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SUMMARY

The condition for plastic buckling of a long flat plate under
combined shear and longitudinal compression is obtained by using the
theory of plastic buckling developed for simple loading, provided
the ratio of shear to 1¥ngitudinal compression is assumed constant
during the loading process. The plate may be elastically restrained
along the edges. Combinations of shear and longitudinal comptesaion
vere computed for three simply supported plates of 24s-T4 aluminum
alloy, reduced to stress-ratio form, and compared with the known
interaction curve in the elastic region. Departures from the elastic
interaction curve were found to be slight, provided the coordinates of
the interaction curve were modified to allow for variations in moduli.

INTRODUCTION

. The combinations of shear and direct stress in the elastic range
that will cause buckling in an infinitely long flat plate were pre—
gented in reference 1. The combinations proved to be given with high
accuracy by the formula

2
R, + Rg =1 (1)

where R, is the ratio of compressive stress when buckling occurs

"under the combined loading to the compressive stress when buckling
occurs under compression alone and Rg 1s the ratio of shear stress

when buckling occurs under the combined loading to the shear streas
when buckling occurs under shear alone. Tne interaction curve

(a parabola) represented by equation (1) was shown to be largely
independent of any rotational elastic restraint along the edges of -
the plate. : :
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In the plastic region, solutions have already been obtained for
the buckling of an infinitely long flat plate in compression alone
(reference 2) and in shear alone (reference 3). The purpose of the
present paper is to obtain the corresponding solution for any combi-
nation of compregsion and shear when applied together. Since the
differential equation for plastic buckling in this case has nearly
the same form as the corresponding equation for the elagtic buckling
of an orthotropic plate, it might be expected that the solutions would
be gimilar in the two cases. Balabukh, whose work is discussed in
reference 4, concluded that for elastic buckling of an orthotropic
plate equation (1) still applies with good accuracy. Ths solution to
the present problem was sought, therefore, in the same general form
as equation (1).

Plagticity theory in its present state is unable to deal with
problems in combined stress in a general way. However, Ilyushin has
shown (reference 5) that if combined stresses are applied in such a
way that thelr ratio is a constant during the loading process, the
combination of stresses may be treated as though it were a-single
streas. Thus, the theory of plastic buckling already derived is
applicable to the present problem provided the ratio of shear to
compression ig constant during loading. This condition 1s often met
or approximated in practice. The use of the deformation theory of
plasticity in buckling problems has been Justified by Batdorf
(reference 6).

SYMBOLS

Ox applied direct gtress, positive in compression
T applied shear stress
(o gtress intengit (Jr 2 4 2 )

i 81ty Ox 3
E elagstic modulus
Eq secant modulus at stress intemsity oy
Ey tangent modulus at stress intensity 04
k coefficient in buckling formula, a function only of

length—width ratic of plate and elastic restraint
in the elastic range and also of stress in the plastic
range



Subgcripts:

C

pc

Ps

plate width
plate thickness

' 3
bending stiffness of plate in elastic range (Eg—>

gtiffness of restraining medium

magnitude of elastic restraint along parallel edgeS'<%$E>

half wave léngth of buckles

angle of nodes with normal to plate edges (see fig. 1)

compression
shear

pure Compressi;n
pure shear

under combined gtress

INTERACTION CURVE

In the plastic range, the critical stress for pure compression
is shown to be of the form given in the equation preceding equa—
tion (28) of reference 2:

(5x)0 = kpo B0 = Zelpo xD
pe PG 4oy PC O E 2y
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Similarly, the crltlcal gtress for pure shear is shown to be of the
form given in equation (12) of reference 3:

x°D1 . (Es)ps 72D

a = “ps %)
P b2h P E %n

In these expressions the subscripts pc and ps refer to pure
compression and pure shear, respectively. The values of k depend
upon the aspect ratio of the plate, the conditions of edge restraint,
and the stress when the plate is stressed into the plastic region.

When compressive stress 0y and shear stress T are applied

simultaneously, as they are congidered to be in-this paper, they
may also be expressed in the same form

_ ‘ (ES)gi ‘JIED
X (¢] E b2h

(Es)g, x2D

where the subcript o5 signifies that the secant modulus is to be

taken at the gtregs intensgity gy = gx2 +'372. The values of k,

and ks depend on the ratio of ox to 7 1in a manner shown in

the appendix.

The stress ratios are

Ux kC (ES)O— .
C =
(UX)pC kpc (ES)PC )
b LT _K (Es ),
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For numerical calculation, a series of plates was selscted,

he first of which would buckle in the elastic range, with succesgsive
lates buckling at higher and higher stresses up to a stress somewhat
eyond the yield stress. The plate material was taken as 24S—Th
gluminum alloy with a yield stress of 46 ksi. The edges of the
gplates were agsumed simply supported. Calculations for critical
combinations of applied shear and compression were made by an energy
method, details of which are given in the appendix.

Results of the calculations for three plates are shown in
figure 2. When R, and Ry are used as coordinates, the curves

of figure 2(a) are obtained. When R, and R, are modified to

allow for variations in moduli, the curves of figure 2(b) are obtained.
When plotted in this way the separation of the curves is appreciably
reduced. ‘

’ 2
The plate with the lowest value of 352- buckles elagtically;
b<h
the modulus ratios are therefore all unity and the corresponding
interaction curve is the parabola of equation (1). The plate with

the intermediate value of 2D buckles-elastically in pure compression
2
b“h ,
but plastically in pure shear; the corresponding interaction curve
fallg slightly below the parabola in figure 2(b). The plate with

the highest value of ggﬂ buckles plastically for all combinations
. b<h
of shear and compression and its interaction curve falls gtill
farther below the parsbola. in figure 2(b). The sum of the abscissa
and the square of the ordinate (see equation (1)) is always unity
at the ends of the interaction curves but may differ slightly in
between. For the top (elastic) curve, the sum is always unity;
whereas, for the bottom (plastic) curve, the sum may drop to 0.95.
Since this difference is of the same order of magnitude as the
accuracies in knowledge of material properties at very high
resses, the difference is not of too great consequence. As a ‘

practical matter it seems advantageous to set up the algebraic
lation ' ,

v .
e e
8 o, = s o,

R

|
’.—J
—~
o
~

hich applies to the top curve of figure 2(b).
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By use of this relation, it 1s'bossible to discover whether
any given combination of stresses gy and T will cause a plate to

e

buckle. The stress intensity o3 ==‘é?2 + 372 is known; therefore,
(Es)Ui is known. The values of the stresses (dx)pC and T

Ps

under the two simple loadings can be found from references 2 and 3;
at the same time the moduli (Eg) and (ES)P are also determined,
. pc 8 :

These quantities are substituted into equation (2); the plate will
or will not buckle depending upon whether the value of the left-hand
side of equation (2) is greater or leas than unity.

TLLUSTRATIVE PROBLEM

.A simply supported plate of 24S-T4 aluminum alloy with a value

2
of £§D equal to 9000 psi 1s considered. The stress—strain curve
- b“h

E
of the material gives values of 3? ‘ag in curve A, figure 1, of

reference 2. A longitudinal compressive strésé of 20 ksi is applied
to the plate and the shear stress necessary to buckle the plate is
required. )
From reference 2, the value of (cx)PC is found to be 32 ksi
with (E%L) = 0.94%. From reference 3, the value of T is found
pC

E Ps
to be 27.6 ksi with (%f) = 0.62. . The value of R, can now be
)
found to be %% = 0.625. Equation (2) therefore gives
62' 2 Iy
Rg .02 | _ 4 —~ 0.625 0.9%
(%) | (3)
B:‘Ui E o1
Eq | |
In order to fix the value of = > a value of o5 must be assumed.
o1

The value of o3 will fall between the values of o3 for puré

-
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compression and pure shear; that is, 32 <oy < 48 ksi. As a first

approximation, o; was taken as 4O ksi; therefore, (Eﬂ) was found
' Qs
_ ) i

equal to 0.84. Upon substitution in the formula, Rg is found to be

equal to 0.74. The shear stress is then

= RgTps

0.74 X 27.6

i

20.4 ksi

The combination of oy and g results in a stress intenaity

o3 0.'2[2 + 3T2

1(20)2 + 3(20.4)2

4o.6 ksi

No significant change will result if the problem is reworked with
the new value of o4 .

CONCLUDING REMARKS

A solution has been obtained for the buckling stress of an
infinitely long flat plate under combined shear and longitudinal
compression in the plagtic region. A detailed calculation for a
number of simply supported plates made of a typical aluminum alloy
shows that an approximate algebraic relationship, equation (2), will
suffice for determination of buckling stress. '

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., September 26, 1949
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APPENDIX
ANALYSIS

Energy expressions in terms of Cartesian coordinates (x',y').—

The general expression for the net strain energy of a supported
plate in the plastic region is given in reference 2 as formula (18).
If only longitudinal compression Oy and shear <+ are applied, the

separate expressions for the strain énergy Vy and the work T

during buckling become, in terms of the deflection w at the
point (x',y') in a Cartesian system,

v, = DL ‘ c 3Cw 2-__ Pw_ % + 0 2w \? + %% F°w
17 5 | 1{3g12 2 3x12 oxtoy! 3|\ oxtoy! dx1° Jy 12
2] 2
" 6 W dJC'd.y' } (Al)
dy'2 :
T=h A ; or QW OW_ | gyrgyt (A2)
Bl ||x(S) e S |

- where the values of the plasticity coefficients are as follows:

Plasticity Pure - Pure : Combined
coefficient compression . shear compression and shear
| E ' ﬁ | Bt
1 . 35t
C + = = 1 1 - 1 —-=
1 L7k Eg C 2 Eg
1+ 3(6‘) .
X
3 L
> . E
Co 0 0 Ox — =t
E
T2 S
1+ 3(3;) .
2
23
> E
C3 1 1,15 1 - 2% {1 —F
2 2 Eg 1+ 3é§_>




, in addition, a restraining medium of rotational stiffness S 1s
along one longitudinal edge of the plate, the strain energy Vo in

he restraint itself is taken to be, from expression (19) of
eference 2,

. : o) :
o eli(a) e w3
y yt-—-ylo ’
where
¢ = 4Sb
Dl

if y'o is the edge coordinate.

Energy expressions in terms of oblique coordinates (x,y).— Imn

order to obtain corresponding energy expressions in oblique coordinates,
apply the transformation '

x? x —y sin ¢
> (AL)

yt =y cos ¢

/

where the two coordinate systems are related as in figure 1. 1In the
oblique coordinates, Vj, T, and Vy become

- : o - N2
v, = Dt - 2 b [ Pw 1 (P

+ (__Ci + Lzzaﬁﬁ)(%%_)g +( C3 .2 tan%)azw 32w
v

cose¢ cosQ¢ cosa¢ 0032¢ 3x° 8y2

Co \ 2y 32 tan @ 2w P :
% tand tan @ _ 2 \B ¥oal dxdy cos P
+1(7;;;7#Q+'4C3 cos § _ cos ¢/ax2 oxdy ¥ COS3¢ aye axa_J

(A5)
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2 |
‘?-‘='12l”(°’”27 an 8 )(%) + oy B Gpfenay con 0 G

- _Ds = '/E’W) + tan ;b(aw> dx A
- | ax (A7)
2b, cos f | |cos p\ay. vy, dx y=5,

Energy relation at buckling.— When buckling occurs, the energy

relation is as follows:

T = V.

. 1 + Vé (A

A -

Deflection surface.— In order to obtain a practical solution the

deflection function or a reasonable approximation of it is required.
As in references 1 to 3, the deflection surface 1s taken to be

‘

w = &L_..]:. + 11 + E_ cosg ny cos X
2 \p.2 k4 2 by
1

When this expression with its derivatives is substituted into the
expressions for T, Vi, and Vo,

2
n“b.h 2
T=(Ux+2'rtan,0,5> 1 X +l-—_2...52+ .]—'._i€+.]; cos P
Y 120 8 2/ 2 42 2
V—D'“hblc Co t ¢+eet2 t4> 2,122
l_?2x3 (l‘— o tan | 3 an\¢+ anﬁ. 120+8-—~T[2
Lo\ Lo 1 fi_ale,f1_4\ .1
2 g2 2 2b, 3 cos*g [\8 x2 2 .2 2

I | oy
1 26) (5 _2)\2 . (1 _ 4)e, 1L
TN c032¢(2C3 + 6 ten p) (24 1[2)6 * (2 It2>€ T2
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'V-2 = ﬂ2D' €\
2b; 3cos3g

Y

Critical combination of stregseg.— When the foregoing values

of T, Vi, and Vo are substituted into equation (A8), the following
equation is obtained: ‘ '

by \2 : | P, (€)
oy + 27 tan B = (—%) <cl—-02 tan¢+2c3tan2¢+tan”¢ + ;
| ' by L
(T) COS¢
2 2)
P BIITD L (o) D! (19)
where ’ , \
1_1\.e2 1_2) 1
(-2 (-2 1
Fi(e) = 5
1.__+.1___2_)€2+ L_ 4\, 1
120 8 2 2 2 2
- ? (a10)
(_5___2)2 ;__h_)e 1
ok ~ B¢ 27 2 2
F2(€) =2 >
=, 1_2)\:2 1 _ h>€+ 1
20 8 2 2 2 2
; )

b
cos ¢

Replacement of b; by in equation (A9) gives, for the

condition of buckling,




12 - | ' NACA TN 1

, ) F.(¢€
Oy + 21 tan @ = 2201—021:811¢+203tan2¢+tan)+¢ +-_l-'.(_2.
A p\2
A
2
+ (03 + 3 tan2¢>F2(e) "ED’ (A11)
b2h | |

When T 1s considered as a given constant, the wave length )

, do.
may be adjusted to make o, & minimum from the relation —=%— = 0,

> h)e
’ A
which gives ’

‘

L s

(h)e [ F1 (¢)
\ VCl — Cp tan B + 2C5 tan2¢ + tan*p

(A12)

for elastic restraint € independent of buckle wave length A.

2
Subgtitution of this value of (%) in equation (All) to obtain the

expression for oy gives

oy = |2 \/Fl(e) VC]_ ~ Cp tan § + 2C5 tan®p + tankp

+ (03 + 3 ta_n2¢)F2(e) :23? — 27 tan ¢ (A13)

The angle ¢ of the waves may likewise be adjusted to make oy &

~

_ o .
minimum from the relation X __ - 0, which gives

o(tan B)
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3 ~1
2 tan>@ + 2C; tan ) 5 Cs

— — JFL(&) + 3Fp(e)tan § = — (a2k)
V@l - 02 tan ¢ + 203 tan2¢ + tan”¢ . n DF v
| ' b2h

In the elastic range, equations (811), (Al2), and (Al4) reduce to

Ox

2
&) ;
F : 2
+ 21 tan ¢ = A " + 1(5) + 1+ 2 gin2 Fg(e) D
= cos*g (h)g ~cos“p b2n

(2 = \fru@) coies
[2 \/I{(T—) ¥ 3Fe(e)]’t3§n p = ﬂ_—%—g

b°h

which agree with equations (B7), (B10), and (Bllj, respectively, of
reference 1.

Computation of interaction curveg.— In order to find the shear

stress T that will cause buckling for a given compressive stress oy,

the following procedure was used. Simply supported plates of ohs—Th
aluminum alloy were selected for the computation; hence, ¢ = 0,

2

F1(¢) = 1, and Fo(e) = 2. Three values of £§D were;selected; for
: b"h

each value, equation (Al4) gives the relation between the angle ¢

and shear stress 7. Pairs of values of (¢ and T were then
inserted by trial and error into equation (Al3) until it was satisfied.
Both the values of Oy and the corregsponding + were then divided

by Opec and Tpgs respectively, to obtain the stress ratios. A
complete interaction curve was obtained for each of the assumed values
of EEQ.

beh
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Figure 2 shows the results of the calculation. When the stress
ratios are used as coordinates without making allowance for changes
in moduli, the interaction curves are as shown in figure 2(a). When
the stress ratios are modified to allow for changes in moduli, the
interaction curves are as shown in figure 2(b). Since the separation
of the curves is appreciably reduced by use of the modified coordi-

nates, curves of the type shown in figure 2(b) are recommended Ffor
uge.
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