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TECHNICAL NOTE 2553

'.PITCHING-MOMENT TERIVATIVES Cmq 'AND Cmd A? SUFERSONIC
SPEEDS FOR A SLENDER-DEIEA—WING AND SLENDER-BODY
COMBINATION AND APPROXIMATE SOLUTIONS FOR
BROAD-DEITA-WING AND SLEﬁDER—

"BODY COMBINATIONS

By Arthur Henderson, Jr.-
SUMMARY

The pitching-moment derivatives Cmq ‘and Cps, &t supersonic speeds

are developed for a slender-delta-wing and slender-body combination
having no afterbody. By drawing an analogy between the aserodynamics of
the wing-body section of the combination and the aerodynamics of a delta
wing alone, the results for the slender-delta-wing and slender-body com-
bination are modified to the extent that approximate solutions for C

and Cmd for broad-delta-wing and slenderAbody combinatlions can be
obtained. !

INTRODUCTION

Various methods, based on linear theory, for obtaining solutions
for the flow about wing-body -combinations have been developed for the
determination of the 1lift and moment due to angle of attack. Refer-
ences 1 to 7 comprise a fairly comprehensive list of most of the signif-
icant of. these methods, which include both approximate and exact solu-~
tions. All the exact solutions to the linearized differential equation
of steady supersonic flow, however, employ iteration processes, infinite
series, or both, and their practical application results in approximate
solutions although the error is often negligible, depending upon the
particular problem, rate of tohvergerice, nunber of iterations, and so
forth. Spreiter (reference 7) has presented solutions in closed form
to the two-dimensionsal Laplace equation of potential flow for the 1lift
and moment -of winngody combinations. These solutions apply to the super-
sonic range for the limiting case of a slender wing-body configuration.
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For the stabllity derlvatives of wing-body combinations, there are
a few papers on the damping-in-roll characteristics (see, for example,
references 8 and 9) but none for the damping in pitch.

The purpose of the present paper 1s to extend the method used by
Spreiter in reference T to the calculation of the pitching-moment deriva-
tives due to constant rate of pitch Cmq and due to constant accel-

erated motion in the vertical direction Cmd) for a slender-delta-wing

and slender-body combination. In addition, an approximate solution to
these derivatives is developed for a broad-delta-wing and slender-body
combination in supersonic flow by introducing certain modifying factors
into the slender-delta-wing and slender-body results.

Certain conditions are placed upon the conflguration. The body
ahead of the wing is slender, has a circular cross section, and 1s
pointed at the nose, and the slope of the body meridian section i1s
continmuous. For the wing-body section, the wing semiapex angle is small;
along the wing-body Juncture, the body radius is a maximum and is con-
stant; and finally, the configuration has no afterbody (see fig. 1).

SYMBOLS

3,0 potemtial functions
Yo' stream functions
A complex variable (y + iz)
R body radius (R = R(x) on body ahead of wing and R = a along

wing-body section)
a- body radius along wing-body section
8 y-coordinate of wing leading edge
W velocity in positive z-direction
r,0 polar coordinates
q constant angular velocity of pitch

o constant time rate of change of angle of attack (%.%E)

-
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perturbation pressure (difference in pressure between body
surface and free stream)

© density of fluid

time

" Cartesian coordinsates

free-stream velocity

point of rotation measured from nose

inward-drawn unit normal vector

pltching moment

area of basic wing (including portion enclosed by body)
plitching-moment coefficient —L
%pVQAc

nondimensional stability derivative due to constant rate of

pltch ([—=

gc
057/ >

nondimensional stability derivative due to constant accélerated

motion in vertical direction _3_(.3_3_1
aaé% a—>Q
root Achord of ba.sic wing
mean aerodynamic chord of ‘basic wing (%)

root chord of exposed wing
total length of wing-body configuration

semlapex angle of basic wing

ma e A s ammem o T a4 A e v —— S U e
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By value of s at x=x5 or at cq
Smax maximm velue of 8 (value of s at x = 1)
Co point of rotation measured from apex of basic wing; positive
in positive x-direction
e,f
:m,g, inmterference factors
M Mach mmber
B =2 -1
K =tane
Q constant of integration
k = 2
Smax

E'(BK) complete elliptic inmtegral of second kind

/2
j; V{ -(@ - %®)s1n0 a0

F'(BK) complete elliptic integral of first kind

/2 a8 A\
\ f A - (1 - 62K2)sin26)

o ,

A = 1 - p%®

| (2 - 2s2@)mr (p) + p22r ()

| :

| o,

2 ~ E'(BK)

_3+282.  3(14p2)
X3 52 Xg 3 ll

e e
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Subscripts:

W wing '
B body

a due to g

a due to &

ANATYSTS

The linearized differential equation 6f steady supersonic flow is

' ._é _Qﬁ _]_'gg__l_a_%ggo

3x2 or2 .T 2 392

At present an exact solution to this equation does not exist in closed

2
form for wing-body combinations. However, if the term ﬁ2 é—g— becomes

X
very small with respect to the other terms of this equation, it may be
neglected. Solutions to the Laplace equation which results from dropping

the term B2 —Q have been found in closed form for the 1ift and moment

x>

due to angle of attack (reference T). It has been found that the condi-

o) .
tion necessary for B2 -g——g to be negligible for the angle-of-attack case
X

is that the configuration be slender and that B2 be not excessive. For

. a delta-wing and body combination, the term slender implies that g%,
2
d“R

——, and K are very small.

ax? :

In the present paper, which treats the steady-pitching and the
time-dependent, constant-acceleration cases of delta-wing and body
combinations, a velocity potentlal satisfylng the two-dimensional

Laplace equation is used. In the appendix it is shown that the conditions
to be satisfled for the Laplace solution to be applicable to the super-

4R  d°R

sonic range are that =, ;é’ K, q, and & be very small.

-
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After a velocity potential which satisfies the Laplace equation is
found, the next step in the analysis is the determination of the pressure
distributions over the slender-delta-wing and slender-body combination
resulting from the two types of motion which give rise to Cmq and Cm&,
namely, constant rate of pitch and constant accelerated motion in the
positive z-direction, respectively. When the pressure distribution is
known, the moment may be calculated about any axis of the configuration,
and, from their respective definitions, Cmq and Cm& mey then be deter-

mined. The configuration to be considered and the coordinate system
employed are shown in figure 1.

Veloclity Potentlal

Spreiter (reference 7) shows that the complex potential for a
uniform stream of velocity w at infinity flowing vertically downward
over a statlonary two-dimensional circular cylinder symmetrically located
on a horizontal flat plate is

2 2 1/2
g+ 1y & Re) (1)
+ iy’ = iw {2 + —) - |8 + —
v . Z 8
where
=y + iz

R radius of cylinder
8 semlspan of plate measured from center of cylinder

For a slender configuration describling a slow, steady pitching
motion, the cross-flow velocity distribution 1s, to the first order,
proportional to X. Inasmuch as potential flow is assumed, this velocity
distributlion must be looked upon as being generated by the motion of the
configuration in fluid which is at rest, because, if the distribution
were due to the motion of the fluid about & stationary body, the flow
must be rotational and the assumption of potentiel flow is then violated.

The complex potentlal of the aforementioned configuration moving
upward throtgh sti11l air with the vertical velocity w +then is

-z (2)

o\2 0\2] /2
@+ 1y = 1w QZ +<%Z) - (; + %;)
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Transforming to polar coordinates (Z = r(cos 6 + 1 sin 0)) and solving
for the velocity potential gives

1l/2
g =-w l(1‘8"'R8+‘38'*"R8+1LR)+c03229—EI}L"'RhBh"'Rchoses)/ -
e nn ok 2 g2
1/2
4 4 i
-—-——-ru"'R cos 20 + 2+ R -r sin 6 - (3)

g2

Equation (3) is the general expression for the velocity potential.

Whether @ pertains to the constant-pitching or the constant-acceleration
case depends upon the value of w. For a wing-body configuretion pitching
about a poimt x, from the nose, the verticeal velocity w varles along

the length of the configuration according to w = q (x - Xo). For con-
stant acceleration in the positive z-direction, the velocity varies with
time according to w = d&Vt.

Pressure Distribution

The equation for the pressure distribution is
- I o) 1 (\%Q 2 B%
p=#f 5& * 2 r) ()
1

2
The term ‘2‘@%) does not contribute to either the 1ift or moment since

on the body it is symmetric and on the wings, although %Q is antisym-
r

2 :
metric, (%Q) is symmetric; therefore, for the configuration considered,
r

ox ot

For the case of pitching with constant angular wvelocilty,

¢ ‘B¢ 8 ¢
b= or{ie @ oo, Foa) (6

p:p(V—a-g+§Q> | (5)
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and for comnstant acceleration, evaluated at time t = O,

o
p&=o£—“’- (1)

In order to determine the loading over the wing-body combination as
given by equations (6) and (7), the pressure distributions in two regions
must be considered for each expression. They are:

(a) Pg,q ©on the body where r =R

(v) Pq,s on the wing wvhere 6 =0 and aSr

A

8

For the pitching wing-body combination with w = a(x - xo) and the ;‘
preceding conditions, equation (6) gives for the pressure over the body {

and wing, respectively,

Re sin 0 + yé}"' + RlL - 2R2g2cos 20

2R(x—xo)(R2-'secos 20 ) dR + (x -‘xo)(sl" - R"‘") ds_ (8e) -
slglL + Rl* - astQcos 26 dx szl/sl" + Rll' - 2R2g2c0s 26 dx

oR3(x - x)(s2 - ) @,

* 3
rfs;l/(r2 - 52)(11)'" - r252) x

(Bq)w = -oVa o2 - szgan - 1262)

e(x - x)(e® - B*) as (8b)
32‘/(r2 - 82)(RlL - 1252) ax '

Similarly, for the case of constant acceleration, in which W = Vot is
used, equation (7) yields

] = _oVa [/sl" + R)'L - 2R®s%cos 20 - Rs sin 6 (9a)
(og)p = -oVé : : - 9a
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. (Ra)y = -oVa V(r2 - Sil@h - ) (9p)

Cmq and Cp, for Slender-Delta-Wing and Slender-Body Combinations

The moment on the wing-body configuration measured @bout a point x

(o}
from the nose is
M=[(x-xo)ﬁ.pdA (10)

where n 1s an inward-drawn unit vector, normal to the surface, and A
represents the surface area of the configuretion. Now

M
Cm=l

2 —_
EpV Ac

Therefore Cmq and Cmti are respectivel_y,

- H
Cn =55_ L fzcj?n(x-xo)(pq)BRsinedde+
a  9a\oyac? [ Jo 0

1 /2 .
. Ll_[/z‘ (x - xo)(pq)BR sin 6 46 dx +

-c'JO

fj: (x - xo)(pq)w ar a% (11)
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a }+ \[l-c' 21 ( ) q') .
C.. = o= ————— X - p:)rR 8in 6 46 dx +
o0&\ pvas? | Jo v/; %) (a3

' 1 /2
h‘]p M[&r (x - Xb)(Fﬁ)BR sin 6 A0 ax +
1-c'JO ) - ‘

Z ) .
A <x-x°><pa>wdrd% (12)

where the first integral in each expression is the contribution bf the
body ahead of the wing and the last two in each expression are the
contributions of the wing-body section.

The conditions to be imposed in evaluatihg these Integrals are:

(a) On the body shead of the wing, s =R

(b) On the body at the wing-body section, R = a and gg =

(c) On the wing, %% = Constant = tan e

Integration of the terms for the‘wing—body section of the configuration
may be simplified by making the substitutions for x eand X, which are

suggested by condition (c). Since %% = tan ¢,

s =x tan € + Q

where @Q 1is a constant. Therefore,

' x:E__Qt

tan ¢
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and the limits of integration are now from s =a to s = 8maxc from
the geometry of the configuration (see fig. 1) » Bpax = C tan € and
By = Co tan €, where co 1s the location of the point of rotation

measured from the apex of the basic wing, positive in the positive
x~direction. ’

Performing the operations indicated in equations (11) and (12) and
substituting limits, spgy, =C tan ¢, and 8y = c, tan € results in

: Y5 t-c! 2 8x i-c! 2 dR
Cm, = - — (x - %)R%ax - = (x - %)°R &= ax -
g A2 Jo ~ A2 Jo dx
c c ¢5 .
- 6ntane<§-e——E%f>+h1r‘tane%q(f—-go-g> (13)
Lx e 2 9 o
Coe = - —5 (x - xo)R°dx - 2 tan €{Zh - 2'm (14)
Ac T
Where
‘ _1-.2,2_(1,.% 1)k
; e—l-3k (3+3logek>k
=1 -33x2 2143 2
, f=1 5k 5]5 +5k
Y
- g=1- 22 + x*

h=1-4k2+<3+1+10ge%)k”

m=1- 6k + 83 - 3

The variation of these interference factors with k 1s shown in figure 2.
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Equations (13) and (14) are the expressions for Cmq and Cm& for

a slender-delta-wing and slender-body combination corresponding to the
conditions stipulated. When these terms are added to obtain the damping-~
in-pitch parameter Cmq + Cm&, integration by parts allows the resulting

expression to be written as .

Co

Cm + Cpy = - %fg [:l -c') - x 2. 6m tan e(% e - = ) +

Cc

hntane?_ﬁf—c:—o-g—2ﬁtane9h-c—om (15)
g 8 T

Again, from the geometry of the configurstion, vhen k #1,

T

This relation allows equation (15) to be written as

c c \5 . c
Cmq+Cmc.L=-4nk2tan€E9Ik2-3k—62+(%9>] —61tta.ne<%e--.—69-f> +

hntme%(f-%’g)-2ﬂta.ne<gh-%o-m> (16)

When k =1, the wing span goes to zero, and for a slender body of
revolution ’

Cmg = j-ﬁe (x - x,)RPdx - ——f (x - xo)eR dx (17)

(x - x,)BPax (18)
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Iina2
AT?

Cng * Cng, = - (2 - %)2 (19)

where A and ¢ represent some characteristic area and length, respec-
tively, of the body. Equation (19) agrees with Miles' result (refer-
ence 10) if A = ne? and ¢C = L.

When R = a = 0, the body radius goes to zero, and for a slender
delta wing
C =-61rtane—9---c—o- + b tan ¢ 21 - 2 (20)
Mg 8 c C T
c
Cmy, = -2 tan.e<% - T?) ' ' (21)

which are the expressions for Cmq and Cm& for the slender delta wing
found by Ribner (reference 11).

My, .
body section of a slender-delta-wing and slender-body combination are
seen to be in the same form as Cmq and Cm& for the basic wing alone.

Each term of the equations for the basic wing alone is modified by a
factor vwhich is a function of the ratio of the body diameter to the
maximum wing span. This modification 1s due to the interference effects
which result from placing a slender body on a slender delta wing.

From these equations for Cmq and C,. the terms for the wing-

Cmq and Cmd for Broad-Delta-Wing and Slender-Body Combinations

From practical considerations, solutlions for Cp and Cmd for

broad-delta-wing and slender-body combinations in supersonic flow are
desired. A method of obtaining an approximate solution to this

problem from the preceding development is suggested by the similarities
between the expressions for the slender delta wing alone and for the
slender-delta-wing and slender-body section of the configuration. An
intuitive epproach would be to assume that a delta-wing and slender-
body section, in going from a slender-delta-wing and slender-body section
to a broad-delta-wing and slender-body sectlon, follows the same laws
that a delta wing alone follows in meking the same transition (see the
next section for a discussion of the validity of this assumption).
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Investigations by Brown and Adams (reference 12) and by Ribner and
Malvestuto (reference 13) made after the publication of Ribner's paper
on the stability derivatives of slender delta wings (reference 11) show
that the stability derivatives of broad delta wings in compressible
supersonic flow such that B tan € < 1 &are the same as the results for
the slender delta wing multiplied by certain elliptic integrals which
are functions of the wing semiapex angle and the Mach number of the flow.
Applying these laws to the wing-body section gives

-c! -c!
hx 8x

I <. - 2ax - 2% - x )R B 4 -
Cmq— =2 A (x - x0)R=dx re (x - %) R 33 dx
9 Co o o
kl6ﬂtan68-e ——cz.-f +).21mta.ne?-f-?_-g (22)

1-c!
cm&. - - A ¢ (x - xo)Radx + hg2n tan e(% h - Egﬂ m) (23)

where Ay, Ap, é&nd )..3 are the appropriaste elliptic integrals (see
fig. 3). The demping-in-pitch parameter is

(o (o4 (¢4
Cmq+Cmd,=-1|>;r_k2-ta_n el;%ka-3k—62+(?o>%, -A.161rtan e(%e--6—0f>+
C C C
Aln tan e —E—‘_’-(f - ?° g_) + hg2n tan e<-9-h - -=c_‘3n> (2k)

In order to determine approximate expressions for Cp, and Cm&

for the configuration when the wing leading edges are supe%sonic

(B tan ¢ > l), the analogy drawn previously between the laws followed

by a broadening delta wing alone and a broadening-delta-wing and slender-
body section is continued into the reglon where B tan € > 1.

As a delta wing alone continues to broaden to the extent that
B tan € > 1, +the equations for Cmq (see reference 12) and Cmu, are
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- -89 _So),8%( 2o 3

Omq = E(s a‘>+a E(l E> (25)
_Af9 ¢

C%‘;;’(E'%’) ‘ (26)

<Cmd was obtalned by use of equation (15) in reference 13 and agrees
with Miles' result (reference 1k) ) Therefore the derivatives for a

broad-delta-wing and slender-body combination in supersonic flow, such
that P tan € > 1, may be approximated by

Lix ~c! 8x -¢’ o, dR
c, = - — (x - %,)R%Ax - —% (x ~x.)°R — dx -
g 2= Jo ATT Jo ol
8/9 o 8 %[, Co
e 3k ) o
and
b -c! 2 k{9 €o )
Cpe = = —= (x - )Rdx+-—( h-=m (28)
ny, 2 o *o B3 8 3

provided the body ahead of the wing-body section remains slender with
respect to the Mach cone emanating from its nose.

Because of the nature of the factor X3 and the values of Cmq
and Cp, for P tan € > 1, a géneral curve, such as Cmq_+ Cu

plotted against B tan €, cannot be drawn. Certain basic delta wings
have therefore been chosen and curves of Cmq + Cm& plotted against M

have been drawn for differemt values of k. These curves are presented
in figure k.
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) DIBCUSSION AND CONCLUDING REMARKS

By an extension of the method used by Spreilter in reference T the

pitching-moment derivetives Cp @and Cm& for supersonic speeds have

been developed for a slender-de%ta-wing and slender-body combination
having no afterbody. By drawing an analogy between the aerodynamics of
the wing-body section of the configuration and the aerodynamics of a
delta wing alone, the results for the slender-delta-wing and slender-
body combination were modified to the extent that approximate solutlions
for Cmq and Cmd for broad-delta-wing and slender-body combinations

were also obtained.

In order to check the validity of the reasoning used 'in arriving at
the assumption by which the approximate solutions were obtained, the same
reasoning was applied to Spreiter's results for the lift-curve slope Clu

of a wing-body combination for which an exact solution to the linearized
supersonic-flow equation also exists (reference 6).

In reference 6, Browne, Friedman, and Hodes have presented an exact
solution to the linearized equation of steady supersonic flow for a
delta-wing and slender-conical-body combination for which the apexes are
coincident. Spreiter (reference 7) has presented a solution to the two-
dimensional Laplace equation for the same configuration. In order to
obtain some indication as to the reliebility of the assumption made, the
same reasoning was applied to Spreiter's results for Clu of the delta-

wing and conical-body configuration as was applied to the Cmq and Cmd .
results of this paper, and the modification of Spreiter's results were

then compared with the results of reference 6. The results of this
comparison are shown in figure 5 wherein BCIG is plotted against

B tan € for different values of - k. For Xk = 0.70 the curve from
reference 6 is incorrect for high values of B tan ¢ because an insuf-
ficient number of terms of the series results were taken.

From the results of this comparison it appears that values of Cp
and Cm& for broad-dedta-wing and slender-body combinations will give

falrly good approximations up to at least k = 0.50.

<

Langley Aeronautical Leboratory
National Advisory Committee for Aeronautics
Langley Field, Va., August 21, 1951
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APPENDTIX

CONDITIONS FOR‘;APLACE SOLUTION TO APPLY TO SUPERSONIC RANGE

2 2 2 2
In the 1limit, as 32 gxg’ 2% Bi gt’ and %;-%;g approacy Zero,

a solution to the two-dimensional Laplace equation

Pf, 13, 13

dr2 TOr 232

is a solution to the linearized equation of supersonic flow

p2 39 2 1 1% af P ,

: 3%2 32 T 2 3r2  V Ox Ot y2 32

Therefore these two equations are compatible if the sbove limiting con-
ditione are satisfied.

. In equation (3) a solution to the two-dimensional ﬁaplace equation
1s given as

; ' $ = ¢(W,R,s,r,6) : (29)

tion is made that w = w(x,t), from. equation (29)

32 Sg2\V0%/  352\0x w OR Ox dx ox ax

L% _ ;_fg@_w)g . a_eg(an>2 , 92 a_s)2 . 2(382 v aR _g_af v ds
X 8

SR N R T o

T2 % dwdw, 3°F dwarR ., 920 Ow ds . 3
a?%=a—:g N 2L R S s W e ()

i

vhere R = R(x) and s = s(x) = Kx + Q. If, for the present, the assump-
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d 324(dw\2 . 3¢ d%w
& Yoy B (32)

For constamt rate of pitch, ¥ = w(x) = q(x - %), and from
equations (30) to (32)

3° d 32 (ar\2 = d° > a@r

Lo Fhoxs) Yo o2
-

For constamt accelerated motion in the vertical direction,
w = w(t) = &Vt, and from equations (30) to (32)

2 3% _ 52[3%8(ar\2 | 3°8 o Fa?g_ ar , g a%R
B-axe BI;R2(dx> +852K T2 R stx+§%dx2
M2 82» 3¢ . @&’ . 329 - ‘

275_%“ =2M2<%-R“az+a—2§—w SaK) > (34)

M2 3% _ 2 9% 42
e v

Ve 3t°

/

An examination of equations (33) and (34) shows that, in order for
the Laplace solution to be a solution to the linearized equation of
2

dR 4R

supersonic flow, = d—;e—, K, g, and o must approach zero.

Within the framework of the small-disturbance theory, however, such
stringent conditions as these are not necessary for the Laplace solution

to apply to the supersonic range. Rather 1t 1is required that -d—R-, 9-2-5

dxe)
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K, q, and a be of such an order of magnitude that g2 QEQ

o M2 0%
V ox ot’

i

V2 3t2

dx2’
be negligibly small compared with the remaining

terms of the linearized equation of supersonic flow.
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Figure 1.- Geometry of configuration and coordinate system used.
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