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SUMMARY

An analysis is presented on the quantitative effect of incomplete
propellant vaporization on rocket-engine performance. A relation between
characteristic exhaust velocity c¥ and the percentages of oxldant and
fuel vaporized and burned is glven. The analysis shows that c¥ effi-
ciencies of 70 to 90 percent can be realized when only half the fuel is
vaporized, whereas c¥ efficiencles of about 60 percent can be realized
when half the oxidant is vaporized. The specific relatlions between c¥*
and propellant vaporized are presented graphically for the hydrogen-
fluorine, hydrogen-oxygen, ammonia-fluorine, and JP-4 - oxygen propellant
combinations. The analysis is applied to experimental data for these
propellant combinations.

INTRODUCTION

Characteristic exhaust velocity is commonly used as an experimental
measure of the completeness of combustion in rocket engines. This param-
eter may indlcate inefficiencies in the combustion process that may be
due to incomplete reaction, mixing, propellant veporization, and other
causes. Reporited herein is an analysis relating the characteristic ex-
haust velocity to the percentage of propellant vaporized.

Propellant vaporization is considered in this report as the factor
thet limits the rate at which the combustion process proceeds within a
rocket engine. The importance of propellant vaporization is also em-
phazised in references 1 to 3. The analytical studles of references 4
and 5 are based on the hypothesis that the combustion rate is completely
governed by the rate of propellant vaporization. Qualltstively, these
analyses are in agreement with experimental results. Exact couwparisons
of experimental and analytical results, however, require further reflne-
ments in the interpretation of data. For this purpose, a method of data
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analysis has been devised to relate experimental c¥ data to the per-
centage of propellant vaporized.

The treatment of experimental data reported herein is consistent with
the analytical combustion model used in droplet-vaporization calculations
reported in references 4 and 5. Application of the method of analysis to
the hydrogen-fluorine, hydrogen-oxygen, ammonia-fluorine, and JP~4 - oxygen
propellant cowbinations 1is described.

SYMBOLS
Ay nozzle throat dismeter, sq in.
c¥ characteristic exhaust velocity, ft/sec
F fuel vaporized, percent
g gravitational constant, 32.2 ft/sec?
7 oxidant vaporized, percent
Po total chamber pressure, lb/sq in. abs
Wp fuel weight flow, 1b/sec
Vg oxidant weight flow, 1b/sec
ng characteristic~-velocity efficiency, percent of theoretical
Subscripts:
exp experimental
tﬁ%r ratioc of vaporized oxidant to vaporized fuel weight flow,
awb/57Wf '
0/f ratio of vaporized oxidant to fuel weight flow, 0Wo/wf

of# ratio of oxidant to vaporized fuel weight flow, wb/ger
o/f oxidant-fuel weight ratio, w,/w,

th theoretical
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THEQORY

A mixture of oxidant and fuel drops vaporizing in an atmosphere of
their combustion products is assumed for the combustion model in this
analysis. For incomplete combustion, the rocket exhaust comprises a
mixture of oxidant drops, fuel drops, and gaseous combustion products.
The gaseous combustion products ere assumed to be at thermodynamic equil-
ibrium concentrations. If the volume and kinetic energy of the liquid
drops are neglected, the characteristic velocity c¥ that can be theo-
retically realized mey be computed from the thermodynamic properties of
the combustion products arnd related to combustion-chamber parsmeters by
the following equation from reference 8:

P.A

The experimental c¢¥* in terms of measured engine pesrameters is
expressed

PoArg
* c
(cexplo/f = Vo F Ve (2)
Combining equations (1) and (2) gives
OV, + Fw
% 3% O g
(Ce@)o/f = (Cth) 0/,? Wo + We (5)

The c¥* efficlency 1n,% 1is usually taken to be

4
(nexlo/z = %{5—)/? (8)

Combining equations (3) and (4) gives

X Cw Fw
("'lc*)o/f = —(-(%1})1)?//%; < Wz :Wf f) (5)

Equation (5) relates c¥* efficiencies to the percentages of fuel and
oxidant vaporized and msy be used for the interpretation of experimentsal
data.

The percentages of fuel and oxidant vaporized sre parameters that
cannot be readily evaluated for most rocket engine tests. A simplifying
assumption that mey satisfy many operational conditions, however, is to
conslder elther the oxidant or the fuel completely vaporized at the
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exhaust nozzle. Such a combustion model was assumed for droplet-
vaporization computations reported in references 4 and 5. With this
assumption equation (5) may be used to convert a measured c¥* efficiency
into the percentage of the propellant vaporized. The expressions for
these conditions follow.

With the fuel completely vaporized, the c¥* efficiency is related
to the fractlion of oxidant vaporized by

¥* oo + 1
(rerdoge = oLt (72
- & _
e (efndose \ Yo, |
W
£

(6)

With the oxidant completely vaporized, the c¥* efficiency is related to
the fraction of fuel vaporized by

(Sdosof 72 * %

o)

(exloys (Fndofe \ 22 +1 @
t

Such computations require a knowledge of the variation in theoretical
c* over an extended range of mixture ratios. These variations for
several propellant combinations are shown in figure 1. Theoretical values
reported in references 7 to 9 were extrapolated over the region shown.
The extrapolations were based on the assumptions that: (1) for low
percentages of oxidant and fuel, the combustion temperature varies directly
as the percentage of fuel or oxldant in the mixbture and (2) c¥* is pro-
portional to the square root of the combustion temperature.

The theoretical c¢¥* values shown in figure 1 were used to obtain
graphical representations of the relation between c* and percentage of
propellant vaporized. These graphical representations include the varia-
tion of e¥* efficlency with the percentage of oxldant vaporized and the
percentage of fuel vaporized, as expressed by equations (6) and (7),
respectively. Application of these curves to estimating the percentage
of veporized propellant from experimental data is discussed in the fol-
lowing section.

RESULTS AND DISCUSSION

Effect of Incomplete Vaporization on Engine Performence

The variations of c¢¥ with percentages of fuel and oxident vaporized
are shown 1in figures 2 to 5 for the hydrogen-fluorine, hydrogen-oxygen,
ammonia-fluorine, and JP-4 - oxygen propellant combinations. For all
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propellant combinations, a higher c¢* 1is obtained with a given percentage
of fuel vaporized than with an equal percentage of oxidant; for example,
with half the fuel vaporized, the c* efficiency is between 70 and SO
percent, whereas with half the oxidant vaporized, the c* efficiency is
about 60 percent. This difference is attributable to several factors,
including the shape of the theoretical c¢¥ curve, the fact that pesk
theoretical c¢* occurs in the fuel-rich region, and the fact thet the
oxidant weight flow accounts for a large part of the total propellant
flow.

Pigures 2 to 5 may be used to interpret experimental c¥ performance
in terms of the percentage of fuel or oxldant vaporized provided the other
propellant can be assumed to be completely vaporized. For exsmple, for
the ammonia-fluorine propellant combination, a c¥ efficiency of 85 per-
cent at an oxidant-fuel retio of 3.0 may indicate that only 60 percent
of the ammonia (and a1l the fluorine) or 80 percent of the fluorine (and
all the ammonia) bas vaporized. The following teble presents & similar
comparison for other propellant cowbinations:

Propellant c¥* Effi-|w,/wp| Fuel |Oxidant
ciency, vapor- | vapor-
percent ized, ized,

F, o,

percent| percent
Hydrogen-fluorine 85 4.0 37 82
Hydrogen-oxygen 85 2.0 51 80
Ammonia-fluorine 85 3.0 60 80
JP-4 - oxygen 85 2.5 70 79

The results may be further interpreted to show the percentages of
propellants that must actually be burned to obtain -a given c¥* efficiency
level. For example, with hydrogen and fluorine, only 37 percent of the
hydrogen need evaporate end completely consume the fluorine in order to
obtain a c¥* efficiency of 85 percent at an oxidant-fuel weight ratio
of 4,0. This, in effect, is the c¥* efficiency obtained if the 37 per-
cent 1ls completely veporized and the fluorine cowpletely burned in the
chamber and the remaining 63 percent is lost as liquid.

Interpretation of Experimental Data

Typical experimental varistion of c* efficlency with chamber length
(date from ref. 10) is shown in figure 6 for a single-element injector
with JP-4 and oxygen. The c* efficiency data are also evaluated in
terms of the percent oxidant vaporized and the percent fuel vaporized,
assuming in each case that the other propellant 1s completely vaporized.
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An explicit evaluatlion of the percentage of propellant vaporized cannot
be made 1f incowmplete vaporization of both oxidant and fuel is assumed;
probably neither the oxygen nor the hydrocerbon vaporized complebtely in
the experiments reported in reference 10. Each value of c¥ efficiency,
however, may be expressed as a specific relation between the percentages
of oxidant and fuel vaporilzed. These relations are shown in figure 7 for
oxygen with JP-4 and may be epplied to the experimental data shown in
figure 6.

These methods of data analysis provide a means of correlasting droplet-
evaporation calculations (e.g., refs. 4 and 5) with experimental engine
performance.

The shape of the c* efficiency curve in figure 6 is typlcal for
most Injectors and propellant combinations. It will be used as a hypo-
thetical curve for several propellant comblnetions to illustrate ‘the im-
portance of propellant veporization. The variations in the percentages
of fuel and oxidant vaporized for various propellants are shown in figure
8 at the oxident-fuel ratio for peak theoretical performance. With
oxldant vaporization controlling the reaction, the c¥* efficiency is
slightly greater than the percentage of oxidant vaporized, regardless of
the propellant combination. With fuel vaporization controlling, however,
the results show that c¥ efficlency is significantly higher than the
percentage of fuel vaporilzed and that this difference is greater for
hydrogen than for JP-4 or ammonia. The validity of these evaluations
depends on whether complete vaporization of one propellant can Justifiably
be assumed. Injector design features and propellant physical properties
are factors that influence this assumption.

SUMMARY OF RESULTS

An analysis is presented on the quantitative effect of incomplete
propellant vaporization on engine performance. An expression relating
characteristic exhaust velociby %o the percentages of fuel and oxidant
vaporized and burned is given. A graphlcel representation of the relation
is presented for the hydrogen-fluorine, hydrogen-oxygen, ammonia-oxygen,
end JP-4 - oxygen propellant combinetions. If the vaporization of oune
propellant ie assumed to control the extent of reaction, this evaluation
shows that, at mixture ratlos for peak theoretical performance, c¥* effi-
ciencies of about 60 percent are obtained with half the oxidant vaporized,
and c¥* efficiencies from 70 to 90 percent are obtained with half the
fuel veporized. Efficiencies are highest for the hydrogen fuels.

Lewls Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, December 10, 1957
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(b) Variation of c¥* efficiency with percentage of propellant vaporized.

Figure 2. - Concluded. Effect of incomplete vaporizetion on c¥* and c* efficiency for
hydrogen end fluorine.
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c* Efficiency, Tlc-lt-, percent of theoretlcal
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Figure 3. - Concluded. Effect of incomplete veporization on c* apd c¥* efficiency for

hydrogen and oxygen-.
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Figure 4. - Cencluded. Effect of incomplete vaporization on c¢¥ apnd co¥* efficiency for
ammoniza and fluorine.
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Figure 6. - Evaluation of typleal performance data for percentages of fuel and oxlidant vaporized.
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