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SUMMARY

In the first part of the investigation an analysis is made of base
pressure in an inviscid fluid, both for two-dimensional and axially-
symnetric flow. It is shown that for two-dimensional flow, and also for
the flow over a boly of revolution with a cylindrical sting attached to
the base, there are an infinite number of possible solutions satisfying
all necessary boundary conditions at any given free—stream Mach number.
For the particular case of & body having no sting attached only one
solution is possible in an inviscid flow, but.it corresponds to zero
base drag. Accordingly, it is concluded that a strictly inviscid—fluid
theory cannot be satisfactory for practlical applications.

Since the exget inviscid—fluid theory does not adequately describe
the conditions of a real fluld flow, an approximate semi—empirical theory
for base pressure in a viscous fluid is developed in a second part of the
investigation. The semi-empirical theory is based partly on inviscid—
flow calculations, and is restricted to airfoils and bodies without boat—
tailing. In this theory an attempt is made to allow for the effects of
Mach number, Reynolds-number, profile shape, and type of boundary—layer
flow. The results of some recent experimental measurements of base
pressure in two—dimensional and axially-symmetric flow are presented for
purposes of comparison. Some experimental results also are presented
concerning the support interference effect of a cylindrical sting, and
the interference effect of a reflected bow wave on measurements of base
pressure In a supersonic wind tunnel.

INTRODUCTION

The present Investigetion is concerned with the pressure acting on
the base of an object moving at a supersonic velocity. This problem is
of considersble practical importance since in certain cases the base drag
can amount to as much as two—thirds of the total drag of a body of
revolution, and as much as 80 percent of the total drag of an airfoil.
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In the past, numerous measurements of base pressure on bodies of revolu—

tion have been made both in supersonic wind tunnels and in free flight,

but these experimental investigations have had no adequate theory to .
guide them. As a result, the present—dsy knowledge of base pressure is

very limited and many inconsistencies appear in the existing experimental

data.

Various hypotheses as to the fundamental mechanism which determines
the base pressure in supersonic flow over bodies of revolution were
advanced years ago by Lorenz, Gebeaud, .and von Kerman. (See references
1, 2, and 3, respectively.) These hypotheses, however, do not appear to
be adequate. The equations which result are umsatisfactory either for
predicting the base pressure or for correlating experiments. Figure 1,
which shows a comparison of these theories with average experimental
values for projectiles, 1llustrates the relatively large discrepancies
that are involved.

A semi-empirical theory of base pressure for bodies of revolution
has been advanced recently by Cope in reference 4. In certain qualita—
tive respects this theory is similar to the semi~empirical theory of the
present report, though the two analyses were developed independently.
In contradistinction to preceding investigetions, the present analysis
and the analysis of reference 4 attempt to include not only the effects
of Mach number but also the effects of Reynolds number and type of .
boundery—-layer flow, since experiments have shown these effects to be
importent. Cope evaluates the base pressure by equating the pressure in
the wake, as calculated from the boundary—layer flow, to the pressure as '
calculated from the exterior flow. In calculating the pressure from the
boundary-layer flow, however, numerous spproximations and assumptions are
necessarily made which, according to Cope, result in no more than a first
approximation.

The primary purpose of the investigation described in the present
report is to fornmlate a method which is of value for quantitative calcu—
lations of base pressure on airfoils and bodies without boat—tailing.

The analysis is divided into two parts. Part I consists of a detailed
study of the base pressure in two-dimensional and exielly-symmetric
inviscid flow. The purpose of pert I is to develop an understanding of
the problem in its simplest form, rather than to obtain results having
immediate practical value. In part II a semi—empirical theory is formu—
lated since the results of part I indicate that an inviscid—flow theory
cannot possibly be satisfactory for quantitative calculations of a
viscous flow. A comparison of the semi-empirical theory with experimental
results is also presented in part IT of the report.

Much of the present material was developed as part of a thesis sub—
mitted to the California Institute of Technology in 1948. Acknowledgement .
is made to H, W. Liepmann of the California Institute of Tecklmology for
his helpful discussions regarding the theoretical considerations, and to
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A, C. Charters of the Ballistic Research Laboratories.for making available
numerous unpublished spark photographs which were taken in the free-flight
experiments of reference 5.

NOTATION

C1,C2 constants

d

h
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Pyt

Poy
Pp*

Re

rod or support diameter

base thickness (base diameter for axially-symmetric flow,
trailing-edge thickness for two—dimensional flow)

empirical constants

length upstream of base (body length for axially-symmetric flow,
airfoil chord for two-dimensionsl flow)

Ma.ch number

pressure

pressure coefficlient referred to free—stream conditions
Py

1 2
ol

base pressure coefficient referred to conditions Just ahead of

-?
the base 3‘1.._1..
—plUl

base pressure coefficient for maximum drag in inviscid flow

velus of B,' obtained by extrapolating to zero boundary-layer
thickness the curve of best linear variation of Pp' with B5;

dynamic pressure <J2=pU2>

gas constant

Reynolds number based on the length L
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r radial distence from axis of symmetry to point in the flow
T tempera:buz:e '
t thickness of weke near the trailing shock wave
) velocity
B angle of boat-tailing at base
7 ratio of specific hea:bs-(l.ll- for air)
3] boundery—layer thickness
€ correction parsmeter to dynamic _.pressm , defined by equation (8)
o] density

Subscripts
1 conditions just ahead of base '
© conditions in the free stream |
b conditions at base )
(o} stagnation conditions

I. BASE PRESSURE IN AN INVISCID FLUID

*  Throughout this part of the report the effects of viscosity are com—
pletely ignored and the flow field determined for an inviscid fluid
wherein both the existence of a boundary layer and the mixing of dead air
with fluid outside a free streamline are excluded from consideration. It
is assumed throughout that e deasd-eir region of comstent pressure exists
Just behind the base and is terminated by a single trailing shock wave.
Only airfoils and bodies without boat—tailing are considered in the
anaelysis. As will be seen later, the assumption of zero viscosity over—
simplifies the actual conditioms; the results so obtained, though of
considerable help in understanding the flow cheracteristics, agree only
qualitatively with experimental results, "
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Two—Dimensional Inviscid Flow

Semi—infinite two—dimensional profile.— In order to achieve the
greatest possible simplicity at the outset, the cese of a semi—infinite
profile will be consldered first. By this is meant a profile of constant
thickness vwhich extends from the base to an infinite distance upstream
(fig. 2). The problem at hend is to determine the flow pattern in the
neighborhood of the base. Since the effects of viscosity are at present
ignored and only steady symmetrical flows are considered, the problem is
simply that of determining the flow over a two—dimensional, flat, hori-—
zontal surface which has a step in it (fig. 3).

It 1s easy to construct a possible flow pattern which satisfies all,
necessary boundary conditions including the requirement of constant
pressure in the dead—eir region. For example, suppose the free—sitream
Mach number is 1.50 and some particular velue of the base pressure coef—
ficient, say Py = —0.30, 1is arbitrarily chosen. Since the base
pressure i1s prescribed, the initial angle of turning through the Prandtl—
Meyer expansion at B (Ffig. 3) is uniquely determined, and in this
particular case is equal to 12.4°. The pressure, and hence the velocity
and Mach number, must be constant along the free streamline BC. For the
example under consideration, the Mach number along the free streamline is
easily calculated from the Prandtl-Meyer equations to be 1.92. For a
uniform two-dimensionel flow over a convex corner, the pressure depends
only on the angle of inclination of a streamline, hence it follows that
BC is a straight line. The triangle BCE therefore bounds a region of
uniform flow having the same pressure as the dead—air region. As the
trailing shock wave (fig. 3) extends outward from E +to infinity, inter—
ference from the expansion waves gradually decreases its strength until
it eventually becomes a Mach wave. That part of the shock wave from C
to E mst deflect the flow through the seme angle as the expansion waves
originally turned it (12.4° for the particular example under considera-—
tion). This deflection certainly is possible since the Mach number in
the triangle BCE is 1.92 which, according to the well—known shock—wave
equations, is capable of undergoing any deflection smaller than 21.5°,

As the flow proceeds downstream from the trailing shock wave CEF, the
pressure approaches the free—stream static pressure, thus satisfying the
boundary condition at infinity.

It is evident that a possible flow pattern has been constructed
which satisfies all the prescribed regquirements as well as the necessary
boundary conditions. This flow, however, certainly is not the only
possible one for the particuler Mach number (1.50) under consideration,
since any negative value of PR, algebraically greater than -0.30 also
would have permitted a flow pattern to be constructed and still satisfy
all boundery conditions. This is not necessarily true, though, if
values of Pp algsbraically less than -0.30 are chosen, as can be seen
by picturing the conditions that would result if the base pressure were
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gradually decreased. The angle of turning through the Prandtl-Meyer -
expansion would increase and point C in figure 3 simultaneously would
move toward the base. The base pressure can be decreased in this manner
only until a condition is reached in which the shock wave at C +turns
the flow through the greatest angle possible for the particular local
Mach number existing along the free streamline. The base pressure cannot
be further reduced and sti1ll permit steady inviscid flow to exist. The
flow pattern corresponding to this condition of a maximm-deflection shock
wave can be considered as a "limiting" flow of all those possible. There
are obviously an infinite number of possible flows for a given free—
stream Mach number, but only one limiting flow.

The limiting value of the base pressure coefficient can be easily
calculated as a function of the free—stream Mach number by reversing the
procedure described above for. constructing possible flow patterns. Thus,
for a gliven value of the local Mach number along the free streamline a
limiting flow pattern can be constructed by simply requiring that the
angle of turning be equal to the meximim~deflection angle possible for a
shock wave at that particular local Mach number. By use of the Prandtl-—
Meyer relations the appropriate value of the free-stream Mach number is
then directly calculated from the angle of turning and the local Mach
number along the free streamline. This process can be repeated for
different values of the local Mach number along the free streamline and
a curve drawn of the limiting base pressure coefficient as a function of
Mach number. Such a curve is presented in figure 4. The shaded area
represents all the possible values of the base pressure coefficient for
two—dimensional inviscid flow. The upper boundery of the shaded area
corresponds to the limiting flow condition for various free—stream Mach
numbers.

There is no reasan apriori to say that for a given M, the limiting
flow pattern represents that particular one which most nearly approximates
the flow of a real fluid. The curve representing these limiting flow
patterns can be considered simply as being the curve of maximum base drag
(and hence meximim entropy increase) possible in an inviscid flow. This
is the only interpretation that will be given to this curve for the time
being. Since it is these limiting solutioms which will be singled out
later for further use, a special symbol Pp; will be used to designate
the base pressure coefficient of such flows. It is evident from a com—
parison of figures 1 and 4 that in the Mach number region shown the
velues of Fpy; fFor two—dimensional flow correspond to very high base
drags, being almost as high as if a vacuum existed at the base. At Mach
numbers greater than or equsl to 6.0, the values of Py 5 exactly corre—
spond to & vacuum at the base.
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Axially-Symmetric Inviscid Floyr

Semi—Infinite axially—symmetric body.— In principle the sams method
of procedure can be used for inviscid exially-symmetric flow as was used
for inviscid two—dimensional flow. The axially-symmetric flows, however,
are somswhat more Involved than the corresponding two—dimensional flows.
For example, in axilally-symmetric flow the expansion wavelets issuing
from the cormer of the base are not straight lines as they are in Prandtl—
Meyer flow. Moreover, additional complications arise since the flow can—
ditions upstream of the trailing shock wave do not depend solely on the
inclination of the streamlines at a given point, but depend on the whole
history of the flow upstream of the Mach lines passing through that point.
As a consequence of these complications, the free streamline of constant
pressure cannot be stralght.

In order to construct possible flow patterns as was done In the two—
dimensional case, the method of characteristics for axially-symmetric
flow must be used and each flow pattern bullt up step by step. The .
details of the particular method employed are described in reference 6.
By use of the characteristics method the inviascid flow fleld corre—
sponding to a glven value of the base pressure coefficient can be con—
structed for any glven value of the Mach number. The shape of the free
streamline is, of course, determined by the condition that the pressure
and the velocity must be constant slong it. An exsmple of such a con—
struction for a free—stream Mach number of 1.5 is given in figure 5(a).

In this particular case, the base pressure coefficient which has been
chosen arbitrarily is -0.25. It 1is to be noted that there is a striking
difference between the axially-symmetric case (fig. 5(a)) and the two—
dimensional case (fig. 3). The inviscid flow pattern for the axially—
symetric case cannot be constructed all the way to the axis of symmetry,
and still satisfy the prescribed boundary conditions. This is a conse—
quence of the curvature of the free streamline and the fact thet the Mach
nunber along the free streamline in the case under consideration is 1.84,
vwhich, at the most, is capable of deflecting a stresmline only 19.9° by a
single shock wave. As is illustrated in figure 5(a), the angle of incli—
nation of the free streamline for this example is already 19.9° at & value
of r/ro = 0.552, where 1 1s the radial distance from the axis and

To = h/2 is the radius of the base. Since the angle of inclination of
the constant—-pressure free streamline would continue to increase monoton—
ically as the axis is approached, the flow pattern of figure 5(a) cannot
be constructed farther than the point shown (r/rg = 0.552) and still leave
e provislon for the flow to be deflected through a single shock wave and
become parallel to the axls of symmetry. This phenomenon is not attribut—
eble to the particular combination of Mach number and base pressure
selected for figure 5(a). Im figures 5(b), 5(c), 5(d), 5(e), and 5(f),
several other examples are presented which illustrate the flow for differ—
ent values of Mach number and for different values of base pressure cosf—
ficlent. In each case the free stresmline has been terminated at the
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point where the local angle of inclination is equal to the angle corre—
sponding to the greatest possible deflection by a single shock wave. It
ig evident that none of these flow patterms could be constructed down to
the axis of symmetry. Altogether, approximately 30 flow patterns were
constructed by the characteristics methed; in no case could the flow be
constructed all the way to the axis. This phenomenon is discussed further
in a later place.

The flow patterns built up by the method of characteristics should
not be regarded as unrealistic simply because the flow cannot be con—
structed all the way to the axis. In a real fluid the flow outside the
boundary layer is similar because the wake behind the body f£ills the
region near the axis and prevents the outer flow from reaching the axis.
This fact suggests that the axially-symmetric inviscid—flow patterns
should be investigated further as they might bear some relation to actual
flows if the displacement effect of the wake 1s accounted for.

The flow fields containing a free streamline not meeting the axis of
symmetry can be consldered as those that would exist in inviscid flow
about & body of revolution which has an infinitely long cylindrical rod
(or "sting") attached to the base. As an example, the flow of figure 5(a)
would correspond to a body having a rod of diameter d = 0.552h attached
to the base. (See fig. 6.) With such a model the trailing shock wave
turns the free streamline through the greatest deflection possible for the
given local Mach number along the free streamline. The flow field is
therefore the limiting flow field of all those possible for the given
free—stream Mach number and the given ratio of d/h.

Just as in the case of the two—dimensional body, there are also an
infinite number of possible flow patterms for the body of revolution with
a8 rod attached. This is true because for a given configuration as many
additional flow patterns as desired can be constructed by simply selecting
the base pressure to be any pressure between the free—stream pressure and
the pressure corresponding to the limiting flow. The limiting flow
pattern is to be given the same physical significance for axially—
symmetric flow as for two—dimensional flow; that is, the corresponding
base pressure coefficient Pyp; represents the maximum base drag possible
for 37 inviscid flow with a s%ngle trailing shock wave and a given ratio
of d/h.

By choosing different values of the base pressure ‘coefficient for a
fixed Mach number, the inviscid solutions determined by the method of
characteristics ensble a plot of Pp; against d/h to be made. This

procedure has been carried out for Mach numbers of 1.25, 1.5, 2.0, 2.5,
3.0, and 4.0. The results are shown in figure 7. Each point on the
curves in this figure represents one flow pattern constructed by the
characteristics method. The values for d/h=0 correspond to the semi—
infinite body without a rod attached. It is to be noted that for each
curve in figure 7 the value of Pbi extrapolates to zero as d/h
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approaches zerc. This means that the base pressure is equal to the free—
stream static pressure, the free streamline 1s undeflected, and the base
drag 1s zero. Hence, the limit flow pattern and the infinity of
possible inviscid flows for 0<d/h<1l degenerate Into a single trivial
solution corres to zero base drag for d/h=0. In figure T the
limiting values as djh approaches 1.0 correspond to the previously
treated case of two—dlmensional flow. It can be seen that this must be
the case by visualizing the limiting process a&s taking place with both 4
and h approaching infinity, but with the difference (h—d) held constant.
The configuration approached in this manner would be a two—dimensional
step of height (h~d)/2, and the pressure coefficient approached would be
the 1limiting base pressure cosfficient for two—dimensional inviscid flow.
On the other hand, if d/h 1s equal to unity (instead of approaching it
from values always less than unity), then the corresponding configuration
would be a semi—infinite body of revolution with a cylindrical rod of the
same dlameter attached to the base. Although no dead-air region exists
in this case since the flow is everywhere uniform, the base pressure in
the physical sense would be the static pressure at the junction of body
and rod, and hence Pp; would be zero.

The fact that Ppy=0 for d/h=0 appears anomalous on first thought,
perticularly when one remembers that the coefficient Ppy; represents the
maximm possible base drag thet can exist for an inviscid flow of the type
belng considered. An explanation can be obtained from a consideration of
the equations of motion since they are the basis for the method of charac—
teristics. This explanation, however, is not essential for an under—
standing of the main conclusions regarding base pressure, and hence is
presented as Appendix A. It is apparent from the curves in figure T
that with any ressonsble extrapolation (as indicated by dotted lines)
the base drag of an axially-symmetric body in an inviscld fluid is, if
not zerc, so small that it cannot possibly agree with the drag values
determined by experiments in a viscous fluid. This strongly suggests that
viscous effects are essential in determining the base pressure.

Finite axially—symmstric body.— Due to the influence of the nose on
any projectile—shaped body of revolution, such as the one sketched in
figure 8(a), the Mach number and pressure on a portion of surface parallel
to the free—stream direction are considerably different from their respec—
tive values M, and pe in the free stream. (This difference is virtu—
ally zero for such an element of surface on an airfoil, since the local
conditions in two—dimensional flow depend only on the local surface incli—
nation.) It is clear that, irrespective of this difference, the same
difficulty for d/h=0 exists near the axis as in the case of the semi—
infinite axially-symmetric body; the inviscid flow cannot meet the axis
of symmetry. Hence the free streamline mmst eventually become parallel to
the axis as 1t passes downstream, as illustrated in figure 8(b). Since
the pressure at Infinity is equal to the free—stream static pressure, and
since the pressure i1s constant along the free streamline, it follows that
the only possible base pressure in the strictly inviscid flow is again the
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free-stream static pressure. For present purposes it 1is sufficient to
note that the pressure p; 1s ordinarily less than p,. This means that
there must be a weak shock wave at the corner of the base (fig. 8(b)).
The free streamline must then curve slightly as it traills downstream to
infinity, eventually becoming parallel to the axis. .

The flow illustrated in figure 8(b) represents the solution for a
finite axially—symmetric body. The base drag is zero, but the flow
pattern is not what would precisely correspond to a trivial solution (in
the mathematical sense of the word), as is the case for the semi—infinite
body. Nevertheless, this particular solution for inviscid flow clearly
has no bearing on any flow that has as yet been encountered in experimental
investigations. Agein it appears that viscosity must be the dominating
mechanism in determining the flow pattern in a real fluid.

Nommigqueness of the Inviscid Base—Pressure Flows

The occurrence of more than one possible solution in two-dimensional
flow and alsc in axially—symmetric flow with a rod attached does not
represent a new occurrence in inviscid flow theory. A similar situation
occurs, for example, in airfoll theory for an inviscid, incompressible
~fluid. As is well known, a satisfactory solution in this case has been
found in the use of the so—called Kutta condition. Of the infinite number
of possible solutions for the incompressible potentisl flow over an
airfoil at a given angle of attack, only one corresponds to a finite
velocity at the trailing edge. Use of the Kutta condition to select this
particular solution is a falrly straightforward process, and can be readily
Justified on the basis of qualitative consideration of viscous effects nsear
the tralling edge. Consideration of viscous effects might also be expected
to lead to a unique solution in the case of the infinite number of solu—
tions for the base pressure.

Apart from the effects of viscosity several other considerations,
such as stability of the flow, also have been of importance in other unre—
lated problems when sélecting a suitable inviscid flow solution from a
possible choice of more than one. As an example of this the inviscid
channel flow studied in reference 7 may be cited. For the present problem,
however, the preceding analysis of axially—symmetric inviscid flows points
toward viscous effects (rather than stebility of inviscid flow) as being
the eseentisl mechanism determining the base pressure.

Even if consideration is given only qualitatively to the effects of
viscosity, the base—pressure problem is relatively involved. These con~
siderations, which are discussed subsequently, indicate that it is the
viscous mixing of dead air and the outside flow which mekes only one
solution possible for given Mach and Reynolds numbers. From an academic
viewpoint this resolves the difficulty of having an infinite number of
possible solutions to the inviscid—flow problem, but unfortunately greatly
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complicetes matters from a practical viewpolnt since it means that a sat—
isfactory theory of base pressure must, in some way, allow for the effects
of viscosity.

IT. A SEMI-EMPIRICAL THEORY FOR BASE FPRESSURE IN A VISCOUS
FLUID AND COMPARISON WITH EXPERIMENTAT. RESULTS

Qualitative Effects of Viscosity on the Base—Pressure Flow

Two—dimensional flow.~ A sketch showlng the qualitstive flow char—
acteristics for the viscous—fluld flow in the region of the base is glven
in figure 9. The flow starts with a Mach number M;, pressure p;, and
boundaery—layer thickness &;. Because the base pressure is lower than
the pressure pi, & small fan of expansion wavelets originates at point A.
The existence of a dead—ailr region in a small volume immediately behind the
base is a result of the separation at point B. As a consequence of the
formation of a dead—eir region it can be deduced that the pressure along
the streamline BC 18 approximately constant. For the case of laminar
flow in the boundary layer transitlion begins somewhere between B and G,
and. after passing through the region of the trailing shock wave the flow in
the wake becomes completely turbulent. The qualitative form of the
boundary—layer profiles at two stations between polnts B and C munt take on
the same nature as those existing at the boundary of a supersonic Jet
issuing into ambient air. Because of the viscosity of the fluid, the dead
air is induced into a slow circulatory motion in the directions indicated
by the small arrows in figure 9. The viscous mixing process causes the
boundary layer to thicken as 1t approaches point C.

With this qualitative picture of the flow processes in mind, a brief
description can be given as to how the base pressure arrives at its steady—
state equilibrium velue. To fix conditions In mind, suppose a jet of air
is pumped from the body into the dead—air region and then i1s suddenly
stopped. At the instant the Jet is turned off, point C is far downstream
of its equilibrium position. Due to the scavenging effect of the outside
flow on the mass of dead air, some of this deed air is removed, thus
causing the angle of turning at the cormer to be increased and the pressure
of the dead—air region to be decreased. The larger angle of turning
increases the velocity outside the boundary layer, which in turn increases
the scavenging action, thereby again lowering the pressure and starting the
cycle over again. Thus, point C moves rapidly to a position as close to
the base as possible. There is, however, at least one important factor
which prevents point C from going as far toward the base as that point
which would roughly represent the limiting solution for inviscid flow. As
C moves toward the base, the pressure ratio of the trailing shock wave
increases, making it more difficult for the scavenged air and the low—
velocity air in the boundary layer to overcome the pressure rise of the
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shock wave and flow downstream. The opposition of this effect to the ones
mentioned previously would serve to establish equilibrium. Thus it appears
that the qualitative effect of viscosity is such as to select and modify
one solution from the infinite number that are possible in an Inviscid
flow.

Axially—symmstric flow.— Since figure 9 represents only the qualita—
tive flow characteristics near the base, it may be thought of also as
representing these characteristics for an axlally-symmetric flow. Evi—
dently the same general reasoning applies here as was used in the two—
dimensional case. As compared to the two—dimensional case there is,
however, an additional reason for further spreading of the streamlines in
the boundary layer as the trailing shock wave is approached. Since the ’
mean redius of a streamtube in the boundary layer continually decreases as
the tralling shock wave is approached, additional spreading is brought
about In order to keep the annular cross-sectlionsl area of the streamtubes
approximately constant. )

Basis for Correlation of Experimental Data

Assumptions.~ If it is assumed that the flow separates from the
corner of the base and not from a position farther upstream, then for a
given type of boundary-layer flow the principel variables of the problem
are Dy, P3s P1s Ui B2, h, and B, as illustrated in figure 9. The base
thickness h would be the trailing—edge thickness in the case of two—
dimensional flow, and would be the base diameter in the case of axially—
symmetric flow. It is assumed that only the conditions immediately
upstream of the base affect the base pressure. Hence, the base pressure
coefficient I,' referred to conditions just upstream of the base depends
only on the corresponding dimensionless varisbles,l and may be written as

—DP S}
Bt = _..ib X - f<M1: _i, B> (1)
e’ .

Although such a relation may be of some help in correlating experimental
measurements, the appsarance of the angle of boat—tailing B makes
further anslysis very difficult. Accordingly, only profile. shapes without
boat—tailing (B = 0) are considered.

One consequence of the sbove equation is that a common basis for com—
parison cen easily be made for different profile shapes, because at super—
sonic velocities the difference between M; and M, and between

1Tf desired, the dimensionless variable pb/pl could be used in place of
Py'. The varisble Py' has been chosen for the present investigation
since it is proportional to the base drag; whereas p,/p, is not.
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P, and p, is practically independent of the viscosity of the fluid and
dependent only on the profile shape. Equation (1) also implies that the
effect of increasing the length upstream of the base I, while holding all
other parameters constant, will be the sams qualitatively as the effect of
decreasing the Reynolds number of the flow, since both of these effects
increase the boundary—layer thickness. It can be forsseen, therefore, that
the ratio L/h and the Reynolds number (based on the length 1) combine
into a single parameter which depends only on the type of boundary—layer
flow. The length 1L would be the alrfoll chord for the case of two—

dimensional flow, and the body length for the case of axially-symmetric
flow.

If the boundary—layer flow is laminar, then from dimensional analysis
and the classical considerations of the terms involved in the boundary-
layer equations, it follows that

By /% = £ (M, profile shape)

Rewriting thils equation,

8 L/n e ( 110 sha )_021.
R TR M e ) T
v

-]

where Cp 1is a function of the Mach number and profile shape, but Inde—
pendent of viscosity. For a given L/h, variations in profile shape
affect the boundary—layer thickness principally through the action of the
pressure gradients set up by the particular profile contour. As a first
approximation the effects of variations in pressure distribution on the
thickness of the boundary layer just ahead of the base will be neglected,
since these effects should be small compared to the effects of Reynolds
number and IL/h ratio. Within the limits of this simplification the above
equetion is applicable to any profile shape or length. Hence in correlat—
ing the data for laminar boundary—layer flow the parameter I/(hWRe) is
used in the absence of direct measurements of Sl/h.

In the case of turbulent flow a similar parameter can be obtained.
By approximating the turbulent boundary—layer profile with a l/7—power
law, the ratio Sl/h for low-spsed flow turns out to be inversely pro—
portional to the 1/5 power of the Reynolds number. (For example, see
reference 8.) Using this result, the appropriate paramster in correlating
base—pressure data for turbulent boundary-layer flow would be L/[h(Re):/5].

The quantity determined by experimental measurements is the coeffi—
cient B, rather than Pp'. -Consequently, before it is ascertained
whether equation (1) correlates the available experimental data, the rela—
tion between Pp' and Pp ‘must be developed.
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Relation between Pp' and Pp.— As was pointed out earlier, the con—

ditions ahead of the base (M; and p,) differ considerably from free—
stream conditions in an axially—symmetric flow, but do not differ by an
appreciable amount in a two-dimensional flow over a profile without boat—
tailing. By allowing for thls difference, the coefficient P,' can be
expressed in terms of the more familiar coefficient P, and the pressure
distribution on the profile by a single equation applicable to both types
of flow. By definition,

- a [(pyp,)—P—2,)
Ppt = == [ = . - 22 (pyry) (2)
EDlUl q, 9 a3
where
I
o log2
2 -}
and
p, = 2B
q'oo
The ratio gq;/q_ can be written as
2
q P10, P, Po' P
- 12—1,° - 1+2—> (3)
Qo Pulow Po' Po Peo

In this and subsequent equstions, powers higher than the first of quentities

such as g—U = U%_U‘” are small in comparison to unity, and are therefore
o« ©

neglected. In edquation (3), po and pg * represent the stagnation densi—
ties corresponding to conditions in the free stream and to conditions Just
ghead of the base, respectively. Designating AM= M;—M, and again con—
sidering only first—order terms, it follows that .

-1
7—L 4, 2 7-1
P1_Po' Po _ }:.__e_lf}_ < AP0 =1 — MM Apg ()

t =1l . =2 Y ) SR D
Pt Py P 1+ 5= Mg ' I+ — My o
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where Ap, is the loss in total pressure on passing through the nose
shock wave, and mey often be neglected. From the energy equation

A _U1°Ts _ op(TeTy) _ cply <1 _ Ty To
U W= U2 T U2 To T

0

or, using cp = YR/(7-1) end M= U/ /7R

4. (5)

hence the combination of equations (3), (4), and (5) gives

= R Y RN oM —Apo (6)

The pressure coefficient P; 1is related to AM and Ap, by

"
y—-1
2
Plzpfpw _ .2 (pl' Po' Po _ 1\ (_APO
%Pmez 7M Po Po P
_ OAM _ 2 4pg o (7)
M <l+ 721 Mm ) 7M002 Po ’

Substitution of equation (7) into equation (6) yields the relation
G re-1+ (M1 2 (1+ 2 uw2) e (g)
g - lte =1 +{ —753- — P - —Ivi;g' - M,

Equation (2) for P, 1in terms of Py' and the pressure distribution is
then

Pp = Pp? (1+e) + P (9)
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where both € and Py are usually small compared to unity.

In two—dimensional flow P; 1is virtuaslly zero for profiles without
boat—tailing (provided the profile is slender and the Mach number is not
too high), but in an axially-symmetric flow under the same conditions it
is not. For extreme body shapes, such as a conical—nosed projectile with
very short cylindrical afterbody, the term Py can represent a substan-—
tial portion of the base drag. Moreover, for these relatively short
bodies of revolution there is a considerable pressure variation outward
along the Mach lines issuing from the corner of the base, and hence some
approximate method of determining P; mmst be formmlated which allows
for this variation. '

The method used herein to estimate P; 1s based on the following
considerations: To fix ideas, it will suffice to consider a body such as
is sketched in figure 8. The dotted lines in this sketch represent Mach
lines. For present purposes these lines will be thought of as small
pressure waves; those with positive tangents (e.g., DD!) being members of
the so—called first family, and those with negative tangents (e.g., D'A)
being members of the so-called second family. Small pressure waves issu~—
ing from the body can affect the base pressure in several ways. For
example, waves of the first family starting between D and E (fig. 8)
reflect from the nose shock wave between D! and E!', and then becomse
members of the second family between D'A and E'G. These latter waves
directly interact with the dead-—eir region. Other pressure waves of the
first family, such as the one starting from F, affect the base pressure
indirectly through an interaction effect on the second famlly of waves
between D!A and E!G. (It is assumed that waves of the second family
lying beyond E!G do not affect the base pressure.) The net effect of
profile shape on base pressure of a finite body, therefore, will be deter—
mined approximately by the average strength of the second family of
pressure waves as they meet the dead—air region behind the base. If a
hypothetical cylindrical afterbody of diameter h were added to the basse,
then this second family of pressure waves would cause the pressure and
Mech number along the hypothetical extended afterbody to differ from the
corresponding free—stream conditions. This difference would be a measure
of the coefficlent P; and of the effect of profile shape on base
pressure. Thus, P; may be thought of as a correction to P, for the
effects of profile shape, and can be determined approximately by the
average pressure coefficient along a hypothetical cylindricel afterbody
extending a length of about two diameters downstream of the base (the
approximate length of dead—air region). Since P, is small compared to
Py, such approximate methods of evalusting it should suffice. For sim—
plicity in the present investigation, P; 1is arbitrarily evaluated from
the pressure coefficient on the hypothetical extended afterbody at a
distance of one diamster from the base, rather than by evaluating it with
some more complicated averaging process.
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Experimental Data for Two-Dimensional Flow

At present the available experlimental results on base pressure in two—
dimensionsl flow are rather limited, but they are sufficient to provide a
qualitative check on one particular result of the inviscid—flow calcule—
tions; this result concerns the essential difference, as indicated by the
inviscid—flow calculations, between the base pressure in two-dimensional
flow and in axilally—symmetric flow. The absolute magnitude of the base
pressure coefficient for two—dimensionsl invisclid flow at a given Mach
nunber is represented by the limit of the axially—symmetric value as d/h
approaches unity in figure 7. For low and moderate supersonic Mach
numbers this limiting value is several times the value for axially-—
symmetric flow, which, as will be seen later, is represented in filgure T
by a d/h ratio somewhere between 0.5 and 0.8. For high supersonic Mach
numbers the difference between the two types of flow, according to -
figure 7, is small. These considerations which indicate that, except at
high supersonic Mach numbers, e pronounced difference should exist between
the base pressure in two—dimensional and axielly—symmstric flow, are in

sgreement with existing data. In reference 9, the wind—tunnel measure—
ments for two—dimensional flow over a wedge alrfoil at a Mach number of
1.4t and a Reynolds number of 0.6 million indicate a value of —0.41 for the
base pressure coefficient. Measurements presented later for axially—
symmetric flow at the same Mach nuwber and Reynolds number, however, indi—
cate values around —0.20. This large difference is in accord quelitatively
with the conclusions drawn from considerations based on the curves of
figure 7.

In order to make a preliminary evaluation of the Reynolds rumber
effect on base pressure in two—dimsnsional flow, scme measurements have
been made on a constant—chord wing of finite span having a thick trailing
edge.® Because the ambient air near the wing tips can flow laterally
around the tip and into the low—pressure region bshind the base, the data
cannot be considered as strictly representing two—dimsnsional flow.
Nevertheless, the ratio of span to base thickness (40) was sufficiently
large on the wing employed so that tlp effects should not affect conclu—
sions concerning the qualitative influence of Reynolds number on base
pressure in two—dimensional flow. The results of base—pressure measure—
ments taken at a Mach number of 2.0 are shown in figure 10(a). It is
apparent that the base drag increasesconsiderably as the Reynolds number
increases. Since the surfaces of the wings were smooth, and the highest
Reynolds number attained was 1.8 million, the date are representative of
the case of laminar flow in the boundary layer. A plot of these data
against the parameter L/(h,/Re), which is proportional to the boundary—
layer thickness, is shown in figure 10(b). It is to be noted that in this

2

These data were taken in the Ames 1- by 3—foot superesonic wind tunnel
No. 1 employing a wing of 9—inch span with a base-pressure orifice
located 1 inch outboard of the plane of symmetry.
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Porm the data correlate failrly well to a straight line in the region
covered by the tests. '

Experimental Data for Axially—Symmetric Flow

Fortunately, there are sufficient experimental data avallable for
axially—symmetric flow to make a falrly extensive correlation of B,'
with the parsmeters L/(hs/Re ) and L/ [n(Re)*/® 1, where -h 1s now
the base diasmeter. Most of these data have been obtained from wind—tunnel
measurements on bodies of revolution mounted from the rear by a cylindrical
support, Accordingly, a knowledge of the possible support and wall inter—
ference effects is necessary for a satisfactory interpretation of the wind—
tunnel measurements. Some experimental data on support interference and
reflected bow-wave interference are presented in Appendix B. It will
guffice for the present purposes to state that the wind—btunnel measure—
ments were taken with a support sting of sufficient unobstructed length
so that no interference effect of support length is present in the data.
Iikewise, no appreclable interference resulting from the reflected bow
wave is present in the data. As regards the effects of support diameter,
it is Xnown from a relatively complete set of interference measurements
made by Edward W. Perkins of Ames Aercnautical Laboratory, part of which
is presented later, that the duta taken at M = 1,5 are essentially free
of support interference. At the higher Mach numbers, however, a complete
gset of support—diameter interference measurements was not made. Con-—
sequently, some effect may be present in the data taken at M=2,0 and
M = 2.9. For consistency, these data which may be affected to a small
extent by support~diameter interference have been taken with a fixed value
of 0.4 for the ratio of support diameter to base diameter. By coamparing
the base pressure measured on various bodies tested with the same relative
support diameter, the effects of body shape can be deduced if it is assumed
that chenges in nose shape do not produce significant changes in the sup-—
port interference. This is belleved to be a valid assumption for the body
and support dimensions used. :

In reducing. the experimental deta for correlation the mesasurements
are first expressed in terms of conditions just ahead of the base. All
bodies of revolution used in the experimental investigations consisted of
either a come—cylinder (10° semiangle of cane) or am ogive—cylinder
(10—celiber ogival radius) combination. In order to determine the body—
shape correction (P,) the pressure distribution over such combinations has
been calculated using the method of characteristics. Two typlcal pressure
distributions for a Mach number of 2.0 are shown in figure 1l. For the
reasons explained earlier, the correction P; is determined by selecting
the velue of the pressure coefficient existing on an extension of the
cylindrical afterbody at a location approximetely one diameter downstream
of the base. The values of P, determined in this manner enable the
experimental data to be reduced to the form
Pp — Py

1+ ¢ (10)

Pyt =
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The quantity Pp! should not depend on the body shape for a given Mach
number approaching the base. For all but a few exceptional shapes, such
as a simple cone without an afterbody, the Mach number approaching the
base 1s sufficiently close to the free—stream Mach number to enable &
direct comparison to be made between various body shapes. For these
exceptional cases, which represent small values of the length—diamster

oP.
ratio, an additional correction Bﬁ?uAM 1s added to the right side of

equation (10). Since even in an extreme case this latter correction is

small compared to P;, the derivative SEE can be roughly estimated

without affecting the final results appreciably. In the present tests

this correction was made only for those bodles with a length-diamster ratio
of 4 or less, since it amounted to only 4 percent of the measured data in
the mzst extreme case and was negligible for the bodies with L/h greater
than 4.

In attempting to correlate the available experiments it will be con—
venient to consider, separately, first the case of laminar flow in the
boundary layer, and then the case of turbulent flow. The experiments
representing the case of laminar boundary-layer flow were conducted on
bodies of revolution with polished surfaces, and those representing turbu—
lent flow were conducted on the sams models with artificial roughness added
in the form of a narrow transition strip. (See -reference 10,) Although
for simplicity the data are referred to simply as representing either lami—
nar or turbulent flow, in a few cases the actual boundary layer may be in
the transition state. It is to be noted that with smooth models tramsition
(insofar as it affects base pressure) probably begins at Reynolds numbers
of the order of 4 million. Iikewise, with roughness added in order to
obtain turbulent flow the artificial roughness mey not bring about complete
transition shead of the base at Reynolds numbers less than about 2 million.

Laminar boundary—layer flow approaching base.— Wind—tunnel measure—
ments of the base pressure for various bodies of revolution at a Mach
number of 1.53 are shown in figure 12(a). These data, taken from refer—
ence 10, include the effect of variations in Reynolds number and body
shape. The large effect of both Reynolds numher and body shape is evident.
Since the boundary—layer flow is laminar for these data, the extent to
which correlation 1s achieved 1s most easily determined by plotting Pyt
as a function of L/(hv/Re), Figure 12(b) shows the data of figure 12(a)
plotted in this form, from which it is evident that the experimental data
correlate reascnably well to a single curve. The scatter of the various
measurements about the mean line is attributed partly to the fact that the
thickness and velocity profile of the boundary layer approaching the base,
and hence the base pressure, are not strictly a function of the Reynolds
nunber and length-diameter ratio alone.

The results of some measurements of the base pressure for variou.
bodles with lgminar boundary—layer flow at a Mach number of 2.0 are shown
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in figure 13(a). These previously unpublished data were taken in the
Ames 1— by 3—foot supersonic wind tunnel No. 1 under conditions similar
to the tests at a Mach number of 1.53 reported in reference 10. The sams
qualitative effects of body shape and Reynolds number as were observed at
a Mach number of 1.53 are evident from these data obtained at the higher
Mach number. Figure 13(b) shows the data of figure 13{a) plotted in the
form suitable for correlation according to the theoreticel considerations.
Considering the wide variety of body shapes tested, it can be seen that
these data also correlate reasonably well to a single straight line.

Turbulent boundary—layer flow approaching base.— The results of
wind~tunnel measurements of base pressure on bodies of revolution at a
Mach number of 1.5 with turbulent boundary—layer flow approaching the
base are shown in figure 14(a). Also shown in this figure are the results
of free—flight measurements reported in reference 5, It is evident from
this figure that the effect of Reynolds number on base pressure is small;
whereas figure 12(a) shows that it is large in the case of laminar
boundary—layer flow. This is in qualitative accordance with theoretical
considerations since (Re)/S occurs in the equations for turbulent flow
and (Re)l/2 occurs for laminar flow.

The measured deta of figure 14(a) are shown in figure 1llk(b) plotted
in the form suitable for purposes of correlating experimental data.
Since the body—shape correction (P;) is independent of viscous effects,
the same corrections have been used for the case of turbulent flow as
were used for laminar flow. It may be seen from figure 1l4(b) that the
data correlate fairly well to a straight lins.

Some experimental data for turbulent boundary-layer flow at a Mach
.number of 2.0 are shown in figure 15(a) and the plot of Pp' against
I/[h(Re)1/5] is shown in figure 15(b). The curves in these figures show
the sams characteristic of relatively constant base pressure as was noted
above for turbulent boundery—layer flow at a Mach number of 1.5. Again,
there is a reasonably good correlation of these data, as i1s evident from
figure 15(b).

Formalation of SemiéEﬁpirical Theory

Since the experimental date correlate fairly well to straight lines
in figures 10(b), 12(b), 13(b), 14(b), and 15(b), a simple semi—empirical
theory for profile shapes without boat—tailing can easily be formlated
which is in accordance with the measured data. In so doing there are two
principal assumptions that are made:

1. The base pressure coefficient Pp' depends only on the type of
boundary—layer flow, the Mach number M;, and the dimensionless boundary—
layer thickness 8&,/h which exists just upstream of the base.
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2. At a given Mach number the difference (Pp* — Pp'), due to the

effects of viscosity, is proportional to the dimensionless boundary—layer
thickness &;/h. ‘ _ :

It is clear that the equations which result from these two assumptions are
in agreemsnt with the base—pressure measurements presented. In view of
essumption (2) and equation (9) relating P,' to B,, the equations for
the base pressure coefficient are

B= (1 - E) (o) 4 my : (1)

for laminar boundery-layer flow, and

Pb=Pb*<l~'(—R%i7§%>(l+€) + Py (12)

for turbulent boundary-layer flow. It is to be noted that for a given
type of bowmdary-layer flow these semi-emplirical equations provide no
information as to the dependence of Pb* and kz (or k%) on Mach number.
Insofar as the semi—empirical analysis is concermed these quantities are

to be evaluated by experiments, and within this limitation the above
equation can be sald to satlsfactorily correlate the experimental data.

To what extent these equations will satisfactorily correlate data for
conditions existing at very high Mach and Reynolds numbers 1s a question
that can only be answered by future experimental results,

.

As regards the numerical values of Pp*, k;, and kt, ‘certain conclu—
sions can be drawn from the existing data. From the slope of the lines in
figures 12(b) and 13(b) the approximate value of k; at a Mach number of
1.53 is Uk, and at 2.0 it is 66. Thus, these data indicate a dependence
of k3 on Mach number. It is interesting that for turbulent boundary-—
layer flow the slope of the curyes in figures 14(b) and 15(b) is small and
hence kt could be neglected without serious loss of accuracy, at least
for the range covered by the present tests.

Comparison of Experimental Results With
the Inviscid~Flow Calculations

Since the quantity Pp* 1s independent of the Reynolds number, some
correlation (possibly only qualitative) might be expected between the
experimental veluses of Pp* and the inviscid—flow calculations, provided
allowance 1s made for the displacement effect of the wake near the trailing
shock wave. As long as the wake thickness is well defined (reasonably
steady wake) a simple and plausible method of estimating Pp* would be to

v
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evaluate the base pressure coefficlent for maximum drag in an inviscid
flow wherein an equivalent solid object replaced the wake. Such an object
would have no effect in inviscid two—dimensional flow but would have a
pronounced effect in axially-symmetric flow. If in axially—symmetric flow
a rod of diameter 4 1is considered to replace the wake of dismeter +t,

the resulting maximum drag in inviscid flow would be the same as calculated
in part I where the corresponding base pressure coefficient was designated
by Ppy- (See £ig. 7.) Thus an estimate for the variation of Pp* with
Mach number In axially-symmetric flow would be

a_t
X e — = -
Pp* % Ppy for ¢ =3 (13)
and in two—-dimensional flow it would be
Pp* Ppy (1h)

In making a comparison with experiments where the Reynolds number is essen—
tially constant, this relation is tantamount to implying proportionality
between Pp and Ppy. Since a fluctuating wake presumably cannot be
replaced by a rod without essentiaelly altering the flow conditions near the
vase, the above equations cannot be expected under such conditions to yield
anything more than the right order of magnitude.

Some information on the thickness and steadiness of the wake has been
obtained from an examination of numerous spark photographs taken of projec—-
tiles in free £light.® Typical spark photographs are shown in figure 16,
and the results of measuring the wake thickness on a large number of simi—
lar photographs are shown in Pigure 17. Figure 16(a) represents the case
of laminar flow in the boundary layer at a free—stream Mach number of 1.73.
Under these conditions the wake thickness appears to be reasonably well
defined, although the trailing shock wave is not well defined near the wake.
Figures 16(b) and 16(c) indicate that for turbulent boundary—layer flow on
bodies of revolution the trailing shock wave and the wake are not very
steady at Mach numbers below about 2. Thus. it is not surprising that, as
will be seen laver, equation (13) is in poor agreement with measurements
for turbulent boundary—layer flow at Mach numbers below asbout 2. At higher
Mach numbers the trailing shock wave and the wake become more clearly
defined (figs. 16(d) and 16(e)), but the accuracy of equation (13) in this
region cannot as yet be tested because of insufficient experimental dsta.

A comparison between inviscid—flow calculations and experimental values
of Ppy* 1is more direct for airfoils than for bodies of revolution since the

SThese shadowgraphs were made availsble through the courtesy of the
Ballistic Research ILaboratories, Aberdeen, Md.
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wake thickness presumably need not be accounted for in two—-dimensionsl
flow. The value of Pp* as determined from the finite—span wing data in
figure 10(b) is —0.30. This is fairly close to the limiting pressure
coefficient (Ppy) for two—dimensional flow, which is —0.33 for a Mach
number of 2.0. (See fig. 4.) Definite conclusions as to the significance
of this agreement, however, will have to await the results of measurements
on airfoils at other Mach numbers, and on airfoils with turbulent flow in

the boundary layer. :

For laminar flow on bodles of revolution at Mach numbers of 1.5 and
2.0, the wake thickness (t/h) from figure 17 is 0.55 and 0.49, respectively.
From figure 7, the corresponding values of Ppy are —0.25 and -0.29,
respectively. On the other hand, the values of Pp* determined from the
intercepts of the extrapolated lines in figures 12(b) and 13(b) are —0.2h
and —0.20, respectively. Hence, although the inviscid—flow calculations
may provide a reasonsble approximation for two—-dimensional flow near
M = 2.0, and for axlally—symmetric flow near M = 1.5, there is a serious
discrepancy with the experimental results for axially—symmetric flow at
M = 2.0. This large discrepancy indicates that the simple relation given
by equation (13) which attempts to connect Pp* with the inviscid calcula—
tions is not always a satisfactory approximation. The good agreement
obtained in two of the three cases may be entirely fortuitous. Additional
experiments are needed to clarify this point.

The fact that the inviscid—flow calculations agree quelitatively,
though not quantitatively, with experimental results can be.-se.n by a com—
parison with messurements of the base pressure at various Mach numbers but
with an essentially constant Reynolds number. TFigure 18 shows some experi—
mental free—flight data of reference 5 together with the corresponding
wind—tunnel data of the present in.vestiga.tion.4 These experimental data
are for turbulent flow in the boundary layer. In this figure the ordinate
of the curve labeled "equation (13)" is proportional to the value of the
limiting pressure coefficient Ppy; determined at each Mach number in the
manner indicated by equation (13). It is apparent that the curve based on
the calculstions of Ppy for inviscid flow gives the right order of magni-
tude for the base pressure coefficient, but does not give good quantitative
agreement. As an incidental point, it may be noted that the wind—tunnel
and free—flight measurements shown in this figure agree quite well at all
Mach numbers.

Variation of Base Pressure With Reynolds
Number for Natural Transition

Since the base pressure is different for laminar and turbulent
boundary—layer flow approaching the base, it is of interest to examine

4Tn several cases wind—tunnel measurements were made in more than one
facility. For example, the three experimental points in figure 18
representing the wind—tunnel data at Mach numbers near 1.5 represent
measurements with three different nozzles.



http://www.abbottaerospace.com/technical-library

2h - ‘ NACA TN 2137

the results of measurements in the intermediate range of Reynolds number
where the transition "point" moves from a position downstream of the base
to & position upstream of the base. Figure 19 shows the results of soms
base—pressure measurements at a Mach number of 2.0 on a body of revolution
in the Reynolds number renge from 0.4t million to 10 million. At Reynolds
numbers below about 2 million, where the boundary—layer flow is leminar,
the base pressure coefficient depends to a great extent on the Reynolds
number, as was noted earlier. In the Reynolds number range from 4 to

6 million, where the transition point moves shead of the base, the base
pressure agaln is sensitive to changes in the Reynolds number (and pre—
sumably also to other factors affecting trensition such as surface
roughness, free—stream turbulence, and rate of heat transfer). At the
higher Reynolds numbers where a turbulent boundary layer exists for some
distance ahead of the base, the base pressure-is not semsitive to changes
in the Reynolds number.

From the viewpoint of reliably extrapolating small-scale measurements,
it 1s encouraging that the base pressure coefficient for turbulent boundary—
layer flow 1s not sensitive to changes in the Reynolds number, At a Mach
number of 2.0 this insensitivity is evident from a comparison of the data
for the model with an L/h. of 5 in figures 15(a) and 19. At a Reynolds
number of 2 x 10%, where turbulent flow is attained on the models by using
artificial roughness, the base pressure coefficient does not differ by
more than 3 or 4 percent from the value at a Reynolds number of 1 x 107,
where turbulent flow is attained without such an artifice. At a Mach num—
ber of 1.5 the measurements indicate this same characteristic, as can be
seen from the data given In figure 20. These data at the somewhat lower
Mach number do not show any appreciable dependence on Reynolds number
within the range from 2 x 10% to 1.6 x 107. It is interesting that the
free—flight data of Hill and Alpher (reference 11) also show no significant
effect of Reynolds number within the range from 2 X 107 to 1 x 108, These
latter data, however, give a widely different value for the base pressure.
It 1s evident from flgure 20 that the base pressures measured in refer—
ence 11 differ from the values of reference 5 and the present wind-tunnel
tests because of some factor other than differences in Reynolds number.
The possible effects of support interference in the present wind—tunnel
tests would not appear to contribute any appreciable amount to thls dis-—
crepancy for two reasons. First, good agreement is obtained at all Mach
numbers between the present wind—tummel tests and the free-flight firings
of reference 5; and second, the measurements of support interference as
described in Appendix B indicate that for the support dimensions used
(d/h = 0.25 and d/h = 0.40 1in fig. 20) these effects are an order of
magnitude smaller than the observed discrepancies. Since the models of
reference 11 were equlipped with tail fins of sufflcient size so that their
presence at moderate supersonlc Mach numbers mlght be expected to lower
considerably the pressure approaching the base (algebraically lower the
effective Py), it would appear that the observed discrepancy is attribu—
table to the effect of tall fins on base pressura.-
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CONCLUDING REMARKS

The simplest approach to an analysls of base pressure for supersonic
flow is that of considering the flow of an inviscid fluid. Although such
an epproach has produced many useful theories when applied to other aero—
dynamic problems, it produces results of very limited value when applied
to the present problem. The inviscld—fluid theory indicates that the only
possible base pressure for a body of revolution without a rod attached to
the base is the free—stream static pressure. Moreover, this simple theory
also Indicates that for two dimensional flows, as well as axially-symmetric
flows with a rod attached to the base, there are an infinite number of
possible solutions for a given body shape and Mach number.

The first of the above-mentioned shortcomings of inviscid theory can
be remedied by allowing qualitatively for the existence of a wake, since '
by so doing the high—velocity streamlines are displaced from the axis of
symmetry and a base drag other than zero can be obtained. The second
shortcoming, of having an infinite number of possible solutions from which
to choose, 1s not easily remedied. Imn particular, the comparison between
the inviscid—flow calculations and experiment has shown that if the lim—
iting flow pattern (maximum dreg possible) at each Mach number is singled
out from the iInfinity of possible inviscid—flow solutions, then the char—
acteristics of base pressure observed thus far can be explained, but only
qualitatively. Thus, the experimental finding that an increase in support
diameter behind a body of revolution can considerably decrease the base
pressure 1s explained by an interpretation of the behavior in an inviscid—
fluid flow. Also, the experimental result of a much lower base pressure in
two—-dimensional flow (at moderate supersonic Mach numbers) than in axially—
symmetric flow 1s satisfactorily explained by the inviscid—flow calcule—
tions. As regards quantitative results, though, the calculations based
on the maximim drag possible in inviscid flow do not agree with the
observed effects for turbulent boundary-—-leyer flow, and agree only in
certaln cases with the observed effects for laminar boundary-—layer flow.

In an attempt to formilate & more accurate quantitative analysis a
semi—empirical theory has been developed. The available experimental
data correlate reasomably well to straight lines when the base pressure
coefficient, corrected for the effects of body shape, is plotted as a
functlon of a parameter which is approximately proportional to the
boundary—layer thickness. As a result of this correlation several gen—
eral conclusions can be drawn. One such conclusion is that the variation
of base pressure with Reynolds number is small at high Reynolds numbers
vhere the boundsry layer approaching the baze is turbulent, but is large
at low Reynolds rumbers wherse the boundary layer is leminar. Another
conclusion 1is that the effects of body shape are irdependent of the type

of boundary—layer flow, and can be adequately explained on the basis of
Inviscid calculatiuns.
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In order to develop a thorough understanding of the behavior of base
pressure in supersonic flow, further experimental and theoreticel inves—
tigatlions are required. At present, experimental results are espsclally
needed as regerds the base pressure in two—dimensional flow, even at low
supersonic Mach numbers. The effect of tail fins on bodies of revoluition
appears to be relatively large, and hence should be investigated thor—
oughly. ZExperiments conducted at high supersonic Mach numbers are also
needed, both for two—dimensional flow and for axlally—symmetric flow.

Ames Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif., May 11, 1950.
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APPENDIX A
AXTALLY-SYMMETRIC FLOWS CONVERGING TOWARD THE AXIS

The rather anomalous result obtained when applying the method of
characteristics to base—pressure flows can be clarified by examining
the basic equations of motion on which the method of characteristics is
based. The differential equation for the velocity potential ¢ of an
inviscid axially-symmetric compressible flow is (see reference 6§, for

example)

2
(-3 Yot e (- B Yo o B0 )

where a 1s the local velocity of sound, x 1is the coordinste measured
perallel to the direction of the undisturbed stream, and r is the radial
coordinate. If a transformation is made to a new system (&,7) of cur—
vilinear coordinates, where ¢ and 1 are distances measured along the
two Mach lines issuing from a point, then the equation of motion for the
velocity potential becomes simply (the details of the algebra involved in
making this transformation may be found in reference 6) )

Fp _ sin® o 3 . (42)
agbn r Br

where a 1s the local Mach angle. It is to be noted that the new varia—
bles have the simple physical significance that lines of constant ¢

and 1 are the Mach lines of the flow. The derivative of the velocity
potential in any given direction is the projection of the velocity vector
along that direction, and the order of differemtiation in equation (A2)

can be interchanged

%Ew 2_q | | (43)
and

a—CP-=v=ws:LnG
or ‘

vhere w 1is the velocity vector inclined at an angle 6 with respect to
the axis. It follows from equation (A2) that along Mach lines

o .
Sillzduvdn dq=sin a’vdg (A)-l-)

dp =
P r r
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Thus, dp is the increment in the projection of the veloclty vector
along the ¢ direction when passing a distance dn in the physical
plane along the n direction, and dq 1is the increment in the pro—
Jection of the velocity vector in the 17 direction when passing a dis—
tance d¢ along the ¢ direction. Equations (A4) are the fundamental
equations used in the step-by—step construction of a supersonic flow by
Sauer'!s or Frankl!s method of characteristics.

The reasons for the singular behavior as the flow approaches the
axis of symmetry cen now be explained with the help of equations (Ak).
Suppose & series of steps were laid off in the physical plane in the
manner indicated by the sketch shown in figure 21(a). The small incre—
ments (d¢ and dy) along the Mach lines are laid off such that they are
always small compared to the distance from the axis r and also such
that for all steps dg/r and dn/r are always very nearly equal to a
constant, say C. It is to be noted that if such a flow converging to
the axis is possible, then there would be an infinite number of such
steps along the streamline AB in figure 21(a).

Tow consider the increments in the hodograph plane corresponding to
those laid off in the physical plane (fig. 21(a)). Figure 21(b) illus-
trates the way, according to equations (A3) and (A%), in which the incre—
ments muist be laid off in the velocity plane. Points having the same
number in figures 21(a) and 21(b) represent the same point in the flow.
Iet the smallest average Mach angle along the steps in the physical plane
be ap, and the smallest vertical—velocity component be vy, then for
all steps along AB

|ép] > |vm C sin® ap| = constant

constant

lag| > |vm C sin® ap|

This means that every increment in the hodograph plane is greater than a
constant value. This value cannot be zero unless points 1 and 3 are
identical, which would represent the exceptional case of a "reversed"
conical flow. On passing from point A to point B there are, however, an
infinite number of such increments. They must be laid out along the arc
of a circle in the hodograph plane since AB is a streamline of constant
pressure. Hence, before reaching point B the Inclination angle of the
velocity vector must be greater than 46° (approximate maximum deflection
angle through a single shock wave for 7 = 1.4). Because this situation
obviously prevents a shock wave from being fitted into the flow, thers
results a contradiction to the assumption that the over-all flow is
possible. It appears, therefore, that these flows are mot always possi—

ble.

. e e e ————— e - =
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The preceding discussion, though not a mathematically rigorous expo—
sition, points out the reason why the inclination angle € of a free
streamline can increase at an excessive rate as the axis is approached.

The source of the trouble is inherently associated with the last term in
the equation of motion (A1), since it has r in the denominator and a’
nonvanishing factor in the numerator. The appearance of r 1in the denom—
inator of this equation stems entirely from the continuity equation. This
leads to a qualitative explanation of the observed behavior near the axis
of the inviscid flows. Consider the changes that must occur on going from
point 1 to point 3 in the physical planme (fig. 21(a)). If the flow were
two—dimensional, then the free streamline would be straight and 6; would
equal 65, thereby preserving the cross—secticnal area between two adja—
cent streamlines on passing from 1 to 3. The term involving l/r does

not occur for plane flow and no difficulties arise. In the axially—
symmstric case, the fundamental condition is again that the cross—sectional
area of an annular streamtube must be preserved, since w; 1is equal to Wg.
This means that for purely geometric reasons the streamlines bounding the
annuler streamtube must spread apart as the axis is approached. In order
to have the pressure at point 3 equal to that at point 1, the free stream—
line curves towerd the axls, permitting the bounding streamlines to spread,
thereby allowing the continuity equation to be satisfied. Because of the
1/r term in the continuity equation, the curvature rapidly increases as
the axis is approached. Hence, before the axis is reached, the inclination
of the free streamline exceeds the largest value which any oblique shock
wave can possibly overcome.
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APPENDIX B

WIND-TUNKNEL SUPPCORT INTERFERENCE AND REFLECTED
' BOW-WAVE INTERFERENCE

When a body of revolution is tested in a wind tunnel it is usuelly
supported from the rear by a cylindrical rod. As a result the measured
values of base pressure may be considerebly affected, for one thing, by
the presence of the support. Support Iinterference on base pressure is a
complicated function'of the dilameter of support rod, the unobstructed
length of support rod, the Mach number, and the Reynolds number. If, as
is the case for the experiments referred to herein, the support length is
much greater than the base diameter, then the only appreciable interfer—
ence must arise from the "diameter effect" of the rod. From theoretical
considerations certain inferences can be drawn regerding the resulting
support—diameter interference on base pressure.

For a fizxed Mach and Reynolds number, an increase in the support
diameter brings about two different effects. First, the wake thickness
is increased, thereby making it possible for lower base pressures to
exist. (See fig. 7.) A second effect resulting from an increase in sup—
port diameter is that the appropriate dimensionless boundary—layer thick—
ness 5;/(h-d) 1is increased, thereby tending to increase the base pres—
sure. The two effects, therefore, oppose each other. For values of
d/h near unity the second effect mumst predominate; whereas for small
values of d/h the first effect would (on the basis of fig. T) be expected
to predominate, especially at low supersonic Mach numbers.

Before comparing these theoretical considerations with experimental
measurements of the effect of variations in d/h, it will be advantageous
to first consider the effects of having only a finite length of unob—
structed support rod. To examine this effect, base—pressure measurements
have been taken with a constant value of d/h, but with various lengths
of unobstructed support. In these experiments the model was located at a
fixed position in the test section so as to eliminate possible effects of
axial pressure gradients along the test section. The results from
M = 2.0 apd 2.9 are illustrated by the curves in figure 22, which show,
for d/h = 0.3, mno change in base pressure if the support length is
greater than about 3 base diameters. Since support lengths of over 4 body
diameters have been used in all subsequent tests, i1t is concluded that any
interference in the wind—tunnel measurements of base pressure at M = 2.0
and 2.9 is not attributable to effects of support length.

. The results of base—pressure measurements for various support diem-
eters with laminar boundary—layer flow are shown in figure 23(a). The
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data for a Mach number of 1.5 (which were taken by Edward W. Perkins in
1946) show the expected increase, and then eventual decrease in base drag
asg the support dismeter-is progressively increased. At a Mach number of
2.9 the data show a monotonic decrease in base drag as the support diameter
is increased. Schlleren photographs show that the wake thickness t/h
varies from approximately 0.5 to 1.0 as d/h varies from O to 1.0. Con—
sequently, 1t turns out that the behavior of the three curves in figure
23(a) 1s qualitatively the same as would be indicated if equation (13)

were used to estimate Py¥*. (It is to be remembered that t/h 1s the
"effective" d/h of fig. 7.)

The corresponding results for turbulent boundary—layer flow are shown
in figure 23(b). At Mach numbers of 1.5 and 2.0 these data show the same
trends as for laminar boundary—layer flow, but at a Mach number of 2.9 the
trend is not the same. At Mach numbers near 3, and possibly higher, it
appears that the relative importance of the two above-mentioned effects of
increasing d/h depends on the condition of the boundary—layer flow.

It may be noted from figure 23(a) that there is one point correspond—
ing to d/h = 0 on the curve representing laminer flow at a Mach number
of 1.5. This point, which was determined from the measurements using a
side support gives the same value for the bese pressure as exists for a
support with a d/h ratio of about 0.3. At all the other Mach numbers,
where special interference measurements were not made, the base pressure
was measured with a constant value of 0.4 for the ratio d/h. From the
curves in figure 23(a) it may be inferred that, at least for Reynolds
nunbers of the order of 4 million, the base—pressure data for laminar flow
are not significantly affected by support interference.

Unfortunately, an investigation of support interference for turbu-—
lent boundary—layer flow has not been made using a side support. Definite
quantitative statements about the possible effects of support interference
in the turbulent—flow data (figs. 14, 15, 18, 19, and 20) cannot be made
at present. Evidence that the combined effects of support and wall Inter—
ference are not large, however, 1s given by the good agreement obtained at
all Mach numbers between the free-—flight firings of reference 5 and the
various wind—tunnel measurements (figs. 1%, 15, 18, and 20).

A possible source of wall interference arises from the reflection
of a bow wave from the side walls, and the eventual intersection and
interaction with the wake at some downstream position. This interaction
for M=2.0 and M = 2.9 occurs at a position varying from 7 to 22
base diameters downstream of the base. Since the large disturbance caused
by the balance housing hes no mesasurable effect at distance of 3 base diam—
eters from the base (see fig. 22), there is no reason to expect that the
base—-pressure measurements at M = 2.0 and M= 2.9 mnmight be affected by
reflections of bow waves from the tunnel side walls. At a Mach number of
1.5, however, the downstream position of interaction is closer; it varies
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from approximately 2.7 base diameters for the model with an L/h of T,
to 5.4t base diameters for the model with an L/h ratio of 4.3. TIn view
of the possible interference from reflected bow waves at low supersonic
Mach numbers, a special investigation was made prior to the tests of
reference 10 to determine the magnitude of this effect. The results,
taken at a Mach number of 1.53,5 are presented here as they ald in eval-
uvating the accuracy of the wind—tunnel measurements of base pressure.

Figure 24 illustrates the test setup employed in evaluating the
offect of a reflected bow wave on base pressure. Because of symmetry
the two outer dummy models caused two shock waves, similar to reflected
bow waves, to interact with the wake behind the base of the center model
(on which the base pressure was measured). By varying the distance between
the dummy models of the test setup, the position of interaction was readily
changed. The strength of the bow wave on the models employed (6-caliber
ogival radius) in this special investigation varied fram approximately
two to eight times the strength of the bow wave on the various models for
which base-pressure data are presented.

Schlieren photographs of the flow for two different positions of
interaction, and two different Reymolds numbers, are given in figure 25.
The distance x, from the base to the position of interaction, is equal
to 2.5h in both figures 25(b) and 25(c). This particular position sim—
lates the closest position to the base of the interaction of reflected
waves In the present tests. The corresponding base—pressure measurements®
without and with the interference wave present are illustrated in figure 26
by the circle and triangle symbols, respectively. The data show no appre—
ciable effect on base pressure of the shock wave which simulates a
reflected bow wave., If a reflected bow wave comss too close to the basse,
however, then large interference effects are possible, as illustrated by
the square symbols in figure 26, and the corresponding schlieren photo—
graphs In figure 25(d). Except for purposes of illustrating this effect,
base—pressure measurements were, of course, not taken under these latter
conditions of important interference from reflected waves. Since the
simlated reflection waves of the models used in this special investigation
were several times stronger than the bow waves on the models for which the
base pressure was measured, it is clear from figure 26 that the wind—tunnel
measurements presented are not appreciebly affected by interference of a
reflected bow wave.

SThis Mach number differs somewhat from that of more recent tests
(at M=1.50) since the earlier tests were conducted in 1946 at a time
when the 1— by 3—Ffoot supersonic wind tunnel was temporarily equipped
with a set of fixed nozzle blocks instead of the flexible plates now
employed.

€These data fall slightly below other data presented herein because of
the very small amount of boat—tailing on the models used in this special
investigation. :
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Figure 3. —Example of inviscid flow over a two—dimensional profile.
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Frgure 5. —Continued,
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Figure 6. —Axially-symmetric semi—infinite body with rod

attached.
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Expansion

Figure 9 —Sketch of the viscous fluld flow In the nelghborbood
of the base.
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Figure /0. —Measured base pressure on a finite—span wing;
Mwn=20, ratio of wing span to base thickness =40.
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Figure (2. —Measured and correlated base pressure data;
Mx=1.53, laminar boundary-layer flow.
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Figure 13. —Measured and correlated base pressure dafta;
Mxo=2.0, laminar boundary—layer flow.
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Figure /6. —Continved.
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Figure 18.—Base pressure coefficient as a function of Mach
number; turbulent boundary—layer flow.
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Reynolds number for natural fransition; My,=2.0.
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(a) Assumed flow in the physical plane.
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figure 2]/a.

Figure 2. —Characteristics construction for flows converging

fo the axis.
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Figure 23. —Effect of ’supporf diameter on base pressure.
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Figure 23. —Concluded.
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Fiqure 24 —Skelch of lest setup used for defermining the effect of a reflected bow wave on base presswre.
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Figure 25. — Schiieren photographs for various positions of intersection of Ihe shock
waves simulating reflected bow waves; M=/53 R
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Flgure 26. —Effect of reflfecled bow waves on base pressure; M=153,
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