1 confirmed this
view.
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ANALYTI CAL EXPRE SSI ON

Stress-Strain Curve

The proposed analytical expression is

E •

where K and n are constants.

becomes the same as equation (2) if

(2)

Nadaits expression (1)

, • r._

Sp= 0

ey _ = K

(3)

that is, if the proportional limit is taken as zero, and

the requirement is dropped that ey is the strain corre-

spond__ng to a yield stress Sy.

The expression (2) may be written in dimensionless

form in terms of the follo_ving variables (reference 6):

S I

S 1

J

(4)

where s I is the secant yield strength, equal to the

ordinate of the intersection with the stress-strain curve

of a line through the origin having a slope equal to m I E
, < i(fig. 5),• m I being a chosen constant 0 < ml .

Since m I is fixed, the transformation (equation (_))

reduces all affinely related stress-strain curves to a

single curve.

The abscissa of the intersection for a stress-strain

curve described by equation (2) is
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sle i - + K
mE E

1

Inserting equation (4) in equation (2) gives

Sl )n-I n

From equation (5)
n-i

I ml
K V - m I

Inserting equation (7) in equation (6) gives

5

(5)

(6)

(7)

i -- m I n= a + a (8)
m I

f

- ,. "-

. - .

",L

Affinely related stress-strain curves that may be described

by equation (8) are characterized by having the same value

of n. Figure 6 shows a family of curves for a number of

different values of n, and m I = 0.7.

Stress-Deviation Curve

The stress-deviation curve is obtained by plotting

stress against difference between measured strain and

elastic strain corresponding to Hooke's law. For the

stress-strain curve given by equation (2) the deviation

is given by

d = e- s_ = K(S (9)
E \ _,J

or

log d = log K + nlog s_ (I0)
E

d

that is, a log-log plot of deviation against stress would

be a straight line. The deviation may be written in dimen-

sionless form as

6 - Sd (ll)
S

1
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From equations (9)., (4), and (8)

or

- n

m 1

1 - m 1
log 8 = log + nlog G (13)

m I

The family of straight lines corresoonding to various

values of n and to m I = 0.7 is shown in figure 7.

Tangent Modulus

The tangent modulus at a given stress is defined as

the slope of the tangent to the stress-strain curve at

that stress. The reciprocal of the tangent modulus is

from equation (2):

! = __ = 1 + nK shn
E, d. { - {] (.14)

This may be written in dimensionl'ess form by making use

of equations (7) and (4):

- k

..,.. • .
- •k

n(1 - m_ ) n-lE = 1 + c (15)
E I ml

Figure 8 shows the tangent-modulus ratio E'/E plotted

against stress ratio _, with m I = 0.7.

Reduced Modulus for Rectangular Section

The reduction in buckling stress when the stress

exceeds the proportional limit is frequently estimated

(reference 7, pp. 159 and 274) by replacing Young's mod-

ulus E by a reduced modulus E r. Thus in the case of

columns the actual buckling stress sr would be esti- _
mated as

_ Er
sr - -- s e (16)

E
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wh,ere_ se is the buckling stress comouted from elasticL

theory and, for columns of rectangular crGss section,

from reference 8,

Er = _EE' (17")
2

(4_ + Jgr)

Dividing equation (17) by E gives

mr = 4E '/E (18)

Figure 9 shows the reduced-mo'dulus ratio Er/E plotted

against stress ratio a for different values of n and

with m I = 0.7.

Equation (16) may be solved for Er/E as follows:

Let (_e = Se Sr--; (_r --
S 1 Sl

(19)

so that equation (16) becomes

Or Er

(_e E

(20)

Thus, the desired value of Er/E is the ordinate of the

intersection of the straight line Er/E = O/(_ e with the

reduced modulus curve, equation (18), for the material

(n) in question. Straight lines w.ith the given slope

1/(_ e may be drawn conveniently by connecting the origin

with the proper point on the circular curve in figure 9.

DERIVATION OF EMPIRICAL CONSTANTS FROM STRESS-STRAIN CURVE

The adequacy of equation (2) was tested by plotting

on log-log paper the stress-deviation curves for the sheet

materials given in reference 1. The points should lie on

a straight line according to equation (10) if equation (2)
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is an accurate description of the stress-strain curve°

From the slope and intercept of such a straight line the
constants K and n can be de_ermined for a best fit.

Straight lines were obtained for all the compressive

stress-deviation curves and for all but four of the ten-

sile curves for stresses greater tlian the stress at which

the secant modulus was equal to 90 percent of Young's

modulus. The exceptions had stress-strain curves which

had a gradual change of slope throughout their entire

length. Thim indicates that any value of m I less than

0.90 would give an approximate fit to compressive stress-

Strain curves and to most tensile stress-strain curves

at stresses above that corresponding to m I = 0°90°

It appeared desirable to choose the value of m I

such that the secant _'eld_ strength s I would approxi-

mate the widely used yield strength So. s for 0.2--oercent

offset. In other words, s I should be chosen to satisfy

appr o ximat ely :

s
o.oo2 = e- _! (21)

E

where (see fig. 5)

S 1
e - (21a)

miE

inserting equation (21a) in equation (21) and solving for

1/m I gives

1 0.002 0.002
--= I + - 1 + _-- (21b)

ml sl/E So.alE

Examination of tables III and IV of reference 1 gave val-

of so.e/E for the aluminum alloys and the chromium-ues

nickel steels which ranged from 0.00258 to 0.00675; the

1025 carbon steel in reference 1 was not included because

of its relatively low value of this ratio. The average

value was

S

= 0.00486 (21c)
E

Substituting this average _n equation (Ylb) and solving

for m I , gives
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m I = 0.709 (21d)

It was decided, therefore, to use for ml the value

m I = 0.7 (22)

for determining the secant yield strength sI.

W_nen E is known and sI has been determined, it

is still necessary to know the shape parameter n in

order to establish the shape of the stress-strain curve
according to equations (8) and (4).

The shape parameter n is conveniently derived by

the use of a second secant yield strength s2, corre-

sponding to a second secant modulus rosE, as follows.
In analogy to equations (5) and (7),

•i

. k

es -. - + K
msE E

._-= z +z(,,.
m 2

Solving both equations (7) and (23) for K gives

1

,; C<-,)
so that

_i__ 1

_h- l
m I

Solving for n gives

(23)

(24)

(25)

(26)

m_ I- m I
log

mI 1-m s
n = 1 + .......

log s-kl
sm

(27)
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The value of m s

was chosen as
for the second secant yield strength

m s = 0.85 (2,8)

since this value lies midway between 0.7 and 1.0 and

since it is on the safe side of the limiting value

m = 0.90 up to which equation (2) is an adequate descrip-

tion of most of the stress-strain curves in reference 1.

Substituting equations (22) and (28) in equation (27)
gives:

17

log-_ 0.3853

n = 1 + = 1 + (29)
8 1 S 1

log -- log --
S 8 lO S8

A plot of this relation on log-log paper is given in fig-
ure 10.

COMPARISON _ITH EXPERIMENTAL STRESS- STRAIN

AND TANGENT-MODULUS CURVES

The order of approximation w.ith which equation (2)
describes the stress-strain curve for materials with val-

ues of n from 3.08 to c_ is brought out in figures ll

to 13, in which the data were taken at random from refer-

ence 1. The approximation appears to be adequate for most

practical purposes. In these figures E, el, and ss

were obtained from the stress-strain data, and n was com-

puted from equation (27). Equation (8) then gave the rela-.

tion between c and o, and the relation between e and

s was obtained by multiplying ¢ by sl/E and a by s I.
A better fit would have been obtained if n and K had

been determined from a plot of the data, as exolained in the

first paragraph of the preceding section (p. 7); but the

procedure used is simpler and probably adequate in most
cases.

A much more severe test of the adequacy of equation (2),

than the comparison with the stress-strain curve, is a com-

parison with the tangent modulus - that is, the slope of the

stress-strain curve. Such a comparison seems to be advis-

able since the tangent modulus must be computed for evaluat-

ing the reduced modulus in compression. (See equation (17).)
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The tangent moduli in compression of reference 1

are plotted on a dimensionless basis in figures 14 to 21

together with computed moduli as given by figure 8. The

value of n from equation (29) for each material is given

in figures 14 to 21. The computed moduli are shown for

integral values of n and for n = 2.5. To appreciate

the closeness of fit, therefore, it is necessary to inter-

polate between the curves by using the particular value

of n applying to the plotted data. Except for the

curves with a very sharp knee (n > 10) the experimental

values of tangent modulus for stresses below the secant

yield strength s I differ less than _0.07 E from the

values corresponding to equation (15). In the case of the

values with the sharp knee (fig. 21) the maximum differ-

ence was considerably greater. These differences do not

detract seriously from the usefulness of equation (2),

however, since the region in which the agreement is not

good comprises a limited stress range. Consequently, in

this range the difference between the experimental and

the computed values of O corresponding to a given value

of tangent modulus are small.

The comparison was confined to the materials in ref-

erence l, which did not include alclad aluminum alloys.

In the alclad aluminum alloys a change in slope at low

stress is observed which corresponds to the yielding of

the aluminum coating. It seems probable that inclusion

of this effect will require the addition of at least one

more parameter to the three contained in equation (2).

EXAMPLE FOR APPLICATION 0F THREE-PARAMETER METHOD

/

Computations based on elastic theory give a value of

S

se = 87 × l0 pounds per inch e

for the critical compressive stress of a given specimen.

The material of the specimen has the compressive stress-

strain curve shown in figuA'e 22. It is desired to deter-

mine the stress:

E r
S r -- Se

E

which is an estimate for the critical stress after taking

account of the olastic yielding of the material.
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, From figure 22 are obtained the two secant yield

strengths
|

s_ = 43.0 X 103 pounds per inch s

ss = 38.0 x i03 poundsper inch s

so that

S 1
- I. 132

S_

From figure i0 this corresponds to a shaPe parameter

n= 8.15

Entering figure 9 with this value of n and with th_
ratio

I

gives

s_1- _ 43.0 _ 0.494

se 87.0

_E _ 0.473
E

so that the corrected critical stress is

3 3" 2

s r = 0.473 × 87 × lO = 41.2 X lO pounds per inch

National Bureau of Standards,

Washington, D. C., April 8, 1943.
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