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ON IMPELLER BLADES OF CENTRIFUGAL COMPRESSORS

By John D. Stenitz and Vasily D. Prian

SUMMARY

A rapid approximate method of analysis was developed for both com-
pressible and incompressible, nonviscous flow through radial- or mixed-
flow centrifugel campressors with arbitrary hub and shroud contours and
with arbitrary blade shape. The method of analysis is used to deter-
mine approximately the velocitlies everywhere along the blade surfaces,
but no informstion concerning the variation in velocity across the
passage between blades is given.

In eight numerical exemples for two-dimensional flow, covering a
fairly wide range of flow rate, impeller-tip speed, number of blades,
and blade curvature, the velocity distribution along the blade surfaces
wasg obtained by the epproximate method of analysis and compered with the
velocities obtained by relaxation methods, In all cases the agreement
between the approximate solutions and the relaxstion solutions was
satisfactory except at the impeller tip where the velocities obtained
by the approximete method did not, in general, hecome equal on both
surfaces of the blade as required by the Joukowski condition.

INTRODUCTION

In impellers of centrifugal compressors, part of the viscous losses
and the phenomena of surge and choke are related to the velocity dis-
tribution on the blade surfaces. Viscous losses in impellers are
associated with the boundary layer along the flow surfaces. The growth
of this boundary layer depends on the velocity veriation along the flow
surfaces just outside of the boundary leyer. In particular, if the
velocity decelerates rapidly along the blade surfaces, the boundary
layer may separate causing large mixing losses. Also, if the velocity
at any point along the blade surface is sufficiently greater than the
local speed of sound, shock losses will result. The choke phenomenon
occurs when the average velocity between blades is sonic. This average
sonic velocity is characterized by local supersonic velocities along
portions of the suction surface of the blade. One possible cause of
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surge in centrifugal impellers is the farmation of relatlive eddies on
the pressure surface of the blade (reference 1). These eddies are
characterized by negative velocities, opposed to the general flow
direction, along portions of the pressure surface. In order to analyze
the performance of cenbtrifugal impellers it is therefore necessary to
determine the velocity distribution on impeller blades.

Several methods of analysis that can be used to determine the
variation in velocity along blades with finite spacing have been
developed for two-dimensional incompressible flow (references 2 to 5,
for example) and compressible flow (references 1 and 6). All these
methods require considerable labor and therefore are not convenient
tools for analyzing the performance of an arbitrary impeller design.

In this report a rapid approximate method developed at the NACA
Lewis labaratory is presented for both compressible and incompressible,
nonviscous, two-dimensional flow between blades with finite spacing in
radial- or mixed-flow centrifugal compressors with arbitrary hub and
shroud contours and with arbitrary blade shape. The method of analysis
can be used in connection with an axial-symmetry solution to determine
the velocities everywhere along the blade surfaces, but no information
concerning the variation in velocity across the passage between blades
is given.

Other approximate methods that are less rapid than the proposed
method for computing the velocity distribution an blade surfaces in
impellers of centrifugal pumps and campressors are given in refer-
ences 6 to 9. In the sections SIMPLIFIED ANALYSIS of refer-
ences 6 and 7 approximate methods are developed for computing the
theoretical distribution of velocity across the passage along normals
to the blade syrfaces. The methods are limited to straight or
logarithmic-spiral blade shapes on radial or conic surfaces of revolu-
tion and do not apply, because of assumptions, in regions near the
Impeller tip and the impeller inlet. In reference 8 methods are
developed for computing the distribution of velocity across the pas-
sage between blades in the circumferential direction for incompressible
flow with arbitrary blade shapes and with arbitrary hub and shroud
contours, The methods do not apply, because of assumptions, in regions
near the impelier tip and the impeller inlet., In reference 9 an
spproximate method is developed for computing the theoretical velocity
distribution everywhere within the impeller. In this method the cor-
rections required for compressibility and for blade unloading at the
tip are somewhat more complicated than those presented herein.

THEORY OF METHOD

The method of analysis presented in this section determines the
velocity distribution along the profiles of blade elements on surfaces
of revolution.

n
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Preliminary Considerations

Assumed nature of flow. - In this section certain preliminary
assumptions are made concerning the three-dimensional flow of an ideal
campressible fluid through an arbitrary impeller passage between blades
such as shown in figure 1. In general, the fluid is free to follow
whatever path the pressure and inertia forces require of it. IZF,
however, it is assumed that the number of blades in the impeller
approaches infinity, the space between blades approaches zero and the
path of the fluld is restricted to the curved, mean surface of the
blade. (The blades become very thin so that the two surfaces of each
blade epproach a mean surface.) Under this assumption of axial
symmetry the fluid motion is reduced from a general three-dimensional
motion to a two-dimensional motion on the curved, mean blade surface.
The streamlines of this two-dimensional motion can be projected on the
meridional (axial-radial) plane, as shown in figure 2. Ruden (refer-
ence 10) has shown that, provided that the blades are not too widely
spaced, axial-symmetry solutions give a good picture of the mean f£low
between blades.

For finite blade spacing, flow conditions vary between blades in
the circumferential direction about the axis of the impeller. In order
to investigete this blade-to-blade variation, it is assumed that the
motion of any fluid partiecle bounded by adjacent streamlines 1n the
meridional plene (fig. 2) is restricted to the anmulus generated by
rotating these adjacent streamlines gbout the axis of the impeller.

If the adjacent streamlines are sufficiently close together, flow
conditions in the annulus can be considered uniform normal to a mean
surface of revolution in the anmulus. Thus the fluld motion is reduced
to two-dimensional flow an the mean surface of revolution (fig. 3)
generated by rotating the center line between the adjacent streamlines
in the meridionel plane (fig. 2) about the axis of the impeller.

Blade-to-blade solutions of this type may be obtained for every
mean surface of revolutlion generated by the center lines between
adjacent streamlines in the meridional plane. Therefore, flow condi-
tions can be determined throughout the passage between blades. The
resulting quasi three-dimensional solution is obtained by the combins-
tion of two types of two-dimensional solution, axial-symmetry solu-
tions in the meridional plane and blade~to-blade solutions on surfaces
of revolution. Such a combination of solutions prohibits the possi-
bility of a corkscrew peth, which the fluid might follow in an exact
three-dimensional solution, but it can be expected to give a better
picture of the flow than does any two-~-dimensional solution alone.

The method of analysis Jjust described is accomplished in two
phases, axial-symmetry solution and blade-to-blade solutions. Only
the second phase, blade-to-blade solutions, willk be considered in this

$~
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report. The shape and the distribution of meridional streamlines in the
axial-radial plane are assumed to be known from an axial-symmetry
solution (reference 11, for exasmple). Thus, for a blade-to-blade -
solution in the anmulus generated about the axis of the impeller by any
two adjacent meridional streamlines (fig. 2), the shape of the mean
surface of revolution (fig. 3) is known from the shape of the center
line between the adjacent meridional streamlines, and the variation in
height of an elementary fluid particle (fig. 2) as it moves along the
mean surface of revolution from the impeller inlet to the impeller tip
is known from the variation in spacing of the adjacent meridional
streamlines.

Coordinates. - The cylindrical coordinates R, 6, and Z are
shown in Tigure 3. (A1l symbols are defined in the appendix.) These
coordingtes are dimensionless, the linear coordinates R and Z having
been divided by the impeller-tip radius rp. The coordinate system is
oriented with the Z-axis along the axis of the impeller. The coordi-
nates are Tixed relative to the impeller, which rotates with the
angular velocity ® in the positive direction (right-hand rule) about
the Z-axis, as shown in figure 3.

An infinitesimal distance dS in the direction of flow (that is,
coinciding with the velocity vector) has components dR, Rd9, and d4Z
(fig. 3). The projection of dS on the meridional plane is given by
d in figure 3. The infinitesimal distances dS and dM help to
define two angles a and B where, from figure 3,

dR = @M sin o (1a)
dz = @M cos « (1v)
and
dM = dS cos B (2a)
RA6 = @S sin B (2p)

The angle a (fig. 3) is determined by tangents to the center line,
between adjecent meridional streamlines, that generates the surface of
revolution. The angle B (fig. 3) is the flow direction on the sur-
face of revolution measured from a meridionsl line. From equation (2a)

X <pg<X
7 =P =3

because dS and dM are always positive and finite. From equa-
tions (la) and (1b),

0< asg

LV EY
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because for impellers of centrifugal compressors dR and dZ will be
considered positive (or zero).

Fluid strip. - A fluid strip of Infinitesimal width dM lies om
the surface of revolution and extends across the passage between blades
along & line of constent R. A developed view of the fluid strip is
shown 1n figure 4. The fluid strip has dimensions dM and RAS where
the angular width of passage between blades A9 1is defined by

NS = 64-63 (3)

in vhich the subscripts d and t refer to the driving and trailing
faces of the blades, respectively (left and right walls of the channel
between blades in fig. 4). The height ratio H of the fluid strip is
defined as the ratio of the incremental height Ah (fig. 2) of the
fluid strip at radius R +to the incremental height (Ah)p of the
fluid strip at R = 1.0. This height ratio is completely determined
along a mean surfage of revolution by the spacing between the adjacent
streamlines in the meridional plane (fig. 2).

Velocity camponents. - The relative velocity @ on a surface of
revolution has companents Qg and Qg in the dM and d6 directions,

respectively, (fig. 3). These velocities are dimensionless, having
been divided by the gbsolute stagnation speed of sound c, upstream of

impeller, where

co? = TERT, (4)

in vhich R 1is the gas constant, y 1is the ratio of specific heats,

T is the static (stream) temperature and where the subscript o refers
to stagnetion conditions upstream of the impeller. The tip speed of
the impeller is likewise dimensionless and equal to the impeller-tip
Mach number Mm, which 1s defined by

-m=?1 (5)

o

Thus, the tengential velocity of the impeller at any radius R is
equal to RMp and the absolute tangential velocity of the fluid is

equal to (RMyp + Qg). From figure 3
Qe =Q cos B (8)

and

Q = Q sin B (7)
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Thermodynamic relations. - From the general energy equation and

from the isentropic relation between temperature and density, the
density ratio p/ Po 1s related to the relative velocity Q by

o}

1
)
B = {l + 2 [(MT)Z-QZ"ZMI}‘UEI}T | (8)

vhere the subscript U refers to conditions upstream of the impeller
and wvhere A is the whirl ratio (ebsolute moment of momentum divided

by rmc,) &iven by

A = R(RMp + Qg)

Development of Method

(9)

Assumptions., - Before outlining the method of analysis it is con-

venient to discuss the major assumptions.

Consider the fluid strip

in figure 4. Along the infinitesimal distances bounding the fluid
strip at the driving and trailing blade surfaces, the velocities may be

consldered constant and

equal to Qg and Qg,

respectively, and the

flow directions may be considered constant and equal to Bg and By.

Along the lines of constant R bounding the fluid strip in figure 4,
the velocity varies in some unknown manner from Q3 to Qf and the

flow direction varies from Bg to Bg.

In this report it is assumed

that the average values of @ and B along lines of constant R may
be used to satisfy the conditions of continuity and absolute irrota-~
tional motion. The average value of Q 1s assumed to be given by

+
Gy = 25

(10)

and, for R< Ry, the average value of B 1is assumed to be given by

Also, for Ry SR < 1.0,

_Bd+Bt
av — 2

sin Bgy = A + BR + CR2

(11)

(12)

2191
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where A, B, and C are coefficients to be determined and where Ry
is the largest radius at which the fluid is considered to be perfectly
guided by the blades; that is, the radius at which the simplified
analyses given in references 6 and 7 break down. From figure 10 of
reference 7 the value of Ry for A9 equal to #/10 and sin a
equal to 1.0 is about 0.8. For other values of Af and sin o, the
value of R, can be estimated from

in " _1n 0.8 .
) l:"iz 2= o " - 0.71 (13)

where o is the average vaelue over the interval Rx S R =<1.0. Equa-
tion (13) is based upon an extension of the work in reference 1 where
for impellers with straight blades it is shown that the flow conditions
in one impeller can be correlated with the flow conditions in another

1n R
impeller at the same value of TA9) sin o In reference 1, the

impeller-tip Mach number and the compressor flow rate were found to have
a negligible effect on the value of Ry.

Outline of theory. - Fluid strips such as shown in figure 4 exist
at all radii along the surface of revolution. From the assumptions of
this analysis there are three unknowns (Q,d, Qy, and Q-a.v) for each

fluid strip. These unknowns can be determined by the simultaneocus
solution of equation (10) and the equations of continuity and zero
absolute circulstion for flow across the fluid strip. Equations for
the distribution of velocity along the blade profile on a surface of
revolution will be developed in this report.

Zero absolute circulation. - In the absence of entropy gradients,
which result from shock, viscous dissipation, heat transfer, and so
forth, the absolute circulation around the fluid strip in figure 4 is
zero so that ‘

(@ + Ry sin B)g oopy - (A + My sin B)g oo+
< I:(RMT + Q9)ay me] & =0 (14)

vhere (RMp + Qg)gy is the average absolute tangential velocity and
where from trigonometric considerations of the velocity triangles
(fig. 5) Q + RMp sin B 1s the absolute velocity component along the
blade surface. From equations (7) and (14) and from the assumptions
that Q and B equal Qgy and Bgys Tespectively, in the passage
between blades,
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Qa Qt

cosBd—coth+EMT(taan—tanBt)+

% I:(EMI + Qgy sin E’a.w;r) MB:I =0 (15)

Finally, from equations (10) and (15)

e —

cos Bq cos Pt {ZQav + RMp (ten Bg - tan By) +

= Cos By + cos By | cos Ba

% l:(RMI + Qgy Sin Bay) R(AB):I} (16)

and from equation (11)
Qg = 2Qgv ~ @ (17)

If Quy end Pgy ave kmown, Qg and Qi can be determined from
equations (16) and (17). .

Average velocity Qgy. - From continuity considerations of the flow
across the fluid strip in figure 4,

Aw = (po %e;—v) (coQqy) co8 Bgy I:(Ah)T H} (rgR) 486

fram which

®
Q-av =P ‘AD (18)
.Eai cos By, HR -(E)_T

(e]

where the flow coefficient @ 1is defined by

1 Aw 9
! Poco zAa;T (19)

in which Aw is the incremental flow rate through the passage between
two blades on the surface of revolution and. (Aa)p is the incremental

flow area (between two blades) normel to the direction of @y at the
jmpeller tip

(a)p = Tp(A9)p(Ah) g (19a)

2/ 7/
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The flow rate per unlt flow area at the impeller tip Aw/ (Aa)T is
known so that the flow coefficient P can be determined by equa-
tion (19). The demsity ratio p./p, is glven by equatien (8) with

Q equal to Qgy

1
=T
—2“ - {1 + I—;l I:(RMT) Z_QaVZ_szM,I]}r (20)

o

Therefore, the velocity Qgy can be determined by the simultaneous

solution of equations (18) and (20) provided that the average flow
direction By, 18 known. :

Average flow direction. - In the passage between blades the
average flow direction is assumed equel to the average blade direction
(equation (11)) except near the blade tip (Rx< R < 1.0) where

sin Bgy 1is given by equation (12). The exact variation in Bgy
with R 1n the interval RXS_ R £1.0 could be represented by an
infinite series. However, because the variation in sin By, with R
will not, in general, contain an inflection point, a parabolic varia-
tion in sin Bgy with R has been assumed and only the first three
terms of the infinite series retained. The constants A, B, and C
in equation (12) are determined from:

(1) (sin Bay)x = A + BRyg + CR,Z

d sin B
(2) (————’ﬂ>x =B + 2Ry

dr
and
(3) (sin By )y = A+ B + C
so thaet
N
A= (sin Bgy)p - B - C
°T ( aR )x e b (2)
Y d sin B
) (1-1lax> [‘Bin Bav)r - (810 Bay)y - (1-By) <#>JJ
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d sin Bgy
d_ ————,
where (sin Bgy)x an = N

at Ry, and where (sin Bgy)p 18 determined from the slip factor ,
vhich is defined by (reference 6)

(Qgy sin Bgy)m

are known from the blade gemmetry

p=1+ My

s0 that
(stn By )p = op (o) (22)
8 av/T = (Qava

The slip factor p dis assumed to be known, or can be estimated, as a
result of the work presented in references 1 and 7, for example.
(Further discussion an Ry and the slip factor p is given later in

this report.) The velocity (Qgy)r in equation (22) is obtained from
equations (18) and (20) with R and H equal to 1,0 and with

(cos Bgy)y Teplaced by ,\/l - (sin Bav)Tz where (sin By,)p 1s given
by equation (22):

P

T
e -1la
{1 + 1;—1- [(MT)Z—(%V)TE-EM%} T J 1 -FTT—rQii ;)]

(23)

(Qav)T =

Equation (23) is solved for (Qgy)p by trial and error. Therefore,
Bgy 15 determined as a function of R (ar M) by equations (11), (12),

and (21). The velocities Q3, Qi, and Q,, are determined as func-
tions of M (or R) from equations (16), (17), and (18). (The last
term of equation (16) is determined from the slope of

(FMp + Qg sin By,) R (A9) plotted against M.)

APPLICATION OF METHOD

The following outline of the numerical procedure is given for the
general case of a mixed-flow impeller with arbitrary hub and shroud
contours in the meridional plane (fig. 2) and arbitrary blade shape
(curvature and thickness distribution) on surfaces of revolution. It
is essumed that the surfaces of revolutlion are known, that is have been
generated by the center lines between adjacent meridional streamlines

2191
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obtained from an axial symmetry solution (reference 11, for example).
The following outline of the numerical procedure refers to any one of
these surfaces of revolution.

Specified conditions. - The following quantities are specified:

(1) Flow coefficient ® (defined by equation (19) in which

Py © Aw, and (Aa)T are known quantities)

o’
(2) Impeller-tip Mach mmber My (defined by equation (5))

(3) Whirl ratio Ay upstresm of impeller (defined by equation (9))
(4) Retio of specific heats v

(5) From the shape of the center line between adjacent meridional
streamlines that generate the surface of revolution,

R = R(M)
and
o = oM)
where the distance M along a meridional line on the sur-
face of revolution is arbitrarily equal to zero at the impel-
ler tip and decreases toward the impeller inlet
(6) From the spacing of the adjacent meridimal streemlines,
H = H(M)

Variation in sin Bgy. -~ The variation in sin Bav with R near
the impeller tip (Ry< R< 1.0) 1s determined as follows:

(1) Compute the value of Ry by equation (13). If sin o varies
in the region Ry < R £1.0, as it generally does, the
average value of « in this region is used in equation (13),
and because the average value of o varies with the value
of Ry, equation (13) must be solved by trial and error.
However, because the value of o does not generally vary
greatly in the region RBRy< R< 1.0, a satisfactory value
of Rxy could be cbtained from equation (13) using the
average value of a obtained from an initially assumed
value of Ryx. Also, equation (13) was developed from
information (references 1 and 7) relating to blades that
are not designed to unload at the tip. If the blades
being considered were designed to unload at the tip, the
direction of the mean flow path near the impeller tip
would deviate less from the mean blade direction and the

n
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value of Rx would be somewhat greater than that given by
equation (13). The value of Ry is not especially criti-
cal and in these cases, with sufficient experience, it can
probably be estimated accurately enough from the radius at
which an assumed path of the mean streamline (sketched by
experience) deviates appreciably fram the mean direction
of the blade profile on the surface of revolution.

(2) Estimete the value of u, or obtain values from references 1
end 7. The values of p given in references 1 and 7 were
obtained for blades that are not designed to unload at the
tip. If the blades being considered were designed to unload
at the tip, the direction of the meen flow path at the impel-
ler tip would deviate less from the mean blade direction
at the tip and the value of p would be scmewhat greater
than that indicated in references 1 and 7; that 1s, (Bgy)p
would be more nearly equal to % (Bg + Bg)p. The value
of p, like the value of Ry, 1s not especially critical
and in these cases it can probably be estimated accurately
enough from the assumed shape of a mean streamline (sketched
from experience) between blade-element profiles on the sur-
face of revolutiom.

(3) Compute (Qgy)p from equation (23) by trial and error.
(4) Compute (sin Bgy)p from equation (22).
(5) Campute coefficients A, B, and C from equations (21).

(6) Compute sin By Over the intervel Ry< R<1.0 by equa-
tion (12).

The variation in B,y for R less than R, is given by equa-
tion (11). This equation is assumed to be valid downetream to the
impeller inlet. If the angle of attack at the impeller inlet is zero,
the assumption is probably good. If the angle of attack is small, the
error Involved is probably small and could be partly corrected by
estimating the path of the mean streamline between blades in this
region. For large angles of attack, the stagnation point on the blade
surface may exist well inside the impeller passage and the ideal flow
is reversed along the blade surface downstream of this point. Under
these conditions, the method of analysis does not apply near the
impeller inlet but because of the high blade solidity it does apply
elsewhere in the impeller.

2191
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Average velocity Qgy. - The average velocity Qgy at each value
of M (or R) 1is determined by equation (18) in which p, /p, 1is given
by equation (20). Because p,./p, &lso contains Quy, the simuiltan-
eous solution of equations (18) and (20) must be by trial and errar.

A suggested procedure is first to compute pg /p0 assuming that Qgy
in equation (20) is zero. This value of p,,/p, is then used to com-
pute Q,, by equation (18). The process is repeated each time using

the new value of Qg to campute pav/ po until the value of Qg
converges.

Velocities on blede surfaces, Qg and Q.. - The velocities on the
blade surfaces at each value of M (or R) are determined by equa-
tione (18) and (17). The last term in equation (16) is obtained from
the slope of (RMp + Quy sin Bg,) R (A9) plotted against M.

Finally, the static (streem) pressure p corresponding to the
relative velocity Q at any radiuse R 1is given by

¥

]i. - <§—>’r = {1 + I;- B%)Z-QZ-%]}FI (24)

o

RNUMERTCAT, EXAMPLES

The approximete analysis method developed in this report is
applied to eight examples for which relaxation solutions of the exact
differential equation for two-dimensional compressible flow in impel-
lers of centrifugal compressors are given in references 1 and 7.
Although these examples are for radial- or conic-flow surfaces and not
for arbitrary surfaces of revolution, they cover a fairly wide range
of design and operating variables so that a camparison of the wveloci-
ties (on the blade surfaces) cbtained by the relaxation solutions and
by the approximate analysis method should serve as a check an the
validity of the approximate method.

Types of impeller. - The eight numerical examples are for two-
dimensional radial-flow impellers for which o is equal to 90° and the
surfaces of revolution are flat plenes normal to the axes of the
impellers. The impellers (fig. 8) contain a finite number of thin
straight (Bg = By = 0) or logarithmic-spiral (Bg = By = constant)

blades, and the flow erea normal to the direction of Q¥ d1s constant
so that HR equels 1.0. Only the critical flow region toward the +tip
of the impeller was investigated (0.70< R <1.0). The diffuser vanes
(if any) and the inducer vanes were assumed to be far enocugh removed
not to affect the flow in this region.
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Design and operating verisbles. - The following design and opera-
ting variables were specified for the elght examples:

Example | @ |Mp A8 ‘tan B Fluid 53
(a) |0.5|1.5 |2%/30| O Campressible |0.934
fb) .7 |1.5 |2xn/30 ) Compressible .937

c) .9 |1.5 |2x/30| o© Compressible | .938
a) .5 2.0 |2x/30| © Compressible .935
e) .5 1.5 [2xf20 | O Compressible .899
£) .5 |1.5 |2r/20 | -0.5 | Compressible | .834
(&) .5 |1.5 |2n/20 | -1.0 | Compressible | .768
(h) .5 |1.5 |2x/20 | O |Incompressible | .892

The whirl ratio upstream of the impeller Ay was zero and for the com-
pressible fluid the ratio of specific heats ¥ was l.4. The value

of the slip factor u given in the table was obtained from the relaxa-
tion solutions and was also used to compute (sin Bgy)p in eque-

tion (22). For the incompressible example, the speed of sound co con-
tained in the definitions of Q, @, and Myp is a fictitious quantity
(constant) considered equal to the upstream stagnation speed of sound
of the campressible-flow examples .with which the incompressible-~flow
example is compared.

Results. - The results of the comparison between the relaxation
solutions and the approximate method of analysis are shown in f£igure 7
for the eight examples. The velocities Qg and Qp are plotted
agalnst R foar the relaxation solutions and for the approximate solu-
tions. The average velocity Qg used in the approximate method of

analysis to obtain Q3 and Qf is also plotted.

The effect of increasing the flow rate (flow coefficient) on the
agreement between the relaxation solution and the approximate solution
is shown in figures 7(a) to 7(c). The agreement appears equelly good.
for all flow rates. In view of the relative simplicity of the approxi-
mate method of analysis, the agreement is considered entirely satis-
factory ‘everywhere except in the immediate vicinity of the impeller tip
where the results of the approximate method of analysis do not follow
the rapid unloading of the blades. This rapid unloading is-characteris-
tic of blades that are not designed to unload at the tip. If the
blades were designed to unload, the agreement between relaxstion solu-
tions and approximate solutions should be better. In any event the
disagreement is serious only over the last 2 percent of impeller-tip
radius, The fallure to unload at the impeller tip will be observed in
most of the remsining solutions.
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The following figure comparisons indicate: figures 7(a) and 7(d),
the effect of increasing impeller-tip Mach number; figures 7(a)
and 7(e) , the effect of Increasing angular width of passage between
blades (A9); figures 7(e), 7(£), and 7(g), the effect of larger
negative blade angles B; and figures 7(e) and 7(h), the effect of
compressibility. In figure 7(h), the peculiar humps in the velocity
distribution obteined by the approximate method of analysis indieates
that for incompressible flow the blades start to unload at a lower
value for R, than that given by equation (13).

In view of the relative simplicity of this approximate, but rapid,
method of analysis, the agreement between the relaxation solutions and
the approximate solutions is considered good in all cases investigated;
that is, over fairly wide ranges of flow rate, impeller-tip speed,
blade curvaeture, and number of blades.

SUMMARY OF RESULTS

A repid approximate method of analysis was developed for deter-
mining the velocity distribution on impeller blades of centrifugal
compressors. Jn eight numericel examples the velocities obtained by
the spproximate method of analysis were compared with the more nearly
carrect values obtained by relaxation methods. In all cases, that is,
over a falrly wide range of flow rate, impeller-tip speed, blade
curvature, and number of blades, the agreement between velocities
obtained by the epproximate method of analysis and by relaxation
methods was considered good.

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, April 27, 1951.
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APPENDIX ~ SYMBOILS
The following symbols are used in this report:
A,B,C coefficients defined by equation (21)
Co stegnation speed of sound upstream of impeller, equation (4)

acceleration due to gravity

H helght ratio of fluid strip normal to surface of revolution,
Ab/ (Ah)lIl
M distance along meridional line on surface of revalution
dimensionless, expressed as ratio of impeller tip radius rT)
fig. 3)
Mp impeller tip Mach mumber, equation (5)
P static (stream) pressure

Q relative velocity on surface of revolution (dimensionless,
expressed in units of the stagnation speed of sound upstream
of impeller c,) (fig. 3)

R cylindrical coordinate (dimensionless, expressed as ratio of
impeller~tip radius =»p) (fig. 3)

T impeller-tip radius

S distance along streamline on surface of revolution (dimension-
less, expressed as ratio of impeller-tip radius rq) (fig. 3)

T static (stream) temperature

Z cylindrical coordinate (dimemsionless, expressed as ratio of
impeller-tip radius rp) (fig. 3)

a slope of surface of revolution in direction of Qy, equa-
tions (la) and (1b) (fig. 3)

B flow direction on surface of revolution, equations (2a) and (2b),
(£ig. 3)

'S ratio of specific heats

(Aa)p Incremental flow area between two blades and normal to the
direction of Qy at impeller tip, equation (192)
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Ah incremental height of fluid strip on surface of revolution

Aw incremental flow rate between two blades on surface of revolu-~
tion

AB angular width of passage between blades, radians unless other-
wise specified, equation (3)

0 cylindricel coordinate, radians unless otherwise specified,
(positive about Z-axis according to right-hand rule) (fig. 3)

A whirl ratio, equation (9)

M slip factor, equation (22)

o static (stream) weight density of fluid

flow coefficient, equation (19)
angular velocity of impeller (in direction of positive 6)

Subscripts:

abs companent of absolute velocity along blade surface

av average

a driving face of blade (blade surface in direction of rotation)
(fig. 4)

M component along meridional line on surface of revolution

o] ebsolute stagnation condition /upstream of impeller

R,8,Z camponents in positive R-, 6-, Z-directions, respectively

T impeller tip

t trailing face of blade (blad.e surface opposed to direction of
rotation) (fig. 4)

U upstream of impeller

b position along meridional line on surface of revolution at which

the assumption of perfect guiding of fluid by blades 1s con-
sidered to break down
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Figure 1. - Passage between blades in impeller of typical centrifugal ccmpressor.
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Figure 2, - Streamlines in meridional plane for axlal-symmetry solution
of flow through impeller of figure 1.
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[\
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Driving face
of blade .
%
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sin @
e >

\\—Trailing face
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Figure 4. - Developed view of fluid strip between blades on sur-
face of revolution at radius R.

Direction of
blade surface

Figure 5. - Veloclty triangle for computing component of .
absolute velocity along blade surface.
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Flow reglon investigated (R > 0.7)
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Figure 6. - Impeller-design characteristics far numerical exsmples.
Btralght impeller blades shown,
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O———————Relaxation solution
—~—————Approximate method
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(a) Example (a): flow coefficient @, 0.5; impeller-tip Mach rumber Mp, 1.5; constant flow
area (HR = 1.0); angular width of passage A8, 12°; blade angle B, 0;
compressible flow (y = 1.4). .

Figure 7. - Varlation in velocity along blade surfaces as obtained by relaxation methods (ref-
erences 1 and 7) and by approximate method.
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(b) Example (b): flow coefficient @, 0.7; other parameters same as example (a).

Fligure 7. - Continued. Variation in veloclty along blade surfaces as obtalned by relaxation
methods (references 1 and 7) and by approximate method, -
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(c) Example (c¢): flow coefficlent @, 0.9; other parameters same as example (a).

Figure 7. - Continued. Varlation in velocity along blade surfaces as obtained by relaxation
methods (references 1 and 7) and by approximate method.
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(d) Example (d): dimpeller-tip Mach number Mp, 2.0; other parameters same as example (a).

Flgure 7. - Continued. Variation in veloolty along blade surfaces as obtained by relaxation
methods (references 1 and 7) and by approximate method. N
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(e) Example (e): angular width of passage A8, 18°; other parameters same as example (a).

Plgure 7. - Contimued. Variation in veloclty along blade surfaces as obtained by relaxation
methods (references 1 and 7) and by approximate method.
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(f) Bxample (f): blade angle B, tan~1(-0.5); other parameters same as example (e).

Figure 7. - Contimied. Variation 1n veloeclty along blade surfaces as obtained by relaxa-

tion methods (references 1 and 7) and by approximate method.
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(g) Example (g): biade angle B, tan~1(-1.0); other parameters same as example (e).

Figure 7. - Contimued. Varilation in velocity along blade surfaces as obtalned by relaxa-
tion methods (references 1 and 7) and by approximate method.


http://www.abbottaerospace.com/technical-library

NACA TN 2421 21

1.0

8-

T O—— Relaxation solution
~———Approximate solution

5 Qav

Ry

.=2 ] ] | ] |
.65 .70 .75 .80 .85 .90 .95 1.0
‘ R

(h) Example (h): incompressible flow; other parameters same as example (e). Note that
for Iincompressible flow stagnation speed of sound ¢, contained 1n definitions of Q, Mp,

and ¢ is a fictitlous quantity which, if considered equal to ¢, of example (e), enables

comparison of compressible (example (e)) and incompressible (example(h)) solutions for
same Iimpeller-tip speed, welght-flow rate, and so forth.

Figure 7. - Concluded. Variation in veloclty along blade surfaces as obtalned by relaxation
methods (references 1 and 7) and by approximate method.

NACA - Langley Field, Va.
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