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TECHNICAL NOTE 2236

SUPERSONIG FLOW AROUND CIRCULAR CONES
AT ANGLES OF ATTACK

By Antonio Ferri
SUMMARY ‘ .

The flow around cones without axial symmetry and moving at super-
sonic velocity is analyzed. Singular points are shown to exist in the
flow around the cone if no axial symmetry exists. The results of the
analysis are applied to the determination of flow around circular cones
at small angles of attack. The concept of a vortical layer around the
cone at small angles of attack is introduced, and the correct values of
the first-order terms of the velocity components are determined.

The method used is applied to cones at finite angles of attack, and
it is shown that good agreement with experimental results can be. obtained
from the first-order theory if the complete equation for the pressure
distribution is used.

INTRODUCTION

The flow around a cone having a circular cross section and moving at
supersonic speed has been determined by means of the assumption of small
disturbances or by means of more rigorous methods that consider the
existence of the shocks. The latter methods can be applied for amy Mach
number larger than unity and have been developed by several authors, at
first by assuming all the flow as potential flow (references 1 and 2) and
later by also considering the variation of entropy due to the change in
angle of attack (reference 3). By means of the development given in
reference 3, values of flow properties around circular cones at an angle
of attack have been tabulated in reference li. The method has been
extended in reference 5 to larger angles of attack.

In the method given in references 3, L, and 5, the flow properties
were considered continuous and were developed in Fourier series in terms
of the angle of attack; however, the existence of a singular point at the
surface of the cone was neglected. The derivatives of the flow properties
were obtained by differentiating the Fourier ‘series term by term, and the
terms of the series that represent the derivatives were assumed to be of
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the same‘ order as the correéponding terms of the integral quantities.
For this reason, an erroneocus distribution of the entropy at the surface
of the cone was obtained.

In this paper, the flow around the cone in the general case is dis-
cussed, the existence of singular points in the flow is proved, and a
different procedure for determining the flow around cones at small, but
finite, angles of attack is developed. This procedure shows the way in
which the values tabulated in reference l; can be used if a simple cor-
rection is introduced. The values obtained in this way are compared
with experimental results at several values of angle of attack.

SYMBOLS

r,¥,0 polar coordinates (see fig. 1)

Vp polar velocity component in radial direction (along r),
referred to limiting velocity (see fig. 1)

Vn polar velocity component normal to vy in meridian
plane 6 = Constant, referred to limiting velocity
(fig. 1)

w polar velocity component normal to meridian plane
0 = Constant, referred to limiting velocity (fig. 1)

t time

P pressure

o] density

S entropy )

Y ratio of specific heats (cp/cv)

R=cp-cy

Cp specific heat at constant pressure

Cy - specific heat at constant volume
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a speed of sound

L projection of streamline on sphere r = Constant with
center at center of the polar coordinate system

\ local velocity

Vi undisturbed velocity, referred to limiting velocity

Vv limiting velocity (velocity for expansion in the vacuum)
o] semiapex angle of conical shock

5 inclination of axis of conical shock with respect to free-

stream direction

M inclination of axis of conical shock with respect to axis
of body

a ’ angle of attack

Subscripts:

1 stream conditions

a zero—-order te;ms of Fourier series (part independent from

angle of attack)

b first~order terms of Fourier series (paﬁt proportional to
angle of attack)

c higher—-order terms of Fourier series or quantities at
surface of cone

e quantities at extermal surface of vortical layer

8 quantities for polar coordinate system having axis
coincident with axis of conical shock

A prime is used to designate the terms of zero order in the power
series in A6 for the quantities in the neighborhood of the meridian
plane 6 = n; two primes are used to designate the factor of the term

containing A62/2 in the same power series.

-———— p—
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THE FLOW FIELD FOR CONICAL FLOW WITHOUT AXTAL SYMMETRY

In order to analyze the flow field for conical flow without axial
symmetry at supersonic speeds, assume a polar coordinate system (r,¥,0).
Call .- vy the velocity component in the radial direction, vp the
velocity component in the direction normal to r in the meridian
plane © = Constant, and w +the component normal to the meridian plane
(fig. 1); that is,

S X
Iy
If the flow is conical,

-a—E—O ' ie 0 o5 0
or or or

"
]

For these conditions Euler's equations become

vnavr+ L aVr-vnz—wz=0 (1a)

v, - wlcot y = 0 (1b)

ow w oW 1 op
Vp — + —_—t —— =+ W+ vypwecot y =0 lc
"3 sinyo® psinyo® T ¥ (1)

- ——— g~ —
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and the continuity equation becomes

2pv, sin ¥ + v, sin W"' + p sin ¥ EZ; + Vpp cos ¥ +w % . P ow =0 (2)
r n 3y 3y oP % 30

Because the energy in the flow is constant, the following, relations must
apply:

2t pw). ( 2, o, o

y-1(p 8 2 ae) (vr % "3 "o (32)

——L(EQE——E--a—p-)= (vrzz.:-l-vn:ah-l-wa_w.) (3b)
of p2 oY oy oy oy

Combining equations (1), (2), and (3) results in

2 + w2 v 2
v W V. ow we
vr(z - _n_) + Vn cot \I/ + n( - n + — (1 - ..—) -
a? S §W a2 sin ¥y 90\ - g2

o wvn/ ovp L, o)
a2 \sin ¥ 30 3y

=0 ' (k)

The entropy at any point of the flow can be expressed as

S =

7
log, ll(gl) + Constant
ry-1 Pi\p

where p and p are the local quantities and p; and pl the stream
quantities. Therefore,

. N
R 89_ p ©6 P o6
> (5)
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Combining equations (5) with equations (1), (2), and (3) results in the
following expressions:

a2 3s w oV ov;

. n .
;E._a =Vp 31n.¢'5$ - Vr 38 " Yn 36 + vpw sin ¢ + vpw cos ¥
(6)
2 o ov.
a__a.§=...vr£_ @-l- _w '—n-+vrvn-w2cot\|/
7R oy oy oy sin ¥ 96
Equations (6) cambined with equation (la) give
oS oS
Vp sin § = = -w = - 7
n ¥ >y 38 (1

Equation (7) is general for any conical flow and defines the lines of
constant entropy, which correspond to the streamlines. In fact, if L
is the streamline projection on the sphere given by r = Constant,

4l oy dl 98 dt.
and, from equation (7),
(@) " (8)
oV/i, Vn sin V¥

At the surface of any conical body the component of velocity in the
direction normal to the surface is zero and the stream moves tangentially
to .the body; therefore, the entropy at the surface of the body must be
constant or must change in a discontinuous way (in which case equations (7)
and (8) are not valid).

'THE PROPERTIES OF CONICAL FLOW WITHOUT AXTAL SYMMETRY

In order to analyze the properties of conical flow without axial
symmetry, consider first a polar coordinate system having its axis coin-
cident with the axis of a circular cone at a small angle of attack
(fig. 2) and assume that the direction of the undisturbed velocity Vy is
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in the plane 6 = 0, 6 = n. In this case, the plane 6 =0, 8 = n is
a plane of symmetry of the flow and, in this plane,

w=20
Vg # 0
and
oV ovy oS
—_ =0 —_— = —_—
o0 o6 o0 0

Therefore, equation (7) shows that in the plane 6 =0, 6 = n the-
entropy is constant. At the surface of the cone (¥ = y¢), the normal
component vn 1is zero and w # O; therefore, equation (7) shows that
the entropy remains constant also along the surface of the cone (¥ = V).
Only at points A and B, (defined by 6 =0, 6 =1, and ¥ = ¥e) vp—>0
and w-> 0; therefore, equation (7) is indeterminate. Because the body
is at an angle of attack, the axis of .conical shock does not remain
coincident with the direction of the velocity Vj, and the entropy in

the plane 6 = 0 must be different from the entropy in the plane 6 = n.
The entropy at the cone surface therefore must be different from the
entropy at the plane € = 0, from the entropy at the plane 6 = m, or
from both. In this case, where w =0 and vy = 0, a discontinuity of

entropy must exist either at A or B or both points.

In order to find a relation between the value of the entropy at the
surface of the cone and the values of the entropy in the meridian
plane 6 = 0, 0 = n, the following considerations can be used: In the

. av,
meridian plane (6 = 0, 0 = =), w, g%, and 562
plane is a plane of symmetry of the flow field and, from equation (7),

as _ 0. Therefore, in the plane of symmetry in the zone outside of the

Gl
singular points A and B,

are zero because the

a\lfaez —-Vn sin\lr392

ow
3 [32s 23 3%
(9)

For the case considered, the velocity component wvn is negative at
the shock or at the Mach cone and remains negative throughout the field,
until it becomes zero at the surface of the cone; therefore, the value

2 .
of 235 tends to increase in absolute value as V¥ decreases from the

262
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value correspénding to the value at the surface of the shock to the
value at the surface of the cone when gg is negative and tends to

decrease when gg is positive.

Because the entropy remains constant along each streamline, the

2 .
decrease of the absolute value of ) as V¥ decreases corresponds to

2
a6
a departure of projection of the streamlines on the sphere r = Constant
. 2 [a%s) . 32s
from the plane of symmetry, but, if =%(=%] is of sign opposite to —,
V¥ \s02 302

the projection of the streamlines on the sphere r = Constant tends to
converge toward the plane of symmetry as V decreases from the value at
the shock to the value at the surface of the cone.

Now, with the convention used in figure 2, the component w is
negative throughout the field and is zeroat 6 =0 and © = =n,

Therefore, gg is negative in the zone © = O but is positive in the

zone O = n, and the streamline projection tends to converge toward the
zone of point A and diverge from the zone of point B. Because of the
departure of the streamlines from the plane 6 = n, the entropy in zone B
remains constant, and, therefore, the entropy at the surface of the cone
is equal to the entropy at the meridian plane 6 = n; at point A a dis-
continuity of entropy exists from the value corresponding to the plane

8 = 0 to the larger value existing in the plane 6 = n. All the pro-
jections of the streamlines converge at point A where the entropy is not
single-valued. Because vy approaches zero near the come, equation (8)
shows that all the streamline projections tend to become parallel to the
line V¥ = Constant in the zone near the cone and converge at A. The
value of Vv in the meridian plane 6 = O can change sign and can be
positive in the neighborhood of the point i (case of large angles of
attack). In this case the right-hand side of equation (9) changes sign
and the singular point moves away from A in the meridian plane 6 = 0O
and occurs at the other point of the meridian plane where v, is also zero.
(At the shock or at the Mach wave wp 1is negative; therefore, another

singular point where vp = O must exist.)

It is interesting to observe that singular points must exist in any
supersonic conical flow without axial symmetry. Considerations similar
to those used for the case of circular cones at an angle of attack can
be extended to other cases, and it can be shown that the streamlines that
are tangent to the body start from points of the shock and meet the body

/



http://www.abbottaerospace.com/technical-library

NACA TN 2236 _ 9

at points where the component of velocity perpendicular to the radius
and tangent to the body vanishes and has a positive derivative in the

streamline direction |equivalent to the condition of positive gg . Con-

vengency of streamlines occurs and, therefore, the points are singular at
the points where this component vanishes and has a negative derivative in
the direction tangent to the body, while the component normal to the body
also vanishes and has a negative derivative in the direction normal %o

ov.
the body (équivalent to vp =0 and SEQ negative).

For example, the conical body of figure 3 has two planes of symmetry,
AA' and BB' when w and vy are zero, but at the points BB!, g% is

ov.
positive, while at AA', it is negative. Therefore, because —& is

negative at AA' and BB', the points AA' are singular points and the
entropy at the surface of the body is determined by the shock strength at
the points CGCt.

DETERMINATION OF THE FLOW AROUND CIRCULAR CONES

. AT SMALL ANGLES OF ATTACK

In order to determine the flow around circular cones at small angles
of attack, consider a polar coordinate system, the axis of which is coin-
cident with the body axis. At the surface of the body the velocity com-
ponent vn 1s zZero and in the neighborhood of the body is very small;
therefore, the terms vn_z/a2 can be neglected with respect to unity.

If the angle of attack is small, the component w is also small

and the terms: wz/é.2 can also be neglected. On the basis of this
approximation, in the neighborhood of the body, equation (l;) can be
expressed as

ov;
2vp + v cob ¥ + —2 + W

3y  sin y 98

0 (10)
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This equation permits a particular solution of this type chosen from
physical considerations

Vp = Vp, + Vpp, €OS O +) Vp, cos mb )
. Vn = Vn, + Vn cos O +Y vn, cos mb L (11)
=wbsine+ch sin m@ ]

-where vra b, ¢’ Vna,b,c? and wp c are functions only of V, are
7

constant for constant values of V¥, and must be chosen in a form that
satisfies the boundary conditions. :

Consider now a conical shock having circular cross section and semi-
apex angle o (fig. 4). Consider the cone inclined at an angle & with
respect to the undisturbed velocity with a polar coordinate system, the
axis of which is coincident with the axis of the conicdl shock. If vrg,

Vs and W, are the velocity components referred to the limiting

s
velocity V; in the new coordinate system (rg,¥g,05), from the shock-
wave relations the following equations result:

Vrg = V3 cos 6Icos o+ V3 sin & sin o cos 6g

S=—v131n.581nes

oy =1 1 - vp 2 - wg?
S 7+1V1cosﬁsinc-vlsinﬁcos o cos Og

*

If 6 is assumed to be small and terms of the order of 62 are
neglected, these equations become

= Vq cos ¢ + 6V7 sin o cos Og -1
wg = -V156 sin 84 . : } (12)
- - V12cos? - ' 1 - V12cos20
Vn =-Z 1 1, i Py 4 lﬁcos of-2vy- + 1 cos Og
8§ y+1\ Vy sino y+ 1 V1 sin2c
v

I .- C 4 ————— -, TS T LRI
O _‘ e P PO . . [ B . S R
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The flow behind a circular conical shock inclined at a small angle 6
with respect to the undisturbed stream can therefore be expressed in the
form

Vrs = Vras + GVrbs coSs es
Vo, = Vna + 6vhb$ cos 6g 3 (13)
= 5W‘b8 sin es

-

where all the terms containing vy, Vs and w, are small, that is,
of the order of 4.

If the axis of the conical coordinates is rotated at an angle n
of the same order as the angle & and terms of the order of 6¢ are
neglected, the velocity components Vps Vnps and w referred to the new

axis (fig. 4) become

avras h
vy = vras + Ve 7 + 6vrbs ?os e
ov
D
Vn = Vna + aWss n + 6vhb8~cos 0 > (1)
W = &wpg sin 0 J

where 60, the coordinate referred to the new axis,' is given by

cos © = cos 6g - 1 cot Vg sin?Gs

Equations (1L) show that the flow behind a circular conical shock
inclined at a small angle & with respect to the direction of the undis-
turbed stream and at an angle v with respect to a conical body can also
be expressed in the form given in equations (11), where, if the angles 1)
and & are small and the terms of the order of 72 and 62 are neg-
lected, only the terms having the subscripts a and b must be con-
31dered. Therefore, equations (11), when the terms with the subseript ¢
are neglected, are valid for small angles of attack (a = 6 - 1), and a



http://www.abbottaerospace.com/technical-library

12 . NACA TN 2236

conical circular shock is consistent with the solution chosen for the
flow around the body. At the surface of the cone the assumption
that w2 is small corresponds to the assumption that only the first-
order terms of angle of attack are considered. The conical shock is
inclined at an angle 7 with respect to the circular cone.

This analysis is similar to the analysis of references 2 and 3. No
assumption, however, has been introduced for the entropy distribution;
only the velocity components have been considered to be in the form of
equations (11), and no limiting assumption has been introduced for the
derivatives. In reference 3, in addition to the equations

Vr = ¥y, + GVp cOs 0 (15a)
V=V t a:vnb cos O (15b)
| W = aw, sin 0 (15¢c)
the expressions
P = p, + ap, cos O (16a)
" p=p, +ap, cos 6 ’ (16b)
S =85, + aS, cos 6 (16¢)

7

1
have been used, and the derivatives of entropy, pressure, and density
have been obtained from differentiation of equations (165. In this way
a solution has been found which gives values of entropy variables along
the cone surface and constant in each meridian plane, while the entropy
actually remains constant along the cone surface and changes in the
meridian plane. An incorrect entropy distribution has therefore been
obtained at the surface of the body.

In order to analyze in more detail the significance of equations (16)
and their inconsistency with the approximation’considered in references 2
and 3, consider equation (7). In the plane of symmetry 6 =0 or 0 = m,

g 0; therefore, Sz + aSp, or S5 - aS, of equation (16c) must” remain

ay

constant.
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Consider now the plane 0 = n and express the entropy S in the
form '

2
S =8t - gn -Ag— (17)

which satisfies the condition of symmetry. Because of equation (7),

a8ty (18)

ay

and, from equations (16) and (17),

S! = Sg - a5y (19)
and

aSy = -S¢ (20)

From equations (7) and (17),

t AQ2
v sin \y(as' -3 Ae) = WS"AQ
oy oy 2
oS!
However, —— = 0; therefore,
oy
AB 3" wen
2 oy Vn sin ¥
or, since from equation (15¢) w = -awp A,
asn 2aw,St
a‘ll Vn sin \I{

By use of equation (20), in the neighborhood of the plane 6 = m,

asb 2WbSb62 owSH
a = =
v Vp sin ¥ v, sin ¥

f— -~ T e e e e e e T v g e 4 m——— e
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wsSu

————— has been considered everywhere
Vn sin ¥

In-reference 3, the term

to be of the‘order of a® and has been negleé‘bed; hence, ;‘yﬁ- =0

oS
and —2 = 0. However, neglecting this term is correct only when the

oy
ratio wp/vp, is of an order different from 1/c and, therefore,

when lvnl >> 0. Near the surface of the cone, vp approaches zero,

and, therefore, the term G becomes large and cannot be neglected.

The extent 61‘ the field around the cone where the term -g%— is of the
order of a can be easily determined. .

Consider a polar coordinate system having its axis coincident with
the axis of the cone. At the surface of the body wvn is zero; therefore,

+ in the neighborhood of the body the velocity component Vn can be
expressed in the form
ov.
N\ /e

or, by use of equation (10), in the form

v = (e + — O ;
Vp = (2vr * == v ae)(A\[r)-Y (21)
Therefore, vy is of the order of a when (Ay)y is of the order of a.
In this conical layer of thickness (AY)y of the order of a, 950 44
also of the order of « or larger. In this layer, which can be called

oS
the vortical layer, the term -é-\l!—a- also is of the order of a because
a5, .
from equations (18) and (19) —= can be shown to be of the same order
asn ) o |
as —e
oy

In order to investigate the effect of this vortical layer on the
velocity and pressure distribution at the surface of the cone, consider

]
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equations (2), (L4), (6), and (7). If the velocity components in the
neighborhood of the meridian plane (6 = ) are expressed as .

’ 2
Vp = Vr' - % Vr" (22&)
2
Vp = Vn' - é%— vn“ ’ ’ ) (22b)
3 :
W= -w“(Ae - %?—-) (22¢)
the following expressions can be obtained:
agn owhsn °
5v o el (23)
1 1t
Ovr = gt = .2_.‘"1'. r + ! (2L)
Y o Vo' \ein ¥
aw" 1 . S"a'2)
= Vp! V! + vl + wihvy! sin ¢ + vy'w" cos ¢ + 2
oy v sin W(r r n'n r LA} 08 ¥ R (25)
dvy" 1 ' V" vlntZ v, 12
= 2B - - u - nlo . -
oy 1 v '2 Cra'z : ar? Tt cob ¥ = Ve ar2
wht 1 + o2 _ v, 'y . 2v,! sin | gut _ ZVr'W"2 (26)
sin \ll 312 alz a|2 3\{/ al2
where

v vy " - Ty 1 4 w2
Vo'V Vo'V LS |

A= = > (27)
a

ettt a g m e e e n s e - e e ey = R et eeep——par— R NI R A it e o e wt —— e = i
R . . ~ - B U . L ow e -
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) L
Vel + V! cot ¥y + = .
B=- . L (28)
R vn' 7
a‘2
and
ovrg = Tn. ~ a2 1 is_é (29)
a\y fa Vra 7R a\l,

Therefore, all the derivatives of the velocity components of zero
and first order are affected by the entropy variation in the meridian

g 3

.98
plane. If the terms g_\y—a are of the order of a, the cor-

rection required for the entropy varia{;ion is of the order of a2 because
the thickness of the vortical layer is of the order of a and, ‘therefore,
must be considered only if higher-order terms are considered, as in ge,fer-
ence 5. A correction is also required in this approximation when -5\'!—8'-

and ast become of zero order.

. 95y ag"
The only place where the terms a/— and == are of zero order is

is near the surface of the cone in a layer of thickness a2 where Vn
tends to the order of a2 (equation (9)). Because this layer is of the
order of 0;2 it can be considered in this approximation, which neglects -
terms of the order of a2 or higher, that across this layer the pressure
distribution remains constant, but an abrupt variation of entropy occurs;
therefore, in this approximation the phenomenon can be represented as in
references 3 and lj, where the entropy remains constant in every meridian
plane until a vortical layer of infinitesimal thickness is reached at the
surface of the cone across which a variation of entropy occurs from the
value Sz + aSp cos 6 to the value Sz ~ aSp, that exists at the surface

of the cone. Across the layer a variation of density and velocity com-
ponents occurs and can be easily determined.

Call Vres Wes Ses Pes Pes @and ag the quantities at the

external surface of the layer (these are the quantities tabulated in
reference ), and vrc, Wes Sgs Pes and p, the quantities at the

surface of the cone. Because it has been shown that

Pe = Do (30)
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then

Se =5

ry-1 Cp
where Seg ~ S¢ is the entropy jump across the layer.

Vrez + Wez - 'Vrcz - Wcz | -

Now,

Vp = Vr, + aVpy cos 6
W = awp sin 6

and in the plane 0 = =n

V. =V
Te Te !

or

(vra - ‘W‘I’b)e = (Vra - cW-"'b)c = Vr!
\ | | (32)
(50 - cn)y = (5 - wp)o = 5

Therefore, if terms of the order of a? are neglected, equation (31)
becomes ‘

v () - Ve (V) = - 527 # % (33)
or
(v ) - (v = 2 % - (3L)
Tbje ( rb)e (y - 1)vr, op )
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However, from equation (la), at the surface of the cone,

or

Vrp

therefore, the values of vrb

tion (3li) and from the tables

NACA TN 2236
A
~ sin ¥ 36
S .
oin Vo (35)

and w, - can be determined from equa~
of reference li where

Sp = Cv(% -7 gs) (36)
and
a2 = 2521 - w12) (37)

The values Vros Vs and w, having been determined, the values of v,
and w can be obtained at any part of the cone from equations (15).
From the velocity components, the correct pressure distribution can

be determined since the entropy remains constant and is equal to Sz ~ aS
at the surface of the come.

THE NUMERICAL DETERMINATION OF THE FLOW FIELD AROUND
CONES A'El’ SMALL ANGLES OF ATTACK

The method presented permits the determination of the pressure dis-
tribution around the cones with the assumption that the terms of the

order of a2 can be neglected. The pressure at any point can be obtained
from the equation

4
: o\ A L8
X . Z_L.;.V_E oL Cy (38)
PL \T-"p
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where V is the local velocity corresponding to the pressure p X
and AS 1is the increase of entropy with respect to the stream condi-
tions where p; and V7 exist. From equations (15), V2 is found
to be

V2 = vraz + azvrbzcosze *+ 2avy vy, cos 6 + azwbzsin 8 (39)

However, in equation (39) the terms of the order of a2 having the form

2Vyp,Vp, Cos m6 have been neglected (see equation (11)). If all the terms

of the order of a2 are neglected, V2 becomes

Y2 = Vraz + 2aVp Vr cos © (Lo)

Equations (39) and (L4O) are different in terms of the order of a2;
however, for finite angles of attack good agreement is obtained only if
equation (39) in which some of the a2 terms are retained is used in
equation (38). .

The reason for the better approximation given by equation (39) can
be understood if the magnitude of the terms containing a2 in the
expression of V2 is considered. Mong the surface of the cone, Qwp
is given by )

amy = = 2 (L)

sin ¥,

For a finite value of a and a small value of V., awp2 is of the
same order as avrj, because sin2\yc is also small; therefore, a2wy2

can have an effect on the velocity and pressure distribution of the same
order as the term aVr, 1y, which is the only term retained in equa-

tion (4O).  Because the term a2w? is correct and significant, it can
still also be retained if other terms in o2 are neglected, and, there-
fore, equation (39) is the expression that must be used for finite angle

of attack. (For example, for a 10° cone (y¢ = 100) sin?y, = g%
and a2 =1 for a = 1.759 which can be considered a small angle.)
sin“y

In reference 3, equation (16a) has been used in the derivation of
the method; however, the use of this equation is not necessary, as is
briefly shown in the following paragraph.
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Consider a conical circular shock having the semiapex angle o and
inclined at an angle & with respect to the undisturbed stream. In the
neighborhood of the plane © = m the velocity components can be expressed
as in equations (22) and at the shock are given by (from equations (12))

vp! = V1 cos 0 -V16 sin © (42)
vyt = -6V] sin © (43)
wt' = -V156 (lly)
_11-7 2¢c0s20 . _ 1l - V120032
vn|=_7 1 1 + 7 1Scoso-zvl+ — (L45)
y+1l 7Vysingo y+1 V, sin“o
1-7 2c0820
n=2= 1 - 1
Vn 1 6 cos o|-2Vy + 71 sinZo (L46)
and S' and S" are given by
St = cy logg {:{. + (7 ; 1 M12 + 1)571235_112(0 +5) - vnl2] +
) Tn (1)
- o
(cp - ev)ioge Vv, sin(o + 5)
vl
V,2cos o sin 0 - Vp' —=— "/s
St = 26 8+ (cp - oy)b{—— - o) (1B)
1 (v1231n2°- - ! 2) Vn s g
1+ Z_.E_l M2

A11 the velocity components are referred to the limiting velocity, and
7V, is the undisturbed velocity also referred to the limiting veloclty.

In the meridian pla.ne' 0 = n ' the entropy S' is constant; therefore
when w = 0, from equation (la),

ovp!
—_— =y (49)
oy °
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If equation (4) is applied to the meridian plane 0 = n and equa-
tion (21) is used, the radius of the hodograph diagram at any value of
smaller than o is given by (reference 6) )

WM -

- vp! + V! cot ¥+
(R)y = - ————— 2 ¥ (50)
1- T
atl
where .
731a|2 =1~ vp'2 .‘.vn12 (51)
Therefore, at the point ¥ -~ Ay in the meridian plane 6 = =,
(ve' Jy-ty = ~(vn')y sin &y + (vr' - R)y cos &y +'(R)y (52)
and
(va' y-ay = (va')y cos Ay + (vp' ~ R)y sin Ay (53)

From equations (50) to (53), the velocity components vy! and wy!
can be determined if the lcomponent wt is known in the meridian
1

plane 6 = n. Since LM given by equation (25), the value of w"

can be determined for any value of Y. But vy, and vp, are the

quantities obtained for zero angle of attack at the same coordinate
of a coordinate system in axis with the conical shock, and

vr" = vrl - vra
vn" = vnl - vna

therefore, the entire flow field can be determined until vp' becomes O.
The value of ¥ forwhich wvp' = O corresponds to V¢ + a - 6§ and,
therefore, gives the value of «a.

Considerations similar to those used for cones can be used for the
characteristics method presented in reference 6. In this case the
pressure at the surface of the body can be obtained from the complete
equations, and the vortical layer must be considered in order to obtain

.. e i o ey e o e vy o o, = = ——— e rnr, o oo S e e e e
e - P - : e - P - s - r

W 0 X DI R JEN [ S « .
x - A § R - Se
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the correct distribution of entropy. The application is the same because
the entropy does not change along each streamline.

COMPARISON WITH EXPERIMENTAL RESULTS

In order to have an indication of the accuracy that can be expectéd
from the first-order theory, theoretical results have been compared with
some experimental results available. The theoretical results have been
obtained by using the values of reference L for the conditions outside
the vortical layer and the pressure at the surface of the cone has been

determined in the following way:

From tables of reference l; the value of §/a has been determined
(6/¢ of tables). The position Y in the plane © = n of the conical
body in the shock coordinate system is

YV=V¥c+ta-25 (5h)

The value of vy, at V¢ + a - & has been determined from the tables

. - §)2
of reference L (vr at ¥ 1is given by ug - 2ug SG—ES—)—) The value

of vy" has been obtained from the tables in shock coordinates
ovr
= aja -6 _ [ _ a-6
()] = =G+ ( a\y) a (" Ty ) (55)

57 .
Because g\y—r =0 at V¥ = Vg, the value of [(vrb) e]\lf can be taken equal

to the value of vy, at V¥ and, therefore, to -x at Vg of the
tables, Then (I‘a)c’ (v )c 5, and (wb) in the body coordinate system
have been obtained by means of equations (32), (3k4), and (35).

From equation (36) Sp has been obtained (it has a negative value),
and from tables of reference 7 Sz can be determined ~ for example,
from the value of the angle of the shock obtained from reference 7 — and

AS = Sa - aSp _ (56)

The pressure has been obtained from equation (38).
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In figure 5 a comparison is presented for a cone of Vg = 7.5° at
M =1.6 and four angles of attack. The experimental data are obtained
from tests performed in the Langley L~ by L-foot supersonic tunnel.
For comparison the values given by references )i and 5 and by linear
theory are -also shown. In figure 6 a comparison is presented for
a cone of Yo =10° at M =-6.86 and two angles of attack. The experi-
mental data have been obtained from tests performed at the Langley
1l-inch hypersonic tunnel. The agreement in both cases is good, even at
angles of attack where it would be expected that higher-order terms would
be important.

CONCLUSIONS

The flow around cones without axial symmetry at supersonic velocity
has been analyzed. Singular points which complicate the analysis of the
flow field were shown to exist in the flow. The results of the analysis
were applied to the determination of the flow around circular cones at
an angle of attack. The concept of a vortical layer around the cone at
small angles of attack has been introduced, and the correct values of the
first-order terms of the velocity components were determined.

The method determined was applied to cones at finite angle of attack,
and it is shown that good agreement with experimental results can be
obtained from the first-order theory if the complete equation for the
pressure distribution is used... The analysis can be extended to the
application of the characteristics method around bodies of revolution
at small angles of attack.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., September 26, 1950
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Figure l.- The polar coordinate system.
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Figure 2.- The singular points at the surface of the cone.
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Figure 3.~ The singular points at the surface of a cone in supersonic
flow without axial symmetry.
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Axis of the conical shock
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Figure 4.- The position of the conical shock with respect to the

conical body.
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(o] Experimental data

Theoretical data

e — ——Linear theory

———- ~~Theoretical data from refersnce 4
=—— —~——Theoretical data from reference 5
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Flgure 5.~ Comparison of experimentel pressure distribution over the
surface of a cone. with the theoretical pressure distribution. Semi-
apex angle of cone, 7.5°; M = 1.6. (Experimental data obtained from
the Langley k- by k-foot supersonic tunnel.)
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O Experimental values for two
a differpnt values of r
along the cone surface
Theoretical values
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Figure 6.- Comparison of experimental pressure d:istribution over the
surface of a cone with the theoretical pressure distribution. Semi-

apex angle of cone, 10°; M = 6.86.

(Experimental values for two

different values of r along the cone surface; data obtained from
the Langley 1ll-inch hypersonic tunnel.) .
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