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TORSION IN BOX WINQS*
By John B. Wheatley

Summéry .

Logical analysis of a box wing necessitates the alloWance
for the contribution of the draé spurg to the torsional strength
of the structure. | o | ‘ |

A rlgorous an&ly31s 1s avallable in the use of tne Hethod
of Least Work. | -

The best loglcal method of analy81s ig t at &pplying
Prandtl's Membrane Analogy, in the form

g o é%.. u fﬁ-. | T I;l ¥—

»

The results so obftained vary by a negligible amount from those
obtained by the rigorous method. - |

The stresses in the members of a box wing should be cal-
culated by the. membrane analogy method, but should be subject

‘%o verification by test before being used in design.
" Bcope

The scope of this paper is the analysis of the elements of
a conventional type of box wing under & tors;onal load. This

wing has as & primary structure two wooden box or I beams, their .
*Thesis submitted in partlal fulfillment of the requirements for
the degree of Enginecr in Hechanlcal Engineering Aeronautics,
Stanford Unlver51ty, 1930,
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maximum moments of inertia being about axes parallel, or nearly
so, to the wind chord They are oonnected by a plywood skin,

forming the wing covering, 1n such a Way that—= cross section

(I

parallel to the plane of symmetry of the airplane forms a

b

rectangle or a trapezoid. Figure 1l shows a typical box-wing

Cross section the two spars proper being box beams, and the

skin covering being plywood which forms part of the airloil

section. None of the formulas covered in thls report take ac-—

count of the curvature whlcn in practlcally all cases is present
in elther the top skin or both top and bottom. It 1s belleved
that tnls factor lS sc unlmportant that 1t would not be, worth

while to 1ntroduce the complexlty attendant ‘upon. lts consider~

gtion into the relatlvelyngrmple;formulas obtalned when the

S NI

curvature is neglected ’ _

i

It is shown in this paper that the analysls of a box wing
by ratlonal methode results in the computation of much lower e -

stresses in the varlous memoers of the box than are obtained

when present aesign procedare is follcwed As a means of

elmpllfylnd the computatlons necessary in such an analysie, it

will glso be demonstrated that gpproximate methods, involving

gome reasonable assumptions, are available. Assuming the -

Ui

validity of this statement whlch shall be proven subsequentlf, S

the value of. this paper Will lle in tne appllcatlon by the -

designer of ites methods %o reduce thekmaterlal_necessary o

carry a given wing load; and by so'dcing,-he will decrease the
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weight of the wing structure.
Definitions and Nomenclature

Lift spar: A spar formed by two chord members connected by
a web member, the chord members lying in a plane approxinately
perpendicular to the wing chord.

Drag spar: A spar formed by two chord members connected by
a web member, the chord members lying in a plane approximately
parallel to the wing chord.

Elagtic centrum: A poiﬁt in the wing structurc in such a

poeition that if the line of action of an imposed load passes
through it, the load will cause no rotation of the cross section.

Included gtatically determinate structure: The part of a

redundant structure which remains when enough of the redundant
factors have been eliminated to make the remaining structure
statically determinate.

Beam force: A force parallel to the intersection of the

plane of the 1lift spar web and the plane of syumetry.

Chord force: A force parallel to the plane which bisects

the dihedral angle, or the distance, between the planes of the
two drag spars or trusses.

Conventiong for Signs:.

Forces: An upward bean force is positive. A rearward
chord force is positive.

Homents: The torsicnal moment on the wing is a pitching
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moment; therefore, we Will consider a torsional moment positive

which tends to increase the angle of attack.
Theory

The problem covered in this discussion is the division of
torsional load between the various elements of a box .wing.- The

necesslty for new methods of analysis lies in the fact that the-

deéign rules of the Departmeﬁt of Commerce at present assume, in

effect, that the reéistanée tb torsion of the primary structure
of a box wing is confined to the bending strength of the 1ift
spars, that any 1ift load applied to the wing is divided between
the 1ift spars in inverse ratio to the distance of the load from
them, and thaf_any twist on the wing is carried as a palr of
equal and oppoéife beam 16ads. This method will result in the

application of very severe loads upon the Tear spar in the

required design conditions of low angle of attack and nose dive., -

With most airfoils in cormon use, the center of pressure of g
positive air load on the wiﬁg moves forward as fhe angle of
sttack is inoreased from a position aft of the trailing edge at
zero or negative angles %o a_maximﬁm'fbrward-position at about
thirty per cent of the chord aft of the leading edge as the
attitude corresponding to maximum 1ift is attained. In a nose
dive, the forces gcting upon the airﬁlane are a down load on the
tail, an uplloahlon the rear spar, and a down load on the front

spar - a condition corresponding to a résultant load acting a
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chord length or more aft of the trailing edge. If we now resolve
our load into an equal load actlng at the elastic centrum and a
torsion about the elastic centrum We see that the torslonal load
is exceedlngly severe 1n nose dlve and thls condltlon of fllght
will in a great many cases be tne crltlcal one for the Tear spar.
In all except very unccnventional;desrgns, the low angle of 4O
attack condition will be the critical cordition of flight for '
the rear spar ¥hen nose éiﬁe isfgot;;and in this condition as
well, the resultant-load is well aft of the elastic centrum,

with a comsequent high value of the ‘torsional moment.:

Due to the fact that the airfoil ‘section limits the heights
of - the epars; With the Tear spar as a general rule being the more
shallow of the $Wo, for a given value 6f the load ‘the strength
weight ratio of the Téar spar tends to' be smsllér than that of
the front spar. The Baving in Weight Will be a material gain if
it can be proven by a’logidal method that the actual loads in
the rear spar will be smallér than those ¢altulated by the de—
sign rules of the Depariment of Commerce.

'The limitation of space prevents the -corsideration of moTe
than onhe typé of ‘wing. For that Tesson 'a full cantilever, all—
wood stTucture will be chosen, With the 1ift dpars formed by
two bok beams, and the drag spar Wweb formed by a plywood skin.

A cross section of a typical wing is shovn in Figure 1. Aséume
a torsionzl moment M agpplied at the elastic centfum. If fhe

strength of the drag spars in torsion is neglected, the moment
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is resolved into the loads wp and Wwp acting upon the 1ift
spars, and equal %o %-. ﬁow assume that a certain portion
of the moment, Hd, is carried by the drag spars. Then W

and W are obtained from the approximate formula

R
H - Mg
Vg =W ="7g
And also Md

s Bl Ml

A uniform load of wyp on the front spar, shown in Figure 1,
will result in a bending moment on the spar, resisted by
comp;essive gtregses in chord member A and tensile stresses
in chord member B.. The load Wy in the upper drag spar, by
the same reasoning, causes compressive stresses in member O
and tensile stresses in member A. The lower spar, under the
load Wi is_subjected to compressive stresses Iin member B
and tensile stresses in menber D. Lastly, the rear spar,
gpder its load Wps | is subjected to compressive stresses in
member D and tensilg stresses in member C. Member A 1is
then subjected to compression from WF and tension from Vs
Lpember B to tension from w

F
All four chord members of the 1ift spars are not only with-

and compression from Wi

standing a smaller load, but actually are subject in addition
to stresses of an opposite sign which reduce their net stresses

8till further.
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Referring to Figure -1 again, it is seen that under a
torsional load the structure is redundant - we have foﬁr
members and but three equations of equilibrium. The redun-
dancy necessitates, for a rigoroﬁs“éolution, the use of one
of the.me?hods of consistent deformations, such as the method
of least work. If rigor ie not mandatory, certain simplifying
assuﬁptions may be applied, such as the neglect of the work
doné in shear, or the aséumbtion of an undistorfed cross section
after the 1oading. - |

Four different basic-prinéiples are appliéd to the problem
at hand to determine the‘éight'formulas used here. The first
neglects the strength of'thé‘Qrag sﬁa:é; upon this, present
design rules are based. Tﬂe'Theorem of Least Work generates
the formula of that name and also the Inverse Ratio Method.
The simplifying médifibations of the Theorem of Least Work are
responsible for the simplified Method of Least WoTk,: the
trapezoidal method, Niles' method, and Burgess! Moment of
Inertia method: :The Membrane Analogy is the basis for the
formula of that name. It is reasonable to expect some coIrre-
spondence between the results of methods developed from the
same groundwork, and this expectation is reallzed in the work
done.

The formulas to be derived in the remainder of the report

will be applied to a sample spar, shown in Figure 2, in order
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to obtain a comparison of the results. The lcngth of this spar
is 300 in., and the type is a full cantilever; the dimenslons

of the cross section are shown in the figure.

Pregent desion practice.—~ The strength of the wing in
torsion, neglecting the drag spar contribution, is equal to the -
bending strength of the 1ift spars. " A torsional load will thoen
be resolved into equal and opposite loads on the 1lift spars,
and zero loads on the drag spars. Applying a torsion of unity
per inch of span on the spar in Figure 2, the following values
of the running beam loads are obtained:

wp-= 0.0386 1b./in.
Wy = —=0.0386 1b./in.

R
Wy = 0.0 1b./in.
Wy = 0.0 1b./in.

The oompu%ations for this, and the remaindecr of the applications

of formulas, to the sample spar, will be found in the appendix.

The Method of Least Work.— The method of least work was

developed and proven rigorously by Castigliano; it states that
the internal work done in a redundant sfructure by the appli-—
catlion of external loads will be.the least possible consistent
with equilibrium.* The derivation and proof of this theorem

will not be given here, since any textbook on elasticity or

#Sec Andrew's "Elastic Stresses in Structures.”
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advanced mechanics of matériéis contains the development in full.
The application of this method to the problem at hand will take
the following form: an-expression for the total work done in
the structure, in the terms of one of the unknown loads, will be
set up, diffe;énfiated with respect to the:unknown, set equal to
zero, and solved. 8Since there are four unknowns and three
equations of equilibrium, all except one of the unknowns may be
eliminated from the expression for work, and one differentiation
will serve to determine the solution.

The bending work done on a beam 5f constant cross section

is easily expressed as

L wPax”

"o = SEI
where W = ‘the internal work done in bending

M = Dbending moament of external loads

= length of beam .

k=l
f

modulus of elasticlty
I = moment of inertia of croés seotion
X = distance along span.

Th;s does not express the total work done in the structure,
however, since the shearing wWork done in the beam must also be
considered. The following development for the internal work
done in sheaT on a box bean is taken from N.A.C.A. Technical

Report No. 180, ™Meflection of Beams With Special Reference to

~ *Spoffordl's "Theory of Structures.”
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Shear Deformations," by J. A. Newlin and G. W. Trayer. On page

18 of the report, we find

where

v

_ .V K
@ =T L tydy (1)
- YV .4 £ K -
= Y t.ydy + /71 % ydy (3)
o [ e
= a2 dp® _ ay b, dydx
g T oF taydx —Hp- = tdydx = (3)

K2 g-i L Kg sz
e TNV

2
+ 2fL le dyw

(4
o} y aF tldydx (4)

senispan, or leagth of bean (in inches)

shearing modulus (for spruce, 1/15 E)

noment of inertia of cross section

distance from neutral axis to flange
distance from neutral axis to extrene fiber
web thickness (inches)

flange width (inches)

unit shearing stress (1b./sq.in.)

unit shearing stress in flange (1b./sq.in.)
unit shearing stress in web (1b./sq.in.)
total shear (1b.)

te

3 K, (symmetricalhbeam)

distance from neutral axis

distance alohg span
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—_ v Kz . . = ...- 2 - 2
U= T VAR A —5{3- (Kz. ¥ ) - (5)
Qe = I‘é’ fKa -tzydy' +. -f.K'i tlydy =
1
- \'A ta 2 -2 3 t ' 2 o2
= T !:*2' (K, - 1{1’ ) + (X7 -y )] (6)
K 9 5, Ko 2,5 N
{{1 55 4y = R 4{1 T (k, - y®) dr = -
Ve 8K.° s 2.3 ‘ 1
: 2 1 4
~ gFI® [E - K (Ka_ : "'_,Z,'K'z K, +5K1 )J (7)
- tz2 - [8K° . 4 .242.,2 ., 1, 4
* 7 Brr? [1§ - KR K KTk g5 | (8)
1 Lo - o
—B-‘NS =/ o Vdx C . (9)
K, qg® " 5. Ky g2 |82 |
: ——E —_ = 1 v b=3 L f ey 2 i 22_ .
L o W egrd 2t 2 [ rul C
) ,.tl tz o 2. - 2 v 2 2 .tl2 2 :2 2 .
2 (K2 = K 7) (K2 - y7) + 4 (K° - y7)7|dy. Q0)
. .. A .
v | 527Xy (x.2 __Ka)z +
BFI?tl- 1- 4 L. 2 . *

't'tl(‘.s‘: '
+ 271 (Kza - Kla)'+ 2 t‘lzKls] (11)

3 -15
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N [__t BK ’
: 1 3 2 .
Let yimimt [ 21 (32 -x.2)° 4
2FI%%, L © 3 1 |
+ ELEBE}_S_ (x = K 2) + 2. 4 2 © (123)
B KT - KT gtk ' :
Then Lw, =s% o veax | (13)
2 .SW o S . CL L
; oy e =
Wyo=3(a +v) [ Vax - (14) )
For a cantilever‘beamzlunifbrmiy loaded with W ib./in.,
V=wx; . (15)
Wy = 2(a +¥) Jf& wex®ax =3§.(a +v) w?L3 (18)
A .

Equatlons for the. internal work in a wing whose spars are
not unifornm in cross section are seldom expr0551ble a8 func-
tions of * x. In such cases, a unit length of span will be
treated as a uniform seotion; the éalue'éf the internal work
on that unit 1ength found and ﬁhe resulting equation treated
exactly as the one here obtalned to ‘get the load division at—
the one p01nt the process is repeated until a curve of load
lelSlon is def:ned ‘and then the running -loads on each com—
ponent of the box are known. The values of o and Y a8
determined by equations (8) and (12), afg_fqr gymnetrical beans
only. For beams having unequal chord menbers, -only a very small
error is introduced by‘uging a and Y deteriiined for an
équivalent symmetricai bean having‘thé'same over—all height,
width, and the same moment of inertia. This approximation will

be necessary in almost all cases for computations concerning
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the drag spars.

Having the expression for the bending work done, and the
shear work from equation (18), in terms of the running load on
the component of the box being coﬁsidered, the work done will
be expressed in terms of one variahle by substitution from the

equations of equilibrium, obbtained by inspection from Figure 1.

Wy cos 1 —~ Wy, =0 (17)
Mor. at B
Wy h,ocos m +dwp =U =1 . (18)
(for noment of unity).
Yo, at D . ) D .
Wy By oo8 n +dawp =1 (19)

Fron these three equations,. all except one of the unknowns. .in
the total work equation for the spar may be eliminated; having
the total work, then in the form

W, = f(wx)- . | (20)

differentiate WT with respect to 'ﬁx;'

| 53% = £t (wyg) S0. . (21)

Thié serves to detefminé ﬁx, and from the equatioﬁs of
equilibrium the rémaining three unknowns may be found.
Appl&ing this method to the spar of Figure 2; the fol-

lowing results‘are obtained by the calculations ‘shown in the

appendix:
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0.0188 1b./in.

WF=

w, = —0.0134 Ib. /in.
Wy = 0.0590 1b./in.
wy, = —0.0589 1b./in.

An examination of the work in the appendix under this
method i1llustrates the reason for not using the theorem of
leagt work more often. The calculations are involved and
tedious, with a great many chances for error, and no inde-
pendent check. It does serve the useful purpose, in a paper
of this kind, of constituting a check with which the other

approximate methods nay be compared.

Simplified Method of Least Work.— The example used for

the computation by the least work method showed that the per-
centage of the total work done in shear was snall. As a means
of obtaining a simpler golufion, the shearing work will be
neglected as an approxiﬁation, and the load division will be
found on the assumption that all of the work done is done in
bending. The nethod for this calculation is exactly the sane
as for the complete least work method, the only difference
being that. the work done in the member has only one term in i%
instead of two. The expression for total workx is again ob-
tained in terms of one variable b& the same equations of equi-

librium; the equation is differentiated with respect to the
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variable, equated to zero, and solved. The results on the
sample spar are:

wy = 0.0144 1b./in.

Wg = —0.0103 1b./in.
Wy = 0.07138 1bv./in.
w, = -0.0710 ib. /in.

The difference between these results and those obtained
by the rigorous method is due to the fact that the shearing
work done in the differont elements of the box is not a con—
stant percentage of the total work in ench elerent. In the
front spar, the percentage of shearing work is 9.7%; in the
rear spar, 4.4%; in the top and botton spars, 38.1%. This
is not unexpected, since the proportions of the elorents are
so dissimilar. As the spar becomics deepcer and thinner, the
bonding work under a given load bcconmes less, while the
shearing work is more (for a given cross—sectional area).
The variation in the running loads obtained fro:a those ob-
tained by the rigorous solution is, for the 1lift spars, —14.3%

in the front and -23.1% in the rear; for the drag spars, 30.7%.

Solution of a trapezoid.~ Referring to Figure 1, it is
seen as before that the three equations of equilibriwi are
insufficient to deternine the four unknown loads. To climinate

the redundancy, the assumption sacll De nadc that the cross
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section suffers no distortion after a torsional loading; and
as a_simplifying assunption, consider the déflections of the
various elements of the box as inversely proportional to their
moments of inertia, which corresponds to the previous simpli-
fying assumption of negllglble shearlng worke.

If the crose sectlon suffers no distortion after loading,
the change in slope of two sides of. the box may be equated;
and the change in slope will be expressed by the equation

bp -~ 6 -~ 8y sinmn &y cos M - 61, (1)
il ' fy

AB =

where ' -
: torsional angle of twist

D
il

8 = beam. deflection
n = angle between sloping drag spar and .

.spar opposite _

_kw . o
where K is determined by the elastic curve of the beam, and
will be the same for all elements of the.box, on the agsumption
that the distribution of the drag load is similar to the 1ift
load distribution. By substituting in (1), we find
% { X Wi N KfWR _ K Wy sin n _
Iy  Ig 5

_ 1 X Yy -cOB n_#
b Iy g

=
=
—
—
(O
] I'J:l

hie
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This equation, plus the three equations of equilibrium given
before, will be sufficieﬁt to determine the values of the dif-
ferent loads. The solution of the set of four simultaneous
equations in a general form is very cumbersome and should not

be attempted. The process is greatly simplified by substituting
numerical values in the simultaneous equations and then solving
by any one of the standard”aigébraic ﬁethods. Such a solution,
‘applying the constants of the sample spar, results in:

wi = '0.0140 1b. /in. -~

1l

wg = ~0.0098 1b./in.

w; = 0.0731 1b./in.

w, = ~0.0729 1b./in.
The accuraéy of_this method of solution is pobrer than the
simplified least wofk results, the differences in the 1ift spar
loads being -16.7% in the fronf and —-26.9% in the rear; the
drag spar difference being 33.8%.. o

Niles Method of Load Divigion.— The basic assumption under—

lying a method developed by A. S. Hiles, is that the cross. sec-
tion suffers no distortibn during the avplication of a torsional
load. As gimplifying weapons, we also assume that the drag
gpars are mutually parallel, and are perpendicular to the 1ift
spars, and that the shearing work may be neglected. The last
two of these assumptions simplify the equation equating slope

increment, to the form:
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r-% _%-9% (1)

d h

)

The term h must -be approximated here. It seems rcasonable to
use that value of it which is obtained at the elastic centrum,

agsuning a linear variation from h ~to h, . This value is

h=n -%(n -n) (2)

A further simplification lies in the fact that wyp and

W are equal, as well as Wy ap@ Wye o Thev can be expressed

as
S - |
Wp = Wp = _(;%l—’ - (3)
. v -1-{ .
and Wy = Wy, = ??’ (4)

where ify, is the portion of theltotal moment which is resisted
by $he 1iff-spars; and ly that resisted by the drag spars.

Substituting these values in (1),

P K. K] K H, K H W
1 0 h 1 d d
= + ==| = = + 1 (5)
d[ i GEA | h[hfu"' 'EIL'J
= 3 =
ﬁ:%j__n__U L (6)
b
L7 R ]

This does not give workable results. The fact that the
gsection ie a trapezoid means that there will be a 1ift componont—

of~the load in the slanting drag spar. Therefore, to obtain

ih!:
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IV = 0, we must correct-the values:of: w bbtaiﬁeh-from équar

tions (3) and (4) in the folloWwing manner: -

M
W, = T%. (7)
w
e L
"5 = Gos ol (@)
Wp — Wy .= Wy sin f : (9)
Cwp x+ Wy (A x) = M (10)

These values of'’ Wyj * Wy, 'éﬁd'-WU, the true values, Will
be proportioned so that the total moment on the section is the
same as that for the first éémputaﬁion; |

By substituting the constants of the safiple spa¥, We obtain

the following results for unit torsion per inch of span;

Wp = 0.0143. 1b./1in.
wR.=_—Q,qul,1b./inQ
(W '="0.0719 1b./in.
“wi'ﬁ Z0.0717 1b./in.

These resultse are"reléﬁivéiy close to those obtained from
the trapezoidal derivation. 'This is a reasonable indication,
then, that the assumptioﬁxof.paigllél'sp@is, as far as the mo-

ment division is concerned, involves no major additional error.
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Burgess! lethod of Load Division.—- C. P. Burgese has

déveloped* a formula for load division between the various
elements of a box spér which depends upon the basic assump-
tion of negligible'shearing‘work in the sbars; however, by
the same implicit assumption, as in'Niles' method the results
are in error by the 1ift componenf-of_load in the slanting drag
spar, and must be corrected for that.

The development is as follows: Let 8y be the distance
of the member x from the elastic centrﬁm. Then the torsiomnal

rigidity of the member. X, on its resistance to torsional load,

is I s .. The moment of its torsional resistance is Ixsxz.
Therefore, the load wx‘ in the member =x 1is expressed by the
equation
I.s
= MoK
vx SHMsTEE : -

The application of this formula, end the corrections, 1o
the sample spar gives the following results:

0.0142 1b./in.

WF=

wg = ~—0.0101 1b./in.
Wy = 0.0719 1b./in.
wy ==0.0717 1b./in.

The close agreement between these results and those ob-
tained through the application of Niles! method would lead one
to believe that the formulas are similar. This is true, and

*N.A.C.A. Technical Report Fo. 589, "The Torsional Strength of
Wings," by C. P. Burgess.
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the expansion of Burgess'! formula intc Niles! is given in the

appendix. For the case in hand, that of a two spar box, either
formula is equally convenient; Burgess! has the advantage, how-
ever, of being more easily agpplied if the structure has more

than two spars.

IThe Membrane Analogy lethod.- If we may assume that the
walls of the box sparhare thin with réspebt to their height,
we have at oui.cdmﬁénd s formula developéd‘from L. Préndtl}s
membrane analogy.* The dérivation of this fdrmﬁla will not be
given here, but is fully explained in the reference given be—
low. In its basic form, the equation is .

s =it
where S = shearing éfrééé,
Q = forqﬁe on éection; _
A= are§ en@loégd by.thelgcnte;;ines of the sides,
t = thickness of the side being considered.

A modificatioﬁ of this forrula will bg more useful than

this'basic form. If we multipiy both sides of the equation by

t, we obtain

s'=-29f

where . 8' is the shear per inch of perimeter.of the cross
seotion. The value of 8! need ﬁhen be multiplied only by the

width of the side to obtain the running load w. Applying this

*See Timoshenko and Lesells "Applied Elasticity" pp. 45 et seq.
W N J‘(cvl M Mol ALrnof, v ,é«—..,t,-,,‘? AVaerr e ¥ ntl

Ao fwo{aw« -~
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forrmula, we obtain

8' = 0.001784 1b./in. of perineter
and wy = 0.01606 1b./in.
wg = ~0.01248 1b./in.
wy = 0.0837  1b./in.
Wy = -0.0635  1b./in. =

The only error which enters into this calculation lies in
the variation of the front and rear spars from a thin walled
section. The accuracy, referring to the 1east'work calculation
again, .is excellent; the errors are -4.2% in the front and i

~7.2% in the rear spar, and 6.3% in the drag spars.

Burgegs! Inverse Ratio Hethod for Load Division.— C. P.

Burgess has also developed a method called the inverse ratio
method for detcrmining load division between the various parts
of a redundant structure.* The basic theorem is that the por—
tion of the inposed load carried by each of the included stat-
ically determinate‘strudtures is inversoly proportional to the
internal work done in the included structure when carrying the _
whole load alone. This theorem ?s true only when no part of

one included structure reaofs upon any part of any other in-—

cluded structure; whenh no member of the structure ig comuon to

two or more of the included'staticaiiy.doterminate systene into

which the structure is divided;.and'aﬂother error which nay - .
*Sce Airship Decsign, by C. P. Burgess. ’ =
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become involved in the results of this formula is generated
when the applied load is not concentrated at a single point
cormon to the deterninatc systems but is distributed among
two or more common points. For these reasons this method is

not rigorous in all cases.-Applying it, we obtain

" 0.0166 1b./in.

wp = ~0.0132 1b,/in, .
Wy = 0.0595 1b. fin.
W, = -0.0594 1b./in.

--The accuracy of this nethod, éoﬁparing_it.ﬁiﬁh the résults
from the theorem of least work, is very good. As a rigorous
-method, it falls down becauselthe various nembers interact under
load. However, im a simpier césé-thaﬁ the one at hand, there
is reason to believe that the agreemnent will become absolute,
and such & case, one in which the center lines of the. spars forn
& rectangle, is analyzed in the appendii. The results obtained
from inverse ratio and least work agree exactly. The reason for
the agreement lieb ih the fact that there is no component of load
from the dreg spars entering into the 1ift spars. Since in
practice the rear spar is alnost alwvays rore shallow than the
front, this case is apparently of acadenic interest alone.

The variation of the results obtained by inverse ratio,
from those of the least work method, is snaller then for any

- other simplified method. The calculations necessitated for
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this method are moré tedious than thése for the rigorous method
and for this reason the inverse ratio method is at a disadvantage
in comparison with'the nembrane analogy nethod.

Surmary of Results

7 ]

Method lbw§ ef_ ,lbwﬁt ef— lbw?. eg- lbw?i ein
in, rop | FPe/in. rox |1b. 1?3 o find .

Present design }0.02861+70.2)-0.0286({+113.4,0.0000;~100.0{ 0.0000j -100.0

Least work 0.0168| 0,0 -~0.0134] - 0.0:!0.059Q 0.0{ -0.0589! 0.0

Simplified 0.0144|~-14.3] -0.0103| -23.1,0.0712; +20.7{-0.0710{ *20.5
least work b

Trapezoidal 0.0140(-16:7/'-0.0098| -26.9'0.0731; +23.6]-0.0729| +23.6

Niles! metnod 0.0142!-15.5! -0.010],| --24.6! 010719 +21,9{-0.0717| +21.7

Burgess! mom. 0.0142 —1535t—000101 —24, 6i0 0718| +21.9|-0.0717] +21.7
of I. : :

Membrane analogy!d.0161| -4.2 —0.0125l -7 2“)0627 +6.3]-0.0625! +6.1

Inverse ratio  10.0166] -1.2{-0.0i32] -1.5i0.0595| +0.81-0.0594] +0.8
Values in table are beam lozds per inch of snan for a tors1ona1 moment of
unity per inch of span‘on ths spar of Flgurn 2.

Discussion of Results

Bresent design practice, as the values of the loads in the
summary .show, is extremely conservative in computing the loads
in the spars of a box wing, and at the same tinme does not pro- °
vide any means of computing the considerable shearing strese in
the plywood skin. Due to the action of the drag spars, a largc
portion of the torsicnal load is.removed from the lift spars,
and stresses of a sense opposing the stresses already nresent in
the chord members of the box are set up. It muet be realized,

at this point, that the calculeted stresses detalled in this

paper are all obtained unon the assunption of a perfect structure,

Nk
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one in which there is no give in the joints, and mereﬂnarticup
1arly, one in whlch all the web neﬂbere, 1ncludlnv the skln,
have no tendency %o buckle under a shear load.- In practice,
the skin of- the wing, wlll not carry shear without a certaln
theoretical transferenee of load fron web to flange. Under

thesger cendl'blonsa the actual etresses in the w1ng Wlll dlffer

., .'-\-,r

from ghose obtained 1n the rlgorons analysrs, and will tend

)“ £ "- ;-A.l T

toward the present, desrgn condltion. For this reason 1t is
e ffcﬁ‘._i .

not posgsible to. recommend the adoptron of any logreal'enalyele -

Lo -
'.|.)| . 2 --.,

without -the support of test data._ A sunerficlel consrderatlon

- kR

of the problem w111 sufflce to show uhat the 1nternal work in

l L l

the. spar under a. tor31onal load wrll be the 1east when the net

T

axlal load 1nduced by bendlng moment in the enord nembers ap-

proaches . zero. This conditlon 1s thaﬁ denonstrated 1n the

Yo AT KRR \_-_‘;-_ _;_:

V-

rethod of:least work,. _ ..

- )
Rl R .l.'. -
HSAas | ¢ Ty .

.....

curibersorie a rieans of attack to use when, at the expense of a
relatively: .slight. loss of.accuracy, nuch srupler methods are
available. It is. probably the 31nplest rlvorous solutlon '

-2

which can be applied and ner that reason has been used as a

check against the approx1naneﬂansners obtained. |
The method of srnpllfled least work has llttle advantage

over the rigorous. nethod ,31nce the loss 11 accuraoy is s0

large. It is undoubtedly true that the labor of conputatlon
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has been greatly reduced, by the omission of ‘the ‘terms of

shearing; but another approx1mate riethod is -available which

combines greater accuracy of results with TucH" sinpler :calou—~ . =

lations than may be obtalned by any simpllfloatlon-of the mothod
of least work. For this.rééson, while “the varidity of the
method is recognized 1t nas Tittle value.,

The solution of a trapez01da1 forn of box involves two -
assumntions:"flrst, that the shearlng Work done is negligible,
and. second " that the orToss sédtion of the wing suffers no dis-"
tortlon during rotation.' The rethod of simplified least work
has already demonstrated the errors attéendant’ uvon' the firsd.

assunptlon. The seoond has been verlried w1thin the Ilinits of -

experlmental error on a few oocasionS' its use’ 1s, “however,

deflnltely an approx1netlon. The results ot this method den0n~

strate the fact that an addltlonal error does enter into the -
equation when the second assumption, previously rentioned; is -
used. The megnitudesnof-the'inaoCUraoies'oBtainedﬁby this
formula are such as to Téduce the valde of the hetnod to ‘a
very small quantity. |

A. S. Niles! development”for the -treathent of :this problen
nay be applied to a trapezoid'only if it ie assumed that the’
drag spars are parallei to éach other. The method is essen-
tially nothing more than“s'spéoiél casg of the trapezoidal solu-
tion obbtained when the 1ift spar heights are equal, and the
angle 1 1is zero. 'Toiapply it t0 a trapéezoid is obviously
8

ij HﬂﬂJgh%]

) ||

b

k

NN

L

|
1

Al
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unreasonable, on that basis. However, if such an application
is made, the 1ift spar loads rust be adjusted to make 2V and
M equal to zero, involving an error from the rational mefhod
of load division. Including then, as it does, approximations
in addition to the ones utilized in the previous method,.it
seens logical to expect larger inaccuracies in the results ob-
tained. This does not occur; the magnitude of the.error is
less for this nethod than for ﬁﬁé trapezoidal solution. Such
results nay not be expected in all cases however, for the rea-
sons stated above, and thereforerﬁhis equation should be ranked
below the trapezoidal one in point of accuracy; in regards to
utility, it is slightly superior, since it does not involve the
gsolution of any complicated sirmltaneous equations.

C. P. Burgess'! nmethod has as its main asset the ease with
which it may be applied to a structure composed of rore than
two spars. For the analysis of a two spar wing, it lies on a
par with Niles! method, since the two equations are identical.
The two equations, as far as discussion and results are con-—
cerned, ray be classed as one.

The menbrane analogy method is by far the best approxinmate
method available at the present time for this analysis. It is
the simplest of all seven of the formulas covered, and the er-
rors in it are small enough so that it may be used directly as
a nethod of computation. The only reason for any error entering

into the calculations is that the chord nembers as such do not
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constitute part of "a thin walled structure;" but the inac-—
curacy due to this approximation ié snall enough to be rela—
tively unimportant.

Burgess! inverse ratio nethod, in this case, gives ox~
tremely gobé results. .The.generaiit§ of such an ocourrence,
howevef, geens doubtfule aﬁd it is evident that this method
involves more labor of ooﬁputatiéns:thn the nmethod of least
work. For this reason, and the fact that theré is an approxi-
mation in the inverse ratio theory, there would be no reason
for not using least work if sufficiont time and lgbof’were )
avallaple for eifher metﬁoa. At best, the inversc ratio nmethod

is inferior to the 1east.work nethod in both siﬁplicity and 8.0

curacys.

|

I
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Appendix
Sample spar #1 characteristics (see Fig. 3).

Front spart

I =23(9.0% 5.5%) +-5 x & x9% =937+ 7,6=101.3 in. *
B8 12 8
Rear spar:
= & 3 5> 2ox Ly 7% = - o
I= g(y.o -~ 4.87) + 55 x5 X7 =43.0 + 3.6 = 45.8 in,

Top and bottom spars:

i . 99.0 X 3,19 _
Neutral axis = T+ 510 = 13.48 in. from front spar.

I = 3.50 x 13.48% + 2.19 X (35.0 — 13,48)% =
= 838 + 1014 = 1650 in.*

Position of elastic ecentrum:

S5 X 45.6

(d — x) = 35.00 — 10.87 = 24.13

10.87 — 4‘19

— [ Y
Vv = 4,0 ~ BEG

A = Yy = 4,19 in.

2.

_ ~1 — =29 \
z5 = tan 0.05872 = 3~ 17

N = tan *

sin n = 0.0872; cos M= 0.998
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Loads in sample wing, assuming zero drag loads.

Let
M = unity per inch of span
_ _ *u
Then WF = -WR = ==
and Wp = 0.0286 1b./in.
wo = -0.0386 1b./in.

wy = 0.0 1b./in.

w., = 0.0 1b,/in.

Loads in sample wing — the method of least work.

From equations (8) and (12), pages 11 and 13,

-[;2 {31(5 2 4
- 2 s _Bp2ygaygl
< 38F I= { 15 Kl(KB 3K2 Kl * 5K1 )}

[tk 5.t K. 3
_ 1 J 2 ™M1 2 242 12 2 2
and Y= oo -L I (K" =K °) + 1(x,° - K,°) +
1 .
i 2. 2 5
lstl Kl }
L 2 2 -3

then Wy = 2(a + ) é w x*dx = E(“ + YY) wi°.

From equation on page 9,

L, w2 5 .
Wy = 4) ‘%ﬁ%% = %%%f (since M =.%WX2for cantilever).

To determine the internal work W +total,

W = ZW.b + EWS
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Pront spar:

_ E 1.3 x 10° ‘o
F = 86,700 1b./sq.in. = TE = = 1b./sq.in.
K, = )
'M
K, =
t, =
'te =
I =
r 5
Q@ = 3.0 §—5T§L§— — 2.75 (4.5 -
8 x 88,700 X 101.3%3
—-% X 4.5% x 3.75°2 +-— X 3.75% }

a = 23.8L x 10 1°{ 986 — 2.75 (411 — 102 + 10)1 =

—8 -

= 2.81 X 108 X 10 = 3.04 X 10

- 1 2% xa.75
Y= 2 x 86,700 x 101.3° x 0.25 L 4

(4.5% ~ 2.75%)7 +

. .
43X o.zg X B:75" (4 52 _ 2.75%) +

—8

3

+ T X 0.35°% x 2.755}-= 2.35 x 10 ~ (2.75

[30.3 — 7.8]% + 3.47 [20.3 ~ 7.8] + 1.3).
-8

Y =1.01 X 10

-6

WS = (1.101 + 0.030) x 10 X % w2 X 200° = 6.0 w.°?

F Foo.
w;x 200° wpr, #167 .
W, =- = 60.8 w_? TRy
P 40 x 10° X 1.3 X 101.3 W W,
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Rear spar:

F = 86,700 1b./sq.in.
K, = 3.35 1b./sq.1in.
K_= 3.50 1b./sq.in.
t, = 0.35 1b./sq.in.
t, = 1.75 1b./sq.in.
I = 45.6 in.*

- 1.75 B x 3.50° - =4 23 2
a'— = — . - -— -
8 x 86,700 X 45.6°'1 16 3.85 [3.5" — 3 x 3.5 x
X 2.25° +%,; X 2.254]}
o= 12.13 x 10 *° {280 ~ 2.25 [150 — 41 + 5]} =
—-10 —8
= 18.13 x 33 x 10 = 2.79 X 10
2 2
y = 1 _ {1.75 X 8:35 (5.5° _ 3.25%)"+
2 x 86,700 x 45.€° X 0.35 4
25 x 2,25 2 2
+ 1.78 X 0'3 X 2. (3.5~ — 2.85 ) +
2 2 & ~9
+ £ X 0.35° X 2.25 }- = 11.1 x 10

(178 [12.3 — 5.1]° + 1.66 [13.3 — 5.1] + 0.5}

Y= 1.120 X 10
¥ _ _2_ 2 3 = 2
Ns = (1.130 + 0.028) X 7 X e X 200 6.1 Wy
. wg 2 X 200° .

b= I X 1.3 X 10° X 45.8 = 1°°:0 vr°
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Drag spar:
I = 1652 in.*
t, = 0.0635 in.
b ..%(1.25 + 1.75) = 1.50 in.
h = 36.9 in.
Then if A = area of one flange,
2
1658 = 2(38:3) 4;
A = 18523 * 881 = 2.43 in.
3.43 .
K, 18.45 - 3.5 = 16.84 in.
, = 18.45 in.
.5 '
o= 1.50 {8

o = 7.98 X 10

8 x 86,700 x 18532 ‘15

33

X 18.45°% _ 16.84 [18.45° -

218.45° x 16.84° + L x 16.54%1}

-3 =

—1l3

+ 16100]}

@ = 7.92 X 10~ X 0.001 x 10° = 7.92 x 10

is negligible.

‘L0

—

{1.14 x 10° - 16.54 [118000 — 64500 +

@

(18.45° ~

Y = — 1 [1.5° x 16.84
2 X 86,700 X 1652° X 0.0635 4
- 16.84%)" + £72 (18.45° - 16.847) +

, —ll
+ 2 x 0.0835% x 18.84%] = 3.34 X 10

15

[3080 + 8500 + 710] = 4.31 X 10



(1)
(3)
(3)

(4)
(5)

(&
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7

— = ,E 2 a _ 2
WS = 4,31 X 10 X = X WL X 2800° = 3.239 WL
2 5
w X 200
40 ‘X 1.3 X 10° x 1853 L

By inspection, from Figure 1,

Wy CO8 nm-w =20

L
h_ cos 1 Wy + dwF =M=1
h., cos 7 Wy + dWR = 1

In terms of W5

W, = Wy cos m = 0.998 Wi

_ 1 ~ 1
wp = (1 = b, cos M Wy) = (1 ~ 7.0 X 0.898 wy)

= (0.0386 — 0.1996 W)

W =-%(l — h, cos 1 Wﬁ) =-§§(1 - 9.0 X 0.998 WU)

= (0.0386 -~ 0.257 Wﬁ)

Substituting and collecting,

Total w& = Wﬁa x [2.29 + 3.721(1 + 0.998%) +(135.0 +

+ 6.1} (0.0388 —~ 0.357 wU)2+
+ (60.8 + 6.0) (0.0286 — 0.1996 wy)

—= = w; [1.996 x 2 x 6.01 + 141.1 X 3 X 0.357° + 86.8 X

x 2 X .1996%] — [66.8 x 2 X 0,1996 X 0.0286 -
—~ 141.1 x 3 x 0.357 x 0.0388] = O

47.9 W_ - 2.88 = 0;

Wy = 0.0590 1b./in.



@
(3)
(3)

Loads in sample wing
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-0.988 x 0.05390

0.0386 ~ 0.1996

~0.0386 + 0.357

X

X

-0.0589 1b./in.

0.03590

0.0580

by least

0.0188 1b./in.

-0.0134 1b./in.

work, neglecting shear.

By omitting shear terms in total work equation,

W

MWy

BWU

w2 (3.78) (1.996) + 60.8 (0.0286 - 0.1996 wU)2 +

+ 135.0 (0.0286 — 0.357 Wﬁ)a

= W, (3 x 1.996 x-3.72 + 80.8 X 23 X 0.1996°% + 135.0 X

X 8 X 0.257°%) - (2 x 80.8 x 0.0388 X

X 0.1996 — 3 X 135.0 x 0.0288 x 0.857) = 0

37.56 W, — 2.69 = O

hds
R

Ww_
B

"1,

U
0.0712 1b./in.

0.0286 - 0.237 X 0.0718 = -~0.0103 1b./in.

0.0286 — 0.1996 X 0.0713 = 0.0144 1b./in.

0.998 X 0.0712 = —-0.0710 1b./in.

Loads in sample wing — trapezoidal method.

By the principles of equilibrium, from Figure 1,

'WU

cos M - W, =0

L

WU h.,a ¢os M + de =

ki)

h

1

+ =
cos 1N WRd
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And by equating angles of deflection, from page 18, (3),

W. W, sin n . W.cOos NN W
4 %1[——I”+T_R_____._UI -t e+ 2o
F 'R U Ry o

Substituting numerical values, collecting,

(1)>(5) wp, = 0.998 wy
(2)"(6> W
(BP(7) wy

(4)(8) 0.0288 [0.00987 wp 0.08120 Vip -~ 0.00003 WU] -

il

(0.0286 — 0.1996 wU)

(0.0286 — 0.857 W)

e ]

— 0.111 [0.00060LW.. + O.000803 wLJ =

U

8)»>8Y w_ + 3, - - - =
(8)>8" g+ 3.21 W — 0.003 W, - 0.338 W - 0.337 W =0

Substitute 5, 6, and 7 in 8!
(@) (0.0286 — 0.1896 wy) + 2.21 (0.0386 - 0.357 wy) -

— .2 -— .E) =
0.241 'WU .O 36 WU 0

36

©) w. (~0.1996 — 0.568 — 0.341 — 0.238) = -0.0286 ~ 0.0632

U
1.345 w; = 0.0913; wy = 0.0731 1b./in.
(10) w, = 0.998 x 0.073L = -0.0729 1b./in.
(1) W, = 0.0888 - 0.0731 x 0.1996 = 0.0140 1b./in.
(13) w, = 0.0286 — 0.0731 x 0.357 = -0.0038 1b./in.

Load division, by Niles'! method.

1 ¥_a?] Ty _Iﬂ,



(2)

(3)

(5)
(6)
)

(8)

T
H3
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45.6
101.3 + 45.6

h=9 23X = 9.0 - 0.63 = 8,37 in.

Mp

352
8.37%2

{ 2 x 0.000805 9}
'G.00987 + 0.0321g = 0:667

#, + Mg = 1.0

(8)>(2)=(4) iy = 2887 = 0.400; Mg = —%= = 0.600
w, = 9800 — 0.0717 1b./in.
wy = 0.0717 + 0.998 = 0.0719 1b./in.
Wp = Vg = Wy sin = 0.0572 X 0.0719 = 0.00412
U x + wg (& - x) = 0,400 = 10.87 wp + 34.13 wp

(7)>(3)=(9) 10.87 wp + 34.13 (wp — 0.00413) = 0.400

(10)
(1D

€y
(3)

35 wp = 0.400 + 0.099 = 0.499; wp = 0.0143 1b./in.

g = Wy — 0.00412 = 0.0148 - 0.00412 = 0.0101 1b./in.

.

Load division by Burgess! moment of inertia method.

Member I 8 is Is® W
F.S. 101.3 10.9 1102 12000
R.S. 45.6 84.1 1100 26500
U.S. 1652.0 4,19 6930 29050
L.S. 1653.0 4.19 6930 29050  0.0717
96600

T = 000717 -+ O|998 =

g 0.0719 1b./in.

Wp = Wp = 0.0573 X 0.0719 = 0.00413



(3)By statics,
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M, = Wpx + wo(d — x)

(3) 10.9 wy + 34.1 Wy = 1 - 4.19 (0.0719 + 0.0717) = 1 ~
—~ 0.600 = 0.400
(4) 10.9 wp + 24.1 (wp — 0.00413) = 0.400
(5) 35 wp = 0.400 + 0.099 = 0.499
(6) wp = 0.0142 1b./in.
(7) Wy = 0.0143 —~ 0.0041 = 0.0101 1b./in.
Proof of identity of Burgess! and Niles! Methods
, L
(1) By Burgess W= 21:3 M
EXER
(3) By Wiles My g2 | IgT I
Mg h=2 |1 , 1 J
Ip  Ip

and My = Wy(h - v) + Wy
2 + 3 =2
(4)froa (1), My = I5x Ig(d - x) (for M = 1)
IIg® ]
2 2
(8)from (1), M, = Tyth - v)” + Iy
d ZIs2

(6)from (4) and (5), %11—

(7)by definition, x =

1% + Ip(d - x)?

’ 2 2
Ig(h = y) + L;y
_dlp EIy

Y= 551

38



(8) (7)s(8)

(9)

(L0)

LoaG division,
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s ) r 1 2
2 R 2 F
Mh__IEd,_IF'*Ig]4-IRd | Iy + In
My r 2 - 2
: Iga” | T jéLi" + Iph I—EIW
| T oy |t
Ipln(Ip + Ip) | I
2 T
N, 32 - = 1B
3 h Iy (I +7Ip) h I
_ (IU + IL) 2 -
. J =~
[ 1 1
!'h az IU + IL
ot R S e © Q.E.D.

St =

A =

51 ='§“§l§§6 = 0.001784 1b./in. of perimeter

WF::

5
L

£F
it

-3
z

by membrane analogy

25 x-%(? + 9) = 2380 sq.in.

0.001784 X 9.0 =

0.001784 X 7.0 =

0.01603 1b./in.

0.01249 1b./in.

0.001784 x 35.0 = 0.0635 1b./in,

wL-% 0.998 = 0.0637 1b./in.

39
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Load division by inverse ratio.

1 Qg
(3 9y

(3 Q

(4) Qg
(5) 8
(69 B
7) 2
(8) By
@ &

—(10) AR

1D ay

@2) qay,

From pp.30 et seq.,

66.7
141.0
6.01
6.01
8.7
35 X I77 ¥ 68,7

= 11.24 in.

0.50 X 8.37 =

0.50 x 8.37 =

Qr |, S
1+—Q'—E-{+_Q—'[;+

==+ = 0.0433

a 86.7
Oo 0‘@2(} X 14

66.7
0.0422 X m

0.0423 X =%+

4.

4.

Sr
Q

bl

13 in.

19 in.

=1+ 0.47 + 11.1 + 11.1 = 33.7

0.019%

0.469

0.469



N.A.C. 4.

Member Q
F.S. 66.7 1
R.S. 141.0 2
U.s. 6.01
L.S. 6.01

Technical Note XNo.

B q
1.24 0.0423
3.76 0.0198
4.19 0.469
4.19 0.469

@3) w; = 0.0594 + 0.998 = 0.0595 1b./in.

@4) wp — wy = 0.0573 x O

.05985 = 0.0034

366

as
0.475
0.474
1.965
1.965

qs®

5.33
11.28

8.24

8.34

33.08

15) 11.24 wp + 83.76 wy = 1 — 4.19 (0.0595 + 0.0594) =

= 1

- 0.498 = 0.501

@16) 11.24 wy + 23.76 (wp — 0.0034) = 0.501

35 w, = 0.581; w

F F-

0.0186 1b./in.

(17) w, = 0.0166 — 0.0034 = 0.0132 1b./in.

R

Ip =23 x(4ax 5% + 1/12 x
+

IR = 101.3 + 18 = 118.3 i

2 x 8) + 1/12 x 1/8 x 12° = 203.

18 = 220.6 in.*

4
n.

41

w 1b./in.

0.0594

6 +

Iy = I = (4 x 6.87° + 13.33° x 3) + 1.33 + 0.17 + 1/33 x 1/12 X

X

561.4 = 2(1/12 x 21.5% — 1/12 x A®); 31.5% — &

A = 18.70 in. = 2 K.

21.5% = 534 + 1.5 + 25.9 = 561.4 in.

3388 = 9940 — A°®

3



I3
4,00 in.

X

K, 6.00 in.
t, - 1/4 1in.
%
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R U L
4.00 in. 9.35 in. 9.35 in.
6.00 in. 10.75 in. 10.75 in.
1/4 in. 1/16 in. 1/16 in.
1.25 in, 2.06 in. 2.08 in.

3.285 in.

I 220.8% in. 119.3* in. 561.4* in. 561.4% in.

2.35

x 85 — 4 (8% —2x 6% x 47 +

- il
p = B X 86700 X 320.6% -15

3

+1/5 x 4*)] = 1.99 x 10 °

4 2.235° X 4 (. 2.25 X 64
Yp = : 400) + L2282 2 2= X
F ' 2 x 88700 X 230.6° L 4 ( ) 4 x 3
%X 20 + 2 x 457 = 1.080 x 10
15 x 16 1=1
_ 1.25 4 230.3° -8

% = T35 X 1io.

!
Cﬁl

4

2% o = 1.99 X 0.555 x 3.42 X 10 =

= 3.77 X 10

[1.25. X 4 (4__00) + Le®O 1,35

R 2 x 86700 x 119.3°%

3.06.

T X3

X B4 X 30 + ¢

T % 4°] = 1.243 X

X‘C\J

2

& x 10.75° ~ 9.35 (10.75% ~

Qqr = =
U~ %L~ g x 88700 x B61.4° 1D

'~ 2/3 x 10.75" x 9. 35° + 1/56 % 9.35
—8

= 4,72 x 10

10

M1 =
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2 =2
U L 2 x 86700 x 561,47

+ 238y 9.35° (10.75% - 9.35%) +

2 S _ —6

¥, =2/3 (o + ¥) wL® = 2/3 x 200° x (a + Y)w® =

= 5,330,000 (& + Y)w"

woL w2 X 200° we
= ¥ % 6150
b 40EI 4 x1.3x10°%x1 I

]

F  220.6  1.100 X 10 °  5.87 wp®  27.9 wp>  33.8 wy©

-8 2 2 2
R 119.3  1.2381 X 10 6.83 wy 51.5 wy 58.3 wp
U  56l.4 2.62 x 10 °  13.88 Wy~  11.0 wy = 24.9 wy
L

2 2 2
13.88 w 11.0 w 24.9 W

531.4 . 2.83 Xx 10 3

WU—WL
WF—WR
20 wp + 10 Wy = 1
wy = 0.10 — 3wp

IW = 92.1 wp° + 49.8 (0.10 - 2 wy)~

oW _ , . _
'5%; = 184,23 Wy - 3 X 3 X 49.8 (0.10 - 2 wF) =0



2 a ®© =

35I8
58.3
34,9

34‘:.9
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583.6 wp - 18.9 = O;

= .0343 1b./in.

= ,0342 1b./in.

= .0318 1b./in.

= .0318 1h./in.

dy =

0.233

wp = 0.0342

Qg = q, = 1.357 X 0.333 = 0.316

7.34
12.66
5.0
5.0

0.333
0.135
0.316
0.316

qs
1.710
1.710
1.580
1.580

208

as
12.56
21.83
7.90
_7.90
49,99

-8 _ 1 +0.580 + 3 X 1.357 = 4,294

.0343
. 03423
.03186
0313
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