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FIEID AT ZERO LIFT ON A SYMMETRICAT, SWEPT-BACK WING
MOUNTED ON A CIRCULAR CYLINDRICAT. BODY

By Jack N. Nielsen and Frederick H. Matteson

SUMMARY

An approximate method is presented for calculating the inter—
ference pressure distribution at zero 1ift of a symmetrical swept—
back wing mounted on a circular cylindrical body with the chord plane
of the wing passing through the axis of the body. The method
employed is based on linear theory and is an approximate first—order
method. An example illustrating the method is presented for a wing—
body combination consisting of a circular cylindrical body and an
untapered wing swept back 60°. The wing considered in the example
has a double—wedge section with the maximum thickness at the
midchord, a chord equal to twice the body dlameter, and & spanwise
distance from the wing-body Jjuncture to the wing tip of two body
diameters. The effects of a body nose on the wing pressure distribu-
tlon are not considered in determining the pressure drag of the wing
in combinstion. It is found that the pressure drag of the wing in
combination is less than that of the two exposed half—wings Jjoined
together.

INTRODUCTION

At subsonic speeds, wing-body interference has Important effects
on the aerodynamic characteristics of an airplane. At supersonic
speeds, wing-body interference assumes even greater importance because
of the relatively large bodies and small wings usuzlly specified for
aircraft designed for flight at such speeds. Swept—back wings
probably have greater interference effects at supersonic speeds than
unswept or swept—forward wings because greater areas of swept—back
wings lie within the region of influence of the wing—body juncture.

Past work on wing—body interference at supersonic speeds has been
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largely confined to 1lift and moment interference. Using the concepts
developed by R. T. Jones in his low-aspect—ratio, triangular—wing
theory (reference 1), Spreiter (reference 2) has determined the
effect of a pointed, slender body of revolution on the lift—curve
slope and center—of—pressure location of & wing—body configurstion.
Browne, Friedman, end Hodes (reference 3), using the methods of
conlical supersonic flow, have determined the loading on a triangular—
wing conical—body combination with & common apex. Ferrari (refer—
ence L) has analyzed the 1ift and moment interference between a flat
rectangular lifting surface and s polinted body of revolution.

There has been little work on the effects of wing thickness on
the Interference pressure dlstributions of wing—body combinations at
supersonic speeds. It is the purpose of this report to present an
approximate calculastive method for determining the pressure field due
to Interaction between a wing with a double~wedge section that is
swept behind the Mach cone and the circular cylindricel portion of
the bedy of revolution in which 1t is mounted. The comblnation is
analyzed at zero angle of attack with the chord plane of the wing
passing through the body axis. The interferehce pressure distribu—
tions, acting at several spanwise positions of the wing in combina—
tion, are given in the report together with the wing interference
pressure drag.

The emphasis in the analysis 1s placed on swept~back wings, the
surfaces of which are composed of planes. The entlire analysis, based
on the linearized theory of supersonic flow, is for a free-stream
Mach number of ,/2. The method for epplylng the results of the
analysis to other Mach numbers is given at the end of the text. The
approximate nature of the solution arises from the mgthematical com—
plexity of the complete Interference problem. One of the components
of the interference pressure fleld requires the solution of an
integral equation. Since the solution was not found, it was neces—
sary to resort to a tedious numericel summetion process.

SYMBOLS
c wing chord
C15C2,Cs factors for determining wing pressure coefficients
cd gection drag coefficient

d body dlameter
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ki, ko, kg

r.P.

Eo

U, 7,W

Uy, Vs Wy

Vn

factors for determining average normal velocity
at control area due to set of rectangular wedges

cotangent of sweep angle of line pressure source
free—stream Mach number

averages used in determining section drag coeffi-
clent

local static pressure

free—stream static pressure

pressure coefficient ( quiq
o

free—stream dynamic pressure
real part of a complex function

semispan of wing measured from wing-body Juncture
to wing tip

gsemispan of rectangular wedge
meximum thickness of double~wedge section
perturbation velocities of line pressure source

perturbation velocities for rectangular wedge in
Xws Yws Zw directions, respectively

finite velocity normal to body (positive outward)
due to leading—edge sources after reduction of
infinlte sidewash velocities to finite velocities

average finite normal veloclty for control area

average velocity normal to control area due to
rectangular wedge

free—-stream velocity
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longitudinal, lateral, and normal coordinates for
-line pressure source or sink with source or sink
in 2z=0 plane and the origin of the source or
sink at x=0, y=0
(The positive x direction is downstream, the
positive y direction is from the x axis toward
the source or sink, and the positive z direction
is upward.)

oblique coordinates (x'=x-my, y'=y-mx, z'=z/1-m= )

longitudinal, lateral, and normal coordinates for
rectangular wedge with chord plane of wedge
coinciding with 2zZw=0 plane
(The positive xy direction 1s downstream, the
the positive yyw direction to the right for an
observer looking upstream, and the positive
Zy direction away from the body.)

Aslope of streamwise section due to line pressure

source or sink
(Positive for a source and negstive for a\sink.)

i

streamwise slope of rectangular wedges correspond—
ing to strips A, B, and C, respectively

streamwise slope of rectangulsr wedge correspond—
ing to strip A and the region of Influence which
starts at the forward edge of control ares A-T

slope of rectangular wedge 1in gtreamwilse direction

ratio of average finlte normal veloclity to free-
stream veloclty for control areas of strips A,
B, and C, respectively

change in ratio of the average finite normal
veloclty to the free—stream velocity due to &
glven ring of rectangular wedges

7
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<¥h ratio of average finite normal velocity to free—
O/A-T stream velocity for control area A-I

] potential of the perturbation velocities of a line
Ppressure source or sink

e polar angle in planes perpendicular to body with
origin at intersection of plane with body axis
(The 6=0 plene corresponds to the right half—
wing for an observer facing the oncoming stream
and 6 1is positive counterclockwise.)

£, M, € longitudinal, lateral, and normal coordinates with
the origin at the leading edge of the wing-—body
Juncture and the {=0 plane coincident with the
chord plane of the wing
(The positive ¢ direction i1s downstream, and the
positive { direction is up. The positive n direc—-
tion is taken to the right of an observer facing
the oncoming stream for the right half—wing and is
taken to the left for the left half—wing.)

ANATYSIS
Components of the Interference Pressure Drag

The Interference pressure drag for a wing-body combination is
the difference between the drag of the wing-body combination and the
sum of the drags of the body alone and the wing alone. The wing slone
is used in this report to mean the two exposed hslf—wings joined
together. The interference pressure drag arises from the following
pressure distributions: (1) The pressure distribution on the body in
combination minus that on the body alone, and (2) the pressure distri-
bution on the wing in combination minus that on the wing alone. This
report considers a symmetrical wing mounted on the cylindrical portion
of a pointed body of revolution. The longitudinal axes of the body
and wing aré in the stream direction. Since the sides of the body in
the region influenced by the wing are then parallel to the flow, the
body has no interference pressure drag. Thus, the interference
pressure drag is the difference in the drags of the wing in combina—
tion and of the wing alone. The methods of references 5 or 6 can be
used to determine the drag of the wing alone, but no method has
hitherto existed for determining the pressure distribution and drag
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of the wing in combination. It is the purpose of this report to
present such a method. '

Components of Pressure Field on Half~Wing in Combination

In the following analysis of the pressure distribution and drag
of either half-wing in combination, the pressure fleld acting on the
half-wing is subdivided into four components: (1) That due to the
part of the body forward of the reglon of influence of the wing,

(2) that due to the given half-wing, (3) that due to the opposite
half-wing, and (U4) that due to interaction between the half—wings

and the part of the body within their region of influence. This
subdivision of the pressure field acting on the half-wing in combina—
tion 1s convenlent for the purposes of the analysis., However, once
the method of the analysis has been established, a slightly different
point of view will be adopted. -

Consider now methods for determining the various components.
The first component can be determined by any of the methods availsble
for determining the pressure field of bodles of revolution, such as
the method of characteristics or the method of reference 7. In
general, this component is different for each body shape and no
further account will be taken of it in the analysis, The second and
third components can be determined by the method of reference 5.
This method is consldered briefly in this report since it is the
starting point of the analysis to obtain the fourth component, which
is the one to which the anslysis is principally devoted., It should
be noted that the part of the body forward of the region of influence
of the wings will cause only small perturbation velocitles at the wing
and will have only a second—order effect on the fourth component of
the pressure field.

Pressure Field on Half-Wing Due to Itsel?f
and Opposite Half-Wing

The line pressure source solution of the linearized equation of
supersonic flow 1s fundamental in determining the pressure field on
elther half-wing due to itself or to the opposite half-wing. Jones
(reference 5) gives for the streamwise perturbation velocity u of
a line pressure source swept behind the Mach cone

u=r.p, — Yo_m <?2%> cosh™l ——Xi
T
8

2 d.x Iy12+Z|2

1-m
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The. velocity potential for the line pressure source is obtained by
integration of the foregoling equation along a path parallel to the
x axis. This glves

. .
Vo d.z> { !
= UdX = —— (= y! coslrl | —mFeme ) —
® _/:m xolmE \ax/s y'2+z12

(2)

The lateral and vertical perturbation velocity components are
obtained by differentiating equation (2) as follows:

32 @), [ () - )|

-2 _ Yo (dz - ¥y +z2 4
Ay f (d:zg s cos™ [7(y2+z2)(y’2+2'2)il W

To 1llustrate the nature of the downwash and sidewash, these
fields have been calculated from equations (3) and (4) for a sweep—
back angle of 60° and a free-stream Mach number of V2. The results
of the calculations are presented in figures 1 and 2, These figures
show the downwash and sidewash patterns in any plane perpendicular
to the axls of the Mach cone of the source., Since the flow is
conical, the downwaesh and sidewash velocities depend only on y/x
and z/x, the ratios which determine the direction of any ray from
the apex of the Mach cone. The line gource starts at the apex of
the Mach cone and pilerces any plane perpendicular to the axis of the
Mach cone at a point y/x=0.577 and z/x=0. Figure 1 reveals that
upwesh exists above the plane of the source, and downwash exists
beneath it. Between the line source and the sxis of the Mach cone,
the upwash and downwash velocities are constant just above and below
the zero plane and thelr magnitudes are equal. Thus, behind the
line source there exists, in effect, a symmetrical wing with a wedge—
shaped streamwise section.
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(In the linearized theory of supersonic flow, the surfaces of the
wing are displaced only infinitesimally from the 2z=0 plsne.) In
the rest of the z=0 plane, the downwash velocity 1s zero. The
gsidewash pattern of figure 2 is symmetrical above and below the 2=0
plane. There 1s positive infinite sidewash velocity along the line
pressure source and negative infinite sidewash veloclty slong the
axis of the Mach cone.

The fact that a line pressure source or sink produces zero
downwash veloclty everywhere in the zero plane except directly behind
it simplifles the simulation of complicated wings by the superpositim
of line sources and sinks., In fact, the pressure field of any wing
which 1s symmetrical above and below the 2=0 plane and the surfaces
of which are composed of planes can easlily be simulated by a finite
number of line sources and sinks. For instance, the pressure field
of an untapered, swept—back half-wing of symmetricasl double—wedge
section with the maximum thickness at the mlidchord would be formed
by the source—sink system shown in figure 3. The leading—edge and
trailing—edge sources are of equal strength, but the midchord—line
sink 13 twilice as strong as each of the sources. A source and two
sinks are introduced to form & tip. In determining the pressure
field of the half-wing from 1ts source—sink system, the 1 perturba—
tion velocity for each source or sink is determined from equation (1)
for a glven point on the wing, taeking into account the fact that the
starting point of each source or sink 1s taken as the origin of the
x,y,2 coordinate system in determining its particular value of u.
The pressure coefficlents of the line sources and sinks are then
determined from the following equation which is based on linear theory:

P=—2<;}i— (5)

Finally, the pressure coeffilclents are summed to give the pressure
coefficlent of the half—wing at the particular point.

In determining the drag of the half-wing from the pressure field,
it is not necessary to comslder the contributions of the tip source—
gink system to the wing pressures when the Mach lines of the tip
source and sinks on a given half-wing intersect the trailing edge of
this half—wing. In this instance, which 18 frequently the case, the
tip source—sink system changes only the distribution of drag within
its region of influence but does not change the over—all drag. (See
references 8 and 9.)

The determination of the pressure field on one half-wing due to
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the other half-wing is simplified by the fact that one half-wing does
not produce eny downwash in the plane of the other half—wing (fig. 1).
Hence, the pressure field due to the one can be considered to act
directly on the other. Figure 4 presents an example of the inter—
action of the pressure fields of two half—wings sepsrated by bhalf a
chord length. For the configuration shown, the leading— and tralling-
edge sources, as well as the midchord sinks, all contribute to the
pressures on the opposite half—wing. In computing the contributions,
it should be noted that the value of y to be used in determining y!
in equation (1) will be negative. In this particular case, the tip
system of one half-wing does not contribute to the pressures on the
opposite half-wing.

Pressure Field on Half-Wing Due to Interaction
Between Half-Wings and Body

The source—sink system which represents the half-wings will
induce both downwash and sidewash against that portion of the body
within their region of influence., However, the velocity normal to
the body must be zero everywhere. This constraining action of the
body affects the wing pressures and gives rise to the fourth component
of the pressure field acting on the half-wings in combination. To
determine this component of the pressure field, it 1s necessary to find
solutions of the linearized equation for supersonic flow which will
cancel the normal velocity induced at the body surface by the half-
wings and which will have no contribution to the downwash in the plane
of the wing. It is apparent that a method for determining that part
of the fourth component assoclated with the leading—edge sources will
be equally applicable to determining those parts due to the midchord—
line sinks and the trailing—edge sources. For certaln restricted con—
ditions, such as for wings of very low aspect ratio or for very low
supersonic Mach numbers, the tip source—sink systems may have an
effect on the fourth componernt of the pressure distribution on the
half-wing. However, the possible effect of the tip systems is ignored
in the rest of the anslysis, and only the leading—edge sources are
considered.,

Reference to figures 1 and 2 shows that infinite normal velocity
can arise from the sidewash only. Infinite sldewash velocity is .
induced against the body along the intersections of the body with the
wing—chord plane. Finlte downwash and sidewash velocities are
induced everywhere else on the body. It is convenient to reduce the
infinities in the normal velocity field to finite values and then to
cancel the finite residue. As will be shown next, thls Infinite
sidewash can be reduced by a source-sink system.
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Reduction of infinlte wvalues of sidewash velocity to finite
values by source—sink system.— The infinite sidewash velocities
normal to the body in the (=0 plane due to the leading—edge sources
can be reduced to finite velocitles by means of the source—sink
system shown in figure 5. Image source II cancels identically the
Infinite sidewash veloclities due to source I, and image source V
cancels identically those due to source IV, The image sources, how—
ever, produce infinite sidewash velocities along themselves (fig. 2)
and produce downwash velocities behind themselves which interfere
with the wing boundary conditions., These two conditions require the
addition of image sinks III and VI, the origins of which lie on the
imege sources inside the body. As shown in figure 5, the origins of
the imsge sinks are displaced from the origine of the corresponding
sources. (Otherwlse the sinks would identically cancel the gsources. )
It is noteworthy that the infinite sidewash velocities along the
image sources are not identically canceled by the infinite sidewash
velocities of the corresponding imsge sinks because of the displace—
ment of their origins. The resultant sidewash velocity at the body
is, however, finite. To accomplish the reduction of the infinitles
in a satisfactory manner, the origins of the image sinks must be
close to the origins of the corresponding image sources. This point
will be comeildered in detail in the subsequent illustrative example.

The contribution to the pressure distribution of the wing due
to reduction of the Infinite sldewash is readily obtailned. It is the
sum of the pressure coefficients due to the sources II and V, and
sinks III and VI as determined from equations (1) and (5). Again,
the origin of the x,y,z coordinate system is taken at the starting
point of the particular source or sink for which the calculation of
the pressure coefficient is being made.

After the infinite sidewmssh velocities have all been reduced to
finite values, there remains a distribution of finite velocity normsl
to the surface of the body. The part-of the fourth component of the
wing pressure field arising from canceling these finite normal veloc—
itles will be only approximately determined,

Approximate cancellation of the finlte normal velocities by
rectangular wedges.— The finite veloCclty normal Lo the body at any
point after the cancellation of the infinite sidewash may be deter—
mined with the aid of equations (3) and (4). From these equations
the sldewash and downwash due to sources I, II, IV, and V and sinks
ITT and VI are determined, and are then summed by the following equa—
tion to obtain the finite velocity normal to the body:



http://www.abbottaerospace.com/technical-library

NACA RM A9E19 ' 11

i=V1 i=vI

Vo Z Vo}icose+z<"°1sme _()

The right-hand sideline of the body for an observer facing up—
stream corresponds to 6=0°, and the left-hand sideline to 6=180°,
A positive vnﬁfo denotes flow out of the body with v positive to
the right (looking forward) and w positive upward. Only the normal
velocity distribution for values of 6 from 0° to 90° need be con—
sldered since the flow is similar in every gquadrant of the body.

The surface of the circular cylindrical body is now divided into
control areas, the number of which determines the accuracy of the
solution, These control areaes are formed by the intersections of
longitudinal strips with a number of rings as shown in figure 6.
Eight longitudinal strips and eighteen rings were selected in the
Present analysis to provide a reasonable compromise between accuracy
and work required. Strip A (fig. 6) has a perpendicular tangent to
the plane of the wing, and the value of 6 for this strip varies
from —22.5° to +22.5°, The rings are 0.2d wide and start at ¢=0,
where the leading—edge sources intersect the body.

The next step in the analysis 1s to present a method for cancel—
ing the average flow induced through each control area by leading-edge
gources. The finite normal velocities at every point on the body
surface.can, in principle, be identically canceled by a distribution
on the surface of point sources of the type used by Puckett in refer—
ence 6, For a plane distribution of these sources, the local source
strength 1s proportional to the local induced vertical velocity.
However, when the sources are placed on a curved surface, this simple
relationship no longer holds, and the determination of the surfacs
distribution of the source strength to cancel an arbitrary surface
distribution of normal velocity involves the solution of an integral
equation., Since the solution of this equation was not obtalned, it
wasg necessary to use an approximate method.

The approximate method used to cancel the average finite normsl
veloclty at each control area employs the sclutlon for a rectangular
welge of infinite chord. The rectangular wedge 1s formed by the
gsource-sink system shown in figure 7. The sources and sinks all have
no sweep and correspond t0 mM=ew. For m=e, the u, v, and w velocity
components of & source given by equations (1), (3), and (4) reduce to
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u=- Yf <%-§>s cog—t <7x;2_—L?—2> (7
v=- Yﬂg <%Zx_)s cosh™t (ﬁ) (8)
v =

%o (%f‘)s cog=2 <T=T=xa-;:y y2+zz). (9)

The u, v, and w components for the rectangular wedge with the
origin as shown in figure 7 are

uw—--;t— ) {:r—cos-l[—(w:)] ( yw+s° }(10)

w2 (f) Jooni [ty | - con™ [ s | |

(11)
W = !ng <%>w{n o [ xw’e--::2 (Yw—’:o)z"'z"z]. )

cos™1 [ Xy (Fyrtso) :] } (12)
WXz o (FurtBo) 2H+2w?

The rectangular wedges are placed on the sides of a regular
octagonal prism inside the body as shown by figure 8. From symmetry
considerations, 1t is apparent that the wedge angles, or slopes, of
the rectangular wedges to be used are identical for the two vertlcal
sides of the prism, the two horizontal sides, and the four inclined
sides. It 1s also apparent that no flow will be induced across the
plane of the wing, and therefore the wing boundary condlitions are
satlisfied., The rectangular wedges would induce infinite normal
velocities at the cylindrical surface if the octagonal prism were
inscribed in the circular body. To avoid this difficulty, the
octagonal prism has arbltrarily been inscribed inside a cylinder
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concentric with the body and having a diameter 0.96d. Rectangular
wedges are quite sultable for the present purpose since it is neces—
sary only to satisfy the boundary conditions et the body surface and
not at positions inside the body.

A step-by—-step process is used in determining the slopes of the
rectangular wedges. First, rectangular wedges are placed on the
octagonal prism so that their region of influence on the body begins
at the £=0 plsne (fig. 6). From equations (11) and (12) for the
downwash and sidewssh, the ratio of average normal velocity to free—
stream velocity Vn'! /Vo through any control area due to the rectan—
gular wedge on side A of the octagonal prism is then determined. This
average normal velocity ratio is dependent on a factor k which is
different for each control area as follows:

Vn' _ dz

where (dz/dx)p refers to the slope of the rectangular wedge corre—
sponding to strip A. The values of k for all control areas above
the horizontal plane of symmetry have been determined. The value of
the normal velocity was calculated with the help of equations (11)
and (12) for a mumber of points on the body and ¥n'/Vo for each
control area was determined by a process of cross—plotting and
integrating with a planimeter. Finally, the values of k were
determined so that equation (13) was fulfilled. Table I gives the
factor k for the various control areas due to the rectangular
wedge on side A of the-octagonal prism. The table presents results
for only half the body since the results are similar above and below
the plane of the wing. It is apparent that the factors In table I
may be used to determine the average normal velocity through any
control ares due to any rectangular wedge.

With the aid of the factors in table I, the slopes of the
rectangular wedges required to cancel the average finite normal
velocity ratio ?rn/Vo in every control area of ring I can be deter—
mined, Iet (dz/dx)p-T be the slope of the wedges which lle on sides
A snd E of the prism (fig. 8) and the regions of influence of which
start on the body at £=0 (fig. 6). ILet (dz/dx)p-1 be the corre—
sponding slope of the wedges for sides B, D, F, and H and (dz/dx)c-1
the slope of the wedges for sides C and G. Now let (Trn/Vo) AT be
the ratio of the average finite normal veloclty to the free—stream
velocity for control areas A—T and E-I, (Vn/VO)B_I that for control
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areas B-I, D-I, P-I, and B-I, and (¥n/Vo)o_y that for control areas
C~I and G—I. Consider now control area A=I. On the baslis of the
factors in table I, the ratio of average normsl velocity to free—
stream velocity induced tbhrough this control areas by the wedge of

side A corresponds to 0.813(dz/dx)p. Since a wedge of given slope on
side A will induce the same normal velocitles through control area
B-I as a wedge of identical slope on side B will induce through
control area A-I, it follows from table I that the ratio of average
normal veloclty to free-stream velocity induced through control ares
A~I by the wedge on side B is O.O69(dz/dx)3_1. By symmetry, the wedge
on side H will also have the contribution 0.069(dz/dx)p-y. The wedges
on sides C, D, E, F, and G have no contribution because the control
area A—I is outside thelr regions of influence for the Mach number
and size of control areas selected in the analysis. Since the average
velocity normal to control area A-I 1s to be zero

< . \+ . 813( ) + 2(0.069_) <%X§>B-I =0 (1%)

Similarly, for comtrol areas B—I and C—I, there is obtained

(oo (@), oo [(8),r (8]0,

and

+ 0.813 ié) + 2(0.069) (ﬂ =0 (16)
< >c—I x/og - ax/p 1

The simultaneous solution of equations (1)+) to (16) gives the slopes
of the rectangular wedges,

%) - 1. 2h8< ) + 0. 2151< ) - o, 01825< vn>
A-T A-I C-I

(17)

(8), -0 (), (), o),
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iﬁ) =—o.01825<1n-> +o.2151<ﬁ> —1.2h8<fli>
<dx c-I . Vo/p1 Vo/p1 Vo/ c-1

(19)

These values of (dz/dx)a71, (dz/dx)p—7, and (dz/dx)c—r are such that
the average normal velocity for each control area of ring I is zero.

]

Once the slope of the rectangular wedges required to cancel the
average finite normal velocities in the control areas of ring I are
determined from equations (17) to (19), the values of ¥,/Vy for all
the control areas behind ring I must be adjusted for the contributions
due to these rectangular wedges. The adjustment need be made only
for strips A, B, and C because of symmetry. Consider, for example,
control area B=VII. Due to the wedge on side A of the octagonal
prism, the ratio of average normal velocity to free—stream velocity
for this control area is 0.218(dz/dx)a—1, using the factors of
table I. Consider now the contribution of the wedge on side E., From
symuetry, the effect on control area B—VII of the wedge on side E is
the same as the effect on control area DVII of the wedge on side A.
Thus the contribution of the wedge on side E to the ratio of average
normal velocity to free—stream veloclty for control area B—VII is
0.165(dz/dx)p—1. The total contribution of sides A and E is thus
(0.218 + 0.165) (dz/dx)p—1. In & similar menner, using the factors
of table I, it can be shown that the total contribution for the wedges
of sides B, D, F, and H is (0.835 + 0.153 + 0.180 + 0.153) (dz/dx)p—1
and that the sum contribution of sides C and G is (0.218 + 0.165)
(dz/dx)c—r. From this example, it can be seen that the contribution
to the ratio of average normal veloclity to free—stream velocity due
to the rectangular wedges of a given ring can be represented as

;i _ dz dz dz
A(ﬂ) AN k2<3§>3 * k3<&>c (20)

The values of k;, ko, and kg have been determined in the foregoing
manner for all the control areas of strips A, B, and C. The factors
k;, ko, and kg, due to the rectangular wedges of ring I, are
presented in table II., When these factors are used, the values of
Vh/vo for the control areas behind ring I are readily adjusted for
the normal velocity induced by the rectangular wedges of ring I.

The foregoing process is repeated in the step—by—step solution.
A second set of rectangular wedges is placed on the octagonal prism
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80 that the region of influence on the body begins at the boundary
between rings I and II at ¢=0.2d. The average finite normal veloc—
ities for the control areas of ring II are then canceled in the same
menner as for ring I, using equations (17), (18), and {19), but sub—
stituting the quantities (¥n/Vo)p—17s (¥n/Vo)p_7, and (¥o/Vo) ozt
for (vh/VO)ArI (?h/VO)B_I, and (Vh}vo)c_l, respectively, and solving
for the quantities (dz/dx)a-11, (dz/dx)p-rT, end (dz/dx)o-rr. The
values of ¥n/Vp for all control areas behind ring II lare adjusted
as previously, using equation (20) and the factors of table II. In
using the factors of table II, however, it must be borne in mind that
ring II is farther downstream than ring I. Thus, for instance, the
average normal velocity induced at control B—VII by the wedges of )
ring II would be the same as that induced at control ares B—VI by the
wedges of ring I. Thus, for the control area B-VII, using the factors
in table II, '

vn dz dz dz

Al = 0.4 (—) + 1.&12(—) + 0.4 (—-
G°> B-VII B\= A-IT dx /p 771 B\ = C-IT
' (21)

In the foregoing menner, the slopes of the wedges for ring II are
determined, and the average normal velocities for all control areas
behind ring II are adjusted for the normal velocities induced by the

wedges of ring IT.

The procedure used in determining the slopes of the wedges for
ring I and adjusting the control areass behind ring I for the induced
normel velocitles of the wedges of ring I has been applied to ring IT.
It i1s clear that this procedure must also be applied to each additiomal
ring in the order III, IV, V, etc., through the last ring, that is,
through the last ring the region of influence of which intersects the
wing. With regard to the procedure, it is desirable to emphasize the
use of table II. Consider the contribution to the ratio (¥n/Vo) at
control area B—VII due to the wedges of ring VI. This cantribution
will be the same as that at control area B—II due to the rectangular
wedges of ring I. Thus, for the effect of ring VI on control asrea
B-VII

A(YQ = 0.189 <Q> + 0.887 <Q=-7‘> + 0.189 <Q_z_>
Vo/ BvyIT dx/ pv1 dx/p w1 dx GZVI)
22
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The procedure to determine the slopes of the rectangular wedges
is now suwmmarized. Egquations (17), (18), and (19) are solved to
obtain the slopes of the wedges for ring I. The values of (Fn/Vo)
for all control areas behind ring I are adjusted for the normal
velocity induced by the wedges of ring I using equation (20) and the
factors of table IT. The slopes of the rectangles of ring IT are
then determined using equations similar to equations (17), (18), and
(19) with identical coefficients. The values of ¥n/Vo for all
control areas behind ring IT sre adjusted using equation (20) and the
factors of table II, and the process 1s repeated through the last
ring that can influence the wing pressures.

From the slopes of the wedges, that part of the fourth component
of the pressure field acting on the half-wing in combination which 1is
due to canceling the average finite normal velocity at each control
area capn be calculated. This calculation completes the determination
of the pressure field acting on the half-wing in combination. The
pressure coefficient at any point due to any one of the rectangular
wedges cen be calculated with the help of equations (5) and (10). It
can be easily shown that the pressure coefficilent at any point on the
wing due to the first set of rectangular wedges can be expressed in

the form
dz dz dz
P= Cl<— + C2 —> + Cs<—> (23)
dx /A-T dx /B-1 dx /c-I

The contributions of the other sets of rectangular wedges to the
pressure at a given point can be similarly expressed and calculated.
The contributions of all of the sets are summed at a number of points
at a glven spanwise station to yleld the section pressure distribution.
The detalls of celculating the pressure coefficlents will be given in
the example.

ITIUSTRATIVE EXAMPLE

The pressure field acting on a half-wing in combination has been
subdivided into four components in & particular msnner to facilitate
the analysis. The fourth component, that due to interaction between
half—wings and body, was further subdivided into two parts. With the
determinstion of its various components, the pressure distribution on
g half—wing is fully determined. The part of this pressure distribu—
tion due to interference will be considered in this illustrative
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example. The over—all interference pressure distribution of the
half-wing in combination is defined for the purpose of this report to
be the sum of that component due to the opposite half-wing and that
component due to interaction between the half—wings and body. The
component due to the body nose is not considered for reasons already
given, and the component due to the effect of the half—wing on itself
is not an interference pressure distribution. The over—ell inter—
ference pressure distribution is considered in two parte to facili—
tate the fairing of curves required in this illustrative example.

The first part of the over—all interference pressure distribution is
the sum of the pressure distribution due to the opposite half—wing
and the pressure distribution due to reducing the infinite sidewash
velocities to flnite velocities. The second part is the pressure
distribution due to canceling the average normal velocities at each
control ares by rectangular wedges.

In this i1llustrative example the interference pressure distri-
bution at zero 1ift and the interference pressure drag are calculated
at Mo=:J§ for a 60° swept—back wing mounted on s circular cylindri-
cal body. The dimensions of the wing-body configuration considered
are given in figure 9. An untapered swept—back wing has been chosen
which has a symmetrical double—wedge section with the maximm thick—
ness at the midchord, and the body diameter has been taken equal to
one—half the wing chord. The over—all interference pressure distri-
butions due to the leading—edge sources have been determined for the
gtations shown in figure 9. The spanwise distribution of pressure
drag corresponding to the over-all interference pressure distributions
~ has been calculated. Finally, the interference pressure drag, as
defined in the analysis, has been determined.

Wing Pressure Field Due to Leading—Edge Source of
Opposite Half-Wing and to Canceling Infinite
Sidewash of Leading—Edge Sources

The pressure distribution at the wing-body juncture of the
right half-wing (for an observer looking forward) due to the leading—
edge source of the left half-wing and due to reducing the infinite
sidewash velocities of the leading—edge sources to finite velocities
is shown in figure 10. Only the interference pressure distribution
due to the leading—edge sources is shown for purposes of clarity.
The corresponding pressure distribution for the midchord—line sinks
is double that for the leading-edge sources, 1is negative, and is
shifted a half of a chord rearward. The corresponding pressure dis—
tribution for the trailing—edge sources 1s identical to that for the
leading—edge sources but is shifted a chord length rearward.

+
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In figure 10 the contribution of the leading—edge source of the
left half-wing is that due to source IV and the contribution due to
reducing the infinite sidewash velocities of the leading—edge sources
is represented by the sum of sources II and V plus sinks IIT and VI.
The total effect is IT + IIT + IV + V + VI as shown,

These pressure distributions present several noteworthy fesatures:
Flrst, the wing pressures due to reducing the infinite sidewash veloci-
ties are all finite since the infinite pressure peak of source V is
canceled, although not identically, by the infinite pressure peak of
sink VI without forming a cusp. A cusp near the leading edge arises
in the sum pressure distribution (II + III + IV + V + VI) due to
sink ITII. The position of this cusp depends only on the position of
the origin of sink IIT, which is arbitrary. As the origin of sink ITI
approaches that of source 11, 1t 1s apparent that the effect of the
.cusp is made smaller. Two cusps are Introduced Into the sum pressure
distribution at the intersections of the Mach.lines of source V and
gink VI with the wing-body Juncture. As the origin of sink VI
approaches the origin of source V, the difference in the helghts of
the cusps decreases as well as the chordwise distance between them.
For reasons that will subsequently be discussed, 1t is desirsble to
minimize the effect of the cusps in the final pressure distribution
by locating the origins of sinks III and VI close to the origins of
sources II and V, respectively. It was found that positions of the
origins of sinks III and VI of either 0.05d or 0.104 from the wing—
body Juncture gave good results in the present example, as will be
pointed out. If the origins of the sinks are located %00 close to the
origins of their respective sources, however, the finite velocities
normal to the body (vp) would be too large along the wing-body Junctures
and would impalr the accuracy of the method.

The pressure distribution in figure 10 represents only part of the
Interference pressure distribution at the wing-body Juncture due to the
leading—edge sources. The second part arises from canceling the finite
velocltlies normal to the body. As previously mentioned, a distribution
of point sources of the type used by Puckett scattered over the body
could, in principle, cancel the values of vn/Vo at every point on the
body. The pressure distribution at the wing—body Juncture resulting
from this source distribution would have cusps that would directly
offset those of figure 10. However, in the present approximate method
of obtaining the second part of the interference pressure field, the
offsetting cusps will not be obtained.

The menner Iln which the pressure distribution, due to the leading—
edge source of the opposite half—wing and to reduction of the infinite
sidewash velocities of the leading—edge sources, varies in the spanwise
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direction is shown In figure 11, Near the leading edge of the wing-
body juncture (n/s=0) the pressure coefficient is large. This is to
be expected, as will be pointed out. The pressure coefficients are
all zero at the forward Mach line for all stations except the wing—
body juncture, and the first cusp reduces in severity as the spanwise
distance increases. Although the double cusp near the midchord of
the inboard station reduces in severity as the spanwise distance
increases, it does not do sc as rapidly as the cusp behind the
leading—edge Mach line. The parts of the pressure distributions
between the leading edge and the leading—edge Mach line have been
included in the figure because these distributions are moved downstream
in determining the corresponding contributlions of the midchord—line
sinks and the trailing—edge sources on the wing.

Wing. Pressure Fleld Due to Approximate Cancellation
of the Finite Velocities Normal to the Body
Due to Leading—Edge Sources

The part of the interference pressure field due to approximate
cancellation of the finite velocities normal to the body has been
determined only for the leading—edge sources as before. TFirst, the
ratio of the average finite normal velocity to free—stream velocity
Vn/Vo for each control ares after cancellation of the infinite side-
wash was determined., The values of v/Vg
ITI, IV, and V and sinks IIT and VI (fig. 5) were calculated for
values of 8 qf 00, 100, 300, 600, and 900, and for distances £/d
of 0, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0, using equations (3) and (L).
The values of vn/Vo were then calculated from equation (6). The
values of vn/Vo were plotted against §/d for each value of 6
and averaged over the intervals 0 — 0.2, 0.2 — 0.4, etc. These
average quantities were then plotted againgt & and averaged over
the intervals 0 — 22.5°9, 22.5° — 67.5°9, and 67.5° — 90° for each
control ring glving Vh/vo for each control area. The values of
Vn/Vo for the control areas are given in table III.

The next step was to determine the slopes of the rectangular
wedges necessary to cancel the ratlio of average finite normal veloc—
1ty to free—stream veloclty ?h/vo for each control area. The slopes
(dz/dx)p-1, (dz/dx)p—1, and (dz/dx)c-1 for ring I were calculated from
equations (17), (18), and (19). The values of ¥y/Ve Tfor the control
areas of rings II to XVIII were adjusted using equation (20) and the
factors in table IT. Next, the values of (&z/dx)p_r1, (dz/dx)p 77,
and (dz/dx)o_II for ring II were determined, and the process was con—
tinued to ring XVIII, the last ring affecting the wing pressures.

The slopes of the rectangular wedges are given in table IV.

1
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The chordwise pressure distributions due to the approximate can—
cellation of the finite velocities normal to the body were finally
determined using equation (23). Some consideration was given to
choosing the chordwise positions at which the pressure coefficients
of the wing-body Juncture were to be calculated. Consider sides A
and E of the octagonal prism in figure 8. The rectangular wedges on
these sides will have leading-edge shock waves which Intersect the
wing surface. For a short distance hehind the shock waves a constant
pressure exists. Calculation shows that the constant pressure region
covers 6 percent of the chord at the wing-body juncture but only 0.5
percent at the 17/s=1.0 station because of the effect of the tip Mach
cones of the wedge. At the end of the constant pressure region the
chordwise pressure distribution has a vertical tangent, and the
pressvre coefficlent falls rapidly to a much lower value a short dis—
tance back. The points at whilch the pressure coefficients were cal-—
culated were chosen so that they did not coincide with the constant
pressure peaks at the wing—body Juncture. The distance between the -
points was taken equal to the width of the rings (0.lc or 0.2d4 for
the present example) to simplify the calculations.

The coefficients C;, Cz, and Cg used in.equation (23) in cal-
culating the contributions to the chordwise pressure distributions of
the first set of rectangular wedges are presented in table V. The
contributions of the second set of rectangular wedges to the wing
pressure coefficients were also calculated using equation (23) and
table V, taking account of the fact that the second set of wedges
start a distance 0.2d downstream of the first set. The factors for
the first set of wedges are C;=0.4462, C2=0.8613, and Cg=0.4168 at
the 0.582 chord position of the 0.05 q/s station; whereas the
factors for the second set of rectangular wedges are (;=0.6858,
C>=1.2024, and C(C3=0.5396 at this point. Thus, the contribution of
all rectangular wedges to the pressure coefficient at any point was
readily summed. '

The pressure distributions due to canceling spproximately the
finite velocities normal to the body due to the leading—edge sources
are shown in figure 12 for four of the seven spanwise statlons.
Since the outer stations are farthest from the wedges, the scatter
of the points decreases and the accuracy improves as the distance
from the body increases. Curves have been falred through the points
of the 18—ring solution. For purposes of comparison, the points of
the chordwise pressure distributlion using a 9—ring solution with the
width of the rings equal to 0.4d have also been plotted. These
points scatter about the curves for the 18-ring solution, but the
scatter is not much greater than that of the more accurate method.
Apparently, the degree of approximation does not change rapidly with
the number of rings chosen.
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Over—All Interference Pressure Distributions
Due to Leading-Edge Sources

The over—all Interference pressure distributions due to the
leading—edge sources are represented by the sums of the pressure dig—
tributions of figure 11 plus those of flgure 12, The over—all
pressure distributions for four spanwise stations are shown in figure
13, This figure brings out a number of significant facts. For points
very near the leading edge of the wing-body Juncture, the body is
effectively an infinite perpendicular reflection plane. Thus, the
interference pressure coefficient here is 0.52(t/c), Just as it is at
the root chord of the wing slone for elther of the leading—edge
gources. If the body were an infinite perpendicular reflection plane,
the Interference pressure coefficient for all points of the wing-body
Juncture would be 0.52(t/c). However, because the body is curved and
is not a perfect reflection plane, the pressure coefficient decreases
rapidly to a much lower value & short distance behind the leading edge
of the wing—body Juncture.

The over—all interference pressure distributions due to the
leading—edge sources show Increasing positive pressures over the rear
part of the wing on the inboard sections and over most of the wing on
the outboard sections because of the influence of the opposite half-
wing of the combination. The region of influence of one half-wing of
the wing—body configuration on the body snd the other half-wing can be
determined from the following consideraitions. Consilder the leading
edge of the wing—body Juncture of the left half—wing as a source of
pressure disturbances which radiate in all directions to the left
within the Mach cone from the source. A pressure disturbance will
start to travel in & vertical plane along the intersection of the Mach
cone with the body at 45° to the wing-body Juncture. After this dis—
turbance has traveled a short distance up the side of the body to a
new position P, 1t can be thought of as the source of a number of
secondary disturbances which radiate in all directions within the
Mach cone from point P to the left of the plane tangent to the body
at point P. The" secondary disturbance traveling along the inter—
section of the Mach cone from P with the body will travel 1In a
direction which is 459 to the element of the cylindrical body through
P. The forward boundary of the reglon of influence of the left half—
wing on the body thus intersects the elements of the cylinder at 45C,
and would be a straight 45° line if the cylindrical surface of the
body were unrolled.

From the knowledge of the position of the forward boundary of
the region of influence of the left half-wing on the body, the
forward boundary of the region of influence of the left half—wing ) o
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on the right half—wing may be determined. ZFrom the foregoing para—
graph, it is apparent that the effect of the disturbances starting

at the leading edge of the left wing—body Juncture must travel a
distance =(d/2) downstream before it can reach the right wing-body
Juncture. For the present example the effect reaches the right
wing-body juncture at about the T8—percent chord, and this position
corresponds to the starting point of the forward boundary of the
region of influence of the left half-wing on the right half-wing. It
might be surmised that this boundary is the Mach llne on the right
half—wing which starte at the T8-percent—chord position of the right
wing—body Juncture. However, this is not the case. Consider secondary
disturbances from points on the right—hand side of the body. It is
apparent that some of these secondary disturbances can reach the right
half—wing along straight paths from thelr respective sources. VWhen
account 1s taken of this effect, 1t can be shown that the forward
boundary of the region of influence of the left half-wing on the right
half—wing actually lies in front of the Mach line from the 78-percent—
chord position of the right wing-body Juncture. The coordinates of
the forward boundary are given by the equation

£ =

ol e

I:n + 2 ﬂ—ﬂdzz— cos—l< a :l (2k)

2n+d

The ¢ distance 1s measured positive downstreem from the leading
edge of the wing-body Juncture and 1 1s the lateral distance from
the wing—body Juncture. It 1s apparent that the forward boundary
asymptotically approaches a Mach line,

The forward boundary of the region of influence of the left
half-wing on the right half—wing, shown in figure 13, is in close
agreement with the start of a reglon of rising positive pressure
-except near the wing—-body Juncture. The reglon of rising positive
pressure 1s a consequence of the positive pressure field of the left
leading~edge source passing around the body. If the present analysis
had been rigorous to the first order, the region of positive rising
pressure would probably have started as a cusp at the forward boundary.
The slight discrepancy noted at the wing—body Juncture is due to the
approximations of the present method.

It 1s spparent from the foregolng discussion of the over—ell
interference pressure distributions due to the leading—edge sources
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that no cusps should arise in these pressure distributions in front . o
half—wing The cusps 1n front of this boundary, shown in figure 13, .
would have been identically canceled if a precise first—order method '

rather than an approximate first—order method had been used to obtain

the pressure distribution due to cancellation of the finite velocities _,_;"

normal to the body. For these reasons the cusps in question have
been falred as shown by the dashed lines in figure 13. The effect of
fairing the first cusps near the Mach line of the leading edge is
small, HoWéver, the fairing of the second and third cusps has an

as follows: The fairing started at the second cusp as a continuation
of the pressure distribution in front of this cusp and joined the
pressure distribution on the tangent direction behind the third cusp.
The effect of this fairing on the interference pressure drag is con—
sidered in the next section.

Interference Pressure Drag of Half-Wings

As previously pointed out, the interference pressure drag is
equal toc the drag of the wing in combinetion minus that of the wing
alone for the configurations considered in thls report. The wing
alone is taken to be the two half—wings Jjolned together. The pres—
sure drag of the wing alone 1ls considered before determining the
interference pressure drag. The spanwise dlstribution of pressure
drag for the wing alone is shown in figure 1k, This figure is based
on resulis of reference 9 and was obtained using the lline pressure—
source theory of R. T. Jones (reference 5). The pressure drag on the

glven half—wing due to its own pressure field accounts for most of ) _;,,m

the wing—selone drag. In fact, for a 1l0-percent~thick wing the
pressure drag coefficient is 0.0086, of which 0.0064 is due to the : -
pressure filelds of the half-wings acting on themselves, while 0.0022

is due to the pressure flelds of the half-wings acting on the opposite
half—wings. The effect of the wing tips on the spanwise distribution

of the pressure drag has not been Included in the figure, since, as

previously mentioned, the presence of the tip changes only the distri-

bution of the pressure drag within the Mach cones from the leading Co
edge of the tips and does not change the over—ell wing drag (refer—

ences 8 and 9).

The spanwise varlation of the pressure drag of the half-wing
asgoclated with the over—all interference pressure distribution can
easily be determined from the over—all interference pressure distri-
bution due to the leading—edge sources (fig. 13). Denoting the !
average values of P/(t/c) for any spanwise station over the
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chordwlise interval from —1.0c to —0.5¢ as n;, from —0.5¢ to O as

np, from O to 0.5¢ as na, and from 0.5¢ to 1.0c 88 n,, the section -
drag coefficient due to the over-all interference pressure distribu—
tion for the leading-edge sources 1s (ngna) (t/c)2. The'section

drag coefficient for the midchord-line sinks is —2(mgz—ns) (t/c)2 and
that for the trailing—edge sources is (ni—np) (t/c)2. Thus the
resultant section drag coefficient is

cg = (n1—3no+3ng-n,) <§>2 (25)

Equation (25) is valid only for the present wing, which has a symmet—
rical double—wedge section with the maximum thickness at the midchord.

With the aid of equation (25), the spanwise distribution of the
pressure drag has been determined from the over—sll interference
pressure distributions of figure 13, both for the faired and the
unfaired curves. (See fig. 15.) Smooth curves have been drawn
through the calculated points shown in figure 15 as squares for the
unfaired condition and as circles for the faired condition. The
spanwise distribution of the pressure drag for the two cases is con—
siderably different. The importance of the difference can perhaps
best be assessed by a comparison of the drag coefficients for the
wing in combination for the two conditions. The drag coefficient of
elther half-wing, neglecting interference effects, is represented by
the upper curve of figure lh, and, for a lO-percent—thick wing, this
drag coefficient is 0.006k. The drag coefficient of the wing alone
is obtained by adding the effect of the opposite half-wing and is
0.0086 for the same wing thickness. When the drag coefficients
represented by the two curves of figure 15 are added to 0.0064, the
resulting drag coefficient for the wing in combination, including
interference effects, is 0.0075 for the unfaired cese snd 0.0060 for
the faired case. Thus, the drag of the wing in combination is 87
percent of the drag of the wing alone for the over—all interference
pressure distributions with the cusps, and 70 percent without the
cusps. In elther case, the effect of interference is favorable. It
is probablg that the 30-percent reduction in drag coefficient repre—
sents a closer approximation to the first—order answer for the same
reasons that it 1s believed the faired over—all interference pressure
distributions represent a closer approximstion to the first—order
pressure distributions than do the unfeired ones. It should be
noted that the foregoing results apply only to the wing-body con—
figuration of the example for My=,/2, and 1t is conceivable that for
other configurations and Mach numbers the effect of interference msy
be considerably different.
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The results consildered s¢ far have been for distances of the
origins of the image sinke from thelr respective wing—body- jinctures
of 0.05d. The results obtained by the present method should not vary
much with smaill changes in the image—sink distances from this walue.
The results of calculations using a 9-ring scheme and image—sink
distances of 0.ld substantiate this statement. The gpanwise distri-—
bution of the pressure drag determined from these calculations, using
the faired curves, are shown In figure 15 as triangles, and the dis—
tribution is in good accord with that for the 18-ring scheme with
Image—sink distances of 0,054.

When the effect on the wing pressures of the pressure field of
the portion of the body in front of the region of influence of the
wing is neglected, the pressure drag of the wing-body configuration
is less than the sum of the pressure drags of the body alone and the
wing alone. For & position of the wing well back on the body, the
effect of the nose should be small; but for a position of the wing
near the nose, the effect of the nose on the wing may be greater than
the other interference effects. This appears to be a worthwhile point
to investigate, especlally since it 1s amenable to simple analysis.
Another effect which may modify the pressure drag of the wing-body
combination is the effect that the interference pressure field may
have on the boundary layer of the combinstion.

The analysis has been for Mo=+2. However, this does not
limit 1ts applicebility since any wing-body configuration at a Mach
number other than «2 hss an equivalent wing—body configuration at
Mo= #/2. To determine the interference pressures on a wing—body
combination at a Mach number other than /2 , multliply the longitudinal
dimensions of the wing-body configuration by the factor l/ 2-1 to
give an equivalent wing—body combination at Mg=./2. Solve for the
interference pressures of the equivalent wing-body combination by the
method of this report. Then the pressure coefficlent at a point on
the actual wing—body configurstlion at a Mach number other than
is equal to the pressure coefficlent at the corresponding point of
the equivalent wing—body configuration divided by .\/Moz:l.

Ames Aeronsutical ILaboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif.
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TABLE T

FACTOR k FOR DETERMINING THE AVERAGE NORMAL
VELOCITY INDUCED THROUGH THE CONTROL AREAS BY
THE RECTANGULAR WEDGE COINCIDING WITH SIDE A
OF THE OCTAGONAL PRISM AND QOF WHICH THE REGION
OF INFLUENCE ON THE BODY BEGINS AT ¢ = O

Strip
Ri
B D o B A "8
o] 0 0 0.069 }0.813 4 T
o] 0 o] 189 | .887 | 1T
0 0 L062 | .273 861 | I1TI
0 .030| .224| .255 | .851 | IV

.240 295 .218| .230 | .84 |V
2L .210¢{ .165] .,223| .80 | VI
.180 165 .153 ) .218 1 .835 | vIT
.160 JA52 | 146 | .21k | .833 | VIII
45 Ak o Like} 211 | .832 | IX
.139 .139f 139} .209| .832 | X
.136 L1350 .13741 .208 § .832 | XI
.13% 134 .135) .e07 | .832 | XII
.133 132} .13k} .206 | .834 | XIIT
131 .131f .133} .206 | .836 | XIV
.130 .130) .132| .206 | .838 | xv
.130 1301 .132| .206 1 .840 | XVI
.130 .130] .132| .206 | .8h1 | XVII
.130 1301 - .132} .206 | .8L42 | XVIII
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TABLE IT

FACTORS FOR ADJUSTING THE AVERAGE FINITE NORMAL VELOCITY AT VARTOUS
CONTROL AREAS DUE TO OCTAGONAL. PRISM OF RECTANGULAR WEDGES
WITH REGION OF INFLUENCE ON BODY BEGINNING AT & = O

Strip Strip
' Ri. R
c B A ne c B A ing
0 0.069 | k;=0.813 0.278 | 0.348 | o0.971
.138 .813 | ko= .138] T 696 | 1.249 696 | X
.813 .069 | kg=0 .971 .348 .278
0] .189 0.887 .27k .343 .968 .
.378 .887 .378| II .686 | 1.2u42 686 | X1
.887 .189 0 . 968 .343 .27h
.12k .273 .861 .270 .3k . 966
546 .985 .546| IIT 682 | 1.236 .682 | xII
.861 .273 .12k . 966 .3k .270
448 .285 .851 .268 .338 . 967
.570 | 1.299 5701 IV 676 | 1.235 676 | XTIT
.851 .285 .8 .967 .338 .268
436 .525 1.085 .266 .337 967
1.050 | 1.521 1.050} v L67h | 1,233 BT | XTIV
1.085 .525 .436 .967 .337 .266
.330 .433 1.082 .264 .336 .968
.866 | 1.h12 L8661 VI 672 | 1.232 672 | XV
1.082 .33 .330 : . 968 .336 264
.306 .383 1.015 .26L .336 .970
.T66 | 1.321 LT66) VII 672 | 1.234 672 | XVI
1.015 .383 . 306 .970 .336 .264
.292 .366 . 993 .26% .336 .971
.732 | 1.285 .732] VIIT 672 | 1.235 672 | XVII
. 993 .366 .292 .971 .336 264
.28 .355 L97T7 .264 .336 .972
.70 | 1.261 .70} IX 672 | 1.236 672 | XVIII
7T .355 .28L4 .972 .336 264
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RATIOS OF AVERAGE FINITE NORMAL VELOCITY TO FREE-STREAM YELOCITY
THROUGH CONTROL AREAS AFTER CANCELING INFINITE SIDE—
WASH OF LEADING-EDGE SOURCES FOR 1O0-FPERCENI-THICK WING

Vn

o}

Strip
Ring

c B A

0 0. 0.001 I

0 L0015 . | ~.0100 IT
.0010 . 0065 -, 0200 III
.0080 .00k40 —.0300 v
.0190 .0070 —.0350 v
.0210 .0120 —.0300 Vi
.0240 .0110 -.0350 ViI
.0275 .0130 —.0390 VIII
.0300 .0130 ~.03%90 X
.0315 L0140 —-.0410 X
.0325 L0140 —-. 0410 XI
.0340 .0140 —.0420 XIT
.0340 .0150 —. 0440 XIIT
.0350 .0150 —. 0450 XIV
.0360 .0150 —.0h60 xv
.0370 .0150 ~. 0460 VI
.0380 .0150 —~. 0460 XVII
.0390 .0150 —.0470 XVITI
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TABLE IV

SLOPE OF RECTANGULAR WEDGES CANCELING

AVERAGE FINITE NORMAL VELOCITIES

dz dz dz
—_ — —_ Ring
(dx ) c < dx >B < dx )A
—0.00002 0.00011 —0.00125 I
.00046 -.00290 L01h411 II
.00131 —.00917 .01336 III
—-.00705 -.00009 01479 v
-.01803 —.00312 .00783 v
—. 00499 —-.00453 —. 00601 VI
—.00311 .00295 .01513 VII
—.00392 —.00297 . 00666 VIIT
.00539 .O0kk2 .00063 IX
—.00619 —.00040 . 00641 X
—.00707 —.00585 —.00721 XT
.00292 .00090 .00127 XII
—~.00484 —.00212 .00418 XTIT
.00k75 .00269 .00344 XIv
.00293 00445 . 00484 XV
—-.00832 —.00457 —~. 00279 XVl
-.00025 —.00018 —. 00243 XVII
—. 00468 —.00176 —.01358 XVIIT
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TABLE V

FACTORS FOR DETERMINING THE WING FPRESSURE COEFFICIENTS DUE
TO THE FIRST SET OF RECTANGULAR WEDGES

n/s = 0 n/s = 0.05 n/8 = 0.125
Position | Factor |J| Position Factor Poeition Factor
C, =0 Ci1 = 0.7788 C, = 0.6026
0.01& Co =0 0.082¢ Co = 1.0536 0.026¢ Cz = 1,020k
Ca =0 ’ | ca=0 Cs = 0
1.0522 0.L4h76 0.3730
.118¢ 1.0000 .182¢ 1.4300 .126¢ 1.3408
. 0 0 0
5324 L3194 2764
.218¢c 1.5028 }I. .282¢ L7780 .226c 6612
0 1.0480 . 9821
.3628 .2496 ' .2212
.318¢c . 9024 .382¢ 1.7356 .326c 1.5696
1.0916 .8508 .7372
.2760 .6858 | .63L2
U418 ) 1.8796 . 482c 1.2024 .upbe 1.0996
. 9660 .5396 4896
CLT2Th 62 LA152
.518¢c 1.2912 .582¢ .8613 .526¢ .T980
.5832 . 4168 .38L40
LTl .35k9 .3322
.618c . Okl .682¢ .6990 .626¢ .6528
Ll436 L3443 H . 3204
.3730 . 3000 .28z
.T18c .T7368 .782¢ .5952 . T26¢ .5592
.3636 293 | .2768
.3138 2616 | 24Tk
.818¢ .6240 .882¢ 5212 .826¢ L4920
.3100 .259k L2hhh
.2730 .2331 .2210
.918¢ 5440 .982¢ . h6u8 . 926c L4hoh
L2712 .2316 I 2196
2422 - .2006
1.018¢ L4832 - - —— 1,026¢ . 1008
212 Jl .1996

~JAA
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TABLE V.— CONTINUED

n/s = 0.25 1/8 = 0.50 ﬂ n/s = 0.75 ]r 1/s = 1.00
Position Fector Position Factor Pogition Factor Poaltion Factor
0y = 0,4670 Cy = 0,3482 0y = 0.2900 €y = 0.2536
—0.065¢c Co = .946 | -0.248c Co = .8168 || —0.431c Cz = .7280 || —0.614e Cz = ,664Y
Ca=0 Cg = 0 Cg = O 0q =0
0.3036 0.2346 0.1981 0.1746
.035¢ . 9128 —.148c 6432 —.331c 5284 —.51ko 4584
.3431 LhoT76 .3902 .3663
,2320 L1840 L1571 .139%
.135c L5468 —.0L8¢ . 4280 ~.231c .3639 - lhe .3215
8916 . 7648 6796 6180
.1898 .1536 .132k 1182
.235¢ 1.3772 .052¢ 1.1456 -.131c .9678 —.31ke . 9027
620k L4928 216 .37he
5701 . 1850 4299 .3911
.335¢ .9750 .15¢¢ B1hy —.031c .7327 —.21hc 6135
.4300 .356L% .3108 2798
.3759 L3222 .2870 L2611
- 435¢ LTL7Th .252¢ .6100 .069c 5455 ~.11lkc 4893
3434 .2900 .2558 .2312
. 3026 .2616 ' .2340 2136
+535¢ .5923 .352¢ .5096 .16%¢ 4566 —.01k¢ L4133
2868 .2480 .pook .200L
.2588 .9956 . 2026 1854
.625¢ 5114 Ji52c 30 .26%¢ . 3997 .086¢c L3630k
2525 .21 1956 1782
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TABLE V.— CONCLUDED

1/8 = 0.25 n/s = 0.50 n/8 = 0.75 " /s = 1.00
Poeition Factor Position Factor Position Factor u» Position Factor
0.2280 0.2002 0.180k 0.1656
0.735¢ L4528 0.552¢ .3964 0.36% .3579 0.1860 .3268
2247 .1960 L1762 L1614
.20L9 : _ .1810 .1639 .1509
.835¢ 07T .652¢ .35%2 469 .3258 .286¢ .2988
L2027 ,178L L1612 .1k81
.1864 L1654 1505 | .1389
.935¢ .3715 .T52¢ 3296 .56% .2997 .386c .2759
1852 .16k0 L1487 .1371
.11k .1528 .13 .1201
1.035¢ 3T .852¢ .3052 .G6%¢ .2783 . 186c . 2568
705 .1520 .1384 .1278
.lhop .1304 L1210
- —_— .G52¢ .2836 . 769 .2602 .586¢ .2k09
L1416 .1294 : .1198
L1332 L1225 ,1138
——— - 1.0520 .2660 .8690 2Lk . 6860 .2268
.132L L1217 ) 1132
.1155 .1076
—— - - _—— . 96% .2308 .T86¢ L2146
L1150 L1071
L1054 L1021
- - _— - 1.06% .0185 .886c .2038
.1090 ,1016
0973
- SN - —_— —_—— - »986c L1940
.0968

N1 W
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Wedge extends from O fo O.577 on y/x axis

Figure [. - Downwash confours for line pressure source swept
back 60° M.=/2."
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Figure 2.- Sidewash contours for line pressure source swept
back 60° M.=Z. g -
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Section A-A

Mach line

Filgure 3. - Source - sink system forming an untapered
half - wing swep! back at 60° with a symmetrical
double - wedge section. M, = {2 .
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Source

————— Sink

— ———— Mach line

Figure 4.- [nferaction between pressure fields of two half - wings
separated by half a chord length. M,= V2 .
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Source
———- Sink

<>

Body sideline ——

I and IZ - Leading -edge sources .
IT and I - /mage sources
II and XTI - /mage sinks ~EE

Figure 5.- Source - sink system for reduction of
infinite sidewash velocities normal to body due
fo leading - edge sources.


http://www.abbottaerospace.com/technical-library

NACA RM ASE19

D
c p ¢
o B
A
7
z
I\ 8 .
T \ Leading -
7 eage
e source
/4
i
ar
X
X
X
XIT
Xr
Xz
\ 45° X
XVT
XVIr

25°
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2.5 Xiar \ Plane of the wing

Figure 6 - Control areas used in approximately canceling finite
velocities normal fo body.
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Source Zy
———— Sink

— 25, 7/_*_&

Figure 7. - Source - sink system forming rectangular wedge
of infinite chord.
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Contour of octagonal prism
Body contour
Plane of the wing R

Figure 8. - Cross - sectional view of regular octagonal prism
inside of circular body.
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Figure 9.~ Dimensions of wing - body configuration used

in illustrative example.
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Flgure (0.~ Pressure distribution at right wing- body juncture due fo
leading - edge source of left half - wing and due to reduction of
infinite sidewash velocities of leading - edge sources. %=\/2_ .
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Mach line of leading - edge source of left half - wing
(body removed)
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Figure //.- Spanwise variation of pressure distribufion due fo leading - edge source of left half - wing
and aue fo reduction of Infinife sidewash velochies of leading -edge sources.
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Figure 12 - Interference pressure disfributions due fo opproximate cancellation
of finite velocifies normal to body due fo leading - edge sources.
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Figure 12.- Concluded.
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& T T 1T T
y Effect of half -wing on 60°
4 itself neglecting tip
&2 \
\ \\
P 1
&4 \\ c ~ 7
(tre)f® 6 \ ' \ J_
04 \\ \ “+ 2 S -
« = I 1
RE ffect of opposite half - wing
0 ~—
- _2 N[\\
o J/ 2 3 4 5 6 7 8 9 [0 o

Lateral distance, fraction of semisparn, »/s

Figure |4.- Spanwise distribution of the pressure drag for either half - wing with half -
wings joined at roof. M, = /g—
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loV— & 9 rings, image sinks .10d from wing -

body juncture, cusps faired

(o) .6

\‘\{

0 AA E‘\ ' / /‘?

p - . - :

o 1 2 3 4 5 6 7 8 9 IO
Lateral distance, fraction of semispan, 5/s e

Figure 15.- Spanwise dislribution of the pressure drag associated with the

over - all interference pressure distribution.
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