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A RECURRENCE MATRIX SOLUTION FOR THE DYNAMIC
RESPONSE OF AIRCRAFT IN GUSTS

"By John C. Houbolt
* SUMMARY

A systematic procedure is developed for the calculation of the
structural response of aircraft flying through a gust by use of differ-
ence equations and matrix notation. The use of difference equations in
the solution of dynamic problems is first illustrated by means of a
simple-damped-oscillator example. A detailed analysis is then given
which leads to a recurrence matrix equation for the determination of
the response of an airplane in a gust. The method takes into account
wing bending and twisting deformations, fuselage deflection, vertical
and pitching motion of the airplane, and some tail forces. The method
is based on aerodynamic strip theory, but compressibility and three-
dimensional aerodynamic, effects can be taken into account approximately
by means of over-all corrections. Either a sharp-edge gust or a gust
of arbitrary shape in the spanwise or flight directions may be treated.
In order to aid in the application of the method to any specific case,
a suggested computational procedure is included.

The possibilities of applying the method to a variety of transient
aircraft problems, such as landing, are brought out. A brief review of
matrix algebra, covering the extent to which it is used in the analysis,
is also included.

INTRODUCTION

In the problem of an airplane flying through gusts, accurate
predictions of stresses are not always obtained if the interaction
between aerodynamic loads and structural deformstions is not considered.
The present paper gives a method for determining the dynamic response
of aircraft in gusts in which this interaction is considered. An
approach is employed which is a departure from the usual modal type of
solution. The time derivatives in the integro-differential equations
of motion of the airplane are replaced by appropriate difference
expressions and use is made of matrix notation to express conveniently
the conditions of equilibrium at a number of points along the wing span.
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The result is a systematic procedure which is complete and general in
form. The airplane is assumed to be free to translate and pitch. Wing
bending, wing twist, and fuselage flexibility are all included. Tail
forces due to vertical motion, angle of attack, and gust penetration are
also included in the analysis.

With the method, a gust with any gradient in the direction of
flight or along the span may be treated without difficulty. The method
_is based on aerodynamic strip theory,-but over-all compressibility and
aspect-ratio corrections may be included without difficulty, if desired.
One such over-all correction is indicated. '

In the first part of the paper the method of using difference
equetions in the solution of dynamic problems is illustrated by an
example in which the transient response of a simple oscillator is
determined. The analysis for the determination of the response of an
airplane in a gust is then given. In the following section a computa-
tional procedure is suggested. This section is not intended to
describe or add to the understanding of the analysis, but by following
the directions indicated, the response of any airplane may be found
without following through the complete details of the analysis.

Supplementary definitions and derivations are presented in appen-
dixes. Appendix A summarizes the various matrix coefficients and
matrices that are used in the analysis, appendix B gives a derivation
of the difference equations, appendix C gives a derivation of the '
flexibility matrices, appendix D gives a derivation of a recurrence
equation for evaluating the form of Duhamel's integral which involves
an exponential kernel, and appendix E presents a review of the funda-
mentals of matrix algebra. It is suggested that those not .familiar
with matrix algebra read appendix E before reading the analysis.

SYMBOLS
a distance between leading edge of wing and elastic axis
ay coefficient used in unsteady 1lift function for sudden change

in angle of attack

A aspect ratio of wing
At ) aspect ratio of horizontal tail
b semispan of wing

c B chord of wing
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chord at wing midspan

midspan chord of tail

mean aerodynemic chord of tail

distance between mass center of wing cross section and
elastic axis of wing; positive when elastic axis lies
forward of mess center

Young's modulus of elasticity

suddenly applied force

shear modulus of elasticity

integers 0, 1, 2, 3, 4, and 5 used to designate stations
(for most part used as parenthetical numbers, that is, w(3)
is deflection at station 3)

bending moment of inertia

torsional stiffness constant

radius of gyration of wing mass about elastic axis or
elastic spring constant

length of section associated with a spanwise station ]
aerodynamic 1lift over interval 1 on wing
shear force transmitted  to wing by fuselage

aerodynamic 1lift over interval 1 on wing due to gust

- one-half gerodynamic 1ift on tail due to gust

one-half total aerodynémic 1lift on tail

part of aerodynamic 1ift over interval 1 on wing (see
equation (16))

part of aerodynamic 1ift over interval 1 on wing (see
equation (17))

mass of beam included in interval 1 or concentrated mass
in spring oscillator )
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mass m including apparent mass effect (m + mli—c—)

assumed over-all compressibility and aspect-ratio correction

A.
tor ving (- )

assumed over-all compressibility and aspect-ratio correction

A
for horizontal tail & )
2 + At\/l - M2

mass moment me including spparent mass

effect (me + 1‘2}7;‘:_3(£ - -84))

2 .c
mass of fuselage per unit length

mass polar moment of inertia mk® including apparent mass

I
effects (mk2 + %(%‘- - %)2 + 7?;_0)*)

Mach number or aerodynamic moment over interval 1 about
elastic axis of wing

moment transmitted to wing by fuselage

integers 0, 1, 2, 3, and so forth to designate number of time
intervals passed .

normal load acting at a station
fuselage inertia loading per unit length
torsional load acting at a station

distance traveled by wing in half-chords (%—U t, where midspan
o]

chord ‘co is used as reference chord)
distance interval in half-chords (%H e)
o

horizontal-tail area

time, zero ‘at beginning of gust penetration
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W
W 1

By

forward velocity of-flight
vertical velocity of gust

deflection of elastic axis of wing, positive upward, or
deflection of mass oscillator

deflection of fuselage; positive upward

fuselage modal function, zero at wing elastic axis and unity
at tail one-quarter-chord location

distance along fuselage measured from wing elastic axis,
positive in rearward direction -

distance from foremost part of nose to elastic axis

distance from elastic axis to one-guarter-chord location on
tail

distance along wing measured from center of airplane
ratio of dymnamic deflection to static deflection

angle of attack of horizontal tail

. forward-speed and aspect-ratio factor for wing (mpnpU) or

coefficient of damping for spring oscillator

. 1
forward-speed and aspect-ratio factor for tail <§ mAt:rpStU)~

exponential coefficient in ¢ <function associated with

time t, <7=2_Ux)
Co

coefficient of fuselage modal function
time interval "

exponential coefficient in ¢ function associated with
variable s

dimensionless interval between 1 -1 and i
stations (Aib is actual length)

mass density of air

angle of twist of wing, positive in $talling direction
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¥ function which denotes growth of 1lift on rigid airfoil
. entering sharp-edge gust (used without subscript to
indicate function for wing and with subscript t used
to indicate function for tail)

we natural frequency associated with Wi, radians per second
1(1:) unit-step function
1-0 function which denotes gi'owth of 1ift on airfoil following

sudden change in angle of attack (used without subscript
to indiecate function for wing and with subscript t used
to indicate function for tail)

[ ] square matrix

[ ] rectangular matrix

| | column matrix -
| ] row matrix

Subscripts: .

% tail

0,1,2,3, ... n mumber of time intervals passed

0,1,2,3,4,5 or i station (however, station is usually given as
perenthetical number, such as w(3) for deflection
at station 3); i 1is also used as general subscript
in appendix A

A1l the terms, coefficients, and matrices not defined in this
section are defined in gppendix A.

Dots are used to indicate derivatives with respect to time; for

example,%%r:ir or %:v}

ANAT.YSIS

Transient Response of a Simple Damped Oscillator

In order to illustrate the use of difference equations and to test
the accuracy of the procedure that is to be used in the solution of the
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more complicated gust problems, the solution of a simple problem having
 a known analytical solution is first presented. The problem is to com-
pute the response of the damped oscillator shown in figure 1 to a
suddenly applied force. The differential equation of motion of this
system due to the suddenly applied force is

mi + pw + kw = F/(t) (1)

By use of difference equations this differential equation may be trans-
formed into an equation which involves deflection ordinates-at several
successive values of time. Probably the most commonly used difference
equations are the following (see appendix B for derivation):

¥ntl - ¥p-3
T (2)

. - 2w, tw
.- n+1 n n-1
Wp =- 2 (3)

which give the derivatives at the intermediate of three successive
ordinates. Although these equations are quite adequate for the -
oscillator problem of the present paper, they cannot be used in the
gust analysis which follows. Rather, for reasons which are brought out
in a subsequent part of the analysis, equations that give the derivatives
at the end ordinate of several successive ordinates must be used. If
only three successive ordinates are-used, the derivatives so found are
not accurate enough to be useful. If a fourth ordinate is added,-how-
ever, derivatives may be taken at the end ordinate with accuracies
which are comparable to those given by equations (2) and (3). Such
derivatives are derived also in appendix B and are given by the
equations:

_ 1wy - 18wy + Swpp - 2wpg

Yn Ge (1)
. 2W, = S5Wpoq * W 5 - W._
Wy = n n-1 5 n-2 n-3 (5)

€

Although either equations-(2) and (3) or equations (4) and (5) may be
used in the solution of this oscillator problem, only equations, (k)
and (5) will be used, since only these equations can be used in the
gust-problem solution presented in this paper.

wm e e e mae ie meh il ¢ et e WL St T g oy ————— —_— - e sy e
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If the derivatives in equation (1)} are replaced by the difference .
equations (4) and (5), the following equation is obtained:

' | 2
Ll Be . k = 3Be - 2Be 2 £F
(2+-3-m+m€2>wn—<5+m>wn-l QL-F &2 F LY -3 * g
(6)
This equation may be said to be the difference equation of motion. If
the more general case of a variable applied force were being considered,
the factor F in this equation would be replaced by Fpn, the value of
the force present at the time + = ne.

B

If a specific case is now considered, in which 1—1;- = 400, 5m = 2,
¢ =0.01, F =1, and the notation z = F—,}"E (ratio of dynamic deflection

to static deflection) is used, equation (6) becomes

zn = 0.018R7 + 2.42272 z;-7 - 1.9211k zp_o + 047949 zp_3 (7)

This equation may be regarded as a recurrence formula; the value Zn
may be interpreted as the deflection to come and may be found easily .
from the three preceding deflections 2n-1, Zn-2, and 2zp-3. Then with :

the newly found value zp- and with z, ; and 2z, o, the next deflec-

tion can be found, and so on. This process thus gives a step-by-step
derivation of the time history of deflection and may be carried out as
far as is desired. Of course the process must start with known initial
values of 2z. These values can be found with the aid of the initial
conditions of the problem by means of the following approach.

The difference equations for the first and second derivatives at
the third ordinate of four successive ordinates are (_see appendix B)

Wn = é'—e<2wn+l + 3wp - 6wp-1 + Wn-z)
Wy = '%(Wn+l - 2wp * Wn—l)
6 \

If these equations are taken to apply at t =0 (n = 0), they become
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Vo ='g%(2wl + 3wg - 6w.q + WFQ) (8)
o =-§E(wl - 2wy + W'l) 9

For the problem under consideration the primary initial conditions are
that, at t = 0, the displacement and velocity are zero. By use of
equation (1) or by reasoning from Newton's second law, a secondary
initial condition can be established; that is, the acceleration
immediately following the application of the unit force must be l/m.
In equation form these conditions are

wo =0
'v.fo=0
- l
Wn = =
0 m

By substitution of these values into equations (8) and (9) and by use
of the notation =z = f;i? the following relations can be found to exist

between the ordinates:

Zo =0
Z_p = 0.24 - 821 (10)
z-3 = 0.0k - zq

Substitution of these values into equation (7), with n set equal to 1,
gives an equation from which zj, the deflection at t = €, may be
evaluated. Three successive deflections can now be established: the
deflection at t = ¢, the zero deflection at t = 0, and a fictitious
deflection for t = -¢ given by equation (10). In the real problem no
deflection exists for t less than zero; the assumption that a deflec-
tion does exist before t 1is zero is simply a means for allowing the
recurrence formula, equation (7), to apply at the origin as well as at
later values of time. Furthermore, no violation is made of the condi-
tions under consideration because, mathemastically, the response

after t = 0 1is not influenced by the response that may exist

before t = 0, so long as the initial conditions are satisfied. The
process Jjust described for treating the initial conditions is actually
not different from the procedure commonly employed in difference-
equation approaches, in which exterior points near a region under con-
sideration are written in terms of the interior points by means of the
boundary conditions.
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With the initial values of deflection thus established the step-
by-step evaluation of succeeding deflections proceeds in a straight-
forward maenner; that is, equation (7) is now evaluated for n = 2,
then for n = 3, and so on. The response of the oscillator for the
physical constants listed previously is given in figure 2. The compari-
son between the difference solution shown in this figure and the exact
solution of equation (1) is seen to be good. As a matter of interest,
the solution is also shown in this figure that is obtained by the use
of the parabolic end-ordinate derivative which involves only three
successive ordinates. The agreement in this case is seen to be quite
bad. If equations (2) and (3) had been used, on the other hand, the
difference solution (in this case for wh+l) would correspond to that

given for the cubic end-ordinate derivative.

Recurrence Matrix Equation for Response of

an Airplane in a'Gust

In order to help the reader to obtain a perspective of what is to
be covered in this section, the following basic phases of the analysis
are given:

(1) The assumptions are stated. .
(2) The coordinate system and displacements are defined.
(3) The aerodynemic 1ift and moment are defined.

(4) The normel and torsional dynamic loadings (inertia forces,
aerodynamic forces, and fuselage forces) on the wing are derived.

(5) The equations of elastic deformation - wing vertical motion,
wing rotation, and fuselage bending - are given.

(6) The dynamic loadings on the wing are transformed into
difference equations.

(7) The equations of elastic deformation and the difference
equations for loading are combined to give the recurrence matrix
equation for response.

¥

In succeeding sections the initial response is determined, the
method for evaluating the gust forces is shown, and the method for
computing the loads and stresses is indicated.
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Assumptions.- In this analysis an attempt is made to obtain the
simplest and most direct solution -to the problem with a minimum of
simplifying assumptions. The case treated is that of an airplane having
an essentially straight wing and penetrating a gust of nown structure.
The tail is considered to penetrate subsequently the same gust as does
the wing. The assumptions made are as follows:

Assumptions pertaining to elasticity and airplane motion:
(1) The usual assumptions of engineering beam theory are made.

(2) The fuselage is free to pitch and move vertically. The portion
of the fuselage in front of the elastic axis of the wing is assumed for
convenience to be rigid. The portion of the fuselage rearward of the
elastic axis is assumed flexible, and the elastic deflection is assumed
to be given by a single modal function.

(3) The tail is assumed rigid.
Assumptions pertaining to aerodynamic forces:

(1) Aerodynamic strip theory applies. Three-dimensional effects,
however, may be teken into account approximately by means of over-all
corrections. Some such corrections are indicated.

(2) The gust force and forces due to vertical and pitching motion
are the only tail forces considered. Other forces of known charscter
may be included, however, if desired.

(3) Aerodynamic. forces on the fuselage are neglected.

Coordinate system and displacements.- Position on the airplane is
denoted by an orthogonal system of axes. The origin is at the inter-
section of the wing elastic axis with the plane of symmetry of the
airplane: the w-axis runs positive upward, the x-axis runs along the
fuselage positive in the rearward direction, and the y-axis runs span-
wise. The wing semispan is considered to be divided into six, not
necessarily equal, sections, with a station point at the middle of each
section. (See fig. 3.) More or fewer stations could be chosen, but it
is believed that six is a fair compromise between the amount of labor
involved in setting up a solution and the accuracy desired. The interval
between stations is designated by the number of the station at the out-
board end of the interval. Station O is located near the wing root and
generally may be located where the fuselage intersects the wing. In this
way the concentrated forces of the fuselage are allowed to act through
station 0. The other five stations are then located in any convenient
menner so as to fall at concentrated mass locations or at points which
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represent the average of distributed masses, station 5 being nearest
the tip. The total mass within a section is assumed to be concentrated

at the station po:m“b and the average of the section geometry (chord,
tic axis o—onj—is-assumed to gpply. In this way the
wing is assumed to be a beam subject _A'\_sLl__}g\_]}Q_zyl;p_n_c_e)nm:a:l:.J\.ngz and as

such will have a linear moment variation between each station. The
further assumption is made that the E—lI- variation is linear between

each station. With these assumptions for the EI wvariation and con-
centrated load locations, equetions for deflection at each station
point may be derived (appendix C) by direct analytical treatment.

The displacements of the cross section at each station of the wing
are given as the deflection of and rotation about the wing elastic axis
as shown in figure 4. The fuselage displacements are shown in figure 5
and are given by the equations:

° we = w(0) - p(0)x (11)

for the forward section and

we = w(0) - 9(0)x + W13 (12)

for the rearward section. The function Wy 1is taken as the fundamental
mode of vibration of the fuselage and tail assembly, when the fuselage
is considered to be clamped as a cantilever beam at the elastic-axis
location of the wing, and is given in terms of a unit deflection at

the ]]i-chord position on the tail. With this function to represent the

elastic deformation of the fuselage the deflection and angle of attack
of the tail is found with the aid of equation (12) to be

welxy) = w(0) - @(0)x; + B (13)
dwe
at = - 3% 5
TRy (14)
= @(0) - 86y

where
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Aerodynamic lift and moment.- Betrore going into the details of the
analysis it is felt worthwhile to define and describe the nature of the
aerodynamic forces to which the wing is subjected. These forces
originate from two sources: they arise directly from the gust encoun-
tered, and they arise from the ensuing airplane motion. The equations
for the aerodynamic lift and moment that develops are herein set up in
a convenient form on the basis of work given in references 1 to 4. In
these investigations various methods for separating the 1lift forces o
have been used, but the particular method for separating these forces
is not important so long as they are teken into account properly.

In the present paper the aerodynamic 1lift and moment are considereds
to be composed of two parts: one part, designated as the 1lift or
moment due to circulation, which includes all 1ift forces or moments
exclusive of serodynamic inertia effects and the other part, which is
due solely to these inertia effects. These 1ift forces and moments can
be resolved into the force systems acting on the airfoil as shown in
the following sketches:

Lg
‘ Iy Lo
o
Forces due to circulation e
L
l— 8,
‘ L
| 341
Inertia force and moment .F_.E..:J
2

The force Lg is the 1lift force developed by the gust. All the other
forces occur as a result of motion of the airfoil. These forces, as
well as the gust force, are given for an interval 1 of the span by
the equations: For the forces due to circulation, '

© pt
Lg = mpnpclU . % Wt - 7)dar (15)

t
L = mAﬂchUL ch'p - W+ c<73; - %>CE||E - o(t - Tzld'r (16)
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2
mpxplc .
Ip = —— U (17)
and for the inertia force and moment,
Iy = 22 5+ (S of " (18)
N )
)+ '3
M = - T[DZC (L
L= - TE (19)
where
my factor which can be used to introduce over-all compressibility
and aspect-ratio corrections; in this paper the factor is
A

assumed to be given by

2+ Aﬂl - M?

1-90 1lift function which denotes the growth of 1ift on an sirfoil
following a sudden change in angle of attack

¥ 1ift function which denotes the growth of 1ift'on a rigid
airfoil entering a sharp-edge gust

The functions 1 -¢ and ¥ and the correction mp are estab-

lished as follows. In reference 5, approximate equations are derived

which give the lift-coefficient form of the growth of 1lift on a finite
wing following e sudden change in angle of attack or due to the penetra-
tion of a sharp-edge gust. The equations may conveniently be considered
as the product of a factor, which may be regarded as a lift-curve slope,
and an unsteady 1ift function, designated by 1 - ¢ <for the function
due to the angle-of-attack change and by V¥ <for the function due to

the sharp-edge gust. These unsteady lift functions are shown in

figures 6 and T and are given by the following equations: For

the 1 - @& functions

(1 - @)A=3 =1 - 0.2838-0'5u05 (208)
(1 - ), ¢ =1- 0.361e70-3028 (200)
(1 - )pow = 1 - 0.1656 00458 _g.335,70+300 (20¢)
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and for the ¥ functions

-O- - .
0.679¢ 07" _ 0.0070 3208 (21a)

ll!A=3 = 1

‘L'A=6 =1 - 0.1;489-0 2908 - 0.2726-0 *725s - 0-1933_3 -00s (le)

(=]
[}

0.2360 00588 _ 0.513¢ 03648 _ 0.171e"2¥28 (21c)

-0.130s 8

0.500e 0.500e ~ (22)

}D'é'
]
)
1

Equations (21) are based on equations of reference 5; whereas equa-
tion (22) is the ¥ function that is suggested for wings of infinite
aspect ratio in reference 3. Inspection of equations (20) shows that
the @ function for aspect ratios 3 and 6 is given by a single
exponential term. It is probable that the ¢ function for higher
aspect ratios, say 10.and even 20, may also be given to a sufficient
approximation by a single exponential term., Therefore, the assumption
is made that in general ¢ may be represented by an equation of the
form

o = ale’)”s V (23)

Interpolation, for example, of the curves in figure 6 shows that
the ¢ function for aspect ratio 10 might be approximated by the
equation:

®as10

= 0.41e70"3% (24)
The analysis does not necessarily limit ¢ +to a single exponential
term. Other terms could be added with some increase in labor, but the
degree of refinement obtained is not expected to add much to the over-
all accuracy of the solution.

Although the functions given by equations (20) to (22) are known
to approximate the true functions quite well over a large range

in s (s = %H é), the { functions given by equation (21) do not

o]
venish, as they should, when + = 0. When used in the computational
procedures given hereinafter, these functions, therefore, are to be
taken as zero when t = O. Another point to note is that the variable s
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is given in terms of a reference chord cg; thus this variable as
applied to the wing is different, in general, from the variable as applied
to the tail.

Examination of the values of lift-curve slope, which were stated
to be present in the equations taken from reference 5, reveals that they
may be approximated with good accuracy by the product of 2n and the

often-used aspect-ratio correction K—f_‘—Q for steady incompressible

flow. In the present paper it is assumed that compressibility and

aspect-ratio corrections can be made by replacing this aspect-ratio
1
correction by a compressible aspect-ratio correction defined by Fé—é’

where A' = A\’l - M2 , and by multiplying this correction by the Glauert-

Prandtl Mach number correction —]'-—-—2 to give the product mpy. The
l1-M

procedure then for taking into account three-dimensional and compressi-

pility effects in the present analysis is to determine mp from the

forward speed and aspect ratio of the wing and to use the 1 -9

and ¥ functions, equations (20) to (2%), for the aspect ratio which

is nearest that of the wing.

Some word of explanation of equation (16) might be worthwhile at
this point. The ®(t - 7) function is associated with the 1lift forces
which are due to the weke. Without this term the equation would yield
the steady 1ift corresponding to the instantaneous values of angle of
attack and vertical velocity. If equation (16) is integrated by parts !
and the conditions are stipulated that w, w, ¢, and ¢ are all zero .
at t = 0, the following equation may be found:

L = Bcl(i)Ow - (1 - ¢g)Bciw +~BcZUE- oy - %(% - %}&Jgicp +

’ rt t
(1 - @o)Bcgl(% - ?L)Ep + Bclf wo(t - 7)aT - BcZUf ed(t - T)dT -
¢ 0 0

Bczle - %)j;t q)cp'('b - T)ar o (25)

where P has been introduced as a forward-speed and aspect-ratio
parameter defined by the equation

B = mynpU (26) .
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With reference to equation (23), ¢, eand éC) in equation (25) would
have the values

20 = 2
: __2u
q)o = Co l&l

The form of 13 given by equation (25) is presented because -this form
is more convenient to use in the present analysis. B

For this analysis the total lift and moment acting at the elastic-
axis location are desired. For the present, the total 1ift I and
moment M of the forces due to circulation are found; the inertia
force and moment are to be treated separately. Summation of all the
1lift forces due to circulation and summation of the moments of these
forces about the elastic axis gives the desired equations for the aero-
dynamic 1ift and moment acting on the airfoil over an interval 1 as
follows: . :

4

L.=L1+L2+Lg (27)

M = (a - %)Ll - (—31§ - a)L2 + (a - ﬁ)Lg (28)

The loading on the wing.- The normal and torsional dynamic loads
that are held in equilibrium by the elastic restoring forces of the
wing may be found by considering all the aerodynamic and inertia forces
that act on the wing. The mass situated at any station (see fig. 1)
can be shown to have an inertia normsl force equal to

-m¥ + meQ
and an inertia torsional moment sbout the elastic axis equal to
mew - mkeQ

If the aerodynamic forces and moments (see equations (18), (19), (27),

and (28)) are added to these inertia loadings, the total normal and
torsional loadings on the wing at each station are found to be given, .
respectively, by the equations: )

P = -m¥ + mel + L + Lg

me¥ - mk2§ + M - (% - a)Lg +

q
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The terms L3 and M) ordinarily would appear with the aerodynamic

1ift and moment values but are treated separately so that they can be
combined with the structural mass terms. If use is made of equations (18)
and (19), the loading equations become -

p=-I + meP + L (29)
q = TV - mKep + M (30)
where

2
— _ nwplc )
m= (m + =

ﬁé:Ee+.foﬁc3(%_%):|
L 2 L ’
=D wplc’ (1 & nplc
mie ‘lz“kg* n (2'c> * 128]

The terms appearing with _the structural mass quantities in the defini-
tions of  m, mé, and fike are the terms which are commonly associated
with apparent mass effects.

The value of the shear forces Ly and the moment My transmitted

to the wing by the fuselage can be found in the following manner: From
equations (11) and (12) the values of the inertia loading on the forward
and rearward sections of the fuselage can be shown to be given, respec-
tively, by the equations:

pp = mp[#(0) - B(0)x]| (31)
pe = me[#(0) - H(0)x + 8| (32)

Integration of these inertia loadings over the length of the fuselage
and addition of the aerodynamic tail load 2Lty give the value of the
total load transmitted to the wing; one half of this load is designated
by Ly and is assumed to act at station O, the other half being con-
sidered to act through the corresponding station on the other half of
the wing. Integration of the moment of the inertis loading about the
elastic-axis location and addition of the moment -2xiIt of the tail
forces give the total moment due to the fuselage; one half of the
moment is designated My and acts at station 0. The values of Lf
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and My +thus found can be given by the equations:

Ly = M;#(0) + MyP(0) - M3'6' + Ly (33)
Mp = Mp¥(0) - MUP(0) + M5B - x¢Ly (3%)
where the M;'s are considered to be generalized masses defined as
follows:
I )
Ml = é‘f mp dx
Zn
1 Pt
Mp = §'f mpx 4x
Xn
1%
0
> . (3)
Xt
1
M), = 'é'f mfxzdx
Xn
1 %
M5 = § Iﬂ.fXWl dx
0
1% o
0 /

The generalized mass constant Mg, although not appearing in equations (33)
or (34), is included in this group because it occurs in a. subsequent part of
the analysis. In the derivation of equation (34), the aerodynamic moment

of the tail about the tail %—chord position is neglected since it is

considered to be small in comparison with the value Li. The 1ift on
the tail Lt can be found by application of equation (27) to the tail
surface. In this case the @ function appropriate to the tail should
be chosen and the values of displacement w and ¢ should be replaced
by wr(xy) and ap, the values of deflection and angle of attack at
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the tail %-chord position. These values are given by equations (13) .
and (14).

Matrix equation of equilibrium.- The problem of computing the
response may be considered to be one of the determination of the deflec-
tion and rotation of a beam which is subjected to normal and torque
loadings.. In differential form, the bending and rotational displace-
ments are related to the normal and torque loadings by the well-known
expressions: . '

F gr v ' (36)
w2 w2 /
-2 R-q | (37)

where in this instance p and q are the loadings per unit length of
beam. In addition to these two equations which are considered to apply
to the wing, an equation for computing the elastic deformations of the
fuselage may be found; this equation may be found in the following manner.
The rearward part of the fuselage is considered to be a cantilever beam
subjected to the inertia loading given by equation (32) and the tail
force 2Lt. If equation (36) is applied to the fuselage and use is made
of equations (12) and (32), the following equation for fuselage bending
results: .

52 82W1
) N EI¢ o2

= _me}(o) - ¢(0)x + éwﬂ + 2L (38)

in which It must be treated properly as a concentrated load and If
is the bending moment of inertia of the fuselage. Since Wl represents
a vibration modal function, the following relation exists:

> iy 2
<5 Elr 32 O Mer W1

where a&-“is the frequency of vibration associated with -W3. Equa-
tion (38) may therefore be written

Smf(l)fgwl = -mp E(o) - p(0)x + 'Swl] + 2Lg
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Multiplication of this equation through by Wi and integration
between O and xt results in the following equation for fuselage
bending

u)f2M68 = -M3},.I(O) + M5’q3(0) - M6g -+ Lt (39)
where M3, M5, and Mg are defined by eqpations.(35).

Equations (36), (37), and (39), when the loadings given by equa-
tions (29) and (30) are considered, are seen to be rather involved
integro-differential equations but describe completely the motion of
the airplane. The problem is to find functions W, ¢, and ® which
satisfy these equations and which satisfy both the boundary conditions
and the initial conditions. ,

The problem of finding the w and ¢ functions may be simplified
considerably by reducing the rather complicated equations of motion to
a simplified and systematic algebraic form. The first step (see
appendix C) is to replace the differential equations (36) and (37) for
wing deflection and wing rotation by the following simple matrix
equations:

[&]|w] = |2] ' (0)
Elle| = |al S ()

The matrices in these equations are defined in appendix C (see equa-
tions (C22) and (C23) and equations (C29) and (C30), respectively) and
have been derived on the basis that the displacements along the semispan
are given at six stations.

I

Equetions (40) and (41) and the fuselage deflection coefficient &
are now combined in a single matrix equation of the form indicated as
follows:

o] o |lwlf- o] )
o o [B] I@ I |q|

This form is chosen because it will be useful subsequently. With the
notation given in appendix A, equation (42) may be abbreviated to the
form: )
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5]

[c]]w |= |P| (43)
@

This equation may be regarded as the loading matrix equation of equi-
librium; it relates the loadings to the displacements by linear simul-
taneous equations. The boundary conditions are automatically satisfied
when this equation is used because they had to be taken into account

vhen the submatrices [A | and [B] were derived. Only the initial

conditions remain to be satisfied and these are treated separately in a
subsequent section. i

Transformation of the loading equations into difference form.-
The loading equations are now simplified by replacing the time deriva-
tives by difference equations: If equation (5) is used to replace the
derivative in equations (29) and (30) the values of the loading at
the nth time interval are found to be

Pp = '%(an - Dwpy + bpp - W -3) + I:_Z(ann - ®p-y + ll-q)n_g - (Pn_3) * In
€

(4h) )
me k- !
n= 5_2(2wn - Swny + Mmoo - W 3) - 520y - Sy + Mpp - Ppo3) + My
(45)

The values L, and M, are found by determining the expressions

for Iy, Ip, and Ly at t =ne (see equations (27) and (28)). Of
these Lj is the most complicated, since it (see equation (25)) involves
three unsteady 1lift integrals of the Duhamel type. TFortunately, however,
a rather simple recurrence relation can be developed which allows the
calculation of the value of these integrals at a given time interval
directly from the value at the previous time interval. This derivation
is presented in appendix D and is made possible because the @ function
is of an exponential form. (Where the & function is given by more
than one exponential term, a recurrence relation for each term may be
written.) From the derivation in appendix D, therefore, the value of
the three integrals at the nth time interval may be given as follows:

Fn + ——B%Ze 50Wn - _Bcelelgéo + c(% - %’)5é|q)n (1\‘6) )
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where
F,o=e’¢F '
n=¢© n-1 7 81 + 8Py 3
in which g and g!' are defined by equations (A5) in appendix A.  With

this expression to replace the value of the 1ntegrals in equation (25),
the value of L]_ may be written

- . - : U .
= Bcl(@o + g ‘I’O)Wn - (1 - 9g)Bclwy, + Bcl [U(L - o) - —%— dg -

(40 + & zxso)c(%I - g]% (1 - 0g)pc®L(F - Ba, + 7y (57)

With the use of difference equation (4), this equation may be trans-
formed finally into the form:
Lln = d.oWn + d.an__l + d.ewn_e + d3Wn_3 + do'(pn + d,l'q)n_l +

do'Pn-p + d3'Py_3 + Fp (48)

where the d's are defined in appendix A. Likewise, from equations (4),
(17), and (26), Lo, may be written -

BZc
n ohe

If Lln’ Lgn,' and the wvalue Lgn of the gust force at t = ne are

Lo (llq)n - 189p.1 + 99n-o - 294 )

introduced into equation (44), the value of p at the nth time interval
can be shown to be given by the equation:

Pp = Mg¥n ¥ M¥poy F No¥pp F gV g F NPy H 0yt g F N0 o F
N3'Pn-3 * Fn * Lgy (49)

where the 7's are coefficients which are given by equations (A3) in
appendix A. In & similar manner, the equation for q (equation (45))
can be reduced to the form: °
I = Vo¥n t V1 T VaVpp t V33 t Vo'l v Py v F
V3'pn_3 + (a - E)Fn + (a - E)Lg (50)
ly 4/ *=n ~

where the V's are given by equations (A4k) in appendix A.

. e et e o e e = — - e e e mm s e e o e
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. . 1
The value of aerodynamic 1lift acting at the tail p-chord It is

found most conveniently by applying equation (49) to one-half of the
tail surface. This application is made by modifying the 1 coeffi-

cients as follows: The mass value m 1is set equal to zero, % is
taken as ;“i, ¢ is replaced by ct, and Bcl is replaced by Bt, defined

as the forward-speed and aspect-ratio parameter of the tail by the
equation:

1
In addition, w and ¢ are repiaced by the deflection and rotation of

the tail given by equations (13) and (14). With these substitutions
the value of Ltn is found to be

Ltn = fow(o)n + flw(O)n_l + few(o)m_2 + f3w(0)n_3 + fo'cp(o)n +

£1'9(0)n-1 + f2'9(0)n-2 + £3'9(0)n-3 + £0Bn + F1Bn-1 +

Tpbp.p + F3by. 3 + Py + Lg_tn ‘ ' (52)
where
Fy = e 7t¢€ Fg o4 * 3w(0)p_1 + 3'0(0)p 3 + Bp1 (53) ’
Lgtn is one-half the tail gust force at t = ne and the f's and J's

are defined by equation (A7) and (All), respectively, in appendix A.

With equation (52) and difference equations (5), equations (33)
and (34) for Ly and My and equation (39) for fuselage bending may
be reduced readily to the following form:

Le, =yow(0), + 7qw(0) 1 + 7ow(0)y o + 73W(0)n-3 + 70'9(0), +

- 72Pnp * 7003 T Ty Ly ' - (5%)
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Mep = pow(0)y + mw(0)y 7 + uow(0)y o + H3W(0)n_3 + pg'e(0), +
Hy'e(0), 7 + Ho'9(0), o + H3'@(O)n_3 + Hodp + ﬁian;1 +

—l.l..esn_e + ﬁ36n_3 - }Lthn - X.tLgtn (55)

0 =r,w(0) + r,w(0) , + row(0j, o + 1~3'vr(0)n_3 + ry'e(0) +
r1'9(0)p_1 + ro'e(0)y .o + r3'cp(0)n_3 + Tody + Fdyg +

;26.’0.—2 + ;3511_3 + Ftn + Lgtn (56)

where the 7's, u's, and r's are given by equations (A8) to (AlO) in
appendix A.

The complete set of loading equations as well as the fuselage
bending equation are now available in difference form. Equations (49)
and (50) apply at each spanwise station and in addition the value
of Lf and My must be introduced at station O. The coefficients 0,
vV, 7, and so forth are seen to involve only the physical properties of
the airplane structure, the forward-speed and aspect-ratio parameters
given by equations (26) and (51), certain constants derived from the
unsteady 1ift function, and the time interval. The time interval ¢ .
that is chosen should be fairly small in comparison with the natural
period of the fundamental mode in bending of the wing. To serve as a
guide an interval chosen near 1/30 of the estimated period of vibration
of the fundamental mode appears to be quite satisfactory. Of course,
some caution should be observed in the choice of this interval if the
airplane is near a critical condition where some mode other than the
fundamental may predominate. For example, if the airplane is flying
near the flutter speed, the characteristic frequency of the response may
be near the natural torsional frequency.of the wing. The time interval
should be modified accordingly.

Recurrence matrix equation for response.- Equations (49), (50),
(54), and (55) for loading, equation (56) for fuselage bending, and the
equilibrium equation (43) may now be combined to give the recurrence
matrix equation for response. In order to simplify the process of
combining these equations, only the abbreviated or symbolic form of the
matrices which occur are used. The definitions of these matrices are
given, unless otherwise stated, in a complete group in appendix A.

Application of equations (49) and (50) to each of the spanwise
stations and of equations (54) and (55) to station O leads to a set
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of loading equations which may be put in the matrix form given by the
following equations:

. I?ln = l7o|8n + l71|8n-1 * 172'511-2 * 173,511-3 * ["o]lwln * ["1] IWI n-1 *
el e = [ [ s = Bolole + o ol = ol -
}13] lq>|n_3 * Lgl . ll (Ft + Lgb>n (57)
lqln = ﬁolan + lillsn_l + Iﬁglsn_a + |E3 8,3+ [VO:I lwln + ["1] Iw‘n_l +
e A | P | N DX | N

<+

[ :H ln 3 [( - —)] lFl + | Lg . + lxtl<Ft + Lgt)n (58)
where |
IF'“ B e Fln-l * [g]l"ln-f[g'] l‘q)ln—l (59)
7€

(Ft)y, = (Fe), 5 + aw(0) 4 + 3'(0), , + 38, ;  (60)


http://www.abbottaerospace.com/technical-library

NACA TN 2060 27

Equations (57) and (58) and equation (56) msy now be combined to
form the following matrix equation:

0 To lroJ [ro 'J_ 5 T 1) [ B
o]} = |7o| [“o] [”0'] lwl * |7l| T"l— :nl; M *
|q] i IHOI [vo] [vol ICP l ) Jill :vl: -Vl'_~ |CP -,

I I Y e

|_72| [re] [ne]|1=]) + {173l [ng] [ns] <l

72| Lre] L)) ol ([l [ B[],

Iil [2] IF;l :lijn (61)
I -]
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For simplicity, this equation may be abbreviated to the form:

3 |8 5| 5
Pi =18 S S S
||n [Jw +[l]w_ +Hw +[3]w .
q)n an-l q)n—2 cpn_3
[2||[F| + %] (62)
n
where
sl‘
Fn=l:eJ -F_n-l+ [WJ W (63)

® n-1

and the matrix I—igln is defined in the section entitled "Derivation

of Gust Forces."

Substitution of equation (62) in equation (43) gives

5] o] s} 5] 5]
[C] wl = [SO] w| + [S]:] W + [52] W + [Sél L +
® n @ n ® n-1 |® n-2 - 1® n-3

(64)

%]

IFl+|Lg|
n

With the use of the notation

B -| @ - ©)
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and
o) ol o}
= R{||F| +| T . (66
? n-1 ‘Q n-2 ? n-3 ) el
equation (64) may be written éimpiy
o)
bl -,
0 . .
n

Multiplying through by the reciprocal of [ﬁ] gives finally the
‘equation :

(68)

x

This equation gives the displacements that spply at timé n in terms
of the displacements that occurred at several preceding values of time
(see equations (63) and (66) for the definitions of |F|, and lal, -

From equation (68) the complete response of the airplane can be
computed once the character of the gust is kwown. The matrix of gust-

force values Iigln can be determined by the procedure given in the

section entitled "Derivation of Gust Forces." The initial conditions
(treated in the following section) are used to obtain three successive
initial sets of the displacements. With these sets of displacements
the next set may be obtained by application of equation (68). With the
newly found set and the preceding sets of displacements, the next set
may then be found, and so forth, until a sufficient time history of

the displacements is found from which maximum loading conditions may be
determined. .

The reason for ‘using the difference form of the derivatives as
given by equations (4) and (5) might now be given. Equation (6k4) may
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be considered a differential equation, since the matrix [C] contains .

the spanwise derivative matrices [AJ and EB] and may be likened to
the differential equation which relates the load to the deflection for

a beam., The unknowns are the deflections at time n. The right-hand
terms correspond to the loading, the first term being the only one
which is not known since it contains the unknown deflection. The sub-
sequent inversion of the matrix D] leads to, in effect, the solution
to this differential equation and, in the beam analogy, corresponds to
the integration of the loading to obtain the deflection. When numerical
methods are used, the deflection may be computed with good accuracy by
integration of the loading. On the other hand, if the difference equa-
tions which apply at an interior ordinate had been used, the matrix [C]
would have appeared as an operator on one of the known deflections on
the right-hand side of the equation. Effectively, its operation would
be to differentiate a known deflection, correspondihg in the beam
analogy to the attempt to obtain the load which caused a given deflec-
tion. This process, however, cannot be done with accuracy when numeri-
cel methods are used because of the difficulty encountered in the form
of small differences of large numbers. The difference equations which
apply at an outer ordinate and, consequently, lead to an integration
process, therefore, have to be used.

Derivation of the Initiel Response

As has been mentioned, some initial values of deflection are
needed before equation (68) can be used. This section shows how these
values are obtained. The airplane, just before gust penetration, is
considered to be in level flight, and all displacements which follow
are given relative to this level-flight condition. The initial condi-
tions are that the vertical displacements, vertical velocity, wing
rotation, and angular velocity are all zero. The gust force can be
shown to start from zero and, therefore, by Newton's second law the
additional initial condition can be established that the acceleration
must be zero at the start of the response. These conditions can be
satisfied, and the beginning of the response can be found by means of
the analysis which follows.

The initial response is assumed to be given in terms of four suc-
cessive ordinates, denoted by Ww._o, W_j, Wy, and wy; the wy ordinate

is considered, as in the case of the damped oscillator, to locate the
origin of time. The first and second derivatives at the wp ordinate
are given by equations (8) and (9). By virtue of the initial conditions
(the venishing of the deflection, velocity, and accelerations at t = 0),
the ordinate wp and the derivatives given by equations (8) and (9)
must be zero; therefore, the ordinates w.p and w_.] are found to be

related to the ordinate w31 by the following relations:
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8wy (69)

W_o
W_1 = =Wy (70)

These relations are general and must apply for deflection and rotation
at each of the spanwise stations and for the fuselage deflection as well;

. that is, the displacements at t = -2¢ must be minus eight times the
displacements at t = ¢, and the displacements at + = -¢ must be the
negative of those at 1t = e, Substituting these conditions in equa-
tion (6k4), taking n as equal to 1, and using the condition that the
displacements are zero at t = 0 give the following matrix equation in
terms of the displacement at t = € alone:

1

(3] + (8] » o o] - Fire

1

The term lf]l is zero and therefore does not appear in this equation.

Solution of this equation gives the values of the displacements that
occur at. t = ¢ (n = 1). '

The three sets of initial displacements required to proceed with
equation (68) are thus known: the set of deflections found at t = €,
the zero set at + = 0, and the set at t = -¢ given by equation (70),
or simply the negative of the displacements which were found at + = €.
In the actual case no displacements are present at t = -€, but these
displacements may be regarded as being of a fictitious nature the only
purpose of which is to allow the step-by-step evaluation of the dis-
Placements to be started easily.

Derivation of Gust Forces

The matrix Iigln which appears in the response equation (68)

is derived as follows. From equation (15) and the notation of equa.-
tion (26), the total gust force acting over a station section at the nth
time inverval may be given by the equation

NLCIN
Lg, = Bcl JC 5% ¥ne - 1)aT (72)
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The integral in this expression is also of the Duhemel type and since
the V¥ function is expressed by exponential terms (see equations (21)),.
the -integral may be evaluated quickly by a method similar to that
developed in appendix D. The procedure of computing the gust force

by this equation and then the response is not recommended, however,

since a complete response evaluation would have to be made for each

gust considered. Instead the procedure recommended is to compute the
response due to a sharp-edge gust; then with this response the response
to any gust may be found directly by superposition.

Thus for the case of a sharp-edge gust, equation (72) reduces
* simply to '

Lg, = Belviy | (73)

where WV, is the value of the V¥ function at t = ne. This equation
when agpplied to each of the spanwise stations leads directly to the
matrix equation for gust force:

colovo
c1livy

ColoVo
ILgln =B 0313’\73 ‘lfn (7)4-)

cylyvy

C5lsvs

If the gust is uniform in the spanwise direction, the <v's in this
equation will all be equal.

In a similar manner, one-half the gust force acting on the tail
due to a sharp-edge gust may be shown to be

Lg ty = Btvollftn (75)

where the gust gradient is assumed to be the same as for station O and 1th

is the value of the V¥ function for the tail. This equation and equa-
tion (T4) may now be combined to give the desired matrix |Eé|n as

follows:
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(Bevo 0 ||vy
0 BCO Zo'V'O v n
0 B Cl lel
Ley, 0 Beplavp
I, = = 76
' &iln ILgl 4 O Beglzvs e
n
0 Bchluvh

In the application of this equation it should be kept in mind
that Lgt does not begin to act until the tail starts to penetrate

the gust. The time interval at which penetration starts may be taken
X
as the interval nearest to the quantity E%‘

Computation of Loads and Stresses

Once the time history of the displacements has been found from
equation (68), the normal or torque loading on the wing can be found
with little additional work. If the notation of equation (66) is used,
equation (62) may be written

5]
[olo = [so] o+ fol, (77)
Pln

This equation shows that the loading matrix IP l may be found by

adding an easily computgd matrix to the matrix IQI, the value of which
will have already been determined in the response calculation. The
loading matrix |P - is remembered to be defined in terms of the normal
and torque loadings, and either of these loadings may be found
independently of the other.

The loadings thus found are considered to, be applied statically,
and the stresses are then found by ordinary static means. Since the
loadings can be computed for any value of time, the complete stress
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history of any point in the structure may be computed. In general, the
maximum stress at different points in the structure is expected to
occur at different times. Some: guide as to the probable time of
occurrence of the most severe stress may be had, however, if the
computed wing deflection is observed. It is likely that maximum stress
occurs in the range where wing bending appears to be most pronounced.

The acceleration of any point in the structure masy be found, if
desired, with the aid of equation (5).

COMPUTATIONAL PROCEDURE

The principal results of the analysis presented in the previous
sections are summarized herein in a step-by-step form. Only those
steps which actually have to be performed when a determination of:
structural response for any airplene is being made are listed. In
order to conform with standard aircraft practice the use of inch-pound-
second units throughout is recommended.

The steps are as follows:
Preliminary steps:

(1) The wing semispan is divided into six sections and a station
is located at the middle of each section (see fig. 3). The sections are
proportioned in any convenient manner so that certain stations will
fall at concentrated mass locations, such as engines or fuel tanks.
Station O is located near where the fuselage intersects the wing and
station 5 is located near the tip. The properties EI, GJ, @, me,

and TE® are then computed at each station.

(2) From the EI, GJ, and Aj values determine the [A:].and [? j
matrices by the method given in appendix C.

(3) Compute the gust-force values at the successive time intervals
for both the wing and the tail. (See section entitled "Derivation.of
Gust Forces.") The V¥ functions used are taken from equations (21)
or (22) for the aspect ratios which are nearest to those of the wing and
tail, respectively. A time interval that appears satisfactory is one
in the neighborhood of 1/30 of the estimated natural period of the funda-
mental bending mode of the wing.
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The recurrence equation:

(4) With the quantities determined in steps (1) and (2), determine
the matrix elements given by equations (A3) to (A5) at each of the
spanwise stations. ’ ’

(5) Compute the fuselage and tail coefficients given by equa-
tiods (48) to (All). (See definition of My, Mp, M3, My, M5, and Mg

given by equations (35).)

(6) With the use of the coefficients determined in steps ()

and (5), set up the following matrices: [D], [le, [32]: [53] , I-R J ,
B%, and [WJ. These matrices are defined in appendix A and for the

most part are found from simple diagonal matrices of the coefficients
determined in steps (4) and (5). The form, for example, of the Ls:]
matrices is illustrated in table 1 with randomly chosen numbers. All
elements which are not shown are zero. It may be of interest to explain
briefly the significance of the various terms that appear in the matrix.
In order to facilitate the explanation the metrix has been partitioned
into several submatrices. The terms in the upper left-hand box are
associated with wing bending and the airplane vertical motion; whereas
the terms in the lower right-hand box are associated with wing torsion
and airplane pitching. The terms along the two-subdiagonals serve to
couple together the bending and twisting action. The terms in the
first row and first column are associated with fuselage bending. The
omission of certain terms in the matrix will lead to the matrix which
applies to the more simple type of aircraft motion. For the case, for
example, in which only wing bending and vertical motion are to be
considered, computation of only the terms which make up the upper left-
hand box is sufficient.

(7) Determine the reciprocal of the [ﬁ] matrix and set up the
following matrix equation: —

o}
wl = o] |al, (18)
o,

where

SR 10013 o e 5| A

Pln-1 Pln-2 ? n-3 n

|
+
[l
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in which
o)
+ [WJ W
n-1

P n-1

F

[

IE

n

In these equations the matrices containing &, w, and @ are displace-
ment matrices and are defined in appendix A. The matrix |F| takes

into account the forces which develop due to the "wake effect,"”
and ILg is the gust-force matrix which is derived in step (3).
Equation (78) is seen to give the displacements that occur at time n

in terms of the displacements which occurred gt the times n - 1,
n-2, and n - 3. '

The initial response:

(8) By use of the matrices given in step (6) and the gust forces
which apply at n =1, set up the following matrix equation:

[[D] ¥ [32] * ? 53]:] v o= [#Jligll (79)

The term lfll does not appear in this equation because it is zero.

(9) Solve equation (79) for the displacements. Any convenient
method, such as the Crout method (see reference 6), may be used. The
displacements found will be the value of displacements that apply at
t.= € or n=1.

The response:

(10) The response may now be found by successive application of
equation (78).- The response at n =1 has been found in step (9);
the response at n = 2 is next to be determined. The values of the
displacements in the n - 2 +term of the response equation are all
taken to be zero (initial condition), and the values in the n - 3 term
are taken as the negative of those found in step (9). The gust forces
to use are those which apply at n = 2. The deflections that apply
at n =2 are then found by matrix algebra. For convenience the column
matrix IQI is evaluated first, and then multiplication of this column
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matrix by the reciprocal of the [D] matrix gives the deflections

at n = 2. With the newly found deflections at n =2 and the deflec-
tions at n =1 and n = 0, the deflections at n = 3 can be found,
and so forth. This process is continued until the wing bending appears
to be the most pronounced.

\

Wing loading:

(11) With the deflections known, the value of wing loading in
bending or in torsion can be computed directly from equation (77). The
stresses at any point can then be computed from the wing loading by
ordinary static means. Since the loading msy be computed at any value
of time, the complete stress history of any point on the structure may
be computed.

’

" EXAMPLE

As an illustration of the method of analysis given in the present
paper, the response of a typical two-engine airplane due to a sharp-
edge gust is determined. TFor brevity the fuselage is assumed rigid
and only vertical displacement and wing bending are considered. The
welght variation over the wing semispan and the equivalent-weight
concentrations are shown in figure 8. In this figure are shown also
the station locations and the interval covered by each station section.
The solution is made for a forward velocity of flight of about 210 miles
per hour and a gust velocity of 10 feet per second. 1In tables 2, 3,
and 4t are listed, respectively, the various physical characteristics
and the factors which come from the unsteady 1ift function, the values
of the V¥ function and the gust-force matrix, and the matrix elements
that are required for the solution (steps (1) to (5)). The & function
for an aspect ratio of 6 was chosen (see equation (20b)); and the ¥ func-
tion for an aspect ratio of infinity (equation (22)) was used.

The Dﬂ matrix as computed from the values of A and EI
listed in table 4 is shown in table 5(a). In the computation of
the 17 values shown in table 4 for station O, the fuselage was treated
as a concentrated wing mass. This treatment is allowable since the
fuselage is assumed rigid and further saves the work of computing
the 7y values (see equations (A8)). The [Bﬂ - [sa ] or [D] matrix,
which in this case applies’only to bending and vertical displacement,
is shown in table 5(b). The equation which is formed from equation (78)
(step (7)) and which involves the reciprocal of [D] and the [Si]

and RJ matrices is shown in table 6. The equation for computing the
initial response (step (8)) is shown in table T.
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The solution to these equations is shown in figure 9 in which
deflection in inches is plotted against spanwise station points for
various intervals of time. For clarity the deflections for the odd
intervals have been left off. From these curves the consequent wing
bending and the manner in which the airplane is swept upward by the
gust can be seen. The time histories of the loads (equation (T77))
that occur at each of the spanwise stations are shown in figure 10.
These curves indicate the presence of some second-mode excitation in
the response. The stresses that occur at stations 0, 1, and 2 are
shown in figure 11. The presence of second-mode excitation is not
readily discernible from the stress curves.

DISCUSSION

A method for computing the stresses and structural action of an
airplane flying through a gust has been given. The method is based on
aerodynamic strip theory, but over-all corrections for compressibility
and three-dimensional effects cdn be made as is indicated by a suggested
correction procedure. Some tail forces are included in the analysis
and others might equally well be included if their character is known.

The analysis as given is general enough to include the wing bending
and twisting flexibilities and the fuselage flexibility. In a good
many cases that may be considered, however, the last two of the flexi-
bilities may prove to be of negligible importance. Some investigators
have indicated (see reference 1) that unless the forward speed of the
airplane approaches the flutter or divergence speed of the wing, the
torsional deformations do not have to be included. Likewise, in cases
in which the fuselage is rather stiff, the effect of fuselage flexibility
on the response may be rather small. In such cases in which either or
both of these flexibilities may be ignored, the analysis is, of course,
simplified and shortened. The example presented in the previous section
illustrates this point. In the present state of understanding of gust-
response analysis, enough information is not available to indicate
definitely when and when not to include the various flexibilities of

.the aircraft structure. The aralysis in the present paper may provide

a useful means to assess their importance. The extent, for example,

to which coupling exists between wing bending and wing torsion in any
particular case may be seen by comparing the displacements obtained from
the coupling terms with the displacements obtained from the noncoupling
terms. ’

Both the symmetrical and antisymmetrical types of gusts can be
handled by the analysis given in the present paper. In general, the
symmetrical gust is expected to produce the most severe stress condition,
and therefore only the matrices which apply for a symmetrical case have
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been given.. These matrices were derived by using the boundary condi-
tions for the symmetrical deformation of a free-free beam. The case

of an antisymmetrical gust can be treated by replacing these matrices
by tlie ones which apply for the antisymmetrical deformation of a free-
free beam. The case of a general unsymmetrical gust can be handled by
first breaking the gust into two parts, a symmetrical part and an anti-
symmetrical part, and then treating each part independently. )

It might be of interest at this point to compare briefly the
matrix method to a modal-function solution. One of the chief disad-
vantages of the modal-function solution is that the modes and frequencies
of natural vibration of the structure have to be computed in advance.
Then, a large number of integrals which involve these modes have to be
determined in order to set up the problem. In the presert analysis
the physical properties of the airplane are used directly in the setting-
up of the problem. Further, in order to make the modal solution
practical the higher modes must be dropped and only the basic or funda-
mental modes can be used. Hence, the success of the analysis depends
to a large degree on how well single modal functions, one mode each for
bending and torsion, can represent the airplane distortion. In the
analysis of the present paper the distortions are found for all practical
purposes as the correct values at a number of spanwise stations, at
least to within the accuracy to which the aerodynamic and structural
parameters are known. Also, in this analysis, probably the most
difficult operation is the inversion of the matrix [D » which is
actually not a very involved operation, especially when done by the
quick and systematic procedure afforded by the Crout method (reference 6).

The present paper indicates the methods for determining the
response for both a sharp-edge gust and a gust of arbitrary shape.
Probably the best approach, however, is to compute only the response
for a sharp-edge gust, since the response for any arbitrary gust may
thereafter be computed by means of Duhamel's integral. To follow such
a procedure would also save a great amount of work in the evaluation of
the gust forces.

One of the important features of the method of analysis presented
is that it is not restricted to the gust problem. The approach used
may be used to treat other problems of a similar nature. The landing
problem can be handled by simply replacing the distributed gust force
by the concentrated landing forces.. In the landing problem also, the
problem is set up much more easily since the aerodynamic terms do not
ordinarily have to be included. However, the landing problem in which
aerodynamic forces are included may be solved by this method if desired.
The approach used herein may also be used to solve the problem of the
release of heavy objects such as bombs. This problem could be con-
sidered the inverse of the gust problem; a load is released rather than
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encountered. Some maneuvering problems, such as the sudden deflection
of the ailerons, and a number of other transient problems might also
be treated by an approach similar to that given in the present paper.

CONCLUDING REMARKS

A method for computing the stresses and structural response of an
aircraft flying through a gust has been presented. The method is based
on aerodynamic strip theory, but compressibility and three-dimensional
effects can be taken into account approximately by means of over-all
corrections. The method takes into account wing bending and twisting
deformations, fuselage deflection, verticel and pitching motion of the .

.airplane, and some tail forces. A sharp-edge gust or a gust of
arbitrary shape in the spanwise or. flight directions may be treated.
A suggested computational procedure is given to aid in the application
of the method to any specific case.

The possibilities of applying the method to a variety of transient
aircraft problems, such as landing, are brought out.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., January 19, 1950
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APPENDIX A
DEFINITIONS OF MATRICES USED IN ANALYSIS

Eor convenience in presentation, most of the matrices and matrix
elements that are used in the analysis are defined in this appendix.
The matrices are presented without derivations, but their origin should
become evident by a study of the analysis.

Matrices.- The various matrices that are used in the analysis are
defined as follows for the case in which the wing semispan is divided
into six sections: (The elements which are used in the matrices are
defined in the subsequent section.)

w(0)
w(1)

w(2)

=
il

w(3) |
w(k)
w(5)

o(1)
o(2)
9(3)
o(%)
o(5) |
] o(6)

[?]

]
Il
=

P el
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p(0)
p(1)
»(2)
2(3)
p(k)
p(5)

4(0)
q(1)
a2)
a(3)
(k)
a(5)

2l =\

[A] See appendix C for definitions.
[2]
o Jo o o
[CJ= of[a] o
o o [B]
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e-?l6
[] - e
7€
8—76
e~ 7€
[d] = Jdoo000 oJ
l3'] = |3 0000 q
&(0) 1
g(1)
g(2)
le] = g(3)
g(k)
i s(5)__
e (0) ]
g'(1)
g'(2)
[T - g'(3)
g' (L)
g'(5)
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Matrix elements.- The matrix elements which appear in the matrices
defined in the previous section are expressed foy convenience in terms
of the following common -factors:

B = m,moU % = &1
oU ; (81)
Y = a}_ <I)o = -73,1

in which the last four are gssociated with the ¢ function for the
wing. (See equation (23).) With these factors the elements that must
be computed at each spanwise station are as follows:

. - . N\
dg = -—é%(l -(D(?)Bcl + Bcl (‘I’o + %‘boe‘)

dy = %(1 - ®0)Bcl

d = -%(l - ®0)Bcl
1

d3 = 3(1 - @0)Bcl

1

d' = =1 - <I>Q);3c21(131t - %) + Bel El(l -%0) -
1: . 1- -(3 a
Ligue - (6o + 20e)el(3 - E)]

1-3

(A2)

0

|

d' = -%(l - ¢o)Bc21(’% -

0

do’

2 - <l>o);3c27,(3 -

0|

!

vt 2,(3 _2
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The coefficients which must be computed for the fuselage and tail
are expressed in part in terms of the following common factors:

1 \
Bt = Zmp,™PUSy %o = aly
ou . & ' 26
74 = SooM to = V4o A
%o = 7471y y

in which the last four are associated with the ® functions appropriate
to the tail. Also used are the generalized masses given by equa-
tions (35) and the value 67 as given in equation (14). With these

factors:the coefficients for the tail and fuselage are as follows:

fo’=-%%(l - <I>to)Bt + Bt(‘i’to + %‘54505) )
1o %(l ) .(DtO) & > (ATa)
Iy = ;gie(l - ‘I”Go)B‘c .
f3 = §12(l B (I)*"o)‘Lc J
N
fo' = %(l - Qto) (X-t + %C-t)Bt +° BtEI(l - (I)'t?O) -
%&)tOUG - ((i)-to + %‘I’to€> (Xt + %C't )] + %];—eﬁtct
f1' = -‘%(1 - ‘I’to) (Xt + %C‘c)ﬁt - E?é'ﬁtct
; (ATD)

f2' = -é3-€-(1 - (I)-bo) (X-t + %c'b)ﬁt‘-*- E%eﬁtct

1 _l_ : 1 1
30 =51 - ot ("t ¥ 5%) Pt - pPece
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APPENDIX B
DERIVATION OF DIFFERENCE EQUATIONS
In this appendix the parabolic and cubic difference equations for
the first and second derivatives of a function are derived.
Parabolic equations.- For the parabolic difference equation,
consider the function shown in figure 12(a). This function is assumed to
be replaced by the arc of a parabola which passes through the three

ordinates a, b, and c. It can be verified readily that such a curve
can be given by the equation

HENE-) HE-sHEy) L e

The first and second derivatives of this equation at y = € are given
by the equations

dw = C -~ a
T (B2)
5 _ .
dy y=¢€ €

These equations are the standard difference equations for the first

and second derivatives of a function. The derivatives are purposely
taken at the middle of the three ordinates because the resulting
equations are suitable for use in the simplification of many problems.
If the derivative had been taken at an outer ordinate, the approximation
afforded would not be accurate enough to be useful.

Cubic equations.- The cublc difference equations may be derived
in a manner similar to that for the parabolic equations. In this case
four successive ordinates are used. (See fig. 12(b).) The function
is replaced by a third-degree curve which is given by the equation
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g -9 -3¢ )(%'-3>--;%<%,- YE-9 -

2HE- -2 | o

Because of the increase in accuracy that results from the use of a
higher-degree curve, the first and second derivatives may be taken at
an outer ordinate with an accuracy which is about equivalent to that
given by equations (B2) and (B3). The derivatives at y = 3e¢ are

’ aw _ 114 - 18c + 9b - 2a B
d£|Y=3e - 6¢ (35)
2w _2d -5c +U4b -8 (B6)

dszy=3€ 62

If teken at the third of the four .ordinates', the derivatives are

aw _ 24 +3c - 6b+a B
aew |- _d-2c+D (B8)
Ty =T B

Equations (B5) and (B6) are used in the derivation of the response
equation for an airplane in a gust. Equations (B7) and (B8) are useful
in the derivation of the initial response.
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APPENDIX C
DERIVATION OF MATRIX EQUATIONS OF EQUILIBRIUM

In this appendix the matrix equations
il = 2 (e
Bllef = 1| (2

for symmetrical bending and twisting of a free-free beam under normal
and torsional loads are derived.

]

Bending.- In accordance with the assumptions made in this paper the
wing semispan is considered to be divided into six sections with a station
point at the center of each section (see fig. 3). The inertia force of
the mass and the aerodynamic force that develops over each section is in
turn assumed to be concentrated at the respective station points. The
wing 1s thus effectively a beam bending under six concentrated loads and,
as such, will have a linearly varying moment between each station. The
following general equation for the moment between the i and 1 + 1 station
may therefore be written:

M=ay +by ‘ (c3)

where

ay = 1+b3;(l) M(1) - y(l) M(i +1).

by = (s + 1) - ()]

in which y(1) is the abscissa to the i station.

The wing is further assumed to have a linear 1/EI variation
between stations with the correct value of l/EI at each station. This
type of varlation would lead to an EI curve which follows very closely
the true stiffness curve of the wing and which of course has the correct
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values of EI at each station. A general equation for 1 /EI may
therefore also be written; thus,

i _ + d ‘ L
y BT cy + a3y (ck)

where ‘
iﬁ

N M y(i) I y(i) 1
i= bAi1| EI(1) “DPAi4y EI(L + 1)

P i 1
1 b>~1+1@1(1+1) EL(1)

With equation (C3) and eguation (Ck) the well-known expression
relating deflection to moment for a beam mey be written

v _ M
d.y2 ET

= (a1 + biy)(e1 + diy) (c5)

The deflection may be found most conveniently from this equation by use
of the engineering beam theorem which states that the deflection of one
point on a beam relative to the tangent of the deflection curve at
another point is equal 4o the moment about the displaced point of the
M/EI diagram between the two points. In this case symmetrical loading
is being considered and therefore the boundary condition at the center
line is that the slope must be zero; the deflectlion of each station
relative to this point therefore may be readily computed. Fortunately,
because of the convenient analytical representation of M/EI, these
deflections may be found by exact integration. The deflection, for
exemple, at station 4 due to the M/EI variation between stations -1
and i + 1 may be given by the expression: ‘

y(i+1) .
i (e e on+ a0 - ey
y(i
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Consideration of all the expressions of this sort leads to the total
deflection of each station relative to the wing center line. From this

deflection the more useful deflection relative to station O can be

readily determined. The values of the deflection thus obtained are

found to be expressible by the Tollowing matrix equation:

w(1)
w(2)
w(3)
w(k)

w(5)

ET(0)

aly
a1

a

31
ay7

| *51

aio

8op

a

32
8o

8.52

0
823

833
8.)+3

853

M(0)
M(1)
M(2) |
M(3)
M(L)

where the matrix elements are defined by the equations:

ajy = 7\.0)\.1 + >"12Al

anl
8.31 = )\.0(7\.1
ayy = Mok
2
3.12 = 7\.1 Cl
8po = 7\.1201
332
2
By = 170y
8.52 = )\.l Cl

+hp +A3) + M2A + M (A + )»3)131

= ho(hy +2hp) + 1128, + 2

1roB

1

5 2
+ Ay + )\.3 +Ay) + A TA, + xl(xg + Mg+ )»4)31

*hp thg b hy +hg) # M) M (A, + Ay hy + A5)By

+ MhgDy + x22A2

~ 1.2 2
=M“C; + 7"10“2 + k3)Dl + M%As + oM

382

+ 20 + A3 + XDy + A28 + Ap(hg + My)B,

57

(C6)

>(C'(a.)

+ M (o + 23 +.M+ + Ag5)Dp + x22A2 + dp(dg + 2y + A5)B,

-

f(fﬁb)
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» :
233 = MyCy + AyhsD, + x32A3
' (cTe)
ay3 = ’“22,02 +hp(hg + 2D, + )\,32A3 + MhyBg F
as3 = x2202 + Mp(Mg + My + Ms)Dy + M3Phg + Mg(hy + 25)B3
J
a3u = )\.3203
ay), = Aa2Cx + MM D, + ALoA
bh =43 03 T A3hT3 T AL Sy > (c7d)
ey = 23°C3 + hg(hy + M5)D3 + MBAy + MpsB)
_ 2
ay5 = M%),
| [ (CTe) .
855 = M20, + MAsDy + AsAs ]
in which
ﬁ
1 1(0) 1 1(0
As = + —
Fra-1 110
B, -1 _T(0)  1I1(0)
31 -1) 61I(4)
~ (e
~ 1 I(0) 1 1(0)
Cs: = i
1Tl 12 1(1)
1 I(0) 1 I(0)
D, = + = -
17611 -1 31 |
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Substitution of eguation (C1ll) into equation (C9) gives

#1 - shor [=]E=] I (022)

b3
Multiplication through by the reciprocal of m [l] Ei2] results in

the equation:

]

2 [EED] - e -

This equation thus gives the loads in terms of the deflection of each
station relative to station 0. In the case under consideration, however,
the wing is a free body capable of motion through space and therefore to
set up properly the equations of motion the deflection must be given
relative to a fixed datum line. This datum line is most conveniently
located as the position of the wing prior -to action of the disturbing
loads. Consideration of the following sketch

will show therefore that the following relation must exist:

w=w - w(0)

(c1k)

¥

Substitution of this equation into equation (C13) gives

=20 ]| e - = - o (25
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' -1
To ald in the derivation EI3°) [[Hl] EI2]] is now written in the
b

general form:

b1l bip b1y by byy

o2 Poz Py Py

-1
%O—l [[Hl] [HQ]] = |P13 Po3 P33 B3y P35 (c16)

biy  Poy Py By By

P15 D5 b3  byg Py

Thus with this equation, equation (Cl5) may be transformed to the form:

w(0)
by P11 b1 iy Py bis| W@ |e)
Poz  Pip Py Pz Py Dys) (W(R)| |2(2)
bo3 ‘b13 o3 P33 by, gl [W(3) ) = j2(3) (C17)

Pow Py Py by Py Byg| W ()

b 45 b w(5) p(5)

35 53

where
ﬂ

-(bll + b1p + b33 + byh + 'b]_5)

Pop = ~(1p + Dop + Dp3 * By ba;

o'
(@}
}_l

Il

Doy = (b + By + D3y + Dy + bys)
b05 = —<bl5 + bos + b35 + bys + 'b55) J
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Equation (Cl7) is noted to express all the loads except p(0) in
terms of the six deflections. An additional equation in which p(0) is
expressed also in terms of the deflections may be established by use of
the condition that all the loads acting on the wing semispan must add
up to equal zero; that is, .

p(0) + p(1) + 1{(2) +p(3) + p(4) +p(5) =0 (c19)

This condition automatically satisfies the two boundary conditions that
the shear must be zéro at the tip and center line of the wing. Thus if
the five equations represented by equation (Cl7) are added, and use is.
made of equations (C1L8) and (C1l9), the following equation results:

bogw(0) + boyw(l) + ’b02w(2) + bo3w(3) + boyw (k) + bosw(5) = p(0) (C20)

where

boo = ~(bon + Bop + o3 * Doy * Pos) - (can)

This equation may now be combined with equation (CL7) to give finally

boo  bor bog bo3 Poy  DPys| | ¥(0) »(0)
Doy P11 P1p  by3 by Dbis| [w(D) p(1)

bop b by by by bg| [W(2)] 2(2)
= ' (ce2)

b03~ 13 23 33 3)4_‘ b35 w(3) P(3),
bou  Pyy boy Py By Dyg w(l) (k)

b5 w(5) p(5)

This equation is thus the desired matrix equatlon which relates the normal
loads to the deflection. If the square matrix is demoted by [A], the
equation may be abbreviated conveniently to the form

[a]l#] = |} (c23)

which is the form used in the text. (See equation (L40.)
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As an aid in computational work, a summary of the steps involved in
the determination of [A:I is gilven to close this section:

(1) From the I values at the respective stations compute the
coefficients given by equations (C8) -

(2) With these coefficients determine the matrix elements given by
equations (C7). These élements form the matrix [Hl] which is defined
by equations (C6) and (C9) - o

(3) Multiply the [Hj]| matrix by the ['5{2] matrix, which is defined
by equations (C10) and (C1ll). The result should be & symmetrical matrix:
this property serves as a very useful computational check.

3
(4) Invert the ETI)_(O—) [HJ] EIE:I] matrix. This matrix should also be

symmetrical. (The Crout method (reference 6) serves as a rather quick
and useful means for performing the inversion. )

(5) Add-the columns of the inverted matrix and place the negative
of these sums at the top of their respective columns such as to form a
new row of matrix elements. Then add these sums and place the negative
of the sum ag the first matrix element of the newly formed row. A new
column headed by this value is thus in the making., Fill in the remainder
of the column with the respective elements of the new row; that is, the
appropriate values should be inserted to make the matrix symmetrical..
This final matrix is the desired [A] matrix.

Torsion. -- For the torsional case the torque loads q are asgsumed
to be concentrated at the stations Just as in the case for the normal
loads p. Consideration then of the following example torque diagram

f 7(5)

ettt
Q(O)q(l)Q(E)qG)q(lt)q(S)
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will show that the following equations must apply:

x a
a(0) = - T(1)

a(1) =1(1) - 7(2)

a(2) =m(2) - ™(3) < . (ceh)
a(3) = T(3) - T(k)

a(¥) = (k) - 2(5)

a(5) = T(5)

where T(i) represents the total torque present in the 1 interval. To
torque exists between the wing center line and station O.

To aid in the dei-ivation, the assumption is made that 1/GJ varies
linearly between stations. A typical T/GJ diagram between, say, the
i-1 and the i station would appear as follows: - :

(i
(1 ] GJ(ig

GI(L - 1) g

From the differential relation %—CE = 'G—TJ_’ the fact may be observed that
3

the change in angle of twist between two stations is equal to the ares
of the T/GJ diagram between the two stations; therefore,

ooy Bylom(d) T(1)
?(1) - (i1 - 1) = — oy +GJ(1)J (c25)
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If the notation .

_2G 1
. bAy 1 1

+
J(i-1) J(i)

Ji

is employed, equation (C25) may be written

2(1) = 31 [p(2) - o(1 - 1)]

65

(c26)

(c27)

Application of this equation to each of the spanwise stations gives the

following equations for T:

(1) = 1[9(1) - 9(0)]
7(2) = Jpfo(2) - o(1)]
7(3) = 53[(3) - 9(2)] .
T(4) = dufo(d) - 9(3)]
T(5) = - o)
(5) = 35[p(3) - o] |

Substitution now of these equations into equations (Col4) gives the
desired equations relating the torque loads to the angle of twist.
equations thus found can be given in the matrix form:

RS 0 0 0 o | Je0)
-31 (31 + 32) - 00 0 0 o(1)
Y -Jdo (J2 + J3) -d3 0 Y o(2)
0 0 -J3 (J3 + Jy) ) 0 ?(3)
o o 0 S Gyt ds | |ew)
0 0 0 0 ~ds Js o(5) |
- ]

(c28)

The

a(0)
a(1)
a(2)
a(3)
a(k)

a(5)

(C29)
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which can be abbreviated to
Blle] = |a] (c30)

the Torm used in the test. (See equation (41).) Thus all that is
involved in the computation of the matrix [B] is the evaluation of the
matrix elements by means of equation (Co6).



http://www.abbottaerospace.com/technical-library

NACA TN 2060 ’ 67

APPENDIX D

RECURRENCE EQUATION FOR THE EVALUATTON OF DUHAMEL'S INTEGRAL

INVOLV]]\TC AN EXPONENTTATL, KERNEL

The derivation of a rather simple recurrence relation for the step-
by-step evaluation of the three unsteady 1ift integrals appearing in
equation (25) is presented. This derivation is made possible because
the kernels of the integrals are expressible in exponential form.

From equation (23) the first and second derivative of the
® function may be written

22Y4 %
c 4
b = - %gkale ° = 3 (D1)
22,
o Iy 2 o Co w "7t
§ = 20" e =0%e (D2)
2 1 0
Co
where
20U -
7=
(Do = - 7&1
-t 2 .

With these equations the three Integrals of equation (25) may be
combined conveniently into the following single integral denoted by Ii:

tl. : - a -7(t-T)
Ty = f 8 potw - [@OBO'LU + §pc z(ﬁ - 3)] ple ar (D3)
0
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For convenience the notation

o as '- L "» 2 _ _%
T-= 9§ Boiw Eoﬁcw +3,8c z(iz c)_—Jcp (Dh)

is introduced and thus equation (D3) becomes

t -y(t-7)
I, = er art
t
0

or
t

-7-t - :
I, = o f Ye’T ar : (D5)
0

Mathematically, the integral in this equation may be interpreted to
represent the area under the function givén as a product of Y and e’ T,
In accordance with numerical evaluation processes, the interval O

to t may be divided into a number of time stations of interval ¢ .

The product of Y and e?7T may then be found at each of the time
stations and from these products the area under the curve may be deter-
mined in first approximation by the trapezoldal method of determining
areas. Thus, if the n +time stdtion corresponds to time t, the
expression for It may be approximated as follows:

-ynef  ye 72¢ y(n-1)¢€ ]Y ne
I, %Iy = e Yie  + Ype .Y e + S¥e (D6)

where YO does not appear since the initial conditions are used that

the deflection w and rotation ¢ are zero at t = O, and therefore
Y, 1s zero. (See equation (Dh).) More accurate methods, such as

Simpson's method, could be used for determining the area wmder the curve,
but because of the small interval chosen the consequent increase in
accuracy is negligible. If the notation

- -1
Fn = ¢ge s Eyleys -+ Y2672€ + ... + Yn_ley(n )ﬂ (D7)

is introduced, equation (D6) may be written simply

In=Fn+%Yn (D8)
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If equation (D5) is expanded similarly, only for an upper limit
of t - ¢, the expanded result would be

'7(n'1) Ye y2¢€ -
_ 7(n-2)e 1 7(n-1)e
I 1= €e 1%;6 + Y2e + ... +Y e + > Yﬁ_le

n n-2

(D9)

By analogy with equation (D7), however,

. _r(n-l)el, 7e 72¢ n-2)e
Foq = e 7(n-1) [;;e + Yoe + ... F xh_2e7( :] (D10)
and therefore equation (D9) becomes
€

Tny =Fpy + 5 Ty (D11)

A study of equations (D7) and (D10) shows that the following relation
must exist: .

-y€ =YE€: .
Fpn=e 7 F 1 + c” Y, (D12)

Now, if equation (D4) is used to rewrite Y, and Y . 1in equations (D8)

and (D12), the value of I, may be given finally by the equation:

3 Y] ’ l . b .
I, =F, + QQL- o Bclew, - EBCZGEFDO + c(il - f)‘ﬂcpn - (D13)

where

~Y€ - “7e ‘-76 : 3 _ a\y
Fo=e U Fn-l + 9pee Bcth_l - Bclee l?%o + c(E - E)Qéj¢n‘l
(D1k)
The value. of the msteady 1ift integrals is thus given by

equation (D13). As regards the analysis given in the present paper,
W1 and Pn-1 are the values of deflection snd rotation which have,

8ay, Just been determined from the recurrence equation for response.
The value F,-1 was also established and therefore En can be deter-~

mined as a definite quantity.' The value I, 1is thus seen to be given
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in terms of the known F, and in ferms of w, and @, which are the

next velues to be evaluated from the recurrence equation.
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APPENDIX E
MATRTX ATGEERA

This appendix is written for those not familiar with matrix notations
or matrix methods. All the matrix algebra necessary for the understanding
of this paper is described hereinafter by way of examples.

Matrix definition.- Some of the basic types of matrices are illustrated
by the following arbitrary matrices which are of the third order:

The column matrix

2
1
-1
The row matrix
l2 "3 1
The square matrix
C o 3 17
1 2 -2
--l -1 3._
The diagonal matrix
[y o o0
0] 3 0]
| O 0] -1 |
The identity matrix
[ 1 0 0]
0 1 0
i 0 0 1
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Element definition.- Each of the terms that appear in a matrix is
defined as an element. Its position is usually denoted in a row by the
number of terms from the left and in a column by the number of terms
from the +top.

Matrix addition.- The addition of two matrices produces a single
matrix. Addition is performed by simply adding together correspond.ing
elements. For example,

-Multiplication of a matrix by & scalar number.- In the multiplication
of a matrix by & scalar number every element in the matrix is multiplied
by the number. For example,

2[r 2 -2j=l2 & -4

Multiplication of a colum matrix by & row matrix.- The product of
& column matrix and a row matrix is equal -to the sum of +the products of
the corresponding elements. For example,

l2 3 f|2f=(2x2) + (3x1)+[1+(-4)]
1 .
-k
Multiplication of a column matrix by & sguare matrix.- The multiplication

of a colum matrix by a square matrix produces a column matrix. Consider
the following set of three simultaneous equations:

|
1

2yl - 3y2 + y3 =

-2y, = E1
V1t e, -2y = e ) (E1)

I
Y

-yl- Y2+3Y3 3
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The procedure adopted in matrix algebra is to write these equations in .
the matrix form

2 -3 1 yl ay
1 2 -2 To| = {2 (E2)
-1 -1 311y 3 a3

where the multiplication of +the lyl column matrix by each row in the
square matrix produces the respective elements in the la| column matrix.
(See multiplication of a column matrix by & row matrix.)

In order to simplify the presentation of an analysis, the symbolic
or abbreviated matrix form is used quite often. The symbolic form of
equation (E2) is simply

[ l5] = laf (%3)

The determination of |a| by the multiplication of [yl by Ed] is
illustrated with arbitrary values of y, say ¥y = L J, = 5, and J3 = 6,
by the following equation:

(2 -3 1] % (2x4) +(3x5)+(1x6) -1 a
17 2 21 |5 =(1xk) +(2x5) +(-2x6)|= 2| = |a,| ()
1 - 3] |6 ((Lx4) + (-Lx5) + (3x6) 9 as

Multiplication of a square matrix by a square matrix.- The multi-
Plication of two square matrices produces a square matrix. Multiplication
is performed by letting the multiplying matrix operate, as in the preceding
section, on each of the successive columns in the matrix being multiplied

to produce corresponding successive columms in the product matrix. For
example, )

2 -3 1 1 -2 3 -2 12 1k

-
no
1
\W)
=
w
)
)
Il
\Ji
V)
L}

5 (E5)
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Order of multiplication.- In general the commutative multiplication
law of ordinary algebra does not hold in matrix methods; that is,

=2l sl # 3] |a]

Therefore, whenever the product of several matrices is indicated, these
matrices must be multiplied together without changing their order. .

Matrix partitioning and submatrices.- A matrix may be partitioned
or divided at will into smaller matrices. For example, the left-hand
side of equation (EL) may be partitioned as follows:

The matrices which are formed by the dividing lines are called submatrices.
These submatrices may be treated as though they were elements when matrix
operations are performed. For example, with the notation

a=|3 1]

1
b = -
-1
2 -2
Cc =
-t 3
5
d =
6

the multiplication of the foregoing partitioned matrix is as follows:

'

al [k 8 + ad

cl| jd b + cd
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The reciprocal of a matrix and the identity matrix.- By ordinary
algebraic methods the formal operation involved in the solution for x of
the equation '

mx = a
is the multiplication through by the reciprocal of m; thus,
x =mla

The sdme formal operation may be applied to matrix equations. For exsmple,
the solution for |¥y] in equation (E3) is simply

| ol = B 1o
where [M] "l is the reciprocal, or the inverse, of [M]

The reciprocal of a watrix is found as the matrix which satisfies
either of the equivalent equations

= b =[]
I e ‘

where [I] is the identity matrix. For equations (E2) and (E3), the
reciprocal of [M] is found as the matrix which satisfies the equation

2 3 1l fpy ex | [ o o
1 2 2| o =0 1 o0
1 1 3| b e3 &) o o 1 )

If this equation is considered in relation to egua.'tions (E1), (E2), and (E5),
the values by, bp, and b3 would simply be values of J1s Yo, and I3 which

satisfy equation (E1) for a, » 8 =0, and a3z =05 c1, ¢y, and c¢3 would
be the values for a, =0, a, =1, and 83 = 0; and d;, dp, and d3 would
= 1. For this example, the

il
-

be the values for ‘a; =0, a, = 0, and a
solutions are

W

e
= -t =1 =2

P2 12 2~ 15 % 12
b3 = L C = _2_ d_ = _l
12 3_ 12

)
B\
w
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The Crout method (reference 6) provides a very quick and convenient
method for determining these solutions.

The determination of y by the operation [M] 1 on |a| is illustrated

as follows for a, = -1, ay =2, and a3z = 9!
b 8 w1 4
1 1]- =15 .
i 1 5 > (E11)
6

The operation performed by this equation can be seen to be the  inverse
operation of egquation (Ek).
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TABLE. 2

PHYSTCAL CHARACTERISTICS AND UNSTEADY LIFT

FACTORS FOR EXAMPLE AIRPLANE

mph L . . . . . . . . . . . L] . . . . . . . . . . .
sUN/BEC v h e e e e e e e e e e e -
V, ino/sec @ & © o 8 e 6 & * e & o e e ¢ v e e ® e e =

€5 BEC o 4 o o ¢ 4. s 4 4 o o 6 6 0 s s s e e e e . .
As, half-chords . & v v v v v 4t v v 4 4 o o 0 o o o .
o .
T T T
mA ® * e o s s s s e e 8 6 o s e 6 o ¢ e e e e 6 e e e
B e e e e e e e e e e e o o o . e e e .

—_ e e e e e —~ e~ —— - — e e g ottt e e

19

. . 560
. . 154

. . 165

. 0.0765
. 210
. « 3700
. . 120
. . 0,01
0.48052
. 0.276
.. 10
. 0.861
0.001147
. 0.381
18.3078

0.832703
0.361

-6.60912
120.9983

A
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TABLE 3

¥ ORDINATES AND GUST-FORCE MATRIX FOR

EXAMPLE ATRPLANE

¥
n (Equation (22))
0 0
1 .22105
2 . L3674
3 L6716
4 .537k1
5 .58888
6 .62830
T .65980
-8 .6859L
9 .70840
10- . 72820
11 . T4595
12 . 76215
13 LTT707
14 .79086
15 .80373
16 81574
17 .82696
18 .83748
17.8koL
15.7552
12.1811
L.l =120 s
| gl 10.5295 | &
8.77455
7.0196k

NACA TN 2060
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Figure |.-Damped oscillator and suddenly
applied force.
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Figure 2.- Comparison of exact and differerce-
equalion solutions for response of dampeéd
oscrllator.
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Frgure 3.-Division of wing into sections.
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Figure 4.- Displacements of a wing cross section.
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Figure 5.~ Coordinate system for fuselage displacement.
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S, half chords

Figure 6.~ Lift functions for sudden change in
angle of attack. (See equation (20).)
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S, half chords

Figure 7.- Lift functions for wings entering a
Sharp - edge gust.(See equations(21) and (22).)
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Figure8.-Weight distribution and equivalent concentrations
for example two-engine aircrafy.
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Figure 9.- Response of example airplane duve fo /0-Foof-
per-second sharp-edge gust. U= 210 miles per hour.
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Figure /0.~ Time history of station loads for
example airplane. ‘
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Figure /1.~ Bending stress developed in example
airplane duve to 10-foot-per-second sharp-edge
qust.
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Figure /2.~ Functional rnofation used in the derivation
of parabolic and cubic difference equations.
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