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THE SUBSONIC AERODYNAMIC CHARACTERISTICS OF TWCO DOUBLE-WEDGE
ATRFO1L, SECTIONS SUITABLE FCR SUPERSONIC FLIGHT

By Joseph Solomon and Floyd W. Henney
SUMMARY

High-speed wind--tunnel tests have been made to investigate the asero-
dynemic characteristics &t subsonic speeds of two symmetrical double—
wadge airfoil sections of b~ and 6-percent—chord thickness suitable for
epplication to supersonic aircraft. Section coefficlents of 1ift, drag,
and quarter-chord pitching moment are presented for a moderate range of
angles of attack at Mach numbers up to approximately 0.93. Comparisons
are mede between the significant characteristics of the double—wedge
airfoils and those of the NACA 65-206 airfoll as en index of the merit
of the former at subsonic speeds.

The double-wedge airfoil exhibits nc characteristics other than
those common to the usual subsonic profile which would contribute to un—
steady or uncontrollable flight at subsonic speeds of aircraft employing
such & section for lifting surfaces. The lift--curve slope varies with
Mach number in a menner similar to that for NACA 65-series alrfoils of
small thickness. The maximum 1ift ccefficients at low Mach numbers for
the double—-wedge type of airfoil asre comparable to those of uncambered
6—percent—chord—~thick NACA airfoils. The drag characterietics of the
double-wedge airfoil, while defiritely inferior to those of more conven—

ional airfoils at all but the highest test speeds, are such as to per—
mit reasonsbly satisfactory airplane performsnce at subsonic speeds. In
sumnery, the test resulis indicute the definite prectilcability of the
flight at subsonic speeds of aircraft with wings composed of thin airfoil
gecticns of the doubie-~wsedge type.

INTRODUCTION

The present widespread ascceptance of the céncept of practical flight
at supersonic speeds has focused increasing attention upon the develop—
ment of airfoil shapes which will permit sustained flight of aircraft at
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these speeds. The shapes, and hence the aerodynamic characteristics, of
airfoils designed for use at supersonic spesds differ basically from
thoge employed at subsonic speeds. The supersonic airfoil, in practical
application, however, must traverse the subgonic speed range In acceler—
ating to supersonic¢ velocities. Any alrfoil sectlon suivable for super—
sonic application must in addition, therefore, permit sieady and con—
trollable flight at subsonic and trensonic speeds.

The present investigation was undertasken to provide information on
tke behavior at subsonic speeds of two double~-wedge airfoll sections
suitable for use at supersonic speeds. Those asrodynamic characteristica
which largely determine airplane performance, stability, and control were
evaluated for symmetrical double-wedge alrfoils having thickness—chord
ratios t/c of 0.04 and 0.06 and compared with corresponding character—
istics for the NACA 65-206 airfoil section. The latter was chosen as the
most satisfactory 6-psrcent—chord—thick subscnic alrfoil section for
which comparable date were avallable. This comparison, msde under vir—
tually identlcal test conditions of Reynolds number, tumnel-wall inter—
ference, and instrumentation, afforded a reliable means for evaluating
the relative merits at subsonic speeds of the double—wedge ailrfoll sec—
tion. ‘ . . M AR , .

Apparatus end Tests

The teste were performed in the Ames 1— by 3%-—foot high—-speed wind
tunnel, & low—turbulence, two—dimensional flow, cloged—~throat wind tun—
nel. Power is supplied by two 1000-horgepower motors in sufficisnt quan—
tity to achieve the choked-flow condition discussed in reference 1.

Two doubly symmetricel double-wedge airfoils having thicknesses of
L end 6 percent of the chord were constructed of steel for the tests. A
sketch of the double-wedge sections together with the NACA 65-206 profile
appears in figure 1. A photograph of an actual model is given in figure
2. The airfoilsg were of 6~-inch chord and wers mounted a&s shown in figure
3 80 as to span completely the 1l-foot width of the turnel test section.
Two-dimensional~flow conditions were achieved through the prevention of
end leakage about the alrfoil by means of rubber gaskets compressed be—
tween the model ends and the tunnel side walls.

Measgurements of 1lift, drag, and quarter—chord pitching moment were
mede similtaneocusly for angles of attack from 0° to 10° at Mach numbers
from 0.30 to approximately 0.93, the tummel choking speed for the models
tested. The Reynolds numbers corresponding to these Mach numbers ranged
from epproximately 1 X 108 to nearly 2 x 10°.

Airfoil 1ift end pitching moment were determined from measurements
of the reactions on the tumnel walls of the forces on the mirfoll. Very
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satisfactory agreement has been demcnstrated in previous tests between
1ift and moment characteristics determined by thie method and the corre—
sronding characteristice integrated from sim:ltaneously observed pressure
distributions. Drag was determined from wake-survey meagurements made
with a movable raks of total head tubes.

TEST RESULTS

Section 1ift, drag, and quarter-—chord pitching-moment coefficients
for the b— and 6-percent—chord double-wedge airfoils are presented in
figures 4 to 6 and T to 9, respectively, as functions of Mach number for
constant angles of attack. Corresponding cheracteristics for the NACA
65-206 airfoil section are given in figures 10 to 12. Crose plots at
constant Mech number showing the variation of section lift coefficient
with angle of attack, and of gectlon drag and pitching-moment coeffi—
cients with section 1lift coefficient for all three airfolls appear in
figures 13 to 21. The apparent failure in the cases of the doubls—wedge
airfoils to realize zero 1ift and zero pitching momesnt at zero incidence
throughout the entirs Mach numbe¥r range is atiributed to two factors.
First, the airfoils were not exectly symmetrical sabout both the chord
line and the midchord axis. Second, the method of 1ift and pitching—
moment measwrement involvee the application of substential tare correc—
tions to the measured data. Hence at very low angles of attack, where
the indicated forces on the airfolls are of the same order of magnitude
as the tare corrections, small errors may be introduced in reducing the
meagured data to the actual sirfoil characteristics. All data have been
corrected for tunnel-wall interference by the methods of reference 1.
The broken lines noted in the curves of figures 4 to 21 are used to indi-
cate that data obtained in the vicinity of the wind~tunnel choking veloc—
ity are not considered reliable.

A meassure of the relative merit of the double—wedge sirfoil at high
subsonic epeeds is given in figures 22 and 23 which depict the variation
of the respective 1lift— and drag-divergence Mach numbers with section
1ift coefficlent. For ccmparative purposes the divergence velocities for
the NACA 65206 airfoil are also ghown in Figures 22 and 23. The Mach
number of 1ift divergence is defined as the value of the Mach number cor—
responding to the Inflection point immediately preceding the major peak
on the curve of 1lift coefficlent sgainst Mach number. The drag—divergence
velccity is the Mach number at which the final rapid rise in drag coeffi-
clent beging.
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DISCUSSION

Lift Cheracteristics

The variation of section 1ift coefficient with Mach number, shovn in
figores 4 end 7 for the double wedge airfolls, asppears to be very eimilar
to that for more comvantiomal airfoil secticns ag exemplified by the
NACA 65-206 profile in figure 10. Lift for the double-wedge airfoils is
in fact meintained to Mach numbers as high as those for the NACA 65-206
airfoil albelt the lift-divergehce Mach numbers, as defined herein and
presented in figure 22 for the airfoils under ccnsideration, weuld not
appear to fully support this contention.

Lift divergence, as might be expected, ls postpconed to momewhat
higher Mach numbers for the 4-percent—chord thick airfoil than for the 6—
vercent—chord thick section.

A particulerly significant characteristlc of airfoil sections is the
slope of the 1ift curve because it ie one of the principal factors affect—
ing airplene stabillity and control. In figure 24 the variation in lift—
curve plope with Mach number for the double-wedge airfoils is seen to be
similer to that for the NACA 65-206 airfoil. The low-speed value of 1ift—
curve slope corresponds to the usual value of apprcximately 0.1 (per
degree) for airfoils. At high Mach numbers the effect of thickness on the
slope appears to be the same for the double-wedge airfoils as that which
has been noted elsewhere for other type airfolls. Changes in stability
at transonic speeds, ss influenced by variatioms in lift—curve slope,
would seem, then, toc be no more severe for ailrcraft employing double—wedge
airfoll sections as lifting surfaces than for those employing more ccnven—
tional gections.

The meximum 1ift characteristics of the symmetrical double—wedge air-
foils are seen from figure 25 to be inferilor to those of the NACA 65206
goction. This cobeservation is not as significant as would first appear in
view of the evidence presented in reference 2 demonatrating that, for
Reynolds rumbers from 3 X 108 to 9 x 10°, the maximum 1ift coaffi—
cients of all NACA 6-percent—chord-thick symmetrical eirfoil eections have
values in the neighborhood of 0.83. The addition of camber appears, from
this reference, to resuli In an increase in the meximum 1ift coefficlent
by an amount approximately egqual to the design 1ift coefficient. The low—
speed (0.3 Mach number) value of maximum 1ift coefficient of approximately
0.82 for the 6-percent—chord~thick double-wedge airfoil would appear to
indicate that the thin double—wedge airfoils are as satisfactory es other
types of alrfoils of ccmparable thickness as far es meximom 1ift is com—
cerned.

innap—
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Drag Charaecteristics

The varistion in section drag coefficient with Mach number shown in
figures 5 and 8 for the double—wedge airfoils is similar to that for
subgonic airfoil sections (cf. fig. 11 for the NACA 65-206 airfoil).
Although for a given 1lift coefficient the drag coefficiente for the
double~wedge sections are considerably in excess of those for the NACA
65-series airfoils over most of the speed range investigated, the drag .
curves for the former rise less steeply with Mach number beyond the dreg—
divergence velocity. This characteristic is more clearly illustrated in
figure 26 which depicts the veriation in section drag coefficient with
Mach number at a lift coefficlent of 0.1 for both the double—wedge air—
foils and the NACA 65-206 airfoil. From this figure a reduction in thick—
nesg of the double-wedge profile 1s seen to result in a more gradual drag
increase with Mach number above the drag—divergence velocity.

In figure 23 it may be seen that the Mach numbers of drag divergence
for the double-wedge alrfoil are very much lower than those for the
NACA 65-series airfoll of comparable thickness, probably because of the
abrupt change in contour at the midchord position of the former.

Pitching-Moment Characteristics

Figures 6 and 9 indicate little variation in pitching-moment coeffi—
cient with Mach nunber at small angles of attack for the double—wedge
airfoils. This characteristic is more strikingly demonstrated in figure
27 where the variation in pitching-moment coefficient with Mach number is
shown for both the double wedges and the NACA 65-206 airfoil at a 1ift
coefficient of 0.1. From this figure it may be noted that the variation
is much less for the double~wedge airfoils than for the NACA 65-206 air—
foil. This difference in variation can probably be attributed to the
amount of camber rather than to the particular airfoil shape.

The variastion in pitching-moment coefficlent with 1ift cocefficient,
which appears in figures 15 and 18, respectively, for the 4— and 6~per—
cent double wedges at various Mach mumbers, is such as to exert a mildly
stabllizing effect upcn an airplane. At very high Mach numbers this
stabilizing influence bacomes increasingly severs.

CONCLUSIONS

From the results of tests at subgonic gpeeds of two double—wedge
airfoil sections sultable for uge at supersonic speeds the follcwing
significant conclusionas are drawn:
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1, The double-wedge aiffoil of small thickness exhibits no charac-
teristicse peculiar to its type which would prohibit its use as a lifting
-surface on alrcraft operating 1n the subsonic speed rangs.

2. The slopes of the 1lift curves for the double-wedge alrfoils &t
low speeds correspond to the usuwal value of approximately O.1 (per degree)
for airfoll sections.

3. The low-spesd maximum 1ift coefficlents of the double-wedge air-
foils investlgated are sensibly the same as those of uncambered NACA
alrfoils of comparable thickness.

4. The drag characteristics of the double-wedge alrfolls are lnfe-
rior except at very high Mach numbers to those of the NACA 65-206 airfoll,
a repregentative thin subeonic profile. At speeds somewhat above those
corresponding to drag divergence, the drag rises less steeply with Mach
number for the former.

5. At low 1ift coefficlents the variation in pltching-moment coef-
ficlent with Mach number for the double-wedge alrfolls 1s regular and
small.

Ames Aeronsutlcal Laboratory,
National Advisory Commlttee for Asronautics,
Moffett Fleld, Calif.
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.~ Model of the symmetrical 4-percent-chord-thick
double-wedge airfoil.

Figure 2
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