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VALUE PROBLEMS

By Myron L. Gossard
SUMMARY

An i1terstive transformation procedure suggested by H. Wielandt for
numerical solution of flutter and similar characteristic-value problems
1s presented. Application of this procedure to ordinary natural-
vibration problems and to flutter problems 1s shown by numerical
exemples. Comparisons of computed results with experimental values and
with results obtained by other methods of analysis are made.

INTRODUCTION

Existing methods of flutter analysis include the representative-
section method, generalized-coordinate methods, matrix methods, and
operatlonal methods. The present paper presents an iteration procedure
for analysis of flutter and similar characteristic-value problems.

For ordinary naturasl-vibration problems, iterative procedures of
the Stodole type (references 1 and 2) are suitable for finding the funda-
mental and higher-order naturel modes end frequencies. The higher-order
solutions are obtained through use of the orthogonslity relations that
exist among the natural modes.

Orthogonality relations analogous to those that exigt in ordinary
vibration problems can be found in the flutter problem only by intro-
duction of the so-called "adjoint™ problem. (This additionsl step is
unnecessary in ordinary vibration problems by virtue of the fact that
they are "self-adjoint.”) Wielandt has suggested an iterative transfor-
mation procedure (reference 3) which is well-suited to the flutter
problem in that it avoids the need of orthogonality relatlions and hence
does not require consideration of the adjoint problem. The iterative
transformation procedure can also be gpplied to ordinary natural-
vibration problems with less labor than is generally required in the
extended Stodola procedure.
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Because both the original and translated works of Wielandi are —
difficult to follow, an explenstion of the ldea of the iterative trans-
formation procedure is glven In the present paper and the applicaftion ~
of the procedure to ordinery natural-vibration problems and to flexure-
torsion flutter problems is shown in numerical examples. Comperisons
of computed results with experimental wvalues and with results obtalned
by other methods of analysls are alsc made.

SYMBOLS
EI flexural stiffness R
GJ torsional stiffness
X spanwise coordinate with origin at root of wing
¥ complex representation of amplitudes and phases of translation
of elastic axils in harmonic motion
¢ complex representation of amplitudes and phases of rotation .
about elastic axis in harmonic motion
W coupled mode (y,@)
Py complex coefficients of y which, when multiplied by y, glve .

complex representation of amplitudes and phases of aero-~
dynemic and inertia forces associated with translational
component of harmonic motion ' -

P¢ complex coefficients of @ which, when multiplied by @, give
complex representation of amplitudes and phases of-aerodynamic
and inertis forces associated with rotational component of
harmonic motion

Qy camplex coefficients of y which, vhen multiplied by ¥y, give
complex representation of amplitudes and phases of aerocdynsmic
end inertis torques associated with translational component
of hsrmonic motion

Q¢ complex coefficients of @ which, when multiplied by @, give
complex representation of amplitudes and phases of aerodynamic
and inertia torques associated with rotational component of
harmonic motion

gy,g¢ structural-damping coefficients associated with flexure and
torsion, respectively (see sppendix B)
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coefficient of artificial damping (mey be either positive or
negative)

reduced frequency (bw/v)

frequency of harmonic motion

2

1+ igg
characteristic value —
i)

length of semichord of wing

length of cantilever wing from root to tip

mess ratio (7/npb®)

veloclty of alr relative to wing

distributed mass of wing per unit length of span

mass density of air

distance between midchord axis and elastic axis in terms of
local semichord, positive when elastic axls 1s behind mid-
chord axis

distance between elastic axis and gravity axls of distributed
mass of wing in terms of locel semichord, positive when
gravity axis 1s behind elgstic axis

radius of gyration of distributed mass of wing about elastic
axis 1n terms of local semichord

transcendental functions of k (see reference L)

time

Cn
eigenvalue factor = -
Cn

ratio of complex constants

length; in numerical solutions, distance between specific
adjecent statlons of wing

applied force
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Q applied torque

v shear

M bending moment

a curvature

B slope of elastic axis

T twisting moment—— R
é angle of twist

Subscripts: _
1,2,35... true modes or eigenvalues
a2,a3,a4,... transformed modes

b intermediate derived mode
A,B,C,... stations

R real

I imaginary

o] reference value

bl,ba2,ba3,... sweeping functions )
Superscripts:

(1),(2),(3),... cycles of iteration

A bar over a symbol indicates a concentrated quantity instead of a
distributed quantity.

A prime is used to denote division by mz.
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ITERATIVE TRANSFORMATION METHOD OF SOLUTION

General Festures of Method

The principle of the iterative transformstion procedure i1s similar
in form to that of the standard iteration procedure for solving
characterlstic-velue problems. Both procedures require the determina-
tion of the solutions in the order of the magnitudes of the eigenvalues,
beginning with the fundamental. Both procedures require assumptions of
modes, integrations which generally must be done numerically, and
sweeping operations for higher-order-mode determinations. The distin-
guishing features of the iterative trensformation procedure occur in
the determinetion of solutions higher than the fundsmentsl and are as
follows: (1) The immediate aim is to determine not the true nth mode,
as in the standerd iteration procedure, but a particular linear combina-
tion composed of all modes from the fundamentel to the nth. This linear
combination is referred to as the transformed nth mode. The transformed
nth mode can be maede to have nodal (zero) points at specified stations
of the wing; such a feature is highly desirable in numerical work.

(2) The sweeping operations, which consist of subtractions of lower-
order-mode shapes from the functlion obtained by integrating the assumed
mode, do not employ the orthogonality relations as in the standard
iteration method but meke use of forcing functions that, in numerical
work, greatly simplify the sweeping operations and increase the over-
all accuracy of the results by maeking the sweeping operations more
consistent with the rest of the process. (3} Although the true nth
eigenvalue is determined directly in the iterative transformation pro-
cedure, the true nth mode must be computed from quantities within the
iteration cycle after the transformed nth mode is found.

Outline of Steps in the Procedure

The equation of equilibrium of & cantilever beam vibrating harmoni-
cally in pure flexure is

2 2
s 1 &L - ey (1)
dx dx

or, after integration with proper attention to boundary conditions,

y=f()xfc)in—If}ch:ch2y(ax>4 (2)
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The solutions of this integral equetion ere the true natural modes
(eigenfunctions) Y1, Yoi _y3, . . . &and the corresponding natural

frequencies (eigenvalues) ), @®p, ®3, . . . . For convenience in

subsequent discussion, the true modes are assumed to be normalized to
unity at some position (stmtion A) along the beam.

The first mode and frequency are assumed to have been previously
determined by the Stodole process. Thé iterative transformetion pro-
cedure becomes eppliceble in the déterminstion of the second mode and
frequency. As mentioned previously, the immediate aim in the iteratiocn
for the second mode is the determination of a linear combination of first—
and second modes which is called the transformed second mode. The linear
combination yp - yj which has zero ordinate at station A 1s chosen and

defined as the transformed second mode to be determined. The iteration
for determination of this transformed second mode may be described as
follows:

(1)

(1) A plsusible shape Yeao for the transformed second mode 1s

assumed. This shape must have zero ordinate at station A and should
satisfy the boundary conditions as closely as possible.

(2) The displacement

yb=\/;xfoxEl—IJ;fo 70y y(l)(dX)

2 (1
resulting from the lnertia load yuo yéQ) corresponding to the assumed

(1)

shepe ygr’ vVibrating harmonicaelly at frequency ap 1s calculated.

This calculation must usually be done numerlically with the square of the
frequency Qnee) being carried glong as an undetermirned factor.

(3) A first-mode shape (previously determined) is subtracted
(swept out) from the calculated displacement Yo in an amount such

that the resulting displacement 1s zero at station A Thus the
resulting displacement is :
Y(e) =7 (yb> ¥
a2 b T \y;/ ‘1
1 A

{4) The resulting displecement ygg) is compared with the assumed
displacemant y\é). When the computations are numerical, the

i
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(1)

2
ratios yée) Va2 are gompared at a1l the stations. If the assumed

displacement is exactly equal to the transformed second mode, the ratios
are equal to each other. These ratios contaln the single unknown wp,
and the second frequency is thet value of wp vwhich maskes the ratios
unity.

(5) If the ratios yﬁg)/géé) from the first cycle of iteration

outlined in the four preceding ‘steps are not reasonably the same at all
stations, the process must be repested until the ratios become reasonably
the same. BEach new cycle starts with the resultant displacement of each
preceding cycle. The convergence of this process to the second frequency
snd the transformed second mode is proved in appendlx A.

The transformed third mode and the third frequency are. computed in
the following manner. The transformed third mode is defined as that
¢combination of the first three natural modes which has a zero ordinate
at the same ststion that was used in the transformed second mode (sta-
tion A) and also a zero ordinate at some other station, station B. Thus
the transformed third mode is defined as

<Y3'Yi>( 1)
Yy - ¥y - |7=—=] (|¥5 -
3770y, m ) V2

The iteration is as follows:

1
(1) A plsusible shape y£3) for the transformed third mode is

assumed, This shape must have zero ordinates at stetions A and B and
should satisfy the boundary conditions as closely as possible.

(2) The displacement
b4 X L
1 2 (1)
y. =f f —-f f YO (dx)
b 0 0 EI b4 X 3 a3

is calculated, with the square of the frequency Gn32) carried along as
an undetermined factor.

(3) The first of two sweeping operations, in which a first-mode
shape is swept from the displacement Yy; 8o as to make the resulting


http://www.abbottaerospace.com/technical-library

8 NACA TN 2346

displacement at station A zero, is performed. This operation gives the

displacement
; (’_b) ;

(4) The second sweeping operation, in which a transformed-second-
mode shape (previously determined) is swept from the resulting displace-
ment of step (3) so that the new resulting displacement is zero at
station B as well as at station A, is performed. (This second sweeping
operation cannot disturb the zero condition at station A esteblished in
step (3) because the second sweeping function (the transformed second
mode) is identically zero at station A.) Thus, the finel resulting dis-
placement is : ‘ - - - -

b)

Yo =\ ¥

@ _. _ ([ 7 Cru 1

Ya3 ¥y Y1/ ¥y Vop Yoo
B

(5) Comparisons of the ratios yég) y%) at-all statlions are made,

and, 1f they are not reasonably the same, additional cycles of iteration
are carried out until the ratios become reasonably the same. The third
frequency 1s then computed from the ratios as explained previously.
Convergence of this process.to the third frequency and the transformed
third mode is proved in appendix A.

Frequencies and_transformed modes higher than the third may be
computed by extensions of the process Just described. °

Physical Interpretation of the Procedure

A physical interpretation of the iterastive transformation procedure
cean be given. With regard to the transformed second mode, for example,
the following question may be asked: Under what conditions can the beam

vibrate in the transformed-second-mode shape at the second natursal
frequency? Vibration in shape Yao = Yo - ¥1 &t frequency ws; implies

an inertia loading 7&22(y2 - yl). But if—this load is substituted in

plece of 7y 2y in the right=hand side of equation (2), the result
after integﬂgéion will not be Yo =¥y but
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.Vg-‘Dizyl=_/;xj;x_-;il—_/;L_/:cL7w?2(y2-yl)(dJ:)l’ (3)

However, if an externel (forcing) load of an amount 76@22 - “1?)?1 is
added to the inertia load, the total load 76»22y2 - wlzy will pro-
duce the shape Yo = ¥q- Thus

_/:(j;x E_le jj 7(“)223'2 - ‘Dleyl) (ax)* = Yo - V1 (&)

The inertia and forcing loads are illustrated in figure 1. The inertis
load acting alone produces a displacement (equation (3)) generally dif-
ferent from zerc at statlion A. The forcing load produces the displacement

H

2

z——iE -1y =£x LX E]__I\‘/:'_, /;L 7(:1322_- a)lg)y?_(dx)l‘ (5)

This displacement (equal to the sweeping function) has the shape of the
previously determined first mode and is equal and opposite at station A
to the displacement due to the inertias load; that is, by virtue of the
previously assigned normaelizations at station A,

wp? _ wp?
FE

Thus the displacement due to the forcing load is completely determined
when the displacement due to the inertia load is known. The gist of the
foregoing analysis is that vibration in the transformed-second-mode
shape is the response of the beam to an oscillatory forcing load of the
first-mode shape and of frequency equal fto the second natural fregquency,
superimposed on a free vibration of the beam in the second natural mode.

Similer physical interpretations of the iterative transformation
process for modes higher than the second can be made.
! Application of the Procedure in Ordinary
Coupled Natural-Vibration Problems

The procedure that has been outlined in s preceding section for
pure flexure can easlly be extended to systems cepable of simultaneous
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flexural and torsional displacements. Airplane wings belong to the
latter class of systems. The only distinguishing element in coupled
flexursl-torslonal vibration problems is that each natural mode contalns
two components, the flexure and the torsion. These components must
always appear together in g fixed relatlon to each other. The two com-
ponents musgt be computed together and must be used together.

Each coupled mode 1s a solution of the simultaneous differential
equations

2
g_xE EI -:—i—% = 70?(y + bug) (1)
- .aq‘}_{ ek %_g = y0° (buy + b2r2¢) (8)

Equations (7) end (8), after integration, become (for a cantilever beam)

y =j;xf: E.LILLLL 7Py + bu_¢)_(§x)“‘"" (9) -

x L - . :
g = fo L fx yoP (buy + Prlg)(ax)? (10)

The solution ofthe integral equations (9) and (10) for the coupled trans-
formed second mode by the iterative transformation procedure is outlined
diagremmatically in figure 2. The flexural component of the displace-~
ment for a particular step is illustrated in the left-hand side of the
figure and the torsional component is i1llustrated at the same level in
the right-hend side.

In the first step, an approximation to a linear combination of the
true first and secand coupled modes Is assumed. The particular linear
combination having zero flexural displacement at the tip station (sta-
tion A) is chosen. (For greatest numerical accuracy, this nodal point
should be chosen in the component and at the station where the first

coupled mode hes its meximum numerical velue.) The symbols ygé)

1
and ¢é2) are used to designate the flexursl and torsional components

of this assumed displacement, respectively. In general, the magnitude
of the torsional component relative to the flexural component is
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difficult to estimete; the most expedient thing to do 1s take one of
the components equal to zero.

The second step is the computation (by numerical integration) of
the two components of the displacement due to the inertla forces

70322 (yae + bu¢82) and inertia torques 70.)22 (buya2 + b_2r2¢a2) that are
associated with the assumed displacement. The result 1s termed the
" intermediate derived mode, and the symbols yﬁl) and ¢bl are used

to designate its two components.

The third step is the determination of & sweeping function having
the shape of the first coupled mode (previocusly determined) and & magni-
tude such that the sum of the intermediste derived mode and the sweeping
function equels zero 1n the flexursl component at station A. In
algebraic terms, the first-mode sweeping function is given by

(1) yél)
o1 T T\ ) (11)
(1)
; (1) ¥
T _gz_ A g, (12)

The fourth step is the addition of the intermediate derived mode
and the first-mode sweeping function to give the derived transformed
second mode. Thus the two components of the derived transformed second

mode are
(2) (1) yél)
. y&2 = ¥ - yl yl (13)
A
(1)
\ 63 - a7 - 50) 4 (1)

The calculation of the ratios yég) yéi) and ¢é§)/géé) at all

stations completes the first cycle of iteratlon.
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Additional cycles are carried out until the ratios at all stations
in both the flexural and torsional components have values that are
reasonably the same. The true second natural frequency of -the coupled
system 1s then obtained as described previously.

Steady vibration of an alrplane wing at zero ailrspeed is an example
of coupled natural vibration. The actual numerical calculations for
the transformed second mode as well as for the first mode and trans-
formed third mode of an airplane wing vibrating at zero ailrspeed are
discussed subsequently as a special case of flutter.

The more general equations of airplane flutter at nonzero airspeed
may be interpreted in such a way that they can be solved by a process
analogous to that Just described for coupled natural vibration.

APPLICATION OF THE ITERATIVE TRANSFORMATION
METHOD TO FLUTTER
Flutter Equations

The differentisl equations of equilibrium for s wing executing
simple harmonic motion are

_@-_e_EI(1+ igy)—ax Py + By - (15)

dx

-d—x-GJ(l + 1 ) ny Q¢¢ (16)

These equations govern g motion represented by

Y(x,t) = y(x)e®® (17)

o(x,t)

B(x)e " (18)

The use of the structurael-damping coefficlents gy “and g¢ in equa-

tioneg (15) and (16) is discussed in appendix B. The expressions
Pyy + P¢¢ and Q¥ +—Q¢¢ are the intensities ofapplied force and

torque, respectively. For aerodynemic and inertis forces and torques


http://www.abbottaerospace.com/technical-library

NACA TN 2346

due to air flow and distributed mass, the P and Q

13

coefficients have

values given by the following formulas (rearranged from those in refer-

ence 4): For Py,

in which
2
= () [2G - z
PRy = (bo) (k + 1 + 1.1)(}‘l
and
o @ 2
Iy = \pg k \p/o
For P¢,
P¢ = PR¢ - :LPI¢
in which
b - (P[22,
RS = o) |\2 K 2
and
b 1 2G 1 oF
e )20
For Q,y,
= -3
Qy QRy QIy
in which
3
- (2 L 2G p
w - @2l
and

(19)

(20)

(21)

(22)

(23)

(2k)

(25)

(26}

(27)
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And for Qg,
Qg = Qg - 14rg (28)
in which
w1692 G IF T @)
and

e @6k G- G- o

For inertia forces and torques due to concentrated mass, the intensities
of force and torque are, respectively,

1 2T (31)

Py + P¢¢ = o

.
Yy + ogf = Lm W (32)
% - B (el
%% - ) ¢ A e (o
s

%o ) bR o
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For a cantilever wing the boundary conditions on the displacements
are

¥)x-0 = Flx0 = (g) o ax;x_L

E—EI(1+igy—ﬂ l: l+ig¢—ax (36)

The differentjal equations (15) and (16) are now written with the
elgenvalue " as an explicit factor. Thus equations (15) and (16)
become

2

i@_ EI(L + igy)?—ii% = o (By'y + P¢'¢) (37

and

- & w1+ 1e)P - 0P o,y + ag9) (38)

In which the P' and Q' coefficients are equal, respectively, to
the P and Q coefficients divided by «=.

Formulation of Pseudoflutter Problem

Those solutions ma, (y,8) of equations (37) and (38) for
which o is a real and positive (not complex) quantity represent the
steady hermonic motions of true flutter. However, because the P and
Q coefficients are in general complex and because of the presence of
structural damping, the solutions of equations (37) and (38) will, in
general, be complex and will include complex eigenvalues . As in
other methods of flutter analysis, the problem is made tractable by

assuming at the beginning a vaelue of the parasmeter k = %?. This assump-

tion fixes the values of the P and Q coefficlents. A real value

of k 1s assumed because v must be real and only resl values of

can represent flutter. To avoid the inconsistence of assumed real

velues of k and obtained complex velues of «? in the solutions, the
problem itself is altered by introducing an artificial damping so that the

w2

complex eigenvelue is given by 1—:7E§—, where g, Iis the coefficient

of artificial damping. Thus the differential equations of what may be
termed the pseudoflutter problem become
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. | | 5 ) _
1—2 EI(l + igy):'i‘g =T ‘f iga(Py'y + P¢'¢) (39) -
2
Forl e 1) 8- 1Ly ) ()

The value of @® can now be real for any assumed resl value of k and
is therefore the square of the frequency of the steady harmonic motion
maintained by the artificial-demping forces and the naturally present
aerodynamic, lnertis, structural, and structural-demping forces. True
flutter is possible for those special cases in which g€g 18 zero.

Equetions (39) and (40) are similar in form to equations (7) and (8)
and can be solved by the lterative transformation procedure in a way
completely analogous to the solution of the ordinary problem. The com-
plications introduced by the presence of-air forces require, however,
that a set of solutions be obtained for each of seversl sssumed values
of k. The fact that most of the functions involved ere complex virtu-
ally quadruples the labor as compared with that required in the ordinary
coupled natural-vibration problem.

Steps in the Iteration as Applied to Flutter

The iteration procedure employs the baslc differential equations (39) -
and (40) in their integral forms which, for the cantilever wing under
conslderation, are

A g e

X L - :
¢ = %‘fo G—J(ﬁrggj:c @'y + ag'f)(ax)? (42)

) 1+ ig
in which C stands for the more convenient form —:——E—ﬁ of the

I
eigenvalue. The iteration of equations (41) and (42) follows the same
form as the iteration of equetions (9) and (10). Briefly, the steps
are as follows: o o ’
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(1) A real value of k 1s assumed and the values of the complex P
and Q coefficients are computed.

(2) An assumption is made for the desired mode v,8. (In the first
cycle of iteration the assumed mode may be real but in the following
cycles it will be complex.) .

(3) The complex loadings P,y + P¢¢ end QY + Q¢¢ are computed.

(4) The integrations indicated in the equations are carried out
numerically to get the complex intermediate derived mode.

(5) The sweeping operations are performed by using the complex
lower-order trensformed modes previously determined. For convenience
in numericel calculations, the flexural and torsional components of the
complex derived (swept) transformed mode are computed in the forms

7o T

1
T, BT Pofy (43)

o
0O oo
and

2
17 L* EoLy b
C bg B I, B0, 12 8

(Lh)

respectively, in which K& and K¢ are nondimeneional complex functions

of the spanwise coordinate x.

(6) The derived and assumed modes are compared by computing their
ratios at the stations of the wing. If these ratios are not reasonably
the same, additional cycles of iteration are carried out until the ratios
are reasonably the same. In the limit (never obtained in practice) the
ratios will be identicel and the proper value of C is that value which
makes them unity; that is,

2
170 ¥ b 170 L+ Eoly bo
Cpo BEolo © _ C ug Bolo Godo 1.2 K¢ -1 (45)
y [ -

in which y and ¢ constitute the assumed mode of the limiting cycle
and the functions in the numerators constitute the derived mode of the
limiting cycle.
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Equation (45) may be stated in the form

so+wm) 2Ly (46)

in which D and H are nondimensional resl aumbers. Inasmuch as C

1+ ig, .
is defined as ——5—» equation (46) may be written
I
7o LE— 1+ 1igg
D + iH)— = 2
( )“o BT = ' (47)

from which the frequency and artificlal-damping coefficient are
obtained as follows:

Eolo Mo |
I 7
o =\|-2_"9 (48)
D
g, = 5 | (49)

The relative air velocity corresponding to the assumed value of k is
given through the definition of k, that-is,

v = 2 ' (50)

NUMERICAL EXAMPLES

Numerical computations presented in thils section illustrate the
actual epplication of the iterative transformation procedure first to
the ordinary natural-vibration problem (vibration at zero airspeed) and
then to the flutter problem. All examples desl with the cantilever wing

shown in figure 3.

The geometric, structural, and mess properties of the wing are glven
in figure 3. A station coordinste system 1s employed for the purposes
of the required numerical integrations. TFour stations along the span
have been selected as indicated in the figure; one of these stations isd
located at the spanwise position of the concentrated mass. The


http://www.abbottaerospace.com/technical-library

NACA TN 2346 _ 19

distributions of forces and displacements over the span are conslidered
to be adequately defined (through interpolation) by the forces and dis-
Placements at the four selected stations. The selection of a system of
stations in any problem 1s important because it greatly influences the
smount and accuracy of the work to follow. In problems, such as the
present one, that involve concentrated masses, a station must be placed
at each concentrated mass because displacements at the concentrated
masses must be known. (More generally, a station must be placed at each
discontinuity. Discontinuities may be present in the distribution of
the structural stiffness and in the plan form as well as in distribution
of mass.) The other stations should be equally spaced between the dis-
continuities, and for the system of parabolic interpolation used in the
numerical Integrations in this paper there must be a minimum of one sta-
tlon between each adjacent pair of discontinuities. The total number

of stations should be the smallest possible that is consistent with the
deslired accuracy because the calculation effort increases rapidly with
an increasing number of stations. In coupled systems, the number of
degrees of freedom allowed is twice the number of stations selected;
that is, the number of degrees of freedom in either the flexural or
torsional component of displacement is equal to the number of stations
employed. Experlence has indicated that with parabolic approximations
results accurate to at least two significant figures in the highest mode
computed can be obtained by employing numbers of stations as follows:
For uncoupled systems, the number of statlons should be two greater than
the order of the highest mode to be computed; for coupled systems, the
number of statlons should be one greater than the order of the highest
mode to be computed, with a minimum of three stations. More than these
minimum numbers of stations may be required if their use is dictated by
sufficiently meny discontinuities.

Ordinary Coupled Natural Modes and Frequencies

The calculations for the first, second, and third modes at zero
airspeed for the wing of figure 3 are shown in tebles 1, 2, and 3,
respectively. In this case k = « and the only aerodynamic forces are
the apparent-mass forces. For simplicity, structural damping is dis-
regarded; therefore, all quantities entering the problem are real. The
nmumerical values of the aerodynamic-inertis force coefficlents for k = =,
as weli as for other values of k +to be used subsequently, are given in
table 4.

The first coupled mode is computed in table 1. Table 1 shows in
separate tabulations the flexural and torsional parts of the calculstion.
The first cycle of iteration (part (a) of the table) is shown in full
detail. Two forms for the torsional part of the calculatlon are shown:
The first form may be used when the torsional stiffness GJ 1is constant
over each bay or over the whole length of the wing; the second form,
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which requires slightly more work, must be used whén GJ is variable
. and may be used, as in this case, when GJ is constant: The second
and third cycles of iteration are summarized in parts (b) and {c) of
table 1.

Details of the first cycle of iteration, if-the procedure that
gpplies only for constant—torsionsl stiffness GJ for the torsional
part of the calculation is used, are as follows: In columns 1 of

1 1 '
table 1(a) the two parts y£ ) and ¢£ ) of the assumed first mode are

listed. The torsional component—is assumed to be zero because it will
ultimately be small and is difficult to estimete. Columns 2 and 3 are
the appropriate products of the assumed mode and the distributed-force
coefficients. Columns L4, which are the sums of columns 2 and 3, glve
the two components of the external load which correspond to the assumed
mode and the arbitrary frequency . Columns 5 give the concentrated
loads (external forces and torques) that are ‘equivalent to the distrib-
uted loads of columns 4. These equivalent concentrations are given in
columns 5 in terms of the pertinent distances between stations Ay and
in columns 6 in terms of the reference distance Ag. Formulas used for
computing the equivalent concentrations from the distributed loads are
glven in appendix C. Columns 7 and 8 are the appropriate products of-
the assumed mode and the concentrated-force coefficients. Columns 9
ere the total concentrated loads, the sums of columns 6, 7, and 8.

The flexural end torsional calculations must now be described
separately. In column 10 for flexure, the average shears in the bays
between stations are found by & successive summation of the concentrated
loads from the tip where the shear 1s zero inboard to the root. In
column 11 the increments of bending moment are computed by multiplying
the shears by the bay lengths in terms of My. The bending moments of
column 12 are found by a successive summation of the increments of
bending moment from the tip where the bending moment is zero inboard to
the root. Column 13 gives the distribution of curvature, which is
obtaeined by dividing each ordinate of the bending-moment curve by the
local value of EL (EI in this example is constant). Equivalent con-
centrated curvatures are now obtalned by applying to the distributed
curvatures the previously used formulas for equivalent concentrations.
Column 14 gives these equivalent concentrations in terms of the dis-
tances Aj, and column 15 gives them in terms of the reference dis-
tance Ao. The average slopes in the bays are obtained in column 16 by
a successive summation of the concentrated curvatures from the root where
the slope is zero outboard to the tip. The increments ofderived
flexural displacement are computed in column 17 by multiplying the aver-
age slopes by the bay lengths in terms of Ay. The flexural compo-

nent y£2) of the derived mode is obtained in column 18 by a successive
summation of the increments of displacement from the root where the
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displacement is zero outboard to the tip. Column 19 gives the ratios
at the selected stations of the derived flexural component to the
assumed flexursgl component.

Columns 10 to 15 for torsion are now considered. Column 1O glves
the sverage twisting moments in the bays of the wing and is obtained by
a successive summation of the concentrated torques of column 9 from the
tip where the twisting moment is zero inboard to the root. The average
twists in the bays are computed in column 11 by dividing the average
twisting moment in each bay by the locsl value of GJ (G in this
exemple 1s constant over the whole span). The increments of derived
torsional displacement are obtained in column 12 by multiplying the
average twists by the bay lengths in terms of Agy. The torsionasl compo-
nent of the derived mode is computed in column 13 by & successive sum-
mation of the increments of displacement from the root where the dis-
placement is zero outboard to the tip. Inasmuch as the derived displace-
ment of column 13 is in terms of GJ, the displacement is converted
into terms of EI in column 14 so that it may be compered with the
assumed torsional displacement on the same basis as the assumed and
derived flexural displacements are compared and so that the next cycle
may be started with displacement components having the same dimenslons
as the assumed mode of this first cycle. Column 15 normelly would con-
tain the ratios at the selected stations of the derived torsionsl compo-
nent to the assumed torsional component, but in the case of table 1(a)
these ratios are meaningless because the torsional component will ulti-
mately be different than was assumed in column 1.

Before the results of further cycles of lteration for the first
mode are described, the form that the numerical integration for the
torsional component must take when GJ 1s variable 1s described. 1In
the part of table 1(a) showing the calculation for verisble GJ,
columns 1 to 4 are the same a&s in the calculstion for constant GJ. The
form of the numerical integratlon changes at column 5. Column 5 consists
of increments of twisting moment over the bays. These increments are
obtained as increments of area beneath the curve of distributed torque
(column 4). TFormulas used for computing these increments are given in
gppendix C. In ¢o6lumn 5 the increments of twisting moment are given in
terms of the distances Aji, and in column 6 they are given in terms of
the reference distance M\y. The twisting moments at the selected sta-
tions due to the distributed torsional loading are obtained in column 7
by & successive summation of the increments of twisting moment. The
components of external concentrated torque are as for constant GJ and
are given in columns 8 and 9. The applied concentrated torque gives
twisting moments as shown in column 10. Column 11 is the sum of
columns 7 end 10 and gives the total twisting moments at the selected
stations. (Note that in columns 10 and 11 there is a discontinuity in
twisting moment at the station having the mass discontinuity.) Column 12
gives the distribution of twist found by dividing columm 11 by the local
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value of GJ (GJ Dbeing in general not constant). The increments of
derived torsionsl displacement are computed in columns 13 and 1k by
applying to the values of column 12 the same formulas applied previously
to column 4. The torsional component—of the derived mode (columns 15
and 16) is, except-for small computational discrepancies, the same ag

in the previous method, as it should be.

Two additional cycles of iteration were found to be adequate for
the determinatlon of the first mode and frequency. The results of—
these iterations are shown in parts (b) and (c) of table 1. Ia table 1L(b),
for example, columns 1 give the two components of the assumed mode of
the second cycle, which are obtalined by normalizing the derived mode of
the first cycle to unity in the flexural component at-the tip station. —
This normelizaetion is not essential but facllitates manipulstions and
comparisons by keeplng the numerical wvelues in all cycles within the
game range of magnitude. Columns 2 give the derived mode obtained by
the numerical integration procedure Just described. The ratios of
derived to assumed mode are given in columns 3 for both components of
displacementT— These ratios are seen to be fairly uniform. The ratios
obtained in the third cycle in table 1(c) are, for practical purposes,
identical. The averaging device shown in columns 4 of table 1(c) and
to the right-of table 1(c) is adopted as a quick and generally quite
accurate way of smoothing out small discrepancies that remain in the
ratios after convergence 1s almost complete. This device, although
clearly not necessary in the case of table 1(c), is useful .in other
cases throughout the numerical exXamples and is explasined as follows:
The two ratios in columns 4 are obtained by considering the flexural and
torsional components of the displacement separately and then dividing
the sum of the station values of the derived displacement by the sum of
the station velues of the assumed displacement. When a discrepancy
remains between two ratios of the type in columns L, the sverage of these
two is teken as the final vslue; the final value for this case 1s given
in the calculation to the right of table 1(c). This device gives greater
weight tothe larger ordinstes and is in that respect—similar to other
weighting procedures such as the energy and least-squares methods but 1s
mich simpler. If the assumed and derived displacements contaln both
positive and negative ordinetes, the negative ordinates should be changed
to positive for the purpose of the summations. The remaining calculation
shown to the right of table 1(c) gives that value of the arbitrary fre-
quency « which makes the ratio Just computed unity. As proved in
appendix A, this value of @ is the fundemental frequency uay.

Table 2 gives the main results of three cycles of iteration
required to obtain satisfactory approximations of the second frequency
and the transformed second mode-st zero airspeed (k =®), Columns 1 ogmm
the first cycle (parts (a) of-table 2) contain the two components (1

and ¢é;) of the assumed transformed second mode. This mode must have .
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one zero ordinate (excluding the root ordinstes). Although this zero
ordinate may theoretically be taken at any statlon, the numerical
accuracy of the results is greatest if the zero ordinate 1s placed at
the station and in the component where the preceding mode (the first)
has its meximum numerical value (since the numerical process is such
that the larger ordinstes contasin more significant flgures than the
smaller ordinates). Therefore, the zero ordinate of the transformed
gecond mode 1s placed at the tip station in the flexural component, this
location being designated station A. In the numerical values of

columns 1, the flexural component yaé would normally be taken as zero.

(The values that are shown are estimated from flutter calculastions that
had previously been masde for this wing.) Columns 2 give the intermediate
derived mode obtained by numerical integration. Columns 3 constitute

the first-mode sweeping function. The shape of this sweeping function

is given by columns 2 of table l(c) and its magnitude 1s such as to be
equal and opposite to the intermediate derived mode at station A. Thus
the derived transformed second mode (columns L), which is the sum of
columns 2 and 3, has zero ordinate in the flexural component at sta-
tion A and a shape comparsble to the assumed mode, as indicated by the
ratios in columns 5. The ratios in the next two cycles (parts (b) and
(c) of table 2) show marked improvement in uniformity. The final value
of the ratio computed below the table gives, as proved in appendix A, the
value of the second frequency wp, as shown.

The main results of the iterations to obtain satisfactory approxi-
mations of the third frequency and the transformed third mode at zero
airspeed are stated in table 3. Typical operations required in & cycle
are outlined in table 3(a). Columns 1 §ive the assumed transformed third

mode made up of the two components yaé and ¢g§ . +The transformed

third mode is to have & zero ordinste in the flexural component at the
tip station as in the transformed second mode and & zero ordinate in

the torsional component at the tip station. The location of the second
zero ordinate is designated station B. To obtain greatest numerical
accuracy, the selection of the second zero ordinate is governed by the
same rule that was used for selecting the first zero ordinste, namely,
that the new zero ordinate should be placed at the station and in the
component where the preceding mode (the transformed second) has its
meximum numerical value. The numerical values that are shown in

columns 1 are estimsted from previous flutter calculstions; the torsional

component ¢§§) would normelly be tsken as zero. Columns 2 give the

intermediate derived mode, and columns 3 give the first-mode sweeping
function which, as before, has & magnitude at station A that 1s equal
end opposite to the intermediete derived mode. Columns 4 constitute the
transformed-second-mode sweeping function which has & shepe given by
columns 4 of table 2(c) and a magnitude at station B equal and opposite
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to the sum of the intermediate derived mode and the first-mode sweeping
function (the sum of columns 2 and 3). The derived transformed third
mode of-the first cycle is the sum of columns 2, 3, and 4 and is given
in columns 5. The ratios in columns 6 are far from uniform. The ratios
in the second and third cycles (perts (b) and (c) of table 3) show
improvements in uniformity. The iteration is discontinued at the end of
the third cycle where the ratios are about as uniform as they can get
with the limited number of significant figures that are present. The
frequency obtained by the smoothing device is the third frequency w3
and has the value- shown.

The patterns leild out in the foregoing exsmples establish the
general technique that can be used to obtaln zero-alrspeed modes and
frequencies higher than the third. Gulding rules for determining the
number of selected stations to be employed have been given previously.
These examples also set the basic pattern for the computation of the
modes and eigenvalues of pseudoflutter and of flutter.

Modes and Eigenvalues of Pseudoflutter and of-Flutter

The operational solution in reference 5 gave for the wing under
consideration (fig. 3) a reduced frequency at-flutter of 0.1443. 1In
order to use this operationsl solution, this same value (k = 0.1L443) is
used in the flutter calculations that follow.

The calculations for the first, second, and third modes at-
k = 0.1443 are shown in tables 5, 6, and T, respectively. Aerodynamic-
inertia force coefficients have been computed by equations (19) to (35)
and their values are given in table 4, Structural demping is disregarded,
although & note on the method of incorporating structursl damping in
the calculations is maede subsequently.

Table 5(a) shows in detaill the first cycle of lteration for the
first mode. The form of the computations is the same as that shown
previously for the determination of zero-asilrspeed modes. The amount of
computation, however, is between three and four times that required for
zero-airspeed modes because of the fact-that the functions involved are
complex and thus must be described by two parts - & real part-and an
imeginary part. Columns 1 and 2 are the real and imaginary parts,
respectively, of the assumed first mode. As a start, all parts of the
assumed mode except the real part of the flexursal component are taken
as zero. Columns 3 to 6 are the real parts of the products of
aerodynemic-inertia coefficients and the assumed mode, and thus their
sums (columns 7) are the real parts of—the distributed loed. If the
expressions for the distributed load are considered, this condition is
more evident. The distributed forces producing flexure are given by
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(PRy - iPIy) (yR + in) + (PR¢ - :LPI¢) (¢R + :L¢I) = Py Vg + Bpgflp +

Pr¥1 * Prgfr t i(PRﬂi ¥ Ppyfr - Pryp - PI¢¢R) (51)

The terms of the real part of equation (51) appear in columns 3 to 6 in
the flexural part of table 5(a); the terms of the imaginery part of
equation (51) appear in columns 22 to 25 in the flexural pert of

table 5(a). This separation of real and imaginary perts allows the dis-
placement due to each part to be computed separately. A similer explana-
tion can be made for the quantities in columns 3 to 6 and columns 18

to 21 in the torsional part of table 5(a).

Real and imaginary parts of the concentrated loads that are equiva-
lent to the distributed loads are computed as explalined previously by
the formulas of appendix C. These values are shown in columns 8, 9, 27,
and 28 in the flexurel pert and in columns 8, 9, 23, and 24k in the
torsional part. The real and imaginary parts of the loads due to the
concentrated mass follow next in order, and the total concentrated loads
are given in columns 12 and 31 in the flexural part and 1n columns 12
and 27 In the torsional part. The average shears, average twisting
moments, and bending moments sare then computed as described previously.

The remaining parts of the computations in table 5(a) that are
assoclated with the real parts of the load are described as follows
(the remaining perts that are associated with the imasginary parts of the
load are similar): Column 16 in the flexural part gives the distributed
curvature due to the real part of the load. This curvature is obtalined
by dividing the ordinates of the real part of the bending-moment curve
by the local values of the complex flexural stiffness EI(l + igy)(l + iga).

In these exsmples, any actual structural demping is disregarded; there-
fore is zero. The factor 1 + 1gg, containing the as yet unknown
artificisl-demping coefficient, combines with e to glve the factor l/C

1+1
in column 16, C being the arbitrary eigenvalue —__—EEE' If the actusl
w2 -
structural damping is regerded as other than zero, the values in

column 16 would be computed as follows: The real and imaginary parts of
the bending moment would be combined into the complex bending moment
Mg + iMy. This complex bending-moment distribution would then be divided

Mg + iMg
EI(l + igy)(l + iga)'
The factor 1 + 1g, would be carried along in the arbitrary eigenvalue C,

Mg + iM
and the numerlc¢al velues of the real part of the quotient L
EI{l + ig»

by the local values of the complex stiffness to give
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would be placed in column 16. The imaginary part of the guotient would
be similarly placed (in column 35) in the calculations associated with
the imaginary part of the load, The average twists due to the real part
of the loed are computed in column 1k in the torsional part of tdble 5(a),
and those due to the imaginary part of the load must also be computed.
These calculations follow the same pattern as those Just explgined for

the curvatures. The complex torsional stiffness GJ(l +-ig¢) 1 +-iga)

enters 1n place of the complex flexural stiffness, If GJ or g¢ ie
verlable over a bay length or over the whole span, the numerical
integration for the torsional part of-the calculatlons should be carried
out as explained in the part of table 1(a) that deals with veriasble GJ.

The numerical integrations sre completed in the manner already

described, and the derived mode 1s thereby obtained in the form of four

components of displacement. The flexural components are ygg) and y£§)

of columns 21 and 40 in the flexural pert. The torsional components

axe ¢§§) and ¢£§) of tolumns 17 and 32 in the torsional part+ How-

ever, these components are not actually the real and imeginary parts of
the flexural and torsional components of the derived mode, because each
one of them contains the complex factor 1 + igg. Nevertheless, the

By vi2) (2) (2) (2)
complex derived mode is given by yip’ + 1y;7’ end #in’ + i¢lI .

The complex ratios of the complex derived mode to the complex

assumed mode are computed in column 41 in the flexural part and
column 33 in the torsional part. Only two of the#e ratios have actually
been computed but they are sufficient to indicate the need for further
cycles of i1teration.

A total of four cycles of iteration (the main results of the last
three are shown in parts (b), (c), and (d) of table 5) were required for
satisfactory convergence. In columns 6 of table 5(d) and immediately
below table 5(d), the smoothing device described previously is applied
to obtain the best single value of the ratios. The fundamental (first)
eigenvalue is that valﬁF of C which mekes the ratio unity. Thus

1 +-1ggy

2 >
@
frequency and artificial demping of the first mode are obtained from
the real and imaginary parts of the equation

Ay 7
Cy = (269.5 - 82.2i)i£%ry eand since C; 1is defined as the

Pt

o7
Ei

1+ igal

= (52)
w2

(269.5 - 82.21)
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The celculation of these quantities and th%wcorresponding airspeed V1
which is obtained from the relation Vv; = —Ei- are shown at the bottom
of table 5.

Tables 6 and T show the main results of the iterations to obtain
the transformed second and third modes for %k = 0.1443., Four cycles of
iteration for each mode gave satisfactory convergence. The assumed
modes of columns 1 and 2 of tables 6(a) and T(a) were taken in the forms
recommended previously in connection with tables 2 and 3. 1In tables 6

and T, the complex intermediate derived modes are given by yég) + iy%i)

and ¢£;) + i¢b§)5 the complex first-mode sweeping functions, by

(n) (n) (n) (n) -
Yp1r * iyblI and ¢blR + i¢blI with shapes corresponding to columns 3

and 4 of table 5(d); and the complex transformed-second-mode sweeping
(n) (n) (n) ., q4(n)

functions, by ¥y ip * 1¥y,py and ¢ba23 + i¢ba21 with shapes corre-

sponding to columns 7 and 8 of taeble 6(d). The results computed in and

below table T(d) give for the third eigenvalue, Bg3 = 0.030 and

w
3
v3

168.9 radians per second. The corresponding ailrspeed is
390 feet per second.

Computation of True Modes

Because the critical flutter velocities are given directly by the
eigenvalues, knowledge of the true modes in flutter problems is of no
value (at least of no value recognized at present). The same statement
epplies to the transformed pseudoflutter modes, with the exception that
in the iterative method their determination is & necessary adjunct to
the determinstion of the eigenvalues. In ordinary problems of forced
vibration (at zero airspeed), however, the true modes are often used
with great advantage. For this reason and for the sake of completeness
of the presentation of the iterative transformation procedure, the
method of determining true modes from results of the iterative trans-
formation procedure is illustrated in tables 8 and 9.

The computations in tables 8 and 9 pertain to the same wing analyzed
in the previous examples. The modes computed are for k = 0.1443, The
true third mode as computed in table 9 may therefore be compared with the
flutter mode computed for this wing by the operational method in
reference 5.

In table 8, the true second mode is computed as follows from func-
tions appearing in the last cycle of iteration for the transformed
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second mode (table 6(d)): Preceding the table proper is the calculation

C .
of the elgenvalue factor F = El ~ 1 that is needed for computing the
o -
true second mode. In the terminology of tables 6(d) and 8 and as shown _
in appendix A, the true-second-mode shape is given by

Yer * Wor =i * iyll) ( y3) iygg;) (53)
and
Bon + Bor =01z + i¢11)+(¢§2_g v 14(2) (54)
in which . . . _
oM y(u)_
Vg + ¥y, = blgl ) lblI (55)
Co
and

furd * o1y

_ blI
¢lR + i¢lI - Cl 1 (56)
Co -
c (4) , 5, ()
olumns 1 of table 8 show the key ordinate YB1R + iybl of the
- (k) (4) (h) (k)
first-mode sweeping function yBlR inlI’ ¢ ¢blI as given in

columns 5 and 6 of table 6(d). The key ordinate—is taken as the largest
ordinaste (the ordinate at station A) for the reason of accuracy
cited previously. The key ordinate of-the first-mode shape .

+ 1 equal to the-first terms on the right-hand sides
Yig * Wip Bp +if . (eq T gh
of equations (53) and (54%)) is shown as the boxed value in column 2 and is

obtained by dividing the value in column 1 by the elgenvalue factor Fis.

The other values in columns 2 are obtalned by using the key ordinate in

conjunction with the first-mode shape given in columns 3 and 4 of-
table 5(d). Columns 3 show the transformed-second-mode shepe

gg% + 1yé2%, ¢(5) + i¢;g% (equal to the second terms on the right-hand
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sides of equations (53) end (54)) given by columns 7 and 8 of table 6(d).
The sum of columns 2 and 3 which is given in columns U4 gives the shape

of the true second mode Yop + 1¥p1s ¢2R + i

2T

sides of equations (53) and (54)).

(equal to the left-hand

In teble 9, the computation of the true third mode proceeds as

follows:

The necessary eigenvalue factors Fl3 =

c

1 =
—C—'—-l and F23—

Co

EE -1

are computed as ghown. In the terminology of tables 7(d) and 9 and as
shown in appendix A, the true-third-mode shape is given by

s + W3 ={¥11r * W11y +y1op *+ p7) *(Yaer *+

and

B + 1837 = (Brig + i¢]_lI)+(¢12R + 16, o7) o

in which

Y bron )+

<§ ) ) (11 + 1111) + (% ] l) (Fren + 16101)

+

- l) (ylER * ileI) =

() (L)
Vs _ Ypagr * Wpeor
Ya2R YaoT = G2 _,
C3
(&) (k)
6+ 1g Brasr * Ppant
a2R 22T Cs |

Yooy * (yg}{

1eo1) *( i’;&

b (4
yl(all)a + iybl%

(s (b
u%*i 1%

)

(57)

e
(58)

(59)

(60)
(61)

(62)


http://www.abbottaerospace.com/technical-library

30 NACA TN 2346

and  yyop + yynps Biop + i¢12I( js to (;?ER ZS?yaEI’(¢?2R + 1for B8
5 5
Vi * Wyps g * i¢lI is to y op +1v.51» ¢a23 +-1¢a2I in table 8.

The key ordinstes y(h) +—iy(h) and ¢(h) + i¢(h) of -the first
blR blI/A balZR ba2l/ B

and second sweeping functlons appear in columns 1 and 2 snd are taken
from columns 5, 6, 7, end 8 of table T7(d). The key ordinate of the

functions F23Cy12R + ileI), F23(¢12R + i¢121)’ which asre equal to the

second terms on the left-hand sides of equations (59) and (60), is com-
puted in columns 3 by using the key ordinate of columns 2 in conjunction
with ordinates at stations A and B in columms 2 and 3 of table 8 as
follows:

E23 (ylER ’ 1y121)gtable 9 )
9
+ 155

(P1r * iilI)A ]
(¢(5) ¢(5)) F23(Vacm a2y (63)
+1 --Jtable 9
“ER TRl BLabie 8

The key ordinate of the functions Fl3(yllR + iyllI)’ Fl3(¢1lR + i¢llI)’

which are equal to the first terms on the left=hand sides of equations (59)
and (60), is given in columns 4 and, in accordance with equations (59)

and (60), is the difference between yﬁt% + iyéi%, ¢£t& + i¢ét% of

columns 1 and F23(y12R + ileI), F23(¢12R + i¢121) of columns 3. The
key ordinates of the first-mode shapes Yyig * 1¥9970 ¢11R + i¢llI and

-

Y1oR *+ 1¥1o1s P1or + 1oy are shown in columns 6 end 5 and are obtained

by dividing the values in columns 3 and 4 by the appropriate eigenvalue
factors. The sum of the key ordinates of columns %5 and 6, shown as the
boxed value in column 7, is the key ordinate of the total-first-mode
shape yig + iyy1, $1g + ify; which 1s equal to the sums of the first

two terms on the right-hand sides of equations (57) and (58). The other
values in columns 7 are obtained by using the key ordinate in conjunction
with the first-mode shape given in columns 3 and 4 of table 5(d). The

key ordinate of the transformed-second-mode shape Yoor * 1¥a01s ¢a2R + i¢a2I!

which is equal to the third terms on the right-hand sides of equa.-
tions (57) and (58), is shown as the boxed value in columns 8 and
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is obtained by dividing the.ivalue in columns 2 by the eigenvalue fac-
tor F23. The other values in columns 8 are computed by using the key

ordinate in conjunction with the transformed-second-mode shape given in
columne 7 and 8 of table 6(d). Columns 9 show the transformed-third-

mode shape yég% + iyé?%, ¢é§% + i¢£§% (equal to the fourth terms on

the right-hand sides of equations (57) and (58)) given by columns 9
and 10 of table 7(d). The sum of columns 7, 8, and 9 given in columns 10
gives the shape of the true third mode ;g + 1y37, Far + i¢3I (equal

to the left-hand sides of equations (57) and (58)).

DISCUSSION OF RESULTS

Trends and Comparisons of Numericael Results

Results of the computations shown in the preceding section of the
paper together with results of similar computations based on other
assumed values of k are given in figures 4 to 6, Figures 4 and 5 deal
with the wing to which the concentrated mass is sttached. Figure 6
gives data of & similar nature for the same wing without the concentrated
mass. The coniputed results obtained by the Rayleigh-Ritz and operstional
methods and the experimentsal results, all of which are given for this
wing in references 5 and 6, are also recorded in figures 4 to 6.

In part (a) of figure k4 the solid curves show the varlation of the
artificlel-damping ccoefficient g, wlth airspeed in each of the first
three solutions. For each assumed value of k & dashed curve i1s drawn
through points that represent solutions for that value of k.. Part (b)
of figure 4 shows in a similar way the variation of the frequency o
with elrspeed and the lines of constant values of k. The facts of
particular interest that are shown by these plots are as follows:

(1) The true flutter condition is given by the third solution for
a value of k between 0.1443 and 0.1590 at an airspeed almost equal to
that found in the experiment. Here the computed value of gg 1is zero.
The computed frequency at true flutter is also in very close agreement
with the experimental value.

(2) The operational solution is in good agreement with the experi-
mental solution, but the solutions obtained by the Rayleigh-Ritz method
with three and four modes vary by T2 percent and 22 percent, respectively,
from the solution obteined by the operational method. The operational
solution is theoretically the most exact even though it involves summa-
tions of finite numbers of terms of infinite series. However, as pointed
out in reference 5, its use is limited in practice to wings of uniform
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section. In the present example the results obtalpned by the iterative
method would be expected to be better than the results obtained by the
Raylelgh-Ritz method because the eight degrees of freedowm used in the
iterative method are much less restrictive than the three or four used
in the Rayleigh-Ritz method. Although exsct agreement of the results of
any of the computational methods with the experimental results is not to
be expected, the better agreement of the iterative solution as compared
with the operational solution is at first surprising. On further
observation, however, this agreement must be credited to a fortunate
disposition of the errors involved in the iterative method because, in
the case of figure 6, the relative order of agreement of the operational
end iterative results with the experimental result is opposite to that"
in figure 4.-

(3) The trends of the solid curves representing the first and
second solutions in figure U4(a) indicate that both may cross the zero
artificial -damping exis at very large airspeeds. But this conjecture
is of no practical interest so long as a curve (the third solution) thet
crosses at a lower airspeed exists. However, the question of whether
the curve for some solution higher than the third could cross the zero
artificial-damping axis at en alrspeed lower than that at which the
third solution crosses demends an answer. '

(4) Reasonable assurance that, among all possible solutions, the
curve of third solutions in figure 4(a) crosses the zero artificial-
demping axis at a lower airspeed than any other 1s provided by the
trends of the curves for constumt values of k in parts (a) and (b) of
figure 4. The curves of k show that the curved representing the fourth
solution will most assuredly lle sbove and to the right of the solid
curves in figure 4(b) and probably below and to the right—of the solid
curve for. the third solution in figure k(a). The curves of k in fig-

ure 4(b) are straight lines by definition [k = %?). Prediction of the

courses of the curves of k in figure 4{a) cannot be made with much
certainty. They have a strong tendency to proceed to the right, but it—
is easy to believe that upward or downward changes in their directions -
could teke place. The curve for the fourth solution, however, would
probably cross the zero damping axis at a value of v Dbetween 500 and
600 feet per second in figure 4(a).

Figure 5 shows and compares the amplitude and phase distributions of
modes computed by the iterative transformation procedure and by the
operational method for the wing with a concentrsted mass. The first and
second modes as well as the more important third mode from the iterstive
solution for k = 0.1443 are plotted, and the third mode from the
iterative solution for k = 0.1590 1s also plotted. The third modes
from the iterative solutlons for the two values of k agree very well
in shape with the flutter mode obtained in reference 5 by the operational
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method, and the operational mode lies between the two lterative modes.
Thus the agreement of the iterative and the operational methods is
again evidenced.

Figure 6 is a plot similar to figure 4 but relestes to the behavior
of the wing analyzed in figure 4 if the concentrated mass is not present.
There is very little similarity in the data of the two figures. The
most notable difference is that in figure 6 the true flutter mode appears
in the second solution instead of the third as before and that the
flutter speed 1s lower than before. Of interest is the occurrence of
almost equal eigenvalues 1in the second and third solutions for k = 0.50.
The flutter speeds given in figure 6 by all methods of solution,
including the Rayleigh-Ritz method are seen to be in substantial
agreement.

CONCLUDING REMARKS

The paper has described the iterative transformation method sug-
gested by H. Wielandt and has demonstrated the use of the method in an
orderly computation of critical flutter speeds. Numerical comparisons
with solutions obtained by other methods and with experimental values
have been made. The applications made in this paper show promise for
future practical use of the method.

Langley Aeronsutical Laborstory
Nationgl Advisory Committee for Aeronsutics
Langley Field, Va., January 17, 1951
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ON THE CONVERGENCE OF THE ITERATIVE TRANSFORMATION PROCEDURE

Introduction

The extensive existing literature on the eigenvalue problems is
concerned almost exclusively with the class known as self-adjoint -prob-
lems, in which the eigenfunctions and eigenvalues are real. In recent
years, non-self-adjoint eigenvalue problems have recelved increasing
attention. This class includes the flutter problem in which the eigen-
functions and eigenvalues are generally complex. The literature
referred to by Wielandt—in reference 3 reveals that the non-self=adjoint
eigenvalue problem and the transformation method for its solution have
been given some attention since at least 1928. Wielandt's own work
constitutes probably the most extensive contribution on the subject.

The discussion on convergence given herein is not contained in
Wilelandt's work and may be comsidered a rigorous proof if the following
assumption is valid: that the equations (equations (41) and (42)) for
the system (the wing) under comsiderstion have an infinite number of-
solutions that form a complete set for any value of the reduced fre-
quency k. In the subseguent—demonstrations, the wvalidity of expanding
arbitrary displacement functions in infinite series of elgenfunctions
depends upon the valildity of the assumption. That complete sets of
elgenfunctions do exist seems plsusible enough to Justify reliance in
the conclusions.

Basic Relations

For any one of the true solutions of the eigenvalue problem, for
example, the eigenvalue- C and eigenfunction y _,@ , equations (k1)
m m’”m

and (42) may be written as

S, J, mf A AT

and

(a2)

X L
CnPm =U/; aﬁzi_%_zéajl/; C%y'ym + Q¢'¢ﬁb<dx)2
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To make the notation more concise, let the coupled mode ym,¢m be

represented by wy. Then if ym,¢m is substituted into the right-hand

sides of equations (Al) and (A2), the left-hand sides may be represented
by CyWy. Furthermore, because of the linear character of the equations
of the problem, substitution of the function series

-]

E:;'aiwi (A3)
i=

into the right-hand sides of equations (Al) and (A2) gives for the left-
hand sides the function series

2]

;;; Ciagwy (Ak4)

The coefficients ay are, in general, complex. The complex eigen-
vaelues Cji are assumed in the subsequent proofs, except where stated
otherwise, to be different from each other, and the eigenvalue having
the largest modulus is defined as C;, the second largest, as Co, and
so forth, so that

lcl| > |c2| > |c3| >. .. (a5)

Expressions (A3) and (A4) are the expansions, in terms of the
eligenfunctions and the eigenvalues, of the functions previously referred
to as the assumed and intermediste derived modes, respectively. The
subsequent proofs of convergence are based upon the fundamental relatlion-
ship that exists between expressions (A3) and (AL).

Fundamental Mode

The fundamental mode and eigenvalue are found by iteration
according to the original Stodola procedure. In the present terminology
and notation, this procedure and its proof of convergence are as
follows: The coupled mode assumed at the beginning of the first cycle
of iteration in general contains some component of each of the eigen-
functions; therefore its most general expression 1s

D W (26)


http://www.abbottaerospace.com/technical-library

36 NACA TN 2346

The intermedlate derived mode {which in this case is also the final
derived mode inasmuch &3 no sweeping operation is required to obtain
the first mode) is for this first cycle of iteration

w-gl) = wj(re) = i: Cj;a.iwi (AT)

The second and following cycles are begﬁh with the final derived mode-
of each preceding cycle, and thus the assumed and derived modes of—the
nth cycle are

Win) = Z Cin-laiwi | (48)

i=1

w§_n+l) =g Ci G (A9)

In accordance with the definitions given in equation (A5), all
terms on the right-hand sides of equations (A8) and (A9) except the
first are negligibly smell in comparison with the first for large values
of .n. In the limit the fundamentsel mode is obtalned as

(n+l) _ n '
lim Wy = lim Cy aw (AL0)

n—yw n-—>3cw
and the fundemental eigenvalue is obtained from
(n+l)
Wy

1lim _(_T : (A11
N-—»e0 W . , )

Transformed Second Mode

The 1nitial assumption of-the transformed second mode in general

is of the form
(1) zm ("’1)
W = 2 bylwy - 1=} w (A12)
a2 = i i \wl A 1
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in which the esrbitrary coefficients bi are in general complex and

the subscript A refers to values of elther the flexural or torsional

components of the eigenfunctions at stetion A. More specifically, if,

for exemple, the nodal (zero) point of wgpo 1s selected to be at sta-

tion A in the flexural component, then the subscript A refers only to
the flexural components of wp, Wo, w3, - . . and not to their tor-

sional components. Thus each term of the series in equation (Al2) sat-
isfles the requirement that either the flexural or torsional component

of the assumed mode be zero at station A.

To simplify the subsequent work as much as possible, the elgen-
functions are henceforth assumed to be normalized to unity at station Aj
thus .

(wi), =1 (1=1,2,3 ... (413)

Equation (A12) now takes the simpler form

wgé) = :;2‘ bi(wi -.wl) , (A1k)

The assumed mode given by equation (Alk) leads, according to equa-
tions (A3) and (AL4), to the following intermediate derived mode:

wél) = ; by (Ciwi - Clwl) (A15)

Sweeping of this intermediste derived mode with the first-mode shape
(previously.determined) leads to the derived transformed second mode of
the first cycle as follows:

(1) co
(2) _ (1) (™
Waz = Wp - —:;T' Awl = jFZECibi( Wy - Wl) (Al6)

When each succeeding cycle is begun with the derived transformed
second mode of 1ts preceding cycle, the various functiomns for the nth
cycle are ’

""érzl) = Zcin.-lbi (Wi - W) (a17)
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= -1,
W-t()n) = é Cin ' bi (Ciwi - ClW (AlB)
l 00
“é{? - 122 Cinbi(wi - ) (A19)

The limits as n approaches infinity are

(n+l
lim wgo ) = 1im (:2“1;2(1.-2 - ) (a20)
n—pow n—p) o
and
(n+1)
lim _(__j_wag - ¢ (A21)
N—~—Pec wag 2

Equations (A20) and (A21) show that convergence to the exact-transformed-
second-mode shape Wo - w; and to the exact second eigenvalue C, can

be obtalned theoretically.

True Second Mode

The key to computation of the true second mode 1s readlily found in
the simple case illustrated in figure 1. In this case the sweeping
function of the final cycle of iteration would be the displacement

_ 2
produced by the forcing load ¥ w2? - @ )y1, in which y; 1s the
first-mode component of the transformed second mode Yao* The sweeping
function is designated by Yy} which has a well-defined numerical

value in the iteration. Thus the value of y; could be found from the
equation '

2 2 2
7 -y -
=(‘”2 21)1=w22-1yl (A22)

701 A\

that is, N

Yp1
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Ip1

>
2 .

s -
il

The sum of Yao given in the iteration and ¥q glven by equation (A23)

¥y = (423)

gives y,, the true second mode; that 1s,

¥y

a2 TYL =V "V TV =Y (A2k)

By analogy, the true-second-mode shspe in the general (complex)
problem under consideration is found as follows: The limiting value of
the sweeping function is, from eguation (A18),

(n)
-W

w, = 1lim c.% Eé 1)b.w (a25)
N 2 \C, ~ 2"1
n—yo0 2

lim wé?)

n—ycw n

B2 — - lim Cpbgw (426)
—_— . 1 N—>c .
Co

The expression analogous to equation (A24) is

1im w(n)
(n+l)  peyoe P n
lim W +E=22  _ _ lim C, bow (A27)
a2 C 2 V2"2
n-—)e _l -1 n—y«
Ca

which gives the exact shape of the true second mode.

Transformed Third Mode

The first cycle of iteration for the transformed third mode begins
with an sssumed mode that has two zero values, one of these being in the
same (flexural or torsional) component and at the same station (sta-
tion A) as previously employed for the transformed second mode. The
other zero value mey be taken 1n the same component as was the first
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zero value and at a different station (sfation B), or it mey be taken
in the other component at any station, including sbtation A. Either of
these possible selections for the location of the second zero value 1is
indicated in the following equations by use of the subscript B. The
initially assumed transformed third mode mey be written as

e N = O T

in which the arbitrary coefficients d; are complex., Each term of the
series in equation (A28) is zero st ®tation A by reason of the normsliza-
tlions steated in equation (Al3), and each term 1s also zero at station B.

The various displacement functions for the geaéral (nth} cycle of
iteration mey be expressed as follows: The assumed mode is

«3) n-1 Vim W

Va3 Zci 41V - - % =W, - 1) (429)
i=3 2

The intermediate derived mode is

NONE Em - oywy - (;_i__ﬂ) (cavs - cmﬂ (430)
B

=3 2 - V1

The result after sweeping the intermediste derived mode with a first-
mode shape such as to make the sum zero at station A is as follows:

n} Wi - W
) (Wg ) = t cs-1ag fey wr - ) - (?;.—‘wi) o2 (v2 - @ (a31)
A B

w1 i=3

Sweeping of the mode given by equaticn (A31l) with a transformed-second-
mode shape such as to meke the sum zero in the flexural or torsional
component (as the case may be) at—station B glves the derived transformed
third mode as follows: ' ' ' " " ' -
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(=) w? - )
(n+1)  (m) v, Y1 /a )
wa3 - wb - wl 1~ 'w2 - wl (WE -V

1

n Wi - W1

g Cy dy]|wy =W =~ [/———=) (wo - W (A32)
1 %M1 1 _ 2

1=3 (w2 v )B( ]ﬂ

The limits as n approaches infinity are

Wq - W
Lim w;?l) = lim C3nd3lE3 - vy - <'w3_-_—wi) (w2 - "’ﬁ:l (A33)
1/8

n—ew N—> 2
and
w(n+l_) _
lim -2 =g (A3%)
n—)o yw
a3

As shown by equations (A33) and (A34), convergence to the exact-

W -
transformed-third-mode shape wq -~ wy = —3———El Wo - W and toc the
3 1 Wy - W 2 1
B

exact third eigenvalue C3 can be obtained theoretically.
True Third Mode
Computgation of the true third mode is explained by referring agein
to the simple problem of pure flexursl vibration in which air forces

are excluded. The transformed third mode in this simple problem would
be given by

- 3°- 91 .
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The total load réduired to hold the beam in equilibrium in the
shape Ye3 is T - :

5 ¥z - ¥ of¥3 = ¥
Y03 Y3 - 7’0512 1l - ('%_—?]:) Yy - i (;3—_—1) Yo (A36)
2 “lig 2 B

If the beam is vibrating with shape Ya3 at frequency w3, the inertia
load 1s given by ) )

2 2 Y3 =N
. B -

The forcing load required is the difference betweén the totml load
(expression (A36)) and the inertia load (equation {A37)), that is,

2 2 | Y3 = ¥1 2 ovfY3 1 '
ot Gt ) e

B

The displacement produced by this forcing load is

2

2
@ y3 - ¥ w y3 - ¥
=5 - 1 - (;H) y1* —35'1<5;3—:71‘> Y2 (439)

and this displacement must be equal-to the sum of the sweeping functions
in the last cycle of iteration (if the iteration has been carried to com-
plete convergence). The Tirst sweeping function is of the first-mode
shape and the second sweeping function is of the iransformed-second-mode
ghape. If the expression (A39) is written in the form

522 - 042 Va -
I l(is___ﬁ) Y G WY T Halt + A BV
. Y2 © N1 W, Y2 " 1 /g

2

W3 y3 - V1

—. _ ]| == - AlO
5 <y2 - B(y2 ¥y) - - (ako)

|4
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each of the sweeping functions contained in the displacement produced
by the forcing load is obvious. Thus

2 2
W -y @ ¥3 - ¥
ybl_—.i_ll_(ﬁ__l_) v+ (22 - <_3___;)yl (ab1)
&1 B B

2 Yo = Y1 @ Y2 = Y1
and
@ 2 Yy Y1
- (=3 23”71 -
Ypeo = =5 - L <y - y) (y2 y]) (ak2)
Lo 2 1/

in which Yol and Ypao designate the first and second sweeping func-

tions, respectively. Both of these functions have well-defined
numerical values in the iteration.

If now a simpler notation is adopted, equations (Akl) and (Ak2)
can be written as

2 2
Yp1 = <<132_ - l>Y11 * <(£3—2' - 1>y12 (A%3)
&1 ®2
and
2
Toa = | =2 = 1)ez (ak)
P2
in which
Y3 =931 ¢
N <——) ¢ (a2)
Y3 = Y1
= |2 : Ak6
Y10 <y2 = yl) Y1 (Ak6)


http://www.abbottaerospace.com/technical-library

Ll NACA TN 2346

Yop = (;—2—:—1)3@2 - ¥y) (a47)

The true third mode is clearly given by the sum of equations (A35),
(A45), (AL6), end (ALT); thus

Y3 = Vg3 t ¥11 * ¥ip t Vg (ak8)

The transformed third mode ya3 is given directly in the iteration.

The procedure for finding the other components on the right-hand side of
equation (A48) is as follows: Component Yop? by equation (ALkL), is

= —b82 - (ah9)

Component ¥ 1s known when Yy - 1s known because its relation to ¥
12 a2 a2

was established previocusly 1n connection with the transformed-second-
mode calculations (see egquation (A24)). Component ¥y, 1s then found

by equation (A43) as

(1)32 .
: ybl-( R BT

. ' .
By analogy with the floregoing case, the true third mode in the
complex-eigenvalue problem is found as follows: The limiting value of
the second sweeping function.ls (see equations (A31) and (A32))
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(n) b
Wl 1
Lin wigd = - n | —0—0 (2 - )
N ® © N—eo 2 1l B
s - ()
= 1im c. == - 1la ({=—=) [, - w (a51) v~
N> 3 <C3 3 Wy - wﬁ-B (2 ﬁ

The limiting velue of the first sweeping function is (see equations (A30)
and (A31))

(n)

W
Llim wéi) = - lim :_— w,
n—ye0 ‘Nn—yw 1 A
C ' c Co\ fwa - W
= -lim C3 4ol 52 R El - CQ ;3—:—;; Wy (a52)
N—po C3 3 3/\"2 1B

The quantities analogous to y;, and ygo oOf equations (A43) and (Alk)

are, for the present case, 1lim wgg) end 1lim wig). The letter
n—e n——yw

quantity is obtained from the relation analogous to equation (A49) as
follows:

lim
(n)  np—o ba2 (W3 - W1 ) ( %
lim z2 ——————— = 1lim C d T EE—— Wo - A
e Va2 T gg N N 3 "3\wy - Wy 2 wﬁ (53)
3

The reletionship of lim w(n) and lim w(g) is obtained from
N—pw n—yw °

equations (A26) and (A20) of the section dealing with the transformed

second mode. Thus,
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w(n)t} (;)
lim
(n) Kae )B Eq.(A53) |n_ e P

——

lim w = lim ;
n—>0 12 N—3c w(n+l)) gi -1
82 /g 2 - |Bq. (A26)
Eq.(A20)
W - W. ’ -
= 1lim ci”a <3——i) W " (A5h)

The quentity analogous to y., .of equation (A43) is, for the present
q 11 2

(n)

case, lim w11 end 1s obtained by an equation analogous to equa-
n-—3o .
tion (A50) as follows:

lim w(n) (;2 - ) lim w(n)

1im w](il) _n—pe O 3 n—ye '
N—~——3 o g& -1
€3
Wq = Wl
= 1im C3nd3 1l - w3_-_w— w1 - (A55)
Ne——pc0 2 1 B

The exact shape of the true third mode w3 1s given by the sum of
equations (A33), (A53), (A54), and (A55), which is

-

lim (wgﬂ) L w§§)) = lim C3'agwy  (A56)
n—o n—poo

Fourth and Higher Modes

Extensions of the-proofs to modes higher than the third can be made
in a manner similar to the foregoing proofs. By this means, the ltera-
tive transformation procedure can be proved, under the assumptions
stated at the begimning of this appendix, to be convergent for all modes
and elgenvalues.
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Cases of Eigenvalues Having Equal or
Nearly Equeal Moduli

For a representative case, suppose that

|Cl| > |C2 I; |C3| > |041 >. .. (A57)

end that
l02| - Ic3 (458)

or that
CAE |es (459)

Under conditions (A57) and either (A58) or (A59), the assumed and
derived modes after a few cycles of iteration will be virtually as
follows (see equations (ALT) and (A19)):

v;'érel) = Ca_n-l'b2 (w2 - 1) + C3n-lb3 (w3 - wl) (A60)
wg2+l) = anbz(we - wi) + C3nb3(w3 -‘ED : (A61)

If C is only slightly greater than C the second terms on the
2 3>

right-hand sides of equations (A60) and (A61l) become negligibly small
very slowly as n increases, even though they do become negligibly small
as n approaches infinity. If 'CEI and |C3| are equal, these terms

never become negligibly smell. Thus, the problem of circumventing this
slow convergence or apparent lack of convergence arises.

A satisfactory method for coping with these conditions is to
combine linearly the results of the last two cycles of the series of
iteration cycles that have been performed. For best results in an
actuals problem, not less than the third and fourth cycles should be used
for this purpose in order to reduce as much as practicable the effects
of all higher-order components.
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The following formulas for combining the results‘of the last two
cycles are based on the assumption that the assumed and derived modes
in each of the cycles contain only components of_ the types in ‘equa-
tions (A60) and (A61).

The two componefits (with shapes wo - wy; and’ w3 - wy) clearly

appear in the last cycle in proportions different than in the preceding
cycle. (The proportion in each cycle 1s a complex function of the
spanwise coordinaste.) Because of this differing proportionality the
results of tycles n -1 and n can be linearly combined so that the
combined functions contain only one of the ccmponenxs w2 - Wl

and w3 - wl. Accordingly, the ratlos of both thﬁTflexural and tor-
sional components of the combined functions at all stations should be
equal to each other. In slgebraic terms, this statement means thet

Y . W
GO, @] " A52)
2 a2

in which r¥ and R are (complex) constants, and the subscript S
designates that-the ratlo may be evaluated at any station S, that is,
that R has the same value for all statioms. All w functions must
be the same type of component; either flexural or torsicnal.

Since S can be any station, the equality

(2)  (nr) (n)  (ae)
T'Wgo + Wao _ TWgo + W a2 >
o) . (@) T L (meI) | (a) (463)
a2 a2 1 a2 a2 5

exists, in which stations 1 and 2 must be different-or may be the same,
depending on whether the w functions on the left;hand side are the
same or different types of components than those on n the right-hand side.
The two values of r that-patisfy equation (A63) are

J0, ) [len,@\ @)
7n 1Y, =) F HnE1,@) | T (@1),(a)

(a6k)
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j_.n which

(n-1),(n+l)
A

A(Il-l) 3 (n) =

(@), (031) _

A(n—l) s(n+l) _

e

( (n))
\'{
az2

1

)

()

) (),

- (n+1)
e

wa2

( (n-1)

) ( (n+1)
w
1 a2

(n-1)
)1 [ 82

(n+1) (n+1)
6&2 )1 (WBE

The corresponding values of R are

)

2

),

.
)

R

These values of R are equal to

EACEACERI7

(510, (@)

A(n) ,(n+l%(n—l) ,{n)
T

C and C

2

3’

values of r, when pleced in the expression

rwgg)_ + wgg"'l)

(n-l),<n+1))2 (n),(n+1)
A A

B A(n-l) 2 (n)

k9

(465)

(A66)

(A6T)

(A68)

and the corresponding

(A69)

v
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give modes of the shapes Wo - wp; and W3 - Wi. When ICE’ is nearly
equal to |C3|, the appropriate set of R and r .to give the lower
transformed mode Wpo - W1 is evident. When [02{ and lC3| ere equal,

the mode obtained by equation (A69) with either value of r may be used
as the transformed second mode, but the trends of the eigenvalues that
have been or will be determined st other values of the reduced fre-
quency k may be used as a guide in meking the selection that fits the
trend.

In actual computations, one further cycle of iteration beginning
with an assumed mode given by expression (A69) should be carried out to
assess the extent to which the functions wéz-l), wﬁg), and w£2+l)
are free of all except the two components of the types appearing in
equations (A60) and (A6l). If the ratios of this cycle are not reason-
ably constant, the unwanted components gtill present have to be removed
by carrying out another cycle of iteration and again applying equa-~
tions (A64) and (A68). ;

The method Just described is clearly applicable in the general
cases ICnl = Icn+l| or ’Cnl & lcn+l|'

Eigenvalues having equal moduli include the special case of
identical eigenvalues. As a basis for discussion let 1t be assumed that

tcll >.|02| - |C3' >'|Ch| >. .. (ATO)

and that - T

C, =0, =2C ' - ) (ATL)

The significance of the occurrence of-these two identicel eigenvalues

i1s that the wing system may oscillate with the same frequency and arti-.
ficiel demping in any of an infinite number of modes, any two of which
are linearly independent of each other end of the first;- fourth, and
higher modes. This infinite number of possible modes (all corresponding
to 023) are the infinitely many lineesr combinstions of two basic

linearly independent modes that are necessary and sufficient in combi-
nation with the first, fourth, and higher modes to describe an arbitrary
displacement of the wing system. Clearly, ohly two linearly independent
modes corresponding to the double eigenvalue 023 ‘are required for

analytical purposes. These two are designated L end w3 as before
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but with the reservation that. w, and w3 nust be derivable as two
differing linear combinations of a single basic pair of linearly inde-
pendent modes that also correspond to 023.

Equations (A20) and (A21) are replaced in the present case by

lim w2121+l) = 1lim 023nE2(w2 - wl) + ha(w3 - le (a72)

n—yw n—>
and
(n+l)
wa2
1im =C, (AT3)
=R R
Equation (A27) is replaced by
(1) lim wﬁi)
n+ n
lim wy,  +222 - 1im C, (opwp + B w) (ATH)
Cq 3 373
n—3cw -1 n—-y)oo
023

The transformed second mode (equation (AT72)) is in this case a
linear combination of the first three eigenfunctions, and the so-called
true second mode is actually a linear combination of the second and
third eigenfunctions.

If the iterative transformation procedure is now applied in the
regular way to determine the transformed third mode, the third elgen-
value, and the true third mode, the results will be as follows: The
transformed third mode will be, like the transformed second mode, &
linesr combination of the first three eigenfunctions but will be linearly
independent of the transformed second mode. The so-called true third
mode will be, like the so-called, true second mode, a linear combinetion
of the second and third eigenfunctions and will be linesrly independent
of the so-called true second mode. The results will also include a
second determinstion of the double eigenvalue 023. It may therefore

be concluded that the iterative transformation procedure is valid and
sufficient in all cases of eigenvalue multiplicity.
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APPENDIX B
THE COMPLEX STIFFNESS FOR BEAMS WITH STRUCTURAL DAMPING

The familiar concept of a complex force K(1 + ig)s in simple (one-
degree-of -freedom) vibrating systems having structural demping msy be
easily extended to continuous vibrating systems such as beams and air-
plane wings. The quantity K is the elastic-spring constent, s is the
displacement, Ks 1s the elastic~spring force, and Kgs is the
structural-damping force. h -

For a beam in flexure, the stiffness of-the fibers is given by the
modulus of -elasticity E, which is analogous to the quantity K for the
spring. The elastic stress at any point of the cross section is given
by <¢E where ¢ is the strain which is analogous to the displacement s.
Then the complex stress at any point of the cross section of a beam with
structural damping is E(L + ig)e. The complex bending moment corre-
sponding to this stress, obtained in the usual way by integration of the

moment of the stresses over the section, is EI(1l + ig)d 5 This result
ax :

leads to the concept of a complex stiffness EI(1l + ig,) for beams in
flexural vibration with structural demping. Similarly, the complex
stiffness of beams in torsional vibration with structural damping

is GJ(1 + igy). The subscripts Yy and ¢ indicate that the structural-
damping coeffgcient g may have a different value for torsional
vibrations than it has for flexural vibrations. Both gy and g¢ may

be functions of the spanwise position x.
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APPENDIX C

FORMULAS FOR EQUIVALENT CONCENTRATIONS

AND INCREMENTS OF TORQUE

The formilas used in the numericasl exemples for computing equive-
lent concentrated loads and curvatures are those that have been derilved
in references 7 and 8. For the concentration at an end station the
formule is

- A
= ! + 6p - cl
P, =3k (7131 i 93) (c1)
At an intermediste station

T, = 75(2, + 109, + 2y) (c2)

The significence of the quentities used in formulas (Cl) and (C2) is
shown in the following sketch:

_________455::’-—__-\“\\\\
’///’/”——————. T Distributed-load curve
Py Ps P3 .
- A A A -
Y v
B Py

Thege formules are based on the assumption that the distributed-load

(or curvature) curve is a series of second-degree paresbolic arcs. When
applied to distributed flexursl loads, the formulas give concentrations
which produce the same bending moments in the wing at all the selected
stations as the distributed load. The formulass may be correctly applied
to dlstributed torsional loads only if GJ 1is constant over each bay.
In this case the formulas give concentrations which produce the same
torsional displacement at all the selected stations as the distributed
load. For a station placed at a discontinuity in ordinate or slope,
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formule (Cl) must be—applied to both the left and the right—of the
station and the results added.

The formulas for obtaining increments of area beneath a curve of
distributed torques are derived in reference 8. These formulas are
based as before on approximating second-degree paraebolas. They are
given here in a slightly different form which is better adapted to
present uses. Thus

A - %(‘11 + bay + gg) + %@l - 9y (€3)

=2 A
%—6(ql+‘+q2+q3) -u(ql-q3) (Ck)
where the significance of A1 and A2 and of Qs A and q3. is
shown by the following sketch: '

Increments of

torque /_\ Distributed-load

‘\\‘;“‘**-—_______- curve
A2

9 - 43

The ordinate at a discontinuity should not be used as the middle one

of the three ordinstes selected for use in formulas (C3) and (CL4). The
formulas are velid only where the three ordinates are connected by a
continuous curve.
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TAELE 1.- ISERAYION 10 OPRLIN FIRSY CCOPLED MNE FIR k < =. WING WITH CONCENTRATED MAES,
E:mfmm!ummmmgmmmmmj

S 90— —~
5 L | 2 1
Btetion
¥lenre: (a) First - (b) fecond cycle, £) Third cycle.
1 2 |3 | & ! 5 6 T (8! 9 {1 |1 12 13 1% 1% 16 17 18 19 1 2 3 1 2 3 .
! - (2) (3) (#) | 55448
{1) 7 el = < " o |5 @ | o |00 e [m |7 (247
sttt :1 Py P’ﬁ » b ] 3 By r’ ] v | M a & i [ oy yi ;lu)- by E3] ;:(L.!’. . n ;(1.3.). ._z;?,
Ay o o Ay p Pty olid Py of iy xo ¥y "uki'ﬂ Aotty of ity by | gt g
-] " —p—&z —_0 m QW-}—W‘GF ———qj " b m—}mﬂ? b l——ﬂg W
1 1.000{33.6 | ¢ [33.6 [Wh.30 [k, 30 1k, 30 [} ] 28,27 280. 271 REL.65 (281,65 h.000 261,90 | 2,.90]
. 1%, 30 f1k. 30| 1£0.50 |120.90
2 568]19.101 ¢ p9.1oj19.25 hg.26 19.26} 56153.6 k30| .30 | 15.90 u.mm hos 179.37 |80 .569h.50.21 200 570|160, 35 | 282
33. . .00 [10%.00
K 5. 7. .
3 15| 6.32| 0 | 6.5a|[3-21 £§’I 1w o |2m] vr.86 ¥r.86 | f17.53 ﬁgg ssleso || o8 w73 lose || ou| s ese | e
%8.07 4.8 L. | 39.13)
& L08k| 182} 0 |1.82| e,06 | 1.13 1.13 T9.68| 79.68 | T9.7% | 3.7 1522t 004 15,33 |28h L0985 18,33 | 219
%3.50 |32.53 Lm 7.96| 15.22 Jn L
5 a 0 jojo : 1213011213 | 50.60 | B7.7H o | 0 0
Torsion (wilh OF coastant ower emsch bay): {a) First cyule. (b) Secomd cyula, (c) Third oycls,
L] 2]a3] » 5 [ 7 (8] 9 10 1 12 13 1k 115 1 2 3 1 2 3 & 1
2) g3 PO Al ‘Zﬂ“ e |
£ . - (2) | &) {f1 ]| g2 | (3 [P DO ol ! E s !
Q o | § |1 T T s o [ K& LY ¢ ¥ '{ L€ 1 %3’ "
smmﬂ & V ;{H 3 ;(1'2')' 1 ,{3) ):,{37 N Z
ey ks 155y Rt ol WY o | 3y doy N -
L = 2 | S | il s ol naeg:_’aﬂ
1 0 |L.397 © |1.397} 0.79% {0,954 0.% -12,28|-1.862( -- |}o. -1.760f 300 {}0,.00633| -1 )
0.9 o0.% |o.m :
2 0 | 9% o 798| .B00 | 600 K., -12.67]|-1.7%| -- || -.coces| -1.66 eg9 || -.0066R|-1.B58] 2e
- .9 L. |1¥ 000
s j° | oo | m| i E%E_n.a o |-1a.) h.261.9%] - |f -.00889|-2.00 257 || -.00729-2.0nefcte | sme | @ - -‘%
. -13.02 |-13.02 |- .
L[]0 | ot 0| o] .ots | oM op RTINS 3 2] -o965] - || -.com|-1.5ea 257 || -.008h] -1.008] e # 3.7 radians per second
-12.07|-12.97 {-7.1
5 {lofo [ofe o |e b 0 0 0 W

9HES NI VOVN
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TABLE 1.- ITERATION TO OBTAIK FIRST COUFLED MODE FOR k = o, WING WITH CORCERTRATED MAES - Concluded

Torsion (with GJ variable):

(a) First cycle.

1 ? & 5 6 T 8 9 10 1 12 13 1k 15 16 | 17
¢(2)
(1) — | (2) (2) 1"y
Station hily : i B B L ! ° 4 4140 | % w
¢
1
vey 2 %y - AE7 3 Aghy o2 Mgty o2 Ao 0% o2 ﬁ o2
K B M GJp GJj GJi Elp
1 0 [1.397 1.397 0 0 0 0 -12.25| -1.660| --
1.089 |1.089 0.60 | 0.60
2 0 | .79k T . |x.08 0 1.090 1.09 212.85| -1, --
525 525 a0 6 1.k | 1.h0
_ 0 1. 1, .05 1. -
3 0| .n 27 1.614|-1k.68] o Elh.SB {;13.07{_13_07 14.25| -1..929
64 | L0950 -13.02 |-7.15] -
L 0 076 076 1.70k -1%.68| -12.98| -12.98 -7.10( -.962 --
' .028 | .015 -12.96 |-7.10
5 o |o 0 1.719 24.68] -12.96] ~12.96 0 0

gtte NI VOWVN

Lg
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TABLE 2.- TTERATION TO OBTATH TRANSFORMED SECOND MODE FOR k = w. WING WITH CONCENTRATED MASS,

E:omnn factors for each column are given under the column hea.dings]

3 —& ; .
5 L4 3 2 1
Station . -
PFlexure: (a) First cycle. (b) Becond cycle. (c) Third cycle.
1 2 3 .3 5 1 2 3 & 5 1 2 3 '3 5 6
@ | (| @ |2 ’:) (2) | (2) | (2) | (3) :{Z) (3) | (3) [ (3) | (%) ’3) z ’3)
Station|fy " [ ¥y Y1 Va2 ;‘? Yoo 1Ty %1 [Taz ;-z-r Yo | ¥ 11 [az ;E?- Z-‘f,z
b "\;2741:9 i:)‘—"I#m2 » hgmub’me %a@ b k;:raﬁ %’5—?1#
1{(A)| 0 -174.1 0271} O [ -ll.0)k1.0f o 0 -465.81k65.8f ©
2 -.2811-107.T| 99.2 |-8.5] 30.2 -.692 |-252,5 [234.2{-18.3] 26.4 -.820(-285.4 {265. 4 {.20.0]2k . b
3 -.252| -43,1] 33.8 [-9.3]| 36.9 =157 -99.7} 80.0(|-19.7] 26.0 -.882(-112.0{ 90.6 {-21,k{2k.2] 24.3
N -.094| -13.1]| 9.48 -3:6 38.3 -.293| -30.2| 22.4%]| -7.8] 26.6 -.349] -33.8} 25.4| -8.hj24.1
5 (] 0 0 4} 0 o} o o o ¢} 0 °
Torsion: (&) First cycla. (b) Secpnd cycle. (c) Third cycle.
1 2 3 L 5 1 2 3 " 5 1 2 3 3 5 6 "

(2) (3} ﬁ(k) ¢(k)
@ ) [ 2 [ @ |2 [(2 ] (3 [%2 L,(s; (3 | ,63) | () 1Pao Z.—a
station [%a2 {%v (o2 [Pa2 {17y Pz (%5 [Por |Pa2 (27 | Pa2 N vl |fa2 | (37 Z¢13)

¢a.2 ¢n2 ¢-2 a2
4 Iy L

ro 7 o7 A7

EIu of ETn o i 5iry o?
1 1.000f13.38|-1.10{12.28|12.28 |L.000}24 .94 [ -2.60|22.3k]| 22.34 | 1.000| 26.22] -2.95]23.27]| 23.27
2 .901] 13.38{~1.15{12.23(13.58§] .997|24.95{-2.72|22.23}22.3 .995| 26.24] -3.08| 23.16{ 23.3
3 L6248 13.50]-1.28112.12]19 . bk || .988|25.05]-3.00|22.05{22.3 .988| 26.40} -3.40}23.00{23.3 | 23.3
L .322! 6.70] -.63} 6.07[18.85]| .ko5|12.51)-1.50]11.01]| 22.2 .k93]13.20] -1.70{11.50{ 23.3
5 0 o -fo Q (+] [+} [¢] 4] o [+] o] o]

Ya2

) N ! ~HAcA~
+ Z;‘g = 23.8 %02; @y, = 133.3 radiens per second
Ta2 2
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TAELE 3.- ITERATION TO OBTAIN TEANSFORMED THIRD MODE FOR k = . WING WITH CONCENTRATED MASS.
[:Ctmmon factors for each column are glven under each column houd.i.ng:]
E 3 e 3 1
5 L} 3 2 1 ,
Station
Flexure: (a) First cycle, (b) Becond cycle. (c¢) Third cycle.
1 2 3 1 >} & 1 e 3 13 5 6 1 2 3 & 51 6 T
,-(2) 1(3) y(h) y(h)
(1) [ (1) ] (1) [, (3) ] (2) (2) | (2 (2) [ (2){ (3) (3) | (3) (3) | (3)] (%) (a3 a3
station! | Ya3 |¥b 1" |Yoa2 [Ya3 7‘% 7:3) v ) o1 Pba2| Va3 aL(2) a3 |¥p 61 | Tvas|¥a3 | T3V Z 13)
T3 Ya3 Va3 Fa3
% X X
lokb7 M7 ?-ohbr o7 lo"bv A7
b == o? e Al b i o T o] b 5 o2 o o
a)|o g al-ks.1l o |o . 0 %05.5{-405.5; 0 {0 ) Lok.of-kok.0f 0 |0
2 .52 271.5|~25k.8{ -11.1]5.6 5.9 1.000| 2k3.7|-230.6{-5.91 7.2 7.2 1.000}242.8{-230.0} -5.916.9 | 6.9
3 1.000]10%.0| -87.0[-11.9(5.1 5.1 911} 91.6| -78.8{-6.3|6.5 T.2 9031 91.3| -78.%{-6.3|6.5]7.2 | T.0T
I .390| 31.0| -2kb| -k.7|1.9 ] k.9 .339| 27.0| -22.1§-2.5|2.% | T.1 .333| 26.9| -22.0|-2.5{2.% | 7.1
5 o * o ) o |o ) 0 o |o fo o 0 o Jo |o
Torsion: (a) First cycle. (b) Becond cycle. {¢) Third cycle.
1 2 3 4 5 6 1 2 3 1 5 6 1 2 3 5 5 6 T
w | | ol @lf @] el ol @bol@l] ol o] ool ol >
Stati a 2 Ly : 8,
- ¢33 %o [Por |Prez ¢;3 ﬁléi "53 gy %51 |Praz ¢,3 ¢tzj ¢a3 N Fraz "33 . 3 ¢ia)
a3 a3 a3 LX]
k. k 13
M7 2 M7 2 M7 2
EL B ® I "
1(Bi| O -15.79| 2.84} 12.95]0 o | -9.46]2.57(6.8 0 o -9.46 2.56]6.90}0
2 -.083}-15.81{2.96]12.88] .13{-1.6] | .0239 -9.50|2.68]6.85) .03[1.3 ] | .ocka] -9.50 2.68|6.86[ .ok|10.0
3 -.304| -16.03] 3.26}12.80} .03{ -.1| | .003h -9.72{2.96|6.80]} .ok|T .00%6| -9.72] 2.9%|6.81] .03| 5 | T.15
& -.1%50} -B.0of1.63] 6.ko) .03 -.2{ | .cosM -k.85{1.48)3.h0[ .03|6 .00k2] -14.8% 1.47|3.41| .03 T
5 ] o |o o |o o o o o Jo 0 o (o jo |o
(k) (%) X
Ya Z¢‘3 - T.11 Yo7 o?; 2k} radisns second
SO+ S0y T E ey ver
a3 Z’aa
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TABLE k.- AERODYNAMIC—INERTIA FORCE COEFFICIENTS FOR
VARIOUS VALUES OF k FOR EXAMPLE WING

[bommon factors for each column are given under the column headingsz]

Flexure
k Pay Prg Pry P1g ?ﬁy §§¢
Zg2 | a2 | Zap | B2 | A2 2| M7 p
H H n m n N
0.036 27.5 ~1hlh 51.9 -108.3 92.5 -75.6
.12 30.6 -112.5 13.k4 -8.27 92.5 -75.6
<14k3 31.0 -75.2 10.82 <b. 2k 92.5 -75.6
.1590 31.2 -60.7 9.61 -2.53 92.5 -75.6
2L 32.0 -23.8 5.82 1.35 92.5 ~75.6
.50 33.0 -3.76 2.39 2.29 92.5 -75.6
o 33.6 1.397 0 0 92.5 -75.6
Torsion
Ef %y | %y Uy | Uy %y | g
2 | 22,2 b7 2 o7 2 | X7 2 "ob27 o2
m B B n m m
0.036 3.67 549 -15.40 68.3 -75.6 11k.7
.12 2.52 51.4 -5.03 11.k2 -75.6 11h.7
L1443 2.36 37.5 -k, 05 8.48 -75.6 11k,7
.1590 2.28 32.0 ~3.60 T.24 -75.6 11k.7
24 1.98 18.24 -2,18 3.67 -75.6 1147
.50 1.623 10.74 ~.895 1.143 -75.6 1147
o 1.397 1409 0 0 -75.6 12k, 7
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TARLE 5,- TIERATION TO OBPAIN FIRDY MODE FOR k = 0.1443. WING WITH COBCEATRATED MASS.
[Cononrmtwsrorutholmmgimmmmhmhuum]

3 )
a e [ ]
5 ) 3 2 b
Station
Flexurs: (e) First cycle, .
1 2 3 I 5 6 T ] 9 10 1 10 13 14 15 16 17 18 15| o m
(1 o) b3 P P P B T |E E 5 v, g g {2)
gtation| | Tix |7ix | Tefm (e TPt % | R | e [ToTa|Tefa| B | R [ YG | % = = | P | |
2 oy
by Mby hby R R L R S S Sy
b oo bl o % | B o Em G| I e
1 1L,000] 0 | 3.0 0 0 o |30 12,34 | 12,34 12,3k 0 0 218.6
12.3k| 12.3% 93.3| 95.3
] Ak o | 13.7T 0 o 0 [13.77 | 1%.35 | 14.35 14,35 12,3% | 12,34 13.5 13.5 123.3
1% % 26.69| 256.6% o , 4.8 a..8
3. 3. 5 14.5
3 oo 3.5k 0 o o 3.5k I 67 10.27] o [1h10 39.03 | 39.03 22 1807 k.5
».79| 22.38 6| 30.0
'S .0e8] 0 88| o 0 0 88| 100 55 5 G.h| 6.k 6.5 33.7 11.4
KL, 34| en.6 20.5] 1.5
5 0 0 0 0 0 0 0 84,03 | 8k.03 38.2 20.9 . Q
Toreion: (a) Mret cycle .
1 2 3 1 5 6 T 8 9 10 n 1 13 1k 13 16 17
(1) ] ,(1) - - — (2) (2)
stutton| | P1n [ %7 | %y |affa| %yt Y| % & | % %%k % | % e | o |y |
v ably Aot WP %Py |y
m o M «? K af G C| Gm ¢ |Fw T
1 0 0 | 2.3 0 0 0 |2.3 0.9%9 |0.939 0.939 . -3.TT| 0.510
0.9 | 0.5% | 0.9%
2 o} o |00 0 0 0 |1l.048 | 1.092 |1.092 1.092 h.TL| -.638
oho oo 2,03| 2.03 | 2.03
3 0 0 efe a 0 0 262 :093 :051 85| o |-8.a 6, Th| -
. 618 -6.18 |-3.38
b 0 0 0650 o o () 06601 .oTT .0k .0h2 -3.36| -.W05
6.1k 5.1k |-3.36
5 o oo o o | o |o . o | o S NAtA

oHEZ NI VOVN
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TARLE 5.- ITERATION TO OBTAIN FIRST MUK FOR X = 0,14.3. WING WITH CORCENTRATED MASS - Continuad

Tlazura: (n) First cycls - Concluded

22 23 ok 25 25 27 28 29 0 n 32 | 33 3k k5] £ 3 3 39 ho a
. = - . (&) | 75 v g
statior| [ Pry’ 1| Fapfr| Fry¥a [P n#11 P Py Pr (BT M| Vi | B W o o - P | & |7y ST,
. il 11
b 2 MYy o Aoly o | A 2 P aland®ma| adwa %' 1 roy 1
® B - m Bl C| Ex €| ¥t € 5T e
b 0 0 |-10.82] 0 |-10.82 | -k31 | ~h.3L 5,31 0 0 -70,38/218.6 - 70,331
43|43 -3L.12|-31.12
2 b | o |-kB0joO .80 | -5.00 | -5.00 -5.00 -k 4.3 -B73 | MT3 -39.26| ~mmeooa -
1.099| [F1.09 o ey 14 R IR i i
o | 0| -leodl ¢ | -1.2mm[f2- -1. A, A13.62]-13. 5. : - -
3 {_ s {_.23 o | o [-1.333 .60 -13.62 g {;h.eé 12.87{37k - 116.01
- -10.64| -5,84} i +17.08| -0.35 .
k o | o | -.304 0 -.303| -.3m2| -.193 -.193 .151.16 219,46 |-19.46  |-10.67 "] [—
. -10.83/ -5.95 -6.4L| 3,52
5 o[ a| o 0 o om0 |- | 6. 0

Toraton: (a) First cycle - Concluded

18 119 | 20 | ¢ | e | 23 |24 |25 |26 {27 |28 | 29 || n| 32 33

Btation( \Qp vridegfy[Qom|Spfel U | T | T (S| T | | ¢ | A Fﬁ’ ¢](;)

v d Abey by At 3[Ry 1 Ao 1 I
il o S o e c| EeC
1 0 o ko3 o |05 |1.612 |1.612 1.612 9,51|1.288] -—--a-n
1.812| 1.62 [1.61
a 0 ; 0 L8| o |1.7981| 1.B7h {1.87k 1.67% . 7.90(1.070 —————
" M2 3.485| 3.386 3.IP
3 Q 0| M0} 0 0 60 |1 088 0 o | .500 h_(.hl N, -1 | ——
3 3.9086 |2.18
L 0 o | .43 o 183 .133 | LOT3 073 %6 2.23] .302] ---me-
4,059 k0% (2.2
s [{o]lole oo o |o THAA

ghte KL VOVN


http://www.abbottaerospace.com/technical-library

TAHLE 5,- ITERATION TO OPTAIN FIRST MODE FGB k = 0.1%43. WK} WITH CORCERTRATID -HASS - Cancluded E
Flaxure: (b) Secont cyols. {c) Tixd cycle, {d) Fourth cycle. E
1L 2 3 " 5 1 a 3 L 5 1 2 3 A 5 6 LIB
. =
(3) (3) (k) () (3) (%) {3) (5 N
O | IY IR Ve W - o | WY WS NN WO E hde | O WORNCY NONE ke VL
1R 11 P1r 1I TEJ—(’E)',E e pi:) 1ix |Tie bl ,‘(3')_—(3)"“ 3 1R 1T |YIR 1X ‘(Fr—mym . ):’13 Ry
. Aoty 1 ho'r 1 . ho'ty 1 ro'r 1 . 2o’y 1 Ay 1
Xp C B © B © T X C T
1 1.000[0 963,0| -83.20(263.0 - 83.224 |1.000{0 o67.5| -82.89|267.5 ~ 82,094] [1.000]0 o68.6| -82.56|268.6 - 82.561
2 563| L0015 1RO, T| -46,67]  wmmmu- 560 .0020|152.3| ~h6. T m——— 5691 00| 153.0 -46.29 —m———
3 A| .oool| mi.2|-15.52|270 - 84,91 o8 L0028 %e.1|-1%5.33(268 - 83.24 J19h| L0027 2. -15.28|270 - B2.31 259 - 82.81
i os2| .o007| b4 22| e oM Lo01e] 1460 80| -m--a- I, I T (TR ]| —
5 0 0 0 ] 0 0 0 0 0 0 [ 0
Torslon; (b} Bacond cycle, {c) Third cycle (4) Pourth cyclas.
1 2 3 1 5 1 2 3 L 5 1 2 3 h 5 6
{3) (3) (&) (k) (5) (5) (2) (5
s | 92|62 |42 [ Fig ol ) | @) | |8 %ﬂ% £ | g o0 | to) [+ Mg %G(’ﬁ,*—*’,u%
on 1R 1T R |'1T ;12) (2) 1R 1x 1B |"1r 3 18 11 1R |"1x
m P + Wy : E*";u 1w * Wy
Ao 1 X' 1 Yo 1
¥z © Ep C Ha €
1 -0.00382|0.00466|-1. ho7|1.601 993 + 12.11 | |-0.00660]0.00399(-1.570 1,994 282 - 71.51 | }-0.0070M o.m -1.%591| 1,589 270 - BO.B1
2 -.00h07| .003%8]-1.%37|1.383} =—-- -.00680| .00300f{-1.690 1,390  ~r-r- -,00720| . L1 ENC ) — .
3 ~,00097| ,00126|-1.820{ .773|b0k - ®m.11 | | -.0072E| .00068|-1.967 .64 eBe - m.01 || -.0075 .cco%ef-l. .30\ 860 - 8Bl 270 - 8151
; r;ou’eaﬂ 0.0006!: 6.9112 0.392 m—— 6.00358 0.00036 5.982 0.381' ——— 6.003'16 o.ocmﬂ 5. o.aak ————

Qm +ing

(5 , 1405 (5) , 14i5 '
o T i R 1 et 032+
+ilI

£9
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TABIE 6,- ITERAFION TO NBTATN TRAKSFORMED SECOND MODE FOR Xk = 0.1M43. WING WITH CONCERTRATED MABS.

E!n-nn factors for each column ere glven mmder the coliumm h:lﬂinsu]

L il — [ |
4
5 K 3 e 1
Btation
Flexure: :(a) Fixet cycle. .{b) Becond cycle.
1 2 3 b 5 6 7] 8 9 1 2 3 Y 5 6 7] 8 9
(2) () {3) (3)
W] | @ || @] @f%mt Tl | @ | @] @] @] @] (@2 | 3]0 Tk Yaex
Btation) |Voop| Yooy | Tag | %oz | Twm | Toar | Yaow|Yeer| ) L o0 | [Tem [Yaor | T | br | Thir | Tmx | Tem|Yeer| BT D
Yoom ¥ Vot Yazg * Wepr
. do"ty 1 2oty 3 . A"ty 1 71
By C B¢ ST I T
1{A) 0 0 | -818.k) 51.38] A18.4| -k1.38] 0 Jo 0 0 -888,5| 10k.65| 888.5 | -10k.65] 0 |oO
2 i} o] -468.81 23.88| Moh.5 | 2.8 | -h3{27 ) --—-- -.188| .o6h| +m0.8| 61.60] 5045 -57.1 | 6.3] k5 | 37T - 1.2
3 o} 0 -161.k| T.90] 158,81 5.7 [ 26|22 | cm--e- -17| .090| -177.0| 22.28| 172.5| -17.7 | 45|46 | 43 - 6.4
L o | o | k| 239| Bhs| 1.m| -9| .83] ——--- -0k .03 =o.0| 6.35] k| kew|-1.6]|1.8] T
5 0 0 0 o 0 ] o |o 0 0 ] ] ] ] o |o
Toreion: (u.)l!‘irut cycle. {b) Becond cyole
1 2 3 3 5 6 7 8 9 1 2 3 L 5 6 7 8 9
’(2) s 1¢(2) ¢(3) . 1!‘(3)
(1) | 4] 4(1) 1) 1) 1) | 4(2) 2) | 7a=m 281 (2) (2) | 4(2) | 4(2) 2) | 4(2) [ 4(3) 3) | Tegr Gy
Station L ¥or| P ¢1(:I ﬁf;m ﬁiu § oo 1(.2: PN » Poom | ot | Pom i‘1::[ ‘(th F‘m.t "(nzn "(.e.t ¢(25+1¢(25
3 221 'agRt 21
Ay 1 loh7 1
T © Pty
1 1.000f o |28.76]-h.b5 | -5.62) 3.35 | 23.2k] -2.10] 23.1% - 1.10i) |1.000{ 0 30.80| -6.92 | -5.88| k05| ek.92| -2.87| 24.92 - 2.871
2 B8 0 | 26,25 -3.89 | 5.79| 2.% | 20.48| -1.33]  --eem- .885] -.c1=3| 28.36| -6.33| -6.12( 3.2 | 22.24| -3.12 ———
3 20 0 | 19.ke| -2.3% | -6.12| .73 |13.30] 1.62] 23.2 - 3.061 ST -.0k6| 21.60| 4,59 | 6,61 1,24 1k.99| -3.39| 26.2 - 3.861
k 27| O 9.92 | -1.222) -3.06| .319| 6.86| -.BR| .. 298] -0 | 11,01 | -2,35] -3.30| .63] 7.7A[| -1.73 ——
) [} 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0

W
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PARLE §.- TTERATION TO OBFTATY TRARSFORMED SECOND MODE FOR k = 0.13h3. WING WITE COFCERTRATED MASS - Concludad

Flexure: (c¢) Third cycle. (4) Pourth cycla
1 2 3 | 5 [ 71| 8 9 1 2 3 L | 5 6 7 a g 10
(%) (%) (5) (5) (5) , 4,5
NENEN ORNON RO IOW N N il | KON NON TS IR ON IR WO WO Wi 3 b - »2)
Btatlonl | Taon |"mor | "ok | “bx |TmAR | “mAI Yaor 13) T3} Pazk |Yazr | Fer | Tor |[Tuar | Yar [Yazk|Yaod TR ™
ﬂ| i S | Taor * Wapy aom * i’aax)
b Aoty 1 5.:_ 1 b Aoty 1 Aoty 1
Ep T Ep C ELL C BIp C
A)|o 0 ~931.9|156.25|93.9]-156.2% O |0 0 0 ~ghl.0/165.58 9k1.0(-165.58| 0 [0
2 -27| J1M-537.2| 92.18|530.5| -86.3 | -6.7|5.9 | 28 - 6.3 ||-.281| .184|-543.3| 98.06| 53k.9] ©1.8 |B.4H6.3 | 1 - 2.01
3 -.199| .161|-187.2| 32.98|1f.2] -27.7| -6.0[9.3 | 3L - 1.8 ||-.252 .185]-190.0] 33.8183.1| -29,%0| 6.9 ﬁ.g 31 - 5.01 - 3.
b -.07} .065| -53.0| 9.60| 50.8] -T.h| -e.2|2.19] 32 - 1.44 ||-.00% .089) -Sk.o| 10.%8 =0.3| -7.93|-2.7l2.hg| 3 - 3%
5 o b 0 0 0 0 o {o 0 0 0 0 ] 0 0 |o
Torsion: (c) Third cycls., (d) Pourth cycls
1 2 3 1 5 | 6] 71 8 9 1 2 3 L} 56| 7T 8 9 10
s’(M s!5(4) ¢(5) 1¢(5)
(3) | 403) 1(3) |(3) 1) [ 3)] (k) [y [702R PRBT L qny oy |y | SOR) [ | () (5) | (5) | 2R TeE
Station| (@ - | #0700 180 (g e |9 Fom | oot % (%ar [Pham |Pear ¥aom 1¥
adt {"tR |"vI |"nIR |"b1T|"azm |Taex |,(3 3 at® | a2 |TWR [ 1L}’ e2R aEIE(E) )]
Bam * WPeor amm * Woor
A7 1 Moy 1
BT Ea ©
1 1.000]0 32.38|-8,42|-6,00| k.60|26.38( -3.82|26.38 - 3.821| |1.000{0 33,16 -8.75| -6.03| 4.68] 21.13| -k.07|27.23 - L.OTE
a 904 [-.0221129.90| -7.81|-6.29] 3.7.123,61|-k.10|26,3 - 3.904 | | .901[-,0256] 30.70| -8.15| -6.33| 3.80f 2. 37] *.35]27.1 - h.om
3 609 |-.064k23,10] -3.99| -6.93| 1.6416.17| -k.35|27.0 - h.201 | | .62k|-.07h0] 23.92| -6.30| -6.58] L. 73| 16.9k| -k.57| 27.7 - 4021 T 27.3 - h.OSL
b .314]-.0333{11.80] -3.08| 3,46 .84 8.34|-R.BR|2T7.0 « k.261 || .32B|«.0384 12.20|-3.24-3. 09| .88] B.71|-2.36|27.5 - L.061
5 ] 0 o 0 o |e 0 o o 0 0 0 a |o ()] 0 .
(5) l) Z( (5) (5)
; ( * Ve Poam * e M7 3
]

Z( (L) U") Z( (%) (” = (28,9 - 3. Tsi)m G o 121.0 redians per secand; gup = =0.1308; vp » 280 fect per second
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TAHIE 7.- TIEEATTON T0 OBTAIN TRARGFORMED THIED MODE POR k = 0.1h43. WIN} WITH CONCENTRATED MARS.
E:c-mﬁcrnnfurnachculnmu'eg‘hmmthmlmh:m]

Flaxme: (a) First cycle, {b) Becond cycls.
4 5 3 5 11
1(3) . 13r(a)
(1) | (1) yi2) y(2) _%__(_ﬂl.
Y ¥,
bI | “bi I | “piR Yo 1,31
- o S 3
EIn T T
0 |368.1|-73.82|-388,1(73.82 0 o o -83.h9] -h8h 0 0
0 [223.1]-3.h3|-209.2|k1.0% 1.37 [11.2]-1.01 -48,57} -27h. 2.08 [16.9 17.5 - 0,131
0} 85.4|-13.60t -T1.%l13,26 1.45 11.6] -.5 -16.8¢| -93. 2.23 |13.3 1%.3 + 0.21
0| 25.4] -h.43) -20.1| 3.58 ST | kA -.29 4.73| -26. 08| 6.6 12| " ———-o
o| o 0 o |o 0 o |o 0 o 0 0
Tarsion: (a) First cycle. (b) Sacond cycls,
h 5 L5 1
' ‘,(3) . i¢(3)
1 2 2 3R I
SIS ESIECRTCE 42 (43 e
a3r * 1’&31
1 1
C c
0o |o 1,687|2.32|-1.897 .210| © 0 1.6%0] 3.12] 2,392 o0 |o
2 o |o 1598 2. k-1, .010| -, -.0019 1.521) 3,26 -1.938 L8110 -.089] -
3 0o 1.067|2.72| -.T s 2,83 -.0289 L8581 3.5 -.872 -.b507 b, 18] - NTh{17.4 = 0.1261
[ o |o .56k|1,38] - 231 -1.32 -.Q123 Lw7e|l M) - s -.2k2] 2.0 -.215118.0 ~ 0.0931
5 o |o o o 0 0 0 0 o 0 a 0 o

99
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TABLE 7,- TTXRATION N0 QHYAIN TEANEFOHMED THIRD MOIK FOR k =~ 0,143, WING WITH CONCENTEATED MAES - Concluded

Flaure; {c) Third cycle, (4) Fourth cycle.
1| ejs3 " 5 6 7| 8|9 fw n 1| 2] 3 L 5 61 7| 8 [9]w u 12
(%) (4) () ,.(5) (5) ,.(5
beastonp(3) (703 31 [0 |59 | 0 08) [, (3) ;n,w:%)”ﬂ);n 8 [0 00 by o s | ) #ﬂ,ﬁ)%ﬁ“ﬁ?§:%$+wﬂb
a3R |"a3T ("t bI blR | "BlI |“bazR| bacI| aIm["a31| (3 3)|[a3m | "a3x |"om 14 bIR |"BIT |"bem| bent|¥azr|”a3T ) ) (W)
TRt 1’331 Ta3R +11,3I Z(Ym"' iar,a])
N X7y Wyl X7 ) X' )
Ey € H.oOC Iy C Elp ©
(AN 0 515,5 |-102.86|-51%.9102.86] ¢ |o 0 o boh. B1-86,2%| -hok,8]1B6.2k[ 0 |O o |o
2 -10%)-,0361 31181 59.03.293.8( 57.3 |-h.6 [2.21 [13.4]-.29|12.2+0.264){ 952} -.033 300.3|-50.13| 261 647,78 3.1 2.35 |13.6{-.03{1%.3 +0,h61
3 L000(0 18.»] -20.69|-100.5| 18.5:(-3.9 |2.37 |2k.1| .15|1k.1 +0.15z|11.000 15%,2(-27.33] 96.8|15.31|-k.3 {253 14.3 S1(1k.7 + 0,511 | 18,57 +0.5471
h 43| w002) 1.2| 5.93[ -28.2| 5.00-1.5 | .93 | 5.5l |12.7-0.064l] .390) -.005| 3h.k| -h.By| 2b.9| k12|27 |10 | 5. 25|1%.8+ 0,831
5 o 0 0 0 o 0 o o o |o 0 0 0 0 o |o o o o o
¥orsioni (c) Third cyele. (a) Pourth cyrls
1 -] 3 3 -] & T 8 9 |10 n 1 2 3 L} 5 6 T 8 9 | 10 n 18
g(#) +1’(i) ¢(5) +1f(5) (%) ”’(5
(3) 3) 1 4030 143) |403)] ) |3) |403) [4(% 1) [T :ﬁ ) () | (0 [l |08 %) [ (%) [N 5) 14(5) |Taz_ a3t AR a3
Ao ’u}l g(!.SI “'hB I ﬁglll ﬂ'f:lI ém ’I(MEI d(ﬂ% ‘(53% (3) :3) ujg ¢5.31 ¢m ¢'I:tI ¢h1R 4].[ ﬁI(:aﬂ! ‘fm;E[ ’5.33 ﬁ(u.B% i) (%) Z )
| oo +i1g . ¢!-33+ o31 @ﬁn"’i"nﬂ?
do's 1 A1
R C EpocC.
1{B}j0 0 -16.73|1.942| 3.26|-2.658]13.57|0.706] 0 |o o -17.68]1.609] 3.18-2, 460tk 50|0.03L] 0 [0
2 |(-.0TH -.0026|-16.78|1.808| 3. bk | -2.17h| 12.17]| .300]-1.17] -.066|25.6+ 0. 304 oagg -.0035{ -17.70|1.511] 3.33 |-1.992( 13.00 5% -1.88|-.096]15.4 +0.491
E -.273| ~.02T2 -16.12 1,053(3.82(-1.037| 8.63|-.533|-%.27] -.507(25.7+ 0.334(}-. 308] -. 0326 -17.53 .B43|3.67| -.001| 9.28|-.7%0 -k, 58|..5088|15.1 +0.321 [15.12+ 0,3433
. 6.13# E'M -g. 3| STP(L.8L] -.528| h.43)-.2791-8,11] -, 231158+ 0.294)1-.150] -.alkk| -8.86| .h7o|1,8%| -.kmo| %.77|-.278|-2.29|-.267|15.1 #0331 -
o 0 o o o |o 0 o o 0 0 o |o o Jo

SN
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68 NACA TN 2346

TABLE 8.~ COMPUTATION OF TRUE SECOND MODE FOR k = 0.1443.
WING WITH CONCERTRATED MASS.

[Elexural functions are in terms of b; torsional functions are in
C
radiens., == - 1 = Fip = 8.65 - 1.6001]

Co
e :
5 L 3 2 1
Station
Flexure
1 2 .3 b
Station YI(,:; + iy:,ii = (5) , 4,(5)
iR *t W1 |Yezr * Wazz | Yer t Wor
Fio(¥ir + ¥17)
1(A)j fokl.0 - 165.581 | [108.8 + 0.964] 0 108.8 + 0.961
2 |} eccmmrme——n———— 61.7 + 0.851 |-8.4% + 6.3¢ 53.3 + T.154
3 || ~mmemmmmrmm——ae 21.06 + 0.491 [-6.9 + 6.321 | 1h.2 + 6.811
DTN [ [, 5.90 + 0,181 | -2.T7 + 2.491 3.2 + 2,674
5 |]emmmmmemm—————- 0 0 0
Torsion
1 2 3 b
4 L
S’ca.tionl ¢£l% + 1¢£1% = fum + 110 ¢£% Yy ¢g% Gop + o
Fio(fir + 1613

()] [ F S —— -0.772 + 0.4011 |27.13 - 4.07i| 26.36 - 3.6T4
-SSR -0.786 + 0.2941 |24.37 - 4,351} 23.58 - 4,061
IR [ [ -0.816 + 0.0481 |16.94 - 4,571 ] 16.12 - 4.521
ST 1 PO —— -0.409 + 0.0261 | 8.71 - 2.361| 8.30 - 2.331
5 J|eemscmmmemeeeae (o) 0 0
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E]mm-lnmctim are in terms of by torsional functions are in redisns,

TATLE §.- COMPUTATION (O THOE THTHD MODE FOR ik ~ 0.1Lh3. WING WITH CONCENTRATED MASS,

T
2
LeF g =1697 - 6.391; 85" 1 =¥y, = 0.5%0 - o.n‘;u.]

C3
g 1 & L 1
5 & 3 2 1
Btation
Flaxire
1 2 3 I3 5 5 7 8 9 10
M!‘J ’1(::.1)1 + ivgj)c o O A ) '
Ypeog * Wp2r ”
13(T11g * V) * Pog{Pesm ¢ ) Fo3{Tyon + 1107) 3(Tum + 1717)|71em * WaarfTim * g Vimt Wi |Taen * Waex ?3’; + 1’3% Y * 331
Fa3(rem * Wigr )
LA} ] -hok.B + 86,284 | e 56.3 + 12,301 | -95L.1 + 73.9% [50.1 + 20,74|-30.2 ~ 6.51][10.0 + 23.59] 0 0 19.9 + 23,81
2 [ —— P 11.26 + 13,231 | -5.56 + 0.681| 13.6 ~ 0.031 |15.3 + 13.844
3 m—————— T — 3.00 + &,560 |-, 87 + 1.054| 1B T + 0.7 [13.6 + 6,121
" U [ I 1,06 + 1,281 |-L.9% + 0.h2L| 5.8+ 0.251 | 4.0 + 1.950
5 e e | cmme—e—ea 0 0 0 o
Torsion
1 2 3 3 5 ] 7 & g 10
(h) (%)
station | Poan * W1 = () L am (%) 5}
3{fun + oy )+ Fg3m(!'.gg . #ﬂ) Yo Piem * ha) |F13(Fan + W10 b * Wazr|Frag * Piag| Fint Wir  [Fam * Wanr | B+ Waar | P * Wy
To3(aen + hor )
p1¢:)] | [— - S RACL I VL A [R— -0.227 - 0.089:|13.58 + 3.431] o 13.35 + 5.381
I I [ S ST S — -0.208 - 0.1131]12.37 + 4.594|-1.268 - 0.0964]10.88 + 4.38L
LI | I— PO [P -0.162 - 0.16] .03 + 2,h6L| 4,58 - 0.5801] k.29 + L.TH4
4 S [ I 0,081 - 0,0814| h.6h + 1.0511.2.05 = 0.2671| 2.31 + 0.901
-2 1 —— R J— 0 0 o °

SNAGA
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o NACA TN 2346

Transformed sacond mode:
a2 " ¥2 "1 A

ot e - 9] et T T T Y0,

e e T

“NHE!!F’

Figure 1.~ Illustration of physicel basis of iterative transformation
procedure.
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NACA TN 2346 TL

y‘(,% 3 /—\A ‘#2)2 g\

(a) Assumed transformed second mode.

ys) B ¢(;) '3\

(b) Intermediate derlved mode,

| H
“ e

{c) First-mode sweeping function.

*
2) 4 T — (2)
a2 4 a2 5\
(d) Derived transformed second mods.

Figure 2.- Illustration of steps in the lterative transformation procedure
for determining coupled modes.
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NACA TN 2346

72
iv
Elastic axis
: 27 / Gravity axis
0989 siug\o 0 slug ff\ /Midchord S e
g 039b
lt 7 8I8 b 2 b
T e : / ——
R -
b=.333 ft a 126 b
¢
A
— ) L A= 292 ft—
T 1T 548, 0 -
- L=4 ft .
p = 0.002378 slug/ft3 |
L= 32.6 EI‘IL:— 423,000 (radians/sec)?
EIl =

9T7.1 1b-£t°
GJ = 480.6 1b-£t2 <

"“ - o. 1353

Figure 3.~ Properties of cantilever wing used in numerical examples.
»
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10 NACA TN 2346 T3

o Experiment (reference 5)
o Operational solution (reference 5)
» Rayleigh-Ritz: 3 modes (reference 6)
v Rayleigh-Ritz: 4 modes (reference 6)
o lteration: 4 stations
2
’/
O k=0 i
-2 1 "w'lﬂ 3d solutions ;
7 ><—ke0.24 H
g(’ \Q!;::; 24 soluﬂons>.\\¢
gd _4 - /'I
\ /
-6 /
/
8 \\ /
Ist sTIuﬁons -)\) '03(?‘}/’
-10 =
0 200 400 600 800
- v, ft/sec

(a) Variation of artificisl damping with airspeed.

300 :
3d solutions
2 l R
|-~ In ot
rc:dic:ms/secI o !’___/6'795‘ a4 éZd] solutions
A Pd ,,/,4’ _QN_L-—
o) Ist solutions—"] 07| T_ \ NACA,
0 200 400 600 800
v, ft/sec

(b) Variation of frequency with airspeed.

Figure L4.- Variation of artificial damping and frequency with airspeed in
- first three solutions. Wing with concentrated mass.
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o Experiment (reference 5)

o Operational solution (reference 5)

» Rayleigh-Ritz: 2 modes (reference 6)
v Rayleigh-Ritz: 3 modes (reference 6)
o lteration: 4 stations
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(a) Varifation of artificial damping with airspeed.
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(b) Variation of frequency with airspeed.

Figure 6.~ Variation of artificial damping and frequency in first three
solutions. Wing without concentrated mass.
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