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SUMMARY

Simple, sufficient conditions are given under which a two—dimensional
steady compressible flow can be continued scross the line of Mach number 1
as & continuous supersonic flow. Methods for the actual computation of
the flow are described. The problem is of importance in the theory of
transonic flows past airfoils. '

INTRODUCTION

The theory of mixed subsonic and supersonic flows of a compressible
-fluid is as yet very incomplete. As a contribution to such a theory,
the problem of continuing a two-dimensional subsonic gas flow across a
line along which the speed of the flow reaches that of sound is consid-
ered in this paper. Rather simple, sufficient conditions under which
the continuation is possible and is uniquely determined are given
(section 1). The problem is of interest in connection with transonic
flows past obstacles (see section T).

The mathematical nucleus of the problem is the solution of a Cauchy
problem for a partial differential equation of mixed elliptico-hyperbolic
type. This problem is solved in the appendix by a method which is
believed to be intrinsically simpler than the previous trestment by
Christianovitch in a paper unavaileble in this countryl and by Frankl
(reference 1). The theoretical discussion contained in the appendix
(sections 5 and 6) yields methods for the actual computation of the flow
in the supersonic region.

This investigation was carried out at Syracuse University under the
sponsorship and with the financial assistance of the National Advisory
Committee for Aeronautics.

lehristianovitch, S. A.: On Supersonic Gas Flows. CAHT Rep.
No. 543, 1941. (In Russian.)
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SYMBOLS v

The following notation is used in the ANALYSIS:

speed of sound
solution of hypergeometric equation (27)

coefficient in Chaplygin's equation, defined by
equation (20) .

step function approximating function X

function defined bj equation (38)

Mach number

normel to the curve I pointing toward the domain A
speed

critical speed

maximum value of g

arc length measured on T

Iength of T

function of speed (see equation (18))

value of Tt for M=
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u,v

LY

X(S),Y(S)

components of velocity'yector
coordingtes in physical plane
coordinates of points on T

exponent in’pre.ssure—density relation
curve .in~physical plané along which M = 1
image of I' in hodograph plane

domain iq which a subsonic flow is given
angle between velocity vector and x—axis
density

criticz?l density

variaeble defined by equation (28)

value of T for M =1

velocity potential

stream function

angle between tangent to T a.nd x—axis

used over symbol, value on T

used as subscript, value for q =0
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The following notation is used in the appendix:

a,b end points of segment along which Cauchy data are given
A,B,T,N,T!,N',T",N" " constants defined in section 3 of the appendix
( a,b) domain defined in section 1 of the appendix

X coefficient in equation (A1)

Xn functions gpproximating function X

w,W | . complex—valued functiong

X,y independent variables/

y(n) ,§(nj functions defined by equations (A18)

z,€ complex va.riafles

Zn,i-Z(n) "Pormal powers' defined in. section 4 of the appendix
Ay constants defined by equations (A3k)

=(K) matrix defined by équation (49)

T,V given initial values of ¢ and its normal derivative
@ function comnected with ¥ by equation (AT)

i dependent varisble in equation (A1)
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ANALYSIS

1. The Continuation Theorem

The main result of this investigation reads as follows:

Given a domain A in the x,y-plane, whose boundary contains
a continuously curved arc I (see fig. 1); given a subsonic
potential gas flow in A; and if

(a) the Mach number of the flow on I' is equal to unity,

(b) the components of the velocity vector and their first—
order derivatives are continuwous on T,

(c) the normal derivative of the speed on I is different
from zero, and '

(d) no streamline of the flow cuts I' at a right angle;
then the flow can be continued across any subarc of I' as a
potential supersonic flow without weak discontinuities and this
continuation is uniquely determined. )

This theorem contains no general statement concerning the extent
of the supersonic region obtained; however, in each special case the
method of continuation described as follows determines the extent.

By a compressible potential flow without weak discontinuities is
meant a flow described by two twice continuously differentiable

functions @(x,y) and V(x,y) (potential and stream function)
satisfying the differential equations

(1)
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where pg is the stagnation density and p the density given by ”

-

1 _2=1a" | (2)

Here 7 1is the exponent in the pressure—density relation; a5 is the
speed of sound at a stagnation point; and g, the speed, is

q= 50\/@%)2 + (?;2 (3)

It is well known that in the supersonic region flows with weak
discontinuities (discontinuities in the second derivatives of the
velocity potential) are possible. In fact, there is no good physical
reason to assume that in a supersonic flow the velocity components

u:ao.?; |
( (%)
.-
an)

possess partial derivatives. (The continuity equation and the condition
for the existence of a potential may be expressed in terms of integral
relations.) Under precisely which conditions flows with wesk disconti-—
nuities can be obtained by continuing subsonic flows across the sonic
line seems to be a very important but rather delicate question; it is
int:(l_mz)a.tely tied up with the question of the necessity of conditions ()
to (d).

If condition (c) is violated along an arc of T, then the velocity
vector is constant along this arc. This follows from equation (8). It
seems very probable that in such a case the velocity vector must be
constant everywhere. Whether the continuation theorem remains true if
condition (c) is violated at isolated points remains an open question.
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Condition (d) is probably essential for the unigueness of the
continuation. If at some point P of I' the streamline is normal
to I', then the Mach lines at this point are tangential to I, for
at I' the Mach angle is 90°. Such a situation arises in a symmetrical
Laval nozzle if the transition from subsonic to supersonic speeds occurs
along a line extending across the nozzle (flow of Mayer type, see
fig. 2). In a remarkable paper (reference 2) Frankl investigated this
case and showed that the continuation of the subsonic flow into the
supersonic region is not uniquely determined. He showed also that in
this case the supersonic flow may exhibit weak discontinuities.

2. Reduction to a Cauchy Problem in the Hodograph Plane

In order to prove the théorem, let the equation of the curve T  be

x = X(s)
y=1s) ( : (5)
oSsS%

where s 1s the arc length of I' measured in the direction of
traversing I' with the domain A +to the left. By hypothesis X"(s)
and Y"(s) exist and are continuous, and X'2 + Y'2 = 1, It follows
that the angle

o(s) = et X'(s) ) (6)

X'(s)

between the tangent to I' at x = X(s), y = ¥(s) and the positive
x-direction is a continuously differentiable function of s. (See
fig. 1.)

Set

u—iv = ge10 ' (7
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The value of any function F(x,y) at x = X(s), y = Y(s) will be
denoted by F(s). Thus 6(s) = G[X(s), Y(s)]. Nikolskii and Taganov
(reference 3) showed that .

81(s) = ;:igl cos2(8 — o) %ﬁ (8)

where O/0n denotes differentiation in the direction of the normal
to T pointing toward the domain A.’ (This formula follows easily
from the equation of motion written with' - q and € as independent
varigbles.) Since M=1 on I' and M<1l in A (M = q/a being
the I&Iagzh mumber) it follows that Jq/dn < 0, so that by hypotheses (c)
and (d : :

9'(s) <O (9)
It is no loss of generality to assume that -

ox > 0(0) >6(S) >0 (10)

If this condition were not satisfied, I' could be divided into a
finite number of overlapping arcs along each of which 6 ‘would change
by less than 2x. Inequalities (9) and (10) imply that I’ has a one—
to—one image in the hodograph plane, which is the circular arc Iy
given by . :

~ ~

a4 = g5, 6(8S) <6 <8(0) ©(11)

where gq.p, the critical speed, is

9.. = &
cr 0 y+ 1
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By the definition of the potential and stream function,

) 1 . A
d¢=g-(udx+de)
0
( ' (12)
AV = P (=
poad(_vd.§+udy)J
On T,
ﬁ:qcrcosg
"~ ~
V = g, sin 8
dx = ds cos ®
dy = ds sin w '
1
=L
P=Pep = 7+l)
so that

B(s)

ZENSLAEE

(=

f " (13)
"l\;(s)

sin (8 — w) ds

)
7 J

These equations show that @(s) _and We) are twice continuously
differentiable. By hypothesis 6(s) is a continuously differentiable
funetion. By virtue of inequality (9) the inverse function
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g8 = s%(8)

exists and hence is continuously differentiable. It follows that

g(0) = ¢ [sx(0)]

(1%)
yx(e) =5 [s%(0)]
are continuously differentiable functions of 6,. 'é'(s) <6< 5(0) .
Assume now that the flow in A has been continued across TI'.
Since
du,v) _ a,6)
Ax,y)  oAx,¥)
it follows that on T
2
(w,v) _ —(éi) cos2(® - ) (15)
3(x,y) on
In fact, on T
Mag,8) g ¥ oq P

and Oq/ds = 0, whereas 06/ds is given by equation (8). By
hypotheses (c) and (d) expression (15) cannot vanish. Hence

) d(u,v) <0
’ B(x,y)

for all points su:éficien‘bly close to I'. It follows that a sufficiently
small neighborhood of any subarc of ' has a one—to-one image in the
hodograph plane, that is, a neighborhood U of a subarc of I‘h. In’ the
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hodograph plane the functions ¢ and sa.fisfy the well—known
Chaplygin equations

N
X _Io
IS P g
L »
P__1-¥oow
dq ¢ p 08
while on T} they satisfy the initial conditions '
¢(‘lcr:9) = ¢*(9)
' (x7)

W(aer,0) = ¥*(8)

for 6(8) %e < e(o).

3. Existence and Uniqueness of the Solution
in the Hodograph Plane
In the preceding section the continuation of a subsonic flow

across the sonic line has been reduced to the initial-value problem,
equations (16) and (17). Introduce the new independent varisble

= [F pda (28)

(Note that q = O corresponds to + = — » @ = Qe to t =0,

and q = qp., = &g V2/(y — 1) +to some finite positive value of t.)
In the 6,t—plane, @ and V¥ satisfy the equations
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o _o¥

¥ ot .

> _ (19)
- " éﬁ = _K(t)_B_\l_f
3t %
where
K(t) = %'TMQ (20)
p

»

The initial—value problem, equations (16) and (17), goes over into
a Cauchy problem for equations. (19). The theory of this Cauchy problem
is given in the appendix. From the theorems stated in section 3- of the
appendix it follows that the initial-value problem, equations (16)
and (17), possesses a unique solution in the domain bounded by the
arc Ty and two characteristics of equations (16). As is well known,
these characteristics are epicycloids. In this domain (see fig. 3),
which is called the "characteristic triangle determined by TIy,"

the functions ¢ and V¥ will be continuously differentiable, provided
that @*(6) and ¥*(0) have this property.

Remark.— Note that if ¥ (considered as a function of 8 and t)
is twice contimuously differentisble, then equations (19) imply that
¥ satisfies Chaplygin's equation

2, Py _ ,
K(t) S+ i 0 (21)

In this case the initial—value problem cons:.dered may be formula‘bed as
a Cauchy problem for equation (21):

[

¥(6,0) = (6)

7

‘lft(G,O) = V(e)
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where
T(8) = ¥*(o)

v(6)

gt (e)

In general, however, V¥ need not be a twice; continuously
differentiable function in'the supersonic part of the hodograph plane.

L. Existence and Uniqueness of the Solution
in the Physical Plane

In order to complete the proof of the continuation theorem, it
must be shown that the functions ¢ "and V¥ obtained in the preceding
section can be transferred (in a unique way) to the physical plane
(more precisely, to a part of the physical plane adjacent to I and
lying outside A) and that in the X, y¥plane these functions possess
continuous derivatives of the second order which assume the "correct"
values along T.

The functions ¢ and V¥ -obtained from the Cauchy problem coincide

along I' with the potential and stream function of the flow given
in A and transferred to the hodograph plane by means of the mapping

u(x,y)

=
]

(22)

<
it

V(I, y)

It follows from equations (12) that the inverse mapping is given by

K _ 16 Po

e e e e N
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or,

016 Po Po

Since the functions @ and ¥ have been continued into the
supersonic part of the hodograph plane, this integral is meaningful -
even there. Moreover, it is path—independent. Under the assumption
that the partial derivatives ¢99, ¢9q’ . . . exist and are continuous,
this follows immediately from Chaplygin's equations (16).' But, in the
case considered, this assumption cannot be made. Consider, however, the
mapping from the hodograph plane to the ¢;V+plane. By virtue of
equations (16)

Ag¥) _ o (gg)ﬁ o @,3)2 :
3e,a) Pt \d/ ool =)

It follows (for instance, from relations (9) and (13)) that this
Jacobian is different from zero in some neighborhood of the arc TI'y.

Hence the mapping from the hodograph to the ¢;W-plane is locally one-—

to—one, so that it is sufficient to establish the path—independence of
the integral, equation (23), in the ¢;W—plane. This leads at once

to the conditions

Using the relation
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these conditions may be transformed into

°

¥ _ P &
F " oy o

’ | (2h)
% ol =) 5

v pa 3 J

Interchanging the dependent and independent variables, it is seen that
system (24) is equivalent to equations (16). Thus equations (16) insure
the path—independence of the integral, ‘equation (23), even without any
assumption about the existence of second—order derivatives of

and V.

Thus equation (23) defines a mapping also in the supersonic part
of the hodograph plane. The Jaccbian of this mapping is easily
computed to be equal to

Ax,y) __%0° oy oy P2V (3] -
u,v) o ?E“M)DT@;) +<§§> )

8o that for q = der

- 72

Nxy) __ 1 fr+ 2\ g,
S - L) (0)]°

But by equations (1L4)

g%t (9) = tﬁ dg* ;( 2 )1/2 cos(é — ) 40
ds ae 7y + 1 B (s)

80 th&t -0 ~

Ax,y)
Sar) 7O
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on the arc defined by equation (11) and hence also in some neighborhood
of any subarc of this arc. It follews that such a neighborhood is
mapped onto a neighborhood of a subarc of I' in a one—to—one manner.
The functions ¢ and V¥ obtained by solving the initial—value problem,
equations (16) and (17), can now be transferred to the x,y-plane by
means of the mapping defined by equation (23).

The derivatives of ¢ and ¥ in the x,yplane can be computed
by using equations (16) and (23). (See reference 4.) This direct
though lengthy computation yields exactly equations (12). Thus ¢
and ¥ satisfy equations (1). Finally, equation (23) shows that x
and y are continucusly differentiable functions of u and v, so
that u and Vv are continuously differentisble functions of x
and y. Thus ¢ and V¥ possess continuous partial derivatives of the
second order in the x,yplane. The proof is now complete.

‘5. Computation of the Solution

The theorems proved in the appendix implicitly contain methods for
the effective computation of the solution. Thus theorem 2 shows that
the solution of the Cauchy problem may be represented as in infinite
series of particular solutions of the Chaplygin type. (The idea of the
following proof is already contained in a remark by Frankl concerning
the Tricomi problem; see reference 5.)

Chaplygin (reference 6) showed that a particular solution of the

second—order equation obtained from equations (16) by eliminating ¢
can be found by setting (for any positive constant a)

¥ = eme(q/qmax)“Fm(qe/qma;xz)' (26)

where Qp is the maximum speed possible for the given gas:

- 2
Amax \/7_1

ahd Fo(T) is any solution of the hypergeometric equation
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(1 = 7T (1) + [1 + @ = (ag + by + D] Fo' (1) — aebFolr) =0 (27)

the constants a, and b, being determined by the equations

1
ay + by =@ —-7 )
agbg = — He+ 1)

2(y = 1)

It,is seen that the potential corresponding to equation (26) is
given by

g = =101 (05/0)(/ame)® [Ful ) = (2r/0)Eg (7)]
where |

2
T o= a%h*g (28)
max

Let Fq1(7) and Fory(T) denote the particular integrals of
equation (27) which for

satisfy the initial conditions
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Fyp = O
£
F ! _2< 2 )7—1(1_+_1.>2
ol T2 \y-1 y—1
Faar =1
2
by t =_2 .'Z._'_"_l-.
oI T 2(7 — 1)
Set
\
Bo =—6QTG’/2E' 5(7) +%1F 3'({‘g (29)
J=1, 1T
/
then
. ~
. ¢d,j = o1, mj(TK)
t i (30)
¥y = 167%Bg5(1) |

are pairs of solutions of equations (16) satisfying the initial
conditions
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¢aj=l,¢aj=0 for @ =qgp, J=1

¢a’j=0,quj=l for q = dgps J

19

(31)

II

Consider now the Cauchy problem, equations (16) and (17) , assuming

for the sake of simplicity that

e(s)

il
i

6(0)

I
H

O < =«

Set

(32)

and expand the initial data @*(6) and V¥*(6) in Fourier series

0

g*(0) = E an cos apf + by sin a,b

n=0

o0

¥*(8) = -_5_ Cp COS anf + dp sin ayf

n=0

T<OLT

From the way the particular solutions, equations (30)
constructed it follows that the series

~N

~N

(33)

J

» have been
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- B
¢ = ap +z (a,n cos apf + bp sin ane)Aan('r) +
n=1

il (cn sin apf — dp cos d,ne)AanI(—r)
n=
e

3} .
¥ =cq+ E]_ -(Cn cos anpf + dp sin U'ne)ch,nII(T) +
. D=

> (e sin o + by coe o0)BaT(7)

n=1

¥

represent a formal solution of the initial—value problem considered.

Theorem 2 of the asppendix not only shows that the series converge
absolutely and uniformly (within the "characteristic triangle") to the -
desired solution but also permits an estimate of the error committed by
replacing the infinite series by finite partial sums. Theorems 4 and 5
of the appendix contain similar statements concerning the convergence
of the differentiated series.

Remark 1l.— While the theorems in the appendix refer to an ‘
equation of the form of equation (21), it is clear that these theorems
imply similar ones for system (16). It may be noted that the convergence
of series (34) was proved by a general method; no special properties of
the hypergeometric functions were used. ) ‘

Remark 2.— It should be noted that if the arc I'y, on which the
initial values are given exceeds

=

then the epicycloids drawn from the extremities of the arc do not
intersect. In this case the characteristic triangle must be replaced
by the domain bounded by the initial arc, the two epicycloids, and an
arc of the circle q = Qpy. (See fig. k.)


http://www.abbottaerospace.com/technical-library

NACA TN 2058 ' o1

6. Computation of the Solution by a Second Method

The expansion in a Chaplygin series may not be the most efficient
way of computing the solution of the initisl—value problem in the
hodograph plane, since it requires the preliminary computation of the
functions Ay and By, and because of the possibility of slow

convergence. Another method is suggested by theorems 3 and 6 of the
appendix. ’

Let the equation satisfied by the stream function be transformed
into the form of equation (23). Divide the interval 0< t< tmax
into subintervals

v=1,2.,..n 0 (35)
O0=th <t <. ..<tp =t~
J
and set
K*(t) = min K(t*) | (36)
by St Sty tyg ST S by ‘
The equation
K*(t)’(lfee + \[ft-t =0 (37)

is an approximation to equation (21). Since K*¥(t) is a piecewise
constant function (step function), it is equivalent to the one—
dimensional wave equation in each strip %y <t < ty;;. A solution of
equation (37) will be required to possess continuous partial derivatives
of the first order. The potential ¢ corresponding to a given
solution of equation (37) will be continuous but its first derivatives
will possess discontinuities. The characteristics of equation (37) are
given by the equations
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6 — / \JX*(t) dt = Constant .
0 + / \/-K*(t) dt = Constant

which represent polygonal arcs in the 6,t—plane. (See figs. 5 and 6.)

For equation (37) the solution of the Cauchy problem,
equations (24), is a trivial matter. This solution may be constructed
by repeated use of the classical D'Alembert formula (as described in
detail in section 6 of the appendix). Another possibility is to apply
the method of the preceding section.

Theorems 3 and 6 assert that for a sufficiently fine subdivision,
equations (35), the solution of equation (37) will be an arbitrarily
close approximation to the solution of equations (24) with the same
initial values.

Instead of using the approximating step function, egnation (36),
one may use the function

K(t) = max K(t7) (38)

By SESt, B ST,

In this case K. (t) =0 for 0 <t <tj, so that in this strip ¥ 1is

a linear function of t.

In some cases it might be preferable to use as the approximating
coefficient a piecewise linear function. In this case the
approximating equation will be of the type of the Darboux-Tricomi
equation

Thyg + ¥gy = O (39)

in each strip® t, < t < ty,3. The solution of the Cauchy problem for

the Darboux—Tricomi equation can be expressed either by integral
formulas (see reference T7) or by infinite series involving Bessel
functions.
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T. Application to Transonic Flows past Obstacles

The theorem stated in section 1 is of a purely local character.
While in the hodograph plane the flow can be continued throughout the
whole characteristic triangle, the transition to the physical plane may
be possible only in the immediate neighborhood of the sonic line T.
This may be due either to the existence of limiting lines or simply to
the fact that a simply covered domain in the hodograph plane corre—
sponds to a multiply covered domain in the physical plane.

In some important cases, however, it can be asserted that the
continuation of the subsonic flow by the method described in sections 2
to 5 yields the whole supersonic region which is of relevance to the
problem considered. >

Consider a transonic flow past a closed body with a subsonic stream
Mach number (and without shock waves). The supersonic regions Sj

and S, (see fig. T) are bounded by solid walls and transition lines
along which M = 1. For a supersonic region thus bounded, Nikolskii
and Taganov (reference 3) proved an important theorem stating that the
region S possesses a one—to—one image in the hodograph plane.

In this proof, Nikolskii and Taganov mske use of the remark that
all Mach lines in S must possess points in common with the transition
line (the line M = 1). While they give no formal proof of this fact,
a proof can be supplied without difficulty. The domain S is simply
covered by a family of smooth curves, the streamlines of the flow, and
the solid wall bounding S belongs to this family. A Mach line having
‘no points in common with the transition line would have to originate
and terminate at the solid wall. A simple argument, essentially equiva-
lent to Rolle's theorem, shows that such a Mach line would be tangent
to a streamline at at least one point P. But this is impossible
since at P +the Mach angle would have to be 0, which corresponds
to M=o, p=0.

Consider now the hodograph image S of S. It is bounded by the
arc I'p of the circle q = q.p (corresponding to the transition line
in the physical plane) and the curve Wy (the hodograph image of the
s0lid boundary). Assume that S, is not contained within the character-
istic triangle determined by Iy, which is bounded by Iy and two
characteristics of the hodograph equations (i.e., two Busemann
epicycloids). Then at least one of these Busemann epicycloids
intersects Wh at two points, and S contains an arc of an
epicycloid which has no points in common with T'y+ This, however, is
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impossible since the epicycloids are the hodograph images of the Mach
lines. Thus Sp 1is contained within the characteristic triangle. By

virtue of the previous results, this implies the following unigueness
theorem:

Two transonic (subsonic at infinity) flows past an obstacle
are identical if they are identical in the subsonic region.

Similar theorems are true for flows past curved walls and for
Taylor type flows in nozzles (figs. 8 and 9). In the case of a Mayer
type nozzle flow, however, the subsonic flow does not determine the
supersonic flow uniquely.

The preceding remarks are of interest 1n connection with various
attempts to construct transonic flows by the "correspondence method."

The correspondence method was first used by Chaplygin for jet
problems (where, however, it is identical with the solution of the so-
celled direct problem). The correspondence method may be expressed in
various analytical forms; however, except for the very original method
of Bergman (reference 8) the basic procedure is always the same, as is
clearly pointed out by Gelbart (reference 9). It consists of associ—
ating with a solution of the Cauchy—Riemann equations (representing an
incompressible flow) a solution of Chaplygin's hodograph equations.

In some cases the resulting compressible flow is of the same general
character as the initial incompressible flow. To date, the most
detailed application of this method to flows past obstacles is that
given by Tsien and Kuo (reference 10). The continuation of a sub—
sonic flow across the sonic line invariably occurs in the application
of the correspondence methods to transonic flows.

While the mathematical problems connected with the correspondence
method are as yet largely unsolved, the results of the present investi-
gation show that once the solution of Chaplygin's equation in the
subsonic part of the hodograph plane is determined, the continuation
of the solution in the supersonic region is uniguely determined and can
be effectively computed. If this continuation does not yield the
desired result in the physical plane, the choice of the solution in the
subsonic domain must be ebandoned.

CONCLUDING REMARKS

The continuation of a given subsonic flow into the supersonic
region has been discussed. The corresponding problem in the subsonic
region is of little interest, since in the subsonic region the
differential equations are of elliptic type with analytic cqefficients
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and have analytic solutioms. Thus if the velocity potential ¢ is
known up to a line I', the continuation of @ across I' is a
problem in analytic contlnua“blon. It seems improbable that any
interesting and general statements can be made concerning this case.
In the supersonic region the equations are of hyperbolic type and the
continuation of a given flow across a line TI' reduces to the standard
Cauchy problem. The theory of this problem is known (see xeference 11,
p. 326, and the literature quoted therein). It would be very
interesting, however, to obtain results concerning a problem converse to
the one considered here; that is, assume that a supersonic flow is
known up to the line I' on which the Mach number is equal to 1, and
determine under which conditions the flow can be continued into the
subsonic (elliptic) region.

Syracuse University
Syracuse, N. Y., September 1, 1947
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APPENDIX

THE CAUCHY PROBLEM FOR CHAPLYGIN'S EQUATION

This appendix contains the proofs of the theorems used to
establish the preceding results. For the convenience of the reader. the
notation standard in the theory of partial differential equations is
used. Note that x end ¥y no longer refer to the physical plane.

Equation (Al) is essentially the same as equation (21).

1. Introduction

The aim of this investigation is to integrate the differential

equation
K(yWyg + Vyy =0 (A1)
where
K(0) = 0]
K(y) <0} (a2)
.for y<O
under the initial conditions
x,0) = 7(x)
‘ * (83)

¥(x,0) = v(x)

a.fi:cfi'b )

3
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T and VvV YDbeing given functions. The solution is required in the
domain D(a,b) consisting of the segment a< x<b of the

axis y =0 and of the part of the half plane y< 0 bounded by two
characteristics of equation (Al) passing through the points (a,0)
and ' (b,0). .

Chaplygin's equation for the stream function as a function of the
hodograph variables can be brought into the form of equation (A1) , the
domain y < O corresponding to the supersonic region. In the following
considerations, however, no use will be made of the special form of the
function K.

The classical theory fails to treat the Cauchy problem,
equations (A1) to (A3), except for analytic T and V, because the
initial data are given along the line y = O where the equation ceases
to be of hyperbolic type. For one special case, that of the Darboux—
Tricomi equation

Weg + \lryy =0 (Ak)

the solution has been known for decades. In a recent paper, .
unavailable in this country, Christianovitch treated the case of the
Chaplygin equation. According to Frankl (reference 1) he had to
assume T(x) eand v(x) +to be analytic and had to use all their
derivatives in order to obtain the solution. Frankl (reference 1)
considered the case of nonanalytical Cauchy data for the equation

T + Vgp + (@3 + D0y, + o(x,y)¥ =70 (45)

assuming the coefficients a, b, and c¢ +to be analytic. This
treatment is based on special properties of the Riemann function for
the Darboux-Tricomi equation and of the hypergeometric function and
does not seem to lend itself easily to numerical computations. Note
that if K(y) 4is analytic and X'(0) # 0, equation (A1) can be
brought to the form of equation (A5) by introducing

2/3 , \
g = (g ﬁ VE) @ (46)

Q

, 88 a new independent variable.
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The present treatment, while limited to equations of the form
of equation (Al), is of an entirely elementary character, requires only
very simple regularity conditions for the function X, and remains
valid even where a reduction to the form of equation (A5) is impossible

(e.g., for K = yl/ 3). Besides establishing the existence, uniqueness,
continuity, and differentisbility of the solution, it will be shown
that the solution depends continuously on the Cauchy data (as noticed
by Frankl), as well as on the coefficient K. These continuity
.properties imply two effective methods for the approximate computation
‘of the solution: Either by representing it as a series of particular
solutions of the Chaplygin type or by replacing the coefficient XK Dby
a piecewise constant function, in which case the determination of the
solution becomes quite trivial. In fact, the approximation of K(y)
by step functions constitutes the main tool of this investigation.

2, Statement of the Problem

The function K(y) will be assumed tolsatisfy the following
conditions:

(1) X(y) is defined and nondecreasing for y<0
(2) X(y) is continuous at y =0

(3) %X(y) is negative, piecewise continuous, and possesses a
piecewise continuous derivative for ¥ <0

Since the only interesting case is X(0) = O, the condition
that K(y) be nondecreasing involves no serious loss of generality.
(It is satisfied in the case of Chaplygin's equation.)

A function V¥(x,y) will be called a regular solution of equa-
tion (A1) if ¥ possesses continuous partial derivatives of the first |
order throughout its domain of definition, and piecewise continuous
partial derivatives of the ‘second order satisfying equation (A1).

The Cauchy problem mentioned in the Introduction may be stated as
follows:

Problem A. Given two twice continuously differentiable
functions 7(x) and v(x) for a< x<Db. To determine a
regular solution ¥(x,y) of equation (A1) defined in D(a,b)
and satisfying the initial conditions, equations (A3).

It will be convenient to consider instead a more general problem
(suggested by gas dynamical applications). A regular solution ¥ of
equation (Al) determines (except for an additive constant) a
function @(x,y) such that
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Px = Vg

; (A7)

J

(Note that the derivative (py might possess discontinuities.) The
complex—valued function

wi(z) =@ + 1V

y (48)
z=x+ 1y
, /
is called a Z—moxiogenié function, where
s _ s 11
= %(K) = 1 K(y) (29)

denotes the coefficient-matrix of equations (A7). Equations (A7) imply

that
/q;dx—K*&dy:O
r

/ﬂfdx+cpdy=0
Jr J

for every closed rectifiable curve T contractible to a point. It will
be convenient to call every continuous complex—valued function,
equations (A8), satisfying equations (A10) a r—monogenic function.

'

( (A10)

Part of the theory of S~monogenic functions (references 12 and 13)
(originally developed primarily in the elliptic case K > 0) remains
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valid with this new definition. In particular, every r—monogenic
function w = @ + iy possesses a X—integral

w(z)=fzw(§)_a2§=fzmax—mydy+1fzwu+¢dy (A11)
Z Zo Z .

O (o]

W(z) is again a s-monogenic function, and

w=H (A12)
ox
Now, if ¥ is a solution of problem A, then (for a proper-
normelization of @)
#(x,0) = fvm &, a<x<D (413)
a

This remark suggests the following problem:

Problem B. Given two continuous functions T(x) and ¥(x)
for a < x<b. To determine a Z—monogenic function w = @ + iy
defined in D(a,b) and satisfying the initial condition

w(x) =/XV(§) at + i7(x), a<x<hb ‘ (A1k)

a

It is easy to see that if w 1is the solution of problem B, and
if ¥ possesses continuous first and piecewise continuous second
derivatives, then V¥ 1is a solution of problem A.

. 3. Statement of the Results

The main results of this investigation are:

Theorem 1 (Existence and uniqueness of the solution).
Let T(x) and v(x) Dbe arbitrarily given continuous functions
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defined for a < x < b. There exists one and only one
2(K)—monogenic function' w = @ + iy defined in D(a,b) and
satisfying the Cauchy condition

. w(x) =jx v(€) dt + 17(x), a<x<hb (A15)
0

Theorem 2 (Continuous dependence on the initial values).
The function w = @ + i defined in theorem 1 satisfies in D(a,b)
the inequalities :

-

o] <AT + BN

P (A16)

Wl T+ |giN

wvhere

T = max [(x)|

W= max |W(x)
a<x=<hDb

A =A(y) = V()

B = B(x,y) =x —a + [7]A(y)

Theorem 3 (Continuous dependence on the coefficient of the
equation). Let K,(y) be a sequence of functions satisfying
conditions (1) to (3). Let wy = @y + iy, be the =(Kn)-monogenic
function satisfying condition (A15), T and v being fixed
continuous functions. If
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1im Kp(y) = K(¥)
n—>cw

wiformly for O 2 y=>-H, where H is the least upper bound
of |y| in D(a,b), then . R

lim wy(z) = w(z)
n—pw

uniformly in b(a,b) , W being the Z(K)—monogenic function
satisfying condition (A15). (Cf. the remark made after lemma L)

Assuming that theorems 1 to 3 hold, it is easy to establish
similar propositions for the derivatives of the function w.

Theorem 4. If 7(x) and v(x) are continuously differen—
tigble, then, using the notation of theorems 1 and 2, the partial
derivatives @y, V¥x, and V¥y exist and are continuous in D(a,b),
vhereas Oy exists and is continuous in D(a,b), except for those

values of y for which K(y) is discontinuous. Furthermore
]q>x| = [¥;]< AT* + BN
P < 7* + i3I
|cpyl < A3T' + AZ.BN'

vhere T' = max |v'| and N' =mex |[v'].

Theorem 5. If T(x) and v(x) possess continuous
derivatives of the second order, then, using the notation of

theorems 1, 2, and 4, the partial derivatives Q., Vxy,
and Vyx exist and are continuous in D(a,b), whereas the
derivatives Qxy, @yy, and Vyy exist and are continuous

in D(a,b), except for those values of y for which K(y)
or K'(y) is discontinuous. Furthermore
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£

p!,rxyl < AT" + BN"

[Vyg] S 821" + By

g

loyy] = [®'(y)| (aT* + |y[nr) + A3T" 4+ ACBN"

where T" = max l'r"l and N" = max lv"].

Theorem 6. Under the hypotheses of theorems 3 and 4 the
partial derivatives of the first order of Pn and Yy converge
(uniformly in D(a,b)) toward those of @ and V. Under the
hypotheses of theorems 3 and 5 the partial derivatives of the
second order of @n and pn (except perhaps cpn,yy) converge
(uniformly in D(a,b)) toward those of @ and V. The
same is true for @ ;v provided that K! A7) > K(y) unlformly

for 02 y2= —H.

The proof of theorems 4 and 5 is based on the fact that

if w=0¢ + 1y is a z-monogenic function, then the functions &
and ¥ defined by

® + ijﬁ:fw dyz

possess contlnuous derivatives (except for possible discontinultles
of (Dy) satisfying equations (A7), so that if the functions &

and Q are defined by

D+ 1§=f(<p+ 19 dpz

~

then ¥ is a regular solution of equation (AL).

Hence theorems 4 and 5 follow immediately from theorems 1 and 2 by
applying the latter theorems to the Cauchy problems with the initial
data T'(x), Vv'(x) and T"(x), v"(x). The proof of theorem 6
proceeds along similar lines and may be left to the reader.
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It is clear that the functions and derivatives whose existence is
asserted in theorems 1, 2, 4, and 5 exist and are continuous (or piece—
wise continuous) also along the characteristics bounding D( a,b) . In
fact, the functions T(x) and v(x) and their derivatives have been
assumed to be continuous in the closed. interval (a,b), so that in
order to establish the continuity of ¢, V¥, V., and so forth in the

closure of D(a,b) it is necessary only to continue T and v in an
appropriate manner over the interval (a —¢€, b + €), €>0, and
apply the theorems to the domain D(a — €, b + €). Theorems 1 to 6,
however, remain valid if T eand V and their derivatives are merely
assumed to be continuous and bounded in the open interval (a,b).

It is rather obvious what modifications would be necessary if T
were assumed to be piecewise continuous. The function Vv may be
assumed to be bounded and measurable without endangering the validity
of theorems 1 to 3, as will be seen from the proof. '

L, Formal Powers. :

A significant class of S-monogenic functions is obtained by
setting .

Z(O)(z) = l
1.2(0)(z) = 1

and,-for n=1, 2, . . .,

z(@)(z) = n fz z(n-1)(t) agt
0

1-z2(0)(z) = n fz 1.2(81)(6) axt
0

These "formal powers" admit the representation (see reference 12)
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n a

20)(2) = 3 (i)
V=0

. (A17)
n n -~
1.200)(z) = 1> @)V (y)
V=0 -
where
7O - 05y <1
and, for n=1,2, ...,
y(2o+l) oy (20 + 1) f (3 () an
¥(®) 5y - an];y K(n)T(® ) () a
L ()

A2 () og 4 1) f T ¥ (n) an
0

2 (3) - oq fy ¥1) (4 ay
0 v,

Note that the imaginary barts of Z(n) and i'Z(n) possess continuous
derivatives even if K(y) possesses discontinuities.

It follows from the preceding formulas that (for a real x)
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7(2)(x) = &

1-z(8)(x) = 12

This implies

Lemma 1. If
S
T(x) = 2 ey
J=0
M
v(x) = bjxj
J=0

then, for every real number s,

() M by [ (3#0) (g _ 7(3+1)
w(z) = g) aji zMd(z2) + < 3—3—1[2 (z) —Z (a.)] (A19)

is a r-monogenic function satisfying the initial condition

w(x) =fx v(g) d& + it(x)
a

Formula (Al9) is the analog of D'Alembert!s solution of the
equation of the vibrating string. In fact, if K(y) = —A2 = Constant,
equation (Al) becomes
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and a simple computation shows that in this case
z(n) - %[(x + A7 + (x —Ay)ﬂ + %\[(x + AT - (x —Ay)n]

1. (n) _ A [x + Ay)R - )n] Ex + A7)+ (x - Ay)n]

g0 that the imaginary part of equation (Al9) is given by

XAy
1]1=T<x+Ay)+T(x_Ay)+ Aj v(t) at

The analog of Bernoulli's solution is thé one obtained by super—
imposing particular solutions of the Chaplygln type. (See section 5 of
the ANALYSIS.)

Consider now two functions, Kj(y) and K (y), and denote
functions (A18) formed with X = K; by Y;(®) ema ¥ (n)
where i =1, 2. Similarly, let the %(Kj)-monogenic formal powers
be denoted by 2i(R) and i-z;(1).

Lemma 2. Set

« = ofH) = mex [Ki(y)|, O2y2-H, i=1,2

(o4
i

8(E) = max |Ky(y) - Kp(y)], 02y 2=

There exist constants M,' = Mp'(a) (depending only on «
and n) such that
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, () (y) = Yg(n)(y) S 8yt [yl ™

'?l(n)(y) - :\f’g(n)()’) < M,y B

for 02>y = -H. .

The proof’ follows easily by induction on n, using the definition
of the function Y.

Lemma 3. There exist constants M, = Mp(a) (depending only
on o and n) such that

[ ™) (2) - 2,22 < g oy

li-Zl(n)(z) - i°22(n)(z)| < 8y s

for 02 y2 -H. Here o and B have the same meaning as in
lemma 2. ‘

The proof follows immediately from lemma 2 and from equations (ALl7).

5. Main Lemma

The lemma to be established in this section accomplishes a two—
fold purpose. In the first place, it shows that theorem 3 holds
whenever theorems 1 and 2 hold for the functions K, and K. In the
second place, it shows that, if theorems 1 and 2 hold for a sequence of
functions K, Dpossessing & uniform limit K, +then theorems 1 and 2
hold for XK. Since every piecewise continuous function is a uniform
limit of piecewise constant functions (step functions), it follows
that theorems 1 to 3 are valid if theorems 1 and 2 hold for the case
when K is a step function.

Lemma 4. Hypotheses: (a) For n =1, 2, . . . the func—
tion Kn(y) satisfies conditions (1) to (3). (b) For each Kn(y)
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theorems 1 and 2 hold, as well as similar theorems concerning the
Cauchy problem with initial data on the line y = c¢ <O.

(c) For 0=y =-H the sequence K,(y) converges uniformly to'a
function K(y) satisfying conditions (1) to (3).

Conclusion: Let 7(x) and wv(x) be continuous functions
defined for a < x <b. It is assumed that |y] <H in D(a,b).
" Let wy(z) be a 5(Kn)-monogenic function satisfying the condition

wp(x) = £XV(§) & +17(x), a<x<D (A20)

Then, (a) in D(a,b) the sequence w, converges uniformly to a
(continuous) function w(z); (b) w(z) is a =(K)—monogenic;
(¢) w(z) satisfies the initial condition (A15); (d) w(z)
satisfies the inequalities (A1l6); and (e) w(z) is the only
function in D(a,b) satisfying assertions (b) and (c).

Remark.— The functions w, are defined, not in D(a,b), but in

domain Dn( a,b) defined in the following proof. In view of

equation (A22) » one may speak of the convergence of the sequence W

in D(a,b), since each point of D(a,b) belongs to all but a finite
number of the regions Dy(a,b).

Proof.— At first it will be assumed that assertion (a) holds.
Set wp =@, +iyy and w =@ + iy. For every closed curve T

in D(a,b) the relations

T

& | (a21)

/ﬂrdx+cpdy=o
r S

must hold in order that w(z) be EZ(K)-monogenic. Let Dp(a,b) denote
the sét defined with respect to K,(y) in the same way as D(a,b) was
defined with respect to K(y). Hypothesis (c) implies that

1im Dy(=a,b) = D(a,b) (A22)
n—po
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Hence, for sufficiently large values of n the curve T 1is
in Dp(a,b). Then

c/;wh dx —K ¥, dy = O
> (a23)

L/;wh dx + @, dy = 0
) /

so that equations (A21) follow from hypothesis (¢) and assertion (a).
Assertion (c) follows immediately from equation (A20). Assertion (4)
is true, for the estimates, expressions (Al6), hold for each
function w, according to hypothesis (a). In order to prove the

uniform convergence of the sequence Wy, choose a positive € and
determine two polynomials

I
M=
o
[
s}
Ce

t(x)

n(x)

i
o'
C
M
c

such that

fs(x) - T(x)] < :

[n(=x) - vl < e r (A2k)

a<x<hb
S

(This is possible by virtue of Weierstrass's approximation theorem. )
Let Wy(z) be the 5(Kp)-monogenic function satisfying the condition
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Wa(x) = fxn(s) dt + it(x), a<x<D ‘ (425)
)

Since theorem 2 is assumed to hold for K = Kps it follows from
conditions (A20), (A24), and (A25) that for all points in Dy(a,Db)

[#wa(2) - Wy(z)] <i.€, n=1,2, ... (a26)

where I is a constant independent of Z, n, and €. Denote by

Zn(m) and i-Zn(m) the Z(Kp)-monogenic formal powers (formed with
respect to the function Kp). Since Wn 1is uniquely determined by
condition (A26), it follows from lemms 1 that

N M '
Hal2) =2 FAROE 2 ff?@zn”*”(z) - i-zn(?”l’(aﬂ

Hence lemma 3 and the uniform convergence of the sequence K, dimply
the existence of a number M¢ such that for all values of z in D(a,b)

Ime(z) --Wm(z)l <€, m>M, p=1,2,... (a27)

By virtue of expressions (A26) and (A27)
,wm_l_P(z) —wm(z)l <(2L +1)e, m>Me, P=1,2, ...

for all points of the intersection D(a,b) (M Dpp(a,b) M Dy(a,b). ‘

Since L 1is fixed and ¢ arbitrary and since Dp(a,b)-> D(a,b),
assertion (a) follows. :

It remains to prove assertion (e). It must be shown that,
if g(z) is x(K)-monogenic and g(x) =0, a < x < b, g vanishes
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identically in D(a,b). It is no loss of generality to assume
that g(z) is continuous in the closure of D(a,b) (since it would be
sufficient to consider g in D(a + €, b —€), € > 0). Then

lim max [g(x + ic)] = 0, (x + ic)eD(a,b) (A28)
c—>0

Furthermore, no loss of generality is involved in assuming that the
real and imaginary parts of g(z) are continuously differentiable (for
otherwise g(z) could be replaced by its =(K)—integral). The argument
leading to the proof of assertions (a) to (d) may be repeated to
establish the existence of a Z(K)-monogenic function Gq(z) satisfying
the condition .

G (x + 1c) = g(x + 1c), (x + ic)eD(a,D) (A29)

and such that for x + iy = zeD(a,b) and y< c

Go(2z) = 1im Gc,n(z) (A30)
n->w

Ge ,n( z) being a =(Kn)-monogenic function with
Gc,n(x + ic) = g(x + 1c), (x + ic)eD(a,b) (A31)

Let 2o = X0 + iyp be any point of D(a,b) with Yo < ¢. It follows

from hypothesis (b) and theorem 2 that there exists a number L such
that

IGc,n(Zo), < L max [g(x + ic)|

so that by equation (A30)

ch(Zo\)l < Lmax |g(x + ic)|
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and by equation (A28)

Gc(zo) =0

To show that g =0 it will suffice to show that G.(z) = g(z) for all
values of c¢. Set, c¢ being fixed,

£(z) = a(z) — Gy(z)

and

F(z)

o + 1¥

z g .
d+ic-dZ(K)§ ¢/<;.+ic #En dz(K)g ‘

where d is such that d +'ic lies on the characteristic passing
through (a,0). The function F(z) is (K )~monogenic and

F(x + 1) = 0, (x + 1c)eD(a,b) (232)

The function ¥ possesses continuous derivatives Vux end ¥yy and
an at least piecewise continuous derivative ﬂjyy. It satisfies

equation (Al) end, in view of equation (A32) > the initial condition

I(I?C) = yy(x:c) =0, (x,c)GD(a,b) - (A33)

But for y <c, equation (Al) is a hyperbolic type and the classical
theory yields the result ¥=0 in D(a,b), for y< c. (The fact
that K and K' are permitted to have discontinuities does not
impair the validity of this argument.) Thus & = O and,

since f = d°F/dx®, g = G,. This completes the proof.
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6. The Step—Function Case

Tn this section X(y) is assumed to be a step function (cf.
figs. 5 and 6; the latter shows the characteristics and the
domsin D(a,b)).

Set

K(y) = &, Tyy 27 27, (A3%4)

where

= J0 >yl>y'2 e o o
> - (a35)

0 <A <A, ..

/

Theorems 1 and 2 will be proved under this assumption. In view of the
results of the preceding section, this insures the validity of
theorems 1 to 3 in the general case.

Lemma 5. If K is given by equation (A3%4), a complex—valued
continuous function w = @ + iy is ¥(K)—monogenic if and only if
it is continuous and admits the representation

w = Az + A7) - gy(x —a3)] +

1 [ev(x + Ayy) + gylx - A‘;y)], Tye1 2T 27, (A36)

(Formulas connecting fy, with f,,; are given in the following
discussion.)

Proof.— It is easy to see that the condition is always sufficient
and that it is necessary when V possesses continuous derivatives of
the first order and piecewise continuous derivatives of the second
order. Hence, if w 1is X-monogenic, the function
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o Pe
£(z) =fU‘ w(¢) dzf;] dyz

admits a representation of the form of equation (A36). Since w = fox
the assertion follows.

Lemma 6. If K is given by equation (A3%), theorem 1 holds.

Proof.— Set

W=+ iV

? = Av[fv(x + M) — gy (x —Avy)]

(a37)
V=T, (x+AT) + 8y(E—MT)s Ty 2T 2T,
where
(6) = () + = fg (.e)aeﬁ
f ==T + == v(g? !
1 2 20 Ja
r (a38)

3
gl(g)=37(g)—2—i1£ v(g) ats

o
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and for v =

l, 2’ - - .

fy(e) = %Q‘ + AVA:l>fv.[§ - (Av+l - Av)y'v] +

%é‘ —Aé\i_l)g"[g Ayt AV)yv]

v+

&y41(8) = %‘(1 _AAv])fV[g * (Aysr T ) Yv] +

Rl v o)

NACA TN 2058

'

- (A39)

It is easy to check that w is Z~-monogenic in D(a,b). and that

condition (A15) is satisfied.

follows from lemma 5.

The uniqueness of this solution

Lemma 7. If K is given by equation (A31+) , ‘theorem 2 holds.

Proof.—

is seen that

Because of the linearity of the problem and because of the
special form of inequalities (A16) it will suffice to prove these
inequalities under the assumption that at least one of the functions T
and v vanishes identically. Assume first that v = O.
representation of the solution given by équations (A37) to (A39), it

Using the

max (va+l|,lgv+l|) Smex (|gy],]e])s v=21,2 ... °

and that

2] = |aa] S 27
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Hence
|Eysa] S T/2
|8y4] < T/é
and by equations (A37)
o = ar
4] = T_'

since for K given by equation (3k4), A(y) > Ay for y2 &v—l.
Now suppose that T = O. In this case the solution admits the
representation

v—=L
w(z) =wy(z) + ZI.WJ(Z), Yy_1 2727, (a%0)
J= ’
where
WV = (I’v + iI.V
© (Ak1)

;

are Z—monogenic functions determined by the initial conditions
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x
@l(x,O) =I v(e) at

2

T (x,0)=0

ay <x<by,v=1,2, . ..

Py(x,7y) = O
Vx55y) = Ty(x,7)

Here a, or b, denotes the abscissa of the point of intersection of

the line ¥y = y, with the left or right characteristic, respectively,
bounding D(a,b). Note that when X is given by equation (34) the
characteristics of equation (A1) are polygonel paths having,

for w_ 2 y2 ¥, the slopes Av_l and -Av—l. It is easy to
verify that
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81 —a =~y

a‘v_av__l = A‘V(yv_l _yv)J v=2,3, ... " (A)'l'e)

Por OZyZyl,

A+ : —A
0 (x,7) =§/x ¥ ) au%fx Y e as
a -

a

. _ 1 x+Aly
) %L_Aly WY ae

Hence

[3(x,7)] S (x-a)F ~ (A43)
so that, in particular,
[B(e1.71)] = (o — a)w (akm)
and
[21,x(=>71) <X (ak5)
Also
[T (7)) < mIN , (AL6)

For y, 31 25y2%,V=2,3,...
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o (x,y) =CI)V (a-vayv) +

v+1

A (=)
1M
lf v+ (Dv’x(gﬁyv) d-g +

2 Ja

x_‘AV +1 ( y_yv )

%f q)v’x(g:yv) ag
av

}E V+l(x’ ;Y) =

x4, 1 (7-7,)
1 v+l v
f o, £{8:3,) ct

Dy +1

x4, 1 (77,)
Hence

o, (xo7)| < Jo, (x| + 2 —a) max o, (E.5%)]  (ab7)

so that, in particular,

|0y i1 (osr3van)] S [Poyom)] + (aya1 — &) maxle, (8,3,)]  (a48)

and

'®V+l,x(x’yv+l)l S mex ,‘Pv ,x(é >Ty )l (A49)

Also

[fos1 (7)< [5 = 3] max fou,x(6.3) (A50)

From inequalities (Al5) and (A49) it follows that

lév’x(g,yv)l SW,v=1,2, ... (A51)
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Using this and inequalities (All) and (A48), it is seen that
,q’y(av’yv)' < (ay — @)W
so that by inequalities (A43) and (ALT)
o (x,7) S(x-a, 5,5 2527,v=202,... (a52)
Aiso, by inequalities (ALG),. (A50), and (AS51)

’g{v(XJY)I ly yv_l'N: Tyl = 2y2 Jy» ¥V = 1,2, ... (a53)

so that in particular

oy <p, —za|m v =1, 2, . .. (a5h)

Using this last inequality and the prev1ous result on the case v = O
it follows that

2

IWJI SAIYJ —yj_lIN, j=1, 2; .

. ¢ (855)

|| S py-vpafm a=1,2, ...
s
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Collecting inequalities (A52), (A53), and (A55), it is clear that

lo(x,3)| < Ex -a) + lylA(y)]N = B(x,7)N

[¥(x,3)] < I5iN .

This completes the proof.
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Figure l.~ Continuously curved arc TI' contalned in boundéry of domain A.

M< 1 M>1

Figure 2.— Flow through Laval nozzle with transition from subsonic %o
supersonic flow occurring along a line extending across the nozzle.
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Figure 3.— Hodograph domain bounded by arc Iy and two epicycloids for the

y + 1
7’_

9(0)f )

\ /
v

Figure 4.— Hodograph domain bounded by arc I‘h, two epicycloids, and an

arc of the circle q = gp,, for the case Ty > n:<\ /; hl i —

| ad
~

case of I'p < JI(
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Sq1

(M > 1)
Sg ig: ~mE

Figure T.— Subsonic flow past a closed body with localized supersonic regions.

M< 1 M

> 1

Figure 8.— Flow through Laval nozzle with locelized supersonic regions.

M<l1

Figure 9.— Flow past a curved surface with a local supersonic region.
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