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SUMMARY

By the use of an integral technique, the laminar boundary-layer
equations are reduced on the windward generstor of the plane of symmetry
to a set of simultaneous algebraic equations. The Chapman-~Rubesin
temperature~viscosity relation and a Prandtl number of 1 are assumed.

The method enables the skin friction coefficients and Stanton number to
be calculated in a much shorter time than was needed to obtain exact
numerical solutions from the boundary-layer equations. The solutions ob-
tained by this method are, for the most part, within 5 percentage points
of the exact solutions.

INTRODUCTION

Some designe for supersonic alrcraft and missiles indicate the use of
g conlcal nose or forebody. TFor design purposes it 1s necessary to know
the skin friction and heat transfer on the conicsal surface for all pos-
sible flight conditions. One important condition is fiight at angle of
attack, since the boundary-layer flow is complicated by the addition of a
crossflow, which increases with lncreasing angle of attack.

Several snalytical papers have been published dealing with the effect
of angle of attack on the boundary lasyer of a cone. Laminar flow over
cones at emall angle of attack has been studied (ref. 1) by using a lin-
earization of the nonlinesr boundary-layer equations for a cone as derived
in reference 2. In references 3 and 4, the results of reference 1 have
been extended to cover the combined effect of spin and smell angle of
attack. In reference 5, the boundary-layer equations for large angles of
attack were solved by a numericel method but the solutions were limited
to the plane of symmetry. The preceding solutions were limited to the
insulated case with a Prandtl number equal to 1.



CHNICAL LIBRARY

ABBOTTAEROSPACE.COM

me

2 NACA TN 4380

Additional numerical solutions were computed in reference 6 for the
equations for large angle of attack in the plane of symmetry. Heat-
transfer solutions were also obtained in reference 6 by noting that for
a Prandtl number of 1 the energy equation in the plane of symmetry could
be written in the same form as the momentum equation along the genersator
and, therefore, the enthalpy profile is identical to the velocity
profile in this direction. An approximate correction factor for heat
transfer is given in reference 6 for the case of a Prandtl number not ~
equal to 1. -

Obtaining a numerical. solution to the boundary-layer equations of
reference 5 is esn involved process and requires an electronic computor.
It was therefore desirable to find an approximate method of solving the
boundary-layer equations from which results could be obtained with only
the use of a desk calculator. An integral method is presented herein,
that results in a pair of simultaneous algebraic equations in place of
the nonlinear ordinary differential equations of reference 5 for the
plane of symmetry.

Interpolation of the exact solutions of reference 6 glves good re-
sults within the range of varisgbles studied, but the method developed
herein enables quick c¢alculation of results outside the range of varia-
bles considered in reference 6. For this purpose, a computational pro-
cedure for the present method 1s given in appendix B. The technique
given in this paper also indicates a method for studying the boundary
layer on the cone other than in the plane of symmetry.

EQUATTONS OF MOTION

The boundary-lesyer equations are given in reference 2 for a general
orthogonal coordinate system in which the body surface is defined by
y = 0 and the coordinate x 1s defined so that the body cross sections
are similar for various values of x. These equatlons can therefore be
applied to a cone at angle of attack with the coordinste x along a
generator, ¥y perpendlcular to the cone surface, and xB¢ on the cir-
cunference of the cone, where ¢ is the meridional sngle measured from
the windward generator on the plane of symmetry and B is the sine of
the cone semivertex angle §. Figure 1 shows this coordinate system.
Sinece the flow past a cone at angle of attack is still conical, there is
no pressure gradient along a generstor of the cone. Therefore, for
steady-state conditions the boundary-layer equations from reference 2

can be written as

du du . pw du  pwd _ 3 du
mPeowPrBER-L-L (05 (1)

¥S8Y -
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ow ow  pwow  puw 1l dp , d ow
pu&+pva+x—ssa+-¥-_-x—536+a—y;(p5§) (lb)

8(§u2 N .a(S;) N i_ﬁ B(Tm(? + B9 (1e)

au)2 (aw)z d (am)

+ + .4 ld

“[(a 2 I (1)

P = pRT (1e)

Equetions (1la) and (1b) are momentum equations in the x and @

directions, respectively, equation (lec) is the continuity equation, equa-

tion (1d) is the energy equation, and equstion (le) is the equation of

state. All symbols are defined in appendix A.

The following physical assumptions, which are basicelly the same a&s
in reference 5, are used in this paper:

(1) A thin leminar boundary layer across which the static pressure
is constant and slso Cp is constant

(2) Prandtl number equal to 1

(3) The Chapman-Rubesin temperature-viscosity relation (ref. 7) is

K T
_— = 0 = 2
™ T (2)

where the constent C is evaluated to match the Sutherland value of vis-
cosity at the cone surface

T \L/2 T, + 198.6
C=\m, T, + 198.6 (3)

(4) The cone surface tempersture is constant. This differs from the
assumption of zero heat transfer given in reference 5 in that heat trans-
fer is considered.

For Pr = 1, equations (1) can be combined to give the new energy equation
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(o F e Fr53)-505) “)
where -
B= el + 2 (uf + wE) (5)

If, in addition, the surface tempersture is constant and a new
quentity @ is defined as

H -
0F e 6
et (8)
the energy equation (4) can be written as
o8 8 w 3@ d L)
(R 5S)-5HF) (7)

The boundary conditions on the cone at angle of attack are
vV=w=8=0 at y=20

and (8)

[+
n

V=Ve= 0, W= Wy, @ = 1l at y=58

where y = 8 at the outer edge of the boundary lsyer. It is assumed
that both the veloeity and thermal boundsry layers have the same thick-

ness O.

Combining each of the momentum and energy equations with the con-
tinuity equation and then integrating across the boundary layer from
y=0 to y=98 results in A

Myu 1 O Cuw a(peug) N Cun
3x T XB J¢ +Bxpeu§ J¢ x

du ° ° 1l 3
1 e ¥ % 1 #_#2 _ e (-* U-)
FISTY Er [ prw dy + > [ pw  dy= Pt ) 3y (9a)

S8 |
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ach 1 agww CW 3 ( peug ) g‘WU.

+ = + + -
ox xf J¢ preug oo X
o] e}
ow, *
1 e * 3 1 ¥* 3 % 5 op He ( )
) dy == ouww dy = + * 9b
xBug g b " x .[ xBp ul % " pue U 3y y‘=0( )
BE@u . l_. ngw N C@'W a(peue N L’,@u N be (* a@*) (9 )
ox xf Jo XBPgle op x Pelle H oy =0 ¢
where

5

b= [ oM - w¥ay (108)
(o]

e}
£, = { A (L - u¥)ay (10b)

]
Conr = [ p*w*(w: - w)ay (10c)

5
£ = 'O/ oFu¥ (e - w*)ay (104)

o]
Cou = _{ o u¥(1 -~ e¥)ay (10e)

3]
Cay = _[ PV (1 - 8%)dy (10£)

The starred quantities introduced into equations (9) and (10) are dimen-
sionless quantities formed as follows:

Feuf, %= o/e
w¥ = W/ue p¥ = u/ue (11)
6" = @ ™ = T/T
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Equations (9) and (10) are reduced to :anompress:.ble form by means of the
transformation

X=x (12)
=9

The relaetion between the bhoundary-lsyer thickness in the physical
coordinates B and the thickness in the transformed coordinates A was

obtained from equations (5), (6), and (12). The pressure gradlent in the

® direction was evalusted at the outer edge of the boundary layer. By
using the Chapman-Rubesin tempersture-viscosity relation (2) and the
dimensionless varigble

Y
=z (13)
the transformed boundsry-layer equations become
-
aeuu 1 By + Ouw  O(peue) + Oun
X T Xp o% 2 09 X -
P XBp uZ
1 1
du f f c ( *
A OUe * A %2 teC  (du )
B 55 w odn +3 W odan = T (142)
1 1
39 30 6 d(pul) @ v
wu 1 “Uww W e’e wu A e * A *_ ¥ _
X TH I T ppp 2 OF +_x"‘xaue§"/ Wd“'i/ W dn =
ee o} 0

1
T t (o] ¥
8 1 #2 3 He ow
+[Ta- ’ [1+T_l (l+we )jl[l-/o‘ oo +"e“eA (E’T)n:o (160)

¥887%
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gy 1 ow _Oow Olpeve) = Ogu _ _ieC (ae*)
=0

X T XB 9% T Mpgua 0% | X PBA \M
where
1
Oy = A f u*(1 - u¥)dn
0
- %
9W=Af (1 - u¥)an
0
1 %
Oy = O '{ wr(wE - w¥)an
1 3 L 3
0., =4 f w*(vE - w¥)an
(o
1
Ogu = A f u*(1 - %)an
0
1 * 3
Ogw = A*J/~ w (1 - 8 )dn
0
and
2
1_ e
Tl chTe

The boundary conditions are
W¥=w=g¥=0 at =0

and

(14c)

(15a)

(15v)

(15¢)

(154)

(15e)

(15£)

(18)

(17)
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APPROXIMATE VELOCITY AND ENTHALPY PROFILES

Approximate solutions for equations (14) using the boundary con-
ditions given by equation (17) cen be obtained by assuming a polynomial
to0 represent the boundary-layer profile for each of the velocity and
thermal boundary layers. The parameters in the assumed profile are eval-
uated from the boundary conditions. Both a third- and fourth-degree
polynomial were assumed. The results from the fourth-degree polynomial
differed more from the exact solutions of reference 6 than those using
the third-degree polynomial. Since it is desired to use an spproximation
that agrees as closely as possible to the exact solutions in the plane of
symmetry, the method using the third-degree polynomisgl ls presented.

Assume that
u® = a1n + aznz + a5n5 (18a)
Wr = bn + bznz + b3n3 (18b)
0 = cqn + cznz + c3n3 (18c)

Substituting boundary conditions (17) into equations (18), the
agsumed profiles become

&= (3 - 2n)n2 + an(l - 29 + nz) (19s)
v (3 - Zn)nzw: +bn(L - 21 + 12) (1sb)
8%= (3 - 2712 + en(1 - 29 + 12) (19c)

The expressions given in equations (14) and the integrals given in
equations (15) become ; - T

L2 s2a- 142
O = 33 [2 t7a-% a] (20a)

_A M9 W2 3 e 12
aw_35 [2We + 7 bvy Sb] (20b)

451554
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A8 % 1L B8, 01
_A S .11 B R
9uw"35['§we+-6—b-l_za:we 5“’1.-:\ (20a)
Afs 11 13 1
9@u=3§[§+?a'1—z°'33"] (20e)
A A S R - R
ew-ss[zweJ’eb Tz Ve sb‘gl (20£)
1
1 1
{W* d‘r]=|:-2- W:+T2-b] (20g)
1
LA B S
fe dn_[2+12c] (20n)
0
1.2 1 13 .1
fu* dn=g-§[l3+—6—a+-§a2] (201)
0
1
fw*z dn_—_-slg[l;’;w";z+%bw:+%‘-bz] (203)
0
1
% 1 3 '1;3_ * _lé .l
éuw*dn:-gg[13we+1zawe+12'b+3&€l (20k)
au*)
= a (201)
(571 =0
(aw*) 1 (20m)
6Tl =0

@T’?i‘)q:o = c (20n)
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The boundary-layer thickness is assumed to develop according to the
expression : ——

[J-e ’ e
5 x+/2 (21)
e e : . -

A=K

vhere K 18 an unknown proportionality parameter. The quantities XK,
Hes Pgs and u, are assumed to vary with € but not with X. The

assumption of expression (21) for the laminar boundary-layer thickness 'g
is based on a statement 1n reference 5 that Blasius-type parebolic sim- »
ilarity exists in meridional planes.

Substitution of equations (20) and (21) into equations (14) gives
three ordinary differential equations in four unknowns: 8, b, ¢, and

c/K2,

FLANE OF SYMMETRY

The equations of motion for the boundary layer can be greatly sim-
plified by restricting them to the plane of symmetry. In the plane of
symmetry ¢ is equal to either O or g, however, both theory and ex-
periment indicate that the boundary-layer assumptions do not hold for _
& =1 at large angles of attack, since the boundary layer elther becomes
too thick or separation occurs. Therefore, ﬁhe boundary-layer equations
will be solved herein only for the case & = 0 where, because of sym-

metry, W= Wy = W¥= 0 and therefore b= 0; also p' (@) =

Inspection of the @&-momentum equation (14b) shows that each term
vanishes on the plane of symmetry. In order to use this equation, it is
necessary to differentiate it with respect to ¢ before restricting it to
the plane of symmetry. For W= 0, equations (l4a) and (l4c) are iden-
tical so that u® = @% and a = c. It is, therefore, only necessary
+to solve the X-momentum equation and the ¢ derivative of the
é-momentum equation. '

The resulting equations in the plane ofﬂsymmetry are

Zoge-3ee(3-2I68) B-1IGR) - we o
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E)eale-gd-wi8

These equations are simultaneous algebraic equations in the three un-
knowns: db/d®, C/K%, and a.

Examination of the exact boundary-lsyer profiles as given in ref-
erence 6 indicated similarity in the x-direction that was practically
independent of angle of attack, temperature ratio, and cone angle. There-
fore, a is assumed constant for all values of the varisbles and its value
can be determined by comparison with the exact solutions.

aw*
The quantities EE? and %; are functions of the flow at the outer

edge of the boundary layer and can be evaluated from dsta tabulsted in the
M.I.T. tebles of flow over a cone (refs. 8 and 9)}. As given in reference
5, these quantitles are

awr {:_2

e aZ o+l _1-p"z 1zxz (23)

—2 u
- l+a<2§+—§--é—)+m2 2<l+u—_o-+:2)+
Tr 1.-%2 u P D u u

—2 > 2

o P Py D
—_-+=2-—_9--_3-2“—_2+¥<§-;)+32+§-2--1—é] (24)
p P P D l-u u \p D u P P p

where o is the angle of attack, B is the sine of the cone semivertex
angle, and all other quantities on the right side of the equations are in
the notation of references 8 and 9. The barred quantities refer to zero
engle of attack.

The quantities given in equations (23) and (24) are exact up to the
order of o? but terms of higher order of « are considered negligible.
This assumption sets an upper limit on the angle of attack. This limit
is also a function of the other variebles of the problem.
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COEFFICIENTS OF FRICTION AND HEAT TRANSFER

The ‘expressions for the components of viscous shear stress for the

direction along the most windward generator end the circumferential di-
rection are

1 du
(Cp y) =777 (u ) (258a)
2 Te'e
¢=0
(Ce )y = © (25b)
e) [
£,0 1 e} (8w
= B (25¢)
? Jo=0 %‘-peug B_Y- 3¢ y=0
=0
Tn terms of the quantities obtained from this report, equations (25) can
be written as -
C -1/2
(Cs,y g = 22 % (Fo) / (268)
(Cf,q))(p:O =0 * (26b)
—a—ﬁacf _ 2 8B (ge )12 (28c)
® /o=0 - " Kae X
Similarly, the expression for the Stanton number is
a .
St = peue(Has-' Hs)
x (5)
e (27)
- peue(Has.' Hs)

which, in terms of the presented quentities becomes

St = a% (Re,)"1/2 (28)

587
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SOLUTIONS OF EQUATIONS

The exact solutions for the boundary-layer equations as given in
reference 6 were used to evaluate the constant a. The expressions given
in reference 6 for skin-friction coefficients and Stanton number are

— [} 3C
(cf’x)CP=O = 2fy Ty (29a)
ac
( £ = 3pky"  [3C (29b)
® Jo=0 ¥ 4/ Rex
3C
—mt (22
(8t),-0 = 0 Rey (29¢)
where f;, ;, and @é are defined in reference 6 and
*
2 [ dve
k=— <—) (30)
5B \d¢ Jap_0

It should be noted here thst in reference 6, as in the present pgper, the
energy equation was similar to one of the momentum equations and therefore

nm o ot
fw = 8-

The skin-friction coefficients as given in equations (26) were set
equal to the exact skin-friction coefficients as given in equations (29)
for the particular case of k = 0, which is for zero angle of attack..
Combining these coefficients with the X-momentum equation, the resulting

value for a is

a = 1.5921

Using this velue of @&, the boundary-layer equatlons for the wind-
ward generstor (eqs. (22a) and (22b)) become

X
2.7753 e  1.3026 db _ c
7.2737 + =5 gz t g gz = 9°.724 -z (31a)
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*
aw, i . aw¥% 2
3.5064 =& + £.0350 £2 + % [8.5000(——3) + 1.4167 == 2 4 0.6667 @) -

@B 3z 3z 3% FE
' X*\2 *
1 <dwe) (dwe) 1 Tg 1 C_ ab
B \az + \3% 35 + 17.706 7 + 12.856 \ f. - l+75)i=- 353523
1 0 1 K
(31v)

These boundsry-layer equations can be solved simultaneously to give
db/d@ and C/K? once the conditions of the problem are glven.

Solutions of the boundary-layer equations for the wlndward generator
are given in teble I along with the exact solutions of reference 6 for

those conditions for which exact solutions have been obtained. The solu-

tions are given in terms of the quantities obtained in reference 6. The
relations between these quantities and the quantities presented herein are

(Ce,x)p=0 [Rex : - =
" o_. 2 Xp= X _ E_
Ty = > =5~ = 0.9192 - (32a)
oC Re )
W= BEE \T 00 Jyoo VIO &wg) @ Vg2 (32p)
- @%/s-0

Rey ' o Cc
oL = (S’%:o ‘/'3'{:— = 0.9192 ‘/E (32¢)

The data presented in table I are plotted in figure 2.

The errors between the spproximate solutions obtained by the present
method and the exact numerical solutions of reference 6 are less than 1
percent for both Stanton number and skin-friction coefficient along the
most windward generator. With the exception of the extreme cooling case
where Ts/TO = 0, the errors are less than 5 percent for the derivative of
the circumferential skin-friction coefficient. In the range of conditions
covered in reference 6, interpolation of the exact solutions gives better
results than the use of the present method. However, in regions not
covered by the exact solutions the present method will give useable results.
A coumputationsl procedure is given in appendix B. )

$S87
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The integral method used reduces the boundary-layer equations to
ordinary differentisl equations over those parts of the cone where the
boundary-layer assumptlons hold. Figure 2 shows that the solutions of
these equations, when reduced to the plane of symmetry, agree closely
wilth exact solutions of the original equations. Therefore, solutions of
the ordinary differential equations away from the plane of symmetry can
be obtained and will give some idea of the boundary-layer flow off the

plane of symmetry.

CONCLUSIONS

By means of an integral technigue, the nonlinear partial differential
equations for the laminar boundary layer over a cone at angle of attack
are reduced in the plane of symmetry to a set of simultaneous algebreic
equations. Third-degree polynomials are assumed for both velocity and
enthalpy profiles. The approximate solutions agree with exact solu-
tions for a Prandtl number of 1 within 1 percent for Stanton nuzber and
skin friction coefficient along the most windward generator end, for the
most part, within 5 percent for the derivative of the circumferentlial

skin-~-frietion coefficlent.

The method presented gives an easy method of determining skin-
friction coefficients and Stanton nuubers outside the range for which —
exact solutions sare gvailable.

Due to the close agreement between the approximate solutions and the
exact solutions on the plane of symmetry, the same technique can be used
to study the boundary-layer flow off the plane of symmetry.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, August 4, 1958
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APFENDIX A

SYMBOLS
parameter in generstor velocity profile
coefficlents in assumed generator velocity profile
parameter in circumferential veiocity profile

coefficients in assumed circumferential veloclity profile

constant in Chapinan-Rubesin témperature—viscosity relation

skin-friction coefficient

parameter in enthalpy profile

specific heat at constant pressure

specific hest at constant volumg
coefficlents in assumed enthalpy profile
internal energy, cT

generator shear parameter (def%5?§ in ref. 6)
enthalpy as defined in equation:(s)

proportionality parameter in transformed boundary-layer
thickness o

circumferential velocity-gradient parameter
Prandtl number

static pressure

heat~transfer coefficlent

gas comnstant

Reynolds number based on distance x

Stanton number

NACA TN 4380

1251014
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T temperature

Tl dimensionless external temperature

u veloclty in x-direction

v velocity 1n y-direction

W velocity in circumferential direction

X transformed coordinate along generstor

b4 coordinate glong generator

Y transformed coordinate perpendicular to surface of cone
v coordinate perpendicular to surface of cone

a angle of attack

B sine of cone semivertex angle

Ya¥ boundery-layer thickness in transformed coocrdinates
S boundery-layer thickness

515 defined by equation (10)

1 dimensionless coordinate perpendicular to cone
8 enthalpy difference ratio

3 semivertex angle of cone

913 defined by equation (15)

8 heat-transfer paremeter (defined in ref. 6)

x coefficient of thermal conductivity

3 viscosity

p density

¢ transformed angular coordinate

engular coordinate measured from most windward generstor

17
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¢; circumferentiel shear-gradient parsmeter (defined in ref. 6)
Subscripts:

as adisbatic surface

e outer edge of boundary layer

8 surface

X at distance x along generator

@ at anguwlar distance ¢ !

0 free-gtream stagnation

Superscripts:

* dimensioniess quentity

differentiation with respect to independent variable

$38%
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APPENDIX B

COMPUTATIONAL PROCEDURE

The analysis given in the present paper ensbles one to calculste
skin-frietion coefficlents and Stanton numbers on the windward generator
of a cone at angle of attack. The anelysis is, however, limited to the
case of Prandtl number equal to 1. It is necessary to know the following
conditions: '

(1) Mach number upstream of shock wave

(2) Cone surface to free-stream stagnation temperature ratio

(3) Semlvertex angle of cone

(4) Angie of -attack

The followlng quantities are to be evalusted:

o= ! p s D
1% ), TJ,;-E)MZz(1+2+:2_)+_9+_z:_,9-_a-
Ty 1 -yl u D u u P P P P

where o« and B = sln & are given and the other quantities on the right
side of the equations are given in references 8 and 8. The barred quan-
tities refer to zero angle of attack.

Substitute the values of (awa/d®)y_, and 1/T; into the following
equations:

*
dw
2.7753 e ., 1.3026 §§.= 55.724 C

7.2757 + S o 2l =
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¥*
aw, dw*)2 : aw¥ 2
db 1 e e db db
3.5964 —— + 4. +=|8. ) —e do . -
TE 0350 =3 B[ 5000 (EE" + 1.4167 z== 5= + 0.6667 (713)

*\ 2 W
1 dwe a e) 1 Tg 1 ¢ db
[E<-a—§-) + (35-][35 + 17.706 -T:-L- + 12.8586 (-,ITO- - l) @. + E’_l-_-)] = =35 -KE TS

These equations can be solved simultaneously to obtain db/d® and
C/Kz. Since the second equation is quadratic in &b/di, two solutions
will occur. The desired solution is that which makes C/K? positive.
The skin-friction coefficients and Stanton numbers asre then obtained

directly from
Rey - rE
W= (c = 1.838¢ [C
3C (f:x)cp=o N
/Rex Cr a [T
2 —_ s
3C (_&T(P:O = 11547 33 \J@

Rex ) C
Nz (St)poo = 0-9192 &

REFERENCES

1. Moore, Franklin K.: Laminar Boundary Layer on a Circular Cone in
Supersonic Flow at Smell Angle of Attack. NACA TN 2521, 1951.

2. Moore, Franklin K.: Three-Dimensional Compressible Laminar Boundary-
Layer Flow. NACA TN 2279, 1951.

3. Fiebig, Mertin: Laminar Boundary Layer on a Spinning Circular Cone
in Supersonic Flow at Small Angle of Attack. TN 56-532, Graduate
School Aero. Eng., Cornell Unlv., June 1956. (Contract AF-18(600) -

1523. )

4. Sedney, R.: Leaminar Boundary Layer on a Spinning Cone at Small Angles
of Attack in & Supersonic Flow. Jour. Aero. Sci., vol. 24, no. 6,

June 1957, pp. 430-436.

5. Moore, Franklin X.: Laminar Boundery Laeyer on Cone in Supersonic Flow
at Large Angle of Attack. NACA Rep. 1;§2, 1953. (Sppersedes’NACA

TN 2844.)

7587

-

L
il



4854

‘TEEHN[BAL LIBRARY

ABBOTTAEROSPACE.COM

NACA TN 4380 21

6. Reshotko, Eli: Laminar Boundary Layer with Heat Transfer on a Cone
at Angle of Attack in a Supersonic Stream. NACA TN 4152, 13857.

7. Chapman, Dean R., and Rubesin, Morris W.: Temperature and Velocity
Profiles in the Cowmpressible Laminar Boundary Layer with Arbitrary
Distribution of Surface Temperature. dJour. Aero. Sci., vol. 16,
no. 9, Sept. 1949, pp. 547-565.

8. Anon.: Tables of Supersonic Flow Around Yawing Cones. Tech. Rep. No.
3, Dept. Elec. Eng., M.I.T., 1947.

9. Anon.: Tables of Supersonic Flow Around Cones of Large Yaw. Tech.
Rep. No. 5, Dept. Elec. Eng., M.I.T., 194S.



CHNICAL LIBRARY

ABBOTTAEROSPACE.COM

M

22 NACA TN 4380

TABLE I. - COMPARISON OF APPROXTIMATE AND EXACT SKIN-
FRICTION AND HEAT-TRANSFER PARAMETERS FOR MOST

VWINDWARD GENERATOR OF A CONE AT ANGLE OF

ATTACK FOR FRANDTL NUMBER OF 1 i
m _
s L} k| fgoor 8 Ve
To| &1
Exact |Approx- | Exact | Approx-.
imate imate
0 0 0 0.3321 [0.3321 | 0.4238 ) 0.4514
.6 . 4330 .4318 .5527 .5837
1.2 .5143 .5l24 .6570 .8923
2.5]|0 0.3321 [0.3321 | 0.6532 | 0.7464 -
.6 .4598 .4563 .85396 .9673

1.2 .5569 .5516 |[1.0281 [1.1518

5.0)0 0.3321 [0.3321 | 0.8826 |1.0407
.6 .4815 4764 | 1.1422 | 1.3249
1.2 .5898 .5823 | 1.3834 | 1.5739

0.5| © o 0.3321 |0.3321 | 0.5823 | 0.6079
.6 .4468 . 4455 . 7888 .7910
1.2 .9367 .5546 .9460 <9417

2.510 0.3321 |0.332]. | 1.2430 |1.2920
.6 L4944 .4912 | 1.5922 [ 1.6159
1.2 .6092 | .6045 | 1.8998 |1.9147

5.010 0.3321 |0.3321 | 1.8837 |1.9726
.6 .5291 | .5247 | 2.3034 | 2.3565
l.2 .6594 .6532 | 2.7287 } 2.7752

1.0 O 0 0.3321 (0.3321 | 0.7609 | 0.7642
.4 .4215 .4205 . 9358 .9187
.8 .4935 .4918 [ 1.0850 | 1.0560
2 .5559 .5537 | 1.2165 | 1.1783

1.0}0 0.3%21 |0.3321 | 1.1897 | 1.1937
4 4436 .4420 | 1.4266 [ 1.4004
.8 .5278 | .5253 | 1.6445 | 1.6014
2 .5995 .5962 | 1.8393 | 1.7833

2.5]0 0.3321°| 0.3321 | 1.8329 | 1.8360

4| .4704 | .4680 | 2.1030 ) 2.0701
.8 5675 .5639 | 2.4026 | 2.5492
1.2 . 6487 .6443 | 2.6767 | 2.6077
5.0(0 0.3321 | 0.3321 | 2.9049 | 2.8980
.4 .5051 | .5019 | 3.1300 | 3.0950

.8 .6172 .6126 | 3.5389 | 3.4809 =
l.24y .7096 .7040 | 3.9250 | 3.8496
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Figure 2. - 8Bhear and heat-tranefer parameters from exact and epproximate solutions in plene of sysmetry.
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Figure 2. - Continued.
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Figure 2. - Concluded. 8Ghear and heat-transfer parameters from exact and spproximste sclutions in plane
of symmetry. .
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