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FLOW AT A SMALL ANGLE OF ATTACK

By Franklin K. Moore .

SUMMARY

The laminar boundary leyer on a circulaer cone at angle of attack
to a supersonic stream 1s analyzed. A solution for the outer nonviscous
flow, as obtained by a method of perturbation in angle of attack, is
avelileble and is presumed to govern the development of sthe boundary
layer, subject to certain restrictions and corrections.

In the limit of vanishing cone angle, the boundary-layer equations
reduce to those for the flow gbout a yawed infinite cylinder in com-
pressible fiow, but may not be solved in the simple manner appropriate
to incompressible flow.

For small engle of attack, the boundaery-layer quantities are con-
sidered to differ only slightly from the corresponding quantities in
the known flow at zero angle of attack. The system of equations result-
ing from this assumption are solved to yield the effect of small angle
of attack on the velocity profiles, skin friction, boundary-layer thick-
ness, and the forces and moment on the cone, or, more precisely, the
retes of change of these quantities with angle of attack, evaluated at
zero angle of attack.

A1l boundary-layer quantities show paraebolic similarity in merid-
ional planes. Circumferentially, the boundary-layer thickness associated
with the profile of the circumferential velocity component is constant,
and the profile itself exhibits no tendency to separate; whereas the
profile of the meridional component undergoes changes caused by angle
of attack which show the expected effects of secondary flow in the
boundary layer.

INTRODUCTION

The flow around bddies of revolution at positive angles of attack
is characterized by a draining of the boundary layer from the underside
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to the top, causing the formation of "lobes™ of low-energy air near the
top of the body. For sufficiently large angles of attack, separation of
the cross.flow may result in a transversely shed Kdrmén vortex street.
Under these circumstances, large viscous contributions to 1ift, drag,
and pitching moment on the body may be expected. Of course, viscous
1lift, drag, and moment are expected at any angle of attack, whether or
not cross-flow separation occurs.

The present investigation, conducted at the NACA Lewls laboratory,
is concerned with a special case, namely, the laminar boundary layer
vhich develops on a right circuler cone at a small asngle of attack to
the incident supersonic flow. Solutions of the laminer boundary-layer
equations are sought in order to describe the viscous effects due to
angle of attack;, and particularly those contributing to 1ift, drag, and
pitching moment.

As is.customary, it will be assumed that the nonviscous solution
for the supersonic flow about a cone at angle of attack is valid, except
in a thin viscous layer enveloping the cone surface. The nonviscous flow
is conical in the Busemenn sense; that is, physical quantities are con-~
stant along rays from the spex. According to the analysie of Stone
(reference 1), the flow quantities may be considered to be the sums of
‘the corresponding quantities of zero angle of attack and small increments
linear in angle of attack. This theory forms the basis for the extensive
tables prepered at Massachusetts Institute of Technology under the super-
vision of Kopal (references 2 and 3).- The tables of references 2 and 3
will be used in the present report. In reference 4, Ferri criticlzes
the Stone-Kopal treatment of the entropy gradients near the body and
proposes a correction to the tables of reference 3. The applicability
of this correction will be discussed in a subsequent section.

The boundary layer itself is to be treated in the mammer of refer-
ence 5, vherein it is shown that "conicel" bodies in supersonic flow
have boundery layers which develop parabolically along generators of the
surface. This boundary-layer development is- a consequence of the fact
that the outer nonviscous flows over such bodies have vanishing velocity
and pressure gradients along rays from the apex.

The special case of a right circular cone at zero angle of attack
has been solved by Hantsche and Wendt in reference 6 and by Mangler in
an unavailable report. These solutions give a boundary layer which
thickens parsbolically along cone generstors, and provide a formula for
viscous drag which is valid also for small angle of attack, as will be
shown subsequently.

A comparison is made herein between the present analysis and the
hypothesis, which has been discussed by Allen (weference 7) and Van Dyke
(reference 8), that the viscous cross flow associated with the f£light
of bodies of revolution &t angle of attack be regarded as essentially
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that which would occur in the case of an infinite circular cylinder at

yaw with respect to the incident stream, a flow which has been analyzed

by Prandtl, by R. T. Jones, and by Sea.rs (reference 9) The attractive-
ness of this hypothesis lies in the fact that, for the yawed infinite
cylinder in incompressible flow, the cross flow may be obtained from
two-dimensional theory without regard to the spenwise component. In
reference 5, however, it is pointed out that the chordwise velocity com-
ponent does depend to some degree on the spanwise component in the case

of compressible flow gbout & yawed Infinite cylinder. Whether or not

this consideration is of practical importance has not yet been ascertained.

NORVISCOUS FLOW .ABOUT CONE AT ANGLE OF ATTACK

In order to treat the boundary layer on a cone at angle of attack,
it 18 necessary first to describe the nonviscous flow about the body,
particularly the veloclity components and properties of state which would
be predicted at the surface. Figure 1 shows the coordinste system and
other notation to be used. The distance x 1s measured along generators
of the cone; ¥y, normal to the cone surface; and ¢, circumferentially
around the cone. The veloclty components u, v, and W are in the
X-, y-, and 9P-direction, respectively. The cone has a semivertex
angle of 8 and is gt an angle of attack o.. The subscript O denotes
conditions in the undisturbed stream, and subscript 1 denotes eval-
uvation of the nonviscous flow at the cone surface, or, alternatively,
at the outer edge of the boundary layer. The symbol notation used herein
gppears in appendix A.

Since the present report is concerned with smell angles of attack,
and correspondingly small departures of the entire flow from that occur-
ring at zero angle of attack, 1t wlll be convenlent to refer all physical
qua.ntities to this basic nonviscous flow. Thus, denoting by bars the
properties at zero angle of attack, evaluated at the cone surface, the
following symbols on the left will hereina.fter be identified with
the dimensionless groups on the right:

u, v & ufu, wa ")

P ~ pfp

L > S ) (1)
T ~  20pT/T : R
»  ~ pfea?

. -1
Thus, for example, T ~ ZCPT/EZ = (_z_l ﬁz)

e e e s i e~ et e e e - e e
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On the surface of the cone, the theory for small angle of attack
used in reference 3 yields results which may be written in the following

form:

uy = i - a.Ai cos @

Wy = a AZ sin @

(2)

Il

o/?

1 +a Az cos @

pp=1+ca A4 cos ?)
vwhere the A's correspond as follows to the quantities (evaluated at
the cone surface) tabulated in reference 3 and do not themselves depend
on a:

Ay ~ -x/ﬁ'

Ap ~ -zfT - 2x/(W sin O)
(3)
Az~ /P

Ay ~ Efp

The barred (a = 0) quantities are tebulated in reference 2. The
quentities on the right side of equations (5) are in the symbol notation
of reference 3.

The relations (2) provide the boundary conditions to be imposed on
the viscous flow at the outer edge of the boundary layer.

If the definitions used in reference 3 were to be followed strictly,
then A ~ z/ﬁ. The corresponding relation in set (3) is written dif-
ferently in order to compensate for a systematic error in the tables.
This error, confirmed by Professor Kopal in a letter to the Lewis
leboretory, consists in the use of the wrong sign for the quantity C
appearing in equation (54) of reference 3. Only the values of z (and
hence Ap) are affected. Since C refers to the deviation of entropy
in the flow due to the cone thickness, the correction described is of
1ittle consequence for small cone vertex angles, but is substantial for
the larger vertex angles.

In reference 4, it is pointed out that the relations (2) imply that
the change in entropy at the cone surface due to angle of attack varies
circumferentially around the cone as cos ®, whereas physical reesoning
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indicates that at the cone surface the entropy should be constant except
for a singularity at @ = n. This difficulty arises because the method
of linearization in angle of attack used in reference 3 is improper near
the cone surface. In reference 4 it is concluded that the tables of
reference 3 are correct, except in a "vortical layer" of an angular
thickness of order o2 (infinitesimally thin in the linear approximation)
across which there are a sudden change in entropy of order o and
corresponding changes in other flow quantities, such as velocity and
temperature, but not pressure. The "vortical leyer" is a transition
region in which the form of the entropy variation must change from the
type cos @ away from the surface to constant at the cone surface.

The corrections to the tables of reference 3 required to take
account of this effect are not used in the present report; that is,
the boundary layer will be consldered as governed by the flow external
to the layer alluded to in reference 4, The following argument is pre-
sented to Justify this point of view: The reason for considering the
entropy constant at the surface is, briefly, that the fluid particles
nearest the surface must all have passed through the conlcal bow shock wave
in the vicinity of @ = 0 and, once past the shock, will conserve their
entropy at the value appropriate to the strength of the shock at @ = 0.
Thus, the sharp normal gradients near the surface (discussed in refer-
ence 4) may be comnsidered to exist by reason of the conservation of
entropy along the streamlines nearest the wall., If the boundary layer is
much thicker than the "vortical layer" (a?), the boundary layer will
immediately entrain most of the fluid in the vicinity of ¢ = 0, which
would otherwise proceed along the surface to form the base of the vor-
tical layer. The properties of the entrained particles will then 4if-
fuse through the boundary layer by the action of viscosity, entropy will
no longer be conserved next to the wall, and the constraint giving rise
to the vortical layer wlll be removed.

Thus, it is reasoneble to suppose that viscous diffusion in the
boundary layer will prevent the formation of the vortical layer described
in reference 4, and that the boundary layer will be governed at its
outer edge by the flow described in reference 3 (equations (2)), provided
that the boundary layer is much thicker than would be the vortical layer.
If the reverse were true, the boundary layer would certainly be governed
by conditions more nearly appropriate to the base of the vortical layer.
The criterion for entrainment and diffusion of the vortical layer would
be

& >>xa’

vhere & 1s the boundary-layer thickness. As a rough approximation
(reference 6),

1
& » (x/R)%
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where R is Reynolds number per unit length. Thus, the criterion is

Rx<<;\ a,-4: 7

Since the presexit analysis will concern only small angles of attack, and,
stri'ct&y speaking, will be precise only in the 1limit o0, consistency

requires that the inequality R}':‘<<d’4 ' be presumed applicable. OFf
course, since the vortical layer is associated with entropy variation,
this question 1s of less importance for smaller cone vertex angles.
LAMINAR BOUNDARY LAYER ON CONE AT ANGLE OF ATTACK
Differential Boundary-Layer Equations
and Boundary Conditions
In reference 5 it is shown that the differential equations for the

compressible laminar boundary layer on a conical body in supersonic
flow mey be written:

lP'( 2 - ‘._ pA 2 2 =
[f + 3 _?gl g + g g;] f)t)‘ z glfxg + z (gx) + 2f3\ =0 (48.)

1et) g, 2 g 2 2 2 p'(¢) _
E+3 p BtITE B "FEE& "3 H -3 *25m =0

o)
(4b)
T + (£3)2 + (g))% = T + uy? + w @ (4c)
= r-i

Equations (4a) and (4b) are momentum equations, equation (4c) is en
energy balance, and equation (46.) is the equation of state. The func-
tions F£(N\,f) and g(A,f) are related to the two-component vector
potential discussed in reference 5 and are defined according to the
relations

e
I

5%
(5)

w=g)\

and in a manner such as to satisfy the continuity equation identically.
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These equations embody the following rhysical assumptions, in
addition to those arising from the concept of a thin boundaery layer
(for example, that pressure does not vary across. the boundary 1aye;):

(a) Prandtl number of 1 and constant specific heats-

(b) No heat transfer through the body. surface

(c) Validity of the temperature-viscosity relation

-cZ | (6a)
7

e

where 'C 1is defined as follows, in order to match relation (6a) to the
Sutherland formule at the cone surface (denoted by subscript w):

L
cx(2) 2208 (o

\T/) T[T +8/F

the quantity S being taken eqﬁalrto (216° R) ZCP/EZ. This temperature-

viscosity relation as applied to flow over a flat plate is discussed by
Chapman gnd Rubesin in reference 10. Since the case of Prandtl number
of 1 and no heat trensfer is under consideration, T, may be taken equal

to the stream stagnation temperature (equation’ (4c)).

The coordinates x and y (fig. l) have been made dimensionless

by referring them to the length T :%, Thus, the normelizing relation
pu

__a.-x ——
X,y ~ pT} g . (7)
Cu Cu
should be added to the conventions (l) previously established.

The coordinate A has been formed as follows:

< Ay 1

ng\ﬁ(%)z p dy|x 2 (8)

0

Equations (4) and definition (8) show that similerity of the Blasius type
exists in meridional plamés. Thus, for example, boundary-layer thickness
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is proportional to xl/ 2 and may be said to increase parsboliceally
with x. This fact is a consequence of the vanishing pressure gradient
along generators of a conical body in supersonic flow.

The variable { 1is a dimensionless coordinate which, in the case
of a circular cone, may be replaced by @ sin 8, or by ¢O where

0 = sin 8. Equations (4) may thus be rewritten: \

1 p'(o) 2 _ a 2 7 =
[f+3_e. 5 g+.§g¢] i 3_eg)\f)‘cp+§(g)‘) +2f)‘u 0 (9a)

2 p'(9) _
o + ng =0

1 p'( 2_] 2 2
[f‘“ﬁ D £*35%] O\ -3 A8 "3 8N 30

. (91v)
T+ (£)2 + (8 )% = Ty +ug2 + w2 (9¢)
p=YZLor (94)

or
The boundary conditions on the functions f£(A,p) and g(A,p)

are: At the outer edge of the boundary layer, the u and w velocity
components should take on the corresponding nonviscous values

u; (9) (102)

fx(“: (P)

Wl( ®) (10p)

g)\(“,CP)
and at the cone surface, the u, v, and w velocities should vanish,
£2(0,9) = &x(0,¢) =0 (10¢)

£(0,9) = g(0,9) =0 (104)

Equation (10d) is equivalent to the requirement that the normal velocity
component v vanish at the cone surface. This boundary condition is
discussed at some length in reference 5.

Simplification of Equations in Special Limiting Cases

The problem of finding solutions of equations (9) for £ and g
subject to boundary conditions (10) is rather difficult. Accordingly,
it is desirsble to investigate the manner in which the equations
simplify in certain special circumstances.

2286
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Small cone angle, large angle of attack. - Symbolicelly, this case
may be’ described as follows:

S<<1
a

a of order 1

These -agsumptions would be expected to lead to the equations for the
boundary layer on a yawed infinite cylinder (the compressible anslog
of the flow treated in reference 9). For the purpose of this dis-
cussion, it 1s convenient to define new variables:

[
l_l

=
) 0
r =245
= g//f30

A= o ay|(ex) ° (11)

d] g

7|

Equations (9) and (10) become
1
2
[391? + 2%9)- G+ ZGJ FAp - 2GpFpp + 20 (Gy)° + 2F,,, = 0 (12a)

p'(p ] p'(
[56F + S5 G + 26| Gpp - 2Gpg - 20GF) - zﬁ)-fzem= 0

(12v)
Fp(=,0) = uy(p)
Gplw,@) = wp(9) (13)
Fp(0,9) = G3(0,9) = F(0,9) = G(0,9) =0

For flow about a cone at angle of attack, F and its derivatives will Dbe
presumed to be of unit order; G end its derivatives, and the derivatives
of Py, of order « (order 1, in this case). When terms of order 6

are neglected, equations (12) may be written:

GaFpp - GoFap = P—ZI(,ﬂ GFan + Fana (14a)

p'(e P
GpGpp - Gplpp = - —p-)- (1 - % GGpp) + Gm (14b)
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Equations (14) are also the equations for the compressible viscous
flow about a yawed infinite cylinder and, for the incompressible case,
are precisely equivalent to those treated in reference 9. Inspection
of definition (11) shows that similerity exasts in terms of the reciprocal
square root of the local radius (Gx) of the cone cross section. For
an infinite cylinder at yaw, this radius would be a constant. For a
pufficiently slender cone at a sufficiently large angle of attack
(6ﬁm<<]J, the hypothesis discussed in reference 7 is therefore essen-
tially correct; namely, that at any point on the cone, the boundary
layer is that which would appear for the same angle of attack on an
infinite circular cylinder having a diameter equal to the cross-
sectional dismeber of the cone at the point under consideration.

Equations (14a) end (14b) are coupled through the density p, which
appears in the pressure gradient term, and therefore G cannot be
obtained independently of F as in the incompressible case. Compress-
ibility enters in this way according to the stream Mach number. In
reference 8, it is suggested that the important Mach number is that
based on the cross velocity.

This limiting case retains the general feature of parabolic growth
of the boundary layer along cone generators despite the fact that, in
the 1limit, the configuration is that of a cylinder of infinite length.

Smell angle of attack, large cone angle. - This situation may be
specified as ’

a
=<<
5 1

6 of order 1

presumebly yielding, in the limit, the equations for the boundary layer
on a cone at zero angle of sttack to a supersonic stream. Equations (2)
show that for small angles of attack, u;(@) ~ 1 and wy(®) and p'(®)

are of order «. Therefore, from equations (10), £(A,®) will be of
order 1 end g(X,9) will be of order «. With terms of order « in
equations (9a), (9b), and (10) neglected, equations (9a) and (10) become

£y + 2000 = O (15a)
Fyle,®) = 1 (15b)
£3(0,9) = £(0,0) = 0 (15c)

Equation (9b) drops out because all its terms are of order o or smeller.
In view of the form of equations (15),_f is a function only of X\, and
equation (lSa) may be interpreted as an ordinary differentisl equation.
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Equations (15) govern the boundary layer on a cone at zero angle of.
attack to a supersonic stream and are formally identical with the equa-
tions for plane flow over a flat plate, the difference between the cone

end flat plate cases appearing only through a slightly different definition

of independent variasble. (See, for example, reference 6 or Mangler's
work. )

PERTURBATICN ANATLYSTS FOR SMALI. ANGLE OF ATTACK

In the remainder of this report, the laminar boundary layer on a
cone gt angle of attack to a supersonic stream will be analyzed as a
perturbation of the flow at zero angle of attack (equation (15)); that
is, under the conditions

2<<:1

e

€@ of order 1

Formulation of Perturbation Equations

With the assumption that the entire flow may be represented as the
sum of the basic flow fo(X) satisfying equations (15) and correction

terms proportional to angle of attack, £(\,@) and g(X,0) may be
written

H
1]

fO(X) -ah cos @ fl(l) + ... . (16a)

g= o hy sin g gg(A) + . . . (16b)

The quantities fos £1, &5 A, and A, ere presumed of order 1. The

forms of the correction terms are chosen to be consistent with the
relations (2) to be imposed as boundary conditions on the boundary layer
at 1ts outer edge.

The pressure gradient terms-appearing in equations (9a) and (9b)
may be expressed in perturbation form with the aid of equations (2),
(9¢), end (94) end definitions (16): From equations (2), since pressure
is presumed not to very across the boundary layer,
1
P % = -a Az sin @ (17a)

.

From equations (2), (9¢c), and (94),
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r-1 Tl -+ ulz + le - (fx)z - (gl)z

2r P (L +a Az cos @)

1 (17p)

T I+

-1 T _
2r p
Because T differs from T only by a quantity of order «, equa-

tions (16) may be substituted into equation (17b) to yield, for
small o,

which maey be multiplied into equation (17a) to give
p'(e) _ T-Um 4 (p 112
) = - As sin @ -ZYEE + 1 (fo ) T+ ¢ . . (170)

Substituting equations (16) and (17c) into (9a) and (9b) and
equating the sum of terms of unit order in equation (9a) to zero give

Tofo" + 2Ey™M= 0 (18)

The sum of terms of order « in equation (9a) is next equated to zero,

yielding

- AZ n " n LIk} e,
(a]_)fo g + 3L, " + BEE, + 6£1"=0 (19)

The largest terms in equation (9b) are of order «; the sum of these
terms is equated to zero:

Ag vq —
32,e " - 28,0, + 6" = -2 ——Az = +% - (fo')z]} (20)

Substituting equations (16) and (2) into boundary conditions (10)
and equating terms of like order in a ©provide the boundary conditions
to which the differential equations (18), (19), and (20) are subject:

£o'(®) =1 £5'(0) = £4(0) = 0 (21)
fl'(oo) =1 fl'(O) = fl(o) =0 (22)
gl'('”) =1 gl'(o) = gl(o) =0 (23)

2286
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In view of boundary conditions (21) and (23), the relation
) rY-17
QAZ 2
must hold in order that equation (20) be satisfied at A = . Because
of reletions (1),

1 (248)

2

T=2 s

(24p)

Sl

vhere M 1is the Mach number at the surface of the cone when at zero
angle of attack. In terms of quantities tabulated in reference 3 ’

— 2
M = 2w (24c)
T-1 1.52

With the aid of equations (3), (24b), and (24c), it may be verified from
reference 3 that equation (24a) is indeed correct. Equation (20) may
therefore be written more simply as follows:

52he," - 2f, '8, " + 6g,' = -2 \1 4%—1ﬁ2 1- (fo')z] (25)

To summarize, the basic flow at zero angle of attack over the cone
is determined by the solution of the boundary-value problem

£o50" + 2£,'" =0 (18)

fo'(o) =1 fo'(o) = fO(O) =0 ' (21)

The meridional velocity component u is given by the function fo'(l) 3

according to equation (5). When £o(A) is known and M is specified,

the clrcumferential velocity component due to a small angle of attack
may be determined from equations (5) and (16b) and from the solution
of the problem N

Snglu - zfotgl' + Ggl"‘ = -2 3\1 +Lé—l-ﬁ2|}- - (:?0')2] (25)

gl'(“’) =1 gl'(o) = gl(O) =0 (23)

Then, presuming fo(k) and gl()\) to have been determined and the
quantity AZ/eAl to be specified, the increment in meridional velocity
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component due to a small angle of attack may be found from equations (5)
and (16a) and from the solution of the problem

A2
. 3fgf " + 3fy"fy + £y = 2(@;)1’0"81 (19)
£,7(=) =1 £,'(0) =£,(0) =0 (22)

The perturbation procedure used to obtain these differential equa-
tions is, in general, subject to an important limitation which should
be examined. Since all velocity components vanish at the cone surface,
it is perhaps not obvious that it is proper, near the surface, to make
the neglections in equations (9) necessary to arrive at equations (19)
and. (25). In particular, consider the term f£fy; appearing in equa-

tion (9a). Substitution of equation (16a) yields

fm = fofo" - Q Al cos @ (flfoﬂ + fofln) + (12 A.lz COS2 [0} flfl" + . .
(26a)

In deriving equation (19) , the term involving ol has been neglected

in comparison with the term involving a, despite the fact that both

terms vanish as A2*0. The problem of proper neglection near the sur-

face becomes determinate if the last two terms of expression (26a)
are written as follows:

flfl"

-a Ay cos @ (£1£5" + £5f1") {1 - @ Ay cos @

1 u
flfo + fofl

Thus, the question is whether or not, for a<<1, the following inequality
holds as A—-»O:

flfl 1

o A cos @ <<l (26b)
n ” i
flfo + fofl
or, equivalently, whether or not
f f 1"
g "l+lf £ " (zec)
10 o1l

is always of order 1 or smaller.
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Boundary conditions (21) and (22) indicate that f; and f; may
be represented for small ’X by the following power series: .

£ = £,"(0) G +Lfo-'"(o) 2o+,

0~ 27 3!
__l_ " 2. _]; 11 3
fl—zzfl(o))\ + 37 L (o)xf.

If fo"(O) #0 (as in the preéent problem), then, in the limit A-O0,

quentity (26c) is equal to %‘ £1"(0)/£o"(0), which is presumably no

larger than unit order. All the neglections made in deriving equa-
tions (19) and (25) may be justified by this sort of argument.

If, however, fo"(O) were zero and fl"(O) were not zero, expres-

sion (26c) would become infinite as A-0, and inequality (26b) would not
hold. The quantities £;"(0) and f£;"(0) are related to the slopes

at the wall of the basic and incremental velocity profiles (equa-

tion (5)) , and hence are proportional to the corresponding contributions
to viscous shear stress at the wall. Thus, in general, a pertu~bation
analysis of a boundary layer will be improper near a point where the
sheer stress of the basic flow vanishes, that is, near a separation
point.

Solution of Perturbation Equstions

The boundery-value problem for f; (equations (18) and (21)) arises

in the case of boundary-layer flow on a flat plate and has been studied
thoroughly in the literature. For completeness, the values of fo -and

its derivatives, as determined by calculations made at the Lewis
laboratory, are presented in teble I. The results agree precisely with
those presented in reference 9.

The functions fl()‘) and gl()s) mey be expressed as linear com-
binstions of functions not depending on the parameters M or Az/eAl.

The following represen‘bé:bion was proposed by L. Richard Turner of the
Lewis laboratory:

glo_o = £,(2) +(1 + %1- 'Mz)hl(l) (27a)
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A9 _ A
0= (2 6‘:2>f (M) +( _g_a"_)h ) + 2(1 +T2:L Mz) 2 b (M)

1 !
(27p)

The coefficients in equations (27) mey be determined from the tables of
reference 3. Substituting equations (27) into equations (19), (22),
(23), and (25) and making use of equations (18) and (21) yield the
following differential equations and boundary conditions for the func-
tions h;, hy, and hgz, which can be solved once and for all, with no

regard for the physical parameters of the problem:

3foh" - 2f5'hy ! + byttt = - 2[1 - (fo')ZJ (28a)
b *(®) = b, '(0) =1 (0) = 0 (28b)

3fghp" + 3f"hy + 6hy''t = 0 (29a)

hz'('”} =1 hy'(0) = hy(0) = 0 (29b)
3f0h3" + 3fo"h3 + 6h3'” = fo"hl (30a)
hs'(®) = hg'(0) = hy(0) = 0 (30p)

In appendix B, the computation of hy, by, and hz is described. The
results appear in table I.

Presentation and Discussion of Results

The wvarious important boundary-layer quantities may be found from
the profile functions given in equations (27) The numerical examples
presented in figures 3 to 15 have been computed with the aid of the
tables of references 2 and 3.

The boundary layer on a cone at angle of atback is characterized
by the phenomenon of "secondary flow," which has been described by
various authors. A discussion of secondary flow as it occurs on a cone
at angle of attack is provided in the following paragraphs in order to
facilitate interpretation of the results of the present analysis.

2286
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Since the inviscid flow about the cone at angle of attack is
"conical," the pressure gradient at the outer edge of the boundary layer
is entirely circumferential (equetions (2)). The streamlines in the
inviscld flow just outside the boundary layer (shown schemstically as
solid lines in fig. 2) will incline toward the direction of the pres-
sure gradlent. Since the pressure tends to be constant across the
boundary layer, the fluid in the boundary layer is subject to the same
pressure gredient as is the outer flow, but has less inértia with which
to resist its effect, and thus it tends to follow the direction of the
pressure gradient more closely than does the outer flow.

An angular divergence therefore exists between outer stresmlines
and boundary-layer streamlines; the divergence is grestest when the
limiting streamlines at the base of the boundary layer are considered.
These limiting streamlines are shown schematically as dashed lines in
figure 2. The divergence € is defined as the local angle included.
between the outer and limiting streamlines.

This divergence between inner and outer streamlines ("secondary
flow") clearly leads to a draining away of low-energy air from the
high-pressure side of the body and a corresponding concentration of
low-energy air on the low-pressure side. Accordingly, if the cone is
at positive angle of attack, the skin friction would be expected to be
lower at the top of the cone than at the bottom, and the boundary-lsyer
thickness would have a maximum at the top and a minimum at the bottom.

Before proceeding further, it i1s perhaps well to emphasize that the
Present analysis is valid only in the 1limit of vanishing angle of attack.
That is, terms multiplied by o represent rates of change with angle of
attack, evaluated at zero angle of attack. All results will be presented
in this form. Whether or not the gbsolute change for a smaell finite
angle of attack can be obtained from this theory depends on the relative
magnitude of the effect so computed, rather than on the size of «, and
depends further on the (unknown) second and higher derivstives of the
quantity with respect to «a.

"Velocity profiles and streamline divergence. - From equetions (5)
and (16),

w = =& Ay sin @ g,'!
Ex 2 1 (31)

u=1=f = fo' - a,Al cos. @ fl' !

These expressions may be divided by the values of wy eand u; given
in equations (2) to yield, for a<<1,

LI
W o & (32a)
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2 = £5' + @ hy cos ¢ (fg' - £1') (32b)

ey
or, substituting equations (27),

Ww o -1 =2

;—' = fo' +6. + —2— )hll (33&)
1

u 2 Az r-1 =2\ A2

—=f "'+ 4. COS 1 -=—|(£.' ~=h,') -2|1L +=—M }J— h;'

o o T ees® 5 oa,) To' " 2] 2 9A1h3

(33Db)

The outer streamline is inclined to the x-direction by an angle

W Qa sin @
tan™l _1 = tan-l A2 ~a Ay sin @
uy l-a Al cos 9
which is obtained by use of equations (2). The 1limiting streamline
is inclined to the x-direction by an angle

-1 w\ . g1"(0)
g ) s sme 25

which is obtained with the aid of equations (31) and L'Hospital's
rule. The divergence € 1is given by the difference between these two

angles:

glll(o)
e=a fs sin ¢ -1
foll(o)

or, by use of equation (27&) and table I,

€= a(1.291) Az(l + T4 ﬁz) sin @ (34)

This streamline deflection due to angle of attack is indicated by the
quantity |

2286
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EE%_E,(%E)Gzo = (1.291) Ag (i + Z%l.ﬁz)

and is shown in figure 3 as a function of stream Mach number M, for
cone semivertex angles @ of 10°, 20°, and 30°.

The distribution through the boundary layer of the circumferential
velocity W/Wl is shown in figure 4 for cone semivertex angles © of

10° and 30°, and for stream Mach numbers M, of 2 and 4. From equa-

tion (31) and figure 4, it 1s evident that no "cross-flow separation”
tekes place, because the profiles of figure 4 (vhich are not of the
separation type) appear at all circumferential locsations, modified by
the value of sin @, which affects only the scale of the w-profiles.

Of course, cross-flow separation would occur for large angles of
attatk because of the effect of an adverse circumferential pressure
gradient over part of the cone surface. For very small angles of
attack, sepsration of the cross flow would hardly be expected since the
circumferential pressure gradient is always favoreble (equations (2))..

The increment in meridional velocity profile due to angle of attack
is indicated by the quantity

o5 [ () = & (50",

vhich is shown in figure 5 for © = 10° and 30°, and for ‘Mg = 2 and
4. For positive angle of attack, the meridional profile is correspond-
ingly steeper on the underside and less steep on the top. This result
agrees with the qualitative argument that low-energy air should drain
away from beneath the body and concentrate on the top. The order of
magnitude of this effect is shown in figure 6, in which the u/ul pro-

files in the plane @ = O,x for a = 2.5° ‘are compared with the pro-
files for @ = 0, when 6 = 10° and M, = 4.

The relative thickening of the boundafy layer gt the top of the
cone and thinning at the bottom might be expected to have an adverse
effect on laminar stability at the top and the reverse effect on the
botton. .

Skin friction. - The circumferential and meridional components of
the viscous shear stress at the cone surface may be written as
coefficients:
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X 1-—=2\ 0O
g v O

vhere the quantities msking up the right sides are in dimensional form.
Application of equations (1) snd (4) to (8) yields

T

Ce,, = 2’\/}%(%)2 & (0,9) (34a)
1

3 2'\/%@)2 £x(0,9) (34b)

Wwhere ﬁ% is a Reynolds number based on distance from the cone apex
and on fluid guantities evaluated in the nonviscous flow at the surface
of the cone at zero angle of attack:

= —pux

B =g

Q
-y
N

Introduction of equations (2) and (16) yields

Co = zvf—cd Ay sin @ g "(0)
¢ By

£1"(0) A

£0"(0) 24

3C

Cp =2 i:c'o"(o) 1-ah cosg

X

or, using equations (27) and table I,

Ry y-1 2
e \56 = @ A, sin (p(l.522 +0.858 L= ¥ (35a)

c
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Ry ' Ay
2 - 0.6641 - o A cos 9[1.502 - 0.525 —2 -

C

o A
0.190 L=L % "2 _ s
2 on, 2a

The meridional skin friction at zero angle of attack is obtained
by setting o = 0 in equation (35b), ylelding a result equivalent to
the results of Hantsche and Wendt (reference 6) and Mangler.

(35Db)

In figure 7, the circumferential skin friction appears as a func-
tion of stream Mach number for semivertex angies of 10°, 20°, and 30°.

Figure 8 shows the increment due to angle of attack of meridional
skin friction plotted as a function of My for the same cone angles.

The effect of angle of attack on meridional skin friction is of the same
order of magnitude as the effect on circumferential skin friction, as
would be expected in vlew of the previous discussion of the velocity pro-
files. For positive angle of attack, the meridional skin friction has a
maximum at @ = O and a minimumm at ¢ = x, which 1s consistent with the
previous qualitative-discussion of secondary flow.

Boundary-layer thickness. - The boundary-layer thicknesses are
expressed as the mass-flow defects ("displacement thicknesses")
* essocigted with the uw and w profiles. Thus

(oo

Bgp= 1-p_°§_dy
Jo 11
r\m

8y = l-—piu'dy
Jo

or, meking use -of equations (1), (7), and (8) and expressing & as a

Reynolds number Rg = p u 8/,
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3 2
— 2 %@
O e[
% || 5 \5) o - ar
0
B (36)
1 *® >

OPI
e
I
o8
1)
~—
o
]|
|5
]
e
o
>
—

From equations (9c) and (94),

P1 P1/P -1 -2 uy @ 2
— =14+ M - (£,) (37)
P p/p 2 2
Substituting equations (5) and (37) into (386), :
— 1 Ao / 2 2
- 25 P1/P -1 2 '
Rs-;___(GRxg)P_ 1+1_Y1Mu11-u - X {an (38a)
? 3 P p/7 2 &2 2| W

L ,
_ Ry/o\2 5 p1/P v.] 2 U 2
RB=&(_§.)°— 1+l T o) L2 o (38b)
X 3 P1 p/P 2 T2 2 uy

Introducing equations (2) and (33a), performing the indicated integrations,
and meking use of table I change equation (38a) to

'ﬁ%q/c—%{— = 0.944 + 1.608 L1 i (39a)

It would be improper to present the term of order « resulting from
integration of equation (38a) since in the present approximation the
ratio v/wl is known only to unit order (see equation (33a)). Intro-

ducing equations (2) and (33b) into equation (38b) and performing the
required integrations (with the aid of equations (18), (19), and (25))
result in the following expression:

VA
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A
_ 21— 4
Ry —E—=(l.721+2.3851—;-M2> 1+ah cospl —— - — +
% |[CR, 2 ey B
1 -1 2
0.863 - 3.576 L5 - {0.863 +

1.721 + 2.385 T—;}-'ﬁz

2

-1 — 1 -2 A

1.469 YL 32 4 o.ses[u M] 2 _
2 2 9A1

r-1 =2 Ay 4

2.385 = — - = (39b)

b h

The displacement thickness associated with the u-component at zero
angle of attack (obtained by setting o« = O in equation (39b)) is shown
in figure 92, as & function of M, for verious cone angles, end is

equivalent to the results of Hantsche and Wendt (reference 6) and Mangler.

The w-thickness given by equation (39a) is shown in figure 10. This
thickness does not depend on ¢, and hence, at any value of x, 1s con-
stant around the cone.

The increment in u-thickness due to angle of attack (fig. 11)
indicates thinning of the boundary layer on the high-pressure side of
the cone and thickening on the low-pressure side. This effect is qual-
itatively consistent with the previous discussion of secondary flow in
the boundary layer of & cone at angle of attack, and its order of
magnitude is consistent with the corresponding regults for velocity
profiles and skin friction.

Forces and moments. -~ The inviscid solution for flow about the cone
at an angle of attack provides the forces and moments due to the action
of normsl pressure forces, which may be evaluated using the tables of
references 2 and 3. In order to obtain the total force and moments, the
forces and moments due to viscous shear at the surface must be added to

the corresponding pressure forces and moments. Iift and drag are measured

normel and parallel, respectively, to the stream direction. Pitching
moment 1s measured sbout the cone apex, positive in the sense shown

in figure 12. A1l quantities eppearing in the following formulas are in
dimensional form.
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(a) Viscous drag: Written in coefficient form, the drag due to
skin friction at the surface is
x e

D ~-2 =
i _pu dx Cp 6'\’1-6 x 4o
2 A 2

X

0 0

where D is the viscous drag and A 1is the cone surface area. Using
equation’ (35b) yields

C, = 0.885 Ep 7l ’\ﬁ (40)

v RXPOMO

This expression gives the drag at zero angle of attack. The correction
due to angle of attack is of order az, end hence is neglected in the
present linear analysis. The drag coefficient (equation (40)), which

is equivalent to the results obtained by Hantsche and Wendt (reference 6)
and Mengler, is shown in figure 13 as a function of Mb for various

values of ©.

(b) Viscous 1lift: The 1ift due to circumferential skin friction

is
X I
Ly 1 pae
= v - + = ax Co. Ox sing d
L% ] Lz, Cp, * 3 i £ @
=p p
> Po'o
oo J, o

vhere Lv is the viscous lift. Using equation (35a),

2
B

POMO Rx

= o O, +<1015+05723‘--—1-r-1);;2 (41)

L,

The 1ift coefficient is shown in figure 14 as a function of Mb for .
various values of ®. ZExcept for quite low Reynolds numbers, the laminar
viscous 1lift is small compared with the pressure 1ift. The pressure

lift coefficient is of order o, whereas for a Reynolds number based on
slant height of 300,000, the viscous 1ift coefficient on a 10° cone at
Mb = 4 1is only of the order of 0.0l a.

22p0
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c) Viscous pitching moment: By use of equation (35&), the moment
due to circumferential skin friction may be found:

2
c 5-——m-v——=-a,o.609+o.343l—1M)A23—M—-'Vl-92 £Y
n, 1 2 2 / ¢ Doy 2 R
u. Ax Mb x

3 Pot%
(42)

where m, 1s the viscous pitching moment about the gpex. The moment
is shown in figure 15 as a function of My for several cone angles.

CONCLUSIONS

For small angles of attack, the outer nonviscous flow about a cone
at angle of attack to a supersonic stream has previously been treated
by a perturbation theory, which may be used to describe the outer flow
governing the development of the laminar boundary layer on the cone
surface, provided that no account need be tsken of the "vortical layer"
recently discussed by Ferri.

This vortical layer is a reglon in the nonviscous flow field near
the surface of the cone across which there are large gradients of
entropy and velocity, and is said to have an angular thickness of the
order of the square of the angle of attack. If the boundary layer is
much thicker than this, then presumably viscous diffusion disperses the
vortical layer, which then mey be neglected.

Since the outer nonviscous flow is "conical," use may be made of
previously derived differential equations for a boundary layer governed
by an outer flow with conical symmetry. These equations imply a solution
having parsbolic similarity in meridional planes. Assuming a Prandtl
number of 1, no heat transfer through the surface, and validity of a
linear temperature-viscosity relation, it is necessary only to solve the
differential equations for two components of the vector potential.

In the 1limit of vanishing cone angle (finite angle of attack), the
boundary-layer equations become precigely those governing the compressible
flow over a yawed infinite cylinder of dlameter equal to the local diameter
of the cone at the point under consideration. The cross and spanwise
flows are coupled through the density, however, and it is not proper to
compute the cross flow by two-dimensional methods, as may be done in the
incompressible case. This coupling depends on the stream Mach number
and not on the Mach number of the cross flow. -
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Tn the limit of vanishing angle of attack (finite cone angle), the
boundary-layer equations reduce to those governing flow ebout a cone &t
zero angle of sttack. A sufficiently small angle of attack may be con-
sidered to impose small perturbations on the flow at zero angle of attack.
If these perturbations are written in a form appropriate to the stream
boundary conditions provided by the nonviscous perturbetion theory,
ordinary differential equations result. These may then be solved by
numerical integration to obtain the fluid veloclities and state quantities
in the boundary layer. The type of perturbation method used in this
report would be improper in the vicinity of any separation point of the
basic flow. No such difficulty arises in the present application.

1]

According to the perturbation analysis, the boundary-layer thick-
ness associated with the cross (circumferential) velocity is constant
around the body at a given distance from the spex. The shear associated
with this cross flow gives rise to 1lift and moment on the body. XNo
separation of the cross flow occurs, presumably as a consequence of the
favorable circumferential pressure gradient.

Secondary flow occurs in the boundary layer of a cone at angle of
attack; the slow fluld near the base of the boundary layer tends to
incline more toward the direction of the circumferential pressure
gradient then- does the outer flow. This mechanism causes a concentration
of low-energy air at the low-pressure side of the cone (top, for positive
angle of attack). Therefore, taking into account the change in the pro-
file of meridional velocity due to angle of attack, the boundary-layer
thickness associated with this profile is greater at the top and less on
the bottom of the cone than the value appropriate to the came of zero
angle of attack. The reverse is true of meridional skin friction.
Meridional skin friction is integrated to give the viscous drag of the
cone. The effect of angle of attack on drag is second order in angle
of attack and is ignored in the present analysis.

The changes in the meridional velocity profile due to angle of
attack suggest that a decrease in laminar stgbility on the low-pressure
side and the reverse effect on the high-pressure side might be expected.

Lewis Flight Propulsion Iaboratory
Natlonal Advisory Committee for Aeronautics
Cleveland, Ohio, August 10, 1951
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APPENDIX A

SYMBOLS

The following symbols are used in this report:

R G Y S i

5<R

4;:

by, By, By

related to perturbation in meridional velocify u outside
boundary layer

related to perturbation in circumferential velocity outside
boundary layer

related to perturbation in pressure outside boundery layer
related to perturbation in density outside boundary layer

constant of proportionality in temperature-viscosity
relation 4

coefficient of viscous drag !
coefficient of viscous 1lift
coefficient of viscous pitching moment

specific heat at constant pressure

viscous drag

‘component of vector botential related to meridional

. velocity u

value of f for o =0 and perturbation of ¢,
regpectively

component of vector potential related to circumferential
velocity T ’

linear approximation to g

! R . — e =

functions composing £ aud gl

1
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u, v, w

X, ¥
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viscous 1ift
Mach number

viscous pitching moment about cone apex

pressure

Z2rz

Reynolds number, subscript indicates length upon which based

tempersture

meridional, normal, and circumferential velocity component,
respectively

coordinates taken along cone genergtors and normal to cone
surface

angle of attack

ratio of specific heats N
boundary-layer thickness |

displacement thickness assoclated with u-profile

displacement thickness associated with w-profile

divergence between outer and limiting streamlines
dimensionless coordinate (¢ sin @)
semivertex angle of cone and sine of semivertex angle

L -
2 2

dimensionless coordinate A3 %) p dyix
0

viscosity coefficient
density

anguler coordinate measured circumferentially around cone
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Subscripte:

W denotes evgluatiop at cone surface

0 denotes evaluetion in undisturbed stream

1 denotes evaluation at ogtqr edge of boundary layer

Subscript notation for partial differentiation is used.

Superscripts:
! Primes denote ordinary differéﬁtiation.
- .~ Bars (ss in W or R) denote evaluation in nonviscous

flow next to cone surface in.case of zero angle of
attack.
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NUMERTCAL: DETERMINATION OF PROFILE FUNCTIONS

By L. Richard Turner

The four functions fo(l), hl(l), hz(l), and hz(k) have been

obtained by numerical. solution of the boundary-value problems set forth
in equations (18) and (28) to (30).

Differential equation (18) is the basic Blasius equation; it has
been solved to provide the values of the function fo(l) required for
the remaining integrations. Boundary conditions (21) are specified at
two points N = O,» and thus cannot be satisfied directly by a step-
by-step integration process. This difficulty may be avoided as follows:
Define ’

a(o) = af ;(a)

A

L]

Pl

ag

vhere &a is an arbitrary constent. Substitution into equations (18)
and (21) ylelds

q.q-ﬂ + Zq'" =0 (Bl)
g' (=) = a? q'(0) = q(0) = 0 (B2)

Differential equation (Bl) may be integrated using the boundary con-
ditions q'(0) = q(0) = O and an arbitrary value of q"(0). A constant
velue of q'(c) will ultimetely be reached and may be equated to a2
since a2 1is arbitrary. The resulting value of a may then be used to
invert the transformation leading to equations (EL) and (B2), thus
determining the solution fo(k) .

Equations (28) to (30) are linear in their dependent variables;
solutions that satisfy the boundary conditions at A = ® may therefore
be found by appropriaste linear combinations of the complementary and
perticular solutions satisfying the given boundary conditions at the

origin.

The functlons hy, hy, and hg were found by computing the

complementary and particulaer integrels of equations (283.) and (SOa)
subject to the following boundary conditions:

22 Po


http://www.abbottaerospace.com/technical-library

2R2£E

NACA TN 2521 31

Equation| Integral h(0), h*(0)| n"(0)
(28a Complementary 0 1/3
(28a Particular 0 1/3
30a Complementary o] 1/3
30a Particular 0 0

The values of h"(0) are arbitrary.

The function h; is thus composed of the complementary and -
particular solutions of equation (28a), linearly combined in such a
way that hl’(°) = 0 (boundary condition (28b)). The function hgo()

was obtalned by scaling the complementary integral of equation (30a),
which satisfies equation (29a), so that h,(w) =1 (boundary

condition (29b)). The function .hs(l)' is composed of the complementary

and particular integrals of equation (30a), combined linearly so that
hz'(®) = 0 (boundary condition (30b)).

The four differential equations (18a) and (28a) to (30a) were
integrated numerically by a method somevwhat similar to that of Adsms
(see reference 11). Given the complete solution for the function in
question at six equally spaced points, the solution may be extended to
the next point as follows: A sixth-degree polynomial is passed through
the six known and one unknowvm values of the third derivative. This
polynomial may be integrated to give the value and first two derivatives
of the function at the seventh point in terms of the unknown third
derivative. BSubstitution of these results into the differential equation
evaluated et the seventh point ylelds an algebraic equation for the
third derivative at that polnt, which may be solved, thus extending the
golution of the differential equation by one step. This process is
repeated out to sufficiently large values of A so that the boundary
conditions at A = » may be satisfied to the desired degree of accuracy.
A step size of 0.0l was used for equation (18a), and a step size of 0.02
was used for equations (28a) to (30a).

The use of this method requires that an initial set of values of
each function and its first two derivatives be known in -advence for the
first six intervals, starting at the origin. These values were obtained
by use of a method of successive gpproximation which is a numerical
spplication of the classical Picard lteratlon process.

A1l the numerical integrations were performed on the IBM Card
Programmed Electronic Calculator, and carried out to ten decimal places.
The computations were checked by computing the third and seventh
differences of the third derivatives to assure freedom from computational
error and from significant truncation error, respectively.
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TARLE I - PROFILE FUNCTIONS

<A

fo roi foll h'l hll hlll h_e h.al hQ'I h3 hsl hsll

THERPR
.

w4 e omw v .

R oo

O OO OO DERRENO DRENDO DORRRO ma-lsrob OO ooeno

e

-7 QPCDGIOJ NN 00 ® A0 *eAkR UUUGE RDODRBRD
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Figure 1. - Notation for cone at angle of attack in
supersonic stream.
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Figure 2. - Streamline patterns illustrating "secondary flow.
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Flgure 3. - Streamline divergence across boundary layer.


http://www.abbottaerospace.com/technical-library

¥y
2 A

v

N\
\
/

%

/ s L7 ~
| ,4’,{/‘/
—— 4 .8 1.2 1.6
w/wy

(a) Semivertex angle, 10°.
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(b) Bemivertex angie, 30°.

Figure 4. - Profile of circumferential veiocity component.
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(8) Bemivertex angle, 10°. (b) Bemivertex amgle, 50°.

Flgure 5. - Increment in meridional profile dus to angle of attack.
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Figure 6. - Profiles of meridional velocity component in plane @ = 0, .
Semivertex angle, 109; free-stream Mach number, 4; angle of attack,

0.0436 (= 2.5°).
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Figure 7. - Clrcumferential skin friction due to angle of attack.
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Figure 8. - Increment in meridional skin friction due to angle of attack.


http://www.abbottaerospace.com/technical-library

NACA TN 2521 41

12

10 . 10

(@ 20 A
Z. L -
| H

\

/
. : J/J —
=

o 1 - 2 3 4 5 6

My

Figure 9. - Displacement thickness of meridional velocity profile
at zero angle of attack.
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Figure 10. - Displacement thickness of circumferential veloeity
profile due to angle of attack.
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Figure 11. - Increment in displacement thickness of meridional velocity
profile due to angle of attack.
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Figure 12. - Conventions for aerodynamic forcés
’ and moments on cone.
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Figure 13. - Coefficient of viscous drag.
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Figure 14. - Coefficlient of viscous 1ift.
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Figure 15. - Coefficient of viscous pliching moment about cone apex.
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