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SUMMARY

Baglic general equations governing the three-dimensional compres-
sible flow of gas through a.compressor or & turbine are given in
terms of velocity components, totel enthalpy, and entropy. These
equations are used to determine the radial motlon of gas through an
axial-Tflow compressor or a turbine and the corresponding effect on
the radiasl variations of the state of gas between successive blade
rows 1n the case of steady, axlally symmetricel flow. The aspect
ratio of the blade row is found to be an important factor in the cal-
culation when the effect of radlal motion is included. The usual
method, which negleots the effect of radial motion, is shown to be
good only for the limiting case of zero blade-row aspect ratio, that
1s for the ocase where the exial length of the blade row ls much
larger then the redlal length of the blade row. A sinusoidal radial-
flow path 1s found to give the effect of radial motion on the radial
variation of gas state between blade rows as small as likely without
any discontimiity in the curvature of the streamline end is sug-
gested for use 1n deslgn calculations.

The equations are applied to investigate the maximm ocompatible
number of the radiel variations of the gas properties between
successlve blade rows that a designer is free to specify. The vari-
ous ways of teking up these degrees of freedom and the different
types of deslgn obtalned ere discussed. A general procedure is given
to calculate the characteristics of a compressor or turbine of any
glven type of design, taking into account the effect of radial
motion of gas. Numerlcel calculations made for two types of com-
pressor and one type of turbine show that even in the case of non-
tapered passage, there 1s apprecisble radial motion and that the
corresponding effects are of significant magnitude and should be
taken into account in design.
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INTRODUCTION

The design of a compressor or & turbine hereinafter called a
turbomechine may be divided into two phases. The first phase con-
cerns the type of design to be used or the determination of the
most desirable variations of velocity and thermodynamic propertiles
of the gas in planes normel to the axis of the machline betwsen
successive blade rows. The second phase concerns the design of
blades that will give the desired varlations of veloclty and other
properties of gas in these planes. In the first phase, the condi-
tion of radlal equilibrium, that is, the radial component of the
equation of motion, must be used. The flow of gas in & turbo-
machine is curvilinear; it is curved not only by the whirling
motion of gas, but also by the radial motion of the gas. The equa-
tion of motion then specifies the radiel pressure gradient required
to provide the centripetal force to maintalin the curved flow.

In figure 1l(a), a curved stream surface over four stages of a
multistage turbomachine is shown and in figures 1(b) and 1(c) are
shown its intersections with planes normal to and conteining the
axis of the machine, respectively. The radial pressure gradient
due to the whirling motion of gas is always positive, whereas that
due to the raedial motion of gas may be elther positive or negative
depending on whether the curvature caused by the motion is elther
inward or outward from the axis of the machine at the point of
consideration. If the gas lying on & normal plane between two
blade rows, such as station 1 in figure 2(a), is considered, the
equation of motion gives (neglecting small terms) -

2 2
1% o o T gl geix
p or r Z Az € r 2 dzz

wvhere p and p are the pressure and the density of the gas
particle, respectively, r and 2z are the radial distance from
and the distance along the axis of the gas particle, respectively,
and V.., Vg, and V, are the radial, tangentlial, and axial
camponents of the veloclity of the gas particle, respectively.
From this equation it is seen that the effect of the two motions
on the radial pressure gradient is qulite similar. The effects of
the two motions are both proportional to the produci of the square
of the velocity and the curvature (1/r and d%r/az“, respec-
tively) involved. Even when the radial motion involved is small,
if the axial velocity is high and the blade-row aspect ratio 1s
large, the second term in the equation is of comparable magnitude
to the first and should be included in the calculation. In the
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past, however, the radial motion and lts effect were usually
neglected (references 1 to 3). (Such methods of calculation will
hereinafter be referred to as the "simplified-radial-equilibrium
approximation.”) In reference 1, a general form of the Euler
equation is presented but is not used later on in the through-flow
analysis because the gimplified-radial-squilibrium consideration
may be expected to hold sufficlently far downstream of a single row
of blades where the radial velocity of the gas becomes small. For
this reason, this approximation is adequate to predict most of the
experimental results avallable on the radial varilation of the gas
gtate far downstream of a single row of blades (references 1

and 3). No satisfactory data or theory exist for the general case
of a blade row within a closely spaced series of blade rows, as in
a multistage compressor or turbine where the effect of radial
motion may be quite significant. In the present paper, the effect
of the radiel motion of gas 1s considered in applying the radial-
equilibrium condition to turbomachine design.

In the ANALYSIS, the general equations governing the flow of
gas in axisl-flow turbomachines are developed primarily for the
cage of steady axially symmetrical flow, which corresponds to the
limiting cage of an infinite number of blades. The blades are
replaced in the calculatlion by an appropriate force field. A
method of solution involving the use of the basic equations in
finite-difference form is discussed. Expressions are developed
for the use of a large number of successive axiasl stations and for
the use of three stations for a stage in which an appropriate
radial-flow path 1s assumed.

The equetlons are applied to Investigate the maximm mmber of
radiel variatims of the velocities and other properties of the gas
that & designer is free to specify in any particular design. The
various ways of using these degrees of freedam and the different
types of design obtained are discussed.

In the last part of this report, a general procedure of cal-
culation for any type of design is given. It is used to calculate
two types of compressor and one type of turbime with the purpose
of investigating the effect of radial motion on design calculations.

This investigation, conducted at the NACA Cleveland laboratory,
was completed in April 1948.
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SYMBOILS

The following symbols are used in this report:

.. Te=Th
aspect ratio of blade row, T

veloclty of sound
1ift coefficlent
specific heat of gas at constant pressure

specific heat of gas at constant volume

diffe;t'entiatiori with respect to time following motion of gas
force acting on gas particles by blades per unit mass of gas
radial componént of %

tangential component of 7

axial component of F

form of redial-flow path

mase Tlow per unit flow drea perpendiéular to axis of
turbomachine

form of radial-displacement distribution

total enthalpy per unit mass of gas, <h + g)
enthalpy per unit mass of gas, <u + §>
constant

axial length of blade row (fig. 2)

Mach number of gas

mass of gas

S20T
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n polytropic exponen’é of actual expansion or compression

process of gas
P static pressure
Q external heat transferred to gas particle along its path of
motion per unit mass per unit time
R gas constant
r radius measured from axis of turbomachine
r, meen radius of radial-flow path (fig. 2(a))
» o= r
T4~Th
8 entropy per unlt mass of gas

s.r.e. simplified-radial-equilibrium approximation

T absolute stream temperature of gas

t time

U magnitude of U

T vector velocity of rotor blades at radius r

u internal energy per unit mass of gas with 0° absolute as
base temperature

v magnitude of v

v absolute vector velocity of gas

v, radial component of V )
L tangential component of V

v, axial component of ¥

W magnitude of W

W vector velocity of gas relative to rotor blade

e e i ey —~ -
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We tangential component of Ww
y maximum radial displacement over blade height
2 distance along axis of turbomachine
a angle between relative velocity of gas entering rotor and
axis of turbomachine
B angle between absolute veloclty of gas entering stator and
axls of turbomachine
y retio of specific heats, (cp/cv)
A radial displacement across rotor, (rp - rp)
E2‘ 1
tS) dimensionless turning,
r.U
. 1°1,t
1 small-stage or polytroplc efficiency
2] angular distance measured from scme fixed radial line
B viscosity of gas
v kinematic viscosity of gas, (u/p)
¢ angular momentum about 2 axis per unit mass of gas,
(I‘Ve)
p mess density
o blade solidity
¢ dissipation of emergy due to viscosity per unit volume of
gas per unit tjime ,
Q function
W angular velocity of rotor
Subscripts:
1 in front of rotor

2

behind rotor and in front of stator

—————

1035
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3 behind stator and in front of next rotor

4 behind next rotor

c satiasfying continuity equation .

e satisfying radial-equilibrium and total-enthalpy equations

h at hub |

1 any :sltation

J station short distance downsiream of station 1

k any station in front of rotor

L 1imiting value

1 any station in front of stator

m uged with r to indicate mean radius

n used with r +to indicate radius where maximum radial
displacement occurs

8 simplified-radial-equilibrium approximation

t at tip

ANALYSIS .
Basic Equatlons

The state of gas in three-dimensional motion is completely
specified by its absolute vector velocity V, or its three com-
ponents V,, Vg, and V, referred to cylindrical coordinates v,
6, and 2z, respectively, and two thermodynamic properties. These
last two properties are usuvally chosen as the static pressure p
and the static density p, but herein it is more convenient to use
the total enthalpy per unit mass H and entropy per unit mass s,
which are defined by

VZ

H=h+—2- (1)



http://www.abbottaerospace.com/technical-library

8 NACA TN No. 1795

Tds = du + D ap~1 (2)

For the range of temperature and pressure encountered in compressors
and turbines, p, p, and T are accurately related by the fol-
lowing equation of state

= pRT (3)

The Navier-Stokes equation of motion for a real fluid is
given, in vector form, by

W_5-1ly +E|:VZV lvv-"\?] 4

o7 s up + L + 2R (4)

The energy equatlon for a real fluid is given by (refer-
ences 4 and 5)

Du, Do~ _q.8
S TP =9+ 5 (s)

The continulty equation can be written as

L4y (60 =0 ()
or
V-7 + 2 log, p £ 0 (62)

When the preceding equations ars combined, the following four
general equations are obtained (for derivation, see appendix A):

VH=f+TVs+Vx(VxV)-~gl—tT+ vI:VZW-T+%V(V-V)] (7)
]?EH Q+Q+ %E+V- +v|:v2fr+_v(vv):| (8)

1
"
Hlo
+
=)
d hsy

(9)
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= 1 D D /8
V'v+;:‘iﬁl°seT"ft"<§>=° (10)

Equation (7) glves the gradient of total enthalpy in terms of blade
force, viscous forces, velocity, and other properties of the gas.
This vector equation gives three scalar equations in three dimen-
sions. Equation (8) gives the rate of change of total enthalpy of
gas along a streamline in terms of rate of beat addition, rate of
work done by blade and viscous forces, and so forth. Equation (9)
gives the rate of change of entropy along a streamline in terms of
rate of extermal heat addition and of dissipation of energy due to
viscosity. ZEquation (10) gives the continuity relation in terms
of veloclity, tempesrature, and entropy of gas. It should be noted
that of the six scalar equations given by equations (7) to (10)
only five are independent, becausie they are derived from equa-
tions (4) to (6), among which equation (4) yields three scalar
equations, giving a total of five independent equations. (The
ener%y)r§lation.is used in the derivation of both equations (8)
and (9).

Steady Axially Symmetric Flow

Axial symmetry, that is symmetry about the axis of rotation,
can be assumed to exist sufficlently far downstream of any blade
row and 1s true everywhere for the limiting case of an infinite
number of blades. This assumption is usually made to simplify
the analysis. The blades are then replaced by & volume distribu-
tion of forces, the magnitude of which is obtained by maintaining
constant the product of the number of blades and the resultant
force at any point on the blade as the number of blades is
increased. (The resultant force is the difference between the
forces on the two sides of the blade.) That is, the resultant
force acting on the gas by a blade element at any radius is con-
sidered to be evenly dlstributed over the stream sheet between
two blades at that radius. Reference 1 shows that for lnccmpress
ible and frictionless flow the value thus obtalned gives an aver-
age value with respect to the coordinate 6. Because the number
of blades is usually large, this assumption is considered reason-
able for steady operation of turbamachines, and particularly for
this investigation. Thus all partial derivatives of gas prop-
erties with respect to time and angular position 6 will be
taken as equal to zero. The state of gas is considered as a
function of r and 2z only, that is, the problem is reduced to
a two-dimensional treatment. With this simplification and by

e e - e vk —pe v e e e S = —— = e A e At st g <

e — e = A - ———— e~
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transforming V2 ¥ iamto [v(v-?) - ¥ (7 x '\'r):], there are

o'bta.ir(xed. the radial, tangential, and axlal components of equa-
tion (7):

a-—H-=F Ta—s- V_B(I‘Ve) VBVz_vavr
o TTTRTT aw T ta e
2
R G A PN 3%, , 3%, a)
3r 2 3pe Or 3 drdz  3z2
2
V. 3(xVy) v, 1 %(xvg) 1 3(xvy) P,
°=Fo T T Tz m TV Tz F e Gt
* dr r 3
()
and
OH 8 vy oV, Vg

EoF, + T2 -V
Sz 2t Tt ryy Tt :

4 Fry) L4 ¥, _ v, , 3%,
3r Oroz 3 3,2 drdz 3r2

+ v

(7¢)

In the radial equilibrium equation (7a), the relative impor-
tance of the various terms depends malnly on the type of design.
The radial force exerted by the blade depends on the twist and the
taper of the blade in the redial direction. The radial variation
of entropy depends on the radiasl variations of external heat sub-
traction and of dissipation of energy due to viscous effect. 1In
ordinary campressors and turbines, the amount of heat transfer l1s
small per unit mass of gas flow, and its effect on the radial var-
iation of entropy is negligible. But in turbines with blade cool-
ing, the heat transfer may be quite large and it may give a signif-
icant rediel variation of entropy, which must be taken into consid-
eration. The Increase of entropy dus to dissipation of energy by


http://www.abbottaerospace.com/technical-library

seot

NACA TN No. 1795 11

viscosity 1s small and may be assumed to be the same at all radii
over the main portion of gas outside the boundary layers at the
rotor drum and the inner wall of the outer casing, The third term
on the right-hand side of the equation is equal to zero for free-
vortex type of design, in which rVy is set constant at all radiil,
and has a nonzero value in other types of design. Similarly, the
fourth term may have a nonzero value if constant axlal veloclty at
all radii is not specified in design.

The fifth term represents the effect of radlal motion on the
radial-equilibrium condition. In the gap between two blade rows
it is proportional to the product of the square of axial velocity
and the curvature of the flow path in the axial plane and 1s vory
similar to the effect of whirling motion represented by Vg /r.
If the curvature caused by radlal motion is positive, the effect
18 to decrease the radial gradient of total enthalpy or pressure
caugsed by the whirling motion of the gas. If the curvature is nega-
tive, the effect is to intemnsify this radial gradient. For design
wlth large blade height, short axial blade length, high whirl,
and high axial velocitles, 1t will be shown that the effect of
radial motion is large and should be consldered in the calculations.

The last four terms In the brecket are usually of the same
order of magnitude as the preceding veloclty derivatlives and
because they are multiplied by v, which is much emaller than
other multipliers (VZ .or Ve), the whole product 1s much smaller
than the other texrms in the equation and may be neglected. The
same argument applies to similar terms in equations (7b) and (7¢).
Hence equations (7a), (7b), and (7c) may be simplified to

- 3 To3(zTo) av, v,
ot Tyt tey "2y (72)
V, (V) 3V,
0=Fg-3T % "2 5, (7e)
and
oH o8 B'Vr _ v, Mg
3, =F, + T S5 + Vo =— e Ve . + Vg 3: (7%)

@ n v e m—— . T i —— s s = e 8 e, e e e e ———— ———— < A = e e ~ =
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Among the terms on the right-hand side of equation (8),other
than the first term (the importance of which depends on whether
there is blade cooling), V-F 1s the predaminating term in passing
through the rotor. Whereas in passing through the stator, all the
terms on the right-hand side are of the same order of magnitude.
However, by the use of the equation of motion, the energy equation
for steady flow, and the assumption that the heat generated from
the frictional work remains in the stream, IH/Dt can be expressed
for steady axially symmetrical flow in a more useful form in terms

D(I‘VQ)
of only Q, @, and —pr— (see appendix A):

Dt

(8a)

—=Q+

Dt

In equation (9), the two terms are of comparable magnitudes
in ordinary compressors or turbines. With blade cooling, the first
term is predominate. For the axially symmetrical flow, 1t reduces

to

RN P PO NN RO
ﬁ”i*'fz("éi" +e\7) v2\ 3/ *\8:z/) *\3:z *tor

2
2 2
N\ — d(xV,.) oV
T =5 '%[% = +3zz:l (Se)

For axially symmetrical flow, equation (10) reduces to the
following

o(xv,) oV
1 r z 1 d e)
T or +az+7_1<vrarlogeT+VszlogeT>

R YO R

Among the preceding six equations, equations 576.3 to (J.Oa; ,
only five are independent, because both equations (8a) and (9a
represent the energy relation. For nonviscous flow, there is an

— —— - .- - - - =

1035
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additional relation in that the blade force is normal to the sur-
face of the blade and consequently ls perpendicular to the relative
velocity of the gas, that is,

F-(V-T) =0 (11)

Then equation (8a) can be obtained by using the motion and energy
equations and equation (1l). (See appendix A.) Consequently,
either equation (8a) or (11) can be considered as representing this
additional relation, giving, in all, six independent equations
(equations (7d), (7e), (7£), (9a), (10a), and either (8a) or (11)).
For such flow, equation (9&5 reduces to simply

Ds _Q
o3 €

For viscous flow, equation (1l) is no longer true because the
force exerted by the blade is now inclined from the direction per-

pendicular to the relative veloocity of the gas by an amount to be
determined from the shearing stresses of the gas adjacent to the
blade surface, Under the present consideration of axially
symetrical flow it 1s found desirable to retain equation (8a) as
the energy equation and to obtain the entropy change from H, TV,
and the polytroplic exponent n of the actual compression or
expansion process:

P P2 = constant (12)

Then the rate of change of entropy along the streamline is (see
appendix A)

In equation (13) n is considered as known. In a given machine,
n may be obtalned directly from measured pressure and temperature
data. In a new design, n mnay be obtained from the assumed poly-
tropic efficlency used in design calculations:

For the compressor

2

or n =

=3
n

=}
|2
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For the turblne

B
=

-
-1
L-a5s

or n=

<[]

Because the change in 8 1s usually small compared with the changes
in H and V, the preceding method of determining s seems to be
adequate to account for viscous effect in calculating the pressure
and density change along the streamline for the present problem.

Method of Solution

If equa.tions (1), (2), and (3) are considered as the relations

to express and T in terms of H and 8, then equa-
tions (74), (7&), (7€), (8a), (Sb), and (10a) are six independent
equations in the case of nonviscous flow, and equations (7d), (7e),
(72), (8a), (10a), and (13) are six independent'equations in the
cage of viscous flow both involving eight variables V,, Vg, Vj,
H, 8, F, Fg, and F,. 'In the direct problem, in which the
shape of the blade profile, the shape of the lmmer and outer wall
of the gas passage, the rotor speed, the power input, and the
entering and exit conditions of the gas are given, it is theoret-
ically possible to determine the variatlons of these quantitlies
throughout the machine. In the inverse problem, in which the
desirable variations of two of the gas properties are pre-
scribed, it is also theoretically possible to determine the varia-
tions of the other propertles of the gas and the blade force
necessary to achieve the prescribed variation of gas conditions.
However, it seems that no gensral analytical solution of these
equations is possible in elther problem. Two numerical megthods of
solution are therefore suggested. In the first method, the
previous equations are expressed in finite-difference form and
applied to successive axial statlions that are a short dlstance
apart. In the second method, only three stations are used for
each stage in which an appropriate radial-flow path is assumed.

Method of finite difference for successive axial stations.
At each station, if IV, 1s denoted by ¢, equations (7d), (7e),
and (7f) can be written as

1035
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ov.
3-=F +TB— -5-35+ z(g-E '5£> (7e)
.
0= Fe-—ra -—i,z-gé (7h)
and
ov. ov,
%:FZ+T2_+VI.(.§£ -b_.>+;%g;§ (71)

Between any two successive stations i1 and J +that are a
short distance apart (fig. 3), the change in total enthalpy is
given by equation (8a)

t
Hy(eg) - Ea(my) = o [ Eylny) - Ey(my)] + ft 1" Qat  (8v)

where (r) indicates that the gas properties at a particular sta-
tion are a function of the radial position of the gas particle in
that station. (It should be noted that due to radial motion the
radial position of a gas particle at any station J 1s different
from its redial position at the previous station i.) In passing
through the stator, ® = 0 and there 1s no change of H along
each streamline except from heat effect.

The entropy change between the two stations is obtained from
equation (13) (see appendix A):

v.2
n- ' Hy - —g-
53(z) - o1(ry) = R oy ke ——5  (1%)
i

H - &

Instead of integrating equation (10a), the continuity relation
between the two stations is readily obtained by equating the mass
flow at the two stations.

G,‘] rJ dl‘a = Gi ry dri (14)
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By expressing G in H, V, and s, equation (14) becomes (see
appendix A):
1

1 —_
7-1 e

2\7-t
VZ,J HJ-J-Z rJ dl‘J-‘: Z,i Hi-'—z— e ri d’!‘i

(142)

Equations (7g), (7h), (71), (8b), (132), and (14a) are now six
Independent equations relating the gas properties and hlade forces
at the two stations. In these equations, the heat-transfer term is
negligible in ordinary turbomachines and can be estimated in the
case of cooled blades; the temperature T 1s a known function of H
and V; and ry is obtained from ry and V. ;. Hence there

are only eight unknowns in Hy, 835 Vr,3 Ve“j, V2,30 Fr,,j:
Fg,j» 8nd F, 4 (those at the first station 1 are considered

24
as known). For a given blade operating at a given speed, two
additional relations are known among the velocity components from
the tangent plane to the blade surface at the point (rJ y Z J)

because the flow of gas has to conform to the shape of the blades.
For a now design, the desirable variation of two of the elght
variables (usually one of the two is Ve) can be specified and the
remalning five determined from the preceding equations. It 1s to
be noted, however, that, in practlice, the radial blade force is
not essentlally an independent variable to be specified by the
designer, but is mainly determined by the actual construction of °
the blade to meet the aerodynamic as well as the mechanical-
strength requirements at different radii. The designer has to see
to it, of course, that the radial force to be obtained from the
blade actually constructed is consistent with that used in or
obtained from the design calculations. The procedure of calcula-
tion for this step-by-step method varies with the type of design,
the conditlons glven, or the two gas properties prescribed. The
calculation 1s gquite laborious and seems to be Justified only in
the process of actual design.

In order to obtain an over-all picture of the radial motion
in a turbomachine and i1ts effect on design considerations, the fol-
lowling method of using only three stetions for each stage with pre-
scribed radial-flow path may be used. ’
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Method of prescribed redial-flow path, - In a turbomachine,
the radial motion of the gas is caused by three factors:

(1) Tapering of the annular passage elther at the immer or
outer wall gives the flow a radial displacement across the stage,
which is, of course, greatest in the Immediate neighborhood of the
tapered surface.

(2) Bven with a nontapered passage, a radial displacement
across the stage may be called for because of a variation in the
distribution of specific mass flow over the blade height.

(3) BEven if there is no radial displacement across the stage
(that is, the same particle occupies the same radial position at
the first station of each successive stage), there will, in
general, be radial displacement of flow within the stage. This
redial flow will then be oscillatory in nature, a radlal displace-
ment in the rotor being followed by an equal and opposite radlal
displacement in the stator. This radial flow arlses because of
the difference between the radlal variation of the specific mass
flow within the stage and those at the entrance and exit statlons
of the stage. (This radial displacement can only be avoided by
specifying zero or the same redial variation of specific mass flow
at all stations of the stage in the design.)

In gensral, the radial flow of gas therefore consists of a
gradual, generally monotone, radial motion due to factors (1) and
(2) with an oscillatory motion of period equal to the stage length
due to factor (3) superimposed on it. The radial flow caused by
these three factors will be- similar to that shown in figure 1.

The effect of the radial motion on the calculations arises chlefly
through the term JV,./dz in the radial-equilibrium equetion (7g).
This term 1s expected to be significant mainly because of the
oscillatory motion, which may require significant changes in V..
within a single row of blades. The case of oscillatory motion
within a stage with no over-all redial displacement across the
ptage will therefore be considered first. That is, the gas passage
is nontapered and the redial distribution of gas properties at the
entrence and exit stations of the stage is the same.

Because there is no blade force acting on the gas and there is
little time available for the gas to mix, the gas flowing through
the gap between two blades is under a constant pressure gradlent -
and consequently tends to move with the same curvature it acquires
while leaving the first blade. For straight passages, the maximum
and minimum points of the radial-flow path are likely to be

4 e —— e -
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gomewhere near the middle of the gap. (The intersecting curve of a
stream surface with an axial plane is herein referred to as “the
radial-flow path."” Because of axial symmetry, the radial-flow
path is the same in any axial plane.) The statlons between blade
rows are most conveniently chosen at these points. The stations

in front of the rotor, between the rotor and the stator, and behind
the stator are denoted by subscripts 1, 2, and 3, respectively.
(See fig. 2(a).) If r, and L represent the mean radial distance
of the flow path and the axial length of the blade row, respec-
tively, then the radial distance of the gas particle at position =z
is glven by

r-r°=-———r2;rlf(§) ‘ (15)

at atations 1, 2, and 3

0,1, 2

(o I3}

£(0) =£(2) =1, £(1) = -1 (16)

£'(0)=r'(1) =£'(2) =0

where f 1is a function giving the form of the radial-flow path and
the prime indicates differentiation with respect to z/L. It fol-
lows that

ar To - Ty 3 z
vrzvzaa-——z—fvzf'(i) (17)

at station 1, z =0,

oy Tp - Ty 1 ..

inasmuch as dV,/dz 1s practically zero in passing through the gap.
Similarly, at station 2, 2z =1L,
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Vr,z =0
and
ov. r, -
r 2 1 1
<-§Z— A = - ——2-——- vz’z ‘ITZ' f"(l) (188.)

Because f" (z/L) determines OV./dz or the effect of radial
motion on the radlal-equilibrium condition, it is desirable that
it vary continuously; this condition together with those of equa-

tion (16) suggests
£(2) -
L L

£7(0) = - %2, £"(1) = n2

Then

and equations (15), (18), and (18a) become, respectively,

ro - T
r-r°=-—2—2-]-'cos:'c% (19)
(3‘71.) -2 Ly (20)
0z 1 2 12 2,1

ov. To - Ty .2

ry _ _ *2 1l x
<‘a7>2‘ —7— 7 Va2 (20a)

For the sinmsoldal form of f£(z/L), the maximum absolute
value of £"(z/L) occurs-at z =0, L, and 2L, and is equal
to n2. Even if £"(z/L) is assumed constant between 2z = O and
z = L/2, thus minimizing the maximm absolute value of £" in
the intervel, the absolute value of f" equals 8., This assumption,
however, necessitates a discontinuity in f£" at z = L/2. The
values of n2 for the absolute values of £"(0) and £"(1) can be
therefore considered as small as is likely. The smooth varlation
of £"(z/L) and the minimization of the absolute value of £"(z/L)
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at the stations are reasonable assumptions provided that the radial
force exerted by the blade remains relatively small. In such case,
the sinugoidal curve is bellieved to represent the major harmonic of
the actual radial-flow path, and the maJjor effect of the radial
motion may be obtained through the use of this simple curve.

The radial-equilibrium equation (7g) may be written in terms
of (r; =-1r;) by use of equation (20)

dHy dsy aty

1 dVg,1 1 2 2
— —lac -1)i = - Iz
Ty T L&y YL g *Vzaa YT -

(21)
where

1=1,2,3

r.
Vhen =y 1is replaced by the dimensicnless variable ry' = <rt :_l rh)’

the dependence of this equation on the blade-row aspect retio A 1is
seen to be

aH, sy 1 b 4 < £ >
I

= _ +
arg? - Tharg'T (B Ty - Ty 0%y - Ty
Sl (1) L (rot - 1) 20y, L2 (21a)
* Vg + (17 2 (x 1 2,1 .

This form of the radial-equilibrium equation is seen to contaln a
term directly proportional to the radial displacement, to the
square of the axlal veloclty, and to the square of the blade-row
aspect ratio, If the blade-row aspect ratio is large or the axial
velocity is high, the effect of radial motion may be large even
though there is only a small amount of radial displacement across
the blade row.

This method is readlily extended to the case where there is an
over-all radial displacement across the stege due to tapering of
the passage or due to variation in the design from stage to stage.
In figure 2(b), the radial position of a gas particle originally

1035
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at ry in station 1 1s at rz In station 3. For the oscillatory
motion required within the stage, rp is not generally equal to

%’- (ry + rz). For the same reason stated in the previous case, it

is desirable to have the radlal-flow path comnsisting of a sinusoidal
curve superimposed. on the line passing through (zl, rl) and
(23, rz); that is

r,-r . r, +7T
_ 3 1z 1 _ 1 3 - nz
r=r +—p—7+3 <r2 — ) (l cos —L> (22)

v 1 Ty + T\ 2
- (Tf)i = (1" 3 (rz - ""'é"') f} V2,1

inasmuch as BVz/bz is practically zero in passing through the gap.

With this value of 3V,/dz, the radial-equilibrium equation (7g)
beccmes

dry ~ Tlar T 2dny7 Tz, Ay 2 2 12 2%

(24)

where

-

1=1,2,3

This equation is similar to equation (21). (If rz =1y, 1t

reduces to equation (21).) A similar eguation in dimensionless ry'
can also be obtained for this case by dividing r; by (ry - 1y)i.

At any point (z, r) within the blade region, the magnitude
of F, oconsistent with this sinusoidel radisl-flow path 1s obtained
from equations (7g) and (23):
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3 s t ot o, rz-r _ OV,
e TS V23t 5L 'z 3z

1 rl"’rs):r Tt 7z 1z aVz)
+-é-<r - =) TV, (Vy g cos T +slnF 5~ (25)

Degrees of Freedom 1in Design

Before starting to design a turbomachine 1t 1s necessary to
decide how the velocity and other properties of the gas should vary
radially at successive axial stations to give the best type of
design for the particular application. It is therefore necessary
for the designer to kmow beforehand the maximum compatible nuwber
of such variations that can be specified.

In the discussion entitled "Method of finite difference for
successive axial stations" it is seen that theoretlically radial
variation of two gas properties can be specified by the deslgner
at each axial station within the blade reglon with the blade forces
determined accordingly. In the free space between blade rows, the
propexties of gas remain constant along the streamline and no
arbitrary change can be specified. In current design practice,
the usual procedure is to specify the deslrable gas conditions only
at stations between blade rows (as well as before the first and
after the last blade row) and then either to select some standard
blade sections or to design them on the basis of prescribed veloc-
ity distribution to achieve the desired change of gas state across
the blade row. In elther way, one degree of freedom at the second
such station is taken up in going from the first station to the
second station. The designer is therefore free to specify only one
condition at each station throughout. the machine, with the exception
of one station, usually the entrance station to the first stage.

Ways of specifying degrees of freedam. - In this discussion
the following two fundamental equations will be used:

In the stations between blade rows, if the radial variation of
entropy 1s negligible, the radial-equilibrium equation (7g) reduces

to _
amy &y aby av, 1 v,
= - Yz,1

= —_—2 2
ary 2@y V2,1 Tary 32/, (26)

Ty
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Equation (8b) is applied to three successive stations of a stage
for the case where there 1s negligible heat transfer and is differ-
entiated with respect to ry

ﬂ+w<dﬁzdr2-d§l>-dﬂzdrz_dﬂ36r3
ary ry dry  dry ) drp dry - drg dry

The ‘following ways of taking up the degrees of freedom at
these stations between successlve blade rows are dlscussed.

(27)

(1) Constant work per unit mass of gas flow over the blade
heilght. This condition is usually specified in the design of &
turbomachine, It relates f after the rotor to its value before
the rotor in the followlrg manner

€2 (r2) = £ (r1) + 7y 4 By Uy (28)
or
at, ar, i ak, (250)
where 1y is equal to (£ - £4) at the blade tip and
ig also equal to ?gz -tq) at other radii,

Constent work over the blade height glives constant total-
enthalpy change over the blade height. If the veloclty at the
exit of a stage 1s equal to that at the entrance, this condition
also gilves constant static-enthalpy change over the blade height.

Under the condition of constant work, equation (27) reduces
dHl de dré _ dH3 drz

drl- drz drl drs drl

to

(272)

(2) Constant total enthalpy over the blade height:

gf:O (29),.
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This condition holds for the first stage of a compressor and will
hold for all succeeding stages if constant work per unit mass over
the blade height is employed. If a nonzero value of dH;/dr; is
desired, an initial preparatory stage must be speclally designed to
obtaln this value. In the last stage, however, it is usually
desirable that JH/Or be nearly zero.

(3) Free-vortex-type distribution of tangential velocity:

&£ oo (30)
or »
gi = ri Ve,i = K’l (3%)

This condition 1s commonly used in turbines and compressors. For
incampressible flow, in additlon to this condition, constant total
enthalpy and constant axial veloclity over the blade height can be
specified. But for compressible flow, radlal motion exists and

only one of the two additional condltions can be obtained in con-
junction with equation (30). (See NUMERICAL EXAMPLE AND DISCUSSION.)

(4) Symmetrical velocity dlagram, If vz,l = Vz,z and.
r =T, =T, the symmetrical veloclty dlagram glves

Vg,1 + Vg,2 =0T (31)
or
£ + by =0rF (31a)
Differentiating with respect to r ylelds:
at, at,
@ Yt C 2ur (31p)

If r{ #rp; or V2,1 # V,,2s ‘the symmetrical velocity diagrams
may be deflined by :

£, (v1) +; (xp) =or2 (32)

B e - - - - N e e ——————— v e e - —_— - -
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Then

at,  at,
Tt &, - 2ry (32a)

If Ve,s = Vp,1, and V2,3 = Vz,2 = Vz,1, the symmetrical velocity dia-
grem gives very similar flows through the rotor and the stator,
experlencing the same turning. The change in static pressure or
enthalpy is the same In passing through the rotor or the stator

and the stage 1s therefore often referred to as the "SO-percent
reaction stage.” Reference 6 shows that ths blade-profile loss

is a minimum with the symmetrical velocity diagram if the dreg-

1ift ratlio is constant.

(5) Constant axlal velocity over the blade height:

5 =0 (33)

At very low speed of gas flow with no change in demsity, the specific
mass flow 1s also constant over the blade height; therefore, there
is no radial flow across the blade row and equation (26) reduces to

g—ﬁ-;%gg-l%:o (34)
And in cese
E.o
then :

E-o

The equivalence of equations (33) and (34) breaks dowvn, however,
for current aircraft applications, in which cases the speed of gas
flow is high.

If equation (34) is substituted into the radial-equilibrium
equation (26), there is obtained
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ov, oV,
6?- - Ez— =0 (34&)

The left-hand side of equation (34a) is the tangential component of
£luid rotation V X V; thus equation (34) is a condition for
potential flow in the free space betwsen blade rows.

If it is desired to correct for the effect of the boundary
layers at the lnner and outer walls of the gas passage, Instead of
equation (33) an appropriate axial-velocity variation close to
the actual one may be prescribed In design:

avz
= = o) (332)

(6) Constant specific mass flow over the blade height. In
order to avold radial movement across the blade row in compressible
flow, it has been suggested (for exsmple, in reference 7) that
constant axial velocity be replaced by constant specific mass
flow

4G, 4G, 4G,
T T T

=0 (35)

Radlal displacement can also be prevented by the use of two condi-
tions instead of three

G d& 95

& i —@ (z6)

For designs using elther of these two conditions, the simplified-
radlal-equilibrium calculation is more correct. Designs employing
no radial flow have the advantage that the calculatlion does not
involve any radial dlisplacement across the blade row and that the
two-dimensional-cascade data can be directly applied. The equa~
tions for tangentlel- and axial-velocity distributions derived
.from these equations (equations (35) and (36)), however, are
difficult to solve and the conditions are lncompatible with tapered
passage In a multistage turbamechilns.

(7) Constant Mach mmber relative to blade. For a fixed ratio
of exlt to entrance veloclty relative to the blade, the temperature
or pressure chenge of gas across the blade row at any radius is
proportional to the square of the entrance Mach mumber of gas
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relative to the blade at that radius. It might therefore be
desirable to reach the Mach-number limitation at all radii. That
is, for the rotor,

MLZ = > = L4 5 J (37)

whers ML is the limiting Inlet Mach number for the blade. Dif-
ferentiating with respect to ry glves

aE ' a(r, v, )
o 51 -1, 2 1 6 1
(7-1) ML ‘d?l'= (1 +z—2—' ML > ( ,1 +V9 1 )+ 2w (Drl —-——:—-dl‘l
(37a)
For stator
2 2 2
V. Vv +V

2 2 %,0 0,2

M === 2 2 (38)

Differentiating yields
(7-1)%2%=(1+L§h'&.2> = (v, 2 + Vg,2°) (382)

Equations (37a) and (38a) may be combined with equation (26) to
eliminate H.

(8) Constant turning. If the maximm work for a given size is
desirable, the limiting turning value may be reached at all radii,
vhich will give, of course, a radlal gradient in total enthalpy
after the first blade row. This gradient may not be serious in a
single- or two-stage unit, but 1t may not be desirable to use it
for all stages of an eight- or nine-stage unit. For compressors,
the limiting turning may be expressed by (reference 2)
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v -V
6,2 0,1
—=——== = 9(0) (39)
Vz,1
or
Ve,z = 'V’e’l + (o) vz,l (39a)

where o is the solldity of the blade element at radius r. Dif-
ferentiating yields '

av dv, . av
dg,z 2 dle.,l +V, 1 a¢o) + (o) —22= L © (39p)
2 dry 1 Sl dry

(9) In multistage machines, similar variation in either tan-
gential velocity, axial velocity, or specific mass flow may be
specified at the similar stations of each stage

at, dabz ars

= (40)
dr; dry dn)
aWy,1 0,5 0z "
ar, Tr; ar;
or
a6y  deg ary (42)

ar,  drg dry

Stages of multistage machines designed for simllar variations of
gas properties from stage to stage are termed "typlcal stages.”

Types of design. - A large nmumber of different types of design
may be obtalned by differsnt combinations of those conditions
specified in equations (26) to (42). These designs may be conven~
iently divided into two groups. In the first group, the condition
of constant work at all radil is specified in the design. That is,
equation (28) 1s specified, which gives:

GE0T
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\
e

and g (43)

aH; dH, dHg
dry ~dry - dry

/

In cases where the symmetrical velocliy diagram is also specified,
equations (32a2) and (43) give

\

ag, - dtp
-Er—z = a..r—i = O.)I‘l
and > (44)

i, dp
Ty " & T

In the second group, the caondition of constant work is not specified.

The following tables present a few types of design in each of
the two groups. The way in which the degrees of freedom are taken
up at each station and the known characteristics of each type are
given. In the tables, subscript 1 refers to any statlion in the
machine; k refers to any station in front of rotor, that is,
stations 1, 3, 5, « « .; and 1 wrefers to any station in front of
stator, that is, stations 2, 4, 6, . . .. A typlcal stage may be
considered as composed of elther stations 1, 2, and 3 or stations 2,
3, and 4.
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tion erpe-oi.fiad. at |dition epoo-
Type h ;f“;n;' ti.;i:‘l.ﬂ:: car- Characteristios of any stage
stago in machino
aby al)  aly Al (av v,
L. Free vartex | 1 | g =0 En ok ool L= /ey %
gtant total ax, Emll méial
gradient in axial velooity far
exthalyy 2 | Constant work =, " 0 dE; dHg dEy comproacibls flov 7
aﬁ'ﬁg'ﬂaraﬂ" Congtant arial velooity over blads height for
s _d.ﬂ . d.ﬁa inoomiproasible flowr
ary A .
£, Symetrical Sysmetrloal af a & s
veloaity 1 velooity 1 Y%y wry S The Ty
and : FTN a’r—l 'y Ve,l nT-TL-—ri— Combination of
diagren 2 dagrap i1:] 1 1 vieol- anmd
sanerbant ocotamt work -0 et
total ary b vortex-typs
4. dHy d.Hs tory LR . tangantinl
mnthalpy ab. a e e I _( t Y6 1,t)_1
z 'dTl"EhI E 11‘—3 I;.': 0 vB,E T+—_§-L- ™/ Ts valooitiss
3 -
Large nagative radial gredient of axrial veloo-
ity at all abatlons
3, Symmotrical Bymotrical a [y
velootty | 1 yelooity .;:'}g_l . .é% - tiry Vo1 ."’% . Lgl_ﬁ %1&
diagram anl dirgram) 1
conerhant 2 oanstant work O x -0 B
axinl vol- HFI
[-1:¢ dH,  dHe PR ) T
codty in ar, 4ay. 1. - - L] b by 1
froat o 3 31 5D E ol ol g Voe"\T*"E T, )%
rotar 1 1
&V 1 a:v-: 5 Total enthalpy inoreasss fram hub to tip
—s ol ) Bohind rotor, axiel velocity decroases from hub
1 W3 to tip
4. Spmotrionl- a at s
velooity Dz Ty R Vo, mr’ —~—£—&-‘ -£—-
dlagras and 4 '3% = 35""’ -
ocongtant 2 'Er—a 11:_3
axial vel- 4y,
1
oalty in oal wtao |Mp & am rs
frant of 3 Teloolty t L.l ol To,4 = T _Q_"‘_"',_T'
stator ¢ || dserow L
oahetant work
W:Z ﬂ:‘ Total sathelpy increasss from Imb to tip
_E;_._'_E:_'O Bshind stator, arial velooiiy inoreasss from hub
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tion| apecified at | dition apec-
Type three gta~ ified at cor- Chareoteristics of any stage
tlons of any | tain statlon
gbage in machins
S, Constent 1 Qonstant work dtl dﬁe
velooity &y.1 9V ar; T ary :
2 == - T 1 In case of incoampressible flow, this type
1 1 av requires no madial flovw aorcss blads rows
_El,_i_- -0 dH; 4H, dEe Under simplified-redial-squilibrium oon~
av av 1, .l Er—l bl T 8ldaretion this type 15 equivalent to
5 | =Bl 5,3 1 1 first type in group
Vo1 Map s o
drl ar, ﬂ.rs
6. Conatant wark
specifio 1 af, at,
masg flow 2 % - Az 'd?l‘ - a_r—l'
’ 1
¥o radizl flow moross rotor and atator
dﬂ-i o dH; cl.EB dﬂs blades in case of nontapersd passags
85, 4oy a_r_i" '&.r_"d.r_”?&'l" Initial etage is nscessary If entering
R ] 1 1 gas has different radial gredient in
ary Ay total enthalpy than 1s required
e W S
ory " ar, " &g
7. Seme varism- Consbant work
a$; at,
tion in 1 e
specifio o Ay i, Ty
mee Tlow &, = 353' .
and constant i Ho redial flow aoross rotor and stator
total —_— = 0 dHl_dEz-d.Esn blades in case of nomtapsred passage
enthalpy ary 'EJ'_ Tr, H.r_s 0 Initiel gulde vane is necegpary if
enbering gas has & different redial grud-
s ﬂ__a_ﬂ_'s__ lent of specific mass flow than is required
e B
1 & &
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GROUP II
Sta-| Conmditions Cne more oon-
tlon| spsoified at | dition spec-
Typo thres sta- ified at cor- Uharacteristios of eny stege
tions of any | tain station
' stage in machine
nent across | - :_:1'1—“0 %"‘-‘-‘““" [N T R
blade xows & presoribed a Ho radial flow aoross all blades in case
throughout dGp value at only | plus SE equal to & of nontapered passage
machine 2 = =9 one station dr
2 in tho pregoribed valus at
machine only ons stabtion in
5 .:% =0 the machine
B Al vel- T etostey Wpn Wy p 4V 4
oolty and 1 diagrem ' Eﬁ = 35.2" dry "0 maer pimplified-redial-equilibrium con-
pymetrioal av, av ‘ slderation for nontapared. ressoge, tan=
Tolooity 2 r,) 2| 4V, 4 gembial velooities and work done are Jro-
1agran —a;’—i =0 lat; ai, partional to radius (wheel-type rotation)
I, + T - ey and square of radius, respsotively, (Seoe
av av ' lagt part of appendix C.)
3 £,1 S 3
dxy ﬂ .
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GENERAL METHOD OF CALCULATION
FOR GIVEN TYPE OF DESIGN

In the previous section, examples are given to show how the
different types of design are cbtained by specifying different con-
ditions compatible with the degrees of freedom available. In the
calculation of the variation of the gas state through a turbomachine
of any given type of design, the effect of radial motlon has to be
included, in general, to get a more accurate value. The following
procedure of calculation is suggested:

The first step of the calculation is to obtain an approximate
solution by assuming that the gas flows on cylindrical and conical
surfaces for straight and tapered passages, respectively, and by
neglecting the effect of radial motlon on the radiasl-equilibrium
equation. This method is the usual simplified-radial-equilibrium
calculation and gives an approximate solution for the case of very
small blade-row aspect ratio.

The second step is to obtain the solution for the two extreme
limiting cases of zero and infinite blade-row aspect ratio. If the
difference between the two cases is not large, the solution for the
case of a certain finite blade-row aspect ratio may be estimated
from the two extremes. If the difference 1s found to be large,
calculation has to be made for the finite aspect ratio.

In the calculation for the case of finite aspect ratio, the
method developed using a sinusoidal curve gives exact results if
such curve is prescribed in the design and is belleved to glve good
.approximate results in cases whers it is not prescribed in the design.
Even with this simplification, a serles of successive approximations
is required.

Simplified-Radial-Equilibrium Calculation

In this epproximation, equation (26) becomes

- €4 afy Vz,1 (268)
Ty = pg2 &y * Ve, @

In the case of nontapered passage, V. =0, rj =Trp =rz=7r, and
equation (26a) is equivalent to

T e i e e T e e e e e~ ————

o m e h e e e e e e -
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=

- 2 .
a4\ , Yot (26b)
i

1 dr r

When equation (26a) is combined with eguation (27)

§l af,l av, ;1 "y (agz d§1> £, at, av, o

+ Vg, —22= - = +V,
2 ary T %1 7Tar ar; ~adry ) p2dry T 72,2 an

~£§_ afz v,

+ V. (27v)
rsz d.rl z,3 d.rl

For the case of constant work and nontapered passage, equation (27b)
reduces to
av, av at
2,1 Z,2 1 1
vz,l d.r =Vz,2 ~gn  + 22 T1,t 5 U,t 3%

av a
2,5 1 (E (5 ty o afy (270)

=V2,5 3 + 32 \63 &

The radial varistion of density and pressure is obtained from
equations (26a), (A5), and (A8) (appendix A) for the case %% =

1
y 1 2
Pt,i 0 dp1 Vo,1 v AVp 4 (45)
Pg,g T Ay T my Tyl dry
dps V av.
y Pg,1 R i’ S TE N SN a;,i (46)
Py, 17 3 1‘1 ’ 1

In these two equations, the last term is very small compared with
the next to last term and may be neglected. It becomes zero for
the case of nontapered passage and the resulting equations can be
more dlrectly derived, as is usually done, by taking the approxi-
mation Involved as the use of



http://www.abbottaerospace.com/technical-library

GCOT

NACA TN No. 1795 ‘ 35

& v
1% Yot

for the radial component of equation of motion in place of

dp, TV, ;2 ov. av.
12 Tty () -y, Tt
pid.t‘i ry ) z /4 r, dr

For a given type of design and glven design values of limiting
Mach number and limiting turning, the variations of gas velocity at
any inlet station of the stage are known. By inserting the radial
variation of tangential velocity into equations (45) and (46), the
radial variations of pressure Pl(rl) and density pl(rl) are
determined. By combining the variation of density with the varia-
tion of axial wvelocity, the variation of specific mass flow G—l(rl)

is obtalned. The total mass flow across station 1 1s then given

Lt
anl Gl d.rl
n

sh

. by

The varlation of gas properties at the next station (for example,
station 2) must be such that the continuity equation is satisfied

T2,t j‘rl,t
f 2wy Gp drp =J 2wy Gy dm

T2,h 1,h

By assuming the value of a gas velocity, for example, Vz,z at the
hub, the velocity and density variations at station 2 can be deter-
mined in a similar mammer, and total mass flow can be obtained.

The correct distribution of V, ,, and so forth, which gives the

correct value of total mass flc\fr, can be obtained in two or three
trials.

When the results obtained are substituted into the contimuity
equation (BS) (appendix B), over a portion of the annulus a. certain
amount of redial displacement across the blade row quite different
from that assumed in the calculation is obtained. The result
determined by this simplified-radial-equilibrium consideration is
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only close to the case of zero aspect ratio of the blade row, which
will be considered in the next section. This calculation can there-
fore be used only as a first approximation to the zero-aspect-ratlo
case and also to glve & starting value for the calculatlion of a
finite aspect ratio. In appendix C, formmlas are glven in dimen-
sionless forme for this calculation for two common types of design.

Zero-Aspect-Ratio Calculations

The continuity equation in its integral form (equation (BS))
determines only the function v, (ry) and not values of dV,/dz.
Two 1limiting cases will now be discussed for which the evaluation
of the term BVI./BZ is unnecessary. If the blade row has an
. axial length sufficiently great relative to the blade height (that
is, if the blade-row aspect retio is sufficilently swall), the temm
(3V,./dz); will be negligible in spite of any redial displacement
required across the blade row. This extreme situation is designated
the zero-aspect-ratio case and differs from the simplified-radial-
equilibrium approximation in that the radial displacement across
the blads row is properly determined and its effect on the state of
gas 1s included in the calculation. For a constant-area gas passage
without taper or with slight taper, this effect is small; conse-
quently, a successive approximation procedure starting with the
result of the simplified-radial-equilibrium calculatlion can be used.
This procedure may be outlined as follows:

1. Using the simplified-radial-equilibrium approximation, find

V10 V2,2 t1) tp, Hy, Hp, Gy, and Gz as functions of rj.

z,

2. Find 1, (ry) Dy equation (B5), using the value of Gz (rp)
obtained from step 1. ‘

3. Substitute these values of ry (r;) into eguations (28)
and (27) with the (JV,./dz) term equal to zero, to get a second
solutlon for V, 3, Vj 2, ty, tp, Hy, and Hpy as functions of
ry.

4, Repeat steps 2 and 3 if necessary, using the value of G, (rl)
from step 3.

In step 1 of each process, the same procedure as in the previous
calculation has to be followed. That is, the variation of gas

5
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conditions at station 2 is such that it gives the same mass flow as
that in station 1. In the case where there is considerable taper
at the passage walls, 1t is better to assume ro (rl) according to

the taper to start the calculation rather then to use steps 1 and 2.

Infinite-Aspect-Ratio Calculation

The other limiting case corresponds to a blade row with axial
length negligible as compared with the blade height; this case is
designated the infinite-aspect-ratio case. The negligible axial
length does not provide space for any appreciable radial displace-
ment, hence for a nontapered passage r, may be taken as equal to
rl, or

G =Gp (47)

and for a tapered passege, a relation similar to the one that fol-
lows may be used:

. 2o 2
Gy = &y 2 LA (47a)
I -
2,5 = T1,h

Because the change in axial length for a very small change in V.
is also very emall, (oV,./dz); does not vanish. Although its
ebsolute value does not affect the radial motion because of the
negligible blade-row axial length, the relative value of avr/az

in front of and behind & blade row is needed to determine campletely
the distribution of gas properties at these stations. If the load-
ing of the blade is relatively symmetrical or is designed to give =
sinusoidal radial-flow path, the curvatures of the radial-flow

path at the two stations are equal in magnitude end opposite in

sense, Then
ov. ov.
(32), - (3) (o)

In order to combine this relation with equation (26) in a simple
manner, it may be assumed that

<avr> (avr>
vz,l‘ 32 1 =-V2,2\3% o (49)
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Then combining equation (49) with equation (26) at stations 1 and 2

av av, d.Hl d.H2 £, dat at
Z,1 Z,2 2L ™l 2 e
v , 2L 4 vz’z = + = £ (49a)

2z dr

For a typical stage of a given design, equation (47) or (47a)
together with either equation (48) or equation (49) will completely
determine the variation of gas properties at the two stations., If
the variation of ges propertles is completely given at one station,
equation (47) or (47a) alone completely determines the gas state at
‘the other statlon.

In appendix D, formulas are given in dimensionless forms for
two common types af design to calculate the variations of gas prop-
ortles for the two preceding limiting cases. The results so
obtained will give the limits of the veriation of the gas properties
along the blade helght. If the difference 1ls large, 1t is worth-
while to make the following calculation for a finite blade-row
aspect ratlo,

Finite-Aspect-Ratio Calculation

The results previously obtained for a sinusoidal radial-flow
path 1g used. Inasmuch as there is no gensral analytical solution
of equations (13a), (14a), (24), and (27) that is possible even for
simple types of deslgn, the method of successive approximation is
used.

The procedure of this calculation 18 somewhat similar to that
used in the case of zero aspect ratio. In the case where a tapered
passage or difference in design calls for an rz different from
ry, Tirst estimate the radial positions of gas particles at sta-
tions 2 and 3, rp; and rz, respectively, as functlons of xy,.
Then calculate the variation of gas perties at stations 1, 2,
and 3 by equations (13a), (24), and (27), such that the total mass
flow is the seme at the three stations. Using this result, find
ro(ry) and rz(ry) by the continuity equation (BS) and see if
they check the assumed values. By interpolating ro(ry) and
rz(ry) obtained after a fow trials at different r;, the value
obtalned by the next try will be close to the correct value.

For the general case where H,, H,, il, and §z are deter-
mined by design as functions of 1ry, a rough approximate solution
glves (see appendix E)

&
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. (rg = 1)
rp - vy = g A;“ (50)
+

This value can be used as a starting value for more exact calcula-

_ tion or may be used as the fimal value for approximate calculation.
This approximate value of radial displacement across the rotor is
obtained in the following mennexr:

Pirst take as two separate functions

b (r;) the function (rp; ~ rj) of ry satisfying radial-
equilibrium end total-enthalpy-change equations (26)
and (27), respectively, for a given distribution of the
other varilables

b¢ (ry) the function (ry; - ry) of r; satisfying continuity
equation (14) for a given distribution of other variables

It is assumed in this method that the radial gradients in V, and

% depend primarily on the magnitude of the radial displacement
Ty - rl) and not on its exact distribution. Accordingly A (ry)
1s set equal to

Ag (r1) = 3¢ 8 (77) (51)

where A is the maximm value of A, and g (rl) is a plausible
form for the distribution of 4y satlsfying the boundary conditlons:

g (ryp) =g (ry ) =0

for (52)

g' (ry,n) =0,8 (ryn) =1

If Ac 1s calculated for a couple of values of Ay, it is possible

to plot jy., the maximum value of A;, against jy,. A fairly good

approximate solution might be expected to correspond to the polint

Yo = Jg» This process can be further refined by varying g(rl) from

the function originally assumed in the direction of the calculated
function Ac/yc.
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Distributions of gas properties calculated from rs (r;) given

by the approximate relation (equation (50)) bas been found to agree
much better with the wvalue obtained by the previously described
method of successive approximation than that calculated under
simplified-equilibrium approximations,

NUMERICAL EXAMPLE AND DISCUSSION

The method of calculation outlined in the previous sections is
applied to the typical stages of a compressor employing symmetrical
veloclity disgram and constant total enthalpy, and a compressor and
a turbine employing free-vortex and constant-total-enthalpy design.
The calculation is rendered dlmensionless by expressing all veloc-

itles in terms of Uy, total enthalpy in terms of Iltz, and r in
terms of r;. Because the main purpose of calculation is to deter-

mine th8 magnitude of the oscillatory radial motion and its effect on
distribution of gas properties, a nontapered constant-area passage is
ugsed., Heat transfer 1s assumed to be zero in the calculation and the
entropy is assumed to be constant at each statlon, The change of
entropy across the blades at all radii is taken equal to that obtained
from the polytropic efficiency assumed at the mean radius., It then
gives a radlal variatlon of polytropic efficiency decreasing from

tip to hub. This variation seems to be in the same direction and of
comparable magnitude with those obtained from experimental data.

This calculation does not take into account the boundary layers at
the rotor drum and the outer casing, and is consequently good only
for the main portion of gas flowing between them,

In the comparison of differemt ‘blade-row aspect ratios in
each design, in addition to the same aerodynamic limitatlons, the
same axlal velocity at the mean radius is used. The comparison
between different cases will be slightly different if another basis
of comparison 1s used.

(1) Symmetrical velocity diagram and constant total enthalpy. -
Because the difference between zero- and Infinite-aspect-ratio cases
is found to be large In this design, calculation is made for a
blade-row aspect ratio of 2., The design constants used for all
cages are:
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vz,l

Polytropic efficiency at mean radius . « ¢« « ¢« o« ¢ o ¢« « ¢« « o 0.9
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(The last value results from the use of V, 1 p/U; = 0.8 in the

simplified-radial~equilibrium calculation, and is used for all
cases.) The results of the calculation are shown in figure 4.

Figure 4(a) shows the distridbution of specific mass flow in
front of and behind the rotor for the different cases consldered.
It may be seen that in all cases except the Infinite-aspect-ratio
case, the specific mass flow G-/Gt increases toward the hub faster
behind the rotor than in front of the rotor; in other words,
passing through the rotor the gas moves toward the axis of the
machine, The magnitude of this displacement is obtained from the
continuity relation and is shown in figure 4(b). In the simplified-
radial-equilibriwm calculation, it 1s assumed that there 1s no
radial motion, but when the distribution of specific mass flow is
substituted in the continuity equation (B5), quite large radial
displacement across the blade is obtained. This kind of calcula-
tion is therefore not a good one. In other calculations, the -dis-
tributions of gas properties are calculated from assumed radial
displacements that are to be checked with the displacements required
from the continulty relation with these distributions, and are
therefore consistent in themselves. The radial displacement to be
used in the approximate calculation for A = 2 1is obtained by the
approximate formula (equation (50)) and is about 25 percent lower
than the correct value.

The variation of axial velocities is presented in figure 4(c),
which shows that the axial veloclities increase toward the hubd in
all cases but at different rates. The high wvalue of axial velocity
at the hub before the root allows the use of higher turnings
throughout the blade height without exceeding the limiting value
of (Ve,z - V9,1)/V, 1 or oC; at the hub. It also helps to
glive a more u.niform fach number relative to the rotor blade over
the blade helght, As s result, this type of design gives a higher
pressure rise and a higher speclific mass flow than a free-vortex
type of design using the same design limitations., In order to
utilize this advantage fully, the variation of axial velocity
should be correctly determlned.

i m e we mnee - o ket s L e v b e e e e —— e ———
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The calculation of axial velocity based on simplified radial
equilibrium gives & result close to the zero-aspect-ratlo case, .
which is also true in the distribution of other properties in this
calculation, because in the case of zero aspect ratio, the curva-
ture caused by radial motion is negligible and the difference in
gas properties caused by the radial displacement is very amall in
the case of a nontapered passage. ‘ o

The variation of tangential velocities is shown in figure 4(d).
Thegse velocities in different cases vary in a similar manner and
the difference of magnitude between them is mainly due to the 4if-
ferent value of ®¢ determined by the different values of

vz,l,h/Ut in the various cases.

Figure 4(e) shows the variation of alr angles entering the
rotor and stator blades. The difference between the simplified-
radial~equilibrium calculation and the case of aspect ratio of 2
is significant throughout the whole blade height. The simplified-
radial-equilibrium calculation gives an error of about -30 at the
tip of the rotor blade and at the hub of the stator blades. This
difference results in an error in the angle of attack at the deslgn
point by that amount and the range of operetion is also reduced.

The variation of Mach number relative to the rotor blades is
ghown in figure 4(f). The gimplified-radial-equilibrium calcula-
tion gives a nearly constant value whereas the more correct calcu-
lation shows that Mach number actually decreases more than 10 per-
cent toward the tip for the case of blade-row aspect ratlo equal
to 2. (This variation is only about half of that of a similar
free-vortex compressor.)

Figure 4(g) shows the pressure distributions in front of and
behind the rotor and the pressure rise across the rotor at dif-
ferent radii. The difference in pressure distributions may explain
to a certain extent the difference found between measurement and
gimplified-radial-equilibrium calculation. The pressure rise across
the rotor is fairly uniform in the case of an aspect ratio of 2
and is a desirable feature.

The velocity diagrams at three radii for aspect ratlos of O,
2, and o are shown in figure 4(h). If this stage is used as the
first stage of a compressor, the permissible tip rotor speed of
this design at standard sea-level conditions is equal to 868 and .
826 feet per second for A =0 and A =2, respectively. The

‘3


http://www.abbottaerospace.com/technical-library

1035

NACA TN No. 1795 43

specific mass flow per unit annulus area corrected to standard sea-
level conditions is equal to 41.5 and 40.0 pounds per sgquare foot
per second for A =0 and A = 2, respsctively.

(2) Free-vortex and constant-total-enthalpy compressor. - The
design constants vwsed are the same as in the previous calculation.
In addition, Vg,1 and Vg,z are considered to be equal %o We,z
and We 1» Trespectively, at the mean radius, In this type of
design,’the simplified-radial-equilibrium approximation is equivalent
to the zero-aspect-ratio case, because axlal velocity is also con-
stant over the blade height due to the constant H and constant ¢
with respect to the radlus and the negligible curvature effect
caused by radial motion. That is, the same values of H;, Hp,

il, o, vz,l’ and Vz’z occur in both cases and the entire cal-
culation 1s the same. (See also equation (ES).)

Because the radial motion involved in this type of design is
due only to the compressibility of gas, the difference between the
zoero- and infinite-aspect-ratio cases is not large; hence the cal-
culation for a finite-aspect-ratio case ls not made.

The distribution of specific mass flow in front of and behind
the rotor is presented in figure S(a). Even in the zero-aspect-
ratio or simplified-radial-equilibrium case with a constant axial-
velocity distribution, there is considerable change in density,
which requires an appreciable amount of outward radial motion to
obtain the glven design condlitions behind the rotor. Although the
amount of this radial motion is small (fig. 5(b)), its effect on
the variation of gas propertles is not entirely negligible. Its
effect can be seen in the curves of figures 5(c) to 5(g), which
are somewhat similar to the symmetrical-velocity-dlagram and
congtant-total-enthalpy design in nature but of smaller magnitudes.

If this stage is used as the first stage of a compressor, the
permissible tip rotor speed at standard sea-level conditions is
equal to 758 feet per second for A = 0. This tip speed 1s about
13 percent lower than that of the corresponding case of the pre-
vious design. The specific mass flow corrected to standard sea-
level conditions is equal to 38.6 pounds per square foot of
annular area per second for A =0, which is 7 percent lower than
that of the corresponding case of the previous design.
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(3) Free-vortex and constant-total-enthalpy turbine. - The design
constents used in the calculation are: My <1, Ugfay g = 0.5,
Vo,1,n/21,5 = 085 V3 1 n/21 4 = 0.4, Vg =0, and polytropic
efficiency at mean radius equal to 0.87. For the simplified-readial-
equilibrium approximation or zero aspect ratio, V, 1/Ut is constant

J

and so is V, p/U;, which is found by the continuity relation to be
equal to 0.877. The same veloclity at statlon 2 is used for the case

of infinite aspect ratio, thus making the only difference at sta-
+ion 1. The results of the calculation are shown in figure 6.

The distribution of specific mass flow in front of and behind
the rotor is shown in figure 6(a). Because of the constant axial
exit velocity, the specific mass flow is constant behind the rotor.
Except for the case of infinite aspect ratlo, there is an inward
radial motion of gas in passing through the rotor (fig. 6(b)), the
magnitude of which is about two and one-half times that in the
previous free-vortex compressor (fig. 5(b)).

The variation of axial velocity in front of the rotor 1s shown
in figure 6(c). An increasing axial velocity toward the hub of
about 15 percent would be required for an aspect retio of 2.

Figure 6(d) shows the radial variation of gas angles entering
rotor blades. The difference is only important at the hub. In the
actual case of an aspect ratio of 2, the simplified calculation
would give an angle of attack 3° to 4° too high at the hub.

The absolute and relative Mach numbers of gas in front of the
rotor are shown in figure 6(e). In the actual case of an aspect
ratio of 2, the Mach number at the hub is about 3 percent higher
than the simplified calculation.

Figure 6(f) shows the pressure distribution in front of the
rotor. For an aspect ratio of 2, the pressures at the tip and at -
the hub are about 2 percent higher and 3 percent lower than the
simplified calculation, respectively.

The velocity dlagrams at three radii for the zero and Infinite
aspect ratios are shown in figure 6(g).

1035
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SUMMARY OF ANATYSIS AND CALCULATIONS

In axial-flow turbomachines, radial motion of gas occurs
because of the tapering of the passage and the variation of gas
conditions across blade rows specified in the design. The direc-
tlon and the magnitude of this radial flow dépend on the type of
design, the tapering of the passage, the hub-tip ratio, the blade-
row aspect ratio, and the speed of gas flow. Even in the case of
frese-vortex type of design employing a nontapersd passage and
requiring no change in velocity distributions from stage to stege,

there is an appreciable amount of osclllatory radial motion within
the stage.

This radial motion glves an additional term to the ordinary
radial-equilibrium equation. In the free space between blade rows,
this additional term is very nearly equal to the product of the
square of axial velocity and the curvature caused by the radial flow.
Depending on whether the curvature is positive or negative, the
radlal~pressure gradient caused by the whirling motlon of gas is
decreased or increased, respectively, by this additional term.

The determination of this radial-flow path requires a long
process of step-by-step calculation. It is found, however, that
a sinusoldal radial-flow path gives an effect on the radlal varia-
tion of gas condition between blade rows as small &s possible
without discontinuity in the curvature of the streamline. Inasmuch
as 1t represents the major harmonic of the radial-flow path that
may exist in any design in which the radial blade force is effec-~
tively small, the calculatlon based on this simple radial-flow
path gives good approximate results. It probably underestimates
the effect because of the neglect of higher harmonics.

The analysis made of the maximum compatlble number of the
degrees of freedom in specifying the radlal varietions of gas
properties in stations between successive blade rows of & turbo-
machine showas that under the conventional design procedure the
d).esigner is free to specify two conditions at any one station and
one condition at each of the remaining stations. The various ways
to use up these degrees of freedom and the resultant types of
design obtained are dlscussed.

The usual method of calculation, which neglects the radial
motion, gives results close only to the case in which the axial
length of the blade row 1s much larger than its radial length,
and is not good for the case of a finite blade-row aspect ratio.

hrrr et s v e o A o = Tt e e e o —
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The difference between the resulits obtained by the usual method and
the method suggested herein 1s found to be quite large in a design
employing constant total enthalpy and symmetrical velocity diagrem.
Calculation made for this type of compressor using the same limiting
Mach number, same limiting turning, same axial veloclty at the mean
radius, and for a blade-row aspect ratlo of 2 glves the following
differences between the usual and the suggested method:

1. The radial variation of axial velocity in front of the
rotor is 13 percent for the usual method eand 28 percent for the
suggested method, and the radial variation of axial velocity behind
the rotor is 53 percent for the former and 40 peércent for the latter
(all expressed in terms of their values at the mean radius).

2, The air angles differ fram 1° to 3° at the hub and at the
tip.

3. The radial variation of Mach number relative to the rotor
blade in the former is 9 percent lower than that in the latter.

4, The radial variation in statlc-pressure rise across the
rotor_ is 13 percent for the former and only 2 percent for the
latter,

5. The mass flow in the former is 4 percent higher than thet
in the latter.

6. The permissible rotor speed in the former is 5 percent
higher than that in the latter.

Lowls Flight Propulsion Laboratory,
Natlional Advisory Comittee for Aeronautics,
Cleveland, Ohlo, October 14, 1948.
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APPENDIX A

DERIVATION OF EQUATIONS IN ANALYSIS

From equation (3), the definition of h, and the relations

du = ¢, 4T "o(a1)
oo R = Cp - Cv (AZ)
Y = EE (A3)
Cy
there is obtaeined
A k
dh = 51 a (p) (a4)
From equations (1) and (A4)
dH:—Z-d(R>+d(12-> (a5)
7-1 p 2
From equation (2) and the definition of h
T ds = dh - %9 (a6)
Using equation (A4)
-2 a(E).a
T s =25 a (p> : (a7)

From equations (2) and (3)

e e v Y R s
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-La <1oge g;) (48)
= 7}_1 a <1oge g)- d (loge P) (a9)

From equations (4) and the following relations

ﬁ-v)i—r=%vvz-?x(vx?)

there is obtalned

¥ _= N NS | B, BT
5 vx(vxv)+-z-vv —F--‘;VP+DVV+3DV(V'V) (A10)

From equations (AS) and (A7)

lowe 1 X g(R\; 21
5 VW2 + 5 Vp = VH 7_1V(p)+pr

VH - T Vs

Combination with equation (A10) yields

VH=F+TV5+VX(VXV)—%¥‘+% VZV+%V(V-V):|, (7)

From equations (1) and (a8)

DH_.Ds_ 1Dp « OV
- T toDs VB
Ds 1 = /1 DV
- E*b’%*v'(EVP*Dt)
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By cowbining with equation (4)

ﬁ-m%i- -‘])-'SR+V{F+E v+ = v(v-v)]} (A11)

When equation (All) is combined with equations (2) and (5)

&E=Q+§+%§g+v-{f+g v2w7+-:,l;v(v-7):|} (8)

Fram equations (2) and (5)

Ds '}
To=9+5

or
Ds _Q of

From equations (6a), (3), and (A9), the following form of continuity
relation 1s obtained:

<l

VT 4= 2 10g T-£<§>=O (10)

71 Dt ~“Ee Dt

Equation (82) is obtained by applying motion and energy equa-
tions to 2 mass system with a fixed control surface as shown by the
golid lines in figure 3. Under steady axially symmetrical flow,
the mass inflow dmy; in time dt 1s equal to the mass outflow dm
in time dt, the state of gas within the control surface is not
changed, and the state of gas at stations 1 and J is constant
with respect to 6. By equation (A1l0), the sum of the tangential
blade force and the tangential viscous gas forces exerted by the
surrounding gas particles on the system is equal to

o, ;ﬁ_:&]”[ﬁ;ﬂﬁ_m}uM -
3t T|r 2o ) Tir o r 36] r 36 2
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The torguse about the z-axlis exerted by these tangential forces on

D(r Vg)
the gystem 1ls therefore simply “'ﬁi dmsy and the work inpyt to

the system by these tangential forces In time dt 1s equal to

D(rve)
o dmy wdt = (:.)[(I‘VQ)J - (rve)i] dmy

In passing from station 1 +to station |}, beslde recelving this
work input, the gas particles are doing work against the axial and
radial viscous forces exerted by the surrounding gas particles,
However, this negative work is usually small, and if it is assumed
that the heat generated from this frictlonal work is added back to
the gas stream then the heat addition cancels the negative work,
and the energy equation for steady flow glves

7

(HJ - Hy) dmy = f . Q dmy 4t + wl:(r\?’e)'j - (rVev)i:Idmi
51
or
. D(xVy)
% =Q+ w Dte (82)

where Q denotes the rate per unit mass at which the gas stream
sheet is recelving heat from external source through blades or
other passage walls.

It may be noted that for steady nonviscous flow, equation (82)
can be obtained by using equation (11).  For such flow, equation (8)
becomes '

DH -—
SE=Q+F-V

From equation (11) it can be seen that F.V is equal to F -T.
However, F :T is equal to FgU or Fgrw and Fgr 1is, by equa- .
- D(2Vg)

o " Hence the preceding equation becomes

tion (7h), equal to
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D(I‘Ve)
= Q + D‘b .

TH
o (8a)

When equation (12) is glven, the entropy change can be obtained
in the following mamner. From equation (A9) and (3)

D/s\__1 D .2
5t (%) = 557 o5 (1o8e ) - g¢ (1o p) (a12)
But by equations (12) and (3)
D 1 D
Dt %8 P =31t 1% T
Substitution into equation (Al2) gives

Ds _ (L _1\D ., o
Dt ¥y-1 n-1/Dt €e

S R 2= D.
=R -(—)-(-1—”_1 =5y D5 2080 T (a13)

For steady axially symmetrical flow, equation (Al3) reduces to

-gi =R Tn-ln '71.1‘5 <vr Eaii loge T + Vy saz loge T> (13)

For successlive axial stations 1 and J a short dlstance
apart, equation (Al3) gives

83 (r'j) - 814 (ry) = Rm% |:loge T (rj) - logy Ty (ri):l

7, (r,)
_ n-y Jd _J Al
=R (n-1)(y-1) togg Ty (ry) - (a14)

Inasmuch as the temperature change between the two successlve sta-
tions is small, the temperature ratio can be considered equal to
the enthalpy ratio:

e e e e A e e e e« e g - - — . e i - e —
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v 2
T, h, Hy- -+
T R s
i 1 vy
B -3
Substitution of equation (AlS) into equation (Al4) gives
2
n-vy Hy - zZ‘L
84 (I'J) - B8y (ry) =R &E1)(7-1) logg v12 (132)
By -3

The density ratio between the two statlions is obtained from
equations (A9) end (3)

8, -8 1

Py ==ty (1T

—~ =9 T (Al16)
\*1

Combination with equation (Al5) ylelds

L
-1
p'j _SJ-SiHJ-z
2o TR | —=5 (817)
P v,°
i
8-

Substitution into equation (14) gives

1, 1 .
WYt F WV - w
VZ’J H.‘j' > e rJ dl‘J =Vz’i Hi--—z'— e Ty dry

SE0T
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APPENDIX B

DETERMINATION OF RADIAL DISPLACEMENT
FROM CONTINUITY EQUATIOR

Equation (14) may be written as a linear differential equation
for r22 es a function of r;, provided Gz( ) is known

d(r22) Gl (rl)
dr; Gg (1'1)

T1,t
Gy (ry) i
r22 = - EZT‘::—)- 2ry dry + Tp, ta (B1)

vhen divided by rp 47

) T1,t .
rp \2 T1,t G () 1 &y
=1 - |[—2-2
(rz,t> . <r2’t> Gz (1‘17 rl,t rl,t (BZ)

1l

If Gy and Gy are not known, and only Gl/Glt and Gz/Gzt

are known, e modification is necessary

r
1,t
r, \2 2 g G:I (r;) rq, - Gr
( 2) -1 - (‘1,2) Gl,t G;t 1. " 93
T2,t T2,t) Y2,t T1,t T1,t
’ ’ ) 1 oy (rl) ’ )
(83)

The value of Gl,t/Gz,t is found by the condition that total mass
flow et stations 1 and 2 is the same
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54
2
o
Zzh
2 1- >
(rlJt Gl:t = (ert (34)
.rz’-b Gz’t rl,t Gl ( )
G Y, (0)
Gp Ti,t/ T1,t
(ry) ? ?
,n Gz:t 1
Hence

T e e e ey U

3

Se0T
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APPENDIX C

SIMPLIFTED-RADTAT.-EQUILIBRTUM EQUATIONS
Equations to calculate distributions of gas properties under
the simplified-radial-equilibrium approximation for a few types of
design are glven.
Free Vortex and Constant Total Enthalpy

For this design

%:o, s S ~ (c1)

from equation (26a) in the section entitled "Simplified-Radial-
Equilibrium Calculation,"

z,1 -
——L—dri 0 (c2)

The variation in tangential velocity is, by equation (C1),

Ti,t :
= —2
Vo,1 = Ve,1,t Ty (c3)

At each station, by using equations (46) and (C3),

2
Be gz Uo o)
r r3
Py

When the preceding equation is integrated from r to ri, and
the relation

is used, there 1s obtained

e e - yn s — o~ een ——
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1
2 ., \2 7-1
£ <41 .22 _Qz.‘E) (_’E)-l (c4)
Py 2 a, r

This equation holds for all stations, provided the appropriate
values of (Vé,t/ét) are used. It follows from equation (C2)

that at each station

& _p
G “pp (c5)

The radisl position of gas at station 2 or 3 is then obtained
by numerically integrating equation (BS) using distributions of
specific mass flow given by equation (C5). An alternate method is
to expand the right-hand side of equation (C4) into a binominal

2.
y-1('6,t Ty 2
series. Because == —E:~ v/, - is usually less than
0.15, three terms will be sufficient. ILet B& represent the

average density in the annulus between r and ry, then

Tt
- 2spr dr
I _

Py n:(rt2 - r2) Pt

°

2 4 2 4| 1og (r )2
v, v, V- T
=1 + %‘- <Z§-t’—t-> + .Z.LZ (ﬁﬁ) + ._2]: < e’t> + 2—7 (9,13) e rt

4\ &g

et
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APPERDIX C

SIMPLIFIED-RADIAL-EQUILIBRIUM EQUATIONS -

Equations to calculate distributions of gas properties under
the simplified-radial-equilibrium approximation for a few types of
design are given.

Free Vortex and Constant Total Enthalpy

For this design

dHy
Er“i‘=°’ —= =0 (c1)

from equation (26a) in the section entitled "Simplified-Radial-
Equilibrium Calculation,”

d zZ,1
I X
ary Y (c2)

The variation in tangential velocity is, by equation (Cl1),
T

it
- 2
Vo,1 = V6,1t Ty (c3)

At each station, by using equations (46) and (C3),

2

31-.7 RE g_g _ (Vo ¢ =)
r r3

Py

When the preceding equation is integrated from r to ry, and

the relation
a = ’._.7P
p

is used, there 1is obtained

e e m s e e A ey e
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L
2 [rm\2 7-1 '
£ {1 .22 (85t (_'E) -1 (c4)
Py 2 a; b o

This equation holds for all stations, provided the appropriate
values of (Ve’t/a.t) are used. It follows from equation (C2)

that at each station
G . (c5)

The radial position of gas at station 2 or 3 is then obtained
by mumerically integrating equation (B5) using distributions of
specific mass flow given by equation (C5). An alternate method is
to expand the right-hand side of equation (C4) into & binominal

2
y-1 (_6,t ry\2
serles. Because == a ) - is ususlly less than
0.15, three terms will be sufficient. Let Er represent the

average density in the annulus between r and r., then

Ty
- 2ntpr dr
X -

Py ﬂ:(r.b2 - r2) Pt

°©

and inasmuch as

1,t r2,t

thrg Vz,l d.rl = Zﬁrpr’z Vz’z drz

r,l
T 2
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or

= 2 _ .2y _= 2 2
Pr,1 Vz,1 (rl,t r¢) = Pr,2 Vz,2 (rz,t - 1)
= 2 _,2 - 2 _ 2
Pr g (Ty % - 1°) Va2 Ppy (T T n )
= 2 2y 7 = 2
er,z (4% - 12%)  Y2,1 onya (rp¢% - 73 p°)
hence
» (rz,h>2 5 frd
:.2_ =1 - 1____221_ 1 - n _Fh,1 (c7)
2,8/ r1 b\ 1,4/ |
> 1 - > r,2
--"'—r —
l,t : ph,z
The change of total enthalpy across the rotor is
B - B =o(é, - ¢;)
Then
Ez_ -1+ w(f.z -t4)
5 )
For compreésor
b o
2,h
—2 v -V 2
Bo_,,%nY,anT, %07 6Lh Ut
B T1,6 V1,1t Vz,1,h )
where
T,
2,h
‘—“-rl 5 76,2,8 - Vo,1,n
the quantity 2 7 is to be assigned by the

z,1,h

designer., Inasmuch as

T e e e e < et . e~ e .
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2 v 2
_a z,1,3> c ho 9,1,t>
w2 [\ U1t Uy ¢

where ML is the limiting Mach number to be chosen by the designer;

¥2,h ‘
2=V -V
r3 hV2,1,n 71, 0020 T91A
B2 1. Tt Ul, le h
2
g 1 |:<Vz 1,t>2 Ve le,_ 9,1Jt
(r-12 |\ U1, U1, Ul,t

(cs)

The pressure distribution at each station is obtained by rais-
ing its density distribution (equation (C4)) to the power y. The
pressure changes between the stations at different radii are
obtained by combining these pressure distributions with the pres-
sure change across the rotor at the radius where the value of the
polytropic exponent is known or assumed. The angle that the gas
velocity makes with the axis of the machine at any radius 1is
obtained from the known tangential and axial velocities.

e e e~ x  r— —— e — e g —— e - —
N T PR s R N g g h ~ q < - Ly -
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Symmetrical Velocity Diagram end Constant Total Enthalpy

For the case of nontapered passage, ry=ry=r and from
equations (28) and (32)

dt

1 dEp
ar

T ar

= Wr

N

¢ _wr? T1,4 0 Uy ¢
1772

2 .
& (c9)
¢ _orf L Lt 5 Uy ¢ |-
2 "2 2 )
or
v, 5, T )
0,1 _1_r _StTi,¢
Ul,t 2 rl,t 2 r > (c10)
Ve, 2 1 _r Ottt

By substituting equation (Cl0) into equation (46),

Pt 723 wir_ %% Ui,e2 2 2 1
7p*t7° e - & Zr +Z(r1,t8tUl,t> 3

vhere the minus sign is used for station 1 and the plus sign for
station 2. Integration from r to r; Jylelds

5, U r

Py - - w? t “1,t 4

'7%1'.:7 (py” 1. =g (rtz - r?) £ —T’_lc'ge?
t

_1 2 (2 _ 1)\
g (r1,¢ 04 Up ¢) <rtg rz)

or
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2 z
2 U
o =<1 - Z:l 1 - I _323 X
5 - +* 46“{: Ut ]_oge T

1
2 2 2 y-1
+ 8,2 (Ullt) (rl’t (rt - > ’ (c11)
t Ut Ty 22

where the plus sign is used for station 1 and.the minus sign for
station 2. :

¢’

The veriation of axial velocity is obtained from equation (26a):

av
v __§=_A.§§§
z & z L&
r ] )
N P R I
- 2 2r
5
= - 2 (_r .t
Us,t <2r z*a:-) (c12)
1,t

Integration from r, to r gives
, .
A\ 2 V2,1 1 [ PP I'hz T
7 =g -3 5 - > +0, logg - (c13)
1,t 1,t 1,6 rl,'h h

where the plue sign in the last term is used for station 1 and the
minus sign for station 2. Equation (C12) also gives

v Va2 a1 _ Bg U1,t8

In the case of a tapered passage, the gas 1ls assumed to flow
in conical surfaces, which glves the value of r, as a function

of ry. Egquations (28) and (32) give the distributions of { and
Vg @as shown by equations (D8) and (D7), respectively, given in
appendix D, The distributions of axial velocity and density at

1035
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station 2 are the same as those given by equations (D8) and (D5).
After these distributions are known, the distribution of specific
mass flow G 1s known and the radial displacement is found from
equation (B5).

In compressors of this design, the maximum value of

r

2,h
—_2 V - v
r,n 6,27 91

7 is usually at the hub. Its wvalue there 1ls to be
z,1
set by the designer. Then

by
2,h .
. [ il 1 4 -V
5h = §21£ gl;)h = T1,h 9,2,b 9,1,h vz)l,Lh
Ty ,h U1, V2,1, Ut
and
b ol
2,h .
r r, .V 7 = V6,2,h - V6,1,h
1,h 1,h 'z,1,h T1,h
By, = === By = —=2= —= . (C15)
‘T1,t 1,t “L,t z,1,h

In this type of design, the limiting Mach number is ususally at
the hub. Hence the denominator of the last term of equation (C8)
should be replaced by

‘ v 2 Uy, -7V 2 2 (v 2
1 < z,1,8\  (“L,b e,;,n) L1 (szlzh> . <Gzlzh)
(r-1)52 |\ Ut U, 2 |\ Uq,t Uy,

The rest of the calculation is the same as in the previous design.

Symmetrical Velocity Diagrem and Conditlion on Axial Velocity

For constant work over the blade height and nontapered passage,
equations (C9) to (Cll) still hold. If de’g/dr equals 0, equa-

tion (27C) under Simplified Radial-Equilibrium Calculation gives

av 5, U
z,1 _ 1 -t Lt
Vz,1 ar ol 2z ry,t O Up,t 0T =—7

e e e = o —— i o % o i T T Ao e £ SR T oIS e e e —_—
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Then
2 1/2
vz 1 261; U1 t r
—2= = |1 + ——=25—1og_— (cis)
v, 2 er
z,1,t z,1,t t

The enthalpy variation for this case is obtained by using equa-
tions (26a), (27a), and (C9)

S T ST R R WL W D
Tr T @& 2ia 2 \UT z2
2
_Ul,t r )2 +E’_c_
2 r]_,t r
B -H 3 r 2 .1 Ty
== |1 - +35 o, log, — (c17)
Ul,tz 4 (rl,t> 2t e r
d'Vzl
On the other hend if —Zi2 =0
v o Tae U
2,2~ dr T

H't. - K I 2 1 T
11 [ i (rlrt):l - 25, logy — (c19)

In order to make the distribution of H independent of d;, the
compromise condition

av, av,
z,1 Z,2

1035
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may be used. When this relaetion is combined with equation (27c),
there 1s obteined

- 5 U 1/2
e é Pt .r_> (c20)
z,1,t -Vz,1,t Ty

v 5, U 1/2
el | R P2 (c21)
z,z’t Z,z,t t

When equation (26a) is applied to stations 1 and 2, and the two
resulting equations are added

aE 1 by at,
2ar =2 it w
am_ U r

dr = 2 2

Ty

)

i @] ()

If the requirement of constant work over the blade height 1is
abandoned, it is possible to require no change in the axiael-
velocity distribution across the blade rows, which is the incom-
pressible form of the condition of no radial displacement

Then

4av
&Vz,l - dvé,z o 25 _ 0 (c23)
ary dr, drs

When equation (C23) is combined with equation (27b) for the case of

nontapered passage
E_li.g.]_-=§3d_€?.-w E_E.z_igl (c24)
dr d4r

By substituting the symmetry conditions (equations (31a) and (31b))
into equation (C24)
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Simplification yields

df-l _ _&i
dar “r
4 2 :
1 [ X (c25)
8,6 \T1,t
or
vveLl - r (258.)
8,1,t Ti,t
From equations (32) and (C25)
2
EZ - r (Czs)
€a,t \T1,t
Vv T
7 6,2 = Z,t r . (0268.)
8,2,t Ti,t \'1,t

Thus wheel-type rotetion exists both in front of and behind the
rotor. By equation (27),

dHy dH (diz d§1>
- =W

ar ar dr ar

= Zwrz (E2,¢ - €1,t)

,t

26y 4 By, (FI‘ ) (c27)

1,t

which means that the work done is proportional to the square of the
radius.
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APPENDIX D
METHOD OF CALCULATION FOR ZERO AND INFINITE ASPECT RATIOS
The method of calculations is given for the two types of design
used in the numericsl examples.
Free Vortex and Constant Total Enthelpy

Zero aspect ratio. - In this type of design, the zero-aspect-
ratio case 1s the same as that of the simplified-radial-equilibrium
approximation.

Infinite aspect ratio. - By equations (47) and (Al7)

L
52-81 vlz 7-1
v p R By -~ =5
Z2 1 _ 2
V2,1 P2 Hz V,2
Tz,
- -1
sl B2 14
R 2 2
V2,2 . _2Hy - (Vg,1° + 75,1°) (o1)
V. - 2 2
Z,l ZHZ - (vs’z + vz’z )

An additionel relation between vz,l and V; 2 1is necessary

in order to solve the equation. In the section entitled "Infinite-
Aspect-Ratio Calculation" two equations. are suggested. For this
design, equation (48) gives

av, 1 . v, 5

0
dry dry

or

vz,l + Vi,z = constant (p2)
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and equation (49) glves

av.

z,1 dVz,2
V2,0 &t V2 gy = O
or
Vz,1° + Vg,e° = constant (p3)

Also from equations (E4) and (E5), neglecting the square term in Ag
Vz,1 Vi’z = constant (p4)

The three preceding equatlons give practically the same results.
A convenient procedure of calculation is as follows:

(1) In order to compare the result with other cases, ‘the same
value of V may be used. From equation (Dl), Vi,z’m is

determined.

z,1l,m

(2) Insert these values in either equetion (D2), (D3), or (D4)
to obtain the constant In the equation.

(3) Assume a number of values of Vi,l; obtain V, » by the
same equation. Then use the following equation, which is obtalned
from equations (D1) and (C3), to solve for r/ry .

82-81 7=1
R v
2 _ z,1 2
( r)g (Vo,2,8)" - \® 7, (Vg,1,4)
—_— = 2
ry Bp-8q 7-1 85-87 7-1
R R
H V. v
2Hy = -l 722 |+le L) (v, B (¥, )P
Z,2 Z,2

(4) Plot V, 3 and V; 2 ageinst r/ry, and obtain their
values at the values of r/rt desired.
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When the distribution of axial velocity is kmown, the demsity
variation at any station is obtained by applying equation (Al7) at

the station
- aL
7=1
V& V2
9 o BH-\—Z+-3
S Ol o 2 (s)
ERICENES

The pressure variation at each station is obtained by raising equa-
tion (D5) to the 7 power. The pressure changes across the stage
at different radii and the alr angles are obtalned in the same
menney as in the simplified-radial-equilibrium calculation.

Symmetrical Velocity Diagram Plus Constant Total Enthalpy
Zero aspect ratlo. - With radial displacemeﬁt not equal to

zZero, the equations for tangential velocitles are different from
the expressions of equation (Cl0). From equations (28) and (32)

dEl at,
&, &
wr.2 5, U h
P N W T
1 2 2
> (Ds)
2
: : _9m LIt 5 Uy ¢
2 =72 2
and
Vor__f1 r Tiub
U8 71Uy 2ry ¢y 21
g (D7)
Vo,2 Lo _<r1 +r1,t5t>_r_1
Upg TeUi,e \2T,4 2ry ) |



http://www.abbottaerospace.com/technical-library

68 NACA TN No. 1795

From equation (26) with the last term negligible for this case,’
inasmuch a8 rp - r; 1s much less than L,

v a1,
2,1 dary 77 p2 7larg

For station 1, from equation (D6)
av ﬁhr e 5, U \ . r B
v z,1 T G A T 95 WU O N NG -
) 17Tt 2 2 2rqy

1 ==
2, drl rlZ\ 2 2 r) g

Integration from r, to rg ’yields
2 2 2 2
V2,1 _(Yz.0.0) |5 10e —% L[ FL_ _Tin
Uyt Uy, v e Ty L2 1y LB
’ ’ ‘ ,b 1,% 1,t

which is the same as equation (Cl3). For station 2,

2
z,2 dr, rzz 2 2 dr,
Y, 5 AV, 5 = - =2 @22 + 8y Uy 42) ar
z,2 4Vz,2 2r22 1 v -1, 1
r @ 2/ T1 B4 Ty
aiieren s VOB Fouri il RS
2 (rp) ’ 1,t 1 1,t
T1,t
Integration from T3 p to ry; ylelds
1
r
1,t
2 2 ? 2
vzzz _ vzzzzh - <_I‘_l' rl + Bt a (rl (m)
Ug Uy r2) \T,8 R T1,t
Tl,h T,
1.t

which differs from egquation (Cl3).
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The density distribution at station 1 is the same as the
simplified radial approximation, whereas that at station 2 is
obtained by using equation (DS). The solution of this case is a
process of successlive approximations. Values of rz(rl) obtalned
in the simplified radial approximation can be used here as the
starting values. Then the distributions of Vg 2, V2,25 P2,
and are ‘calculated from the preceding equaéions, and new values
of ry(r;) are computed from equation (B5). Usually, only two or
three cycles are necessary to obtain the correct value, as the
difference between this case and the simplified-radial-squilibrium
approximation of this type of design is small.

Infinite aspect ratio. - The first equation for the condition
Gy, = G2 1s the same as equation (D1). The second eguation

necessary to solve this case 1s a llttle more complicated than that

in the previous type of deslign becausge %f # 0. If equation (49a)
is used

av av at dg
Z,L z,2 1 1 2
V2l T t V2,2 T <t ;5(51‘5; * & ?{)
- .2 2
=~z (gl + gz) = =0
Then
2 2 _ _,2.2
Vz,l + Vé,z = - ®W"r” + constant
or
2 2
V. v 2 .
z,; + ng = - £L§-+ constent (D10)
Ut U‘t ry

In order to compé;e the result of this case with other cases, the
same value of V, j p may be used. Then from equation (p1),

Vz,2,m ‘18 found, and the constant in equation (D10) is evaluated
by ueing this set of V; 1 p &and Vz,2,m* A few values of Vi,l

are agsumed at any other given radius, with corresponding values
of Vg2 obtained from equation (Dlos. The correct values of

Vi,l and Vi,z that will satisfy equation (D1) are obtained by -
interpolation.
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After the distributlion of axial velocity 1s known, the density
distributions are obtained from equations (Cll) and (D5), and the
pregsure distributions, total emthalpy change, and air angles are
obtalned In the same manner as before.

Se0T
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APPENDIX E
APPROXIMATE VATUE OF RADTAL DISPLACEMENT ACROSS BLADE ROW
FOR GENERAL CASE IN WHICH Hy, H,, &3, AND £,
ARE DETERMINED BY DESIGN AS FUNCTIONS OF x4

In the latter part of appendix D, distribution of axial veloc-
ity is expressed in terms of known H, £, r;, and ry(r;).
Alternatively, this distribution can be expressed in terms of radlal
displacement and 1ts wvalue determined by the simplified-radial-
equilibrium calculation, for which Ag = 0. For the case of
nontapered passege, it 1s seen from equation (21)

av av, A 2
z,1 _ z,l,8 "e (=n 2
vz:l dry z,1,s8 drq t7T 1 vz:l (81)
and

dvz,z = dv.zzzls Ae T 2 o drp dgz 1 1
V2,2 Ty = V2,28 Tar. "2 \L (VZ 2) it e w 2" 2
1 ’ 1 1\r° 7y
(E2)

A \-2
By substituting (ry + 8¢) for ry, expanding (1 + 'i'?) in a

A\2
binomial series, and neglecting terms of greater order than (ﬁ y

equation (E2) becomes

dv, av, A 2 da
. 2,2 _ z,2,8 _ e (_13) 2 )
V2,2 ar, * vz,z,s dry 2 \L V2,2 L+ drq

at, / & dfp /3862
+ izEr—l G;?) -£2 E{;( 1'24) (E3)

e e e ey T T e e e e+ T i o e
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If 4, (ry) 1is known, equations (El) and (B3) may be solved as linear first-order differential
equations in vz,lz and Vz,zz, respectively, giving (omitting the subascript 1 on r)

dr vz: 1,s

ﬁz‘f‘l‘ > a\% (T
- A, dr -(—)J A, dr
2 _ [(E) . £ 2o 2/, e

= n ar + Vy 3 n° (E4)

M

(B5)

where

r
p({r) = by dr +% {(AG)B . I:Ae (rm):]'a’}

Tnm

end subscript’ m may here refer to any radlus between hub and tip.

SB6LT ‘oM MI VIVE
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For the limiting case of zero aspect ratio, the last term iIn
equation (El) approaches zZero, 8o VZ 1= Vz 1,ss whereas Vz 2

1s obtalned by integrating equation (E3) with the third term
neglected.

r

2 2 2 2 B (4 ¢ 2
Vo,2" = Vz,2,6" - (Vz2,8,m - Vz,2,m ) *+ 2 3 (a; t2 ) dr
m
r
- e (4 .2
3 % &t ) ar (z6)
Tm

When equation (E4) 1s integrated by parts and 4, (r;) 1is
replaced by y, &(r) as in equation (51), there is obtained

2
b1
2 _ 2 (’IT) Yo @1 () 2 2
Vz,1 =7Vz,1,5 +° (Vz,l,m - Vz,1,m,s

2 2
(%) Je Cpl(r) t 2 a '(%) Yo ¥y (x)
- e Vz,l’s E e dr
Tm
in which
r
¢, (r) g(r) dar
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If it is desired to compare the general case with other cases on the
basis of the same Vz,l,m’ then vz,l,m = vz,l,m,s‘ By the use of
the mean vaelue theorem of integral calculus, the preceding eguation
can be written as

1

o (Frm e — [ a e

2
V2,1 - Vz,1,8

[ e

z,1,8 1 (r7)

where vz,l,sz is & mean value of Vz’l’sz between r and 1xp,

the mean depending on the choice of the function g (r). If the
approximation is made in letting V; 2 p = Vz,2 m,g» ©Iuation (Bs)
may be written as

—— [ v

2 2
" V2,2 - Vz,2,8 = Vz,2,8 |® - 1|+ 35 %3 (v)

2

- ¥, @y (7) - (E8)

where

@ (x) R NG ETEA {[g <r)]2 - [& )] 2}

-(%)2 ® (x) [T (%)2 ? &) o)

Pz (r) = o e Ltlar
rm
and
b
(o @ = (Z) ot ,
PR AR IO TR
Tm
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The change in the dletributions of Vz,l and Vz,z wlth the maxrimum displacement Yo for a

given g (r) 1s now determined by differentiating equations (E7) and (B8), assuming that o
Vz’l’sz, and Vz’z’BE are independent of y,

2 (-%)2 Yo ¥ ()

a V21,8 (x\2

2 ‘a?; 1083 Vz’l = _-V—:—]“Z_- (‘i) CPl (r) 9 (ES)
—_— 2

2 (% P, (r)
d Vz,2,8° /5\2 (L) Jo ¥2 [ ]2[ ]
2 'd—.yj-e"' log, Vz,z 2 - _\F:’—ZLZ—- (L) e Py (r) + Jo 'E(r) - E(rm)
Pz (r) 3, dPz(r) Pa(r) - 72 awy(r) (210)
vy 2T T, T e Z " 2 4y
z,2 2,2 © V2,2 Vz,2 e
By subtracting eguation (E10) from (E9) and neglecting thres emall terms containing Jre,/‘.'rz2
s -
Yol (B
v 2 v Yo Py (r)
4 2, l/x z,1,8 ) Je
i, Lot T = 7 (1) @ | g
2
v 2 -(5)2 To P2 (::) [(r)]2 [g(r )le Pz (r)

g Zalys o NL/Te 14y, & ki - 222 (m)

VZ 22 qjl (r) 'V'z 2
2 2

SELT "ON HI VOVN
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The equation of continuity, equation (14), may be written as

PV, 1 y.&(r) a
—t —
szi,z 1+ - 1+ 3, i 8 (r) (Elzz

by replacing rz with ry + y, g (r). It is here being assumed
that the displacement A, Tfor the continuilty equation has the same
form as, but may differ in magnitude from, Ay. If the varlation
of py/pp (r) with Y. 1s neglected, that is, the density distribu-

tion is assumed to be determined primarily by the tangential wveloc-
ity distribution, differentiation with respect to Yo for a

given g (r) gives .
- &lr) % g(x)
d 2,1 T
50— logy =%~ = + (E13)
43, vi,z l+yc'5§?l Ly, é% g(r)

If the same distribution of Vz 1 and Vé 2 satlisfies both the
2 2

continuity and equilibrium equations, Yo 1is a function of Je
determined by the differential equation, which is obtained by
dividing equation (Ell) by equation (E13):

2
¥, (£) o1
iy, ~ 2
e 5{%‘1 s La()]
1y B2 1y, £ (a(r)]

V 2 T Jo @ (I') V 2 -z Je © (I)
( ) e ¥l () e T2
zzlzs L Zzzzs L
iZ‘,]. Z,Z

[e()]? - [&(zy)]? @ z(r)
+ ¥ () - (E14)

Va2 (%)chl (r)

SeoT
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In order to evaluate equation (El4), the form of g(r), which is

implicit in the equations used, must be found. An order-of-magnitude

result may be obtained, however, By equating the right-hand side of
equation (El4) to a constant .= - and ‘determining the value of
the constant from the boundary conditions on g(r). Because this

assumption involves setting dyc/dye equal to a constant, it is

equivalent to the assumption already stated that for the selected
Ag = Jo 8(r), the corresponding 4, differs only in amplitude.

In order to obtain the order-of-magnitude result » the right-hand

slde of equation (E12) is simplified by

(a) Setting the first two terms in the bracket equal to 2

(b) Considering the terms involving o and ¥, mnegligible
when they are compared with unity

(c) Ignoring the last term in the bracket because it contains
2
Vz’zz (—i—) in the denominator. (If equation (El4) is
written in terms of zr/rt instead of r, the term
2 nr
(%) becomes g—-I-‘E) » Which 1s about 250 for A =2
r
and rt = 0.6.)

As a result of this simplification, equation (El4) becomes

v, How

- - (E15)
e 5-(1.31 + 2 ax)
Rewriting equation (E15) gives
] (%)2 Lo 0 - ) | 4 o (E16)

)
When equation (E16) 1s differentiated with respect to r and the

d
relation = P (r) = g(r) 1s used,

2 2
27 8() + 7 37 8(x) + [(I—’?K-) riz] g(x) = 0
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This equation gives g(r) as a Bessel function of the first order
and argument (x/IK). The value of (n/IK), and thus of K, is
determined by the boundary conditions g(rhs = g(ryg) = 0. In order
that g(r) baeve a single maximm, the first eigenvalue of this
boundary~value problem must be taken. A satisfactory approximation
to this solution may be obtained without involving Bessel functions by
replacing g(r)/r in equation (E18) by g(r)/r,, differentiating,
and solving: .

_I‘_. N
glr) = e %Tm (

K; cos Ir + K, sin Ir)

where

- ,\I(g)z i1
L/ g2 7 (2ry,)? |
The boundary conditions determine, using the firast eigenvalue

for K, .

= b1
Ty~Th

r
T 2ry r-ry,
sin x (E17)
Ty=Ty

g(r) = Kze

and therefore,

(1)2 -]:_ - ﬂZ + l ~ ﬂZ
L] K2 (rg-rpl  dxy®  (rp-rp)?

(This approximate equality 1s correct within 1 percent for
(rp/ry) > 0.5.) Substituting this result in equation (E15) gives

8

2
4y (rt" ) 2
A =~ A E18
e T (E18)

In this very rough approximation dyc/dye is therefore equal to
minus the square of the aspect ratio. By Integrating equation (E18)

-

Se0T
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and by letting Je,s equal the value of y, corresponding to
Jo = 0 (simplified-radial-equilibrium approximation):

Yo = Jo,8 - AZ Ye (x19)

Jo = ¥, which when substituted

A solution corresponds to y,
into equation (¥18) gives

g = Je,8

1+A2
or
Ac g
A =——’-—2' (50)
14+ A
REFERENCES

1. Ruden, P.: Investigation of Single Stage Axlal Fans. NACA T™™
No. 1062, 1944,

2. Howell, A, R.: Fluld Dynsmies of Axial Ccompressors. War
Emergency Issue No. 12 pub. by Inst. Mech. Eng. (London), 1945.
(Reprinted in U.S. by A.S.M.E., Jan. 1947, pp. 441-452.)

3. Eckert, and Korbacher: The Flow through Axial Turbine Stages of
Large Radial Blade ILength. NACA T No. 1118, 1947.

4, Lamb, Horace: Hydrodynemics. Cambridge Unlv. Press, 6th ed.,
1932, articles 10, 329, 358.

5. Vazsonyi, Andrew: On Rotational Gas Flows. Quarterly Appl.
I'Iatho, 'VOl. 3, 110. 1’ April 1945’ ppo 29-370

6. Sinnette, Jobn T., Jr., Schey, Oscar W., and King, J. Austin:
Performance of NACA Elght-Stage Axlel-Flow Compressor Designed
on the Basis of Airfoll Theory. NACA Rep. No. 758, 1944.

7. Pochobradsky, B.: BEffect of Centrifugal Force in Axial-Flow
Turbines. Enginsering, vol. 163, no. 4234, March 21, 1947,
pp. 205-207.



http://www.abbottaerospace.com/technical-library

NACA TN No. 1795

(a) Stream surface over four stages of multistage
turbomachine.
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{b}) Intersection of (c) Intersection of stream
stream surface with surface with axial plane,
plane normal to axis.

Figure |, — Stream surface over four stages of multistage

turbomachline and its intersection with ptanes normal to
and containing axis of machine.
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Figure 2, - Stations between blade rows.
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Figure 3. - Stations | and j short distance apart.


http://www.abbottaerospace.com/technical-library

1035

NACA TN No. 1795 83

l.6
1.4
»~
T
~
o §§§§§§>
l‘2_ P P
A=0or s.r.e. N
-8 Tront of rotor —
—— | T—]
—
.0
(a) Distribution of specific mass flow.
.04
T
;ﬁjj:f/ \\\\\\\
.03 / \\\\
o & /r A0 \\
————— A-Z
1,02
o / T A ® \\
, s.r.e. (Ac,s)
/ - - - Ac,s/5 \Y
,o, ____-—‘—— o~
/ /// //;%’——- -\\‘"\ \\~\
7 — N~ \\
P
///r/ N
(.)6 .7 .8 .9 1.0

{(b) Radial displacement across rotor.

Figure 4. - Symmetrical-velocity-diagram and constant-total-
enthalpy compressor.
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Figure 4. - Continued. Symmetrical-velocity-diagram and constant-total-enthalpy
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Figure 4. - Continued. Symmetrical-velocity-diagram and constant-
total-enthalpy compressor.
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Figure 4. - Continued. Symmetrical-velocity-diagram and constant-
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Figure 4. — Continued. Symmetrical-velocity—diagram and constant-
total-enthalpy compressor.
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Figure 5. - Free-vortex and constant-total-
enthalpy compressor.
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Figure 5. - Continued. Free~vortex and constant-total-enthalpy compressor.
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{d) Variation of air angles.

Figure's. - Continued. Free-vortex and constant-total-enthalpy
compressor.

geot


http://www.abbottaerospace.com/technical-library

1035

NACA TN No. 1795 93

W,/a'
\
N

A = 0 or s.r.e.

—— A e

.5 | | !

.6. .7 .8 .9 1.0
I"/l't

(e} Variation of Mach number relative to rotor blades.

Figure 5. - Continued. Free-vortex and constant-total-enthalpy
: compressor.
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Figure 6. - Concluded. Free-vortex and constant—total~enthal py compressor.
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{a) Distribution of specific mass flow.
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{b] Radial displacement across rotor.
Figure 6. — Free-vortex and constant-total-enthalpy turbine.
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(d) Variation of gas angle entering rotor blade.
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Figure 6. — Continued. Free-vortex and constant-total-enthalpy
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(f) Pressure distribution.

Figure 6. - Continued. Free-vortex and constant-
total-enthalpy turbine.
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Figure 6, - Concluded. Free~vortex and constant-total-enthalpy turblne.
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