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SUMMARY

A solution is presented for the coupled and uncoupled modes and
frequencies of wings (swept or unbwept) mounted on a fuselage. The
deflectlion and twist of the wing 1s expanded In terms of the modes of a
wmiform cantlilever beam and the energy method 1s used to derive the
characteristic equations describing symmetrical and antisymmetrical
modes of vibrations. Application of these equations to various types of
wing vibration is illustrated by numericel examples. The mumerical
examples chosen were susceptlble to exact solutlon, and the results show
that accurate modes and frequencies can be obtalned by a method in which
low-order determinants are used.

v

INTRODUCTION

Except for certain idealized cases, the natural vibration modes and
frequencies of ‘airplane wings (swept or unswept) camnot be found by
exact analysis, and thus approximate methods of solution must be used.
Such a solution is presented for the general problem of coupled bending
and torsional vibration of a nonmuniform wing mounted at an angle of
sweep on a fuselage. The energy method is used to derive two sets of
linear characteristic equations, one for symmetrical modes and the other
for antlisymmetrical modes. These same equations also lead to solutions
for the coupled and uncoupled modes and frequencies of the unswept wing
and fuselage. The equations are solved by the Crout method which per-
mites independent calculation of any desired mode and fregquency.

In this solution the deflectlon and twist of the wings are assumed
to conform to elementary beam theory. Such an assumption may or may not
lcad to an analysis which is applicable to wings having low aspect
ratio, especlally when appreciable sweep 18 present, because the effects
of the distortions in the vicinity of the root of the wings are not
fully understood. The present analysis considers the fuselage to be a
rigid body, but the analysis may be extended to treat an elastic
fuselage.
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The important feature of the method presented herein 1s the slmpli-
fication that results from use of the natural modes of a uniform canti-
lever beam as expemsions for the deflection and twist of the vibrating
nonuniform free-free wing. With the addition of appropriate rigid-body-
displacement terms, these expressions may be made to satisfy all the
geometrical boundary condltions for both symmetrical and antisymmetrical
wing vibration. Analyzing idealized structures for which exact solutions
could be made shows that only a few terms are needed In the expanslons
to obtain good accuracy.

-

SYMBOIS

L length of semlspan along elastic axis

B Young's modulus of elasticity

G modulus of elasticlity in shear

I bending moment of inertia of wing cross section perpendicular
to elastic axis

In polar moment of inertia of mass per wmit length of wing about
elastic axis

J torsion constant for cross section perpendicular to elastic
axis of wing

IFP one~half of pitching polar moment of inertia of fuselage mass
about elastic axis of wing at root

IFR one-half of rolling polar moment of inertia of fuselage mass
about fuselage longitudinal axis

x distance along elastic axis of wing, measured from center
line of fuselage or root of wing

y deflection of elastic axis of wing with respect to its static
equilibrium position; positive upward

P , angle of twist of wing cross section with reference to. its
static equilibrium positionj positive in stalling direction

8 angle of pltch of fuselage

) a.nglé of roll of fuselage

A angle of sweep, measured between wing elastic axis and line

perpendicular to fuselage longitudinal axis
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mess of wing per unlt length

total mass of wing

‘one-half of mass of fuselage

ratlo of fuselage mass to wing mass <%>

circular frequency of natural mode of vibration, radians per
second

cilrcular frequency of nth natural bending mode of wmiform
cantilever beam

circular frequency of nth natural torsional mode of wmiform
cantilever beam

frequency of natural mode of vibration, cycles per second

distance between magss center of wing cross section or points
of mass concentration and elastic axlis of wing; positive
when mass center lies forward of elastlic axis

distance between mass center, of fuselage and elastic axls of
wing at root; positive when mass center lies forward of
elastic axis

distance between point of spring suspension and elastic axis
of wing at root; positive when point of suspension lies
forward of elastic axis

elastic spring constant

coefficient of nth term in expansion for ¥

coefficient of mth term in expansion for @
integers (1, 2, 3, « . )

nth bending mode of uniform cantilever beam
seccnd derivative with respect to x of yp(x)

nth torsional mode of uniform cantilever beam

first derivative with respect to x of ¢, (x)
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ENERGY EXPRESSIONS AND DEFLECTION FUNCTIONS

In an analysis to determine the modes of vibration of wings it is
usually sufficient to consider the equilibrium of one-half the fuselage
and the wing semispan only. The airplane is divided along its longi-
tudinal axis with a coordinate system assigned as shown in the following
configuration:

Elastic
c.g- of axis
wing section /

\ ? .
] e ¥y
Posgition of
static equilibrium

Section A-A

In this anelysis the fuselagé is assumed to be rigid. Its motion is
therefore represented by rigid-body displacement and rotation.

For vibration of this system, the energies considered are the
bending, twisting, and kinetic energles of the wing semlspan and one-
half the kinetic energy of the fuselage. At maximm displacement of the
wing the sum of the strain emergy of bending and twisting is given by
the well-known expression

o
I
N =

L 2 2
m(ﬁ> ax + £ | oI Eq.’) ax (1)
ax= 2 dx

0 0
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The kinetlic energy of the wing as 1t passes through the equilibrium
position is given by the equation (see appendix A for derivation)

L L L
: 2
V1=%2 my2 ax + o mquyd.x+a-?2— Lo° ax (2)
0 . Jo 0

One-half the kinetic energy of the fuselage 1s given similarly by the
expression (see appendix A for derivation)

2
2 2
V2 = U-%—(IEFYQ + EmFeFey + IFPQ + IFR(D > (3)
’ x=0

It can be shown by geometry that the pitching angle 6 and the rolling
angle ¢ are related to the angle of twist of the wing at the root cross
gsection, the slope of the wing at the root, and the angle of sweep by the
following relations :

ay
86 = [{Ppcosh - 2gin A (%)
( dx )x:O
_ dy > '
= (@9sinA + -cos A . (5)
(pomargeonn)

The conditlons leading to these geometrical relations were pointed out
by Lawrence in reference 1.

By the energy method, expansions are chosen to represent the
deflection and twist of the wing. In accordance with a principle of
this method, which apparently is not very well known, the expansions
need only satisfy the geometrical boundary conditipns of the problem.
The dynamical boundary conditions (shear, moment, torque) are auto-
matically satisfied in the minimization process. A brief account of
this feature is given in reference 2.

Convenlient expansions for_the deflection and twist:are the following
equations:

e e m—
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y(x)=a0+30%+alyl+a2y2+...+a,_nyn+.-. (6)

qn(x)=b0.+bl<pl+b2q>2+...bmqam+... (7)

in which the coefficients ap and by may be teken as generalized
coordinates. The coefficients ay,, &,, and b, are included to allow

the wing to have a rigld-body deflection, a linearly varying deflection,
and a rigid-body rotation. The y,'s and ¥®,'s are bending and

torsional modes, respectively, of a uniform cantilever beam written in
terms of & unit tip deflection or unit tip rotation. Some of the reasons
for choosing these modes will be discussed in the section entitled

. "Discussion of Method." With the use of the expansions (6) and (7) the
geometrical boundary conditlions at the wing root are determined solely

by the values of the coefficients ay, a,, and bo‘ (The coefficient as
determines the wing root deflection, EO determines the slope of the wing

at the root, and b, determines the angle of rotation of the wing root.)
The simplification resulting from this method of dealing with root
boundary conditions will be made evident in the section to follow.

Upon substitution of equations (&), (5), (6), and (7) into
equations (1), (2), and (3), the emergies U, Vi, and Vo are expressed
in terms of the unknown coefficients aj, by, and the unknown frequency w.
(The coefficients ay, &,, and b, do nSt appear in the expression

for U.) )

For the case of a flexible fuselage, expansions similar to
equations (6) and (7) can be made for the deflection or twist of the
forward and rearward sections of the fuselage. These expansions are then
used wilth eppropriate energy terms similar to equations (1) and (2).

BOUNDARY CONDITIONS AND CHARACTERISTIC

EQUATIONS OF SWEPT WINGS

Because of the structural symmetry exlsting about the longitudinal
axis of the fuselage, the structure vibrates in natural modes which can
be classed as elther symmetrical or antisymmetrical gbout this axis.

For convenience, the boundary conditions defining each type of vibration
will now be introduced.

For symmetrical vibration, the boundary condition at the wing root
le that the fuselage shall not roll, or
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o = <q)sinA+§£cosA> =0 (8)
dx x=0

Use of equations (6) and (7) permits this boundery condition to be
expressed by the followlng simple relation between the coefficlents &,
and Do

8y = -boL tan A (9)

Elimination of &, from Vi and V2 by means of this relation leads
to the solution for symmetrical modes and frequencles.

o
For antisymmetrical vibration, the constraining relatlons at the

wing root are that the deflection is zero and that the fuselage shall.
not pitch, or

(F)30 =0 (10)

°

and

e=<q>cosA-$‘lsinA) =0 ' (11)
dx x=0

By use of equations (6) and (7), the boundary conditions may be written

ag =0 (12)
bo = ‘?% ten A (13)

Substitution of these relations into the expressions for Vi eand V2
leads to the solution for antisymmetrical modes and frequencles.

The characteristic equations for modes and frequencles of vibration
(symmetrical and antisymetrical) can be found by minimization of the
expression Vi + Vo - U with respect to the unkmown coefflcients aj

and bi. For example, the equation obtained by minimization of the
energy expression with respect to &, 18
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ao(my + mp) + ajfol + aphop + - - - apfon
+ b | b o . . o
° 00+cosA IH, tan A | + b1Fo1 + boFo2 + - - - bpfom = (

The sets of linear homogeneous equations derived in this way are shown
in a somewhat condensed form for symmetrical and antisymmetrical vibra-
tion in tables I and II. The constants Ajp, Byp, Cin, - - - shown in
these equations represent Integrals which are defined in appendix B.

For any problem, the limiting values of the subscripts n and m of
an and by are chosen in accordance with the number of modes belng
represented by the expansions. The examplss to be presented subsequently
herein will serve as a guide in this choice. The next section will show
that the equations which characterize coupled and uncoupled vibration of
an airplane with umswept wings may be obtained simply by crossing out
certain rows and columns in teble I or table IT.

CHARACTERTSTIC EQUATIONS FOR VIBRATION

OF UNSWEPT WINGS

The equations for vibrating unswept wings may be obtained directly
from tebles I and IT simply by letting the angle of sweep A equal
zero. The equations for the various types of vibration - coupled
bending and torsion, uncoupled bemding, and uncoupled torsion - may
then be found as described in the following sections. In all these
cases 1t is understood that A = 0.

Coupled Bending and Torsion
Symmetrical and antisymmetrical free-free vibratlion.- The equatlons

obtained for A = 0 describe symsetrical and antisymmetrical free-free
vibration of an unswept wing and fuselage.

Vibration ag a cantilever.- The deflection, slope, and twist at the
wing root are zero and therefore ag = &g = bo = 0. The characteristic
equations for this type of vibration may Pe found from table II by
crossing out the column headed by ay and the row for ag-

Uncoupled Bending Vibration

If wing twist and fuselage pitching are prevented, the twisting
component @ is zero and consequently the by's must be zero. In
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tables I and II, therefore, the upper left-hand quadrant, which involves
only the a,'s, gives the equations for uncoupled bending vibration.

The several types of uncoupled bending vibration may be found by dropping
out certain of the remaining equatlions as follows:

Symmetrical Pree-free bending.- For symmetrical free-free bending
the slope at the root is zero and therefore &y = 0. The upper-left

quedrant of table I yields ths desired equations.

Antisymmetrical free-free bending.- For antisymmetrical free-free
bending the deflection at the root 1s zero, and therefore ap = O. When

A = 0 the upper-left quadrant of table IT ylelds the desired equations.

Cantilever bending.- For cantilever bendlng the' deflection and
.8lope at the root are zero and therefore agy = &y = 0. The equations
for this type of vibration may be found from the upper-left guadrant of
table I by crossing out the coluwmn headed by &, and the row for a,.

Uncoupled Torsional Vibration

If wing deflection’and fuselage translation are prevented, the
deflection component y 1is zero and consequently the an's must be
zero. In tables I and II, therefore, all the rows (equations) derived
from the minimization of the ai's and the column headed by ep's may
be crossed out. The remalning equations, the lower-right quadrant,
then define uncoupled torsional vibration of a wing-fuselage system.

Symmetrical free-free torsion.- For symmetrical free-free torsion
all the equations in the lower-right quadrant of table I are used

@A =0).

Cantilever or antisymmetrical free-free torsion.- For cantilever or
antisymmetrical free-free torsion the twist at the root is zero and
therefore bo = 0. The equations for this case are found in the lower-

right quadrant of table II.

SOLUTION OF CHARACTERISTIC EQUATIONS

It has been shown that the equations characterizing various types
of wing vibration may be found in a simple menner from the gemeral sets
of equations shown in tebles I and IT. A solution to a particular set
of equations consists in determining values of o, ap, and b which

define the natural frequencles and modes.

Since the equations are homogeneous, values of &, and b other
than zero wpich satisfy the set of equations can be found only when the
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doterminant of the set of equations is zero. The determinant, which is
sinply the bracketed terms in tables I and IT, contains the unknown
frequency w; the veluss of « which cause the determinant to be zero
are the natural frequencies of vibration. In order to determine the mode
agsoclated with a given natural frequency, one of the unknown coeffi-
clients ap or by is given an arbitrary value (unity, for convenience).
Mathematical consideration indicates that one of the equations can now
be discarded, but it has been found best simply to add two of the equa-
tlons together and then to solve the resulting set of nonhomogemsous
equations simltaneously to obtaln ths relative values of the other coef-~
ficlents. The value of frequency used in the solution of these equations
is, of course, the frequency value which caused the determinant to be
zero. With the coefficients known, the mode assoclated with the given
value of frequency is obtained directly from equations (6) and (7).

The valuses of o satisfying the frequency determinant may be found
by several methods. Perhaps the simplest way to locate a frequency root
is to evaluate the determinant for s number of trial values of o In
the expected vicinlty of a natural frequency and to plot a curve of o
agalnst the value of the determinant. In most cases, the value of w
glving a zero determinant can be obtained fram the results of three or
four evaluations. The evaluations may be performed by the Crout method
of solving determinants. (See reference 3.) The Crout method yields
solutions rapidly and provides for a running check which minimizes the
possibility of computational error. With the procedure Just outlined,
any deslred frequency root and mode can be found indepemdently of the
other frequencies and modes.

COMPUTATION OF CONSTANTS

Before the characteristic equations for vibration of the wing can
be solved, the constants Ay, B4n, Cip, ¢+ - - appearing in these

equatlions and defined in appendix B must be determined from the physical
properties of the wing. Appropriate mumerical and graphlcal Integration
procedures are known for the calculation of such integrals. In order to
use the procedures, it 1s necessary to know the physical properties m,

me, I,, EI, and GJ at a mmber of representative stations %— along

the wing and also the mumerical values of the modal functions yn(x)
end ¢@,(x) eand their derivatives Yo end @' at these stations.
For convenience, y,(x), ¥,"(x), @,(x), and @,'(x) (n=1,2, . .. 5)

have been computed at ten stations (%: 0.1, 0.2, . . . 0.9, l-O) and

are presented In tables ITIT and IV. The values at stations other than
those listed in the tables may be determined from plotting the modal
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functions and reading off the desired values. The constants Asn, Bin, '
Ciny » ¢+ - &re then found by multiplying the physical constants by the

values of the modal functions at the stations along the wing and inte-
grating over the span. The rapldity with which the Integrations can be
performed depends principally on the number of stations needed to
represent accurately the variation in physical properties along the span
end on the integration procedure used.

ACCURACY OF RESULTS

Because of the structural complexity of airplane wings, simplifying.
assumptlons must necessarily be made in any analytical wing-vibration
analysis. Discrepanclies which have been observed between computed modes
and frequencies and experimentally determined ones will therefore include
errors due to the assumptions made 1n the analytical solution and errors
due to the fact that the analytical solution is usually derived by an
approximate method. In order that the magnitude of the latter type of
error might be investigated for the energy solution, a few idealized
numerical examples are presented for which exact solutions (based on the
same slmplifying assumptions, see appendix C) can also be made. A brief
description of the examples and the results obtained follows.

Uncoupled free-free bending vibration.- A simple test of the
convergence of the energy method for uniform-cantilever-beam mode
expansions is to calculate the bending modes of a free-fres beam with
the use of only a few terms to represent the deflection. The following
deflection expansion

T =&, + 8173 (x) + agyp(x) + azys(x) (15)

leads to a solution for symmetrical free-free modes represented by the
determinent In table V. The calculation of the constants Asp, Bi,, - -

for this-case is slmplified because a uniform beam is being used. The

B
computations for one of the main diagonal terms (A:ln - -—i£> is, for
. i=n

P

example

e e - o e et s s A—— = e < n N e e e e =
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L L
B .
in 2 1 2
<Ain "7;%> = myy ix";g EI(yn")" ax
i=n 0 0

L L

=m yn2 ix - (';LE pn2m yn2 dx
0 0
L - o

=m yn2 dx - .&2.

o

0

where pne is the nth bending frequency of the beam as a cantilever

L -
(clamped at the center line). The integral yn2 dx ‘has been

0
evaluated (see reference 4, p. 336), and for bending modes of a uniform
centilever the integral equals L/4 if the modes are given in terms of
a unit tip deflection. Making use of this fact and dividing through by
the factor mlL leads to dlagonal terms of the form shown in tabls V.

The zeros appear In the table because of the orthogonality of the modal
functions In this uniform beam example.

The three lowest frequencies obtalned from the fourth-order deter-
minant are compared with the exact frequencies in the following table:

Frequency
Symmetrical (radiens/sec) Percent
modes difference
: Exact Energy
1 5.60 5.60 0
2 30.25 30.26 0
3 74.50 T7-46 4.0

When the &a,y, term was added to equation (15) , & frequency of

75.37 radians per second (1.2 percent error) was obtained for the third
symetrical mode. The modes calculated by the energy solution are com-
pared with the exact modes in figure 1. The solutions for both a
fourth-order and fifth-order dsterminant are shown for the third mode.


http://www.abbottaerospace.com/technical-library

NACA TN No. 1747 13

In order to calculate the antisymmetrical modes of the same beam,
8o in equation (15) is replaced by & (%) which leads to the debermi-

nent in teble VI. The two lowest frequencies calculated from this
determinant are compared with the exact solution in the following table:

Frequency
Antisymmetrical _ (radians/sec) Percent
modes error
Exact Energy ‘
1 15.42 15.42 0
2 50.0 50.7 1.4

A comparison of the derived modes with the exact modes 1s shown in
figure 2.

From these comparisons the energy solutions are seen to be in good
agreement with the exact solution for the first and second symmstrical
modes with a fourth-order determinant and for the third mode with a
fifth-order determinant (fig. 1). For the first and second antisym-
metrical modes (fig. 2) good agreement is found from a fourth-order
determinent. In the symmustrical cases, the derived medes contain at
least one less nodal point than the highest mniform-cantilever-beam mode
used in the deflection expansion and for the antisymmetrical case, the
derived modes contain no more nodes than are contained in the umiform
cantilever modes. (Zero deflection at the root of a cantilever and at
the center line of an antisymmetrical free-free beam is counted as a
node.) A simpls and, in some cases, conservative ruls of thumb, then,
that mlght be follorwad. to ensure a.d.equate representation of a d.esired.
mode containing n nodes is to include in the expansions for deflection
all terms up to and including the modal function which has =n + 1 mnodes.
This rule should be applied separately to both the deflection and
rotation components of a mode in the case of coupled vibration.

Mass coupled vibration of a swept wing and fuselage.- A few of the
netural frequencies of vibrations of the configuration shown in figure 3
have been determined by both the exact and energy methods. The swept
wing is of constant cross section along the span and is mounted on an
inflexible fuselage. The parameters assumed are as follows:
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Wing parameters:

Young 's modulus of elssticity E, psl . « . . . . . . . . 10,000,000
Shearmod.ulusG,psi..................hOOOOOO
Bending moment of inertis I, inches™ . « . . « . . . . . .

TorsionconstantJinchesl"............... 1600
Mass of wing m, pou:n.d—E!econ:rlse/:lnchess2 e e e e e e e e 0.025
Polar moment of inertia I, pomd.-second.52 e e e e s e e e 16

Fuselage parameters:
One-half of pltching polar moment of inertia IFp,

pOIID.d.-SGCODﬂ.SQ -i'D.CheS o e o @ e & & o e o ° 2 o e o o o )-I-OO, OOO
One-half of rolling polar moment of lnertils IFR,

POUII&.-SBCOI].&.Sz ‘mches e e & ® o @ o e e e 6 s e e o ].o,ooo
Distance between mass center of fuselage and elagtlic axls

Ofwjn.gatroot GF’j.n.ChBB e o o o s o e o o s e o e : ‘70
Ratio of fuselage mass to wing mass =g 3

An exact analysis of the vibration of this configuration leads to two
frequency equations, one for symmstrical and one for antisymmetrical
modes. The derivation of these equations is given in sppendix C.

The energy solution for the symmetrical modes was made by use of the
first four terms in the expansion for deflection (equation (6)) and the
first three terms in the expemsion for twist (equation (7)). Bince &, 1is
eliminated in a solution for symmetrical modes, the resulting determi-
nant, table VII, 1s of the sixth order.

Table VITI has been simplified 1n the mammer which has been previ-
ously described for tables V and VI. In addition, the zeros in the
upper-right and lower-left quadrants of this d.etem:!.na.nt are present
because there is no mass coupling along the wing.

The three lowest freg_uenciesbatisf‘ying the determinant are compared
with the exact frequencies in the following table:

, Frequency
Symmetrical (cps) Percent
modss difference
Exact Energy
1 8.65 8.65 0
2 25.1 25.1 0
3 51.4 51.2 0.4
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The modes assoclated with the frequencies obtalned In the emergy solu-
tion are presented in figures 4, 5, and 6. For the third mode the rule
of thumb presented proviously is not complied with wholly. The per-
centage error in frequency, however, 1s rather small but, in order to
ensure that the modal deflection 1s represented accurately, one addi-
tionsal term should probably be included in the expansion for deflection.

In order to check the derivation of the antisymmetrical frequency
equations the lowest antisymmetrical-mode frequency was found from the
fourth-order determinant shown in table VIIT. The value was 14.66 cycles
per second which 1s also the exact value. The associated mode obtainsd
from the energy solution is presented in FTigure 7.

DISCUSSION OF METHOD

As shown by the numerical examples, application of the energy
method to vibration problems leads to results which compare favorably
with known exact solutions. Accuracy of results alone, however, would
not Justify use of the method in a given problem unless the desired
accuracy of frequencies and modes can be obtained with a reasonablé
emount of labor. Although no attempt is made to compare the labor
required to compute modes and frequencies by the energy method with that
required by other procedures, the followlng facts about the energy
method and the Crout solutions are presented for consideration:

(1) The number of terms teken in the expansions for deflectlon and
rotation determines the number of coordinates in the solution and hence
the order of the determinants used. The numerical examples have shown
that solutions for relatively complicated types of wing vibration can
be obtained from low-order determinasnts, which is desirable from con-
glderation of computing time. (Preliminary investigations have shown
that a number of the coupled modes of the alrplane considering the
fuselage elastlic can be obtained from an eighth-order determinant. )
Since each mode and frequency is obtained in a manner independent of
other modes and without recourse to an orthogonality condition, the
modes may be computed in any desired sequence and with varying order
determinants, the order depending on the number of terms needed to give
the particular mode to the desired accuracy.

(2) For a given mess and stiffness variation along the wing, most
of the constants A4, By,, Cyp, - - - for the wing are used in the

golutions for both symmetrical and antlsymmetrical vibration. Thus a
glven set of equations for symmetrical vibration can be used for
computing the antlsymmetrical modes after only a few new constants have
been computed.

(3) The effect of adding to or subtracting from the mass on the
wing, of considering elastically mounted motors, or of consldering an
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elastic fuselage is easily introduced into the emergy solution. (See
appendix D for the method of introducing spring mowuntings.)

(4) The Crout method has been found to be a highly efficient way
to solve the characteristic-value equations derlved from the energy
approach. The characteristic values, or natural frequencles, are
quickly located by a few trial and error evaluations of the determinant
of the homogeneous equations with assumed values of ® In the vicinity
of a natural frequency; and the unknown coefficlemnts defining the modes
are then found by a straightforward calculation.

The expaunslons for deflection and twist have been made in terms of
uniform-cantilever-mode functions for several reasong. Other functilons
could have been used. For example, power-series expamnsions for both
deflection and twlist have been used for the problem considered in this
paper. These expansions work well, are simple and convenlent, but may
involve computational difficulties which are not present when cantilever
functions are used. The off-diagonal terms In the determinant for the
power-gseries solution are usually larger than the diagonal elements.
Small differences of large numbers result in the evaluation of the
determinant so that the compubations must be carried to a large numbex
of significant figures In order to avoild errors. When uniform canti-
lover fumctions are used, however, there is in most problems a
- resemblance between each cantilever functlon and one of the modes being
derived. The fumctlions therefore have a tendency to be orthogonal
(since they are orthogonal when the structure is uniform) with the
consequence that the off-diagonal terms of the determinant are small in
comparison with the diagonal terms. Evaluation can therefore be made
easlly wilthout the use of a large mumber of significant figures. The
examples presented in this paper were computed with the use of four or
five significant figures.

CONCI:USIONS

A solution is presented for the determination of the coupled and
uncoupled modes and frequencies of wings (swept or umswept) mounted on
a fuselage. Characteristic equations describing symmetrical and anti-
symmetrical modes of vibration are derived by an energy method which
makes use of the natural modes of a uniform cantilever beam. The use
of these modes and the principle that only the geometrical boundary
conditions need to be satisfied when a solution is made results in a
direct procedure with a considerabls saving in work. The method points
out that the dynamical boundary conditions, such as shear and moment,
are auvtomatically satisfied when this principle is used.
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The application of the characteristic equatlons to various types of
wing vibrations is 1llustrated by numerical examples. The numerical
exsmples chosen were susceptlble to exact solution and show that accurate
modes and frequencles can be obtalned from low-order determinants.

Langley Asronautical Leboratory
National Advisory Committee for Aeronautics

Langley Fileld, Va., August 30, 1948
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APPENDIX A
HEIRIVATION OF EXPRESSIONS FOR KINETIC ENERGY

In the energy solution used herein, the potential energy stored in
the wing at maximm displacement and the kinetic energy of the wing-
Tuselage system in passing through the equilibrium position must be
known. Since the equations for potential emergy of bending and twist
are well known (see, for example, reference }4) , the present appendix is
confined to a derivation of the kinetic-energy expression.

In figure 8, a cross section of the wing 1s shown at the instant
that it passes the equilibrium position; the elastic axls 1s assumed to
have a vertical velocity v, and the cross sectlon 1s assumed to be
rotating at an angular velocity Q. Any element of mass dm having the
coordinates (r,0) can be shown to have a total velocity such that

vte = (v + Qr cos 9)2 + 92r2 gine (A1)

The kilnetic energy of the element will be %-d.m vta- If y and ¢ are

the maximm values of deflection and twilst, the velocity v and rota-
tional velcoity € may be shown to be equal to wy and wP, respec-
tively. Substitution of these values in the expression for total -
velocity and Integration of the kinetic enmergy of all the eleménts over
the cross section gives for the total kinetic emergy of unit length of
the wing at.the cross section under comsideration

%m(y2 + 20y + kK2P)

where e 1s the dlstance between the elastlc axls and the center of
gravity (e 1s positive when center of gravity is forward of the
elagtic axis) of the cross section and Xk is the radius of gyration

of the cross section sbout the elastic axis. Integration of the kinetic
energy over the length of the wing gives for the total kinetlc emergy of

the wing -

L

v =L | nG? + 2oyp + K2R ax (42)
0
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The expression for the kinetic energy of vertical and piltching
motion of the fuselage can be found by applying equation (4A2) to the
fuselage mass. The angle @, however, 1ls replaced by the pitching angle

of the fuselage glven by (qJ cos A - %sin./&) =O. If 6 1s used to
X

denote the pitching angle,o the kinetic energy of vertical and pltching
motlon of the fuselage is

[ + 2ot + 1]

(e e+ 35,%)

x=0
The kinetic emergy of the fuselage in rolling motlion is
oP 2
7 g

where ¢ I1s the angle of roll of the fuselage glven by

(q) gin A + % cos A) . The total kinetlc energy of the fuselage is
x=0

then P

Va = m-—2<n¥-y2 + anere + IF 92 + IF @2 (A3)
2 P R™ Lo

in which y, 6, and ¢ are understood to be the maximm values of those
quantities.
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APPENDIX B
DEFINITION OF CONSTANTS IN CHARACTERTSTIC EQUATIONS

The constents Ain, Bin, Cin, - - - found in the equations of

tables I and IT represent integrals for which the Integrations are
performsd from the center line of the fuselage or root of the wing to
the wing tip. The Integrations are as indicated:

L

myj_yn dx
0

Atn

L
Bj_n - f EIyiuynn ax

=
B
I
%
B
g
&
R

LR
Il
S——
S
B
o}
B
R
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APPENDIX C

JERTVATION OF FREQUENCY EQUATIONS FOR VIBRATION

OF SWEPT WINGS

An exact solution for frequencies and modes of vibration of swept
wings can readlly be made only for an idealized structure representing
the sweptback-wing ailrplane. Such a configuration is shown in figure 3.
The deflection and twist of the wings are assumed to conform to elemen-
tary englneering beam theory. The motion of the wings can then be
derived by a particular solution to the following familiar differential

equations

EI%:mnzy
GJ-?-E%: Iyt

The general solutlons are
¥ = C1 sinh px + Co coshpx+03 sin px + C} cos px
qJ=C5 gin gx + Cg cos qx

where

b M
*=\Nu
2

q: i

(c1)

(c2)

(c3)

(ck)

(c5)

(c6)
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Values for the six unknown constants in equations (C3) and (Ck) must be
determined from the known boundary conditions at the Toot and tip of the
wing. At the wing tip, the followlng conditions exist:

¥y. Ly B, (1)

When the wing is vibrating in symmetrical modes, the following conditions
at the root must also be true:

(dicosA+Qsm A) =0 (c8)
dx x=0

0 (C9)

l:EI Dy a.xamF( -e—sinA-i-qucosA):l

x=0

[ d'23’sinA-l-GJ—E-cosA+ 2IFP<<pcosA-g‘-y-sinA>
dx

+ wamFer] =0 : (c10)

x=0

Substitution of equations (C3) and (C4) into the six boundary-condition
equations leads to six homogeneous equations in terms of the unknown
coefficlents Cy, Cp, . . . and the unknown frequency . Since values

of Cy, Cop, - « . other than zero which satisfy the set of equations
can be found only when the determinant of the set of equations is zero y'
the natural frequencies of vibration are found as those values of o
which cause the determinant to be zero. ZExpansion of the determinant of

the set of equations leads to a single equation containing the unknown
frequency . This frequency equation can be simplified to the form
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651y GT cos@A
- P on X CO8A on 62N I:(cos 6 sinh 6 + sin 6 cosh 9)
3 oin n  E sinA
om 292
+ —= (1 + cos 6 coshe):’ - Z°FF 410 6 ginh 6
L ml2

o 2
6 epmp 6mp

+( > 1 (1+cos 6 cosh8)+ —=gin A (cos 6 sinh 6
mi2 / sin A, © ok

- 8in 6 cosh 6) - sin A (1 - cos 8 cosh 8) =0 (c11)

where p, q, and ® have been replaced by the peremeters 6 and N
having the following relationship to p, q, and

(c12)

on = 2 (c13)
P .

Therefore

SHEE -

The roots 6 to equation (C1l) define the frequencies of the natural
symetrical modes of vibration of the swept-wing configurations. For
the parameters given in the section entitled "Mass coupled vibration

s of a swept wing and fuselage," the first three roots to this equation
are


http://www.abbottaerospace.com/technical-library

ol NACA TN No. 17k7

8o = 3.336
93 = 1\!--772

In order to derive the frequency equation for the antisymmetrical
modes of vlibraticn, the boumdary conditions defining antisymmetrical
vibration must be satisfied. In addition to the boundary conditions
glven by equation (C7), the following conditions must be truse:

(F)x0 =0 (C15)

<q> cos A - % sin A)x:O =0 (c16)

[ElﬁcosA-i-GJ@-sinA
dx? - ax

+ ‘DQIFR<'S% cos A + ¢ sin A>:' =0 (c17)
x=0

Use of the conditions given in equations (C7), (C15), (C16), and
(C17) yields as the Pfrequency equation for antisymmetrical modes

-,

831Ix
R +9NG_{§_iﬁtaneaN (1 + cos 6 cosh 0)
ml3 cos A EL cos A

+ cosA (8ln 6 cosh 8 - cos 6 sinh 8) =0 (c18)
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For the parsameters given in the section entitled "Mass coupled vibration
of a swept wing and fuselage," the first three roots to this equation are

6, = 2.551
62 = 3011—62

63 = 4.79

T T T e e e e e e e e e —————— T . e+ 4t g e b e oo e~


http://www.abbottaerospace.com/technical-library

26 NACA TN No. 17k7

APPENDIX D

THE EFFECT OF A SPRING SUSPENSION ON THE NATURAL FREQUENCIES

AND MDDES OF A WING (SWEPT OR UNSWEPT) AND FUSELAGE

Frequencies and modes of airplane wings are often determined experi-
mentally with the alrplane suspended at the center of gravity by a llnear
spring. An evaluation of the changes in vibration characteristics
(symmstrical modes only are affected) of the alrplane due to the spring
suspension can easily be made by the energy method. The potential energy
stored in the spring i1s given by '

2
Vo = %m(y + oa? ) (D1)
With the expansion used for y and @, equation (D1) reduces simply to

2
b
VG, = J_' q,(ao + ea‘_o> (DQ)
2 cos

If V, 1s added to the emergies U, Vi, and Vp, and the expression
U+ 7V, -Vy - Vo is minimized with respect to the coefficlents a,
and bo, tha followlng equations are derived:

For a,,
. 8
- b By + EF  _ IH, tan A
ao<mvr+n§‘ w2>+:L:l_&nAm+ o(fLo+cOBA IH; ten
%
- A = 1=0 D3)
mzcos'A>+:L:lanm (1 = 0) (D3
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For b,

cos A cos A

ao<Fio + E°F _IH, ten A - ) Za,n(Fni IE; ten A)

T 2
+ bo IW+L2:Ptan2A+—FL-atGitanA-—ie°'—-
cos2A P coseA

+ an(cm 1Gy, tan A) 0 (1 = 0) (D)

n=1

These two equations replace rows for &g and bo 1n table I when the

natural vibration is restrainsd by a linear spring at the center of
gravity of the airplane.
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TABLE IT.- EQUATTORS FOR ANTTOYMMETRICAL VIBRATION OF SWEPT WING
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TABLE III.- BENDING MOTES (F A UNIFORM CANTILEVER BEAM AND THEIR SECOND DERIVATIVES

%— 1 o T3 YL ¥
1.0 1.0000 1.0000 1.0000 1.0000 1.0000 0
g . 8624 <5237 .2285 -.0520 -.2940 1
.8 - T255 0700 -.3949 -.6430 -.6005 .2
T 5509 -.3170 -. 657k -.3974 2257 .3
6 4611 -.5895 -.4738 .3265 . 7002 A
-5 -3355 -.7136 .0197 .T071 +0007 -5
ol 2299 -.6835 -5297 3156 -.6966 .6
.3 1365 -+ 5261 7562 -.4339 -.2113 o7
.2 .0638 -.3010 6045 ~.7538 6596 .8
1 .0168 -.0926 2281 -.3850 5372 9
0 0 0 0 0 0 1.0
L%, " L%," fy" - 1%, Py," x
3.516 22.03 61.70 120.9 199.9 L

:

"ON NI, VOV

LilT
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TABLE IV.- TORSIONAL MODES OF A UNIFORM CANTILEVER BEAM AND THEIR FIRST DERIVATIVES

= P P, Py P 9

1.0 1.0000 1.0000 1.0000 1.0000 1.0000 0
.9 .9877 .8910 .TOTL 4540 <1564 1
‘.8 <9511 .5878 0 -.5678 -.9511 .2
T .8510 <1564 - 7071 -.90877 -. 4540 .3
6 .8090 -+3090 -1.0000 -.3090 .8090 b
5 7071 -. 7071 -.7071 7071 7071 .5
L .5878 -.5511 0 .9511 -.5878 .6
.3 4550 -.9877 .T071 L1564 -.8910 o7
.2 3090 -.8050 1.0000 -.8090 3090 .8
.1 1564 -.4540 -TOTL -.8910 .9877. .9
0 0 0 0 0 0 1.0
21, 2Ly 23 g, 2L, x
n 3n 5n Trt 9% L

19

LHLT "ON MI VOVM
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TABLE V.- EQUATIONS FOR SYMMETRICAL FREE-FREE-BEAM EXAMPTE

L
T f y1 dx = 0.3915
0

a1 ap
L L
1 1
= dx = dx
T 71 I Jo
0 0

0 0
ET
-
_
o2 = 485.5
L
L | 3, dx = -0.2169
0

B i O

a3
L
1
T| 3%
0
0]
0
1( _P32>
L -

e e e g e v —_————
- P o ao.
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TABIE VI.- EQUATIONS FOR ANTISYMMETRICAL FREE-FREE-BEAM EXAMPLE

8y ay ap a3
L . L L L
1 b4 1 x 1 x 1 X
£ (f) x g fniax g EV4& P ET3E
0 0 0 0
1 : 1 I’12
X - cm—
| Enpax " = 0 0
0
1 ; 1 I’22
x : -2
0
L : 1 p3”
X - ——
0
p12 = ].2:36 P22 = 1‘—8505 P32 = 3&)700
Lo I L
1 x =1 1|z =0. x| X = 0.
Lf(L) dx 3 T Lyldx 0.284k T Lyad.‘x -0.04535
0 0 0
8
1 X _
¥ | §i3dx=001
0
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TABLE VII.- EQUATIORS FOR SYMMETRICAL VIBRATICN OF SWEPT-WIG EXAMPIB
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[ 0
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(Boo tables ¥V and VI for values of other integrals.)
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TABLE VIIT.- EQUATIONS FOR ANTISYMMATRICAT, VIBRATION OF A SWEFT ~WING EXAMFLE
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Figure 1.- Symmetrical modes of uniform free-free beam,
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1.0 B — Exact . \
R O Calculated (ljth-order determinant)
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(a) First mode.
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(b) Second mode.

Figure 2.- Antisymmetrical modes of uniform free-free beam.
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Figure 3.- Example swept-wing airplane.
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Figure )j.- First symetrical mode of example swept wing.
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Deflection, in.

Twist, radians

Twist, radlans Deflection, in,

-.5

.0001
0
e 0001 -

Figure 6.- Third symmetrical mode of example swept wing.
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Figure T.- First antisymmetrical mode of example swept wing.
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Figure 8.- Coordinate and velocity notation for
element of mass on cross section.
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