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HANDPROOK OF STRUCTURAL STABILITY
PART I - PUCKLIIK: OF FLAT PLAT=S

By George Gerard an%. Hervert Becker
SUMMARY

The variocus factors governing buckling of flat plastes are criticelly

reviewed and the results are surmmarized in a comprehensive serles of charts

and tables. HNumerical values are presented for buckling coefficients of
flat plates with various toundary conditions and zpplied loadings. The
effects of plasticity are incorporated in rnondimensional buckling charts
utilizing the three-parameter description of stress-strain curves.

INTRODUCTION

Tais "Handbook of Structural Stability” presents a rather corprehen-
sive review and cozpilation of theories anl experimental data relating to
the buekling and failure of plate elements encountered in the esirfrarce.
To reet the anticipated needs of those who would use this review and com-
pilation, it appeared test to adopt a handbook style of presentation.

The raterizl is not intended as a textbook in which the erphasis is often
on the matheratical developrent of different types of related problems.
Neither is it intended to corpete with the familisr eircraft-corpany
structures manuals which generally present design information, empirical
data, and metrods of extending results beyond the scope of the original
report.

This handbook attecpts to cover the generally neglected aree between
the textbook and the structures rmanual. No attempt 1s made to present an
exhaustive coverage of mathematical techniques which are of great impor-
tance in the solution of buckling problers. This material hasg been well
presented in several excellent books and pepers which are included in the
reference 1list. The subject of colunns is comprehensively treated in
several books and, therefore, the inclusion of such material in this
review did not appear to be warranted.

This presentetion primarily constitutes a critical review of devel-
oprents concerning tuckling and failure of plate elements since the
early 1240's. This date has been selected since the last corprehensive
review of this nature (ref. 1) appeared at that time.

e’
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1o ovier to reel the varying neels of ajrrrore deshmeras wand
analysts, siructures metholds, and resewurch engircers, [t appears tent
to orgunize this hundtook as follows: The raln text disceisses assw ;-
tions, liritations, and tackeround of the available literature; tlhe
appendix contains a suneary of this reterial ard indic.:.s the nannev
in which this information is to bte used in analysis and design. It is
anticipated that, afier the materizl in the rein text Las teen revicwed,
reference to only the appendiz will Le mede in 2 majority of routine
applicetions. The auplicetion in these two m=in parts has been held to
a minimum consistent with completeness and intelligibility.

In the rmain text of this report, the verious factors appearing in
the general buckling-stress eguation

- kx2E =
Oer(or Ter) = M7 '————‘———-QE) (1)
12(1 - ve?)

are critically examined from the standpoint of their theoretical develop-
dent and the sgreement of”theory with test data.

In the section entitled "Basic Prineciples” a brief review of the
Laslc mathematical principles involved in solution of buckling problems
iz given. The primary objecti—e in presenting this msterial is to
acquaint the reader with the approximate methods used in order to be
able to indicate the accuracy of tke results cf particuiar solutions
discussed in subsequent sections.

Tn the section entitled "Boundary Conditions" the influer.ce of the
geometric boundary conditions upon tke buckling stress is diszussed at
gome length. It is indicated that the use of a free unloaded edge in a
Plate involves Poisson's ratio in the compressive buckling coefficients.

- As an example, the buckling coefficlents for plate colums, flanges, and

simply supported plates are determined from theory to demonstrate the
effect of various boundery conditions upon the behavior of such elements.

~ Also, the three-parareter method of mathermtically describing stress-
strain relations is presented in an introduciory manner in the section
entitled "Stress-Strain Relations in the Yield Region." Use of this
method affords & considerable simplification in the presentation of
results of inelwstic buck“ing theories.

The effects of exceeding the proportional limit of a meterial are
incorporated in & plasticity-reduction fector 1. Because of the vari-
ous theories that have teen recently advanced together with the fa-ct
that no one publication has reviewed the conflicting essurptions of
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these thecries from the stundvoint of envincering resulis, a rather com-
prehensive trestrent of this subject is precented in the s2ction entitled
"Plasticity~Reduction Factors."

The effect of cladding upon the buckling stress of flat plates has
been treated by an extension of irelas‘ic-tuckling theory. In thke sec-
tion entitled "Cladding Reduction Facters" & simplified treatment of
buckling of clad plates is presented ir which velues for the cladding

correction factor 7 are derived.

The background for determining the elastic-tuckling coefficient k
hes been well documented. Therefore, the last sections sre concerned
with the buckling coefficients for a large number of cases. The presen-
tation consists, for the most part, of & straightforward cataloging of
results in the form of buckling-coefficient charts.

The appendix hes been organized for unimpeded use in analysis and
design and for this reason no references appear in this portion of the
report. The references are examined in detasil in the pertinent part of
the main text. The literature is reviewed and discussed toth as to con-
tent and applicatlion to the particular problem. Experimental evidence
is presented where it tends to substaentiate one thecry emong several
which may have been advanced on a particular phase of the buckling prob-
lem; plasticity-reduction factors are perheps the most conspicuous exam-
ple of this. Thus, the recormendation for & particulsr theory is gen-

erally supported by experimental data.

The main text also contains some new raterial developed during the
course of this compilation. Although such material is important to the
unification of prior results, it has not been considered of sufficient
consequence to merit separate publicetion. Therefore, wken such mate-
rial does sppear in this hendbook it is in a detailed form.

This survey was conducted under the sponsorship and with the finan-
cizl assistance of the Nationel Advisory Committee for Aeronautics.

SYMBCLS
Ap area of rib cross section, sq in.
a long dimension of plate, usually unloaded edge in uniaxiel

compression, in.

b short dimension of plate, usunlly loaded edge in uniexial
compression, in.

{}
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g = loga B
I

eoefticien's In reornl inelagtic-rleio~tueklin.g entticn
Y L
{see section entftled "bRosie Prisciples
A}

coefficients iun elustic-plete-tuckling equation to te
determined by ge:metrical boundary conditions along

unlooded elzes of plate C—_

plate cross-section rigidity, E}t5/12(1 - v2), lb-in.
plastic plate cross-section rigidity, Est3/9, 1b-in.
Young'c modulus, psi

secent modulus, ofe

tangent modulus, do/de

secant and tangent modulus for clad plates, respectively

ratio of total cladding thickness to total plate thickness

shear modulus

moment of inertis .

3= (Bs/m)2 - v - v?)

= B roR®

=

modified buckling coefficient, kx2/1é(1 - v2) .
buckling coefficlent

length of plate, in.

bending moment applied in plane of plate, in-lb

axial load, 1b/in.

number of longlitudinal half waves in buckled plate; also,
shape parameter for stress-strain curve

normal load applied in plane of plate, otb, 1b

normal pressure, psi

S =
' j T iy
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F =8 - ve(rp/\)E
1 shear loading, 1b/in.

g =82+ ve(mu/n)?

R stregs ratio
t thickness of plate, in.
u-= (k5+ - ks_)/(ks+ + ks_)
W potential energy, in-1b
w displacement normal to plane of plate, in.
X,¥,Z coordinates
Y =14+ 3pf
a edge angle, deg; alsc, 124/(Pb + 6M)
Lt 1/2 -
& = x(o/N¥/2 Eb/x) + k22
B "ratio of cladding yleld stress to core stress, 0,3/0cgres

also, loading ratio for plete with varying axisl load,
Maximm load/Minimum lcad

B = n(o/n1/2 [—(b/x) + k1 2: 1/

r shear strain

€ normal strain; elso, ratio of rotational rigidity of plate
edge stiffener to rotational rigidity of plate

plasticity-reduction factor
cladding reduction factor

total-reduction factor, nj

buckle half wave length, in.

inelastic Poisson's ratio; v = v, - (vp - "e) (ES ) for
orthotropic solids

<
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Subscripts:
A,B

av

b

c

cl

cr

elsstie Poicson's ratio
plastic Poisson's ratio

normal stress, psi

+ fO'cl R

1/2
stress intensity, <°x2 + cry2 - ox0y + 372,) / , psi
stress at secant moduius, O0.7E end 0.85E, respectively, psi

shear stress, psi

angle of diagonal support to plate width, radians or deg

value; at station A and station B; see fig. 30
averege

bending

compression

cladding proportional limit -
eritical or buckling

elastic

plastic

proportional 1imit

in traverse rib of compressed plate

shear

shear on infinitely long plate

directions of loading

}oadings producing tension

loadings producing corpression
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s eundlitlions:

C clumped
F free
Ss simply supportei (hinged)

In sketches accompanying figures, supported edges with elustic rota-
tional restraint are shuwn shaded. Unshaded loaded edges are simply
surported. Unshaded unloaded edges are free.

BASIC PRINCIPLZS

General Rerarks

The theoreticel buckling stress of a flat structural elerment is the
stress at which an exchange of stable equilibrium configurstions occurs
tetween the straight and-the slightly btent form. It marks the region in
which continued application of load results in accelerated growth of
deflections perpendiculer to the plane of the plate. Its irportance lies
in the fact that tuckling initiates the physifwl processes which lead to

eventual failure of thke plate. =

The mathematicel -solution of particular buckling problems requires
that equilibrinm and boundary conditions be setisfied. This can be
accomplished bty integration of the equilibrium partial differentiel egua-
tion of the flat plate or by use of mathermatical methods which may not
completely satisfy the boundary or ejullibrium conditlons. The former
solutions are exact whereas the methods based generally on erergy inte-
grals ere approximate although usually very accurate. The need for
approximate rethods arises from the fact that exact solutions can te
found for only a limited number of buckling problems of practical

irmportance.

In this section, a brief outline of the methods of analysis of
buckling problems is presented. For extensive discusslons of the vari-
ous methods of analysis and their application to a wide variety of prob-
lems, reference to the tooks of Timoshenko, Sokolnikoff, and Bleich
(refs. 2 to 4) is suggested.

Equilibrium Differential Equation
The general form of the differential equation describing the slightly

tent ejquilibrium configuration of an initially flat plate wes derived by
Stowell in the following form (ref. 5):

v Ty, O, c——
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Cs ayll_ TJ‘(’K ax2+2Taxby+Uy ay2> (2)

in which the constants esre defined as:
Cy=1- (3/%) (cx/ai)z[l - _.(Et/EsEI

Co = (3ch/°12)[1 - (Et/Es]
C3=1- (3/1»("" ” )[ - (eo/ms)
| C = (3031- /012)[ - (Et/Eg)]

C5=1 - (5/)“’)(°'y[“i)2E - (Ethﬂ)]

-

(3}

r

These definitions of the constants are based on the assurption that po !
elastic unloading occurs during the buckling process. Furthermore, a :
value of Poisson's ratio equal to 1,2 was mssumed for both the elastic

ard inelastic rangee.

In the elastic range, E+/Pg = 1, and, therefore, for all loedings |
Cp=C3=C5=1 and Cp = Cy = 0, and equation (2) reduces to the !
familiar equilibrium equation for the elastic case:

v, v
Vv = zaanya =
g .-géx%:,zf&a%my::;) (3)
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In should te roted thet the vilue of D is not the sune L tie Inelss- —
tlc ranve as jr the elastlc ramnge Lecause of ithe change of Poisson's . _
retlo with stress., For the fully plastic plai=~, v = 1/2, which yields :

a tending rigidity of D' = Et5/9, vwhereas the elastic value is
D= Et3/12(1 - vee).

The soluticn of individual buckling problems can be most readily
bhandled by selection of appropriate solutions of equation (2), insertion
of proper bouwdary conditions, and minimization to obtain the buckling .
stress. In this connectlicon, the buckling stresses for simply supported .
plete columns, compressed flanges, and plates are considered in some
detail in the section entitled "Boundary Conditions" to illustrate the
differences in tuckling behavior of these structural elements.

Energy Integrals
Since exact solutions to equations (2) and (4) cen be found for
only & limited number of buckling problems of practical importance,
approximate solutions generally utilizing energy integrals have fourd
wide spplication.

The potential energy of the plate and its loading system is repre-
sented by the difference of two integrals. The first lntegral of equa-
tion (5) represents the increase in strain energy due to bending and
twisting of the plate during the buckling process, wheress -the second
integral represents energy assoclated with membrane stresses resulting
from lateral deflection. If the plate edges are fixed during buckling,
the latter represents the membrane energy. If the edges experience &
relatiye shift, the second integrel represents the work of the external

loeding system. _ '

The general energy integral for pletes with simply supported edges
wzeg derived by Stowell (ref. 5) for the inelastic case:

2 2
m-n[[cl(&) o P B, (a_zw_) s P Py

2 3x2 22 Ox Oy dx Jy Ix2 Jy2
2 2
g ol 1 e
2
27%%-» ay(gﬂy) ax dy (5)
— P T T
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The coefticients Ly v <, are deeUined by cqustvions (3). 1L is tu

be noted that equaticn {&) is the Buler eguntion thal results from mini-
mization of the energy intepral, ejustion (5). It there are elastic
restraints of mognitude ¢ along tle edges of the plate, then thke stirain
energy in these restraints is sdded to eaguation (5). These terms have

the form
. \2
o) &4
88 /() =

where y, 1s the edge coordinate.

For the elasstic case, equation (5) cen te simplified to

w=2ff(32" 32“‘) 2(1-ve)§2"':j‘2' (?ixa'zva?)exdx“'
< )

_[_[E’K(b") +21'-g:—%y3+0 %) dx dy {6)

Solutions

In prineiple, of all the deflection functions satisfying the geo-
metric boundary conditions of the problem, the potential energy &F will
be zero for that function which also satisfies the equilibrium differen-
tial equetion. This function would be an exact solution of tke problem.
Since exact solutions can te fourd in only s limited number of cases,
the energy integrals are of great usefulness in finding approximate solu-
tions which satisfy the geometric boundary conditions exactly and the
differential equation approximately. Thus, of the several functions
satisfying the geometric boundary conditions tut not necesserlily the 4if-
ferential equation, the function for which the energy integral is a mini-
mm constitutes tke bect approxirate solution of the differential equation.

Probably the best known energy method for determining the buckling
stress of thin plates is the Rayleigh-Ritz procedure. The method con-
gists of the following steps:

(1) The deflection surface of the buckled plate is expressed in
expended form as the sum of an infinite set of functlons having undeter-
mired coefficients. 1In general, each term of the expansion rust satisfy
the geometrical boundary conditions of the problem.
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(2) 1Me potentinl c.orgy difference of the load-plute system is
corpuied for this deflecwicn swfece by use of ejuation (5) end is then
minirmieed witl. respect to ti:.. undeterrined coefflclents.

(3) Tais rinimizing procedure leads to & set of linear horogeneous
equations in the undeterrcined coefficients. These equations have non-
venishing solutions only if the determlinant of their coefficient vanishes.
The vanishing of this stabillty determinent provides the equation that
ey be solved for the buckling stress.

When the set of functions used is a complete set capable of repre-
senting the deflectlon, slope, and curvature of any possible plate defor-
metion, the solution obtained is, in principle, exact. Since, however,
the exact stabllity determinent is usually infinite, & finlte determinant
yielding approximate results is used instead.

The uckling stresses obtained by the approxirate method are always
higher than the exact solution although they may be very accurate. This
is 8 result of the fact that the deflection function approximates the
true buckle shape snd therefore the potential energy resulting from use
of the approxirmeting function is greaster than zero. If the deflection
function is the true one, then an exact solution to the differential
eguation is obtained.

If a deflection function is chosen which satisflies the geometrical
boundary conditions epproximately, it is possible to obtain buckling
stresses which approach the exact solution from the lower side. This
can be accorplished by & revision of the Rasyleigh-Ritz procedure known
as the Iagresngian multiplier method.

The ILagrangian multiplier method follows the general procedure ocut-
lined for the Rayleigh-Ritz method with but one significant chenge. The
restriction in step (1) thet the btoundary conditions be satisfied by
every term of the expansion is discarded and is replaced by the condition,
that the expansion as a whole satisfles the boundary conditions. This
condition is mathematically satisfied in step (2), during the minimization
process, by the use of Lagrangian mmltipliers.

The advantage of the Lagranglan multiplier method lies in the fact
that, with the rejection of the necessity of the fulfillment of boundary
conditions term by term, the choice of an expansion is much less restricted.
For example, in the clemped-plate compression problem, a simple Fourler
expansion may bte used instesd of the complicated functions usurlly assumed
in the Rayleigh-Ritz analyses of this problem. Firthermore, the orthogo-
nality properties of ”“he simple Fourier expansion lead to energy expres-
sions of a simplicity that is instrunental in permitting accurate
cormputations. * .
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Thlis metliol end its cuplicetlion o speclitic protiens is describeld
by bBudiansky apd Hu {ref. 6). They hmve treated the Lugranginn multi-
plier method in & penner in which it is possible {0 obtain approxinutie
solutions for toth upper and lower bounis. As determinants of higher
order are used to obiain better approximations, toth the uprer and lover
bounds epproach the true buckling stresc. Thus, the Tagrangian multi-
plier method rmey be used to obtain results withir eny desired degree of
accuracy.

In addition to the above procedures vwhich are based on energy iute-
grals, other methods of obtaining approximate solutions of buckling prob-
lems have been usel vhich involve the equilibrius differential equation.
Functions which s:z:s5fy the geometrical boundary condlitions exactly are
used to satisfy the governing differential equation approxismtely by
processes that lead to integration of these functions. Galerkin's rethod,
Tinite-difference ejuations, relaxation techniques, and iteration are some
of the numerical methods that cen be used.

BOUNDARY CONDITIONS

The nature of the buckle pattern in a plate depends not only upon
the type of epplied loeding but also upon the manrer in which the edzss
are supported. This is illustrated in figure 1 in which the same exial
compressive loading is seen to generate three types of buckle patterns
on e long rectangular plate with different geomeirical boundery condi-
tions. The single wave 1s representative of colurn behavior, the twisted
wave 1s representative of flange behavior, and tke miltiple~buckle pattern-
is representative of plate btehavior.

To indicate the menner in which the geometric boundary comditions
mathematically influence the buckling behavior ani also to demonstrate
the solution of the equilibrium differentisl equetion (eq. (%)) for some
particular cases, the plates shown in figure 1 sre analyzed. Boundary
conditions which characterize simply supported wide columns, flanges,
and plates are considered.

-

Mathematical Analysis

The equilibrium differential equatlon for elestic buckling of &
uniaxially compressed plate can be cbtained from equation (4) in the
form

k. .
é&! + 2 _ELli__ + é&ﬂ +‘EE égﬁ = 0 (7)
S 3x2dy2 ayh D 32
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It is essumed that the leadeld © 3 of ihe plate are cliiply supported
znd therefore an appropriate soinution of equation (7) is

= 1 _a'_y r.‘{ By "X
w Gl cosh b + c¢p s8irh B - C3 cos + ci sin b)cos N (8)

where

:- ,1@1/2[ (ke )1/2] (%)

1/2
5 - n@)’-ﬁ-’[. 2+ (™) (10)
. Xe = 12(1 -ﬂzga)ﬁcr\r%)a (11)

The coefficients e; to ¢y are to te determined by the geometrical
bmmda.ry cornditions along the unlosded edges of the plate.

For the wide column, tke unloaded edges located at y = tb/2 are
free, and consequently the edge moments and reduced shee~s must be zero.

Trerefore, -

a2 32 Jyetv 2
(12)
83‘3"-:-2(1-1,.3) Gl =0
32y |ymtn /2

For the flange, the unloaded edge at y = O 1s assumed to be simply
supported and that at y = b 1is free:
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2 2
(9—-‘2-{ + Ve _@__;_r) =0 L
oy %< /y=0,b (13)

' )
l:é-i"_+2(1-'ve)a" =0

The plate is assured to be simply supported along the unlosded edges
located at y = tb/2:

(Wyatpj2 = ©

(k)

-y

3%y 3%
N — VQ "—'é
a2 ox y=tb/2

= 0

Incorporation of these boundary conditions into the solution given
by equation (8) leads to the following implicit expressions for k.

For the column,

5°F tan(B/2) + 3% tann(3/2) = 0 (15)
. for the flange, '
$°B sinh & cos B - 3°& cosh & sin‘ B=o0 (16)
and for the plate )
[& tann(a/2) + B tan(3/2)]] ™ = o | (x7)
vhere ) -

§ = a2 - v (xp/A)2

" e A L e mite en — i e . ——
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G =B+ valr/A)?

The buckling coefficlent for wide colums and flanges is shawn as a
r;lvllon of v, and a/b in figure 2. The solutions for wide colurns
th

¢ given by Houbolt and Stowell by use of the differential ejuation

V"L ai~ply supported loaded edges and the energy method for clamped
fﬂndfd edges (ref. T).

The buckling coefficlent for & simply supported flange was derived
by (urdquist and Stowell (ref. 8) in the form

ke = (6/x2){k1 - ve) + Enb/x)eykﬁ (18)

WheD the unloaded edge is clamped,

ke = 0.83 - 0.93v, + 1.34(A/xb)2 + 0.10(xb/A)2 (19)

For the simply supported plate

ke = [(0/o) + (/]2 (20)

Anticlastic-Curveture

As mey be seen from the solutions in the preceding section, the
x1ing coefflicient for the simply supported plate depends upon only
by~ and 1s independent of Poisson's ratio, while the coefficients for

:5: yide coluwm and flange are functions of both ve and b/A. This
quation 1s not limited to the case of simple support alone tut per-

uitn" to any degree of rotational restraint along the unicaded edges of
Flﬂter The influence of ve upon k, 1is traceable to the reduced-

ntoﬂr terms at the free edges of flanges and colums. Boundary condi-

'fanﬂ guch as simple support do not impose the requirement of zero

b juced shear along the unlosded edges, which ellminates the v influ-

::;d from the relationship for k.. :

The value of the compressive buckling coefficient for an element
ntaining & free unloaded edge depends upon the degree of snticlastic
:frvuture developed. For a very narrow element such &s a beam, complete

¥
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enticlastlic curvuture occurs and the tending rigidity is sieply EI. For
a relatively wide strip, the anticlastic cwrvature is suppressed 80 tlnt
the cross section rerains relatively flat except for a highly localized
curling at the free edges wlere the stress distribution rearranges itself
to satisfy the georetrical bourdary conditions. The restraint of anti-
clestic curvature results in an incresse in bending stiffness. For z
very wide element, the .:.iing stiffness approaches EI/(1 - v2); this
limiting conditlon is wvr - as cylindrical tending.

Plate columns and flanges may often te relatively narrow, in which
case the bending stiffness liss tetween the limiting values discussed.
This effect can be accounted for by use of figure 2.

STRESS-STRAIN RELATIONS IN YIELD REGION

Three-Parameter Description of Stress-~Strzin Curves

Stress-strain curves are of fundamental irportance in the corputa-
tion of inelastic buckling stresses. The number of design charts regulred
for the many materisls aveilable and the various allowable stresses for
these materials at normal and elevated temperatures can bte tremendously
reduced by use of a rondimensional matheratical description of stress-
strain relations.

Ramberg and Osgood (ref. 9) have proposed e three-paraceter repre-
sentation of stress-strain relations in the yield region which has found
wide spplication. Their equation specifies the stress-strain curve ty
the use of three paramesters: The modulus of elasticity E, the secant
yield stress c¢p 7 corresponding to the intersection of the stress-
strain curve and a secant of 0.7E, and the shape parameter n which
describes the curvature of the knee of the stress-strain curve. Tre
shape parareter is a function of 90.7 and 70.857 the latter stress

corresponding to 2 secant of 0.85E ms shown in figure 3(a). The shape
parsmeter n 1is presented in figure 3(b) as & function of the ratio

%.7[%.85°

The three-parareter methcd is based on the experimental observation
that for reny reterials a simple power law describes the relation between
the plastic and elastic components of strain. By use of this fact, tte
following nondimensional equation can be derived:

Be _ ¢ 3/g \B
= + (21)
%.7 %0.7 7("0.7)

—— s o r e - e - -
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The guantities EE/Go.T and c/bo'T ure nondimcnsional end consejuenily

the nondirensional stress-struin curves shown in figure b can te plotied.
Therefore, the stress-strain curves of reny materisls pay be found with ¢
the aid of figure L providing E, n, and %g,7 are known for the spe-

cific materials.

Inelastic Modulil

For inelastic-buckling problems, the modulus ratlos Egf/E, E¢/E,

and Et/ES aprear. These ratios can be corruted in nondimensional form
by use of equation (21). Since Es = o/e, it follows directly from equs-
tion (21) that

B/Es = 1+ (3/7)(o/o0.7)"™" (22)

Since E; = dc/ﬁe, differsntiation of equetion (21) leads to the
expression t

E/Ey = 1+ (3/T)n(ofo0,7)>" (23)
From equations (22) and (23) it follows that
/5 = (5/%) [(2/2:)

1+ (3/Te/o0.7)"

= (2t)
1+ (3/T)n(o/o0.7)"

1

These quantities are used 1In subsequent sections concerned with
inelastic buckling.

Inelastic Poisson's Ratio

Poissen's ratio for engineering reterfals usually has a value in
the elastic reglon of btetween 1/h and 1/3 and, on the assumption of a
plastically incompressible iSotropic solid, assumes a value of 1/2 in
the plastic reglon. The transition from the elastlic to the plastic value
is most pronounced in the yileld region of the streas-strain curve. Since
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Poisson's rutlo appears in the buckling-stress egquastion, this transition
is of some importnnce in inelastic-tuckling problems.

Gerard and Wildhorn, w«w ..ig others, have studied this problem on
several aluminum slloys and huve shown that Polsson's ratlo is seriously
affected by anisotropy of the material (ref. 10). For raterisls which
can te considered to be orthotropic (e.g., having the sare properties
along the y- and z-sxes 1f loaded along the x-axis) the following relation
describes the transition in the yield region:

v .= vp - (EB/E)(VP - ve) (25)

In this relation, Vp is8 the fully plsstic velue of Poisson's ratio.
For isotropic materlals vp = 1/2, wkereas for orthotropic materials vp
is generslly different from a value of 1/2.

It is evident from the buckling stress expression that two raterials
vhich differ only in thelr values of Polsson's ratio should have different
buckling stresses. As a rule, however, the value of ve is virtually

constant for a material whose properties may change as 8 result of heat
treatment, details of composition, or amount of cold-work.

The ususl range of v, for most technlecally important structural

rmeterials is between 0.25 and 0.35. There are exceptions, however. Omne
of the most extreme materiesls is teryllium, for which Udy, Shaw, and '
Boulger report a value of 0.02 (ref. 11).

In the Inelastic range, presumably because of anisotropy, numerical
velues of v have been found which are considerably in excess of the
theoretical upper limlt of 0.5, which is derived on the assumption of
incompressibility of en isotropic raterial. For example, Gerard and
Wildhorn obtained values of v as large as 0.70 for several high-strength
aluminum alloys {ref. 10}, while Goodman and Russell reported a value
of 0.77 for comrercially pure titanium sheet and 0.62 for FS-1lh magnesium
alloy (ref. 12). Stang, Greemspan, and Newran also obtained data at var-
iance with the theoretical value of 0.5 for plastic strains (ref. 13).
These three reports cover a large variety of alloys, deformed by various
total strains in both bar and sheet stock, and should be consulted for
more complete data.
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PLASTICITY-REDUCTION FACTORS

Inelastic~Buckling-Stress Equation

The elastic buckling stress of & flat rectangular plate can be
expressed in the form

Ocre

i 12<:Kpre2)(%)2 (26)

When the buckling stress exceeds the proportional limit of tke plate
material, the terms in equation (26) which are influenced are %, E,
and v. The buckling coefficient k depends upon the type of loading,
the buckle wave length as affected by the geometricel features of bound-
ary conditions and aspect ratlo, the stress level, and Poisson's ratio
in the case of plates with free edges. The elastic modulus E is altered
by the reduction in bending stiffness associated with inelastic behavior.
Poisson's ratio in the yleld region exhibits a graduvel transition from
the elastic value v, to & value of 1/2 for a Plastically incompressible
isotropic material. .

For simplicity of caleculation all effects of exceeding the propor-
tional limit are generally incorporated in a single coefficient referred
to as the plasticity-reduction factor 1. By definition

N = Uch/O'cre (271}

,Substituting equation (27) into equation (26),

kx2E 2
Oer = 1 -12—(1—-::2-)-(%) (28)

Since 7 =1 in the elastic range, equation (28) is perfectly genersl
and it is not necessary to distinguisn between elastic and plastie
buckling. The values of k and ve are always the elastic values
since the coefficient 1 contains all changes in those terms resulting
from inelastic behavior. -

S M —— e r— < * T S e e e T < A
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Comparison of lheories and Experimentul Duta

The theoretlical and experimental determinations of the values of g
appropriate to vurious types of loesdings and boundary condltions have
resulted in extensive literature. The assumptions underlying the various
theories differ with respect to plasticity laws, stress-strain relations,
end -tuckling models used. In order to avold possible confusion in dis-
cussing the verious theories, it appears desirable to resort to thre
expedient of comparing theories with test data first.

Rather precise experimental data exist for plastic buckling of
colurms, simply supported flanges and plates under compressive loads,
and elastically supported plates under shear loads. For practical
eluminum-alloy columns under compression, it is a well-known fact that
the experimental falling stress 1s closely approximated by the Euler
formule with the tangent modulus substituted for the elastic modulus.

In figure 5, test data for buckling of simply supported flanges
under compression &re shown in comperison with the theoretical velues
es derived by Stowell (ref. 14) according to the method of Gerard
(ref. 15). Excellent agreerent is obtained.

In figure 6, test data of Pride and Heimerl (ref. 16) and Peters
(ref. 17) for plastic tuckling of simply supported plates under co-rres-
sion are shown in comparison with the theories of Bijlasrd (ref. 18),
Eandelman and Prager (ref. 19), Ilyushin (ref. 20), snd Stowell (ref. 5),
and the method of Gerard (ref. 15). Poor agreement is obtained bvetween
the test data and the flow theory of Handelran and Prager, whereass rela-
tively good agreement is obtained for the deformation theories of the
others with Stowell's theory in best agreemert.

In figure 7, test data for plastic tuckling of elastically supported
plates under shear are shown in corparison with the theories of Bijlsard
(ref. 18), Gerard (ref. 21), and Stowell (ref. 5). It can be observed
that the method of Gerard, which is based on tke maximum-sheer plasticity
law to transform an axial stress-strain curve into a shear stress-strain
curve, is in good agreement with test date on aluminum alloys.

On the basis of the agreerent with test data, the values of g
recommended for use with equation (28) appear in the appendix. Also,
nondimensional buckling charts derived through the use of these reduc-

_tion factors appear in figures 8, 9, and 10 for axially .corpressed

flanges and plates and for shear-loaded plates.

Assumptlions of Inelastic-Buckling Theories

The state of knowledge up to 1936 concerning inelastic buckling of
plates and shells has been surmarized by Timoshenko (ref. 2). The maln
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ef'forts reporied therein were coneorned with atiempts to modify the varl-
ous Lending-morent terrs of tie equilitrium differential equations by tre
use of suitable plasticity coefficlents determined from experirental date
on coluwrms. Although such semierpirical efforis met with a reascnestle
degree of success, the theoretiecal determination of plesticity-reduction
factors for flat plates has been echieved within recent years as the
result of the development of a satisfactory inelastic-tuckling theory.
Pecause such develorments are receni and tecause the various theories lave
not been, as yet, adequately treated in text books, the following dis~
cussion concerning the essurptions and results of the various theories is
presented in some detail.

Mathematical theories of plesticity are phenomenologicel in nature
since such theories generally proceed from the experimentally determined
stress-strain relations for simple uniaxial loadings. In the elastic
renge, stress and strain are linearly related by the elastic modulus.

At strains beyond the proportional limit, a finite stress-strain rela-
tion can be used in the form

o = Ege (29)
or an incremental relation can be used
do = By de ' (30)

In either relation the secant modulus Eg or the tangent modulus Ei

veries with stress and applies as long as the loading'continues to
incresse. Unloading usuelly occurs along an elastic line parallel to
the initial elastic portion of the stress-strain curve.

In the buckling process, for example, the stress state is considera-
bly more corplex than simple uniaxisl loeding. Therefore, formulation of
sultable stress-strein lasws for three-~dimensional stress states bteyond
the proportioral 1imit forms one of the besic assumptions ¢® the verious
plasticity theories. Eased on generalizations of equation (29) which
involve finite relations, deformation tynes of stress-strain laws have
been advanced. Similar generalizations of equation (30) involving incre-
mental relations are referred to as flow-type theories. In both theories,
unloading cccurs elastically.

The use of the various plasticity theorles is greatly facilitated
by the introduction of rotationally invariant functions to define the —
three-dimensional stress and strain states; such functions are termed
etress and strain intensities. The assurption that the stress intensity
is a uniquely defined, single-valued function of the strain intensity



http://www.abbottaerospace.com/technical-library

PO VUOr PO P

A,

& HACA T 3701

for a given paterisl when the stress intensity Increases (loading) ard
is elastic when it decreuses (unloading) is a second of the fundamentsl
hypotkeses of plasticity theory.

The definitions-of. the stress and straln intensitles theoretically
can te chosen from a faaily of rotationally invariant funetions. Two
such functions referred to as the maximum-snear law and octakedral-shear
law have been found to bte of considerable usefulness for correlating
stress data on ductile raterials. Thus, both of these laws have teen
assumed to apply in various solutions for inelastic buckling.

In order to obtain solutions to variocus plasticity problems, addi-
tional sssumptions are generally erployed. These ordinarily include the
assumption that the prircipal axes of stress and streain coincide and the
assumption of plastic isotropy. Furtherrore, the variastion of Poissoa's
ratio from the elastic velue to the value of 0.5 for & plastically incom-
pressible, isotropic solid 1is most pronounced in the yield region. Some
solutions account for the instantaneous value of Poisson's retlo whereas
others assume a value of 0.5 for both the elastic and plastic regilon.
The latter assumptlon serves to sirplify the analysis considerably.
Corrections for the use of the fully plestic velue of Poisson's ratio
can generally be incorporated in the final results.

All the foregolng assumptions form the btasis for solution of plas-
ticity problems in general. For the specific problea of inelastic
buckling, it is necessary to mske an additional assurmption concerning
the stress distribution st the instant of buckling.

From the standpoint of classical stability theory, the buckling load
is the load at which an exchange of stable equilitrium configuretions

occurs between the straight form and the tent form. Since the load rexains

constant during this exchange, a strain reversal must occur on the convex
side and, therefore, the buckling model leading to the reduced-modulus
conzept for columms 1is correct theoretically.

Practical plates and colums inveriebly contein initial imperfec-
tions of some sort, and, therefore, axial loading and bending proceed
similtaneously. In thls case, the bent form is the only stable confiz-
uration. Since in the presence of relatively large axial compressive
stresses the tending stresses are small, no strain reversal occurs and
the incrementel tending stresses in the inelsstlc range are given by
equation (30).

Since failing loeds obtained from tests on aluminum-alloy columns
are closely spproximated bty the Euler buckling equation with the tangent
modulus substituted for the elastic modulus, certain of the inelastic-
buckling theories assume the no-strain-reversal, or tangent-modulus,
model as the basic tuckling process and then proceed to solutions by use
of equilibrium equations based on classical stabllity concepts.

B et —————— b St ey = & = el e e e— e et - C e e
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Inelustic~-iuckling hecries

Bifferent investigutors have used various onea of those assumptions
discussed above, In order to indicate tlhe major assurpiiens underlying
each of the theories, s surmmary is presented in tuble 1.

Historically, Bijleard appears to have teen the first to arrive
at satisfectory theoretical solutions for inelastic-buckling theories
(ref. 18). His work is the most corprenensive of all those considered
in that he considers btoth incremental and defornation theories and con-
cludes that the deformation type is correct since it leads to lower ine-
lastic buckling loads than ere obtained from incrermentel theories. Tis
work was first published in 1937. This paper and later publications
ineclude solutions to meny important inelastic-buckling problems. How-
ever, this work appears to have remained unknown to most of the later

investigetors.

Iyushin briefly referred to Bijlasrd's work and then proceeded to
derive the basic differential equation for inelastic buckling of flat
plates according to the strain-reversal model (ref. 20). The derivation
of this equation is rather elegant and was used by Stowell, who, however,
used the no~strain-reversal model (ref. 5). The differential equation
obtalned by Bijleard reduces to that derived by Stowell by setting
Vo= 1/2 in the former. Handelran and Prager, during this time, obtained
solutions to several inelestic-buckling problems by use of incremental
theory (ref. 19). Test data, such as shown in figure 6, indicate that
the results of incremental theories, regardless of the buckling model,
are definitely uncoanservative, whereas deformation-type theories are in

relatively good agreerent.

A1) the foregoing theories were tascd on the use of the octahedral-
shear law. Towever, test data on the inelastic buckling of aluminum-alloy
plates in shear indicated that the results of the atove theories were
unconservative. Gerard used the maximum-shear law in plece of the
octahedral-shear law to transform axial stress-strain curves to shear
stress and found good agreement with the aluminum-slloy-plate shear-
buckling data (ref. 21).

Te summarize, then, the assumptions which lead to the best agreement
between theory and test data on inelastic buckling of sluminum-alloy flat
pletes under compression and shear loadings include deformation-type
stress-strain laws, stress and straln intensities defined by the octshedral-
shear lsw, and the no-strain-reversal model of inelastic buckling. Althoush
there may be theoretical objections to deforration theories as a class and
the use of & po-strain-reversal model in conjunction with classical sta-
bility concepts, test data da suggest the use of results obtained from a
theory based on these assurmtions in engineering applications. The choice

.of laws to transform axial s*ress-strain data to shear stress-strain data
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depends upon the degree of correint’on obtuined bLeilween cach of these
laws wiih polyaxiel test date for 1ndividuw:l paterials.

Factors Used in Comput:ations

As already indicated, the inelastic-buckling stress may be com-
puted by use of plasticity-reduction fectors asppropriste to the tound-
ary and loading conditions. The factors incorporate ell effects of
exceeding the proportionsl limit upon k, E, and v, For convenience
in prepering design charts for inelastic buckling, the criticsal elastic
gtrain can be used:

2
€or = __iz__(%) (31)
12(1'- ve2)
From egquations (28) end (31)
Oor = NB&ey ' (32)

The recormended values of 1 are given in table 2. For compressive
loads, the values of 1 derived by Stowell for infinitely long plates
except in the case of plate columns (see refs. 5 and 22) have been cor=-
rected tc account for the instantaneous value of Poisson's ratio according
to a method suggested by Stowell and Pride (ref. 23). Thus,

Cl - Vea)

1= 1g W (33)

vhere 17y 1s the original value given by Stowell. Equation (33) is the
form of the plasticity-reduction factors that appears in table 2 and has.
been used to construct the nondimensionsl buckling charts of figures 8,
9, and 10.

For long sirply supported plates under corbined axial corpression

and bending BijJlsard found theoretically, by a finite-difference approach
(ref. 24), that

e o] o
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where a 1is fowrl from equuiion (96) ond [§1 - vpel/Ql - ve%}qc is

the plesticity-reduction factor for axial compression. Equation {(zh4)
reduces to this value for axisl loud slose, slnce a = O for thils case.
For pure bending o« = 2 and equation (34) is equal to the plasticity-
reduction factor for a hinged flange. )

To determine the instantaneous value of Poisson's ratio, eguation (25)
can be used. For the nondimensionzal buckling cherts the theoretical fully
plastic value of 0.5 was asaurcl for Poisson's ratio, as wes assumed by
Stowell in his determinations of the plasticlty-reduction factors. Stowell
and Pride reported on computations rede using equstion (34) instead of
v = 0.5 and showed that there was little difference between the two curves
for flanges and simply supported plates (ref. 23). Bijlaard took exception
to this report (ref. 25); however, the differences were slight, as was
pointed out by Stowell and Pride, snd 1t can be essumed for practicel pur-
poses that the plasticity-reduction factors shown in the appendix are sat-
isfactory for general design and analysis.

Construction of Nondimensional Buckling Charts

The nondimensional buckling-stress charts of figures 8, 9, and 10
were constructed from the basic nondimensional stress-strain curves of
figure 4 and the plasticity-reduction factors shown in the appendix,
incorporating the method of critical strains as depicted through equsa-
tions (31) and (32). Since there is little difference among the numeri-
cal values of the buckling strasses that would be obtalned for the
plasticity-reduction factors eppliceble to a long clamped flange and to
& long plate with any amount of edge rotational restraint, these cases
were grouped into one erploying the reduction factor for the simply sup-
ported plate, which is the average of the three factors.

CLADDING REDUGTION FACTORS
Basic Principles

The presence of cledding on the faces of plates may have an appreci-
gble effect on the buckling stress since the cladding raterial, which
usually has lower mechanical strength than the plate core, is located at
the extreme fibers of the plate cross section (fig. 11) where the bending
straeins during buckling attain their highest velues.

Buchert determined buckling-stress-reduction factors for clad plates
which include plasticity effects as well as reduction due to cladding
(ref. 26). However, it is possible to determine a reduction factor for

L T T -

v
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cludding alz:- that piy be mdtiplicl ty the inelastic Luckliny stress

to yield a {inal buexling stress for the clad plate that sgorees quitle
closely with the test data. The cluzdding reduetion fuclors mey ther be
used with the existing inelastic-buckling curves of figures 8, @, ard 10.

The form of buckling enuation comonly used for determining the
buckling stress of & bare flut plate with uny iypre of loading and bound>s
ery supports is given as equation (28). For elad plates this expression
is used to find e nominal buckling strees, where the thickness is that
of the tou-l plate and the raterimsl properties are those of the core.
The ectual buckling stress of a cled plate then ray be found by epplying
8 simple nuwerical multiplier 7 to this stress. This rultiplier,
termed the cladding reduction factor because it reduces the ratio of the
nominal core stress to the buckling stress of tke clad plate, is a func~
tion of the relative core end cladding stress levels snd the respective
modull of the core and cladding materials. The clad-plete buckling stress
can be found from

Ecr = 0, (35)

If the nominal buckling stress exceeds the proportional limit of
the core material, then the nominel buckling stress for the clad plate
may be found by using the appropriate value of 17, the plasticity-
reduction factor of the core material. Values of n may be obtaired
from the clad-plate stress-straln curve shown in figure 12, the deri-
vation of which is discussed below.

It should be noted that the plasticity-reduction factor depends
upon the stress level and consequently requires an estimate of the final
buckling stress of the plate before ejuation (28) can be used to £ird
Ocre The cladding reduction factor has been found to be of such a rature,
however, that little error is involved in first finding the nominal buck-
ling stress and then multiplying it directly by the cladding reduction
factor to find the actual buckling stress of tke clad plate. The prod-
uct nf is 7, which was determined by Buchert.

Taeble 3 contains-a listing of the various cledding reduction fec-
tors determined in subsequent portions of this section. In the table,
all plates are long and simply supported. In all cases for which tre
cladding proportional-limit stress o, exceeds the nomin2l bucklirg

stress o.p. the cladding reduction factor is equal to unity. The guen-
tity B 1is defined as B = 0p] foor, and £ 1s the ratio of the toial
cladding thickness to the clad-plate total thi-kress.
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Terivation of Core Stress-Ctrein Curve

The core stress-streln curve ray be derived from a stress-strain
curve for the entire clad plate us shown in figure 12. Using the nota-
tion of figure 11, in which a section of & cled plate is shown, the total
axial load acting on the section is determinable trom

Ny = t3 = t(1 = £)oggpe + 10,1 (36)

Dividing this expression by to,,,.e ¥ields

5/0core = L = £ + B (37)

where B = 0,1 /0orer

Thus, the core stress-strain curve can be constructed by plotting
the core stress determined from equation (37) at each value of strain
for which the corresponding clad-plate stress was found. (See fig. 12.}
The initial slope of the core curve, which is the same as the initial
slope of the clad-plate curve, is the elastic modulus to be used in the
nominal-buckling-stress eguation. Since the buckling stress refers to
the core raterial, Ocore wos replaced by its counterpart g, in the

succeeding derivations.

Typical values of f for alclad plete appear in table Lk for sev-
eral aluminum 2lloys. Buchert showed a value of o0.; = 10,000 psi for

1100-H1L4 alloy (ref. 26). However, the cladding stress will vary with
the cladding material, of which different types are used on different
alloy cores. .

Comparison of Theory end Experiment

The total-reduction factor, defined as the product of the plasticity-
and cladding-reduction factors, has been plotied in fi~-wre 13 as & func-
tion of stress for both the test data and the tHeory in the case of axially
conpressed plates. Two materials are represented, each with a different
percentage of cladding thickness. Furthermore, the first (2024-T84 sheet)
is a sirply supported plate whereas the second (2024-T3 sheet) is a long
column. Plasticity-reduction factors for these two cases were obtained
from table 2. It is instructive to notice the close correlation for the
columin ense, for which the tangent modulus is the applicable plasticity-
reduction modulus. This follows the prediction of the simplified theory,
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which stipulates tre:t L0 cledling radustion factur e inlepenleat at
strezs lev2l when the rondnal core stress exceeds the cladding rropur-
tionel limit. Thus, the theory and test 4o .. wiree in the charp drop
in the total-reduction factor at the cladding proportloual 1imit.

Derivations of Simplif!ed Cladding Reductlon Fuctors

Buchert derived expressions for the total-reduction factor for flat
eimply supported rectangular plates subjected to several types of lcalings.
In the following sections are presented derivations of simplified clelding
reductlon factors that yield buckling stresses at all stress levels curely
by multiplying the nominal stress (elastic or inelestic) by the cledding
reduction factor at that stress. This is done by separating the clediing
effect from tke total-reduction factor by using the relationship #{ = np/n.

Case 1. TLong simply supported plates in corpression.~ Buchert derived
the expression for 7p 8t . > dp (of the core] (ref. 26):

e = ES/E' E- , (3138 /Es)] . {[1 + (3f§s/gs)] [(llk) +

2(1 + 3f)

(3/1) (Eb/:s) + w]]l/a , (38)
Wa (3&8/38) lgl/h) + (E/k)(ﬁtfﬁs)] ‘

For a bere plate f =0 and qp = 7, which glve

N = (Es/?-E) 1+ El/h) + (S/h)(Et/ES)] 1/ (39)

{cf. table 2). Then

. /ﬁ.,. (5{1153/58)] + {[1 + (BfEs/Eg)] El/&) + (3/4) (Bt/Es) + HBUE r
1+ 5’\ 1+ [(1/&) + (3/%) (Bt/Es)] M2
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(8) When Oep< Ocl, 5 = By = BEg = Bt = E, and therefere 7 = 1.

(b) When ¢y < Ger < Upys Eg = By = E, and for the cludding stress-

= E, ag.1/e  oc
strain curve of figure 12 Et = O. Then with —= = —El-/-— =281 B,
E  ogerfe  oer

r

- 1
1= m{(l + 3L} + —[1 + 3pf) (b + 3131')] } (k1)

which may be written

7= -i—:—-:?—f(a)(l + {h - [ose/(a + 3Bf)]}l 2)

If it is assumed that 98£/(1 + 3Bf) << k4, the following sicple expres-
sion is obtained for the cladding reduction factor:

72t 2Bl (:2)
1+ 3f

{c) For large stresses, P—>0 end therefore

p— (13)

Equations (42) and (43) appesr in figure 13 fn the form of fp = 77,
where they may be seen to agree closely with the total-reduction factor
and the test date.

Case 2. Plate columns.- The derivations of 7 for short and long
plate colums follow thet form used in case 1 for the supported plate
without any simplifying assumptions. The results are shown in table 3.
The column curve is plotted in figure 13 in the form nq = 1Y, where it

is seen to agree closely with the data and with Buchert's theory.

Case 3. long sirply supported plates in sheer.- Buchert (rer~ 26)
shows that 1p for shear on & long simply supported plate is

A S————

o o e s e
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= _E?Igéﬁ[fz_ 222 + (Cx /Cs) + Ja + 202(Cx fC= ) + 1 12 | (bL)
T san| (/) [a 252 (03105 }

where the nodal-line slope of the shear buckles 1s obtained from the
irplicit equation

E:.L‘ * 2@2(037/051-) + 1:11/2 =(1- u.h)/l}a.e - (C5T[C5T)]

Csr = (1/2) {1 . (E,,;/Es) + 3Bf[1 + (Et/Es):”

C5y = 1 + 38¢F

The mirnirum-energy state occurs for unclad elsstic plates when
a.—)l/ﬁ, and there is 1little resson to expect a significantly different
value for clad plates. Consequently, this value of a is assumed in
the following developrment:

Cs (B, [E [
- R?T(Téﬁ) /2) + (5v]°0) + 57 ?703T/cy) )

(a) When ogr < Geys N =T =qp=1.
.

(‘b).The plasticity-reduction factor for oy, > 0,7 1s derivable
from the total-reduction factor in the form

n = (5 /BE) [n + (Bef5s) + 2_-_@:7*3:5] (“55.
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frox which, usirg 7 = “Tvﬁh

oy () )/ [2 - (5) (1)
Sl (Bufms) + 3/[2 i (Etlas):l

where Y = 1 + 383f.

g

The expression In braces deviates about 2 percent from unity for
f=0.,10 and for B ->0.2, which will be in the neighborhood of the
proportional limit for typicsl structural sluminum alloys. Consequently,
it will not introduce an appreciable error to consider it equal to unity,
in which case equation (42) for the compressed simply supported plate
holds true. .

1
1+ 32

{c) For large stresses, B-—>0, and therefore 17 =

BUCKLING OF FLAT RECTANGULAR PLATES UNDER COMPRESSIVE LOADS

In the preceding sections the mathematlical and physicel background
for the flat-plate buckling problex has been presented. It was shown
thzt basic eguation (1) can be used for the solution of buckling problems
pertaining to flat rectanguler plates under various types of loadings in
the elastic and inelastic ranges by suitable choice of reduction factors
and buckling coefficients. Considerations that influence the determina-
tion of k have been analyzed in the sections entitled "Basic Principles”
end "Boundary Conditions.” The plasticity-reduction and cladding reduction
factors were discussed in the sections "Plasticity-Reduction Facfors" and
"Cladding Reduction Fectors." In this section, and In those to follow, the
buckling coefficient k will be discussed and its numerical velues for
various loading and boundary conditions will be presented.

-Historical Background
Bryan investigeted the buckling of a simply supported flat rectangu-

lar plate under t«ial loading in the elasstic range using the energy
method (ref. 27). He obtained the explicit form for k., for this type

of loading and support:

Ko = [(a/nb) + (nb/aﬂ2 . (48)

e ———— . e = 1 e
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Tim.shenke trested nwrerous addiliovral cases of Loqding ant bouwrlasy
corrlitions utilizing both the energy upproach ard the solulion of the
differential equation (ref. 2). Hill constructed a churt of ke covering
the corplete range of possibi=z bowunldary conditlons for nxial leadings:
simply curported, clemped or free el,.ws on one side, and slmply supported
or clemped edges on the other, with the loaded ¢ izes either clamped or
simply supported {ref. 28).

Lundquist and Stowell presented the first unified treateent of the
compressive-buckling problem in their analyses, by both the differential-
equation and energy methods, of the cases of supported plates and flanges
with simply supported load=d edges end with varying degrees of elastlce
rotational restraint slong the supported unloaded edges (refs. 8 ani 29).

Stein and Libove, in considering combined longitudinal and transverse
axisl loads, covered the effects of clamping along the unloaded edges of |
rectanguler plates (ref. 30).

Kumerical Values of Compressive-~Buckling Cocefficients

for Plates

Figure 1k is a sutmary chart depicting the variation of k. as a
function of a/b for varicus limiting conditions of edge support and
rotational restreint on a rectangular flat plate. It is apparent that
for values of a/b greater than four the effect of rotationsl restresint
along the loaded edges becomes negligible and that the clarped plate
would buckle at virtually the same compressive load as a plate with
simply supported loaded edges.

Supported Plate, Edges Elastically Restrained
| Against Rotation

The behavior of compressed plates with verlous smounts of elastic
rotational restraint along the unloaded edges can be urderstood by
exarining the relation between buckling coefficient and buckle wave
length. For plates supported slong both unloaled edges the curves
sppear in figure 15 for rotational restraint from full clamping (e = =)
to hing=d supports (e = 0). From this figure, which is taken from the
report by Lundquist and Stowell (ref. 29), it is possible to see the man-
ner in which-the buckle wave length decreases as rotational restraint
increases, and the value of Afb for a minimum value of k. can be
seen to increase from 2/3 for elemped edges to 1.00 for hinged edges.

The lower portions of these curves and the portions to the left of the
minirum ke 1line form the first arms of the curves of k. &s a function

T T e g = . e AL F i e ek ava e
e ———
A ——
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of afv, as in figure 16. For compleieness, several lines denoting tle
trunsiticons from 1 t0 2, 2to 3, . « «n to n+ 1 buckles bave been
included in figure 15. The intersections of these lines with ithLe curves
of ko sagainst K/b correspond to the cusps on the curves of figure 16.

Plates With Uneguel Edge Rotatlonal Restraint

Figure 15 can also be used when there are unequal rotational
restraints along the unloaded edges of a plate. This can be done by
determining the ko value for the € on each unloaded edge. The effec~-
tive value for use in equetion (1) can then be found from

k. = (kclkcg)l/ ¢ (19)

The sccuracy of this method hes bheen demonstrated by Lundquist and Stowell
who compared results so cbtained with the values obtained by solving
directly with the egquations used by them for the general case of rota=-
tional restraint (ref. 29).

The elsstic restraints are mathematically equivalent to a serles of
unconnected torsional springs. Since this does not necessarily conform
t0 the behavior of the usual edge rerber or stiffener of a flat panel,
it is necessary to evaluate the effective single spring stiffness of the
sctusl stiffener in order to use either figure 15 or figure 16. However,
it %5 not necessary to determine this stiffness to a high degree of
accuracy since the influence of € wuporn Kk, enmbraces a large range of
stiffness ratios, as is shown in figure 1T for infinitely long plates.
When the stiffener rotationel rigidity has been found, € may be com~
puted by forming the ratio of this rigidity to the rotational rigidity
of the plate.

\ From test data Gerard was able to comstruct a chart of ke for
long plates as a function of b/t for strong snd weak stiffeners
(ref. 31 and fig. 18). Above b/t = 200 it is seen that most stiff-

eners will effectively clarmp the plate edge.

Supported Flanges With Elastic Rotational Restraint

The relationships among k., A/b, and e are depicted for flanges
in figure 19. Tt should be noted that these curves were constructed for
a2 Poisson's ratio value of 0.3, which also appllies to the curves of kg

as a function of a/b in figure 20. The determination of Xk, for other
values of v 1s disgussed in the section entitled "Boundary Conditions.”
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The transition lines for 1 to 2, 2to 3, . . . n to n+ 1 buckles are
shown in figure 19. However, it should be noted that the rinimum line
does not intersect the curve for & hinged flange (¢ = 0). For this case
there 1s only ore buckle which extends the full length of tlLe rlange.

As in the case of the plate, the theoreticsl restraint action on the
unloaded supporied edge of the flange is assumed to be a series of dis-
connected torsional springs, and it is necessavry in this case also to
determine the effective restraint for the edge stiffener in order to use
the curves of figures 19 and 20. However, as in the case of supported
plates, 1t is not necessary to determine e +to00 amccurately, as figure 17
shows, since ko is relatively insensitive to lerge variations in «.

Effect of ;ateral Restraint on Buckling

In the usual buckling-stress computations the plate anslyzed is
essured to be unrestrained against distortion in its plane under the
external loads spplied. However, for longitudinal compressive loads on
a rectangular plate, the edges perallel to the loads would tend to move
apart as a result of the Poisson's ratio expansion. If this wmotion
should be restrained to any extent, forces would be developed transverse
to the applied load which would influence the longitudinsl stress thrat
the plate might withstand before it would buckle. If the interaction
concept is erployed, it is apparent that the transverse compression would
lower the permissible longitudinal stress by ar amount that could .be
found from interaction curves utilizing stress ratios.

If the plate edges dre restreined by rigid stifferers held in place

by transverse ribs each with a section area Ay, the balance of transverse
Porces requires that . ~

Ophy = gyat (50)

The directions of oy, Ty end o, are shown in figure 21. The eguiva-
lence of transverse strain requires that

) ) - o

. i 4 I .
assuming thet the ribs and plate are of the same meterial. From equa-
tions (50) and (51), the transverse stress becomes

oy /oy = \/[1 + (at/Ar)] (52)
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From this point it is & sirple matier {o determine the reduced
longitudinael~buckling stress. This may te expressed in terms of the
new velue of the buckiing coefficient k. as shown in figure 21, which
is & modification of curves presented by Argyris and Dunne (ref. 32).

BUCKLING OF FLAT RECTANGULAR PLATES UNDER SHEAR LOADS

Historical Beckground

Southwell and Skan computed the critical shear load for & flat rec-
tangular plate with simply supported edges and with fixed edges by means

of tke buckling differential equation (ref. 33). Timoshenko investigated -

shear buckling also (ref. 2); however, he used the energy method and
obtained & criticel loading 6.5 percent higher than the exact result of
Southwell and Sken.

Stowell determined shear-buckling coefficients for infinitely long
supported plates with the edges elestlically restrained against rotation
(ref. 34). He utilized the differential ejuation for an exact solution
and the energy integrals for plotting purposes. Stowell presented his
results in the manner of Southwell and Skan, who plotted the buckling
coefficient as & function of A/b for long plates. This is the same
procedure used by Lundquist and Stowell for compressive loading on plates
of any length (refs. 8 and 29).

Symmetric and Antisymmetric Modes

The solutions obtained by Southwell and Skan (ref. 33) and by
Timoshenko (ref. 2) pertained to e buckle form termed the symmetriec mode
because of the symretry of the mode shape with respect to a diagonal
across the plate at the node-line slope. Stein and Neff examined the
antisymmetric buckle mode for simply supported plates and fournd that it
has a lower buckling stress, within a small range of a/b values, than
does the symmetric mode {(ref. 35). Stein and Neff also repeated
Timoshenko's calculations for gresater precision and obtained an esti-
meted error of 1 percent.

Budiansky and Connor investigated the short clamped plate for both .
symmetric and antisyrmetric buckle modes using the Lagrangian multiplier
method {ref. 36). Except for a small range of a/’b values, the symmetric
mode was shown to yleld the lower buckling stress. .

o
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Numerical Values of Sheur-Buckllng Coefficient

The plot of kg &s a function of a/b appears in figure 22, Tt

may be seen from the curves how the symmetric and antisymmetric modes
alternate with one another as a/b increases. For long plates the
value of kg mey be found from figure 23(&), in which kg, appesrs as

e function of ¢.

Effect of Plate ILength on Buckling Coefficient

When kg 1s plotted as a funcilon of afb for infinite and zero
values of € (clamped and hinged edges) as shown in figure 23(b}, it
may be seen that there is little difference between the two curves.

This suggests & rapid method of computing the shear-buckling coefficient
for any value of ¢. The coefficient for the specified e 1is obtained
from the curve cf kg, &s & function of e (fig. 23(a)), which iz a
replot of the minimm kg line (n = «) of figure 24. Alsoc, the ratie
ks/ksm is found from figure 23(b). Then kg for the specified a/b

and e may be found by computing the product of these two numbers.
Estimation of the correct value of ks/ks°° will be relatively free from

error because of the proximity of the two limiting curves in figure 23(b}. t

BUCKLING OF FIAT RECTANGULAR PIATES UNDER BENDING LOADS

-

Historlcel Background

Tmoshenko investiganted the buckling stresses for flat rectangular
plates under combined longitudinal and bending loads using energy inte-
grals end obtained velues for ¥, that agree well with later calculations
of higher precision (ref. 2). Schuette and McCulloch analyzed long plates .
under pure bending with supported edges and elastic rotational restraint
(ref. 37). Johnson and Noel also investigeted the buckling »f plates
under longitudinal axial loed and bending (ref. 38), and Noel analyzed
plates for longitudinal bending plus axial load combined with transverse
axial load (ref. 39). ,

. _
Numerical Values of Bending-Buckling Coefficient

The relstions between buckle wave length and buckling coefficient
for various values of rotational restraint appear in flgure 25 together
with the wave-length transition lines. The curves of ky as a function

of a/b are shown in figure 26. It is of interest to note that the
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value of ki for infinite pl-.tes is roughly six times as greaﬁ as the
velue for the supported plate k. for all values of rotational restraint.

BUCKLING OF FIAT RECTAINGULAR PLATES UIDER COMBINED LOADS

General Background

Flat rectangular plates frequently are subjected to combinations of
elementary loadings. It has been common practice to consider elementary
loadings in pairs and to determine an interaction curve or curves for the
combination. However, two recent pepers treat triple combinations of the
elenentary loads, so that an interaction surface in strese ratios is gen-
erated, end by teking appfopriate sections (e.g., letting one of the -
stiess ratios equal zero) it is possible to reproduce the interaction
curves that were derived previously in the literature.

Interaction curves for the corbination of bending, shear, and trens-
verse compression on long plates were developed by Johnson and Buchert
(ref. 40), and Noel constructed the two-dimensional sectione of the sur-
face for longitudinal bending, longltudinal compression, and transverse
compression (ref. 39). The backgrounds for the various combinations of
loedings are discussed in the following parsg aphs. Interaction charts
are shown in figures 27 and 28, in which sections of the triple sitress-
ratio surfaces appear.

A summary of the losding conditions discussed in the following para-
graphs appears in teble 5. Interactlon equations which exist for a few
cases are included in the table. '

IO

Biexiel Compressioﬁ

Mmoshenko derived & relation between the longitudinel and transverse
edge stresses acting on e rectangular plate at buckliing (ref. 2). This
relation was evaluated for the lowest possible combination of stresses by
reans of & chart that must be drawn for each a/b value under considera-
tion. As one limiting case of plate proportion and loeding, Timoshenko
demonstrated that a square plate loaded by equal biaxial strecses hes a
buckling coefficient of 2, or half of that for a uniaxislly loaded square
plate. -

Libove and Stein evaluated buckling under biexial loadings by the
energy method for rectangular plates supported in several different man-
ners and presented the results in charts of -k as functions of a/b
for various values of ky, where .

- ———
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72D
ox = "X<T
bt

oy = ky[TD
y ky('bah)

and o, and oy &re the two stresses acting on the plate at bucklirgz
{ref. 30).

(53)

No simple interaction expressions exist for the stress ratios in
the general case for the loadings and supports investigated by Libove
and Stein. However, for square panels, or for long panels thkat buckle
in square waves, it can be shown, from Timoshenko'’s results, thst

thRynl (sk)

~ Noel considered more complicated loading conditions and presented
date from which interaction curves mey be constructed for biaxial loadings
for any value of a/b (ref. 39). Noel's curves eppear in figure 28.

Shear and Normal Stress

By epplication of the energy method, Stowell and Schwartz examined
the conditions under which buckling will occur on a long, flat, rectan-
gular panel with edges elastically restrained against rotation under the
sirmltaneous action of shear and normel stresses (ref. 4¥1}. They derived
the interaction relationship between the stress ratios in the form

_Rc'l‘Rse'l > {55)

They also derived an expression for the stress combination at
buckling through use -of the differential equpation and tested the inter-
action equation for several values of restraint coefficient €. The
agreenent with the intersction equation wes found to be excellent, as a
consequence of which the interaction equation written above ray be
applied to this loading case for all values of restraint coefficient
end may be used when the axial losd is either compression or tension,
provided the restraint coefficients are the same on both edges and tle

panel is infinitely long.

i
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The problem of determining critical loading coabinations for shear
ani transverse normal stress was solved by Datdorf and Houbolt by both
the eneryy method and the differentinl egquation {ref. k2). The signifi-
cant result of this work is the demonstration that roughly half of the
eritical shear stress ray be applied to a transversely compressed panel
without lowering its permissible corpressive-buckling stress.

This work was done on infinitely long penels with the long edges
supported and elastically restrained against rotation. The restreint
coefficlent was found to exert an eppreciable (although not very large)
effect upon the critical loading combination. The results for this type
of loading, consequently, do not lend themselves to the writing of a
simple explicit interaction equation between the stress ratios. The
curves were plotted by Batdorf and Houbolt for both compressive and ten-
sile transverse norral loedings in corbination with shear over the entire

range of restraint coefficilents.

The two preceding loading conditions were reexamined for simply
supported plates of finite a/b by Batdorf and Stein with the use of
the energy equations {ref. 43). They showed that the parabolic inter-
action expression of Stowell end Schwartz (eq. (55)) sgrees with the
interaction curves for finite values of a/b for shear plus longitudi-
pal compression {or tension) (ref. 41). However, the curve derived for
infinitely long panels under shear and transverse loading requires modi-
fication for finite velues of a/b. For a square panel the parabolsa
agrees with the modified curve, while the simple-edge-support case of
Batdorf and Houbolt (ref. 42) may be used for a/t.= 4. The transition
region from the modified curves to those for a/b = ® lies between
these two values of a/b.

The large shear stress that may be superimposed upon the criticél
compressive stress witbout lowering the permissible compressive stress
for infinitely long panels 1s not possible for squere plates. In fact,
it appears to be possible for infinitely long plates only.

[
Bepding and Rormal Stress

Timoshenko determined the critical corbination of bending and nor-
rel stresses scting on simply supported fiat rectangular plates using
the energy method (ref. 2). He determined the buckling coefficient as
& function of « for several ratios of moment loading to axial loading
for panels with various values of a/b.

Johnson and Noel broadened the scope of the problenm by including
elastic rotational restraint slong the unloaded compression edge (ref. 38).
Their results were plotted as k, versus A/b for all values of restraint
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coefficient. One chart is rejquired for each of the loading ratios (lon-
gitudinal loading to moment loading), of.which four values were chosen.
The loading ratlio.is defined by

12M

L B ——————
Pb + 6M

r (56)
o 6(2 - a)
YT e

where P is the longitudinal load, M 1is the bending mowment, and b

is the panel width. They also plot Xk, as & function of a/b for the
ceses of simple support and clemping of the unloaded compression edge of
the panel. In eddition; the effect of fixity of the unloaded tension
edge is depicted for various values of o« _1in a plot of kp versus a/b
in which the hinged and fixed cases are drawnp on the same graph. It is
apparent that edge fixity does not become important until o falls
below T/4, which corresponds approximately to a FPb/M of 1 or more.

Crossman exanined bending in corbination with transverse compression
using the energy method (ref. 4li). He found that for infinite a/b tke
bending stress retio can be 0.9 at the same time that the transverse com-
pressive stress ratio is 1. He also provides a graph of the stress
ratios for several values of a/b; however, apparently only the infi-
nitely long plate is cepable of withstanding bending stresses without
buckling while the transverse stress is at its critical value. This is
similar to the result found by Betdorf and Steta for shear and transverse
compression (ref. &3). '

. Noel provides interaction curves for simply supported rectengular
plates loaded in longitudinal bending, longitudinal compression, and
transverse corpression (ref. 39). For the limiting case of no transvérse
loading they agree with the results of Johmson and lMoel (ref. 38), and
when the longitudinal compression vanishes they agree with those of
Grossran (ref. 44). Consequently, their charts can be used for both of
these losding combinations. The curves appesr in figure 28.

The data of Johnson and Noel and of Noel were obtaired from eque~
tions solved for infinite values of afb and were applied to finite
values of &/b by use of the identity

-

Mo ='a/mb | (57)
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Thic procedure ray be guestioned for srall aspect ratios; however, it
may be Justifiel by corparicon with the work of Timoslienko (longitudi-
nal corpression and bending) and with the work of Grossman (transverse
compression and bending), with which the results of Johnson and HNuel
end of Noel show good agreemne:.t. ’

Beriding and Shear Stress

Timoshenko reports the result of analyzing a rectangular flat plate
to determine the critical combination of bending end shear stresses
(ref. 2). He used the energy method and plotted the buckling coeffi-
cient of the panel as & function of the shear stress ratio. The coeffl-~
cient, when divided by that for the bending load alone, becomes the
bending stress ratio, and the set of curves provided by Timoshenko for
various values af a/b becomes an interaction chart, from which it may
be seen that the interaction equation %g a unit circle: .

Re? + Rl = 1 _ (58)

The range of &a/b for which Timoskenko plotted the curves is from 0.5
to 1.0. However, the curves loop back on themselves es a/b increases,
thus indicating that larger values of a/b would yield curves falling
within the plot. The maximum veriation of stress ratlos sbout the values
obtainsble from the circular interaction equation is T percent, with the
equation values the lowest (and hence the rost conservative) of all.

Bending, Shear,:and Transverse Compression

Johnson end Buchert utilized the Iagrengian muitiplier method to
determine the critical corbinations of bending, shear, and transverse
compressive loads on rectangular flat plates of infinite a/b (ref. LO).
The results aprear as interaction surfaces in the three stress ratlos Ry,
Rgy and Ry. The two types of support for the plate ere simple support

along both long edges end simple support along the tension (due to
bending) edge with clarmping elong the compression (due to bending) edge.

Sections of the interaction surfaces tsken perpendiculsr to any of
the three stress-ratio axes yield plene stress-ratlo curves that sgree
with the results obtained directly for these cases in previous publica=-
tions. This is true only of the simply supported plate, of course, since
nothing has appeared in the literature for shear plus bending of plates
with the compression edge clamped. The interesting resulf of a shear

stress ratio equal to 1.2, with R, equsl to 0.5, is revealed (2ig. 27(v)),

as well as the combination of R, = 0.9%, Ry = 0.50, and Rg = 0.k3,

i

il
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Longitudinal Bending, longttudinal Compres®oun, ani
Transverse Corpression

The work of Meel (ref. 39) on the problem of longitudinal b“"”‘i;&
longitudinal compression, and transverse corpression bLas been Jdine!s”
in the section on combined bending and normal siress. The pertl“"“L
interaction curves appear in figure 28.

Combined Inelastic Stresses

L \"r
Stowell utilized the concept of an equivalent-stress intensitf_flnu_
combined stresses applied in constent ratio during loeding in the l;gtcul
tic range (ref. 45). He examined the problem of determining the ¢F Arte
combination of shear and longitudinal compression in elastically ezpl

- £lat rectangular plates by using the energy method to determine th

buckling stresses. From these results, stress ratios were plottﬁd
directly from the theoretical results and were also corrected for ti?
chenges in effective modulus. From this, Stowell concluded that Wit
little error the following stress-ratic equation is applicable:

2
(Es)pc . (Es)ps .1 (%9)

A A P L Ay

In equation (59), (Es)pc 1s the secant modulus at ¢ = 0, ZOT pure .
compression, (Eﬁ)ps is the corresponding secent modulus for pur® sha8ss
and (Es)ci is 'the secant modulus for the effective stress of the €977

. 2
bined loading at buckling; (Eﬁ)ari = [3(3 x2 + 372) (3€x2 + 72)] .
similarity of this expression to that for the elastic case is nPP“rcnzgr
in fact, in the elastic range the expression reduces to the equation

elastic loads.
A recent investlgation of Peters on long sguare tubes loaded 1"tion
torsion and compression (ref. 17) indicates that a stress-ratio equt

of the form.

Ro? + B2 = 1 (%)
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asrees slightly betier with the test dutu (£ig. 29) than does the modified

perabola of Stowsll (ref. L15). Actually, the data yield slightly higher
stress-ratio combinations than do either of interaction equations (59) or
(60), with the diccrepancy inereasing with decreasing siress levels. For
stresces wholly in the elastic range the dats are as rmuech as 100 percent
higher (that is, Ry is 0.4 instead of 0.2 for R equal to 1). The

" data also agree closely with & theoretical curve obtained by Budiansky,

Stein, and Gilbert for long square tubes loaded elastically in torsion
end compression (ref. 46).

EFFECT OF PRESSURE ON BUCKLII:Z OF RECTANGULAR FILAT PLATES

Renge of Published Results

The effect of normal pressure on the longitudinal compressive-
buckling stress of a rectangular flat plate has been investigated for
both simply supported and clarped edges. ILevy, Goldenberg, and
Zibritosky (ref. 47) analyzed the simply supported plate using the
large-deflection differential equations of Von Kérmin. The plate length
was four times the width, which plsces it in the long-plate category.
The data reveal a rise in longitudinel compressive-buckling stress for
this configuration which increases with pressure. However, this rise
ray be realizable only in a plate of such proportions end loading because
of the significant difference in wave forms of the long plate under com~
pressive end pressure loadings. It may be intuitively evident that when
there 1s little difference between these wave forms, such as for a short
plate under combined longitudinal compression and normal pressure, there
rmey be a reduction in the corpressive-buckling stress of the plate. Mo
data are available in this case, however.

Longitudinally Compressed Long Simply Supported Plates

High normal pressure was found to increase the compressive-buckling
stress considerably for the long simply supported plate tested by Levy,
Goldenberg, and Zibritosky (ref. 47).. For example, when the’ pressure
applied to a plate with.length four times the width reached 2L.03Etl/vh,
the buckling stress was 3.1 times that for zerc normal pressure on the
plate. ILevy, Golderberg, and Zibritosky also showed that more than one
equilibriun configuration of the plate was possible when normal pressure
was applied, with the configuration at any instant depending upon the

previous loading history. The plate could be either buckled or unbuckled

under various specific combinetions of axisl load and norral pressure.

Cn

o ————
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Iongitudinally Corpressed Long Clarped Pletes

Woolley, Corrick, and Levy anglyzed a longitudinally corpressed long
clarped plate {ref. 43). For this case the effect of pressure was not so
promcunced as for simply supported edgus. The maximum buckling lozd for

a pressure of 37.55?:3,1*/'1:’+ vas fourd to be 1.3 times that for no normul
pressure. Also, for clarped plates the buckle pattern was found to be
unique for any particular combination of pressure and axial lcading.

-~
SPECIAL CASES

Use of Elastic-Buckling-Stress Expression

It has been shown that the elastic-buckling stress for any flat rec-
tangular plate of constant thickness can be computed using egquation (26)
for various losding and boundary conditions. There are also flat plates
of interest to aeronautical engineers that are neither rectargular nor
of constant thickness. By sultable choice of the buckling coefficlent
and definition of the plate thickness and proportions it is possible to
utilize equation (26) to compute the buckling stresses for these plates
also.

Axially Compressed Plate With Variable loading:
and Thickness

Pines and Gerard investigated the proportions of a simply supported
£1at rectangular plate under varying axial loading to determine an effi-
cient thickness variation for minimm weight (ref. 49). The plate rigid-
ity was assumed to be proportional to the axial load in order to satisfy
equation (26) et any spanwise station. Thke loed variation along the
plate was assured to be produced by shear stresses small enough to have
negligible influence upon the buckling characteristics of the plate.
Furthermore, the airloading on a typical wing develops & cover axial
loading that closely follows an exponential variation that decays from
the root outboard. This will dictate meximum axisl loading oa the cover
gt the root, which is deplcted as station A in figure 30, in which a
sketch of the tapered plate is shown together with the loading and plate
thickness variations that follow as a result of the assumptions made by
Pines and Gerard.

Results presented in the form of the buckling coefficlent as a func-
tion of a/b for various values of the logarithm of the loading ratio
(Maximm loading/Minimum loading) reveal little increase of buckling
coefficient until the loading ratio begins to exceed e {the base of

"natural logarithms) (fig. 30).

— 0w
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In cases in which B 1s large, the buckling-coefficient chart
reveals that the roiber of buckles in o penel of predeternined a/b
ray exceed the nunber of buckles for g = 1.

Axially Corpressed Plate With Varleble Loading and
Constent Thickness

The problem of determining the buckling stress of an axially com-
pressed flat rectangular plaie was investigated by Libove, Ferdmen, and
Peusch for a simply supported plate with constant thickness and 2 linear
axlal load gradient (ref. 50). They plotted the effective buckling-
stress coefficient as a function of the .loading ratio for various velues
of a/b. For the sake of uniformity of presentation, their curves have
been replotted bere in the form of ke, &8s a function of s/t for

various values of the loeding ratio, ihcluding negative values (tension
et one edge) ms large 8s -3. These curves eppear in figure 31.
The buckling coefficlent -kcav applies to the average axisl

loading on tke plete, which is ejual to (cA + GB)IZ with o0p eassumed
to be the lerger of the two end loads. The average plete loed is
(UA/E) E.+-(l/Bi]. Tnis permits repid corperison with the buckling.
stress of a plate with constant exial load, which is the curve for

B =1 in figure 31.

Long pletes will buckle at the end at which the maxirmim load is

applied,! for which k. is equal to k.

Parallelogram Panels in Compression

Anderson inv!stigated cormpressive buckling of a flat sheet sub-
divided into panels by nondeflecting supports that form a parallelogram
gridwork under the sheet (ref. 51). One set of supports (all equally
spaced) runs longitudinally, and the other runs at an angle ¢ to the
normal, or transverse, direction. The longitudinal spacing of the diag-
onal .supports is a, and the transverse spacing of the longitudinal sup-
ports is Db. Buckling coefficients were plotted as functions of a/b
for"both longitudinal compreséion and transverse compression’for various
values of the angle 9 (figs. 32(2) and 32(b)). In addition, inter-
action curves were provided for combinatlons of these two loadings in
the form of, buckling-coefficient combinations for various values of @

(fig' 32(3));
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For large values of u/b the bunkline-cocificient curves approach
tne curves for simply ou tiorial recturgnular vlates under cormprescion.
Tre largest @ for which Anderson provides curves is £0°. For lomel-
tudinel loading the cngularity of the supportis does not appear to inrin-
ence k until ¢ exceeds 15°. For smull values of a/b  the influence
tecones pronocunced @t values of a/b in the region of unity, wit: the
tuckling coefficient reaching a value of over 20 for ¢ _ejual to 6G°.

Thé transverse-buckling coefficient is not so severely affected vy
¢, since k increases from 4 o 5 as @ increases from zero to 30°.
For @ equal to 6¢°, k 1is 9at afb = 1.

Paralle;géram Plates

Wittrick determined the buckling stress of a parsllelogran plate
with clazped edges under the action of uniform compression in one direc-
tion (ref. 52). His work differs Trom the work of Anderson (ref. 51)
in that specified rotational boundary conditions are applied to tke
plate in this case. Both Wittrick and Anderson =mployed the energy
epproach in oblique coordinates to obtein solutions. Results are pre-
sented in the form of curves of tke buckling ccefficient k. as & funce
tion of a/b. Wittrick presented data for edge angles of O° (rectargu-
lar plate), 30°, end 45° as shown in figure 33(z), in which the plate
geometry 1s depicted.

Guest (ref. 53) and Guest and Silberstein (ref. 54) analyzed sirply
supported parallelegram plates under longitudinal cormpression and, for a
rhombic plate of 30° edge sngle, determined that ke ='5.60. Wittrick
elso analyzed clerped parallelogrem plastée in chear and obteined the
results shown in figure 53(b);(ref. 55). Hasegawa analyzed buekling of
clarmped rhorbic plates in shear (ref. 56), for which buckling ccefficients
appear in the table below. The general plate geometry of figure 33(b)
applies to this case.

8, deg . . o 15 20 30 35

Ks « o+« | 1.7 ) 21.0 | 26.6 | 0.0 | 51.0

Triengular Plates

Tre “uckling of triengular pletes under variocus loads-and edge sup-
ports was investigated by Woinowsky-Krieger (ref. 57), Kiitdhieff (ref. 5%,
Wittrick (refs. 59 to 61}, and Cox and Klein (ref. 62). Woirowsky-Kricge:
ccrputed the buckling stress of a simply supported equilsteral trianzular
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rlate under unifor- compress!-n and fownd X. to enqual § when the base
5f the triangle ig taken egqua® to b in equuticn (26:. Klitchieff
investisated the tuekline of right-zngle isosceles trisiszmlor plates
+ith purce shear on the orthoponel sides cprlied so as to produce com-
zreasion along the altitude upon the hypotenuse. Wittrick evaluated the
buckling coefficient for shear applied so 25 to produce elther corpres-
sicn or tension slong the altitude end also included the effects of nor-
=21 stresses applied to t!4 ejual legs of the triargle. Cox and Klein
analyzed buckling in isosceles trlansles of aqy vertex angle for normel
stress alone and for shear salone.

The buckling coefficients presented in this sectlon are {0 be used
in conjunction with equation (26). The geometry of a triangular plate
is shown in figure 34. The data of Cox and Klein appear in figure 3h(s)
for uniform corpression ard in figure 34(b) for shear slong the equal
legs. th simply supported and clarped edges were ccoinsidered. The
rasults of Cox and Klein egree with the date of Wittrick for right-angle
isosceles trianguier plates, which appear in table 6. The shear buckling
coefficients k3+ and kg_ refer to pure shear loadings which produce

tension and compression, respectively, slong the altitude upon.the hypote-

nuse of the triangle.

For -shenr and normel stress on & right-angle isosceles plate the
interaction equaticn

2
2T su) -9 (1-u2) =1 (61)
Tery + Ter. Jer

applies, in which u'= (ks+ - ks_j/(k5+ + ks_).

Research Division, College of Engineering,
New York University,
' New York, N. Y., October 29, 195k.
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Introduction

Procedures for the computation of the elastic and plastic buckli:y
stresses of flat plates based on general plate-buckling eguation (1) are
sunmarized in this gsectien. The factors appearing in this equation are
briefly discussed and charts are presented from which nurerical values
of these factors msy be obtained.

The elementary loadings such as corpression; shear, and bending
frequently are considered in prelixinary design by using the bucklinrg
coefficients for the limiting cases (infinite values of a/b, ciamping
or hinging of the plate edges, and so forth). For coavenience table T
has been compiled conteining the values of the buckling coefficlents
that pertain to some of these limiting cases, while figure 14 displays
the curves for k, &as & function of a/b for different combinations
of limiting edge condlitions. .

-

Physical Propertles of Meterials .

The buckling stress of e flat plate is determined when the loadirg,
plete geometry, and raterial are specified. The loading dictates the
particular chart tc be used to find the buckling coefficient k, and the
plate a/b and edge restraint locete the nurerical value of k to be
found from that chart. For an unclad plate (f = 1) which buckles elas-
tically (n = 1), 0y, can be found directly from equation (1) if E is

known. The effects of cledding and plesticity depend upon the type of

" loeding end the stress level and therefore require a more detailed kncwl-

edge of the stress-strain cheracteristics of the material.

The three-parameter descripiion of stress-strain data can be ueed
as. a convenient generalilzed approach in buckling problems. With this
method figure 3 can be employed to £ind the shape factor n. Since
dg.7> and n can be readily determined (see teble 8 for average values

- -
—r

. of n), nondimensiondl curves are avallable from figure 4. It is to be

noted that, in many ceses, plastic-buckling charts have been preparei
from which the plastic-buckling stress may be determined if one knovs

E; ©0.7s and n.
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Table 9 coatains the old and sev Jdegignatlons for wrought alurdrom
alloys. The new designaiions. are used throughout this report aund the
table is included for use with the various references. Characterlisties
of the cladding used on several structural sluminum alloys are shcewn in

teble L.

Poisson's ratio beyond the proportional limit can be cnlculated
using Vpi = G.5 1n the expression

vy - (Vpl - Ve)<E3/E> (A1)
Frequently buckling stresses are corputed using the equation

Gep = TKE(t/b)2 | (a2)

‘where K = kx2/12(l - v2), The expression K/k can te found as a func-

tion of v 1in figure 35.

Compressive Buckling

Flates.- For plates, k., apgears in figure 16 in terms of a/b

and € and in figure 15 in terms of A/p and €. For an infinitely
long plate, Xk, may be found from figure 17 in terzms of € =alone.
Ween € 1s not the same for both unloaded edges, the gecmetric mean
of the k. wvslues for each edge rey be used (eq. (49)).

The plasticity-reduction factor fof & long plate with simply sup~-
ported edges is

n = [(ES/E)(I - ve’c‘)/(l - veil {o.éoo +0.250 |1 + (35‘5/55)]}112 (A3)

while for a long clamped plate

7 = [(ES/E) (1 - vez)/(l - v2)] [0.352 +0.324]1 + (531;/;.;5)]}1/2 )

Irelastic plate-buckling ctresses may be calculated using the nondimen-

"sionnl chart of figure 9,
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The cladding relduction factor for 6.3 < 0.y < Ip1 is approxira-«ly
given bty =quation (k2):
1+ 3fF

For ouap > Op1s 28 an adequate aprroximation, equation (50) holds true:

- /fl * \5f:s/?'$\? + {El + (5:‘?%/35)] [(1/“ i (3/'-)(&/55) ¥ ,,-}11/2

f=—L
1 +§\ 1+ Elﬂ;} + (3/%) (gt/gs)] 1/2

The effect of lateral restraint In reducing Xk, may be deterrined

from figure 21 for vzlunes of Ap/at, and the effects of thickness tozer
and axial load variation mey be caleculated with the aid of figures 30

and 31l.

—

|
L) e
.I-J

The gain in buckling stress with obliquity of the loaded edges Is
showvn in figuwre 33(a) for clarged parallelogram plates, while figure 32
depicts buckling coefficlients for large sheets divided into perallelcgranm
panels by nondeflecting supports. For data on triangular plates, fiz-
ure 34(a) ray te used to find k.

' The variation in k. with b/t for stifferned plates with torsicnally

weak or strong edge stiffeners eprears in figure 18. Because of the sparse
data available, no reccrrendatica can be made concerning the effect of nor-

mal pressurs upon buckling.

Flanges.~ For flanges, X, may be found in figure 20 as a furc<ion
of a/b erd € and in figure 19 as a function of A/b and € for

v = 0.3. For an infisitely long flange, figure 17 contains k, as
function of € alone. Tre effect of varying v appears in figure

=
~ The plasticity~-reduction factor for a long hinged flangé is

= (ES/E)(I - vez)/(l - v2) (a5)

For a long clamped flange,

n = (ES/E)(I - veE)/(l - v2) [0.330 + 0.335[1 + (3&/135)]}1/2 (a6)
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For ihe former cace the roniirensional buckling chart of figure & rny be
uced, while tbﬁ‘ of figure % zuy be used for the latter cuse with 1ittle

erroxr.

For flange clzdding reduction factors when oy, > Op1s it ray be |
permissible to use ejuntion-(k0). Alik..yh this fuctor wes not cozputed
in the section entitled “Cladding Reduction Factors," it appears to be
reasonable by comparison with the factors for plates and columns.

Plate colurns.- For plate columns, ihe buckling stress may be deter
rined using flgure 2(a). _

For & short plate coluxn (L/o < 1) the plasticity-reduction factor

is
5 = [(Es/hﬂ) (2 - ved) /(1.- VE)] [1 + (33:5/55)] (AT)
For & square plate colum (L/b = 1),
7= KE,/S) @ - ve2)/(l -:u?;! Ea.nl; :+ (q.ssézt/zs)] | (,AB;
‘e For a long pl&fe colura (L/b > 1), tﬁe ‘ple.sticity—reiuc-tion fac;to'r

n = (3t/8) (i - ve«?)/(l - ) (49)

The cladding reducgtion factor for short plate colurms in which
Ga1 < Gop < O’Pl is

EL + (35f/.hﬂ / (1 +38) | (a10)

‘.

and when Ogop > Op1 equation (4C) molis true which is also applicable
to long plate colurms at all stress levels above Oo1-

Shear Buckling

The shear-buckling-stress coefficient as a function of a/b is
showm in figure 22 for clamped and hinged plate edges. For long plates,



http://www.abbottaerospace.com/technical-library

—

Stolsa

4

I e o i s & 4

HACA T01 A2

w lolh buckle in ile syimeiric nodey figure 2@ may be usel (v find kg

as & function of R/b and €. For plates o finite leigtl: the procedure.
of the section entitled "Ziskling of Flat Rectangular Pletes Under Sheur
Louds" ray te used in corn! .o.ction with figures 22 and 23.

The plasticity-reduction factor for long plates in shear 1s given
by equuation (A5). Inelastic shear-buckling stresses ray be calculated
with the ald of the nondimensional chart of figure 10. e

The cladding reduction factor for o,y < Ogp < op1 1is glven by
equaetion (k2), and for agp > op1 ejuation (k0) holds true.

For clarped oblique plates figure 32(b) may be used to find kg

when the plate edge engle is h5°. For triangular-plate shear-bucklirg
coefficients figure 3h(b) ey be used. In sdiition, the section
entitled "Special Cases” ghould be consulted.

Bending Buckling

The bending-bucklinz coefficient appears in figure 26 as a function
of afb and ¢ and in figure 25 es a function of A/b. The plasticity-
reduction factor for a simply supported plate is the sare as for a hinged
flsnge. TLittle error should be expected in using elastically restrained
flange plasticity-reduction factors for elasticelly restrained plates in
bending. For these cases the plestic-bucklirg chart of figure 9 may be
used to find gy, which is the raximum corpressive stress on the plste

section. In order.to fird the corresponding moment it is necessary to
integrate the stress distribution, for which purpose the curves of fig- s

ure 9 mey be used.
4

Corbined Loadlng

Interaction equations for various corbinations of compression, skear,
end bending appear in table 5. These expressions are presented in graphi-
cal form in figures 27 and 28 for elastic buckling. For longitudinal com-
pression and shear on a long rectangular plete, with both applied stresses
in the inelastic renge, eguation (60) holds true:

Ro® + Rg2 = 1 _ ' (60)

The plasticity-reduction factor for a simmply supported plate in ~om-
bined comprussion and axizl loed varies between that for a hinged flange
and that for & simply supported plate under axial compression, depeniing
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upcn the ratio of terdiry stress to wxial stress. The values of 1 for
ttZ. zuase is shown in cquabion (5h):

S I

Aztuxlly, utilization of the plastic-buckling churt of figure 9 for all
cases of conbined bending and axial loed to find oy, (after which the

plate loading may be found by integrating the cross~-section stress dis-
tritution) should give conservative results.

On right-angle isosceles triasrngular plates loaded under shear and
corpression as shown in the sketches in figures 34(a) and 34(b), equa-
tion (61) applies:

| 2r ~"2 .
- - ———— £ U +-°—,g—(l-u2) =1 (61)
Ter, + Top_ er

Teble 6 conteins nurerical values of k. and k; for different types
of plate edge supports.
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TABLE 1.~ ASSUMPTIONS OF INELASTIC-BUCKLING THEORIES

Investigator

Btress-atrain law

Plasticlty law

Buckling model

Bijlaard
(ref. 1B)

Hapdelman-~Prager
(ref. 19)

Dyushin
{ref. 20)

Stowell. (refs. 5
and 3&1

Incrementol and defor-
mation types,
v Instantonecus

Incremental type,
v instantaneous

Deformation type,
ve0.5

Deformetion type,
V-O.ﬁ' -

Octashedral shear

Octahedral shear
Octahedral shear

Octahedral shear

No strailn reversal

Strain reversal
Straln reversal

No sirain revertcs)
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NACA TN B[S

TPABLE 2.- PLASTICITY~-RELUCTION FACTORS |

E . (ES/E)(l - vee)/('-_ - v2§]

T W

Loading Structure 1/3
Compression{Long flange, one unlczied 1
edge simply supported
Long flenge, one unloaded 11/2
o3ee olommed 0.330 + 0.335[1 + (3&/35)_
Long plate, both unlosded \]1/2
edges simply supported 0.300 + 0.230 } + (BBt/ES)_
Long plate, both unlosded |0 2o . o sonfi 4 (3 /e )‘ 1/2
eiges clamped : * Et/Es /|
Short plate loaced as a .
colum (L/b << 1) 0.250 [l + (5Et/Es):|
Square plate losded as a o
calum (/b o 1) 0.11% + 0.886(Et/Es)
Long colum (L/b >> 1) Bg/Eg
Shear Rectangular plate, all edges {=
: elastically restrained 0.83 + 0.17 \—-t/Es)
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TARLE 3.- SUMMARY OF SIMPLIFILZD CLADDING REDUCTION FACTCRS

Loading Ocl < For < Opy Ser > Op1
1+ £/b

Short plate colwms ———(B—B—Q 1
1+ 3fF L+ 3fF

Long plate columns 1 1
1+ 3f 1+ 3f

Corpression and 1+ 3pf 1
shear panels 1+ 3f 1+ 3fF

TABLE .4 .~ CLADDING MATERIAL, AND THICKNESS FOR ALCLAD PLATES

E)ata. taken from reference 613

i,
LR
!

S

(o)

1=

Materiel Cladding Total plate Total clgdding
designation material thickness, in. thickness, . £, in.
Alelad 201k 6053 <0.040 0.23

. 2.0k0 .10

Alclad PO2k 1236 <0.06k 0.10
2.06h .05

Alclad 7075 1072 . All thicknesses 0.08
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TABLEF 5.- COMBINED LOADING CONDIPIONS FOR WHICH INTERACTION CURVES EXIST

and shear

Theory Loading combiration Interzction eguation Figure
Biaxial compression JFor plates that buckle in 28
square waves, Ry + Ry = 1
Longitudinal cou- For long plates, R, + Rg2 = 1| 27
pression and shear
Longltudinal com- lione 28
pression and bending
-} Elastie
Bending and shear Bp2 + Rg2 = 1 27
Bending, sheer; and - Hone 27
transverse corpression
|Iongitudinal compression |None . 28
and bending and. trens-
verse compression '
o, RTE
Tnelastic|longitudinal cozrression|R,2 + Rg? = 1 e 29

A

NI -
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TABLE 6.- BUCKLIICG COXFFICIENTS FOR RIGHT-ANGLE ISOSCELES TRIANGULAR

PIATES LOADED INDEPENDENTLY IN UNIFORM CQMPRESSIOHN,

POSITIVE SHEAR, AND N=CATIVE SHEAR

Edge supports

enuse simply supported

(2) v ke ks, ks
A1l edges simply 10.0 62.0 23,2
supported
Sides simply supported, 15.6 70.8 3k.0
hypotenuse clarped
Sides clamped. hypot- 18.8 80.0 4y .0

8gypotenuse = b in figure 3k4.

- ———— e e,
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HACA TN 571

TABLS T.- BUCKLLIG COEFFICIEITS FCOR INFILITeLY LONG PLAT:S
ULDER VARICUS TYPZ5 OF LOADS
Loading Edge support Coefficient
1 — ]
Compression SS on 8ll edges ke = k.0 HACA Rep. 753
1 ‘ ‘ L C on all edges ke = 6.98 (ref. 29)
SS on y=0, y=8, x=20
o b—. F on x=D5 . kc = 0.2{.5
, . NACA Rep. 73k
- c on,l,_'_=0, y=8&, x=0 (ref. 8)
It” F oo x=1b ke = 1.28
) |
Shear
SS on all edges kg = 5.35 HACA TN 1222
‘ ' (ref. 35)
‘ 1 C on all edges ke = 8.98 FACA TN 1223
* 1 : (ref. 43)
it .
Bending
SS on all.edges X, = 23.9)
%o = 239\ fnca v 1523
C on all edges kp = 1.8} - (ref. 57)

-
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TABLE 8.- VALUES OF SHAPE PARAMETER n _FOR SEVERAL ENGINZERING MATIRIALS

Ehta taken from reference 65]

n Materisal
3 Cne-fourth hard to full hard 18-8 stainless steel, -with grain
’ One-~fourth herd 18-8 stainless stesl, cross grain
5 Cne-half herd and three-fourths hard 18-3 stainless steel,
cross graln
Full hard 18-8 stainless steel, cross grain
10 2024-T and 7075-T aluminum-allcy sheet and extrusion
2024R-T aluminum-alioy sheet
202k-TR0, 2024-T81, and 202L-T86 sluminum-zllcy sheet
20 to 25| 2024-T aluminum-alloy extrusions .
SAE k130 steel heat-treazed up to 1C0,000 psi ultimete stress
35 to 50 2014+T eluminum=-alloy extrusions
SAE 4130 steel heat-treated above 125,000 psi ultimste stress
o« SAE 1025 (mild) steel
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TABLE 9.~ DESIGNATIONS FOR WRCUGHT ALUMINUM AiibYS

'

01d New
15, R301 201%
17s 2017
2Ls 202k
61s 6061
155 7075
e

L) 28
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\ BUCKLED FORH—7
 ORIGTRAL FLAT STATP

Figure 1l.- Transiticn from colunn to plate as supports are added along
unloaded edges. Note changes in buckle configurations. -
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Flgure 6.~ Cosparison of theory and experiment for coumpressed simply

supported plates.
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Figure T.- Comparison of shear buckling theorles and test data for plas>..
buckling of compressed elasstically supported pluates.
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