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SUMMARY

Solutlions are given for the elastic buckling stress of flat
rectangular plates with simply supported or fixed ends when loaded
as columns. FYor the case of simply supported ends, an exact solution
i1s made; for the case of fixed ends, an approximate solution is made
by use of a power series in conjunction with Lagrangian undetermined
miltipliers. The critical stress is given in terms of the Euler
value of the load multiplied by a coefficient which depends on the
width-length ratio of the column and varies for practical purposes

between the values 1 and , wvhere un 1is Poisson'’s ratio of the
material.

1 -y

The results showed that the plates may be considered as "columms,"
as the term is used in ordinary engineering practice, when the width-
length ratio is less than 0.1 and msy be considered as infinitely wide

plates (Euler columm value times coefficlent of —L—Q when the

1-p
width~-length ratio is greater than 10. For intermediate width-length
ratios, the appropriate coefficient may be found from a chart.

The procedure for determining the critical stress of plate columns
with Intermediate end fixities is also given. The study also indicates
the solution for the local buckling of angle or cruciform sectioms.

INTRODUCTION

The Euler equation for columm buckling is recognized to be correct
for a very narrow rectangular plate loaded as a column (reference 1)

and is generally assumed to be modified by a factor when

1- 42

applied to a very wide plate. This factor is introduced on the basis
that the end supports force the plate to buckle into a cylindrical
surface over most of its width, and thereby the bending stiffness is
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EI
increased from EI +to -]?7 (See reference 2.) For the very
- H

narrow plate, the effect of the end supports is negligible because
only a small region at each end is affected (St. Venant's principle).
Thus, the critical stress may change as much as 10 percent from the
Euler value, depending on whether the plate columm is very narrow or
very wide. ’

The purpose of this study ie to investigate the effect that width
has on the buckling stress in the transition from a very narrow to a
very wide plate columm. Solutions are made for both the case of simply
supported ends and for the case of fixed ends, and the means for approxi-
mately taking into account elestically restrained ends is indicated.

RESULTS AND CONCLUSIONS

The solutions for the buckling stress of a flat plate column with
simply supported ends and with fixed ends are given in appendixes A
and B, respectively. Figure 1 shows the coordinate system and the
plate dimensions that are used in the analyses. For the plate column
with simply supported ends, an exact solution i1s made by solving the
differential equation that expresses equilibrium of the plate when
slightly buckled. For the case of fixed ends, however, an exact
solution is not possible because a deflection function satisfying both
the differential equation and the boundary conditions is not known.

An approximate solution for this case is therefore made by use of the
energy method.

The results of the analyses showed that the critical stress of a
plate loaded as a column may be found from the modified Euler equation

v 7R

Ocr =
1 - IJ_2 (_L_.)2 -
pVC,

where

b
v coefficient dependi upon ratio
P ng upo I NE

i Poisson's ratio
E elastic modulus

L actual length of plate
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. b plate width

t column thickness

p  radius of gyration (t/ yiz)

c restraint coefficient (c = 1 for simply supported ends;
c = L for Tixed ends)

A band of values of v 1is shown in figure 2 for up = 0.30. The lower
limit of the band is the curve for simply supported ends {c = 1) and
the upper limit of the band is the corresponding curve for fixed

ends (c = 4). The percentage increase in critical stress sbove the
Euler value i1s seen to be slightly greater for a fixed-end plate
column than for a simply supported plate column. This greater increase
in stress for the fixed-end case arises because not only do the end
supports provide restraint against transverse bending but they provide
restraint vhere the tendency for this bending to occur is large.
Intermediate end conditions {1 < ¢ < %) would be represented by
gimilar curves within the band.

Ingpection of the band shows that the difference between v for
fixed ends and v for simply supported ends is nowhere greater than
2 percent of the ordinate. This difference represents the maximm
error in vy and, consequently, critical stress that may result from
use of a curve for the wrong fixity. Use of the bottom curve (c = 1)
to calculate the critical stress will evidently be slightly conservative
for all cases in whic,h ¢ is greater than 1.

In figure 2, as b approaches zero, all values of v approach
L7\IE

1 - u2 and the equation for critical stress reduces to Euler's equation.

b
As I/Ne becomes large, all values of v approach, for practical

purposes, the value unity, and the equation for critical stress reduces
to Euler's equation modified by a factor 1 - ua. In a general way,

for values of 7\'— less than 0.1, the structure is a "colum" in the
LNc

conventional sense; whereas for values of ﬂ%: greater than 10, the
c

structure is an "infinitely wide plate” because it requires the plate
modulus.

A point of theoretical interest is worthy of mention, however, in
regard to the curves shown in figure 2. These curves do not approach
asymtotically the value of 1 for large values of b/L , a8 might
ordinarily be expected; rather, they approach a value slightly lower

— - —— . e ae, = o o e = e -
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than 1. In appendix A, for example, the asymtotic value of Vv for a

‘ pin-end plate column with a Poisson ratio of 0.30 is shown to be 0.9962.
Thus, no matter how wide the plate, the critical-buckling coefficient
can never quite reach the full infinitely wide plate value of unity.
This reduction mey be explained by considering the free unloaded edges.
Some restraint against the tendency for these edges to curl would have
to be provided in order to force the plate to buckle in a truly
cylindrical surface, which is necessary to achieve the buckling coef-
ficient of 1. In the absence of this restraint, the free.edges are
evidently the weskest part of the plate, with the consequence that
buckling occurs at a slightly reduced stress.

In order to illustrate the effect of Poisson's ratio on the curves
for v, a series of three curves is shown in figure 3 for simply sup-
ported ends (c = 1) for values of Poisson's ratio of 0.25, 0.30, and 0.35.

For large values of , all curves approach, for practical purposes,

L/Vc
b
the value of unity; however, for small values of the curves
¥ ’ Lie’

separate in order to approach their individual values of 1 - p.2. The
circled points on the curve for p© = 0.30 represent points obtained
by a different method from that used to derive the rest of the curve;
the method is described in appendix B.

Langley Aeronautical Laboratory
National Advisory Commlittee for Aeronautics
Langley Air Force Base, Va., Mgy 19, 1950
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APPENDIX A
CRITICAL STRESS OF A PLATE COLUMN WITH SIMPLY SUPPORTED ENDS

The buckling stress of a flat plate column may be determined by
solving the differential equation that expresses equilibrium of the
plate when slightly buckled. Figure 1 shows the coordinate system and
the plate dimensions that are used in the analysis.

The differential eguation for equilibrium of a flat plate under
longitudinal direct stress is (reference 3, p. 305)

ah‘".;-ﬁ Bl"" al"“’+o' t_azw 0 (a1)
axt o By ay ax®
where
W deflection of plate at (x, y)
Et3 '
D bending stiffness of plate 5
12(1 - 5
B elastic modulus
t thickness of plate
i Poisson's ratio

Ocy applied compressive stress at buckling

The critical stress d.p may be given in the form

. %D

Oexr = VEQ: (AE)

whe‘re‘ L 18 the length of the plate and VvV ies a numerical factor to
be determined. Substitution of this expression for o., into

equation (Al) leads to a modified form

s
xli S St "52'&2”" (A3)




‘TEEHN[BAL LIBRARY

ABBOTTAEROSPACE.COM

6 _ ’ NACA TN 2163

The boundary conditions to be satisfied, where b 1is the plate width,
are

(w) x=0 = O _ (Aka)
x=L

B, a2w.) ) i
(ax2 pgy—é x=0 ° (A b)

x=L

v=sp
v : dw
— + (2 - n) =0 (Aka)
l:aya * g Bxeay y=ib

2

Differential equations (A3) and conditions (Ala) and (Alb) are satisfied
identically by either

W= (P cosh 9%: + Q cosh %X> gin _"I"‘. (A52)
or
(n a B x
w-(Rsinh-Bx+S’sinhﬁz)sin.r (A5Dp)

vhere P, Q, R, and S are coefficients which depend on the boundary
conditions and

7b
a=22 +\W
L
b
B=TV1-W

Equation (A5a) represents the deflection surface for a symmetrical type
of buckling and equation (A5Sb) represents an antisymmetrical type of
buckling. Substitution of these two deflection equations successively
into boundary conditions (Alc) and (Ahkd) leads to two stability criteria,
one for each type of buckling:
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For symmetrical buckling,

Ve - w13 e § VW6 ) e a0

For antisymmetrical buckling,

Vi +\W(1 -u -W)etanh% -1 -Wé - }J.'+W>2ta.nh% =0

{a6b)

Solutions are obtained by assigning a value to b/L and adjusting the
value of v until equation (A6a) or equation (A6b) is satisfied. Both
experience and calculation show that a lower value of v results from
satisfying equation (A6a); that is, the buckling is the symmetrical
type. If by some means the center line is held fixed (as in a cruciform)
then the criterion '(A6b) applies. .

The values of v for symmetrical buckling are plotted against

Lb Ve in figure 2. The factor c¢ 1s the column-end fixity coefficient

(c =1 for simply supported ends; ¢ = & for Pixed ends) and has been
introduced to allow for the approximate treatment of plate colummns with
intermediate end restraints. The following modified Euler equation
introduces the factor c:

v “F
“cr = 2 2 (A-7)
=
pVc
where 5 is the Euler value for a columm with restrained ends.
L
(o\fc_:

For simply supported ends (c = 1), equation (A7) reduces precisely to
the critical buckling stress given by equation (A2).

Of interest is the limiting value of v as b/L approaches zero.
If equation (A6a) is evaluated in the 1limit as b/I. approaches zero
the buckling coefficient of 1 - ue, which applies for a narrow plate
column, is found directly. Of greater theoretical interest, however,
is the case vhere 'b/L approaches infinity. If b/L is set equal %o
infinity and v 18 taken as 1, as might ordinarily be expected for
this case, the left side of equation (A6a) reduces to 2u2., The
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value V =1 1is therefore not & solution for the 1ﬁfinitely wide case.
If, however, b/L is set equal to infinity (assuming v £1),
equation (A6a) reduces to

\/1+\I;<_1-u-vv)z-\ll-ﬁ(l-p+\/7)2=o (48)

For the case of p = 0.30, this equation yields a value of V = 0.9962.
Theoretically, therefore, the buckling coefficient of unity (corres-
ponding to cylindrical buckling) is never reached for an infinitely
wide column.
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APPENDIX B

CRITICAL STRESS OF A PLATE COLUMN WITH FIXED ENDS

An exact solution for the critical

stress of a plate columm with

fixed ends cannot be made because a deflection function which satisfies
equation (A3) and all the boundary conditions of a fixed-end plate is

not known. By use of the energy method,

however, an approximate

solution can be made. The coordinate system (see fig. 1) iz the same

as that used in sppendix A.

Inasmich as the unloaded edges of the plate column are free it
has been found convenient to assume a symmetrical deflection function

in the form

w = %,1’2,,,_ [a.n + b, (%2)2 + cn(%‘!)h + dn(g..;)s] cos 21;1“‘ (Bl)

This equation is sufficiently general and automatically satisfies the
condition that the slope must be zero at the ends. From the condition

that the deflection must be zero at the
is found:

enils, the following relation

D R o NG AR P

n=0,1,2,...

This equation must be true regardless of the value of y; hence the

coefficients of individual pawers of 7y

Thus,
2
L T,
ch =0
2> a

It
o

"
o

0

must each be equal to zero.

1

J

The total potential energy U of the system when buckling occurs

may be given by the expression

U=V -T

(33)

(BY)
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where V represents the energy of bending and T represents the work
done by the external axial forces. The expression for U 1in terms of
the deflection is

gD [*F %Bzw L (& P A
"2 Jo b o) T\oB) TR 2t o - w5 -

2

Tort (%)] ay ax (85)

In accordance with the minimum potential-energy principle the
energy U 1is minimized with respect to the deflection coefficlents (a.,
b, ¢, and d), subject to conditions (B3). These conditions are
introduced in the minimization process by the use of Lagranglan
undetermined multipliers.

It is convenient to express 0., in terms of the dimensionless
buckling coefficient Vv by means of the notation

rd

Jex® _ mlz- ' (86)
D L

Substitution of this equation and of the expression for w,

equation (Bl), into equation (B5) and addition of conditions (B3) by
undetermined multipliers results in the followling expression which 1s
to be minimized:

P2l - e s BEY (s s - (E) e

n=0,1,2,...

8(1 - u) (;%)21’14_] + aZa.n + Ban + 7ch + SZdn (B7)

where for n £ 0
Bpo =

and for n =0 .
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2 l’b 2.1 2 12, 2 2 \
fL=fn *gn fgn *gydn * Jenn ¥ Zentn * Zenda b
2
%bncn + %’ndn + 73%n%n
£y = ln:n + =% 1“ 2 + ]_OOcln + 16bpep + 2kbpd, +. ]—cnd;{1
> (88)
f3 = 2anbn + ll-a.nCn + 6andn + g-bna + -]:T—Ecn? + -]3.—]0-6.112 + ‘]gllbn(:'n +
37 ndn + “h9g'cndn
fh=%bn2+l76cn2+%gdn2+l ncn"'—hbndn"' ndn
o
and o, B, 7, and & are the undetermined multipliers. Taking the

partial derivatives of F with respect to an,

b

n» Cp» 28nd d, and

equating them to zero, the following system of equations is obtainead:

Apgn + Bpby + Cpcp + Dpdy
Bpan + Epbp + Fpcp + Gpdp

Dpan + Gpbn + Jpcp + Lpdy =

where . .

e e ——— e - ~~—

" (89)
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2
D, = -’,‘-‘(—An - 2lymm®

E, = %%An + 16@. + 6110)m2 + -]3=|§2(1 - u) - 161_—1_]mn2

F, = %QjAn + 32(1 + Sno)ma + %—Eh(l -u) - 56an2
Gy = %24&11 + hB(l + 5no)m2 + %56(1 -u) - 128L:L]'mn2

Hy = .119_2An + 25@(1 + SI‘K,)m2 + %-E.QB(l -n) - 96;:1,]nm2
- L{?AI? + _1_1*;9(1 + B + F[192(1 - p) - 168pjma”

_n2 2 1 2
L -—1—3-An+l+oo(1+anom +==[283(1 - w) - 2400} mn

=)

From the first of equations (B9) the fact that « = O can be found
by setting n = 0. This fact somewhat simplifies the procedure for
determining the critical buckling stress.

The characteristic buckling value v mey be found with the aid
of equations (B9) and equations (B3) as follows. For a given value
of m the value of v 1is assumed; the quantities A, . . . L, can

then be found for any value of n. Insertion of the values of
Ap . . . Ly, in equations (B9) then permits the determination of

8n + « « 4y 1in terms of B, 7, and & (because « = 0). The only

value which camnot be established is ap, but this value may be con-
sidered to be indeterminate and is carried slong as an unknown with B8,
7, and &. Substitution of the values of ap, bp, cp, and 4, into

equations (B3) gives four equations of the form

ag + MB +N7y+P18 =0

o

MpB + Noy + B

M3B + N37 + P38 =0

it
o

MB + Ny + P
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Nontrivial solutions result only when the determinant
My Nz Pp .
M3 N3 - P3 = 0
M, Xy Py

This determinant is not generslly zero for the initially assumed value
of v. Other values are therefore assumed until a value is found which
. cauges the determinant to be zero; the value causing the determinant to
vanish is the characteristic buckling value for the ratio of L/b being

considered. The variation of the buckling value v with L_/bT is
[+

shown in figure 2. The factor c¢ 1s introduced (as in appendix A,

see equation (AT)) to allow for the approximate treatment of plate
columns with restrained ends. When c = U, which corresponds to the
fixed-end condition treated in this appendix, the equation for buckling
reduces simply to equation (BT7). The buckling-stress coefficient for
plate columns with infermediste end restraints would evidently be given
by curves which fall within the narrow band indicated in the figure.

Use of the bottom curve for ¢ =1 <for all end restraints, however,
would yield slightly conservative critical stresses for c¢ greater
then 1, with a maximm error in any case of only 2 percent. '

An indication of the suitabllity of the form of the deflection
equation (Bl) can be obtained by performing an energy solution for a
plate column with simply supported ends with the use of the following
deflection function, which is similar in form to equation (Bl),

o< [pe oG o) o] e

The circled points shown in figure 2 for the curve for u = 0.30 are
typical results from this solution. For practical purposes, no
essential difference is seen to exist between this solution and that
obtained in appendix A from the differential equation. The values
of v for the clamped plate columm, therefore, are probably of
accuracy comparable to those for the simply supported plate column.
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Figure L. — Goordinate system and plate dimensions used
in buckling analysis.
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Figure 2.—Vadlues of » in the formula for critical stress

2 i
O;,=-IT”E (praa with p=0.30.

. 1.00 T
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Exact solution

A o Energy solution
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1l 2 4 | 2b4 0 20 40 100
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Figure 3.—Vadlues of v in the formula for critical stress
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Ocr —u? ([L/pVe)® with c=l and p=0.25, 0.30,and 0.35
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