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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 287L

ON TRAVELING WAVES IN BEAMS

By Robert W. Leonard and Bernard Budiansky

SUMMARY

The basic equations of Timoshenko for the motion of vibrating non-
uniform beams, which allow for effects of transverse shear deformation
and rotary inertla, are presented in several forms, including one in
which the equations are written in the directions of the characteristics.
The propagation of discontinuitlies in moment and shear, as governed by
these equations, is discussed.

Numerical traveling-wave solutions are obtained for some elementary
problems of finite uniform beams for which the propagation velocities
of bending and shear discontinuities are taken to be equal. These solu-
tions are compared with modal solutions of Timoshenko's equetions and,
in some cases, with exact closed solutions.

INTRODUCTION

The theoretical analysis of transient stresses in asircraft wings
and fuselages subjected to impact loadings has generslly been performed
by means of a mode-superposition method that uses the natural modes of
vibration predicted by the elementary engineering theory of beam bending.
(See, for example, refs. 1 to 3.) For very sharp impact loadings, how-
ever, this approach is known to have certain shortcomings. For sharp
impacts of short duration, meny modes are often required for a satis-
factory degree of convergence (see, for example, ref. 4); in addition,
the use of elementary beam theory in the calculation of the higher modes
of vibration is inaccurate because of the neglect of, among other factors,
the effects of transverse shear deformation and rotary inertia which
become increasingly important for higher and higher modes (ref. 5).

A classically recognized alternstive to the modal method of calcu-
lating translent stresses in elastic bodies 1s the traveling-wave approach,
which seeks to trace directly the propagation of stresses through the
body (ref. 3). Although the traveling-wave concept has been successfully
used to treat such simple problems as longitudinal and torsional impact
of rods, only recently have serious attempts been made to ,study the
transient bending response of beams by this approach. Flugge (ref. 6)
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was apparently the first to point out that elementary beam theory could
not serve as an adequate basis for the traveling-wave approach since the
elementary theory predicts that disturbances propagate with infinite
velocity; he showed, however, that a traveling-wave theory could be
constructed by modifying the elementary theory, as Timoshenko (ref. 7)
did, to include first-order effects of transverse shear deformation

and rotary inertia. On the basis of this more accurate theory, Fliigge
found that discontinuities in moment and shear travel along the beam
with finite, and generally distinct, velocities. A similar analysis

vas carried out independently by Robimson (ref. 8) who, exploiting the
hyperbolic nature of Timoshenko's egquations, proposed the use of approxi-
mate methods of solution and gave some numerical results for a particular
example., Pfeiffer (ref. 9) also suggested the possibility of step-by-
step solutions by the method of characteristics. In reference 10, Uflyand
attempted an anslytical solution of Timoshenko's equations for the case

of a simply supported beam subjected to a sudden application of load;
however, as was shown by Dengler and Goland (ref. 11), Uflyend's work is
merred by the fact that he applied boundary conditions that are incorrect
for Timoshenko's theory. The only known example of an exact traveling-
wave solution based on Timoshenko's theory was presented by Dengler and
Goland for the case of an infinitely long beam subjected to a concentrated
impulse.

Thus, although the use of Timoshenko's theory as a basis for the
transient-stress analysis of beams has been seriously considered, few
problems have actually been solved. Additional basic studies of
Timoshenko's equations and their solution, particularly for finite-
length beams, constitute necessary prerequisites to the development of
practical methods of dynamic-stress analysis based on the traveling-wave
epproach., In the present paper, several specific problems of transient
loading of uniform beams of finite length are considered and thelr solu-
tions by various procedures, all based on the Timoshenko theory, are
presented. These procedures are (a) numerical step-by-step integration -
closed-form solution. The examples are all for the special case of equal
propagation velocitles of shear and bending disturbances; only for thie
case have exact solutions been found in closed form. For the sake of
completeness, the presentatlon of these solutions is preceded by an
exposition of the basic equations of Timoshenko's theory, a derivation
of the characteristic lines and characteristic forms of these equations,
and a discussion of their implications concerning_propagation of
disturbances.

SYMBOLS

A cross-sectional area

E Young's modulus of elasticity
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G shear modulus of elasticity

I cross-sectional moment of iInertia

L length of finite beam (arbitrary length for infinite beam)
M internal bending moment (see fig. 1)

M dimensionless internal bending moment, ML/EIg

== @)

v vertical shear force on a cross section (see fig. 1)
v dimensionless vertical shear force, VL%/EIB

ET
cy propagation velocity o; bending discontinuities,\ﬁ;é%
Co propagation velocity of shear discontinuities, EK§
yol operator used in the Laplace transformetion
q intensity of distributed external loading
c_;: dimensionless Intensity of external loading, qL3/ Elg
r cross-sectional radius of gyration
t time
v velocity of deflection, ¥t
v dimensionless veloclity of deflection, v/cp
X coordinate along beam
¥y deflection (see fig. 1)
¥ dimensionless deflection, y/L

denotes a discontinuilty in quantity immediately following

A= %-rr—”i—
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£ dimensionless coordinate along beam, x/L

o} density of beam materisl

T dimensionless time, c3t/L

¥ rotation of cross section about neutral axis (see fig. 1)
w velocity of rotation of cross section, Vi

» dimensionless velocity of rotation, aL/c3

Subscripts:

B contributing to resistance of beam to beﬁding

i contributing to inertia

S contributing to resistance of beam to shééring

x,t,8,T indicate partisl derivatives with respect to those quantities

BASIC EQUATIONS

Nonuniform Beams

Timoshenko's equations.- The Timoshenko theory of- beam hending
(ref. 7) constitutes a modification of elementary beam theory that
attempts to account for the effects of transverse shear deformation and
rotary lnertia; the baslc assumption of elementary theory - that plane -
sections remain plane - 1s retained.. The moment M, shear V, deflec-
tion Yy, and cross-sectional rotation ¥ of a nonuniform beam sublect
to a dynamic lateral loading q are governed, according to this theory,
by the)following four simultaneous partial-differential equations (see
fig. 1):

M +EIg¥y, =0 ' (1a)
V - AG(yx - ¥) =0 (1v)
My - V + pIi¥y = O (1c)
Vx = PhAgytt + a4 =0 (1d)
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The first two equations constitute elastic laws relating the deformations
to the internal loading. Equation (la) expresses the same relationship
between moment and cross-sectional rotation as that given by elementary
beam theory. Equation (1b) stipulates a linear relationship between the
shear V and the shear angle yx - ¥ at the neutral axis; Ag 1is the
so-called "effective" shear-carrying area, different from the total

area. Ay since the true shear angle actually varies over the cross
section. Equeations (lc) and (1d) prescribe rotational and translational
equilibrium, respectively, with the term pIj¥¢t representing the con-

tribution of rotary inertia.

The moment and shear may be eliminated from equations (1) to yield
two simultaneous partisl-differential equations in y and V:

(EIBWX)X + AgG(yx - ¥) - PIgvgy =0
(2)

[BsG(yx - \Fﬂx - PAIYg + 2 =0

This form is convenient for finding the normal modes and frequencies of
free vibration (q = 0) predicted by Timoshenko's theory and for carrying
out modal analyses that meke use of these modes. In this theory, a

natural mode is described by a pair of functions [&(x),v(xz] rather
than a single function y(x), as is the case in elementary beam theory.

For a traveling-wave analysis, however, it is advantageous to return
to the original system of equations (egs. (1)) but to put them in a more
convenient form by differentisting equations (la) and (1b) with respect
to time. The equations become:

1

a)_x+E—I'EMb=0 (3&)
1

VX—KS—C}'V-t-(D=O (3b)

My + pljog - V=0 (3c)
VX - pAiv't + q = 0 (3d)

where the new variables, linear velocity v and angular velocity w,
have been introduced for Yy and wt’ respectively.
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Equations (3) comprise four first-order linear partial-differentisl
equations in the four varlables v, w, M, and V. Furthermore, equa-
tions (3a) and (3c) contain derivatives of only M and o, whereas
equations (3b) and (3d) contain derivatives of only v and V. These
facts are exploited in the next section in seeking characteristic lines,
and characteristic forms, of these equations.

Characteristics and the characteristic form of the-equations.- In
equations (3a) and (3c), the variables M and @ are differentiated
with respect to both space and time; 1t would be advantageous to replace
them by eguivalent equations each involving only total derivativeg (or
differentials) in a particular direction in the space-time plane. The
lines in the space-time plane having these particular directions - the
characteristic lines or so-called "characteristics" - and the equivalent
equations written in these directions are found as follows (ref, 12).

A linear combination of equations (3a) and (3c),

u(Mt + EIBQX) + My + plyoy -V =0 (&)

is formed, where the function u 1is to be determined ln such a way
that the partial derivatives in equation (4) combine to give total
derivatives %% end. %g in the direction of an as yet unknown charac-

teristic line [%(c),t(cﬂ . In order that the terms involving deriva-
tives of M combine in the form

ax at aM
N R I TRl

the function p must satisfy the following equation:

=
i
8l%{a1a
|
8|2

where %ﬁ is the required slope of the characteristic line. Similarly;

in order that the terms involving derivatives of @ combine in the form

dx o, 4t _
%W T ™ T T ao
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the function p must also satisfy the equation

at

Pli _do _dt

HEIp  dx = dx
do

Since the characteristic slope must be the same in both cases, p 1is
defined by

2 _PLy
BTy

Thus, the two values of p and the corresponding characteristic

dt
slopes == are:

dx
o= )
Cc
1
> (5)
at _ 1
dx"cl J
1 N
HT T e
> (6)
at _ . 1
d.x_-'c:L J

T _
where ¢y = ETE' Then, multiplying equation (4) by dt and using equa-
i .

tions (5) yields
L M + oIy aw - V dt = 0
¢y ot -
when

dat = dx

1
¢
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Similarly, using equation (6) gives

- g; aM + pIy dw - V dt= O
1

when

dat = - dx

1
C1

In sn analogous fashion, it can be shown, from equations (3b)
and (3d), that -

A
1 sG _
oo dv - pAj 4v + (? +-02 a)dt =0
when
at = = ax
c2 _
and
L av As dv + ASG widt—= 0
S5 pay Co =
when
at = - = ax
Co

ASG
where Co = ;K—.
i

Then, the system of equations (3) has associated with it four real
characteristic directions and is thus "totally hyperbolic" (ref. 12).
A network of characteristics. can readily be constructed without prior
knowledge of the unknowns M, V, w, and Vv since their slopes depend
only on the material and geometrical properties of the beam. For uniform
beams, as well as for tapered beams having uniform material properties
aend geometrically similar cross sections, c¢; and co are constant;

and the characteristics will therefore be straight; in general, however,
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the characteristics may be curved. Figure 2 illustrates the four char-
acteristics passing through a point P in the space-time plane with the
characteristics designated as

I+: %% = g;
I-: %% = - é%
ITI+: %% =-£Z
II-: %% = = g;

It is known that, by virtue of the totally hyperbolic character of the
basic equations, the values of the unknowns M, V, , and v at the
point P depend only on their initial values at t = O between the

points x; and xp on the beam (ref. 12). Furthermore, these values

at P can, in turn, have influence only on points lying in the region
above P enveloped by the I+ and I- characteristics through P.
Thus no signal can proceed along the beam with a velocity greater than
(which is generally larger than cp, as illustrated in fig. 2).

For the sake of easy reference, the four characteristic differential
forms of the basic equations are grouped below.

1

Along I+: EI aM + pI; dw - V dt =0 (7a)
Along I-: éL—l aM - pI; dw + V dt = 0 (7p)
Along II+: -C-:J;e- av - pAy d? + (pAic2w + q) dt = 0 (Te)
Along TII-: 215 av + p.Ai av + (pAiczu) - q)dt =0 (74)

Related forms of these characteristic equations have been written by
Robinson (ref. 8) and Pfeiffer (ref. 9).

c1
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Propagation of discontinuities.- Characteristics are lines across
which discontinuities may exist (ref. 12); indeed, this property is
often teken as the basic definition of a characteristic., In the present
problem, discontinuities (or Jumps) in M and ® can therefore exist
across the I+ and I- characteristics, and discontinuities in V
and v can exist across the II+ and II- characteristics. Hence,

a Jusp in M or o will propagate with the veloclty c;, whereas a
Jump in V or v must proceed with the velocity cp. It should be
remarked that such discontinuities would appear only in the limiting
case of & beam subjected to an instantaneous loading. The solution of
such idealized problems, which are often instructive, requires a knowl-
edge of the laws governing the variations in strength of these discon-
tinuities as they propasgate through the beam. These laws are determined
below for nonuniform beams for which it is assumed that the condition

¢y = ¢p does not hold over any portion of the beam; in other words,

the I and II characteristics are distinct. The speclal case where
c; = ¢cp 1s consldered subsequently when uniform beams are discussed.

ILet a and b be two polnts on & I- characteristic on either
side of a particular I+ characterigtic

If M 1s discontinuous dcross the I+ characteriétic, then My - M,

retains a finite value 8M a8 a and b are allowed to approach the
I+ characteristic from either- side. Consequently, from equation (Tb)
written along the I- charsacteristic,

1

‘ EI&M—pIi&D—

since dt approachesg zero as a and b approach each other. Thus,
everywhere along a I+ characteristic, Jumps & and &» across this
characteristic are related by

&M = cypI; Sw _ (8)
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Similarly, the jumps across the other characteristics can be readily
shown to satisfy

Along I-: SM = -clpIi Bw
Along IT+: BV = ~cypAy BV : (10)
Along II-: BV = cyph; BV (11)

A Jump in M 1is thus always accompanied by a definite jump in w;
similarly, jumps in V and v are always coupled together.

The variations in the magnitude of a discontinuity as one proceeds
along a characteristic may be determined in the following manner. Egqua-

tion (7a) is written for the upper side and the lower side of the
I+ characteristic; then, since V 1is continuous across a I+ char-
acteristic, the difference of the two equations yields

a(sMm) + c1PIy d(dw) =

along I+. Eliminating &w» by using equation (8) gives

‘ : oM
a(dM) + I, & =
( ) CiPLy <; )

1PLy

By carrying out the indicated differentiation in the second term and
dividing by 28M, the following result is obtained:

a(eM) _ 1 .4(c1pI)
M2 cply

Solution of this equation gives

(8M), = (8M)1

as the relationship between the magnitude of the jumps in M at two
points 1 &and 2 on the I+ characteristic.

(12)
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It can be shown that the identical relationship holds between
Jumps in M at two polnts on a I- characterlistic, Similarly, it can
" be found that, on II+ and II- characteristics,

(8v), = (8V), (13)

for any two points 1 sand 2 on a given characteristic. The corre-
sponding variations of the jumps &w and ©&v are, of course, readily
determined from equations (8) to (11).

Uniform Beams

Nondimensional form of the equations.- The examples to be presented
in this report are all concerned with beams heving uniform cross-sectional
size and shape and uniform materisl propertles throughout their length.
For such beams, it is convenient to express Timoshenko's equatlions in
nondimensional form.- Thus, equations (3) mey be written in terms of

2
MM oW .o 7 o= .
M= Big’ V = Big’ w.— cr’ gnd v e as |
By + M =0 , (14a)
= - = - = 1hb
clV§ RVT @ o; . ( )
M, +&. -V =0 (1he)
— c1 . - h,d
Vg—REEVT.+q_=0 B (14d)
cqt 3 feo\ 2 2
where ¢ =%, T =—%—, q:%ll'—B, and R = (ﬁ) 2} . The quantity L

refers to the beam length for all beams except those of infinite length,
in which case any convenient arbitrary length may be chosen for L.

.The characteristics of Timoshenko's equations for a uniform beam
are defined in the ¢&,r plane by the families of straight lines
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aT

I+: ZE=1 (15=)
I-: %’-g = -1 (15b)
IT+: -%% = %% o (15¢)
II-: - &-- -Z—; | | (158)

The nondimensionslized charscteristic forms of.‘the basic equations become

Along T+: M + db - VdT =0 , (16a)
Along I-: dM - a8 + Vdar =0 (16p)
- — Co
Along IT+: dVv - R d&v + (Rm‘ + o a‘)d-r =0 (16c)
= — . Co
Along TII-: dV + R av + (R - = g)dr = o] (164)
' 1

In addition to the. restriction to uniform beeams, for which c¢g
and cp are constants, the examples presented herein are further limited
to those beams for which the propagation velocities c¢c; and cp are

equal. This assumption has been made because the simplifications that
result not only permit the ready attainment of numerical solutions but
also, in particular cases, permit the attainment of exact closed solu-
tions for comparison. Since, for this very special case, the charac-
teristics II coincide with the characteristics I, equations (16) may
now be written, for @ = 0, as

a5 - Var =0

Along I+: (17a)

2 &
+

0.
(@]

INPav + n2E ar

do +Vdr =0
Along 1I-: : (17o)

n2av + M5B ar

=]

=
+
il
(@}
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Propagation of discontinuities when cj = cp.- Equations (8) to (13),

. which describe the behavior of discontinuities in a nonuniform beam, also
describe, as a special case, the behavior of discontinuities in a uniform
beam for which ¢y # co. They show that such discontinuities propagate

with constant magnitude.

However, when the beam has properties such that c¢; = cp, these
equations are no longer valid. Equations which are valid in this case
mey be derived in precisely the same way by using egquations (17) instead
of equations (7). Discontinuities in such beams can be shown toc be
related by

M = &%

Along I+: B (18a)
87 = -UAZov
M = -850

Along I-: : ) (18b)
5V = Wov

as they propagate, and they can be shown to vary in megnitude according
to the equations

d, oy L1

(%) -5 8 =
Along I+ and I-: (19)

d, .= Bam

a—T(av) + 208w =

Equations (19) may be salved simultaneously to obtain

d5 = A cos{(hr ~ B)
Along I+ and I-: (20)

8V = -2z sin(rT - B)

where A and B are arbitrary constants which must be evaluated by
using known values of &0 and B3V at some point on the characteristic.
The variations in OM and &V can then be readily found by using
equations (18).
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Thus, for the case c¢; = cp, discontinuities in a uniform beam do

not propagate unchanged but vary in magnitude sinuscidally as they
progress through the beam.

Limitations of the Theory

It may be well to insert a word of caution about the applicability
of Timoshenko's theory. The investigations of Prescott (ref. 13) and
Cooper (ref. 1L4) have shown that, when the response of a beam includes
components whose wave length is small compared to the depth of the beam,
the assumption of Timoshenko's theory that plane sections remain plane
after bending is, as might be expected, too restrictive. Since applied
disturbances which could give rise to discontinuities would obviously
excite even the shortest wave length in the spectrum of the response,
the results obtained by application of Timoshenko's theory to such
hypothetical problems cannot, in themselves, have practical significance.

However, carrying out solutions involving discontinuities is a useful means

of testing methods of solution of the Timoshenko equations with a view to
applying these methods to problems in which discontinuities do not exist.
Furthermore, the admlittedly lnaccurate response to sn infinitely abrupt
disturbance msy be used to obtain the correct response to disturbances

of a more practicel nature through the application of Duhamel's super-
position integral.

SPECIFIC EXAMPLES - FINITE UNIFORM BEAMS WITH c4 = co

Three specific examples are consldered; they are: a cantilever
beam given a step velocity at the root, a simply supported beam subjected
to a step moment at one end, and a simply supported beam subjected to a
ramp-platform moment at one end.

Methods of Solution

In the examples, the results of calculation by the following three
methods are compared: (a) numerical step-by-step integration along the
characteristics, (b) normal-mode superposition, and (c) exact closed-
form solution. The first two procedures are approximate in character,
but they could conceivably be generalized sufficiently to be applied to
practical structures; the last procedure, although exact, would rarely
be useful in practice and is introduced herein chiefly as a check on the
accuracy of the first two.

The detailed descriptions and gspplications of the three methods are
contained in appendixes A, B, and C. In brief, the numerical procedure
exploits a grid of characteristic lines as shown in figure 3(a). For
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the case c¢3 = cp that 1s under consideration, this grid consists of

two families of-lines in the ¢ ,r plane with slopes 1 and -1. A
recurrence formule is developed in appendix A that gives the values

of ® and V at station 1 of a typical interior mesh (see fig. 3(b))
in terms of the values of @ and V at stations 2, 3, and 4. Repeated
application of this formula, together with the use of speclal formulss
for the half-meshes at either end of the beam and the knowledge of-the
magnitudes of Jjumps in @ and V across characteristics where they
occur, permits & and V to be calculated throughout-the ¢,r plane.
Subsequent determination of M and ¥ 1s achieved by means of simple
addition formulas utilizing these calculated values of @ and V.

Although the solutions derived 1n appendix B have actuelly been
obtained by Laplace transform techniques, they have been termed "modal
solutions" because they are exactly those which would result from an
application of the usual mode-superposition process. The exact closed
solutions in appendix C have also been obtained through the use of
Laplace transforms.

Cantilever Beam Given a Step Velocity at the Root

The first example to be considered, the response of a uniform
cantilever beam given a step velocity ¥ =1 at the root, is the
equivalent of the most severe idealized landing problem, the instan-
taneous arrest of the root of a moving cantllever beam. Computed results
for the shear and moment at the root-of such a beam having & ratio of
length to radius of gyration of 10 (A = 5) and properties such that
c) = cp are presented in figures 4(e) and L(b), respectively. Two

separate curves obtained by the numerlical procedure are shown - one from
a grid that divides the beam into 10 segments and the other from a
20-segment solution. The modal solution includes the contributions of
the first eight modes. Results given by an exact closed solution are
shown for both the shear and moment at the root up to the time- + = 2.
These exact results are actually those for an infinitely long beam, since
the influence of the free end 1s not felt at the root until T = 2,
After T = 2, the influence of the free end is felt and, in this case,
an exact solution is not feasible. To illustrate the time range covered
in the plots, the polnt corresponding to half the period of the first
mode of vibration of the beam is indicated on the time scale of each
plot.

In figure U4(a), the shear discontimuities evident in the numerical
solutions occur each time the discontinuous wave front returns to the
root after being reflected at the free end. The beam is seen to react
violently to each of these boosts by the wave front, with more and more
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osclllations occurring after each succeeding Jjump. The frequency of
these oscilletlons tends to increase with each succeeding boost until
limited by the finite time intervel. In these regions of violent
oscillation the accuracy of the numerical solutions is obviously ques-
tionable; indeed the question arises as to whether these oscillations
are reelly predicted by the theory or are merely the result of some
instability in the numerical process. This guestion 1s resolved in the
next section in which the simply supported beam 1s considered. At any
rate, away from the regions of violent oscillations, the comparisons
with the modal solution are favorable, and, for T < 2, the fine-grid
numerical solutlon almost colncides with the exact closed solution valid
in this region.

The comparisons between the numerical and modal solutions are very
good in figure 4(b) where the time history of the moment at the root is
plotted. Agein, the fine-grid numerical solution nearly coincides with
the exact closed solution for T < 2.

Simply Supported Beam With an Applied End Moment

Step moment.- A simply supported uniform beam with a ratio of
length to radius of gyration of 10 (A = 5) and properties such that
cy = cp 1s subJected to a step moment M =1 at the end & = 0. Com-

puted results for the shear at & = 0 are presented in figure 5(a) and
the time history of moment at the center of the beam is presented in
figure 5(b). The point corresponding to the full period of the first
mode is marked on the time scale of each plot. The numerical curves
for both shear and moment were obtalned by a 20-segment solution. The
model curves were obtained by adding dynaemic corrections to the static
solutions, the dynemic corrections being calculated with six modes

for both the shear and the moment.

This exemple affords an answer to the question raised in the
preceding section with regard to the stabllity of the numerical procedure
following the passage of a discontinuous wave front. The fact is that
the violent oscillations that occur after the discontinuity actually
appear in the exact solution (fig. 5(a)) and are hence inherently present
in the theory.

In figure 5(a) the scale of dimensionless vertical shear happens
to be preclsely the dynamic overshoot factor; it is of interest to note
that values at least 15 times the static shear are predicted when the
moment is applled suddenly.

For shear (fig. 5(a)), the inaccuracies in the numerical solution
Just after the discontinuities are evident; however, the numerical
results spproximete the exact solution very well elsewhere. A similar
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observation may be made for the modal solution, which, as would be
expected, lgnores the discontinuities and violent oscillations caused
by the wave front. The numerical and modsl curves for the moment in
figure 5(b) follow the same pattern, agreeing well everywhere except
in the regions immediately followlng the discontinuities.

Ramp-platform moment.- Computed results for the shear at the end
£ = 0 and the moment at the center of the same simply supported uniform
beam subjected to the applied ramp-platform moment

M(0,T) = T - (0 +51)
M(0,T) = 1 (r>1)

are presented in figures 6(a) and 6(b). Again, the period of the first
mode of-vibration is marked on the time scales.

The numerical curves were recomputed with a 20-segment grid for
the new forcing function; however, the results for the modal and exact
solutions were obtained by means of a superposition of the preceding
results. This superposition was carried out analytically for the com-
plete modal solution and for the exact solution in the range T <2.
In the range T > 2, it was necessary to carry out the superposition
for the exact solution numerically. .

In figure 6 the time to peak value of the applied moment is
seen to be approximately one-seventh the period of the first mode;
predicted sheaer values approximately three and one-half times the
static response occur.

With the removal of the discontimuilty, there remain no high-
frequency osclliations which the mumerical solution might be unable
to represent. In fact, all three solutions for the shear and both
moment sclutions are seen to be in excellent agreement.

CONCLUDING REMARKS

Timoshenko's equations for the motion of vibrating nonunifiorm beams
may be written in a characteristic form which appears to be well-suilted
to solution by numerical methods. In the examples presented in this
report, all of which are for uniform beams with equal propagation veloc-
ities of bending and shear discontinuities (c1 = cp), the solutions by the
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numericel and modal methods generally agree well with each other as well
as with exact closed solutions where these have been obtained. However,
the modal method, of course, falls entirely to reproduce discontinuities
in shear or moment, and the numerical procedure, although it ylelds these
discontinuities, does so with decreasing accuracy as more and more
reflections of the wave front occur. In the more practical situations
where discontinuities do not exist, these difficulties will, of course,

not arise.

The results of the examples carried out by the numerical traveling-
wave procedure encourage the viewpoint that such traveling-wave analyses
may eventually be of practical usefulness. This kind of procedure is
inherently simple and straightforward and has the advantage that the
bulk of the labor involved is routine computation rather than math-
ematical analysis. It should be emphasized, however, that numerical
solutions of Timoshenko's equations have been demonstrated only for
uniform beams in which the propagation velocitles c¢j and co are
equal; numerical procedures for the general case where they are unequal
remain to be developed and tested.

Langley Aeronautical Laboratory,
Natlonal Advisory Committee for Aeronautics,
Langley Field, Va., October 28, 1952.
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APPENDIX A

NUMERICAL SOLUTIONS FOR UNIFORM BEAMS WITH ¢ = ¢
Matrix Formulation

Let the differential equations (17) be replaced by the finite-
difference equations

MM+ NS -V AT =0 (Ala)
Along I+: _ o

AV - WCAT + B AT = 0 (Alb)

M-N5+ VAT =0 (Alc)
Along I-:

AV + 1ABAT + W5E A = O (A1d)

and consider a closely spaced network of I+ and I- characteristics
in the space-time plane as shown in figure 3(a). Let the corners of a
typical interior mesh of this grid be designated as shown in figure 3(b).
A step-by-step integretion formula for ® end V mey now be derived in
the following manner.

Equations (Al) may be written along the upper sides of the typical
mesh to obtain .

My -Wp + 3 -8 - 5T+ Vo) =0 (42)
My - My - &) + B3+ STy +.T3) =0 (43)
Vi - Tp - W57 - %) + EABAT(Ty + Tp) = O (Ak)
V) - T3+ (T - 73) + %@ + B3) = 0 (45)

where & and V have been assumed to vary linearIly in the smell
intervals between the cormers. Obviously equations (A2) to (A5) mey _
be solved simultaneously to obtain the four quantities V, ®, vV, and M
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at point 1 in terms of their values at paints 2 and 3. However, it is
noted that, if V, ®, ¥, and M at points 2 and 3 were determined by
a similar process for the preceding meshes, they already satisfy the
equations

ﬁz-Mh-ag+ah+%1(72+ﬁ)=o (A6)
ﬁ3—ﬁ4+53—5h-%(73+_4)=0 (AT)
Tp - Ty + BT - 7)) + A®(T, + By) = 0 (48)
Vi -V - lme(v3 - V) + 2)?&(63 + @) =0 (89)
Equations (A6) and (AT) may be added to equations (A2) and (A3),
respectively, to obtain
My - My, + @ - @, + 3y - 5T -T) =0
and
-— — — — — ATI=—= —
My - M, - B + 23 - By + H (Vg - Ty) = O
vhich may, in turn, be subtracted to obtain the single equation
El - 52 - (_Da + 5)4_ - 9‘-23(371 - V)_I_) =0 (A10)

Similarly, equations (A8) and (A9) may be subtracted from equations (Ak)
and (A5), respectively, to obtain

V) -2, + Ty, - WE(F - F) + 22Ar(E, - B
I 1 L (@ h

]
(@]

and

Ty - V3 + Ty, + WE(T - 7)) + 2% (3 - 3)

I
(@]
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and these may be added to derive
V1 -Vp -V3 +7) + exem(a“sl - @) =0 (AL1)

Equations (A10) and (All) mey now be solved simultaneously to obtain
the step-by-step integration formula

Eﬁ_ B E% + O wy
1= s 3t = _3+Au_ (a12)
V.| (vanf+1 Vo + Vs vy
where
AT
1 )
[223] = |
-2A°AT 1
and
[ (» m)e -1 =AT
Aﬂ =
1At (» m)e -1

Thus @ and V may be determined at every interior mesh point
in the space-time plane by the repeated application of formula (A12) to
each mesh as it is encountered. The half-meshes which occur at the
verticel left and right boundaries of the plane (fig. 3(a)) require
special formulas incorporating the known boundary data. These formulas
mey be derived from equations (Al) by & procedure similar to that used
in obtaining equation (A12). Boundary formulas for some specific
examples are presented 1n subsequent sectlons of this appendix.

Besides boundary date, initisl data must be provided in order that
a step-by-step solution may be begun. In all the examples considered,
the beam is 1nitiaelly at rest and has a disturbance applied at the
point £ =0 Dbeginning at time T = 0. The region T < & (without grid
lines in fig. 3(a)) therefore is one of zero stress and motion and ®
and V are given 'along the line T = ¢ by the known condltions at the
wave front. It is with these values that each numerical solution is

begun.
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Discontinuities in @ and V offer no speciael difficulties since
they propagate so as to be always located on I characteristics which,
of course, can be made part of the baslic grid. Thus they are simply
added as they are encountered.

Once @ and V have been determined at the grid intersections by
the gtep-by-step process, M and ¥ may be found by repeated applica-
tion of equation (A2) or (A3) and equation (AL4) or (A5) along the proper
grid lines from boundaries where M and ¥V are known. For example,

if M is known along the left boundary, it may be found at a point g

by applying equation (A2) successively to the_intervals &b, bc,
cd, . . . fg. The resulting expression for Mg becomes

Mg=ﬁa.+aa—5'g+AT<—é'va+vb+...+Vf+-]2;7g) (A13)

This procedure is seen to correspond to integretion of the first of
differential equations (17a) by means of the trapezoidal rule.

Specific Problems

Cantilever beam given a step velocity at the root.- If the

root E =0 of a uniform cantilever beam is given a step velocity ¥V =1
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at time T = 0, the boundary conditions mey be written

~
v(0,T) = 1
w(0,T) =0
> (Alk)
M(1,7) =0
V(i,7) =0 )
Typical left- and right-boundary half-meshes are
P l
I- AT AT 14
V(o,v'l') =10 _ 3 l i_ 2 L E(l)T) =0
®(0,T) =0 v(1,T) =0
I+ I-
4 L

Application of equations (Alb) and (Ald) to the sides of the left-
boundary half-mesh and proper combination of the resulting equations
to eliminate ¥ produces

Vl = 2V3 - Vu (‘A15)

Similarly, application of-equations (Ala) and (Alc) to a right-boundary
half-mesh produces

By = Wy - B, (A16)

so that a complete set of integration formulas for determining @ and V
for this problem is now available. In addition, if the unused equations
(eqs. (Ala) and (Alc) for the left-boundary half-mesh and eqs. (Alb)

and (Ald) for the right) are applied and combined to eliminate M and ¥V
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at points 3 and 2, the recurrence relations

—_ ~—_ _ ATi—= —_

M =y - 255 - {7V - Ty (a17)
for left-boundary helf-meshes and

- 1l = AT —

for right-boundary half-meshes are obtained. These equations mey be

used to compute M at the root and v at the tip after @ and V have
been determined everywhere.

Since the egpplied disturbance is initially discontinuous, ® and v
will be discontinuous along the line = ¢ (see_fig. 3(a)). In order
to begin the step-by-step solution for @ and V these discontinuities
must be determined in advance. Furthermore, since the wave front is
reflected back into the beam at either end, ® and V will also be
discontinuous elong the lines T=2 - ¢, T=2+§, .. ., and 3B
and &V must be determined along each of these lines before the step-
by-step solution can be extended beyond it. The discontinuities at the
wave front are determined as follows.

From the boundary conditions (Alk), it is seen that 8®B{(0,0) =0

and &v(0,0) = 1. Thus, from equation (18a), &V(0,0) = -122, and
equations (20) become, for the line T = E,

SH(E,E) = -2\ sin AE
- o (A19)
BV(E, &) = -bA“cos AE

At €& =1, the discontinuities across =t are &»(l,1) = dM(1,1) =

-2\ sin A and SV(l 1) = -1 2cos A, SO that if the boundary condi-
tions M(1,T) = V(1, T) = 0 are to be satisfied, Jumps must occur across
=2 - & at the point (1,1) with the magnitudes &w(1l,1) = -dM(1,1) =
-ex sin A and ©®V(1l,1) = WA“cos A. In view of these initial condi-

tions at T = 1, equations (20) become, for the line T =12 - §,

Bw(t,2-€) -2\ sin AE

(a20)

8V(E,2-t) = kafcos A&
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Initial jump values - 85(0,2) = O and 8V(0,2) = A2 for the line
T=2+ £ may be found from equation (A20) by satisfying the boundary
conditions @(0,T) = 0 and ¥(0,T) = 1. From these initial values,
the discontinuities across T =2 + £ are found to be the negative of
those across T = §, or

8w( E,2+¢E) = 20 sin AE
— (A21)
BV(E,2+L) = 4A2cos At

Then, it must be true that
8n( E,h-8) = 20 sin AL
- N (a22)
8V( E,4-t) = -Ur“cos AE

and so forth, with the values on each succeeding line T =n ¥ £ repeating
the values on the line T = (n - 4) £ &, The variations in the magnitudes
of &5 and OV as the wave front propagates back and forth through the
beam are thus clearly defined, and, since T < & 1is a region of zero
stress and motion, equations (Al9) define the values of @ and V along
the line T = E.

With @ and V known along T = &, the solution for @ and V
may be begun by epplying formula (Al5) to the half-mesh in the lower
corner of triangular region @ (fig. 3(a)). It is continued step by
step throughout the triangle, with formula (Al2) being used for all
interior meshes. When the first triangle is complete, the known Jjumps
elong the line T =2 - £ may be added to the values computed for the-
under side of this line, and the solution mey then be carried out in

triangle GD beginning again at the lower cormer this time with
formula (A16). In this way the solution may be carried through as meny
triangular regions as desired.

Two sets of computations, with time intervals At = 0.1 and
AT = 0.05, have been made for a cantilever beam for which A = 5, These
time intervals correspond to grids dividing the beam into 10 and
20 segments, respectively. (The computations for the 20-segment solution
were made on the Bell Telephone Laboratories X-66T4: relay computer at
the Langley Laboratory.) The computed time histories of shear and moment
at the root have been plotted in figures 4(a) and 4(b), respectively, up
to T =10. In order to obtain these time histories, the computations
for @ and V had to be carried through the first nine triangular
reglons. : )
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Simply supported beam with an applied end moment.- If the end § =0
of a uniform simply supported beam for which cj = cp 1s subjected to
an applied bending moment Mp(T) beginning at time T = 0, the boundary
conditions &are

H(o,7) = Folr) )

v(0,T) =0 L (423)
M(1,7) =0

v(l,T) =0 J

Typical left- and right-boundary half-meshes for this beam are

I- ;ﬁ l; 4
M(0,T) = Mo(T) 3 _J/_ JL 5 {F{(l,-r) =0
¥(0,T) = 0 F(L,T) = 0
I+ Tw
I h

Equations (Alc), (Ala), (Ald), and (Alb) may be written along the
sides of the left half-mesh to give, respectively,

|
(@)

(ﬁo)l-ﬁ3-5§_+53+%r(vl+73) =

I
o

M3 - (b_do),_l_ + By - B -%1-(73 +V4)

I
o

T3 - Ty - 575 + 22%0(B; + @) = 0
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Adding the first two equations and subtracting the last two equations
produces =

(): - (Foly - @y + 33 - @ + 87 - W) = 0
and
Vy - 875+ T+ 2%e(B) - B,) = 0
which may be solved simultaneously for @&; and Vi to obtain

w1 2w ), 1

1 3 T\ (i
vy T (v an? 1 f23 vy . v, ! ((Mo)l (MO)LF) —2)2AT (a2h)

where [%23 and Ewa have been defined in conjunction with equa-
tion (Al2).

A similear process produces, for the right-boundary half -mesh, the
formula '

oy _ 1 A, any o, D (a25)
vl Oan? 1]l 3| %, T

Now consider the case in which the applied moment is a step moment;
that is, Mp(T) = 1. Equation (A24) reduces to

— -~ _
@ 1 Ans 3 | TF (426)

T (an?+a V3 ),

for left-boundary half-meshes. A similarity between the boundary
formulas (A25) and (A26) and the interior formula (Al2) is apparent;
indeed, formula (Al2) may be used everywhere 1f the sums of the values
at points 2 and 3 are simply replaced by twice the values at the inboard
point of each boundary mesh.
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For this problem, as in the preceding one, the magnitudes of the
discontinuities & and 8V at the wave front must be determined in
advance for every point on the grid lines defining its position. From
the boundary conditions and equations (18a) it is apperent that
&0(0,0) = 8M(0,0) =1 and 8V(0,0) = O. Thus, for the line T = ¢,
equations (20) become

& = cos AT
_ (A27)
8V = -2\ sin AT

Furthermore, it is found that, when the wave front is reflected at
either of the simply supported ends, the signs as well as the magnitudes
of the discontinuities remain unchanged, in contrast to the behavior of
a discontinuous wave front reflected at a free or fixed end as in the
preceding case. Thus equation (A27) must be valid for the entire zigzag
path defining the position of the wave front.

With the discontinuities known, the step-by-step solution can be
begun as before. Again, it is convenient to complete each triangular
region before proceeding to the next.

Computations for this problem were made on the Bell computer, with
a 20-segment grid, for a beam with A = 5. The quantities @ and V
were found in the first eight triangular regions; in addition, the moment
at the center was computed. The time histories of shear at the end E =0

and of moment at the center § = % have been plotted in figures 5(a)
and 5(b), respectively. '

Now consider the case in which a ramp-platform moment is applied to
the beam; that is, Mg(T) is defined by

Mo(T) =7 (0€7tS1)
fé (A28)
Mg(t) =1 (v >1)
Equation (A34) reduces to
& 1 253 ® 1
——————E———— +| A + 2 A (A29)
Vll (» aT) h3 2V, b Ty -222Ar
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for the left-boundary half-meshes for which T £ 1 and reduces to
equation (A26) for all the rest. Equations (Al2) and (A25) are, of
course, still valid for interior meshes and right-boundary half-meshes,
respectively.

Since ®w(0,0) = 8V(0,0) = 0 for this case, the solution begins
with initiel values ® =V = O along the line 1 = ¢ and there are no
discontinuities to be added. Thus the solution mey progress in any
convenient menner without regerd for the position of the wave front.

The same quantities were computed for this problem that were obtained
in the preceding caese. As before, it was assumed that A = 5, and the_cal-

culations were performed on the Bell computer with a 20-segment grid.
The resulting time histories of shear at & = 0 and momentat ¢£ = %
are presented in figures 6(a) and 6(b), respectively.
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) MODAL SOLUTIONS FOR UNIFORM BEAMS

The solutions carried out in this and the following appendix make
considerable use of Laplace transform techniques; all the Laplace
transforms used, most of which were teken directly from references 15
and 16, are given in table I for the saske of easy reference.

Equations

The equations of motion (2) may be written for a uniform beam
vibrating in the absence of external distributed loading in nondimen-
siondl form as

(% - ) - (2_2)2_37” =0

' Veg +R(Ty - ¥) - ¥ar = 0

. (B1)

[

where ¥ = %. The dimensionless bending moment M and vertical shear V
are given by (see egs. (1))

M= -Ve (B2)

V=R - V) (B3)

If the beam is initially at rest (§(g,o) = 7,.(&,0) = ¥(£,0) =
¥+ (€,0) = 0), equations (Bl) may be transformed to (where transform 6 in
table I has been used)

Cl 2 )
@g-ﬂg-&jPY=°
; (B4)

Yy *R(Y -¥) -P¥=0
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o
-pT,
in terms of the Laplace transforms Y(&,p) = u[\ e ? F(&,T}¥dr and
0

- _
F(E,p) = J[‘ e PTy(&,T)d7. The solutions of equations (B4) have the
O -

form

¥(¢,p) = A(p)e™

(B5)

¥(&,p) = B(p)e™t

Substituting these relations into equations (B4) leads to a biquadratic
equation in m

. _ .
L _ 2 Y2 . (SaY 2.2 -

m -pE_+<Q2)ilm +(c2_p(p +R)—O (B6)

and gives the following relationship between B and A: B
2
c
= - (o) #*
B = - A (BT)

Let the solutions of equation (B6) be written m =“§iml_ and ime. Then

(@I @] -2

m = pv - - S 2

my =P ] 2

and the general solution of equations (B4) is

Y(E,P) = Cl cos mlg + 02 sin mlg + C3 cosh m2§ + C)-I- sinh ng (BB)
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1 [ e \2 ]
Y(&,p) = = ml2 + (——) p2 (02 cos m1§ - Cy sin mlé) +

L ' ]

o ]
—mo® - (E_) 02 (Ch cosh myt + Cy sinh m2§)

33

(B9)

where C;, Cp, 03, and C) are functions of p which must be chosen

s0 that the boundary conditions are satisfied.

Specific Problems

Cantilever beam given a step velocity at the root.- If the

c
root & =0 of a cantilever beam is given a step velocity ¥ = E% ¥r=1
at time T = O, the boundary conditions msy be written

-~

c
= 2
y(0,T) = =y
¥(0,T) =0

> (B10)

Wg(lJT) =0
W(l,T) = ?g(lJT)

-/

These boundary conditions transform to (transform 8, table I)

C2 1 9
Y(0,p) = EI'EE
¥o,p) = © > (B11)
IE(l:P) =0
ﬁ(l,P) = Yg(l:P)

~/

The constants Cy, Cp, C5, and C) are determined by substituting

equations (B8) and (B9) info equations (Bl1l); the resulting expressions
for Y(&,p) and ¥(&,p) may be written in the forms
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Co UY(.g:P)
Y(¢,p) = = —-= : Bl2
T 1 pPp(p) (12)
and
c Uﬁ-(&;P)
T(E,p) = = £ 220 (B13)
1 p°p(p)
where
Uy(&,p) = (l - % sin m; sich m, * % cos mp cosh m2)cos méE +
(l + ;21 sin m; sinh m, + Q cos m; cosh m2) cosh m2§ S+
1 oy ) :
(—Q- sin m; cosh my + m—2 cos my sinh m2) sin m & -
(q 8in my cosh m, + Q cos oy sinh me)sinh mof
ca\2
m” - 'C%) ¥ (Tns
U&E(E,p) = 5 m—l- sin my cosh Iy + Q cos my sinh m2) (cos mlg -

m

m
cosh m2§) -Q m_f(l - X sin ml_sinh m, + -é— cos my cosh me)sin mg +

me

(l + % sin m; sinh m, + Q cos my cosh mg)sinh m2§

- 1 AR
D(p) = 2 +~~(Q + a)cos m cosh m, + (% - g)sln m) sinh m,
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The inverse transforms F(&,7) and ¢ (E,7) are determined by
substitution of Y(&,p) and §(&,p) into the complex inversion integral

(ref. 15). The singularities of the resulting integrands eP"Y(E,p)
and ePTf(g,p) must therefore be examined. Although the functions my

and m, are, in themselves, multiple-valued functions of p with branch
e\fﬁg_l

points at p =0, *iyR, and % —————J%—E, it follows from a considera-
1- (&

tion of the fundamental theorem of the uniqueness of solutions of ordinary

linear differentisl equations that Y(&,p) and ¥(&,p) must neverthe-

less be single-valued. The integrands eP"Y(&,p) and eF $(&,p) thus
have no singularities other than poles. The inverse transforms ¥y(&,T)
and V(E,T) will therefore be taken as the sum of the residues at the

poles of eP™Y(¢,p) and ePT§(g,p), respectively (see ref. 15).

It can be shown that no singularities occur 1in the numerator
functions Uy(&,p) and Ug(g,p); therefore, all the poles of Y(&,p)
and ¥(E,p) must be introduced by the zeros of the denominator p2D(p) .
Consider first the equation

m
D(p) =2 + QQ + %)cos m, cosh my + (gﬁ - E%)sin m) sinh my, = O (B1Lk)
This equation has an infinite number of roots p = 4pp,c n =1, 2, . . « o

all of which are, in general, simple poles of both Y(&,p) and ¥(&,p).
In addition, p = O can be shown to be & double pole of Y(&,p) but not

a pole of ¥(&,p).

The sum of the residues of ePTY(t,p) at the poles p =0 and
p=%py, n=1,2,3, ... 1s

— [ Em 1 UY'(ngn) PnT Ur(g)'Pn) -PnT
y(§ T) = =2 T + —2[: 1( 5 e’ r< 5
B = " PGl S
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and, similarly, the sum of the residues of ePTﬁ(E,p) at—p = ip,,
=1, 2, 3, . . . w, may be written

o

) 1 [Ug(&>Pn) UplEs=Pn) _p
‘”g’””cizpneﬁn'(pn) il

n=1

where

D'(p) = %E)(p]
2
R 1
P(c2) / = 'le)sin my sinh m, -

12 \mp? " my

. lez m,2)2

> > 5— + U|cos m, cosh my + Eg QQ + %
)

. . 2
2 c
P ( ) my? - my® Rp® —é)
+ 1L+ FCcos m, sinh -
1 2
2 2
_1Q+ )1+ (2) m2'm11+
1Y Q ml +m 2) mle
Rp
2

sin my cosh m.2

mp?(my2 + m?)

However, it is seen that Uy(&,p) = Uy(&,-p), UT(E’P) = Uﬁ(g,-p), and
D'(p} = -D'(-p) so that these equations reduce to
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c
F(E,7) = g fT +2 ) ————— sinh pyr (B15)

and

Co Ug( E:Pn)

5 sinh p,T (B16)
1 o=i Fn D'(Pn)

¥(E,T) =2 =

If, in equation (Blk), p is replaced by ik, the result may be written

2 , g2)2
2 + ﬁg__t_&_%_ - 2)cosh @ cos § - E - %)sinh asin B =0 (B17)

=
_ﬂﬂ T s

& \b-eT e

where

end k = %E, 0 being the circular frequency of vibration. Equa-

tion (B1l7) is the frequency equation for a uniform cantilever beam (see
ref. 5) and its solutions k=%k,, n=1,2, 3, . . . w, are the non-
dimensional natural vibration frequencies of such a beam. Equations (B15)
and (B16) may be written in terms of these natural frequencies simply by
replacing p, by ik,. The results are
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y(E,T) = —IE + 2Z Xyn(g)sin kn:} (B18)

n=1
and
V(E,T) =2 ——Z Xy, (8)sin kyT (B19)
n=1
where

1 %n 1
X—Yn(ﬁ) = @r: [(l + -B—II gin Bp sinh opn +—¢£ cos By cosh an)cosh an € +
( - — sin Bn sinh ay + @y cos Bp cosh or.n)cos Bnt -
( cosh a, sin Bp + a— sinh oy cos Bn)sinh anf +

(-Si- sinh ap cos By + @, cosh oy sin Bn)sin Bnﬁ:]

Xy, (&) =

e - () [(Bn

kan‘Dn a; sinh oy cos ﬁn_ + ¢n COSE on sin Bn) (cos Bng -

cosh apnb) + @By ( +-—— sin By sinh «y +-

B
¢]; cos fn cosh an)sinh ané - (1 - an sin By sinh an +
n

@, cos By cosh ay|sin an,
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- Cl 2
Rkne(_> 2
. op = an;i (Bie " o2 )Sin By sinh ay + e[kn + Bn - ¥l cos By cosh ay
2
Bn (qn? - an)e -2[j1 - Rknz(%) + Pa -2%2 1-
Ric( 22) BaP(on® + 827)| P
2(c1\2 o 2)2
RJ%(C‘?) cosh a, sin By + ap R%+Bn)-2 1-
a0 + Bo?) ’ | mea2(2)°
°2
2
Rie, 2(=L 2 __ 2
° ch) 5 Pn ean 1 ( sinh oy cos B,
- cx,ng(an +Bn) on B (C"n +52)

The coefficients th(g) and th(é) are seen to be the natural mode

shapes associlated with the frequency k,. As a check on the validity of
the Laplace transform procedure these quantities may be shown to satisfy
the differential equations (Bl) end the boundary conditioms (B1O).

Substituting y(&,7) and V(&,T) from equations (B18) and (B19)
into equations (B2) and (B3) gives, for the moment and shear,

M(g,T) = -2 2—12- Z XMn(g)sin kT (B20)
n=1
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where
2
c
NI C L VP
Xﬁn(g) = 3. ¢n(l * B sin B, sin an +
1 1.0 inh q +
a;coshancosﬁn)coshang-( -a-n-snﬁns Oy
Bn
@ cosh an cos Bn)cos Bnk - (&; sinh ay cos B, +
@, cosh an sin Bn) <sin Bnk + %‘n_ sinh ang):l
n
and
— Cc1 = .
V(g,T) = -2R = Z Xvn(é)sin k,T (B21)
2 £ -
where -

_ Xy [Bn % 1
Xvn( E) = E;Tn a 1 +-Er-l- sin By sinh o, + b cos By cosh an) sinh a, ¢ +

P P

B
('uil' sinh a, cos By + @, cosh ap sin ﬁn) (cos Bpt + ¢l; cosh anﬁﬂ

The first eight terms in equations (B20) and (B21) have been used
to compute the quantities M(0,T) and V(0,T). These results have been
plotted in the renge O ST £ 10 in figures 4(a) and (D).

Simply supported beam with an applied step end moment.- If a step

moment M =1 is applied to theend £ =0 of a simply supported beem
at time T = 0, the boundery conditions are
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?(O,T) =0

§(l:T) =0
. (B22)
-1

WE(O,T)

Wg(l:T) 0

~’
These equations transform to (transform T, table I)
“

I
(@]

Y(O:P)

Y(l)P)

il
Q

(B23)

)
1
Lol oy

QE(O,P) =

|
(@]

yg(l,P) =
-

If conditions (B23) are used to evaluate the functions Cq, 02,
C3, and C) 1in equations (B8) and (B9), the quantities Y(g,p%

and T(&,p) become

1
Y(&,p) = p(m z . 2)(cos mé - cot my sin mé€ -
1 mp
cosh my€ + coth my, sinh m2§) (B2k4)
2
(¢,2) 2 [ Pe( : ¢
¥(E,p) = - sin m& + cot my cos mE) +
2
2 61) 2
-{=— )P
2 (ce

s (sinh mpé - coth my cosh meg) (B25)
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or they may be written in the forms

where

Y(g:P) =

Ny(E:P)

Dy(p)

NACA TN 2874

(B26)

Ny(&,p) = sin my sinh me(cos m & - cosh m2§) - cos my sinh my sin my§ +

sin m; cosh mp sinh mpé

and

where

N"l!"( £,p) = my

Dy(p) = p(m12 + mez) sin m) sinh

N\E( E.:P)

F(&,p) = w

oy

(B27)

sin ml<cosh my cosh m2§__- sin_h my sinh m2§) -

sinh m2<cos m; cos ml§_+ sin my sin mlg)

Dy(p)

Here again, the functions

end the inverse transforms y(&,7)}) and V(&,r)

and ¥( g,p)
ePTY( €,p)

= m]_meDy(P)

Y(E»;P)

and T(&,p)

are single-valued,
of-the quantities

Y'(.E,:P)

are taken as the sums of the resldues at the poles of
Consider all the roots of the

denominators Dy(p) and Dg(p).

and ePT§(&,p), respectively.

For my

Inx

or m, = tinx,
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n=1,2,3 .. .o (any of which are roots of both denominators),
equation (B6) becomes

2
Aot @ @
€1 C1
(n=1,2,3, .. .0 (B28)

The solutions of equation (B28) are p = ¥ia, and #ibg,
n=1,2, 3, . . .o, where

2 2 2
R 4 neneE . (12.>j _ flz . neneE . (c_eﬂ} ] u(c_e) it
c1 c1 C1

aq 5
2
cn\2 cn\2 cn \2
+ ner2 |1 + (2 + KR + n®r@ [1 + _2) -4 —g) na*
) cq i ¢l
o 2
and these points are seen to be the locationsEE? simple poles of both
2fR
Y(¢,p) and ¥(&,p). The roots p = & C12 of the equation
co
I

C1
le + m22 = 0 are zeros of the denominator, but these are also roots
of the numerators Ny(&,p) and Nm(g,p) and are not poles of either
Y(&,p) or U(E,p). The root p = 0, on the other hand, is a pole of
both Y(&,p) and ¥(&,p) for, although both numerators also go to
zero at this point, the denominators vanish more repidly. The equation
m = O has three roots: p = 0, which has already been discussed,. and

p = ¥1VR. The latter points are not poles of Y(&,p) since they are
roots of Ny(&,p) = 0, but they are simple poles of ¢(&,p).

First consider the residues of eP'Y(&,p) and eP"¥(E&,p) at the
poles iian and Zibp. The sums of the residues at these poles provide

the results
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_ Me(fie) 4o Ne(6tan) oo Bel6tbn) g e(e,-Do) gy g
ya(g)T) = i me it +me +me +me (329)

n=1

and
-

Ng(£,dan) 4a.7 Ng(t,-iay) _gapr  Ngld,ibp) sppr  Fglé,-Ibp) _amyt .
"ydl(E;T) =Z; Di'—L(En_)—e +DT' Te, e +me fme (B30)

where the subscripts on ¥ and V¥ indicate that they constitute only parts - so-called "dynamic™
parts - of the complete solutions for F(E,7) and ¥(&,7). In order to obtain the values of

N N

_?__'_ and. —T—- at p = Tiap and tiby, 1t is necessary to use the fact that, when p equals one

Dy Dy

of the rocts™ *iay and %ib,, one of four equations my = nx, m = -0f, Wy = int, or m, = -inx
is satisfied. The question of which value of p corresponds to each equation need not be a.nswered
since the following relationships can be derived:

C2 2
(—) nn sin nné
1

(N_Y_) - ('l) = (E’L) - (E’E_) = - (B31)
Dy’ Ty =D DY '/ =-ns Dy’ my=1nx Dy’ mo=-inn Q&nane + PP (ana + bn2)

eoV?| a0, (C1VF.2 ¢
(Nw) (Ni) (Nir) B (Ni ) _ (Cl) E " (CQ) P] - (B32)
R I AU B oo

tlge NI VOVN
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As an example, let p = iay. Then one of the four possibilities

m = nx, m, = -nx, = inn, and = -inn must occur. But for any
1 1 ] mp
' Ny NE
of these possibilities, the ratios - and -y have the forms given
1
by equations (B3l) and (B32). Thus,
'\
2\ x sin ont
— | nxt sin nn
Ny(&,1iay,) _\e1
Dy'(len) e (a2 - ) Y
(B33)
co\2 p242
Ng(E,ian) Kc‘;_‘) ez - jcos mat
Dg'(ian) ane - b,e
-~

The values of the other necessary ratios can be found in a similar manner
and equations (B29) and (B30) reduce to

©0

2
Fa(E,7) = 2(52_) Z nn sin ng'g’, (cos ZDT _ cos ‘;n-r> (B34)
“1 an2 - by an bp
=1

and

= cos nxné b2 a2

s =2 o -1 - o -1 b,T B

‘tlfdl(ﬁ T) Zl a.ne - bn2 <n27r2 >cos anT <1:12_ng >cos n (B35)

n= :

Next, consider the contributions of the pole at p = 0. Equa-
tions (B2L4) and (B25) may be expended in a Laurent series about p = O.
The resulting equations for Y(&,p) and ¥(&,p) may be written

3 2
Y(e,p) = %E? - % ¥ % ¥ o(pil (B36)

¥(¢,p) =%§'“%+%+°(le (B37)
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where O0(p) signifies terms of order p or higher. - Thus the quantities
eP"y(t,p) and ePT¥(%,p) have simple poles at p = O with the residues

_ 3 2
For(B7) = & - £+ 2 (838)
and
Vou(t,) =Eo ot a1, 1 (B39)
st 4 o 3 R

respectively. It can be readilly verified that equations (B38) and (B39)
actually constitute the solution of the problem when the beam is con-
sldered to be loaded statically. o '

Lastly, consider the polnts p = iiVﬁ, which are simple poles of
T¥(t,p). It can be shown that '

Nﬁ 1 :
1im = - = (BLO)
p—>*iyR D¥' 2R .

50 thet the sum of the residues of eP'§(&,p) at-these poles provides
the additional dynamic contribution

‘l"d_z(§,'1') = - %‘- cos VR T _ (B41)

Summing the contributions of all the poles gives

- 3 2 c,\2 nn sin nné fcos a T  cos b.T
y(E,T) = % S S 2(—2-) ( 2n - = ) (B42)
2 3 cy ap2 - bp? \ on by

2 1

b2
W(§,7)=§—-§+—+§-%’-COSV§T+2Z cosnﬂg‘-(n -l)cosan'r-

2 3. L g2 - bneLneﬂe

n=mn

ane
= - 1ljcos bnT (Bh3)
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The responses J(&,T}) and V(&,T) are seen to have the same form as
solutions obtained by Williams' method (ref. 2); that is, they are the
sum of a static part, Vast(&,T) and yg4(E&,T), and a dynemic correc-
tion, ¥F3(§&,7) and \Fdl( E,T) + ‘lfde( £,T), which is expanded in a series
of the natural mode shapes. The ¥F- and Vy-components of the natural
modes have the shapes sin nx& and cos nnf, respectively, and there
are seen to be two natural frequencies, ap and by, associated with
each integer n so that each Integer corresponds to two modes. From
equations (B2) and (B3),

00

2 2
- w 8in nxg |[ b a
M(E,7) =1 -E+2 = §(n ])cos anT -<—n——l>cos by

ane - 'bn2 n2712

n=l (BLL)

and

o0

V(E&,7) =cosyR T - 1 + 2R é —cﬁig—(cos aT - COos 'bn'r) (BL45)
a2 -1 2
n n
n=1

Six terms (n = 3) have been used in the summations of equations (Blik)
and (B45) in computing the quantities M(1/2,7) and V(0,T). These
results have been plotted in figures 5(a) and 5(b) up to T = 8.

Simply supported beem with an applied ramp-platform end moment.-
Let the response to unit step moment at £ =.0, obtained ebove, be
designated M(E,7) and V;(§,T). Then the response to an arbitrary
applied moment M(o ,T) may be obtained from Duhamel's superposition
integral as

-

M(E,7) = M(0,0)M (&, T) +[ﬁ1( &, T-6)Mg(0,6)4d8

s (B46)

V(E&,T) =M(0,0)V{(&,T) +f V,(&,7-6)Mg(0,0)d8
0

v
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where the subscript € indicates differentiation with respect to that
variable. Let the applied moment have the ramp-platform time history

M(o,7) = 7T (o €710
~ _ (B4T)
M(o,T) = 1 (T >1)
Then equations (BLE) become
-
M(E,T) =j M, (e,m-0)ap (0=t <1)
% (B48)
() =f Hy(¢,7-0) a5 (r > 1)
O
and
T(E,T) =I V1(&,7-8)a8 (0S+S1)
o (849)
V) - [ Ter-0e (r > 1)
0
Substituting ﬁl and —\71 from equations (Bil) and (BY4S5) gives for M
and V ~
_ 1 b2 \
M(E,7) = (1 - )t +2 ) — 20 n’f ( 2 - 1)‘““ T
n=1 9-n2 - bp n=x an
2
an sin bpT <
(nE,[é-l) 5o ] (os+51)
M(E,m) =1 - + 2 i nx sin nnt (bn2 ) l)sin agT - sin an(T - 1) _
n= an2 - bn2 n2n:2 an
2
8n__ _ ,\5in byr - sin bp(T - 1) (T > 1)
0252 bp J

(B50)
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and
_ cos nn§ [sin anT _ sin bpT
v(§T)-\/—_s1n¢§T_T+2RZ -bn2(an o >
(o £7 1)

V(E,T) = = s:.nf—'r-sin\/—('r-l_)_]-l+

VR > (B51)

oR cos nxé |8in auT - sin an(T - 1) )

an2 - bp° &n
sin bn-r-:in bu(T - 15] (>1)
n ~t

As in the preceding case, computations using terms up to_n 3 in
equations (B50) and (B51) have been made for M(1/2,7 and V(O, T) in
the range O S T £ 8. The results are plotted in figures 6(a) and 6(b).
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APPENDIX C

EXACT CLOSED SOLUTIONS FOR UNIFORM BEAMS WITH cq = cp

Introduction

In this appendix some exact closed solutlons of Timoshenko's equa-
tions are derived for infinitely long uniform beams for which c¢q = Coe-
The results for beams of infinite length are then utilized to obtain
results for beams of finite length. This is done either by simply
restricting the infinite-beam solution to—a time interval in which it
coincides with the corresponding finite-beam solution or by superposing
infinite-beam solutions in such a way that the result; satisfles the
boundary conditions for a finite beam.

Equations - —_ - . -

If the propagation velocities c¢; and c, are taken to be equal
and if G = 0, equations (1k4) reduce to

W + My =0 (Cla)

Ve - WP =0 (c1b)

Mg +wr - V=0 (c1c)

Ve - Vr-©=0 (c1d)
02

where A = EE—. This system may be further reduced by writing a linear
r

combination of equations (Cla) and (Clb) and a linear combination of
(Clc) and (Cld) to obtain

Zg + 20K, =0 : (C2a)

Z¢ + 2MiKg - 2MiZ = 0 (c2b)

in terms of the complex varisbles Z = V + 200G and K = M + 2AiF.
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For a beam initially at rest, equations (C2) may be transformed to
(transform 6, table I)

gg + 2Aipr = O

(C3a)
2Mig + (p - 2M1) L =0 (c3p)
in terms of the Laplace transforms £(&,p) =‘jﬁ e-PTZ(E,T)dT and
o 0]
k(E,p) = df e PTk(&,7)dr. Eliminaeting & produces the equation
0
§§§ - P(P - 2>\-i)§ =0
which has the solution
-g(p(p-2)1) Vp(p-2r1)
t(e,p) = A(p)e + B(p)e" (ck)

where A and B are governed by the boundary conditiomns.

If the beam
extends to infinity in the positive &-direction, boundary conditions
stipulating that the beam remsin undisturbed at ¢E

= o must be satisfied.
Thus, equation (Cl4) reduces to

(6,0 = a(p)e VR(PAAD

(c5)
Substituting this expression into equation (C3a) produces
A -t p(p-2rt
«(82) = A2L BB . ¢ p(-221) (c6)

The quantity A(p) may now be determined from the remaining boundary
conditions in conjunction with equation (C5) or (C6), or both.

Specific Problems

Infinite cantilever given a step velocity at the root.- If the
end & =0 of an infinitely long beam is restrained from rotating and
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is given a unit step velocity at time T = O, the boundary conditions
are ¥v(0,T) =-1 and ®(0,T) = 0. In terms of Z and X these condi-

tions may be written

1.P.[2(0,7]] =0
and
I.P.[k(0,T)] = 2r

where I.P. designates the imaginary part of the quantity in brackets.
The boundary conditions may be transformed to (transform 7, table I)

I.P. [£(0,p)] =0 (Cc7a)
and -

1.P. [s(0,0]] = 5 - (cTo)
respectively. )

Because of the nature of these conditions, it will be convenient
to proceed in the following manner to determine the-function A(p). From
equation (C5), it may be seen that A(p)} = £(0,p); thus condition (CTa)
establishes at once that A(p) for this problem is a real quantity.
At & =0 equation (C6) becomes ' -

éi—i’%ﬁ(p - 2ad)

e

K(O;P) =

or; in view of condition (C7b),

R.P. [k(0,p)] + %i = %%%,}p(p - 2i) ' (c8)

where R.P. n(O,pZ] is the real part of k(0,p). Since A(p) and p
are real, the conjugate equation, which must also hold, is

R.P. EC(O,P)] - 2;1 = -“‘.ggyp(p + 2Al1) (c9)
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Eliminating R.P. E(O,p)] between equations (C8) and (C9) results in

A(p) = -2x1<\jp 'PQM B} VIP +P2"i> (C10)

If A(p) is substituted into equation (c5), the result may be
written in the form ’

g( E:P) = - @Xe + eki(p _ m) e 3 (P'Q)\.i)
Volp - 2n3)

which has the inverse transform (transforms 1, 3, 1%, and 15, table I)

z(E,T) = -2 {ei”Jo(x 2 - £2) -

T, I, AT - 8)
iJ. M5 (1162 - ) l[T i = )
13

(tr > &) (ci1i)

where Jg and J; are Bessel functions of the first kind. From equa-
tion (C1ll) the shear and angular velocity are obtained as

V(E,T) = -2 2 cos .>\.T JO(XJ;Q - §2)+

Jq [ea({r - 8
JT sin A Jo(ﬂe2 - 52) l[T — ] a8
: (r>8 (c12)

and

B(E,7) = -20 {sin ar (A2 - 2) _
J;T cos 1 JO(" 2 EQ)J]_ l?x-(-'re- 6)] ae}

(r > &) (c13)
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in terms of integrals that apparently defy evaluation by analytical
methods. ’ _ - -

The time history of the shear V(0,T) at the root of the beam
mey be obtained as & special case of equation (C12); however, it will

be noted that L{?(O,Tﬁ' = €(0,p) = A(p) (where L{ﬁ(o,Tﬁ} denotes the

Laplace_transform of V(0,7)) so that the inverse of equation (c10)
gives V(0,T) directly. Thus the shear at the root is found explicitly
in terms of tabulated functions as (transform 13, table I)

v(o,T) = -hxe[éos AT Jo(AT) + sin AT Jl(XTX] (r >0) (c1ib)

Since A(p) mey be replaced by L{V(O,Ti}, the inverse trensform
of equation (C6) may be written for this problem in the form (trans-

forms 1, 2, 3, and 17, table I)
GJI(K‘EE - ¢ )
+

| V2 -2
135( 162 - €2 )|as (T >¢)

.
K(E,7) = - 295 P& F(0,7-8) -L ¥(o,7-0)e™

or, after integration by parts,

.
K(E,) = 2aietM g2 - e2) -J; {V(O,T-e) +

B gin (T - 0) 3y [T - eﬂ} 25 (W2 - £2)as.

(r > &) (C15)

where V(0,r) 1s defined by equation (Clk). From equation (C15) the
moment and linear velocity may be written as

- T
M(g,T) =--2\ sin XT_JO(xJTE - 52) - o J; {é%:v(o,T_e)cos A8 -

Tih.%i sin Mr - 6) J1[M(7 - Gﬂ} 3o(r 62 - 2)as (v >t (016)
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and

v(E,T) = cos AT Jy (M/-re --§2) - J: {Eli V(0,T-68)sin A8 +

:O—Tf 29 sin Mt - 8) JlD'(T - e):-l}JO(Me2 'gz)de (r>8 (c17)

again in terms of integrals regquiring evaluation by approximate methods.

As in the case of the shear, it will be more convenient to deter-
mine the moment M(0,r) at the root by means other than a reduction of
of the general relation, equation (C16). Since, for this problem,

R.P. [_-}_C(O,pj] = L{E(O,T)}, equation (C8) may be written, after substitu-
tion for A(p), in the form

L{#(o,7)} = %(\/pg + 02 - p)

The inverse transform of this equation is (transforms 4 and 14, table I)

_ T J1(2:8)
M(0,T) = 2a —— ® (tr >0) (c18)
o}

But, from reference 17,

J1(2AT)

—— = angy(2r) - 2Ty (ert]]

and

-
b
L Jo(2x8)de = 'r{To(exT) + 5[11(2”)30(2”) - Jo(2>\.T)Hl(2XTﬂ}
where Hp and H; are Struve functions. Thus, equation (C18) becomes

M(o,7) = 2)\.{‘,1'[__? - mH1(2aT)] Jolanr) - [1 - swrEq(2xT)] J'l(2)a')}

(r >0) (c19)


http://www.abbottaerospace.com/technical-library

56 ' NACA TN 2874

The Struve functions Ho and Hj are tabulated in reference 17
in the range O S ot £ 15.9. For larger values of the argument, it is
convenlent to use the approximetions (ref. 17)

Ho(err) = Yg(2ar) + % ' (eat > 15.9)
2 1
By (2aT) & Yo(2ar) + -1;(1 + 4_;@?5) (2rr > 15.9)

where Y,y and Y; are Bessel functions of the second kind. From
reference 18,

Yo(2rT)J1(2AT) - Yy(2At)dg(ert) = %
so that
f_"_(iﬂ] (2ar > 15.9) (C20)

M(o,__T) m_exE -

Computed values of V(0,T) and M(0,T), obtained from equa-
tions (C14), (C19), and (020) for a beam with A =5, have been plotted
in figures 4(a) and 4(b), respectively, in the range 0 St S 2. 1In
this range, the root of & finite cantilever beam behaves as if the beam
were infinite, since the effect of the free end 1s not felt until the
return of the wave front at T = 2.

Infinite simply supported beam with an applied step end moment.-
If the end & =0 of an infinitely long beam is simply supported and
is subJected to & unit step bending moment at time T = 0, the boundary
conditions are M(0,7) =1 and v(0,7r) = 0, or K(0,7) = 1. This
condition transforms to (transform 7, table I)

£(0,p) = = : = : (c21)

e

Substituting equation (C6) into condition (C21) reveals that

271

CYp(p - 2ri)

A(p) = (ce2)
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so that equations (C5) and (C6) become

o~ Eyp(p-22i)
C(E:P) = 2Ai (023)
Ve(p - 2Ai)

and

«(,2) = 2 o EVp(rp-2r1) (cok)

respectively. The inverse transform of equation (C23) is (transforms 3
and 15, table I)

7(t,7) = 2n1eM g (A2 - 2) (t > ¢) (ce5)

and the inverse of equation (C24) may be written (transforms 2, 3, 4,
and 16, table I) as

Jl(km)

Vo2 - 2

. .
K(E,7) = e - g f M ae (r > &) (c26)
g

Prom these equations, the shear, angular velocity, moment, and linear
velocity are obtained as

V(&,T) = -2\ sin AT Jb(x0£2 - 52 ) (

T > &) (c27)
®o(E,T) = cos AT JO(X¢;2 - §2) (r > &) (c28)
: o2 - 2
M(g,T) = cos AE - X§‘J~T cos A9 Jl(x o : ) as (r > &) (c29)
£ V62 - €=
T Jl(x\/ee - §2)
V(&,7) = sin AE - At f sin AP = as (v >¢&) (c30)
g o2 - &

Thus, V and @ are determined everywhere in closed form in terms of
tabulated functions, but the relations for M and ¥V contain integrals
which must be evaluated by approximate methods.
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The results of this section are utilized in the next where a finite
simply supported beam is considered. '

Finite simply supported besm with an applied step end moment.- If
the end & = 0 of a finite simply supported beam is subjected to a
unit step bending moment at time T = 0, the boundary conditions may be
written ’

M(o,T) =1
~ - (c31)
v(o,T) = M(1,7) =¥(1,T) =0
or, in terms of K,
K(o,7) =1
(c32)
K(1,7) =0 -

Although a direct solution of equations (c2) is possible in this case,
the response of the finite beam may be obtained by a somewhat simpler
procedure in which the responses of infinite beams to the same disturb-
ance are superposed. This procedure is described below.

A series of semi-infinite simply supported uniform beams extending
in opposite directions are shown in figure 7. The beams have been posi-
tioned in the figure so that the origins of the space coordinate £ 1lie
on the same vertical line, and the segments of greatest interest,
0SSt s 1, have been outlined with solid lines while the rest—of each
beam is defined by dashed lines. For each beam the origin of the
coordinate & is seen to lie at a different position relative to the
end where a unit positive moment is suddenly applied at time T = 0.

An infinite number of these beams is assumed to.exist.

The response of the top beam has already been determined as
(egs. (C25) and (C26))

z(&,7) = 2x1e17”Jo(xJ1—2 - §§) (7 > &)

and

K(E,7) = G(E,T) (1 > 6)
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where

J (x\/e2 - gﬁ)
a(E,7) = eiIrE _ ae ‘[ﬁ-eixe 1 a8
3 Vo2 - 2 .
The response of the second beam may be determined from these equations

simply by accounting for the changed direction and shifted origin of
the coordinate §&. This process gives

z(E,T) = EA.ie:"}"TJO[XJT2 - (2 - 5)2] (r>2 - §)
and
K(g,m) = -G(2-§,T) (tr>2-¢)
In order to obtain the response of the third beam from the response of

the first, only the shifted origin need be accounted for. Thus, for
this beam,

7(E,7) = 2xiei’“TJoE\/T2 - (2 + g)2:| (r>2 +§)

K(&,r) = G(2+E,T) (r>2 +¢)

Similarly, for the fourth beamn,

Z(g,T) = 2Xieierog.\JT2 - ()-l- - ﬂ (1- S )4_ - §)

K(¢,m) = -G(4-¢,T) (T>4-¢)

and so forth, for all the rest. In each case, the region where the
response 1s not specified is & region of zero response.

Let the responses of all these beams to thelr respective dis-
turbances be superposed and consider only the response of the segment
0 £t S1 of the resulting composite beam. Since the wave fronts of

dg

all the disturbances travel at the same velocity = = 1, the response

of this segment may be written
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z(g,T) =0 (osT € E)ﬂ
zZ(t,T) = exiei”Jo(x\/TQ - EE) | (¢St <2 -8)
z(&,T) = 2x1ei“{ro(x 2 R) 4

JOENT’?—(e- 5)2]} (2-8STS2+8) > (c33)
Z(&,7) = 2aieldT {Jo(ﬂ‘rz - 62)+ Jo E\/TE - (2 - §)2:| +

JOE»\ITE-(2+-§)2:I} (2+ &7k -8

y

and
K(&,T) =0 (O§T§§)T
K(E,T)=G(§,‘T) (§§T§2-§)
K(E,7) = G(&,7) - a(e-§,T) (2-8StS2+8) [ (C34)
K(g,7) = G(&,7) - G(2-&,7) + G(2+&,T) (2+E£STSh - ¢)

Since G(0,T) = 1, equations (C3%4) are seen to satisfy the boundary
conditions (C32) and the response obtalned above must be that of a
simply supported uniform beam to a unit dimensionless step moment applied
at the support ¢ = 0.
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The vertical shear V and bending moment M msy be obtained from
equations (C33) and (C34) as

5 |

1A
3
I

V(E,T) =0 (0

V(E,T) = -2\ sin AT Jo(x 2. 52) (esTS2 - 8)
V(e,r) = -2\ sin AT {JO(NTQ - EE) +
JOE.\/;E - (2 - g){l} (2-ESTS2+¢E) &(035)

V(E,T) = -2\ sin AT {IO(WTE - §2>+ JOEJT2 - (2 - 82|+
JOE\/TZ-(2+§)2]} (2 + ESTSh - E)

<
and
W(E,T) =0 (0stsE )
M(E,7) = H(E,T) (eSSt S2 -8k
M(e,t) = H(E,T) - H(2-E,7) (2-tSTS24+ 8 p(C36)
WM(e, 1) = H(E,T) - H(2-§,7) + H(2+E,T) (2 + ESTSh - 8)
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where

J1 M/e2 -t )

H(&,T) = cos At - AE tJﬂ-rcos N e 46
V62 - ¢°

The angular and linear velocitles ® and v may, of course, also be
obtained from equations (C33) and (C3L4).

Computations have been made for the quantity V(O T) from equa-
tion (C35) with A = 5. The results have been plotted in figure 5(a)
in the range 0 S+ £ 8.

Finite simply supported beam with an applied ramp-platform end
moment.- Let the applied moment at the end § = 0 of & simply sup-
ported uniform beam have the time history

n
._‘

M(0,T) (0 €Tt 1)

(c37)

[}
[

M(o,T) (r >1)

The response of the beam to this disturbance may be obtained from the
response to a unit step by using Duhemel's superposition integral.
Thus, if the response to a unit step, as given by equation (C33), is
designated Zj(&,r), the response Z(t,T) +to the applied moment (C37)
may be written

z(g,7) = f Z1(&,7-6}d0 (osrs 1)—\

> (c38)

1
Z(EJT) =L Z]_(gsT'e)de (T > l)J
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Substituting from equations (C33) and letting & = O results in the

following expressions for the end response Z(0,T):

T
oNni j\ eiX(T—e)J
o 0

1
z(0,7) = 2M j‘ IMT-0) g,
0

z(0, T

ES(T - ef]de

E.(T - 9] ae

1
2(0,7) = exif IMT-0) g [n(T - 6)]as
T o e O[ T j +

- b |
W LT elMr 'G)JOE»\/(T - 9)2 - )-I-_Ide

1
2(0,7) = 2;\1f eIM™0) g,
o
1
i L elMT-6)5,
1
7(0,T) = 2Mf IMT-0) 5,
o

E(T - eﬂde +

Mt - 8)2 - l{lde

[i(T - éﬂ ae +

. .

L -[; eix(r-e)JoEv(T - 8)2 _ I;Jde +
=L

bat [ eiX(T'e)JOE\F- 8)2 - 16:ld6

~

(0 7£1)

(L1502

(2T £3)
>(039)

(3ST <L

(4T <5)
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It can be seen that (transforms 3, 4, and 9, table I)

-
Y%A
L J ey (M) asy = —L— = - id ‘/P____ -1
0 pyp(p - 2ni) A dp P

or (transforms 5 and 11, table I)

. .
f eMgo(r0)a8 = et [To(a1) - 131(A7)]
0

Then, Z(0,T) may be reduced in the region 0 St £2 +to

z(0,T) = 2)i _J;T elMg,(n6)as
2(0,7) = 2xirel M [5o(ar) - 173 (a7]] (0 €T sS1) (cho)
and
2(0,T) = 2xt J;T eIMg5(20) a0

T ' ~T-1 -
oM J; eiMy, (ae)as - JE eiMg (20)as
L.

z(0,7) = 2riTe*

}o(kT) -iJl(XT:] -

2a(r - VeV B - 1] - sy fitr - 2]}

(LsT<s2) (ck)
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From these equations, the shear at & = 0 may be written in this range
as

¥(0,7) = 2hr[cos AT J9(AT) - sin AT Jo(AT)] (0 ST 51)
V(0,T) = 2rT[cos AT J(AT) - sin AT JO(XT)] -
~ (ck2)
2n(t - 1)jcos Mt - 1)y [M7 - 1)] -
sin A(T - 1)Jg E.(T - 1ﬂ} (Lsr= e)J

In the range T > 2, however, the integrals in equations (C39) apparently
cannot be evaluated analytically. If the shear V31(0,T) due to a unit
step moment has been computed, it may be convenient to write, for the
shear at the point & = 0 resulting from the disturbance (C37),

. A
v(0,T) =j V1(0,T-08)as (psT <€)
0
¢ (ch3)
1
v(0,T) =L V,(0,7-6)a6 (t > 1)
</

1
and then evaluate the integral L Vl(O ,T-0)d8 numerically to obtain

V(0,T) 1in the range T > 2.

The quantity V(0,T), for a beam with X = 5, has been computed in
the range O S T S 2 from equations (C42) and hes been obtained in the

range 2 £ST+<8 by a numerical integration of the exact curve of
figure 5(a) in accordance with equation (CU3). These results are
presented in figure 6(a).
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®(7) = O for all velues of T not specified.

68 NACA TN 2874
TABLE I.- LAPLACE TRANSFORMS
Number F(7) £{p) = J;w e"PTR(T)ar Reference
(a) .
T
1 L Fi(r - 6)Fy(6)a8 (Tt >0) £1(p) £2(p) 15
2 Mt -8 (r>8 e~ &Pr(p) 15
3 er(r) (r > 0) £(p - 10) 15
4 f’ F(6)a8 (t >0) 2 2(p) 15
o
5 () (r >0) -£'(p} 15
6 Fi(7) - %E(fﬂ C (T >0) | P2(p) - PPIR(e0) - pABR(a0) - L L L - P Nw0) | 15
T 1 . (t >0) % 15
8 T (r>0) ;15 ' 15
9 o (A7) (r>0) {;1_2 15
+ N
10 J1{x7) (r >0) %(1 - F%l) 15
.
11 aiM'E'D(X‘r) - ul(x_-rzl (t >0) % ( {p -Pizx' . 1) .
12 e")""EJ'o(x-r) + ";’:1()‘5_1 (r >0) %(l N £ -;121.) -
13 |cos AT Jo(AT) + sin AT Jy(AT) (r >0) E‘.X(ig-p_m - *Pml) .
24 2 nawm) (r >0) B2+ wf - p 15
-tfp2a2
15 o=~ F) (r>8 &F_! 15
2 +
16 M) (r>¢) o-tP e'wl;é“'l 15
o
o - & ' - —Tx -t fpEnl
17 _li_—ee_) + wo(xfre - !z) (t>8) %(e & _ \E ~ fx:__’ ¥ ) 16
NACA
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M V M+M,dx

Figure 1.- Positive distortions and positive internal forces and moments
associated with a typical beam element.

Figure 2.~ The characteristics of Timoshenko's equations for a point
in the x,t plane.
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(b) Typical interior mesh.
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<7
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3

(a) Space-time plane.

Figure 3.- Characteristic grid for spplication of numerical procedure to
uniform beams with disturbance applied at ¢ = O. C1 = Co.
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(a) Time history of the nondimensional vertical shear at the root.

1L

Figure 4.- Responmse of a uniform cantilever beam subjected to a step
velocity at the root.
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| ————— Numerical solution (20 segments)
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(b) Time bistory of the nondimensional moment at the root.

Figure k.- Concluded.
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_— | — ———— Numerical solufion 20 segments)
0 Moo |, o, 0 Modal solution (stafic +6 modes)
20 r ¢ 0 1.2 3  ———— Fuo soution
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5 | .
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0 g i
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(a) Time history of the nondimensional vertical shear
at the end ¢ = O.

Figure 5.- Response of a uniform simply supported beam subjected to a
step moment at £ = O.
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(b) Time history of the nondimensionsl moment at the center.

Figure 5.- Concluded.
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4 (; | Numericdl solution (20 segments)
. | MoD Modd solufion (stafic + 6 modes)
¢ o I 2 3 ——~—— Exact solution
2r T
(0] /m - -
_2 L
-4 -
-6 [l i ] 1
o} | 2 3 4
Time, T
a) Time histofy of the nondimensional verticel shear
at the end ¢ = 0. '
2r
| -
o} ——— —
Period of first
natural mode
- 1 ] L 1 1 ] L 1
0 | 2 3 4 S 6 7 8

Time, T

Time history of the nondimensional moment at the center.

Figure 6.- Response of ';a'_un.iform simply supported beam subJjected to a

7

remp-platform moment at ¢ = O,
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Figure T.- Semi-infinite uniform beams superposed to obtain the response
of a finite simply supported beam.
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