
COPY NO.:

RM No. E8J25e

### INCLASSIFIED





NACA

C. 2

Bath. g. W. Campley 3/25/57 per charge 2022 mHN 44:157

### RESEARCH MEMORANDUM

ALTITUDE-WIND-TUNNEL INVESTIGATION OF TAIL-PIPE

BURNING WITH A WESTINGHOUSE X24C-4B

AXIAL-FLOW TURBOJET ENGINE

By William A. Fleming and Lewis E. Wallner

Lewis Flight Propulsion Laboratory

CLASSIFICATION CANCELLY Dad, Ohio

Authority & W. Chamley Date 12/14/53

By JH 1-1854 See Marie

By PH 1-1854 See Marie

Champing Document

offeeting the Estimat Defices of the United Rates within the manning of the Espinary Act USCT 6037 and SR. Be transfelecting Act USCT 6037 and SR. Be transfelecting to the explaint of the contents in any missney to a manufactured payment in pro is bited by the property of the contents of the transfel felection, any property of the p

# NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

December 13, 1948

RESTRICTED

PINCI VOCILIED

NACA RM No. E8]25e



- KENKICHED.

UNCLASSIFIED

#### NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

#### RESEARCH MEMORANDUM

ALTITUDE-WIND-TUNNEL INVESTIGATION OF TAIL-PIPE

BURNING WITH A WESTINGHOUSE X24C-4B

AXIAL-FLOW TURBOLET ENGINE

By William A. Fleming and Lewis E. Wallner

#### SUMMARY

Thrust augmentation of an axial-flow type turbojet engine by burning fuel in the tail pipe has been investigated in the NACA Cleveland altitude wind tunnel. The performance was determined over a range of simulated flight conditions and tail-pipe fuel flows. The engine tail pipe was modified for the investigation to reduce the gas velocity at the inlet of the tail-pipe combustion chamber and to provide an adequate seat for the flame; four such modifications were investigated.

The highest net-thrust increase obtained in the investigation was 86 percent with a net thrust specific fuel consumption of 2.91 and a total fuel-air ratio of 0.0523. The highest combustion efficiencies obtained with the four configurations ranged from 0.71 to 0.96. With three of the tail-pipe burners, for which no external cooling was provided, the exhaust nozzle and the rear part of the burner section were bright red during operation at high tail-pipe fuel-air ratios. With the tail-pipe burner for which fuel and water cooling were provided, the outer shell of the tail-pipe burner showed no evidence of elevated temperatures at any operating condition.

#### INTRODUCTION

Thrust augmentation of turbojet engines is of importance in increasing their usefulness and range of application. Utilization of the tail pipe for burning fuel provides a practical cycle for increasing the thrust of turbojet engines. This thrust increase is obtained without increasing the maximum temperature or stresses in the turbine buckets or otherwise disturbing the normal cycle of engine operation, provided that the tail-pipe nozzle area is

RESTRICTED :

increased. A variable-area exhaust nozzle is therefore required to obtain maximum thrust both with and without tail-pipe burning.

A broad research program on thrust augmentation is being conducted at the NACA Lewis laboratory. As part of this program, an investigation of thrust augmentation by means of tail-pipe burning was conducted in the NACA Lewis altitude wind tunnel from May to August 1947 to study several tail-pipe-burner configurations on an axial-flow-compressor type turbojet engine with a thrust rating of 5000 pounds. Tail-pipe-burning results obtained on another axial-flow-compressor type turbojet engine in the altitude wind tunnel are reported in references 1 and 2 and results obtained at static sea-level conditions are presented in reference 3.

Operational and performance characteristics of four tail-pipe burner configurations were obtained over a range of simulated altitudes, flight Mach numbers, and tail-pipe fuel flows. Performance obtained with these tail-pipe burners is presented in both graphical and tabular form and compared with the performance of the engines in the normal configuration. The operational characteristics of each tail-pipe burner are discussed and the combustion efficiencies are presented.

#### INSTALLATION

#### Engine and Installation

Tail-pipe-burner performance was investigated with an early experimental Westinghouse 24C turbojet engine, which has an ll-stage axial-flow compressor, a double-annulus combustion chamber, and a two-stage turbine. Rated thrust of the engine is 5000 pounds at static sea-level conditions and an engine speed of 12,500 rpm. The engine air flow at this condition is approximately 58.5 pounds per second. The first two tail-pipe-burner configurations (A and B) were investigated on a standard engine and the other two configurations (C and D) were investigated on a modified engine having a slightly higher thrust and turbine-outlet temperature. The two engines are described and their performance is compared in reference 4. For the entire investigation, aviation gasoline that conformed to specifications AN-F-28, Amendment 3 and had a lower heating value of 19,500 Btu per pound was used in both the engines and the tail-pipe burners.

The engine was mounted in a wing nacelle installed in the 20-foot-diameter test section of the altitude wind tunnel, as shown

917

in figure 1. In order to simplify the installation, no cowling was installed around the engine. Dry refrigerated air was supplied to the engine through a duct from the tunnel make-up air system. This duct was connected to the engine-inlet duct by means of a slip joint with a labyrinth seal so that thrust and drag could be measured by scales. The air was throttled from approximately sea-level pressure to the desired pressure at the engine inlet while the required altitude pressure was maintained in the wind-tunnel test section.

#### Tail-Pipe Burners

Four tail-pipe-burner configurations were investigated in which the tail pipe was modified in order to reduce the tail-pipe gas velocity and to provide an adequate seat for the flame. Configurations A, B, and C consisted of three fuel-system and flame-holder installations mounted in a tail pipe having an inside diameter of  $25\frac{5}{4}$  inches (fig. 2). Configuration A, with a slightly different diffuser section, has been investigated on another turbojet engine at static sea-level conditions (reference 3). Configuration D consisted of a tapered tail pipe, a fuel system, and a flame holder as an integral unit (fig. 3). This burner had a maximum inside diameter of  $25\frac{1}{4}$  inches.

Configuration A. - A cross section of configuration A is shown in figure 4. The  $25\frac{3}{4}$ -inch-diameter burner section consisted of a cylinder 72 inches long, which was attached to the engine by an annular diffuser 22 inches long with an outlet-to-inlet area ratio of 2.43. A fixed-area conical nozzle 24 inches long having an outlet area of 298 square inches was installed on the tail pipe. No external cooling for the shell of the  $25\frac{3}{4}$ -inch-diameter tail pipe was provided except by the low-velocity air flowing through the wind-tunnel test section. Two quartz windows (fig. 2) were installed in the burner shell, one window immediately ahead of the flame holder and one immediately behind it, for observation of burning at the end of the diffuser cone and at the flame holder.

Fuel was injected into the burner through two rings of spray nozzles. The upstream ring consisted of 12 nozzles, which were rated at 40 gallons per hour at a differential pressure of 100 pounds per square inch and were installed in the inner cone of the diffuser section  $9\frac{1}{2}$  inches downstream of the turbine flange. These nozzles injected fuel normal to the direction of gas flow. The downstream ring consisted of eighteen 30-gallon-per-hour nozzles mounted

with the tips of the nozzles  $9\frac{3}{4}$  inches downstream of the front flange of the burner section. These nozzles were mounted in a  $14\frac{1}{2}$ -inch-diameter ring and injected fuel downstream. The blunt end of the diffuser inner cone provided a seat for the flame resulting from burning of the fuel injected through the upstream ring. For the data obtained with configuration A, approximately 25 percent of the tail-pipe fuel was injected through the upstream ring of nozzles and 75 percent through the downstream ring. A 2-inch-wide, semitoroidal flame holder (fig. 5) having a mean diameter of 16 inches was installed 9 inches behind the downstream fuel ring. The blocking area of this flame holder was 19 percent of the burner cross-sectional area. A small ignition pilot comprising a spark plug, a fuel nozzle, and a flame holder was installed immediately upstream of the flame holder to ignite the fuel in the tail pipe.

Configuration B. - Configuration B comprised the same tail pipe and fuel system as configuration A. For the data obtained with this configuration, approximately 20 percent of the tail-pipe fuel was injected through the upstream ring of nozzles and 80 percent through the downstream ring. In order to raise the combustion efficiency and the altitude limits of the tail-pipe burner, a flame holder having two annular V-type gutters (fig. 6) was installed in place of the semitoroidal flame holder. The mean diameters of the outer and inner gutters were 17 and 10 inches, respectively. The included angle of the gutters was  $30^{\circ}$  and the distance across the open end of the gutters was  $1\frac{3}{4}$  inches. This flame holder blocked 32 percent of the burner cross-sectional area.

Configuration C. - Configuration C comprised the  $25\frac{3}{4}$ -inch-diameter tail pipe and the same flame holder used in configuration B. The downstream ring of fuel nozzles was removed and the upstream ring of nozzles was not used. A set of eight impinging jet spray bars (fig. 7) was installed in the diffuser section  $4\frac{1}{2}$  inches downstream of the turbine flange. Fuel was injected through these spray bars in a downstream direction. The spray bars provided the possibility of obtaining a more homogeneous fuel mixture than the nozzles previously used. They could be easily made and modified without machining operations and could be installed without internal piping. The ignition system used with configuration C was the same as that used with configurations A and B.

<u>Configuration D.</u> - A cross section of configuration D is presented in figure 8. The burner section used was  $37\frac{1}{4}$  inches long, circular in cross section, and tapered from a  $25\frac{1}{4}$  inch inside diameter

9**17** 

917



at the upstream end to a 21-inch inside diameter at the downstream end. Immediately upstream of the burner section was a diffuser  $33\frac{3}{8}$  inches long, which fastened to the  $7\frac{1}{4}$ -inch-long standard-engine tail-cone section. The ratio of burner-inlet area to turbine-outlet area is 2.35. A variable-area exhaust nozzle was used, which was designed to be closed for engine operation without tail-pipe burning and open with tail-pipe burning. With the nozzle in the open position, the area at the outlet was 273 square inches. All data, both with and without tail-pipe burning, were obtained with the nozzle in the open position. Fuel was passed rearward through helical passages welded to the shell of the burner to provide cooling for the shell and to preheat the fuel. Water was passed through a jacket welded around the fixed part of the tail-pipe nozzle to provide cooling. The movable part of the nozzle moved out of the flame when fuel was being burned in the tail pipe and thus required no cooling.

The flame holder used in configuration D included the fuelinjection system (fig. 9). The flame holder was mounted immediately behind the upstream flange of the tail-pipe burner section. Fuel was carried from the cooling passage at the rear of the burner forward to the center of the flame holder through six struts. The fuel-preheating system was designed to vaporize the fuel by the time it reached the flame holder. The preheated or vaporized fuel passed from the center of the flame holder through radial tubes and was injected in an upstream direction through a number of orifices approximately 1/4 inch in diameter. The flame holder had 12 radial fuel tubes 1/2 inch in diameter that extended from the center of the burner to the wall. Approximately  $8\frac{1}{2}$  inches from the center of the flame holder, a circumferential fuel tube intersected the radial fuel tubes. Two circular metal strips 3/4 inch wide were welded to the downstream side of the radial tubes at mean diameters of  $5\frac{1}{7}$  and  $9\frac{3}{7}$  inches.

#### Instrumentation

A survey rake was mounted in the inlet duct ahead of the engine to measure the engine air flow. Pressure and temperature instrumentation was installed at eight stations throughout the engine and the tail-pipe burners. In order to prevent overheating, the airfoil section and the pressure tubes in the exhaust-nozzle-outlet survey rake were water-cooled.



#### PROCEDURE

Prior to operation with tail-pipe burning, performance data were obtained for the original engine with an exhaust-nozzle-outlet area of 183 square inches and for the modified engine with an exhaust-nozzle-outlet area of 171 square inches. These nozzles were selected to give rated engine performance at static sea-level conditions. Data thus obtained were used to provide a basis for evaluating the changes in performance resulting from the use of the various tail-pipe burners.

The range of simulated altitudes and simulated flight Mach numbers over which each configuration was investigated is shown in the following table:

|                                                                   | Flight Mach number |       |       |       |  |  |  |  |
|-------------------------------------------------------------------|--------------------|-------|-------|-------|--|--|--|--|
| Altitude<br>(ft)<br>5,000<br>15,000<br>25,000<br>25,000<br>25,000 | Configuration      |       |       |       |  |  |  |  |
| (10)                                                              | A                  | В     | С     | D     |  |  |  |  |
| 5,000                                                             | 0.264              | 0.275 | 0.258 | 0.171 |  |  |  |  |
|                                                                   |                    |       |       | .531  |  |  |  |  |
| 25,000                                                            | .265               | .272  | .258  | .727  |  |  |  |  |
| 25,000                                                            | .736               | .537  | .525  | .863  |  |  |  |  |
| 25,000                                                            | .989               | .727  | .722  | .977  |  |  |  |  |
| 25,000                                                            |                    | .869  |       |       |  |  |  |  |
| 25,000                                                            |                    | .984  |       |       |  |  |  |  |
| 30,000                                                            |                    | .509  |       |       |  |  |  |  |
| 35,000                                                            | .528               | .491  |       |       |  |  |  |  |
| 40,000                                                            |                    | .509  |       |       |  |  |  |  |

At each simulated flight condition, the engine was operated at rated speed (12,500 rpm) and data were obtained at various fuel flows throughout the operable range of the tail-pipe burners. In most cases the minimum fuel flow was determined by combustion blow-out and the maximum fuel flow by limiting turbine-outlet temperature.

The limiting turbine-outlet temperature with and without tailpipe burning was 1710° R for the original engine and 1860° R for the modified engine, as observed on the highest reading thermocouple. These conditions correspond to average turbine-outlet temperatures of about 1525° and 1650° R, respectively.

The total pressure at the compressor inlet was regulated to the value corresponding to the simulated flight Mach number. Complete free-stream ram-pressure recovery was assumed at the compressor inlet.

Air supplied to the engine was refrigerated to approximate the NACA standard temperature corresponding to the simulated flight condition. No inlet-air temperatures below about -20° F, corresponding to flight at high altitude and low flight Mach numbers, were obtained.

Thrust was determined from the balance scales and also from measurements obtained with the exhaust-nozzle survey rake. Only the rake thrust is used in the tabular and graphical presentations of the data because the survey-rake drag, which was not measured, affected the scale thrust and made the scale measurements less consistent than the rake measurements. Use of the rake thrust gives performance with 100-percent exhaust-nozzle expansion efficiency. Methods of calculating thrust, air flow, exhaust-gas temperature, and combustion efficiency are presented in the appendix. The symbols used in the calculations are also defined in the appendix.

#### RESULTS AND DISCUSSION

#### Performance

Data obtained with each of the four burner configurations are presented in table I. The combustion efficiency for each of the configurations is presented in figure 10 as a function of tail-pipe fuel-air ratio for a range of altitudes and flight Mach numbers. The tail-pipe fuel-air ratio is defined as the ratio of the tail-pipe fuel flow to the unburned air entering the tail-pipe burner, assuming complete combustion within the engine. Altitude and flight Mach number had no appreciable effect on the combustion efficiency at a given tail-pipe fuel-air ratio. Maximum combustion efficiencies obtained were 0.71 for configuration A, 0.76 for configuration B, and 0.96 for configuration C (figs. 10(a), 10(b), and 10(c)). These maximum efficiencies were obtained at tail-pipe fuel-air ratios between 0.02 and 0.03. Because of the poor fuel distribution in the tail-pipe burner, further increases in tail-pipe fuel-air ratio probably resulted in local fuel-air ratios greater than stoichicmetric and therefore decreased combustion efficiencies.

Increasing the tail-pipe fuel-air ratio with configuration D raised the combustion efficiency for the range of data obtained. The highest combustion efficiency obtained with this configuration was 0.78 at a fuel-air ratio of 0.046. The data indicate that higher efficiencies might be obtained with configuration D if the exhaust-nozzle-outlet area were increased to permit operation at

higher fuel-air ratios without exceeding the temperature limits. Improved vaporization of the fuel as the tail-pipe fuel flow was increased probably accounts for the increase in combustion efficiency as the fuel-air ratio was increased, for the range of data obtained. A more homogeneous mixture of fuel and air in the tail pipe was probably obtained with configuration D than with the other configurations because peak combustion efficiency occurred at a higher tail-pipe fuel-air ratio.

A typical set of performance data is plotted in figure 11 for configuration B. In this figure are presented (a) net thrust, (b) engine fuel flow, (c) specific fuel consumption based on net thrust and total fuel flow, (d) total fuel-air ratio, (e) turbine-outlet total temperature, and (f) exhaust-gas total temperature as functions of the tail-pipe fuel flow with a fixed-area exhaust nozzle. Significant results of this investigation were obtained at conditions where limiting turbine-outlet temperatures were reached; therefore, the points representing limiting turbine-outlet temperature at each flight Mach number are joined by a dashed curve in figure 11. The succeeding discussion of each burner configuration is confined to the results obtained at limiting turbine-outlet temperature, as determined from curves similar to figure 11.

The engine performance with tail-pipe burning is presented in figures 12 to 16 for configurations B, C, and D. Engine performance with the standard tail pipe and exhaust nozzle is also presented in these figures. Because data with configuration A were obtained only below the limiting turbine-outlet temperature, they are included only in tabular form. Absolute values of performance with configuration B cannot be compared directly with those of configurations C and D because of the differences between the original and modified engines. Inasmuch as the data were obtained with the same engine, performance for configurations C and D is compared, although the exhaust-nozzle-outlet areas were different.

The maximum exhaust-gas total temperature (3470° R), at limiting turbine-outlet temperature, was obtained with configuration C at a flight Mach number of 0.72 (fig. 12(b)). This temperature corresponds to a tail-pipe temperature ratio of 2.1 and a tail-pipe temperature rise of 1820° R. Values of exhaust-gas temperature are presented in figure 12(a) for configuration B and in figure 12(b) for configurations C and D. A part of the thrust augmentation that is obtained at flight Mach numbers above 0.55 is due to the higher turbine-outlet temperatures that can be maintained with the modified tail pipe and tail-pipe burning, as compared with the engine equipped with the standard tail pipe and a fixed-area exhaust nozzle.



The values of net thrust (fig. 13), increase in net thrust (fig. 14), specific fuel consumption based on net thrust and total fuel flow (fig. 15), total fuel-air ratio (fig. 16), and exhaust-gas

MACA RM No. E8J25e

total temperature (fig. 12) at the minimum and maximum flight Mach numbers investigated at an altitude of 25,000 feet are presented in the following table for configurations B, C, and D:

| Config-<br>uration | . –   | thrust | in net<br>thrust | Specific fuel con-<br>sumption based on<br>net thrust and<br>total fuel flow<br>(lb/(hr)(lb thrust)) | Total<br>fuel-air<br>ratio | Exhaust-<br>gas total<br>temper-<br>ature<br>(°R) |
|--------------------|-------|--------|------------------|------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------|
| В                  | 0.272 | 1480   | 22               | 2.54                                                                                                 | 0.0415                     | 2660                                              |
|                    | .984  | 2780   | 86               | 2.91                                                                                                 | .0523                      | 2780                                              |
| C                  | 0.258 | 1730   | 31               | 2.57                                                                                                 | 0.0520                     | 3330                                              |
|                    | .722  | 2595   | 73               | 2.55                                                                                                 | .0565                      | 3470                                              |
| D                  | 0.727 | 2320   | 55               | 2.45                                                                                                 | 0.0500                     | 2940                                              |
|                    | .977  | 2920   | 79               | 2.36                                                                                                 | .0475                      | 2960                                              |

The exhaust-gas total temperature increased slightly with flight Mach number for each configuration. As would be expected, however, the net thrust increased rapidly with flight Mach number. The trend of the net thrust specific fuel consumption was similar to that of the total fuel-air ratio as the flight Mach number was varied. A limitation was imposed on the performance by the exhaust nozzles. A slight increase in exhaust-nozzle-outlet area would have made it possible to increase the total fuel-air ratio to a value closer to a stoichiometric mixture, without increasing the turbine-outlet temperature, and thereby obtain the maximum net thrust.

At limiting turbine-outlet temperatures, the increase in jet thrust and tail-pipe total-temperature ratio obtained with tail-pipe burning are approximately proportional to the ratio of exhaust-nozzleoutlet area with tail-pipe burning to exhaust-nozzle-outlet area without tail-pipe burning (reference 1). It follows that the increase in net thrust would also be greater for higher exhaust-nozzle-outletarea ratios. Because the ratio of exhaust-nozzle-outlet area with and without tail-pipe burning for configuration C (1.74) was greater than that with configuration B (1.63), the increase in net thrust and the tail-pipe total-temperature ratio were also greater for con-The increase in net thrust and the tail-pipe totalfiguration C. temperature ratio at a given flight condition were lower for configuration D than for configuration C because the ratio of exhaustnozzle-outlet area with and without tail-pipe burning was less for configuration D.

#### Operational Characteristics

Configuration A. - The highest thrust and the smoothest burner operation, without everheating the burner shell, were obtained with configuration A when approximately 75 percent of the tail-pipe fuel was injected through the downstream ring of nozzles and 25 percent through the nozzles in the inner cone of the diffuser section. Increasing the percentage of fuel injected through the nozzles in the diffuser section overheated the tail-pipe burner shell and resulted in rough burning accompanied by heavy pulsations or combustion blow-out. The maximum altitude at which the burner operated was 39,000 feet at a flight Mach number of about 0.50, at which combustion blow-out occurred several times. Between altitudes of 30,000 and 39,000 feet, the flame seated on the end of the diffuser inner cone became quite unstable and flickered constantly. Because operation of the ignition pilot was unsatisfactory, the tail-pipe fuel was ignited by accelerating the engine rapidly from about 6000 rpm. Satisfactory starts were thus made at altitudes up to 30,000 feet, but above this altitude combustion blow-out occurred during the acceleration in either the engine or the tail-pipe burner after the tail-pipe fuel ignited.

Configuration B. - The highest thrust and the smoothest burner operation, without overheating the burner shell, were obtained with configuration B, when 80 percent of the fuel was injected through the downstream ring of nozzles and 20 percent through the nozzles in the diffuser inner cone. Raising the percentage of fuel flow injected through the nozzles in the diffuser cone overheated the burner shell and resulted in rough burning. Stable burner operation was obtained with all the fuel injected through the downstream ring of fuel nozzles; however, the thrust was not so high as that obtained with 80 percent of the fuel injected through the downstream nozzles. The maximum operating altitude with this burner was 44,000 feet at a flight Mach number of about 0.50, at which combustion blow-out occurred. The starting characteristics and the method of igniting the tailpipe fuel were the same with this burner as with configuration A.

Configuration C. - Initial operation with configuration C indicated that the shell of the tail-pipe burner became excessively hot at high fuel-air ratios. In order to decrease the amount of burning near the shell of the burner, the jets in the impinging jet spray bars were relocated in order to concentrate most of the fuel in the inner part of the diffuser passage. After this modification was made, the shell operated somewhat cooler, but it still became too hot for a satisfactory flight installation. All data presented in this report for configuration C were obtained with the final spray-bar modification shown in figure 7. No maximum operating



altitude was obtained for this configuration. The starting characteristics and the method of igniting the tail-pipe fuel were the same for this burner as for configurations A and B; however, no data were obtained above an altitude of 25,000 feet. Near the end of this part of the investigation, a large section of the flame holder was burned away, which was probably caused by burning ahead of the flame holder in the diffuser section. Installing the impinging jet spray bars further downstream in the diffuser would probably improve tail-pipe shell cooling and lengthen the flame-holder life.

Configuration D. - Burning was somewhat smoother with configuration D than with the other three configurations, as indicated by the reduction in rumble or pulsation that is usually present with tail-pipe burning. The fuel in this burner was also ignited by accelerating the engine, inasmuch as the ignition pilot did not operate at altitude. It was very difficult, however, to ignite the burner fuel in this manner at altitudes above 20,000 feet. The temperature rise of the fuel in passing through the shell of this tail-pipe burner was usually between 110° and 165° F. No data were obtained with this configuration at altitudes above 25,000 feet.

Shell cooling. - With configurations A, B, and C, the shell of the exhaust nozzle and the rear part of the burner section were bright red during operation at high tail-pipe fuel-air ratios. The shell temperature, as estimated by the metal color, was about the same with configurations A and B; however, with configuration C the shell became somewhat hotter and a slightly greater part of the burner section became red. Either redistribution of the tail-pipe fuel or external cooling or both would be required to cool these configurations satisfactorily for flight use. With the fuel and water cooling of the shell provided for configuration D, the outer shell of the tail-pipe burner showed no evidence of elevated temperatures at any operating condition. Some difficulty was encountered, however, with leaks on the outside of the burner section at the welds of the fuel passages due to differential expansion of the inner and outer shell.

Ignition pilots. - A definite need is indicated for a tail-pipe-burner ignition pilot that will operate at maximum engine speed and at high altitudes. Accelerating the engine from a low speed is an unsatisfactory method of igniting the tail-pipe fuel because of the loss in thrust during the starting period, possible combustion blow-out in the engine at high altitudes, and the high temperatures imposed on the turbine. A number of variations of the type of ignition pilot indicated in figures 5, 6, and 9 were used but none of them operated at high altitudes and most of them did not operate at

high engine speeds. Two considerations were found to be of greatest importance; one was a dependable spark plug for ignition of the pilot fuel and the other was proper metering of the pilot fuel.

#### SUMMARY OF RESULTS

The following results were obtained from an investigation of an axial-flow-compressor-type turbojet engine in the NACA Cleveland altitude wind tunnel over a range of simulated flight conditions with four tail-pipe-burner configurations:

- 1. The highest net-thrust increase obtained in the investigation was 86 percent at an altitude of 25,000 feet and a flight Mach number of 0.984. The corresponding net thrust specific fuel consumption was 2.91 and the total fuel-air ratio was 0.0523.
- 2. The highest combustion efficiencies obtained with the four configurations ranged from 0.71 to 0.96.
- 3. Maximum operable altitudes for two tail-pipe-burner configurations were 39,000 and 44,000 feet at a flight Mach number of approximately 0.50.
- 4. The highest exhaust-gas total temperature obtained in the investigation at limiting turbine-outlet temperature was 3470° R, which corresponds to a tail-pipe total-temperature ratio of 2.1.
- 5. With three of the configurations, for which no external cooling of the tail-pipe-burner shell was provided, the exhaust nozzle and the rear part of the burner section were bright red during operation at high tail-pipe fuel-air ratios. With the tail-pipe burner for which fuel and water cooling were provided, the outer shell of the tail-pipe burner showed no evidence of elevated temperatures at any operating condition.

Lewis Flight Propulsion Laboratory, National Advisory Committee for Aeronautics, Cleveland, Ohio. 占

#### APPENDIX - METHODS OF CALCULATION

#### Symbols

The following symbols are used in the calculations:

- A cross-sectional area, sq ft
- cp specific heat of gas at constant pressure, Btu/(lb)(OR)
- F<sub>1</sub> jet thrust, lb
- Fn net thrust, lb
- g acceleration due to gravity, 32.2 ft/sec2
- h enthalpy, Btu/lb
- ha heating value of fuel, Btu/lb
- J mechanical equivalent of heat, 778 ft-lb/Btu
- M Mach number
- P total pressure, lb/sq ft absolute
- p static pressure, lb/sq ft absolute
- R gas constant, 53.4 ft-lb/(lb)(OR)
- T total temperature, OR
- Ti indicated temperature, OR
- t static temperature, OR
- V velocity, ft/sec
- Wa air flow, lb/sec
- Wr fuel flow, lb/hr
- Wg gas flow, lb/sec
- $W_f/F_n$  specific fuel consumption based on net thrust and total fuel flow, lb/(hr)(lb thrust)

- f/a total fuel-air ratio
- γ ratio of specific heats for gases
- η efficiency
- total-temperature ratio across tail-pipe burner,  $T_8/T_7$

#### Subscripts:

- b burner
- e engine
- f fuel
- t tail-pipe burner
- 0 tunnel test-section free-air stream
- 1 inlet duct
- 2 compressor inlet
- 7 tail-pipe-burner inlet
- 8 exhaust-nozzle outlet

#### Calculations

Temperature. - By use of an experimentally determined impact recovery factor of 0.85, static temperature was determined from indicated temperature by applying the factor to the adiabatic relation between the temperature and the pressure in the following manner:

$$t = \frac{T_1}{1 + 0.85 \left[ \left( \frac{P}{p} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right]}$$
 (1)

걾

Air flow. - The air flow through the engine was determined from pressure and temperature measurements obtained with a vertical survey rake installed in the engine inlet duct (station 1). Air flow was calculated by the equation

$$W_{a} = \frac{P_{1} A_{1}}{R} \sqrt{\frac{2Jgc_{p}}{t_{1}} \left(\frac{P_{1}}{P_{1}}\right)^{-1}} -1$$
 (2)

The static temperature in equation (2) was obtained by use of equation (1).

Jet thrust. - Jet thrust was calculated from pressure measurements at the exhaust-nozzle outlet by the equation

$$\mathbf{F}_{j} = \frac{2\gamma_{8} \, \mathbf{p}_{8} \, \mathbf{A}_{8}}{\gamma_{8} - 1} \left[ \frac{\gamma_{8}^{-1}}{\gamma_{8}} - 1 \right] + \mathbf{A}_{8}(\mathbf{p}_{8} - \mathbf{p}_{0}) \tag{5}$$

The assumptions involved in using this equation are that there is no total-pressure loss across the exhaust nozzle and that there is complete adiabatic expansion of the jet from the nozzle outlet to ambient conditions. Use of equation (3) gives results for a nozzle efficiency of 100 percent.

Equivalent airspeed. - Inasmuch as all calculations are based on 100-percent ram-pressure recovery at the compressor inlet (station 2) the equivalent airspeed corresponding to the ram-pressure ratio at the engine inlet can be expressed by

$$V_0 = \sqrt{2Jgo_p T_{1,2} \left[ \frac{\frac{\gamma_2^{-1}}{\gamma_2}}{1 - \left(\frac{p_0}{P_2}\right)} \right]}$$
 (4)

The equivalent free-stream total temperature was assumed equal to the compressor-inlet indicated temperature. The use of this assumption introduces an error in airspeed of less than I percent.

Net thrust. - The equivalent free-stream momentum of the inlet air was subtracted from the jet thrust by combining equations (2), (3), and (4) in the following expression for net thrust:

$$\mathbf{F}_{\mathbf{n}} = \mathbf{F}_{\mathbf{j}} - \frac{\mathbf{W}_{\mathbf{a}} \ \mathbf{V}_{\mathbf{0}}}{\mathbf{g}} \tag{5}$$

Exhaust-gas total temperature. - The exhaust-gas total temperature was calculated from the tail-pipe-rake jet thrust and the mass gas flow through the tail-pipe burner. This equation is based on the assumption that there is adiabatic expansion from the nozzle outlet to ambient pressure. This assumption involves an error of less than 1 percent.

$$T_{8} = \frac{(\gamma_{8}^{-1}) g(F_{j})^{2}}{2\gamma_{8} R(W_{g,8})^{2} \left[1 - \left(\frac{P_{0}}{P_{8}}\right)^{8}\right]}$$
(6)

Combustion efficiency. - The tail-pipe combustion efficiency was obtained by dividing the heat added in the tail pipe by the heat content of the fuel supplied, disregarding dissociation of the exhaust gases.

$$\eta_{b,t} = \frac{3600 W_{g,8} h_8 - 3600 W_{g,7} h_7 - W_{f,t} h_{f,t}}{h_{c,t} W_{f,t}}$$
(7)

The numerator of the right-hand side of this equation is composed of the total heat in the gas leaving the tail pipe, the total heat in the gas entering the tail pipe, and the initial heat in the liquid fuel added in the tail pipe.

Tail-pipe fuel-air ratio. - The tail-pipe fuel-air ratio is defined as the ratio of the tail-pipe fuel flow to the unburned air entering the tail-pipe burner. The assumption used in obtaining this equation is that the fuel injected into the engine combustion chamber is completely burned. Combining the air flow, the engine fuel flow, and the tail-pipe fuel flow gives the following equation for tail-pipe fuel-air ratio:

 $(f/a)_{t} = \frac{W_{f,t}}{3600 W_{a} - \frac{W_{f,e}}{0.067}}$  (8)

The value of 0.067 in the denominator is the stoichiometric fuelair ratio for the fuel used.

#### REFERENCES

- Fleming, W. A., and Dietz, R. O.: Altitude-Wind-Tunnel Investigations of Thrust Augmentation of a Turbojet Engine. I - Performance with Tail-Pipe Burning. NACA RM No. E6120, 1946.
- Fleming, William A., and Golladay, Richard L.: Altitude-Wind-Tunnel Investigation of Thrust Augmentation of a Turbojet Engine. III - Performance with Tail-Pipe Burning in Standard-Size Tail Pipe. NACA RM No. E7F10, 1947.
- 5. Lundin, Bruce T., Dowman, Harry W., and Gabriel, David S.:
  Experimental Investigation of Thrust Augmentation of a Turbojet
  Engine at Zero Ram by Means of Tail-Pipe Burning. NACA RM
  No. E6J21, 1947.
- 4. Mayer, Carl L., and Bloomer, Harry E.: Altitude-Wind-Tunnel Investigation of Performance and Windmilling Drag Characteristics of Westinghouse X24C-4B Axial-Flow Turbojet Engine. NACA RM No. E8J25a, 1948.

#### TABLE I. - PERFORMANCE DATA

| 1              | ı                          | 2                   | 8                    | 4                    | 5                   | 6            | 7            | 8              | 9            | 10                  | 11             |  |
|----------------|----------------------------|---------------------|----------------------|----------------------|---------------------|--------------|--------------|----------------|--------------|---------------------|----------------|--|
| Run            | Altitude                   |                     | Ambient              | Compressor-          | Compressor-         | Engine       | Tail-pipe    | Total          | Jet          | Net                 | Air            |  |
|                | (ft)                       | Mach<br>number      | pressure             | inlet total          | inlet-<br>indicated | flow         | fuel flow    | flow           | thrust       |                     |                |  |
|                |                            | ж,                  | P <sub>O</sub>       | Pg, (1b/sq           | temperature         | Wr.          | (1b/hr)      | A.             | (15)         | P <sub>n</sub> (1b) | (1b/           |  |
|                |                            | •                   | ft abs.)             | ft abs.}             | T1,2, ('R)          | (15/br)      | (10,111)     | (1b/br)        | (40)         | \                   | (200           |  |
|                |                            |                     |                      |                      |                     |              |              |                |              |                     |                |  |
| ├─             | Configuration A            |                     |                      |                      |                     |              |              |                |              |                     |                |  |
| <del>- ,</del> |                            |                     |                      |                      |                     |              |              |                |              |                     |                |  |
| 8              | 5.000                      | .263                | 1752                 | 1857                 | 508                 | 1871         | 2640         | 4511           | 2357         | 1892                | 52.03<br>51.88 |  |
| 3              | 5.000                      | .272                | 1752                 | 1638                 | 510                 | 1980         | 3520         | 5500           | 2599         | 2135                | 51.61          |  |
| 5              | 85,000                     | .285<br>.265        | 1752<br>791          | 1855<br>816          | 510<br>449          | 2060<br>907  | 4190         | 6240<br>907    | 9769<br>757  | 2302<br>547         | 51.59<br>24.91 |  |
| 6              | 25,000<br>25,000           | _263                | 781                  | 816                  | 447                 | 1149         | 1890         | 3039           | 1499         | 1290                | 24.89          |  |
| 7              | 125.000 1                  | 268                 | 781                  | 818                  | 450                 | 1169         | 2150         | 5519           | 1544<br>1608 | 1331                | 24.80          |  |
| 8              | 25,000<br>25,000           | .266<br>.263        | 781<br>781           | 817 .<br>816         | 448<br>443          | 1200<br>1239 | 2420<br>2680 | 3620<br>3919   | 1575         | 1396<br>1465        | 24.88<br>25.03 |  |
| 10             | 25,000                     | 983                 | 781                  | 1447                 | 515                 | 1200         | · o          | 1200           | 1730         | 464                 | 40.67          |  |
| 11             | 125.000                    | 991                 | 781                  | 1461                 | 498                 | 1471         | 2720         | 4191           | 3044         | 1748                | 42,06          |  |
| 12             | 25,000                     | .994                | 778<br>778           | 1486<br>1483         | 502<br>499          | 1705<br>1881 | 3700<br>4880 | 8405<br>6761   | 3597<br>3953 | 2293<br>2669        | 41.96          |  |
| 14             | 25,000                     | .521                | 498                  | 599                  | 434                 | 715          | 1            | 718            | 638          | 337                 | 18.65          |  |
| 15             | 25,000<br>35,000<br>35,000 | .528                | 498                  | 608                  | 460                 | 897          | 1500         | 2497           | 1384         | 1021                | 18.01          |  |
|                |                            |                     |                      |                      | figuration E        |              |              |                |              |                     |                |  |
| 1              | 5,000<br>5,000<br>5,000    | 0.275<br>265<br>275 | 1760<br>1753<br>1746 | 1855<br>1840<br>1839 | 510<br>817<br>517   | 1626<br>1685 | 150          | 1626           | 1439<br>1790 | 945<br>1522         | 52.66          |  |
| 3              | 5,000                      | 275                 | 1765                 | 1859                 | 517<br>517          | 1862         | 1610<br>1910 | 3295<br>3772   | 2154         | 1874                | 51.21<br>51.08 |  |
| 4              |                            | . 276               | 1753                 | 1847                 | 515<br>513<br>509   | 2304         | 3160 i       | 5464           | 2647         | 2189                | 51.55<br>59.11 |  |
| 5 8            | 5,000                      | 273<br>286          | 1760<br>1755         | 1853<br>1838         | 515                 | 2325<br>2485 | 4500<br>6050 | 6925<br>8535   | 3056<br>3319 | 2569<br>2860        | 59.11          |  |
| 7              | 25,000                     | 271                 | 781                  | 685                  | 445                 | 917          | 0000         | 917            | 767          | 548                 | 25.31          |  |
| 8              | 1 25 .000                  | 275                 | 774                  | 81.5                 | 454                 | 977          | 1040         | 2017           | 1119         | 899                 | 24,96          |  |
| 9              | 1 25 .000                  | .260                | 785                  | 623                  | 453                 | 1058         | 1360         | 2418           | 1277         | 1068                | 24.98<br>25.04 |  |
| 10             | 25,000<br>25,000           | .276<br>.280        | 778<br>774           | 820<br>617           | 454<br>455          | 1099<br>1129 | 1500<br>1990 | 2599 .<br>3119 | 1371<br>1558 | 1148<br>1333        | 24.88          |  |
| 12             | 25.000                     | 276                 | 785                  | 827                  | 450                 | 1297         | 2600         | 3897           | 1716         | 1494                | 25.11          |  |
| 12<br>15       | 25,000<br>25,000<br>25,000 | 269                 | 778                  | 818.                 | 488                 | 1297         | 2720         | 4017           | 1765         | 1559                | 84,97          |  |
| 14             | 25,000                     | .515<br>.525        | 781<br>774           | 936<br>935           | 462<br>467          | 957<br>1018  | 0<br>1915    | 957<br>2233    | 940<br>1348  | 475<br>874          | 28.26<br>28.24 |  |
| 15<br>16       | 25,000                     | 532                 | 788                  | 955                  | 465                 | 1200         | 1900         | 3100           | 1740         | 1251                | 28,74          |  |
| 17             | 25,000<br>25,000           | .543                | 774                  | 946                  | 462                 | 1385         | 8900         | 4255           | 2080<br>9275 | 1590                | 28.33          |  |
| 18             | INS.(NE)                   | .549                | 774                  | 950                  | 459                 | 1472         | 3890         | 5362           |              | 1776                | 28.67          |  |
| 20             | 25,000<br>25,000           | .729<br>.730        | 781<br>781           | 1115<br>1114         | -481<br>473         | 1038<br>1118 | 1420         | 1038<br>2538   | 1249<br>1726 | 489<br>964          | 32.74<br>35.08 |  |
| 21             | 25,000                     | 719                 | 796                  | 1123                 | 472                 | 1491         | 8990         | 4481           | 2564         | 1800                | 34.07          |  |
| 22             | 25,000<br>25,000<br>25,000 | .752                | 774                  | 1105                 | 473                 | 1626         | 4450         | 4481<br>6076   | 2799         | 2045                | 33.13          |  |
| 25             | 25,000                     | 725                 | 774<br>774           | 1100                 | 479<br>475          | 1706<br>1706 | 5070<br>5200 | 6776<br>5906   | 2911<br>2952 | 2159<br>2191        | 32.56<br>32.94 |  |
| 25             | 25,000<br>25,000           | .731<br>.722        | 785                  | 1104<br>1111         | 476                 | 1726         | 5290         | 7016           | 2957         | 2201                | 33.07          |  |
| 26             | 25,000                     | .851                | 788                  | 1264                 | 496                 | 1099         | 0            | 1099           | 1467         | 482                 | 36,49          |  |
| 27             | 25,000<br>25,000<br>25,000 | .866                | 781                  | 1275                 | 491                 | 1200         | 1810         | 3010           | 2208         | 1201                | 36,90          |  |
| 88             | 25,000                     | .868<br>.869        | 781<br>774           | 1275<br>1266         | 490<br>492          | 1567<br>1724 | 3240<br>4700 | 4807<br>6424   | 3005<br>3282 | 1997<br>2275        | 36.90<br>36.76 |  |
| 30             | 25,000                     | 873                 | 781                  | 1285                 | 490                 | 1881         | 6120         | 8001           | 3563         | 2541                | 57.23          |  |
| 30<br>31       | 25,000<br>25,000           | 873<br>976          | 781<br>788           | 1263<br>1450         | 490<br>514          | 1881<br>1200 | 0            | 8001<br>1200   | 1746         | 475                 | 41.07          |  |
| 32             | 95,000                     | .984                | 781<br>791           | 1449                 | 504<br>505          | 1527<br>1868 | 2150         | 3477<br>4945   | 2779<br>3438 | 1509<br>2164        | 41.20<br>41.13 |  |
| 35<br>34       | 25,000<br>25,000           | 987<br>988          | 781<br>781           | 1456<br>1459         | 505<br>505          | 1868<br>1832 | 5280<br>4620 | 6452           | 3780         | 2497                | 41.40          |  |
| 35             | 25.000                     | .985                | 774                  | 1440                 | 497                 | 2000         | 5950         | 7950           | 4012         | 2744                | 41,36          |  |
| 36<br>37       | 30,000<br>30,000           | .534                | 623<br>627           | 752<br>748           | 463<br>453          | 826<br>1200  | 2980         | 826<br>4180    | 809<br>1790  | 429<br>1417         | 22.90          |  |
| 38             | 138.000 °                  | 509<br>537          | 493                  | 800                  | 458                 | 695          | 2960         | 695            | 654          | 344                 | 18.24          |  |
| 39             | 35,000                     | .491                | 496                  | 585                  | 452                 | 906          | 1890         | 2796           | 1298         | 1021                | 17,62          |  |
| 40             | 40,000                     | .554                | 387                  | 470                  | 462                 | 595          | 1,00         | 595            | 524          | 285                 | 14.04          |  |
| 41             | 40,000                     | .509                | 391                  | 467                  | 446                 | 766          | 1210         | 1976           | 1021         | 778                 | 15,19          |  |



.

#### WITH TAIL-PIPE BURNING

| 12             | 13             | 14                                      | 15                | 16             | 17           | 18                                 | 19           | 20           | 21           | Ī        |
|----------------|----------------|-----------------------------------------|-------------------|----------------|--------------|------------------------------------|--------------|--------------|--------------|----------|
| Specific       | Total          | Tail-pipe                               | Tail-pipe         | Turbine-       | Turbine-     | Turbing-                           | Exhaus t-    | Exhaust-     | Exhaust-     | Run      |
| fuel           |                | fuel-air                                | combustion        | outlat         | outlet       | outlet                             | nozzle       | nozzle       | RAS          |          |
| consumption    | air            | retio                                   | officiency        | total          | statio       | total                              | total        | statio       | total        | [ [      |
| Vr/Fn          | rațio          | (f/a) <sub>t</sub>                      | <sup>դ</sup> Ե, ե | pressure       |              | temperature                        | pressure     | pressure     | tempera-     |          |
| (lb/(hr)       | £/a            | [                                       | -,•               | P <sub>6</sub> | Pe           | T <sub>6</sub> , ( <sup>O</sup> R) | Pg           | Pg           | _ ture_      | 1 [      |
| (1b thrust)    |                |                                         |                   | (1b/sq         | (lt/sq       |                                    | (lb/sq       | (lb/sq.      | Tg, (OR)     | li       |
|                |                |                                         |                   | ft abs.)       | ft abs.)     | İ                                  | ft aba.)     | ft abs.)     |              |          |
|                |                |                                         |                   | Con            | figuration   | i A                                |              |              |              |          |
| 1.693          | 0,0087         |                                         |                   | 8381           | 1789         | 11,65                              | 2138         | 1795         |              | 1        |
| 2.584          | .0242          | 0.0166                                  | 0.693             | 2564           | 2104         | 1277                               | 2417         | 1855         | 1918         | 2        |
| 2.577          | .0296          | .0225                                   | 679               | 2659           | 2210         | 1851                               | 2496         | 1878         | 2137         | 3        |
| 2.710          | .0336          | .0270                                   | .640              | 2723<br>1089   | 2285         | 1370                               | 2545         | 1895         | 2250         | 4        |
| 1.658<br>2.556 | .0101          | .0261                                   | .795              | 1328           | 878<br>1111  | 1182<br>1418                       | 984<br>1227  | 802<br>885   | 2563         | 5        |
| 2,493          | .0372          | .0300                                   | .662              | 1356           | 1159         | 1456                               | 1250         | 895          | 2408         | 7        |
| 2.595          | .0404          | .0558                                   | .681              | 1377           | 11.56        | 1470                               | 1269         | 895          | 2512         | ė        |
| 2.675          | 0435           | 0574                                    | .636              | 1598           | 1181         | 1486                               | 1989         | 915          | 2597         | 9        |
| 2.586          | .0082          |                                         |                   | 1.660          | 487          | 1168                               | 1312         | 907          |              | 10       |
| 2.398          | .0277          | .0210                                   | .635              | 1989           | 1605         | 1953                               | 1795         | 1173         | 1983         | 11       |
| 2,358          | .0358          | .0295                                   | 711               | 2191           | 1827         | 1376                               | 2002         | 1515         | 2428         | 12       |
| 2.555<br>2.122 | .0451          | .0400                                   | .686              | 2521<br>798    | 1988<br>509  | 1467<br>1229                       | 2136<br>576  | 1595<br>520  | 2753         | 15       |
| 2.447          | .0385          | .0311                                   | .777              | 995            | 829          | 1489                               | 916          | 650          | 2652         | 15       |
|                | ,,,,,,,,       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                   |                | figuration   |                                    |              |              | 2000         |          |
| 1.724          | 0.0086         |                                         |                   | 2342           | 1791         | 1157                               | 2151         | 1812         |              | ┝╗       |
| 2.492          | .0179          | 0.0101                                  | 0,426             | 2417           | 1921         | 1206                               | 2247         | 1826         | 1478         | 2        |
| 2,253          | .0205          | .0122                                   | .710              | 2573           | 2112         | 1286                               | 2358         | 1860         | 1779         | 3        |
| 2,531          | 0294           | .0209                                   | .671              | 2764           | 2512         | 1376                               | 2519         | 1901         | 2158         | 4]       |
| 2,696          | .0369          | .0301                                   | .674              | 8628           | 2495         | 1452                               | 2661         | 1957         | 2444         | 5        |
| 2.984          | .0458          | 0405                                    | .609              | 3028<br>1111   | 2605<br>825  | 1508                               | 2747<br>989  | 1986<br>805  | 2655         | 6        |
| 1.673<br>2.244 | .0101          | .0139                                   | .589              | 1194           | 952          | 1199<br>1295                       | 1096         | 832          | 1759         | á        |
| 2,264          | .0269          | .0183                                   | .677              | 1266           | 1056         | 1351                               | 1161         | 862          | 2004         | 8        |
| 2,264          | .0288          | 0203                                    | 728               | 1284           | 1057         | 1382                               | 1182         | 860          | 2145         | 10       |
| 2,340          | .0348          | .0273                                   | .772              | 1344           | 1127         | 1448                               | 1245         | 885          | 2461         | 11       |
| 2,608          | .0431          | .0366                                   | .680              | 1459           | 1828         | 1544                               | 1312         | 950          | 2668         | 12       |
| 2,610          | .0447          | .0386                                   | .687              | 1450           | 1215         | 1556                               | 1518         | 927          | 2745         | 13       |
| 2.015          | .0094          | .0140                                   | 540               | 1189<br>1886   | 815<br>1004  | 1156<br>1224                       | 1041<br>1172 | 810<br>857   | 1668         | 14<br>15 |
| 2.555<br>2.478 | .0500          | .0242                                   | .548<br>.715      | 1488           | 1207         | 1359                               | 1320         | 924          | 2145         | 16       |
| 2,676          | 0417           | 0354                                    | .676              | 1584           | 1336         | 1489                               | 1434         | 986          | 2502         | 17       |
| 3.019          | 0520           | 0479                                    | 562               | 1667           | 1452         | 1555                               | 1505         | 1026         | 2775         | īв       |
| 2.123          | .0088          |                                         |                   | 1542           | 761          | 1153                               | 1140         | 838          |              | 19       |
| 2,655          | .0213          | .0139                                   | .548              | 1468           | 1124         | 1198                               | 1306         | 900          | 1632         | 80       |
| - 8.489        | 0370           | .0302                                   | .708              | 1816           | 1522         | 1419                               | 1629         | 1090         | 2455         | 21       |
| 2.971<br>5.140 | .0516<br>.0576 | .0477<br>.0550                          | .585<br>.554      | 1893<br>1921   | 1617<br>1849 | 1853<br>1580                       | 1700<br>1743 | 1136<br>1167 | 2766<br>2878 | 82       |
| 3.140          | .0582          | .0559                                   | .545              | 1934           | 1656         | 1871                               | 1762         | 1187         | 2868         | 24       |
| 5.188          | 0589           | 0567                                    | 543               | 1967           | 1692         | 1585                               | 1772         | 1190         | 2879         | 25       |
| 2,280          | 0084           |                                         |                   | 1486           | 694          | 1146                               | 1221         | 866          |              | 26       |
| 2,506          | .0227          | .0187                                   | .620              | 1656           | 1277         | 1190                               | 1482         | 790          | 1745         | 27       |
| 2.407          | .0362          | .0296                                   | .752              | 1978           | 1665         | 1590                               | 1785         | 1182         | 2476         | 88       |
| 2.824          | .0485          | .0440                                   | .605              | 8090           | 1784         | 1486                               | 1.885        | 1251         | 2707         | 29       |
| 3.149          | 0597           | .057B                                   | .544              | 2213<br>1625   | 1904<br>617  | 1567<br>1147                       | 1996<br>1319 | 1325<br>915  | 2894         | 50<br>51 |
| 2.526          | 0234           | .0167                                   | .689              | 1887           | 1485         | 1205                               | 1695         | 1112         | 1855         | 32       |
| 2.265          | .0334          | 0267                                    | 755               | 2160           | 1805         | 1371                               | 1948         | 1289         | 2395         | 33       |
| 2.584          | 0433           | .0380                                   | .654              | 2508           | 1969         | 1466                               | 2078         | 1578         | 2528         | 34       |
| 2.897          | 0534           | .0500                                   | .565              | 2405           | 2065         | 1526                               | 8166         | 1440         | 2772         | 35       |
| 1.925          | .0100          |                                         |                   | 972            | 650          | 1208                               | 850          | 656          |              | 36       |
| 2,950          | .0502          | ,0456                                   | .570              | 1326           | 1128         | 1549                               | 1805         | 829          | 2693         | 37       |
| 8.020          | .0106          | 0700                                    | 450               | 779            | 517          | 1235                               | 676          | 519<br>626   | 2656         | 38       |
| 2.758<br>2.068 | .0441          | .0380                                   | .650              | 988<br>620     | 855<br>407   | 1476,<br>1507                      | 905<br>553   | 405          | 2000         | 39<br>40 |
| 2.540          | .0361          | .0279                                   | . 562             | 782            | 645          | 1554                               | 716          | 495          | 2245         | 41       |
| E.010          | OOOT           | - OD/8                                  |                   | 106            | UTO .        | 1001                               | (10          | TPU          | ~~ TV        |          |



## TECHNICAL LIBRARY ABBOTTAEROSPACE.COM

TABLE I. - PERFORMANCE DATA WITH

|                | 1                | 2              | 8                  | 4            | 5                       | 6              | 7            | 8             | 9              | 10           | 11             |
|----------------|------------------|----------------|--------------------|--------------|-------------------------|----------------|--------------|---------------|----------------|--------------|----------------|
| Run            | Altitude         | Plight         | Ambient            | Compressor-  | Compressor-             | Engine         | Tail-pipe    | Total         | Jet            | Net          | Air            |
|                | (41)             | Kach<br>number | pressure           | inlet total  | inlet-<br>indicated     | fuel           | fuel flow    | fuel          | thrust         | thrust       |                |
|                |                  | Mo             | Po_                | Pg, (lb/sq   | temperature             | flow           | Wr.t         | flow          |                | Pn           | Wa             |
| 1              |                  | ס              | (lb/sq<br>ft abs.) | ft abs.)     | _                       | Wr,e           | (1b/hr)      | Wr<br>(lb/hr) | (15)           | (15)         | (15/           |
|                |                  |                | 16 400.1           | It EDE.)     | T <sub>1,2</sub> , (OR) | (1b/hr)        |              | (TO) DE 1     |                |              | 200)           |
| 1              |                  |                |                    |              |                         |                |              |               |                |              | 1              |
|                | Configuration 0  |                |                    |              |                         |                |              |               |                |              |                |
| 1              | 25,000           | 0.241          | 781                | 814          | 479                     | 296            | 0            | 796           | 889            | 361          | 23.75          |
| 2              | 25,000           | .261           | 774                | 812          | 478                     | 947            | 1980         | 2927          | 1217           | 1012         | 25,76          |
| 3              | 25,000<br>25,000 | .270<br>.249   | 774<br>781         | 814<br>815   | 478<br>477              | 1317           | 3050         | 4367          | 1915           | 1700         | 23.99          |
| 31             | 25,000           | 898            | 781                | 816          | 481                     | 1414<br>1433   | 3900<br>4880 | 5314<br>6313  | 2093<br>2144   | 1898<br>1946 | 23.68<br>23.62 |
| 6              | 25,000           | 529            | 781                | 945          | 465                     | 916            | 1000         | 916           | 934            | 465          | 27.77          |
| 7              | 25.000           | .525           | 774                | 953          | 465                     | 1249           | 1900         | 3149          | 1914           | 1448         | 27.82          |
| 9              | 25.000 I         | .527           | 774                | 955          | 465                     | 1239           | 1900         | 3139          | 1922           | 1455         | 27.12          |
| 10             | 28,000           | .528<br>.525   | 781<br>781         | 944          | 466                     | 1385           | 8500         | 3555          | 2101           | 1620         | 27.96          |
| ü              | 25,000<br>25,000 | .524           | 781                | 942<br>942   | 464                     | 1520           | 2880         | 4400          | 2377           | 1906         | 28.07          |
| 12             | 25.000           | 525            | 774                | 934          | 462<br>460              | 1626<br>1655   | 3640<br>4520 | 5266<br>5975  | 2508           | 2136<br>2217 | 28.18          |
| 15             | 25.000           | 798            | 778                | 1104         | 471                     | 977            | 0            | 977           | 1171           | 420          | 27.65<br>32.89 |
| 14             | 25.000 i         | .724           | 778                | 1103         | 469                     | 1317           | 2410         | 3727          | 2478           | 1729         | 32.92          |
| 15             | 25,000           | .722           | 781                | 1106         | 470                     | 1636           | 3410         | 5046          | 3003           | 2256         | 32.85          |
| 16             | 25,000           | .721           | 781                | 1104         | 470                     | 1812           | 4550         | 6363          | 3295           | 8549         | 39,86          |
| 17<br>18       | 85,000           | .682           | 838                | 1154         | 464                     | 1970           | 5600         | 7570          | 3626           | 2872         | 34.74          |
|                | 25,000           | .842           | 824                | 1509         | 455                     | 2182           | 8020         | 7202          | 4231           | 3213         | 39.70          |
| <del>.  </del> | 5,000            | 0.169          | 1752               | 1787         | figuration D            |                |              | 1000          |                |              | 12 22          |
| 2              | 5,000            | 176            | 1782               | 1791         | 510<br>504              | 1646 .<br>1960 | 0<br>5520    | 1646<br>5280  | 1450           | 1161         | 49.86          |
| š              | 8,000            | 173            | 1752               | 1789         | 509                     | 2081           | 3780         | 5861          | 2118  <br>2318 | 1816<br>2023 | 50.18<br>49.67 |
| 4              | 5,000            | 160            | 1746 .             | 1778         | 509                     | 2235           | 41B0         | 6413          | 2559           | 2287         | 49.67          |
| 5              | 5,000 l          | .176           | 1739               | 1778         | 501                     | 2386           | 4520         | 6906          | 8833           | 2530         | 50,62          |
| 91             | 15,000           | .551           | 1189               | 1440         | 497                     | 1256           | 0            | 1258          | 1321           | 597          | 41,23          |
| 7              | 15,000           | .528           | 1189               | 1457         | 495                     | 1549           | 3300         | 4849          | 2139           | 1428         | 10,74          |
| 8              | 15,000           | .532<br>.532   | 1189               | 1441         | 491                     | 1734           | 3700         | 5434          | 2427           | 1708         | 41.08          |
| 10             | 15,000           | .632           | 1190<br>1186       | 1442<br>1437 | 497<br>485              | 2060 .<br>2335 | 4240<br>4720 | 6300<br>7055  | 2840           | 2119         | 40.99          |
| iil            | 25.000 I         | 716            | 781                | 1099         | 482                     | 988            | 1780         | 988           | 3387<br>1234   | 2669<br>515  | 41.29          |
| 12             | 25,000           | 725            | 778                | 1105         | 479                     | 1259           | 2820         | 4079          | 2053           | 1310         | 32.33          |
| 13             | 25.000 I         | .730           | 778                | 1109         | 478                     | 1453           | 3240         | 4693          | 2363           | 1618         | 32.39          |
| 14             | 25,000           | .725           | 778                | 1101         | 474                     | 1636           | 3560         | 5196          | 2684           | 1944         | 32,44          |
| 15<br>18<br>17 | 25,000           | 729            | 778                | 1107         | 472                     | 1745           | 3800         | 5545          | 2728           | 1978         | 32,66          |
| 79丨            | 25,000<br>25,000 | 728<br>861     | 778<br>781         | 1106<br>1267 | 476<br>498              | 1921<br>1078   | 3980         | 5901<br>1678  | 3172           | 2459         | 31.86          |
| iė             | 25,000           | 864            | 781                | 1870         | 495                     | 1317           | 3060         | 4577          | 1468<br>2324   | 462<br>1338  | 35.79          |
| 18             | 25,000           | 965<br>863     | 778                | 1867         | 492                     | 1378           | 51.90        |               | 2410           | 1486         | 36.06<br>36.05 |
|                | 25,000<br>25,000 | 863            | 778<br>783         | 1872         | 492<br>490              | 1378<br>1443   | 3350         | 4555<br>4793  | 2509           | 1519         | 36.43          |
| 잃              | 25,000           | .862           | 781                | 1268         | 490                     | 1724           | 3760         | 5484          | 2919           | 1935         | 36,20          |
| 22<br>23       | 25,000<br>25,000 | .863           | 784                | 1273         | 496                     | 2142           | 4320         | 6462          | 3678           | 5993         | 36.45          |
| 24             | 25,000           | .975<br>.960   | 781<br>778         | 1438<br>1438 | 503<br>511              | 1190<br>1404   | <b>5000</b>  | 1190          | 1841           | 596          | 40.70          |
| 25             | 25,000           | 975            | 781                | 1454         | 810                     | 1501           | 3200<br>3400 | 4604<br>4901  | 2706<br>2826   | 1465<br>1596 | 40.18<br>59.98 |
| 26             | 25,000           | 976            | 778                | 1433         | 509                     | 1501           | 5650         | 5151          | 2862           | 1633         | 39.83          |
| 27             | 85,000           | 981            | 781                | 1445         | 510                     | 1881           | 4100         | 5981          | 3475           | 2233         | 40.13          |
| 28             | 25,000           | .975           | 781                | 1434         | 510                     | 2020           | 4250         | 6270          | 3738           | 2508         | 39.97          |
| 89             | 25,000           | .976           | 778                | 1432         | 516                     | 2108           | 4460         | 6569          | 3884           | 2665         | 39,34          |
| <u> 30  </u>   | 25,000           | 961            | 800                | 1450         | 505                     | 2264           | 4650         | 6934          | 4143           | 2910         | 40.67          |

\*Data not obtained.





#### TAIL-PIPE BURNING - Concluded

| 18                  | 15           | 14             | 15               | 16                | 17                 | 18                                   | 19             | 80           | 21           | 1        |
|---------------------|--------------|----------------|------------------|-------------------|--------------------|--------------------------------------|----------------|--------------|--------------|----------|
| Specific            | Total        | Tail-pipe      | Tail-pipe        | Turbine-          | Turbine-           | Turbine-                             | Exhaust-       | Exhaust-     | Exhaust-     | Run      |
| fuel<br>consumption | fuel-        | fuel-eir       | combustion       | outlet            | outlet             | outlet                               | nossle         | nozzle       | gas          | Į.       |
|                     | ratio        | ratio<br>(f/a) | efficiency       | total<br>pressure | static<br>pressure | total                                | total          | statio       | total        | !        |
| Wr/Fn               | f/a          | (-/-/6         | η <sub>b,t</sub> | P                 | Pa                 | temperature<br>T <sub>6</sub> , (OR) | pressure       | pressure     | tempera-     | l l      |
| (1b/(br)            | -/-          |                |                  | (15/eq            | (1b/sq             | -6, (-n)                             | P <sub>B</sub> | , . Pe       | Tg, (OR)     | ĺ        |
| (1b thrust))        |              |                |                  | ft abs.)          |                    | 1                                    | (1b/sq ,       | (1b/sq       | -8, \        |          |
|                     |              |                |                  |                   | guration           | C                                    | ft abe.)       | ft abs.)     |              | L        |
| 2.207               | 0.0093       |                |                  | 1087              | 799                | 1131                                 | 954            | 786          |              | ī        |
| 2.892               | .0542        | .0277          | .551             | 1212              | 1007               | 1865                                 | 1122           | 825          | 2084         | \$       |
| 2.569               | .0506        | .0457          | .898             | 1480              | 1287               | 1654                                 | 1568           | 959          | 3251         | ! 3      |
| 8.800               | .0624        | .0609          | .807             | .1567             | 1577               | 1795                                 | 1454           | 965          | 3666         | 1 4      |
| 3.244               | .0742        | .0768          | .676             | 1877              | 1591               | 1735                                 | 1451           | 967          | 5704         | 5        |
| 1.970               | .0092        |                |                  | 1155              | 804                | 1182                                 | 1054           | 795          |              | 6        |
| 2.175               | .0314        | .0234          | .970             | 1489              | 1228               | 1271                                 | 1356           | 881          | 2555         | 7        |
| 2.157               | .0515        | .0255          | .992             | 1487              | 1950               | 1380                                 | 1362           | 894          | 2574         | 6        |
| 2.184<br>2.308      | 0365<br>0455 | .0274          | .993<br>.944     | (e)               | (a)                | 1457                                 | 1435           | 942          | 2799         | . 9      |
| 2,465               | 0519         | -0472          | .902             | 1690<br>1766      | 1447<br>1526       | 1586<br>1655                         | 1545<br>1693   | 1027<br>1056 | 3144<br>3461 | 10       |
| 2.695               | 0600         | 0582           | 821              | 1784              | 1533               | 1665                                 | 1642           | 1055         | - 3627       | 11       |
| 2.386               | .0083        | .0000          |                  | 1329              | 724                | 1107                                 | 1109           | 815          | - 5027       | is       |
| 2.156               | 0314         | .0243          | .896             | 1749              | 1475               | 1509                                 | 1579           | 1048         | 2463         | 14       |
| 2.257               | .0427        | .0563          | .948             | 1959              | 1578               | 1505                                 | 1772           | 1158         | 3095         | 15       |
| 8.496               | 0538         | .0499          | .838             | 2056              | 1798               | 1621                                 | 1884           | 1221         | 3404         | 16       |
| 3,100               | 0605         | .0586          | .798             | 2248              | 1965               | 1708                                 | 2058           | 1349         | 3570         | 17       |
| 2,242               | .0504        | .0455          | .919             | 2406              | 2095               | 1604                                 | 2272           | 1445         | 3410         | 18       |
|                     |              |                |                  | Confi             | guration           | D                                    |                |              |              |          |
|                     | 0.0092       |                |                  | 2432              | 1815               | 1191                                 | 2197           | 1850         |              | 1        |
| 2.907               | 0292         | 0.0220         | 0,255            | 2725              | 2137               | 1296                                 | 2450           | 1935         | 1614         | ₽        |
| 2.897               | .0328        | .0255          | .518             | 2880              | 2268               | 1360                                 | 2512           | 1985         | 1784         | 5        |
| 9.804               | .0359        | .0288          | .378             | 2950              | 2375               | 1428                                 | 2593           | 2020         | 1976         | 4        |
| 2.750               | .0379        | .0308          | .417             | 5067              | 2499               | 1453                                 | 2699           | 2085         | 2098         | 5        |
| 2.107               | .0085        | .0267          | .306             | 1874<br>2182      | 1264               | 1125                                 | 1610           | 1896         |              | 6        |
| 3.396<br>3.181      | 0367         | .0303          | .377             | 2550              | 1715<br>1853       | 1267<br>1362                         | 1916<br>2055   | 1443<br>1520 | 1729         | 7        |
| 2,973               | 0427         | .0363          | .466             | 2514              | 2086               | 1512                                 | 2204           | 1636         | 1944<br>2513 | 8        |
| 2.643               | 0475         | .0415          | .657             | 2784              | 2343               | 1646                                 | 2427           | 1792         | 2792         | 10       |
| 1.918               | 0087         | .0110          |                  | 1430              | 853                | 1108                                 | 1188           | 901          | 8198         | ᇤ        |
| 5.114               | 0350         | .0289          | .568             | 1706              | 1327               | 1294                                 | 1512           | 1088         | 1851         | 12       |
| 2,900               | 0409         | .0542          | 452              | 1861              | 1801               | 1394                                 | 1641           | 1180         | 2166         | 15       |
| 2,673               | .0445        | .0386          | .562             | 1998              | 1665               | 1512                                 | 1774           | 1271         | 2518         | 14       |
| 2,805               | 0472         | .0415          | 509              | 2038              | 1686               | 1582                                 | 1798           | 1301         | 2515         | 15       |
| 2.419               | .0514        | 0462           | .781             | 2215              | 1890               | 1687                                 | 1972           | 1407         | 2808         | 16       |
| 2.237               | .0084        |                | <del></del>      | 1592              | 971                | 1119                                 | 1879           | 950          |              | 17       |
| 3.271               | .0337        | .0278          | .522             | 1862              | 1441               | 1255                                 | 1650           | 1169         | 1741         | 18       |
| 5.194               | .0351        | .0891          | -540             | 1894              | 1465               | 1272                                 | 1663           | 1195         | 1815         | 19       |
| 3.155<br>2.834      | .0365        | .0505          | .354<br>.464     | 1959<br>2180      | 1527<br>1774       | 1310<br>1450                         | 1709<br>1885   | 1228<br>1373 | 1872<br>2265 | 80       |
| 2.409               | 0492         | .0435          | 716              | 2518              | 2105               | 1682                                 | 5502           | 1605         | 3019         | 85<br>XI |
| 1.997               | 0081         | .0200          |                  | 1798              | 1019               | 1112                                 | 1429           | 1027         | ~~~          | 23       |
| 5.147               | .0319        | .0258          | .337             | 2022              | 1528               | (4)                                  | 1781           | 1258         | 1719         | 24       |
| 3,071               | 0341         | 0279           | .362             | 2064              | 1607               | 1290                                 | 1835           | 1300         | 1830         | 25       |
| 5.142               | .0357        | 0299           | .350             | 2101              | 1634               | 1299                                 | 1850           | 1515         | 1849         | 26       |
| 2,678               | .0414        | 0352           | .511             | 2410              | 1971               | 1464                                 | 2116           | 1522         | 2340         | 27       |
| 2,500               | 0436         | .0373          | 613              | 2510              | 2090               | 1526                                 | 2225           | 1604         | 8602         | 28       |
| 2.462               | 0465         | 0404           | .658             | 2567              | 2191               | 1628                                 | 2296           | 1690         | 2797         | 29       |
| 2.582               | .0474        | .0414          | 697              | 2747              | 2292               | 1624 i                               | 2412 '         | 1745         | 2915         | 30       |





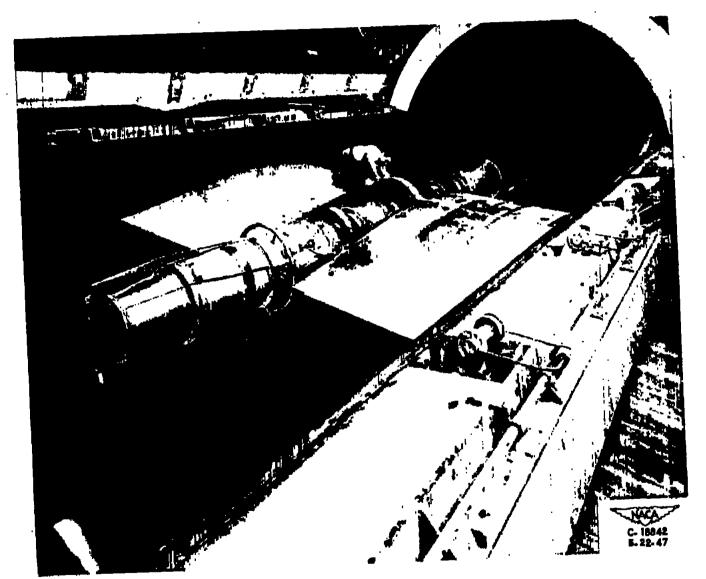



Figure 1. - Installation of turbojet engine with 252-inch-disseter tail-pipe burner in altitude wind turnel.





Figure 2. - Tail pipe used with configurations A, B, and C.



1.

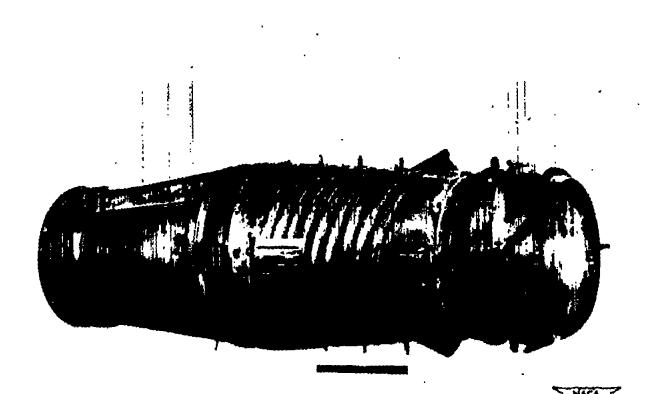
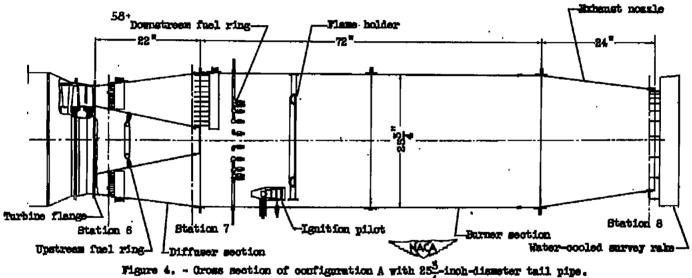




Figure 3. - Tail pipe need with configuration D.











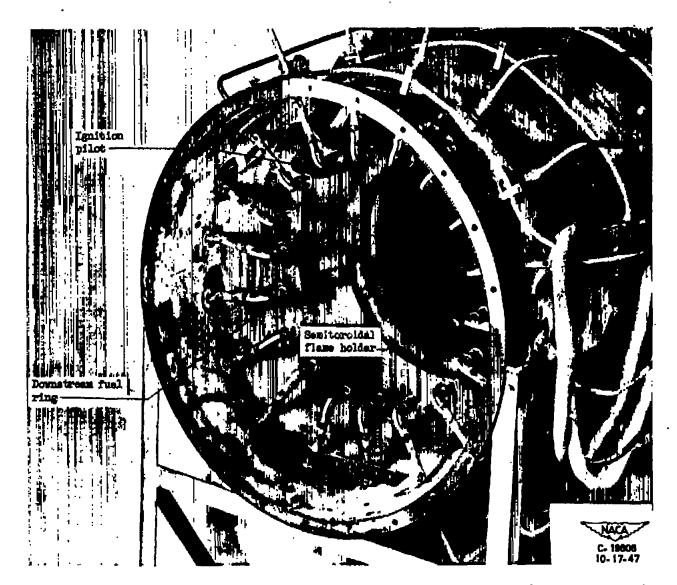
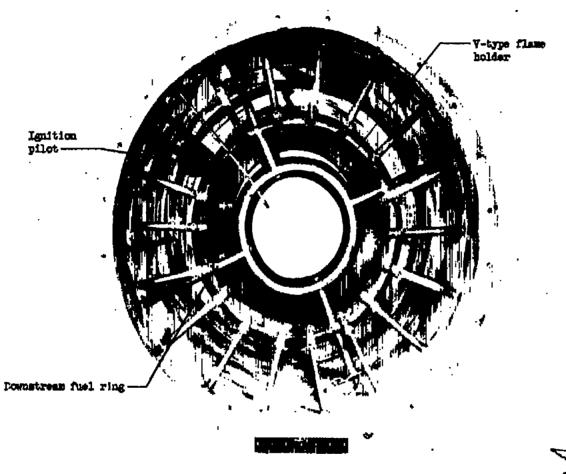




Figure 5. - Downstream fuel ring and semitoroidal flame holder, configuration A (looking downstream).





C- 18982 6- 6-47

Figure 6. - Downstream fuel ring and annular V-type flame holder, configuration B (looking downstream).





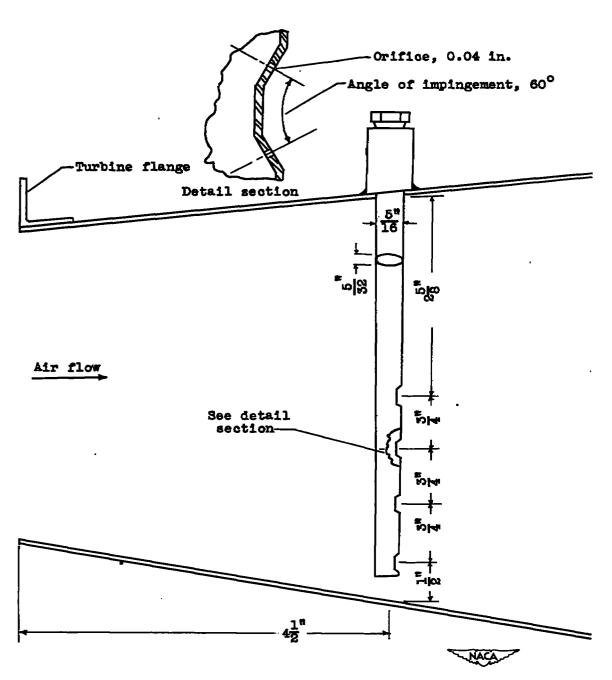



Figure 7. - Details of impinging jet spray bars installed in diffuser section for configuration C.

NACA RM No. E8J250

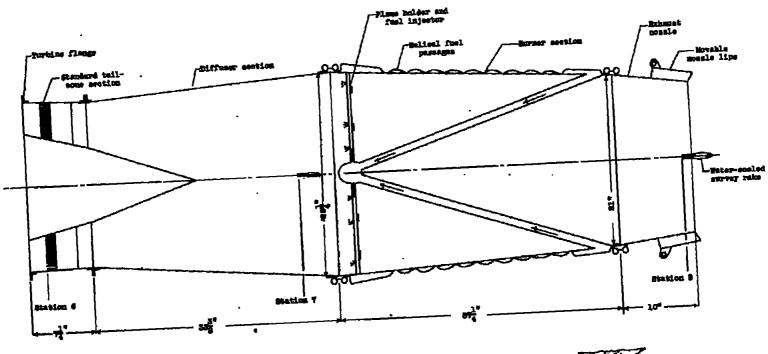



Figure 8. - Gross section of tail-pipe burner of configuration D.

NACA RM No. E8J25e

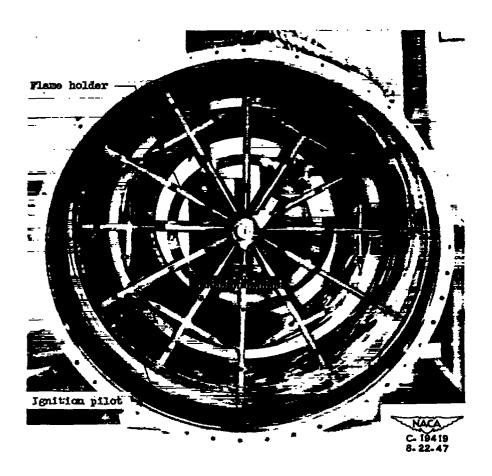



Figure 9. - Fuel-injection system and flame holder, configuration D (looking downstream).



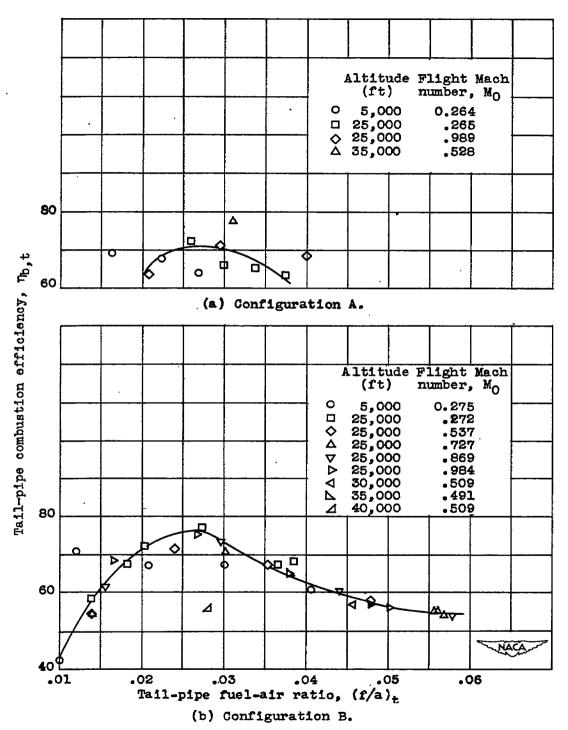



Figure 10. - Variation of tail-pipe combustion efficiency with tail-pipe fuel-air ratio for four configurations.



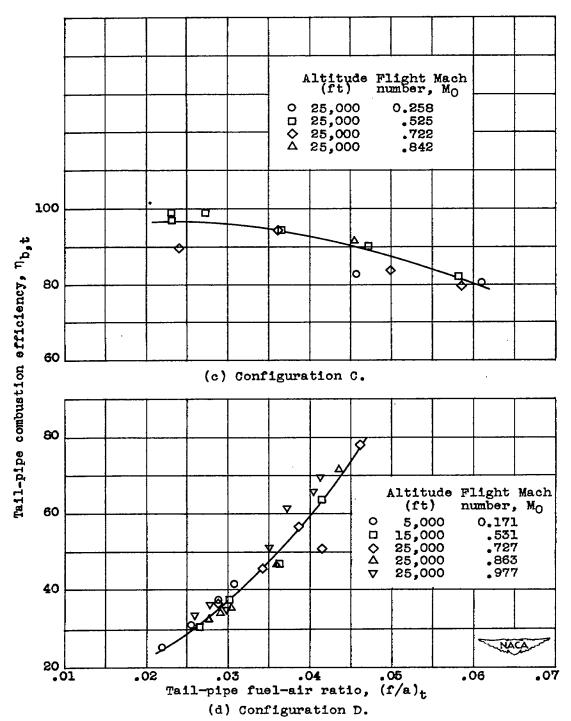



Figure 10. - Concluded. Variation of tail-pipe combustion efficiency with tail-pipe fuel-air ratio for four configurations.

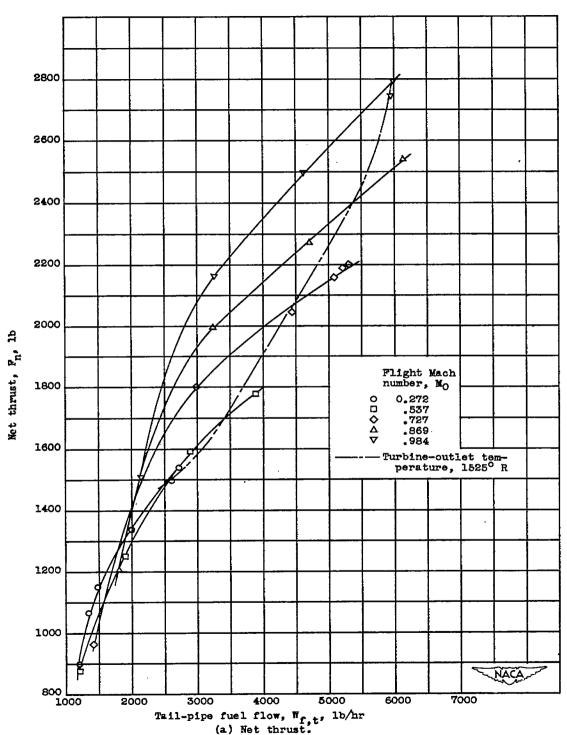



Figure 11. - Variation of performance parameters with tail-pipe fuel flow for several flight Mach numbers. Configuration B; altitude, 25,000 feet; engine speed, 12,500 rpm.

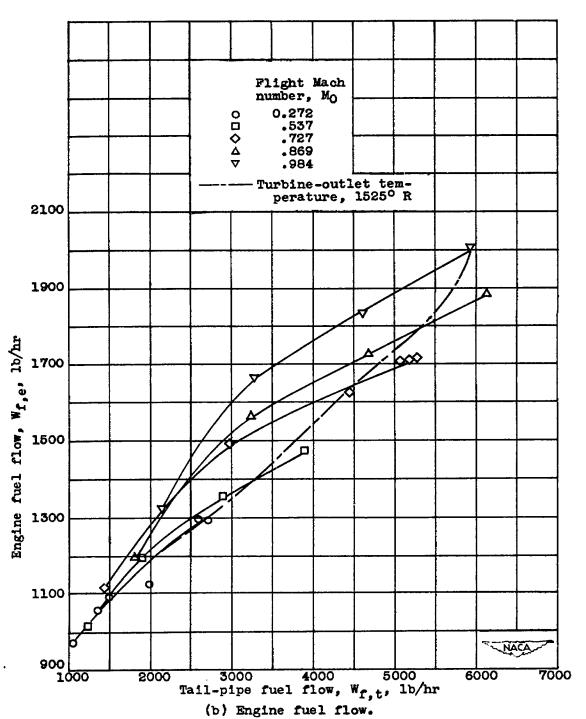
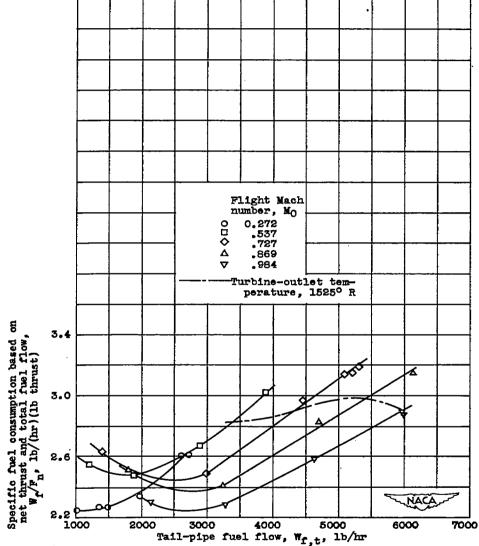
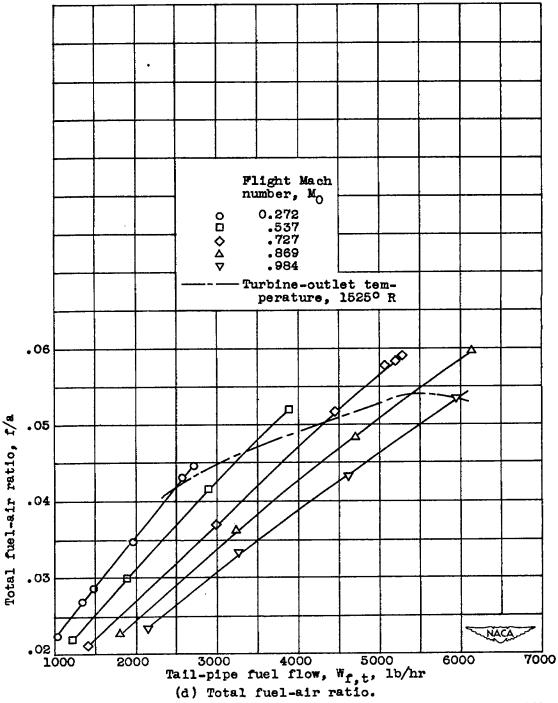





Figure 11. - Continued. Variation of performance parameters with tail-pipe fuel flow for several flight Mach numbers. Configuration B; altitude, 25,000 feet; engine speed, 12,500 rpm.



Tail-pipe fuel flow, W<sub>f,t</sub>, lb/hr
(c) Specific fuel consumption based on net thrust and total fuel flow.

Figure 11. - Continued. Variation of performance parameters with tail-pipe fuel flow for several flight Mach numbers. Configuration B; altitude, 25,000 feet; engine speed, 12,500 rpm.



UMENT PROVIDED BY THE ABBOTT AEROSPACE TECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

Figure 11. - Continued. Variation of performance parameters with tail-pipe fuel flow for several flight Mach numbers. Configuration B; altitude, 25,000 feet; engine speed, 12,500 rpm.

NACA RM No. E8J25e 45

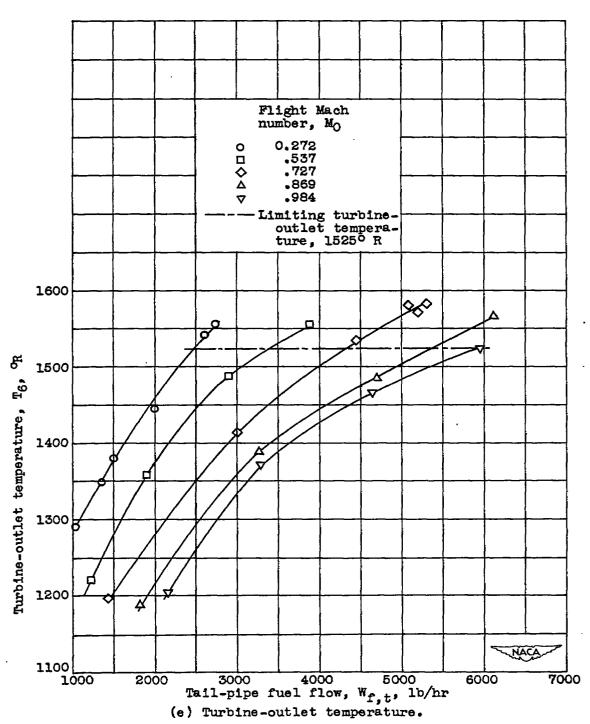



Figure 11. - Continued. Variation of performance parameters with tail-pipe fuel flow for several flight Mach numbers. Configuration B; altitude, 25,000 feet; engine speed, 12,500 rpm.

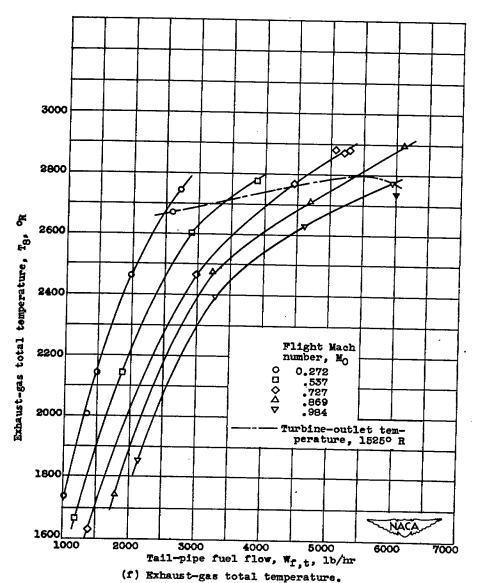



Figure 11. - Concluded. Variation of performance parameters with tail-pipe fuel flow for several flight Mach numbers. Configuration B; altitude, 25,000 feet; engine speed, 12,500 rpm.

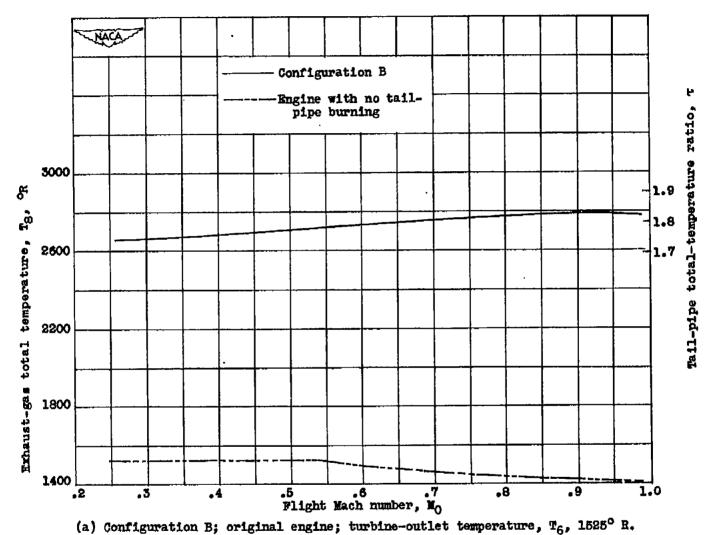
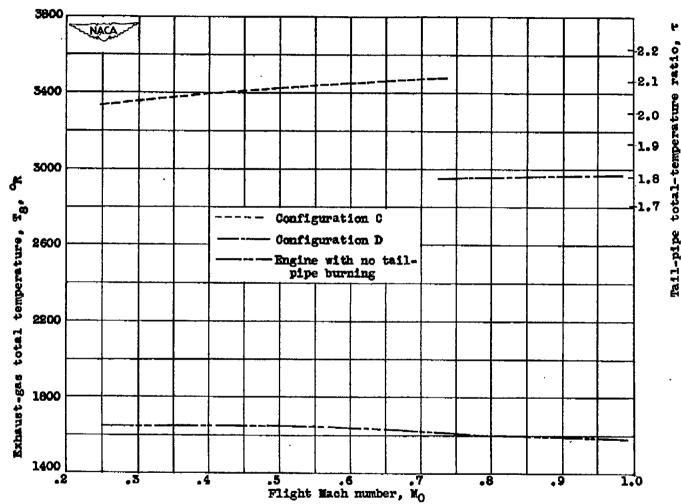
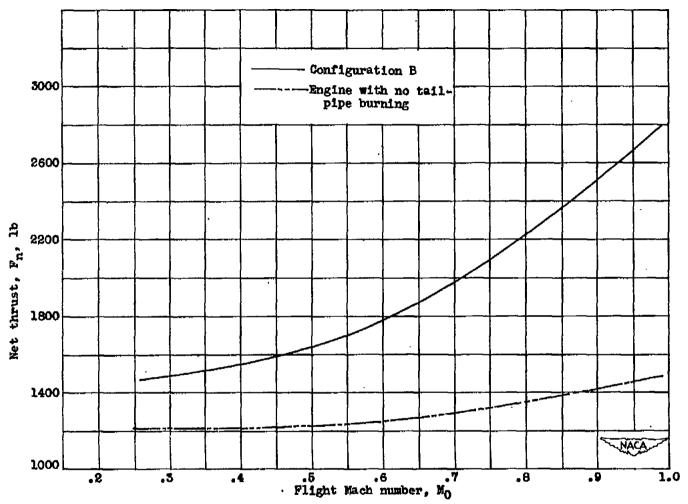
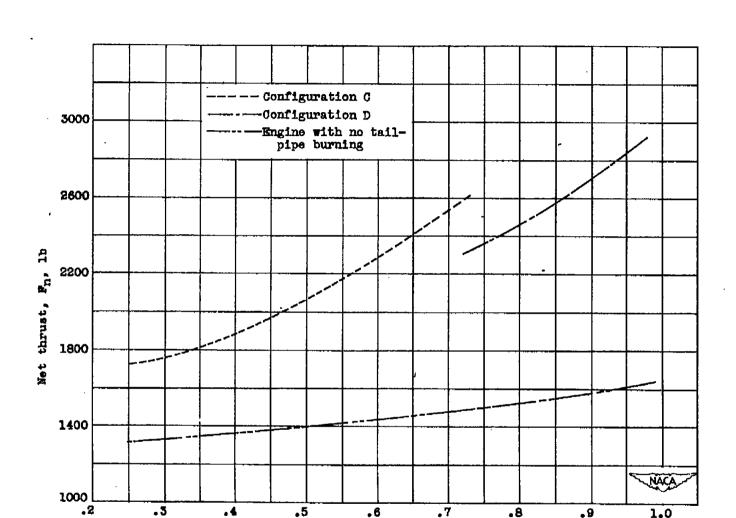




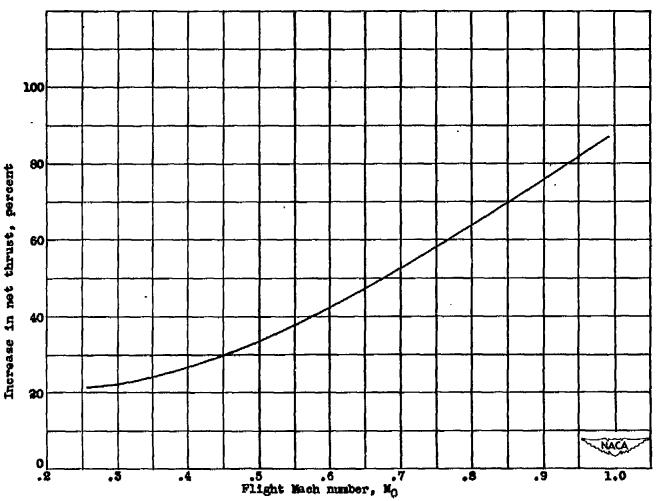

Figure 12. - Relation between exhaust-gas total temperature and flight Mach number with standard tail pipe and with modified tail pipe and tail-pipe burning. Altitude, 25,000 feet; engine speed, 12,500 rpm.




(b) Configurations C and D; modified engine; turbine-outlet temperature, T<sub>6</sub>, 1650° R. Figure 12. - Concluded. Relation between exhaust-gas total temperature and flight Mach number with standard tail pipe and with modified tail pipe and tail-pipe burning. Altitude, 25,000 feet; engine speed, 12,500 rpm.



(a) Configuration B; original engine; turbine-outlet temperature with tail-pipe burning,  $T_6$ , 1525° R.


Figure 15. - Relation between net thrust and flight Mach number with standard tail pipe and with modified tail pipe and tail-pipe burning. Altitude, 25,000 feet; engine speed, 12,500 rpm.



(b) Configurations C and D; modified engine; turbine-outlet temperature with tail-pipe burning, T<sub>6</sub>, 1650° R.

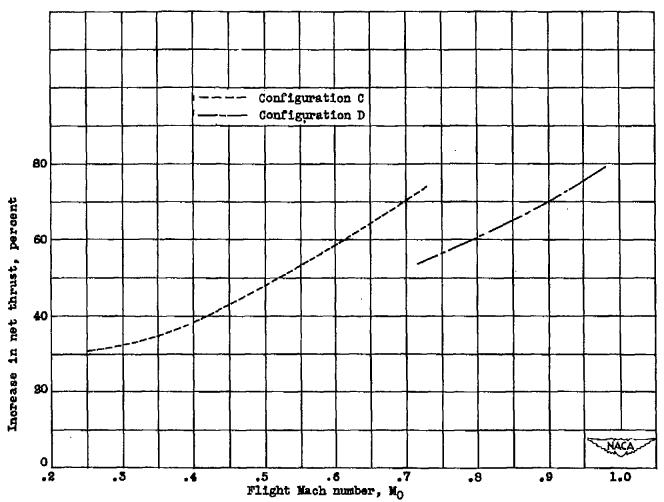

Flight Mach number, Mo

Figure 13. - Concluded. Relation between net thrust and flight Mach number with standard tail pipe and with modified tail pipe and tail-pipe burning. Altitude, 25,000 feet; engine speed, 12,500 rpm.



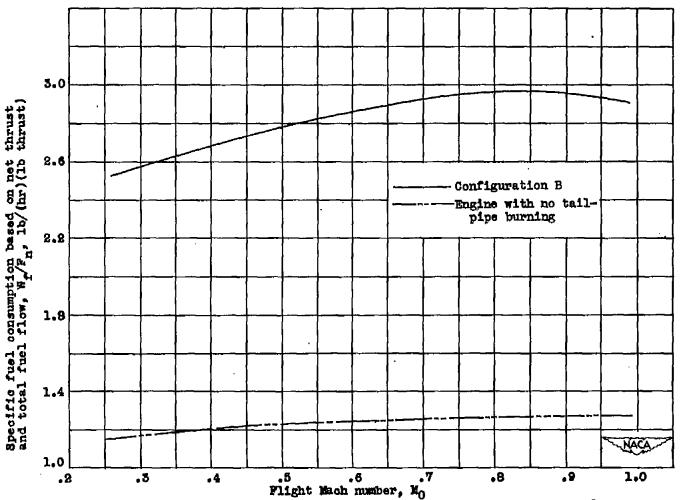
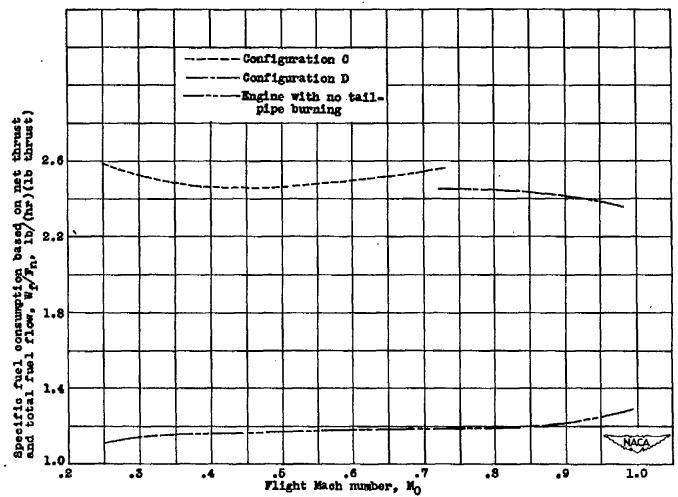

(a) Configuration B; original engine; turbine-outlet temperature with tail-pipe burning, T<sub>6</sub>, 1525° R.

Figure 14. - Relation between increase in net thrust and flight Mach number with tailpipe burning. Altitude, 25,000 feet; engine speed, 12,500 rpm.



(b) Configurations C and D; modified engine; turbine-outlet temperature with tail-pipe burning, T6, 1650° R.


Figure 14. - Concluded. Relation between increase in net thrust and flight Mach number with tail-pipe burning. Altitude, 25,000 feet; engine speed, 12,500 rpm.



(a) Configuration B; original engine; turbine-outlet temperature, Tg, 1525° R.

Pigure 15. - Relation between specific fuel consumption based on net thrust and total fuel flow and flight Each number with standard tail pipe and with modified tail pipe and tail-pipe burning. Altitude, 25,000 feet; engine speed, 12,500 rpm.

NACA RM No. E8J25e



(b) Configurations C and D; modified engine; turbine-outlet temperature, T<sub>6</sub>, 1650° R. Figure 15. - Concluded. Relation between specific fuel consumption based on net thrust and total fuel flow and flight Mach number with standard tail pipe and with modified tail pipe and tail-pipe burning. Altitude, 25,000 feet; engine speed, 12,500 rpm.



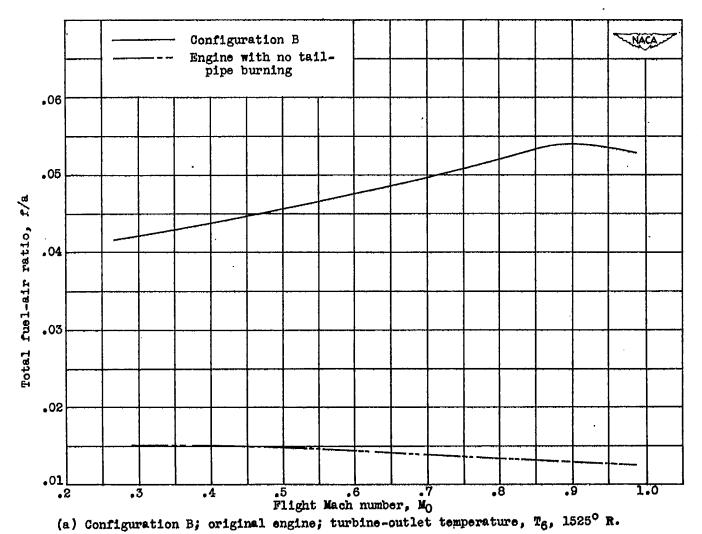
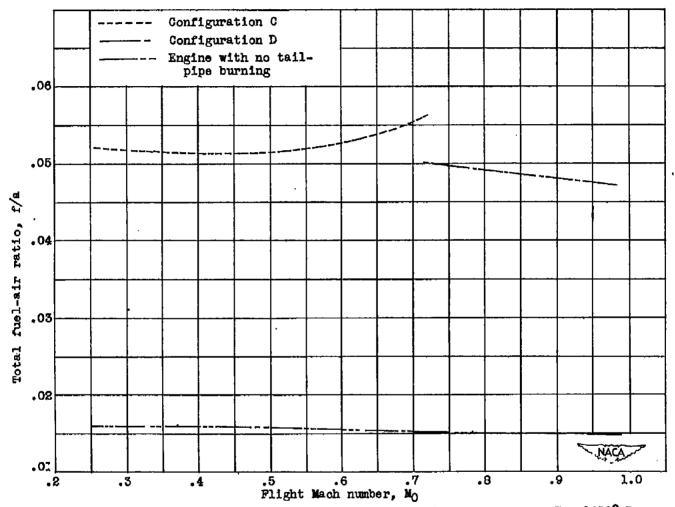




Figure 16. - Relation between total fuel-air ratio and flight Mach number with standard tail pipe and with modified tail pipe and tail-pipe burning. Altitude, 25,000 feet; engine speed, 12,500 rpm.





(b) Configurations C and D; modified engine; turbine-outlet temperature, T<sub>6</sub>, 1650° R. Figure 16. - Concluded. Relation between total fuel-air ratio and flight Mach number with standard tail pipe and with modified tail pipe and tail-pipe burning. Altitude, 25,000 feet; engine speed, 12,500 rpm.

THIS DOCUMENT PROVIDED BY THE ABBOTT AEROSPACE
TECHNICAL LIBRARY
ABBOTTAEROSPACE, COM

3 1176 01435 5698

