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LINE-VORTEX THEORY FOR CALCULATION OF SUPERSONIC DOWNWASH

By Harorp MirerLs and Ruporrr C. HAEFELI

SUMDMARY

The perturbation field induced by a line vorter in a super-
sonic stream and the downwash behind a supersonic lifting
surface are examined to establish approximate methods for de-
termining the downwash behind supersonic wings.

Lifting-line methods are presented for caleulating supersonic
downwash. A bent lifting-line method is proposed for com~
puting the downwash field behind swept wings. When applied
to triangular wings with subsonic leading edges, this method
gives results that, in general, are in good agreement with the
exact linearized solution. An wunbent lifting-line method
(horseshoe-vortex system) is proposed for unswept wings. This
method 18 applied to determine the downwash behind rectangular
wings with aspect ralios of 2 and 4. Excellent agreement with
exact linearized theory is obiained for both aspect ratios by plac-
ing the lifting line at the ¥-chord point. The use of lifting
lines therefore appears promising for obiaining estimates of
the downwash behind supersonic wings.

INTRODUCTION

Several methods, based on linearized theory, have been
presented for obtaining the downwash behind supersonic
wings. These methods utilize conical superposition (refer-
ence 1), doublet distributions (references 2 and 3), or vortex
distributions (references 4 and 5). Each of these methods
has certain disadvantages. Conical superposition is re-
stricted to wings having plan forms composed of straight-line
segments and is cumbersome for other than trapezoidal or
triangular plan forms. The doublet and vortex distributions
apply to arbitrary plan forms, but provide integral expres-
sions for downwash that are generally very tedious to eval-
uate. The complexity of these expressions indicates that
there is 2 need for a straight-forward proeedure for obtaining
reasonably accurate, if not exact, downwash solutions.

A logical approach to the development of a simplified
supersonic downwash theory is to derive the supersonic
analogs of the line-vortex procedures that have proved
valuable in subsonic theory. Certain differences exist, how-
ever, between the properties of vortices in a supersonic
stream and vortices in & subsonic stream. Similarly, the
downwash fields behind subsonic and supersonic wings differ
in certain respects. These differences must be investigated
before an extension of subsonic techniques is possible.-

The present report, prepared at the NACA Lewis labora-
tory during the fall of 1948, has three main objectives:
(1) The downwash field induced by a supersonic line vortex
of constant slope is derived and discussed; (2) the down-
wash behind a supersonic lifting surface is examined and
related to the downwash field induced by line vortices; and
(3) lifting-line methods for computing downwash are pre-
sented and caleulations based on these methods are compared
with the exact linearized solutions. Zero-thickness wings
(lifting surfaces) are considered throughout.

THEORY
GENERAL VORTEX-FIELD RELATIONS

The equations relating velocity and vorticity distributions
in a slightly perturbed supersonic stream are derived in
references 4 and 5. These relations are summarized in the
following section. The velocity field is assumed to consist
of & major supersonic free-stream velocity U (taken in the
positive z-direction} plus small perturbation velocities %, », .
and w such that the linearized equations of motion are
applicable.

Three-dimensional vertex field. —The veloc1ty field in
vector form is

g=U +w)itvjt+wk - (1) -

(All symbols used in this report are defined in appendix A
The vortex vector field w is defined as the curl of the veloc1ty

vector. Thus _ _

o=VX¢q

=titnj+ek (2
where .

-3

T \dy o=z

_ %;‘E)

"=\2z oz

¢= <bx dy.

Vortex lines are lines that are tangent at all points to the
local vortex vector and are determined from the equation

dz_dy_dz
£E 7
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The following integral expressions for the perturbation
velocities induced by the three-dimensional vortex feld
are presented in reference 4:

U=—5- fv%%@ dzody,dz, (4a)

g (Xai’ Z

P === OE) _dxo dyo dzo (4b)

27| Jv

T or

where )
Xo=2—1,

:Yozy_ Yo

L= —2y . e St e

=X B Y —PZ,2

The subscript o indicates a variable of integration. The
integration is conducted over the volume V included in the
forward Mach cone from the point z,y,2; that is,

Xo?.ﬁ'\/yaz'!"zax .

The symbol | designates the finite part of a diver-
gent integral. (See reference 4, 6, or 7.) The procedure for
obtaining the finite part is systemat.lzed in reference 7 as
follows:

The.integrals in equations (4a) to (40) are of the form

%2 Azo)

2 (Be— 20"

I= dz, (5)

The upper limit in equation (5) corrésponds to limits on the
Mach cone in equations (42) to (4c). The finite part of this
integral is

. *Zg 1 o -
[T: E (xj—(za))_aﬁ 42, ©)
=—J@)—C
where _
C=lim| 24%_ s, a)] @)
Toty | VX— X,

The term J(x,) is the indefinite integral of equation (5) and
J(z;) is the indefinite integral evaluated at the lower limit.
The justification for this procedure is presented in. referenees
4, 6, and 7. Finite parts are treated in a manner similar to
that for ordinary integrals. The rules of addition, differ-
entiation. under the integral sign, transformation of vari-
ables, and integration by parts apply.

Vortex sheet.—If vorticity exists as a surface of velocity
discontinuity in the z,=0 plane, outside this plane £, 7,

2 [ (VY E—X, o .
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and ¢ are all zero, but in the z,=0 plane {=0, whereas
£ and 4 are infinite. The limits

E’= lim E dza -

d?.o—’o

dl‘o—-'o

are finite, however, and are given by (reference 5)
¢ =vp—vr
8
7' =Ur—us '
The perturbation velocities induced by the vortex sheet are
obtained by substituting equation (8) in equations (4a) to

(4c). In particular, the vertical-perturbation-velocity field
(upwash) is given by

—_— e ’
v Tz, 4y, )

The area of integration § includes all the vorticity in the
forward Mach cone from i&,y,2.

Line vortex.—The vortex lines through all points on an
infinitely small closed curve bound a vortex “tube.”” The
circulation

K=o

(where w=(£+72+%¥? is the resultant vorticity and ¢ is
the infinitesimal cross-sectional area of the tube) is consiant
at all points along the tube. The vortex-veetor components
at any point, in terms of the differential distance dl, along the
vortex tube, are

_ dzo
E_wd_lo
—. 9Ye _
=,
dz,
§=”d_L,

The elemental volume is dx, dy, dzo=0¢ dl,. A line vortex is
generated by allowing the cross section of the vortex tube to
approach zero while maintaining we constant. The upwash
induced by such a line vortex is found by substituting the
preceding expressions into equation (4¢), which yields

52
o

(10

wm | [ e Xody)
. 78

where the integration is conducted along the portion of the
line vortex within the forecone from x,y,z. A line vortex
cannot terminate within a fluid flow field but must either
form a closed curve or extend to infinity or to a boundary of
the field.
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UPWASH INDUCED BY LINE VORTICES

Complicated velocity fields can be generated by the linear
superposition of relatively simple fields. It will therefore
prove useful for subsequent developments to determine the
upwash field induced by line vortices of constant slope.

Line vortex of constant slope and sirength.—The upwash
at z,y,2 due to a line vortex of constant slope m and strength «,
intersecting the forward Mach cone at x,y, (fig. 1) is
(from equation (10})

£%

m¥y—mz) dy,

w=—21r

fn
o

The integration is performed in appendix B and yields

K (y— maz)(B2my—1x)
2x = PP — B2y — maVt (1~ Bz

The finite part of the integral in equation (11) is obtained
by substituting the lower limit into the indefinite integral
(appendix B). No contribution appears from the upper
limit. By a translation of coordinates, the upwash due
to a line vortex from =,y that intersects the forward Mach
cone at z,,%, (fig. 2(a)) is found to be

& _(Fi—mX)(g*mF—X)
2x 1 [(Y,—mX )2+ (1 —82mP 2%

W=

7 (12)

(13)

where
Xiy=r—n,

I’x=y—y1

r= _\[‘Xlz_ﬁzy'lz__ﬁzzz

By superposition (fig. 2)*of & positive line vortex « from
#,5h end & negative vortex —«k from y,y,, the upwash due
to a line-vortex segment not intersecting the forward Mach
cone is

W= [Go(m)— Gy (m)] (14)
where the notation
R (Yi—m X )(B2m Y, —Xy)
Gl = I —m X r(—FmdZg 9
173
. ' (00

i-Line vortex,
Yo SMT o

"---Forecone froce in
z, = 0 plane,

z-20 = BYY-Yo)*-2°

(‘r’ y. Z)
FicuRE 1.—Geometric relations for determination of upwash induced by e vortex.

(1 —B*m?)y.*+ 2mB2my— z)yo+ m¥(z*— B2y’ — B2

is used. The subscript for G indicates the appropriate
subscripts for X, Y, Z, r, and m.
Equation (14) applies for any line vortex of constant
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an

strength and slope. The circulation « is positive when the
vortex vector is in the direction of integration. When

the line vortex intersects the forecome, the corresponding
limit (infinite G:(m) term) is neglected by application of the
finite-part concept.

(zi:yl)

Line vortex of
sfrength x

wy =-‘g"?01(m)

Line of vortex
gfrength -1
K

Wy 57 Ga (m)

(=.y,x)

oy \
(w2, ye)

2

Line vortex of
strength Kk

w=w,_-'t-w3_

=2 (Ga (m)-6(m]]

(=Y, %)

(a) Line vortex from (zy,¥1).
(b) Line vortex from (zs,y1}.
(¢} Line vortex from (ry,4n) to (z1,¥9).

FicUure 2.—Superposition for obtaining upwash induced by
line-vortex segment from (oy,¥1) to (Tays).
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Line vortex of constant slope but varying strength.—Line
vortices may coincide to form a resultant line vortex, the cir-
culation of which is the sum of the strengths of the superposed
components. The general line vortex is then one of variable
strength « along the line 2,=x,(y,) having the local slope
me=dy,/d2,.
21,1 to X2,y may be written

16

32

27

w= dya

f 72 k(Y o—moX,)

V1 Ml

The evaluation of equation (16) is generally tedious. For
the particular case of constant slope, however, this equation
may be integrated by parts to yield a useful expression for
upwash. Inasmuch as

BAY o — m.X ) _4dlG,(m)]
mer  dy,

the integration by parts gives
_L . ﬂz_ vz ﬂ )
w=o-({ wl@tml}, [ Gum) £5 dy) @)

The term «[G,(m)] is disregarded at a limit corresponding
to a point on the forward Mach cone.

Equation (17) is a generalization of equation (14) to ac-
count for variations in strength along a line vortex of constant
slope. Both equations are of fundamental importance be-
cause appropriate distributions of such line vortices will be
used to simulate asupersonic lifting surface.

Characteristics of upwash field due to supersonic line
vortex.— - - : - T

1. Infinite line vortices of constant strength and slope.
An infinite line vortex inclined supersonically (|8m|>1) to
the free stream is shown in figure 3(a). Because both limits
in equation (14) are neglected, the upwash induced by this
line vortex is zero. This result agrees with the indications
of oblique-airfoil theory because the perturbation velocities
are zero downstream of the envelope of the Mach cones from
the trailing edge of a two-dimensional airfoil inclined super-
sonically to the free stream.

The infinite line vortex along the line (y,—y))=m(z,—z,)
(fig. 3(b)), inclined subsonically ([8m|<1), has one limit that
intersects the forward Mach cone, whereas the other extends
to infinity. The upwash for 0<8m<1 is

e s OB
2w (Yl— le)z'i‘(l—Bzm"’)z?

w=—2i im G, (m)=
To—r—o0
Yo—r—w

where z;,7; is & point on the line vortex. The upwash is
infinite along the line vortex. For m=0, equation (18)
becomes T

K Y1

SV T (9)

Ww=

which is identical with the expression for upwash due to an

The upwash induced by the segment from-
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infinite vortex parallel to the stream (along the line y=y,) in
an incompressible field.

-These results indicate that the behavior of the infinite
supersonic line vortex for |fm|>1 is completely different
from that of the incompressible-flow vortex. When |gm|<1,
however, both vortices have similar upwash properties in the
vicinity of the vortex line and are, in fact, identical for
m=0. _° . .

2. Bent line vorfices. The upwash duc to a bent line
vortex (fig. 3(c)) of constant strength is

=5 [Gi(m7)—Gy(m*)] (20)
where m;~ and m;* designate the slopes of the line vortex
before and after the bend at x,,5. The term », appears as
a factor in the denominator of equation (20) so that the
upwash exists only in the aftercone from x,, and is infinite
on the cone surface (except in the z=0 plane). This infinite
value of upwash is not to be confused with the infinity intro-
duced at the intersection of the line vortex with the forward
Mach cone, which is eliminated by application of the finite-
part concept.

ryl yo R

X, Xo
fc) ~,y,z)
(8) Infinite line vortex inclined supersonically to fres stream,

(b) Infinite line vortex inclined subsonieally to free stream.
(¢) Bent line vortex.

Fi6UuRE 3.—Typlcal lino vortices. Tt
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LINEARIZED SUPERSONIC-WING-THEORY RELATIONS

The perturbation velocities on supersonic lifting surfaces
(zero-thickness' wings). have been evaluated for a large
variety of plan forms. (See, for example, references 7 to 9.)
Those results will now be utilized to determine the vortex
field generated by a lifting surface.

Velocity potential.—If the boundary conditions for a lifting
surface are specified in the z=0 plane, the « and » velocities
are antisymmetric and the w velocities are symmetric about

this plane. Thus the velocities on the top and bottom sur-
faces of the z=0 plane are related by
Up=—1Up
br=—1up 21
Wr=1Wp

The discontinuities in % and v constitute a vortex sheet.
Because the flow is everywhere irrotational, except across
this sheet, a perturbation-velocity potential ¢ can be so de-
fined that

d6=22 iz +a¢d +22 4,
(22)
=udztvdytwdz

The undisturbed flow field ahead of the wing is considered
to be of zero potential. The boundary conditions require
that ur,=up=0 off the wing (antisymmetry of # and zero
lift off the wing). The potential in the 2=0 plane may then
be obtained by integrating along lines of constant ¥

F 1
= | urdzr
r

¢3=J:: Ug dx

(23)

where z; is the equation of the leading edge as a function of .
From equation (23) it may be concluded that

1. Everywhere in the z=0 plane except behind the swing
leading edge ¢pr=¢s=0.

2. At a given span station, ¢r and ¢z remain constant for
all values of z downstream of the trailing edge. '

Lines of constant potential for rectangular and triangular
wings are shown in figure 4.

Vortex lines.—The equation for the vortex lines (from
equation (3)) is

' dx—¢ dy=0 (24)

When the following expressions {from equations (8), (21),
and (22)) are substituted

e (g p e g 005 0%
E _—(LT vB)_‘ ay—‘ ay
g9 09T 5 095
7 =ur—up=2 dr 2 oz

956646—51 42
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$r-=¢s " " pr=—ps=0
- "‘.\ e—(ines of
, . constont
1 or =—@s= [~ potentral
“! constant ' ™
(2]
¢r="¢n "_b"
Lines of constant
paotentiaf

(b)

(a) Rectangular wing.
(b} Triangular wing.

FiGrre 4—Lines of constant potential for rectangular and triangular wings.
the equation for the vortex lines becomes

Comparison with equation (22) shows that equation (25) "
represents lines of constant potential. Thus the vortex
lines coincide with the lines of constant potential in the z=
plane.

Circulation.—The circulation included between two points
21,y and z.,72 on a wing is given by

x=9€u detvdytwdsz (26)

The path of integration is arbitrary except that the path

should cross the z=0 plane only at the two specified points. -

If the integral is taken along the top and bottom surfaces

of the z=0 plane,
= i (wrdxtordy)+ rh“ (ug dz+rvp dy)
JT1.¥1 o Za.¥2
=(br,2— 7,0+ (Ps,1— b5 2) =Adr—Ad @27

where A¢ equals ¢r—¢p and represents the jump in potential
at the point. The quantity A¢ is, in fact, the doublet
strength (reference 2), so that the net circulation between
two points equals the difference in the doublet strength
between those points. The equivalence of a doublet dis-.
tribution and a vortex distribution indicates thaet the flow
about a lifting surface can be calculated on either basis.
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Circulation and lift.—The lift per unit span is given by the
chordwise integration

La)=3 00" [/ o= da (28)

After substitution of the linearized values for pressure co-
efficient

O o2 . 207 ]
LEA U 2z
21[3 2 bqﬁa

and infegration, equation (28) becomes, because A¢,=0,
Lp=pUb¢, (29

The factor A¢, is the circulation included between the Jeading
and trailing edges at the spanwise station under consideration.

When this circulation is designated T, equation (29) becomes

Liy=pUr .. =~ .~ 30y

which is the familiar incompressible-flow relation. Also

dr_d(¢r—¢g):

=(0r—vg):
=~ (¢ (31

Equation (31) relates the shed vorticity to the rate of change
of spanwise loading. o

APPLICATIONS TO CALCULATIONS OF SUPERSONIC. =
DOWNWASH

The vertical pertubation velocities due to a2 supersonic line
vortex of constant slope have been presented in a form that
permits analytical or mechanical evaluation (equations (14)
and (17)). The vortex distribution associated with s
lifting surface has also been discussed. These relations will
be used to develop exact and approximate methods for calcu-
lating downwash behind lifting surfaces at supersonic speeds.

DOWNWASH AN INFINITE DISTANCE BEHIND WING

The vertical-perturbation-velocity field behind a super-
sonic lifting surface (from equation (9)) is

2 Y,E —X,n' ) YA
w=—"E (Yot 5 ")dx,,dy,——zé—fs

dyo (32)

2 T S,, 7o

where the integration over the plan form is designated by
S, and over the wake by S,. As z becomes infinite, X,
also becomes infinite in the integral for the bound (plan-
form) vortices. This integral then becomes zero because
X, is of higher order in the denominator than in the numer-
ator. Thus, only the integration over the trailing vortex
sheet contributes to the vertical perturbation velocities at
infinity. The trailing vortex sheet may be considered to

REPORT 983—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS . . -

consist of elemental vortices of infinite length along
y=constant lines, each having the strength

dx= g dy,= —g?% dy,.. The vertical perturbation velocity at

®,y,2 due to the elemental vortex along y=y, is, from cqua-

tion (19),
(“ ) v,
2« Tiyzr

so that the vertical-perturbation-velocity field at infinity is
given by
b
1 E '}?’0 dr

w:m' 27r _g T’02+zz a“;j; dya

(33)

where b/2 is the semispan. The velocity ficld obtained from
equation, (83) is identical to that induced by a subsonic wing
with the given span loading. The velocily field at infinity
is thus independent of Mach number (excluding the influence
of Mach number on dT'/dy,). This result has been derived in
references 1 and 2 by other methods. The evaluation of
equation (33) is relatively simple and may be used to approxi-
mate the downiash several chords behind a supersonie wing.

REGIONS OF INFINITE DOWN WASH

Approximate solutions may modify or introduce singu-
larities in the downwash field. It is therefore of interest to
establish the regions for which linearized theory indicatles an
infinite downwash.

Infinite downwash in 2z=0 plane.~- The vertical perturba-
tion velocities in the 2=0 plane that exist an infinite distance
behind a wing having a disconlinuity in dT'/dy, will first be
considered.
equation

_ T arydy,
W= 21r l; Y, dy. (34)

The Cauchy principal value is required for points on the
vortex sheet. For the particular case of triangular loading
(fig. 5(a)),

dar _20m

dy,, b

in the integration i_nterval—% <y.<0and

dr 2T,

dye « b

in the interval 0<y,< g (T's is the circulation at the midspan).

When these values for d'/dy, are substituted in equation (34),
the integral yields- '

Th 1yl
w=_% log, yz__b_’_ (35)

These velocities are determined from the
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()

(a} Triangular load distribution.
(b} Eliptie load distribution.

FiGURE 5 —Upwash In z=0 plane an infinite distance behind
wings of triangular and elliptie Joading. -

Infinite upwash exists along the lines y=+b/2; whereas
infinite downwash exists along the line y=0. These infinite
values are due to the discontinuities in the spanwise vorticity
distribution and apply for all points on these lines down-
stream of the wing trailing edge.

In general, if (dT/dy,)~ and.(dT/dy,)* represent a dis-
continuity in the rate of change of spanwise loading at
station y=1;, infinite vertical perturbation velocities will
exist along y=iy downstream of the ftrailing edge. For
(AT /dy,)~<(dT/dy,)* infinite upwash will exist, and for
(dr/dy,)~>(dT'/dy,)* infinite downwash will exist along this
line. Such discontinuities in dT/dy, originate both at &
wing tip and at those points along a supersonic trailing
edge where the plan-form slope is discontinuous and the
local-wing-pressure coefficient is not equal to zero. This
discontinuity in vorticity may be verified by the methods
employed in reference 1 for finding the upwash and the side-
wash directly behind a supersonic trailing edge.

The discontinuity in shed vorticity at the tips of an ellip-
tically lIoaded wing is a special case of the previously stated
rule governing infinite vertical perturbation velocities in
the z=0 plane. For wing loading given by

=T _\/1___
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the shed vortieity is

4,
_d_r= _‘Frmyo
d¥o 4
Vimgye
and the vertical-perturbation-velocity field at infinity, in
the 2=0 plane, is
b
g
T —_—
o 1_'_2'?!0
Integration yields
o ln
b
for
b
[-y[<§
and |
__Ta ty
Y\ 4
for
b
[2![2§

As indicated in figure 5(b), the vertical perturbation ve-

locity is discontinuous at y=+b5/2, but is bounded for all
points on the vortex sheet. .
Infinite downwash on Mach cone from wing tip.—Refer-

ence 3 indicates infinite vertical perturbstion velocities on _

the downstream Mach cones from the tips of a triangular
wing. This result will now be extended to apply to any
wing tip formed by the intersection of a subsonic leading
edge and a supersonic trailing edge, provided that the slope
of the subsonic edge is not zero at the tip (fig. 6).

The contribution to the vertical-perturbation-velocity

field due to the bending of an elemental vortex at the trailing

edge (fig. 8) is, from equation (20),

dr
ay. 2
dw=—"—— [ (m")— G, (0] (36)
where
G O="2 s

7y (Yaz‘l‘zaz)

The vertical perturbation velocity at a point on the Mach '

cone from this tip, due to the bending of the vortlces is
found by integrating (along the trailing edge)}

- f, ' [64m)—~ 6, O] EE dy 37
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dar
dk=-“m dy,

FIGURE 6.—Wing tip formed by intersection of subsonic ieading
and supersonio trailing plan-form edges.

Equation (37) in the expanded form becomes

'w=-—i 0 [YG_(mQ._) Xﬂ] [ﬁ_i(ma—) Ya—X;o] + .
27 Jve [ Yo—(m,™) X 2H[1—62 (m, )2t T
XY, } 1 dr '

TEF 7l dy, @9

The limits of integration are roots of 7, 80 that the factor 1/r,
is singular of order ¥ at the limits and the integral is
improper (assuming (Mo7)y,=07%0). The convergence of
the integral depends on the nature of dT'/dy, at the limits.

Appendix C shows, however, that dT'/dy, is also singular of

order ) at the tip. The combined singularity causes
equation (38) to diverge at the upper limit and results in
logarithmically infinite vertical perturbation velocities on
the Mach cone from the tip. The divergence is a conse-
quence of both the singularity in dT'/dy, and the singularity on
the Mach cone from a hend in the elemental line vortex.
The infinite vertical perturbation velocities on the Mach
cone from the tip do not appear in the 2=0 plane inasmuch
as equation (38) then reduces to

,w__];__ 0 (m,7) 'Jquf‘ﬁzya{iE |
I Ya [Yo'_(ma—)l o] Ya d?/o Yo

and the singularity due to 7, is no longer present.

APPROXIMATE DOWNWASH SOLUTIONS

Several approximate methods for obtaining downwash
were considered. Methods based on a lifting line seem the
most promising and are discussed in the following sections.
A bent lifting line is proposed for determining the downwash
behind a swept wing and anm unbent lifting line (horseshoe-
vortex system) for determining the downwash behind an
unswept wing. These methods are applied to compute the
downwash behind triangular and rectangular wings and
the results are compared with the exact linearized solutions.

‘\
\‘ Ny . cmzo -
v ) s - b3 - e
; e -Subsoriic .
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A lifting line concentrates the chordwise loading into a line.
Thus the bound circulation is represented by a line vortex
of variable strength (k=T=Ag,); whereas the trailing-
vortex system maintains the same vorticity (& =—~dT{dy,)
but now originates at the line rather than at the trailing edge.

Bent lifting line.—A lifting line approximating the scetion
centers of pressure

ﬁ:‘ (Crp—Cor)z—2) dr
J:? (On.B—Op.T) dx

xcp=xl+

seems to be a reasonable representation of a sweptback or
sweptforward wing. In order to facilitale downwash
calculations, the line of section centers of pressure can be
approximated by two straight-line segments, cach connccting
an'end point to the midpoint of the line. The result is 2
bent lifting line (fig: 7) of span b and effectivo chord e,
(z-distance between midpoint and end points of lifting line).

U I}

y- ya

S Bent lifting
\,\ line

“. ~Conters orF
,-'\‘ Prossuyre
s ~,

~
~

(c‘c,é‘)“‘\\ )

) FIGURE 7.—Bent-lifting-line approximation for swepthack wing.
For & sweptback lifting line, the slopes at the midpoint are

b

(mo_')y,=0= %,

and

b

(m°+)ya= =2—c¢

The vertical perturbation velocities induced by the bound
vortices can be determined from cquation (17) and yield

w=g—: [Golm™)—Gu(mH]y, oo fv :' Golm) a‘% dy. (39)

where the integration is conducted along the lifting line
(figs. 8(a) and 8(b)). The vertical perturbation velocitics
induced by the trailing-vortex system are obtained from

1w dar
w=g-[" 60 - ay, (40)
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The term &,(0) is as defined for equation (36) and the
integration is again conducted along the lifting line. The
vertieal perturbation velocities induced by the complete
lifting-line system (bound and trailing vortices) are then
the sum of equations (39) and (40) and yield

¥
=2 (G — Gulm ]y 6 — GO -
(4 1)
The value mo=(m,")y =0 is used for the integration interval
Ye<y.<0 and m,=(m,"),,=0 is used for the interval
0y <1
Equation (41) is the expression for the vertical perturba-
tion velocities behind a swept wing using the bent-lifting-line
approximation. This equation can also be considered as
derived from & superposition of a system of bent line vortices
of constant strength (equation (20)), as indicated in figure 9.
The nonintegral term of equation (41) is then the contribu-
tion of the bent line vortex of strength T'y; whereas the
integral term represents the contribution of the bent elemental

line vortices of strength :I:g dy,.

The integral term of equation (41) may be evaluated by
analytical or mechanica]l] methods. When mechanical
methods are used, the singularities in the integrand must
be isolated. Suitable procedures for isolating the commonly
encountered singularities are as follows:

(1) Singularity due to intersection of forward Mach cone
with lifting line. The integrand in equation (41) is infinite
at the intersection of the forward Mach cone and the lifting
line (for z#£0). The contribution éw of the integral, for the
interval y,— e <vo <¥: (fig. §(a)), to the vertical-perturbation-

.-

(2)

(®) (=yx)

(a) Intersection of forecone with lifting line,
(b) Intersection of forecone with edge of vortex sheet,
(¢) Point on vortex sheet.

velocity field may be written

—o )" (16— 601G~ {16.m) 6olrge) e Liaom— O S

where ¢ is a convenient length. The first integral in equation (42) is proper and may be mechanically evaluated. The

second integral is, for 0<{8m,<1,

J‘n % 5 M,
¥5—€ To { 1

FIGGRE 8.—Improper intervals of downwash integral.

%o dy,

(42)

log, [Mo1—B2m. 1o (1 — B2m, ) yo— ma(x—ﬁmoy)]}:b
5—¢,

2m, 21

(1 _Bzmaz) €»

=————_‘,_._1__Bzma2 sinh

2[mo(x—ﬁ’moy)—(l—ﬂ’ma"’)yn]
for Bm,>1,
r v dya=[ LS /mo(r Brmay) —(1— Bma’)yaJ 2 Fmi—TDe
Jn—& To \/Bzm,z—l ﬁma\(y—ma:r)z(l B’m ")Zz Vo€ \fﬁz-m,,z—l \°[ma(x 6zmay) (1 ﬁzmoz)ybl

and for Sm,=1,

[‘n ‘_i_yg=[m°‘\“2 (y— Max) Yot .maixz_,yz_ p
=&

To Y— Mo
where m, is the slope of the lifting line at y,. A similar pro-
cedure applies for the singularity at y,. The contribution
& of the interval y,<y,<y.te¢ to the downwash at z,,2z
may be computed from the preceding equations by reflecting
the lifting line about the z-axis and then computing the con-

=m
.th‘fa o\ [

MoZ —Y

tribution of that interval to the downwash at z2,—Y,2.

(2) Singularity in dT/dy, at wing tip. The vertical per-

turbation velocity at a point the forward Mach cone of which
intersects the edges of the trailing vortex sheet (fig. 8(b)) is

obtained from equation (41) by integration between the
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Strength Tm-~

Strength —Tm==

~

Strength - dyl" dya

FIGURE 9.—Superposition of bent line vortices ylelding benf-lifting-line representation of
supersonic wing (equation (41)).

b

limits -ﬁ << 2 1dT/dy,is singular ab these limits, the

smgulanty may be isolated by & procedure similar to that
used in equation (42). Thus, the contribution to the vertical-
perturbation-velocity field, from the integration interval

%-— <Y< %; may be written

wA— f (6 m)— G,,m)]

_.__eb

e f ([Gacm) axon—

_— _eb

{{ o(my— 90(0)]}“:_ :llr d 5

b

1 2 4T '
o ([6m)— GO} 2 fz Ly,
where
’ ar
2
Q—‘bd— _—( )ll =-'-€b

A similar procedure applies for the singularity at ya———%

(3) Singularity at points on vortex sheet. The Cauchy
principal value of the integral (equation (41)) is required
for determining the vertical perturbation velocity at a point

on the vortex sheet z=0,-——g_<_ ysg- For this case, when

the interval y— e<#.<¥y+ ¢ (fig. 8(c)) is considered, the.

x Y,,(r0 —ﬁzzz)

B x Ya faé;k”zzj
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contribution of the integral to the vertical-perturbation-
velocity field is

vie m JEEA—pYRdr , ., .
=3 f . B XY, 3y, Ve (44)

If dr/dy, can be approximated by the first two terms of the
Taylor’s expansion

dr ar d*r
E= d_(l_l; v,-v+(y°—y)(dyaz>r.-v

and e is sufficiently small that

mﬂ'\ Xo2__ﬁ2Y°2
(Ya—maXa)

e—1

equation (44) may be writien

w= T 2x o [(d’!la>v.-u (d o )v.-v] d}ﬂ':

(d o )r..=v (45)

Inasmuch as dT/dy, is an odd function in ¥, for a wing
symmetrical about the midspan, dI‘/dy, is cither discon-
tinuous or zero for y,=0. If dI'/dy, is discontinuous, the
vertical perturbation velocities are infinite along this line.
Unbent lifting line.—The unbent lifting Jine (horseshoe-
vortex systcm) appears to be a reasonable representation for
an unswept wing. The use of such a hftmg line considerably

simplifies the calculations.
The vertical perturbation velocities mduced by an unbent

lifting line (along the y-axis) are obtained from equation (41)
by setting m,= « and are equal to

1 (v xY,(ri—g%% dr
o7 J ve 7o @ — BTN (X o+ 27 dy,

The smgulanhes are isolated as follows:
(1) Singularity due to intersection of forward Mach cone
with lifting line.

w= dy. (46)

2 Y, (r2—p%2%) dr
w= 27rfh‘€b (x? ——B’z’)(i”—}-z’) dy, ay, T

..... ’33 2 dI‘ dya <Bzza d[\) f d:,&
:L'I dya Yo=Vs r, 2 Yo dYo vomnd i Te

J‘”b 2y, /__e—
¥~ To \ 2(ys—y)

(2) Singularity in dU'(dy, at wing tip.

where

2
== sm

= ro{x?—

1
2rJs_ {ro(x’—ﬁ’z’)(Y 2%
2
(8) Singularity at poinis on vortex sheet.

"dT

0
w= dyo Vo=V

B Te 2],

dr 2 Y (ri— B2 _
_} a_— dJ°+2W [ra(xz__ﬁzzZ)(Yaz_{_zz) y b (F)l’-"':"'fa
2 L 1

The chordwise location of the unbent lifting line that will give
the best.average agreement with the exact linearized solution
is still to be determined. According to the techniques used
in subsonic-wing theory, an unbent lifting line at thoe wing
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center of pressure should be a good first approximation;
however, further investigation is required. It may be pos-
sible to determine the best location for each general class of
plan forms by comparing the lifting-line solution with the
exact linearized solution for several representative plan forms.

Examples and discussion.—A bent lifting line and an un-
bent lifting line will be used to obtain solutions for the down-
wash in the y=0 plane behind triangular wings having sub-
sonic leading edges. The chordwise distribution of wing
loading suggests the use of the bent lifting ine. The unbent
lifting line will be used for purposes of comparison. An
unbent lifting line also will be used to compute the downwash
in the y=0 plane behind rectangular wings. The chordwise
location of the unbent lifting line giving the best average
agreement with the exact linearized solutions will be noted
for both the triangular and the rectangular ngs In order
to simplify the expressions, 3/=+2 (that is, §=1) will be
assumed.

The spanwise circulation distribution for a triangular

wing of span & and root chord ¢, having subsonic (%( 1)
’ i

leading edges, is (from equation (24) of reference 2)

I'= A(ﬁ;—g%b'—\/l -——,’y,,

where E is the complete elliptic integral of the second kind
with modulus—\/ 1——( %) The circulation at the mﬂspan
is

alJb

T=="F

and the rate of change of circulation is
dar 17 Yo

dy,  Eb \/__4;,?

The expression for the vertical perturbation velocities in the
y=0 plane, using the bent-hftmg—lme approxmlatmn of
figure 10(a}, is

alb

40:U 15 [Go(m+)— G,(0)]
'° zbE Jo 4
‘\ 1'_'_b—-zya

where (m‘+)r,=0='f_' Equation (47) is obtained from equa-

Yo dy, (47)

tion (41) and the properties of an even funetion. The vertical-
perturbation-velocity field behind an unbent lifting line
having the same loading (fg. 10(b)) is, from equation (46),

__40:U
- TbE 0

x(rs—z9y,’ dy,

7] (48)
ro{zi— 2% (y 2+ z’)-\/ 1 — ¥ '
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. .-—Secﬂon cenfters
:\ of pressure

*sr-Bent lifting line

AN |5 ~-tnbent lifting line
"‘ ~ N Yo 1 a v
. N~ # g .
“ ‘I ‘- b \
- s wxxc," (O,—Z-)
. (0— _b_)‘ s
e r & 5{ .
< N N m .
< v “‘ Y
©

(2} Bent-lfting-line representation of triangular wing.
{b} Unbent-lifting-line representation of triangular wing.
(¢) Unbent-lifting-line representation of rectangular wing.

FioUuRE 10.—Lifting-line representations of triangnlar and rectangular wings.

The spanwise circulation for a rectangular wing of aspect

ratio g— > 2 for the tip region %—ch_yoS —2-15

P___M‘:‘}E‘g .\/(y,—[—cr'—%)(g—ya)-FCT tm;IV/ 2 -

and for 0<y,< %—cr

r=24Ue, (49b)

Equations (49a) and (49b) were obtained from equation (20)
of reference 8. The wing is illusirated in figure 10(c). The

rate of change of spanwise circulation for %—c,g_y,s ;)—is

[ . b
dI‘ 4&[7’0]_ /yaTcr 2 . _ __

L V L
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The vertical-perturbation-velocity field in the y=0 plane

behind an unbent lifting line having this loading is

w__4aUc, 2 (1, —zz)y ] y"+c'—§_d
ST Js, n@— ey b Y
E §"?/o
(50)

Kquation (47) was evaluated to determine the downwash
along the line y=0, 2=0 and along the line y=0, 2=0.1 b
for triangular wings with aspect ratios {28/c;) of 1.6 and 3.2.
Equation (48) was evaluated for the same wings at points
along the line y=0, z=0. Equation (50) was evaluated at
points along the line y=0, 2=0 for rectangular wings with
aspect ratios (bfe,) of 2 and 4. The integrations were
mechanically performed for equations (47) and (50) and

Ixact /rnear/zeo'T
solution (reference
2
~==-=—Exact linearized
ol go/uhon (reference
- - )
T Y To—— Bent-lifting-fine
» =L solution (equation
i “] (47)
L .L_ I g——-Contrbution of
nonintegrat term -
1.0 (equation (47))
8
§ Vs
ﬁy
—
.6
af: .
g 4 \
o - —tR
8 - N
3 \ﬂ-.\\ ] -
$ .2 o A .
o
Q
(a)
o
8
IO i A A N O
° i _
5\ : - “togorithmic’ singularity
4 N 1‘;\
L,\\ 4
2 i -
(b)

) .
1.0 1.2 1.4 1.8 18.. 20 22
Chord behind gpex, -

(a) z=0 plane,
(b) z=0.1b plane,

FretRre 11.—Downwash in y=0 plane behind triangular v.mg with aspect ratio 2b/cr of 1.6
using bent lifting Yine. M= —1/ 2.
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-—-~-£xact lincarized ‘solution 1 y
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o—- - Bent-lifting-line solution
& (equation (47) ~
o—-Confribution of noninfegrol
ferm (equation (47}
. 6 I
. —t
1
F\:y 3
A
~\r~~
o
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~—t—
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Chords behind opex, £
' (2} z=0 plane.
(b) 2=0.1 b plane,

FIGURE 12. -Do“ nwash in y=0 plane hehind trlangular wing with aspeet ratlo 2b/c, of 3,2
using bent Ufting Hne, Af=v/2.

snalytically for equation (48). The results are compared
with the exact linearized solutions obtained from references 1
to 8 in figures 11 to 14.

The bent-lifting-line solutions for the triangular wings are
shown in figures 11 and 12. The discontinuity in the curves

“for the 2=0.1 & plane (figs. 11(b) and 12(b)) designates

large negative (upwash) values that become infinite on the
Mach cone from the tip, as indicated in the discussion asso-
ciated with equation (38). The agreement with the exact
solutions is good for all points except those within ¥ chord
from the trailing edge. The correlation is unexpected
because of the large contribution of the nonintegral term of
equation (47). This term is associated with the bending of
the lifting line at the midpoint. This bend was artificially
introduced. The agreement with the exact downwash
solutions, however, indicates that the bent lifting line is a good
average representation of the triangular-type wing (at least
in regard to the downwash solution in the region of the line
y=0, 2=0). This method should give even better agree-

-~ ment when used to represent a sweptback wing such as the

one represented in figure 7, because the bent lifting line would
then more closely approximate the actual vorticity distribu-
tion.

The unbent-lifting-line solution for the triangular wings is
presented in figure 13. The lifting line is placed at the



LINE-VORTEX THEORY FOR CALCULATION OF SUPERSONIC DOWNWASH

$-chord point to give the best average agreement with the
exact linearized solution. (The center of pressure for these
wings is at the %-chord point.) The agreement is not as
good as that obtained with the bent lifiing line and indicates
that the bent line is more suitable for computing downwash
behind triangular wings. The smaller-aspect-ratio wing
(2b/e,=1.6) is in better agreement with the exact linearized
solution because of the rapidity with which the downwash
approaches the asymptotic value at infinity.

The unbent-lifting-line solution for the rectangular wings
is presented in figure 14. The downwash obtained with the
lifting line at the %-chord point is in excellent agreement
with the exact linearized solution. (The location of the
center of pressure is at the %-chord and 1%,-chord points for
aspect ratios of 2 and 4, respectively.) These calculations
suggest that the unbent lifting line is well suited for com-
puting the downwash behind unswept supersonic wings and

¥ R Y
yer N JTTTTTTTTT
"y S x . r—te—— fxact linearized solufior
2 | (reference 2 |
La pu T Uhbent-lffing-fine —T—
& solution (equatron (48)}
]
1 1
e %
5 o % i—f=/.6“
r— i
E g l—’// — ———"’_E'——_
NG -4 — = F_ 125 _
ﬁ ',’ o v g c—r—3.2
G 7 ——
:
g R ‘:’ ’,'
Q ’l _ ’—
=+
a
LQ L2 L4 1.8 1.8 20 22 24 26

Chords behind apex, c—'i'

F16TRE 13.—Downwash along line y=0, z=0 behind triangular w1_r_Lg using ufbent (horse-
shoe) lifting line at 3{-chord point. M =,/3
[ 3
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FIGURE 14.—Downwash along line y=0, z=0 behind rectangular w_mg using unbent (horse-
shoe) lifting line at }-chord point. M=+/2.
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* that the best chordwise position for the unbent lifting line
is at or slightly downstream of the wing center of pressure.
A more accurate estimate of the downwash in the z=0
plane close to the trailing edge may be obtained by judiciously
fairing the curve obtained by the line-vortex method to the
known value of downwash at the trailing edge. At a
subsonic trailing edge satisfying the Kutta condition,
—wfaU is unity; whereas at a supersonic trailing edge,
—wfeU can be computed by the method presented in
reference 1.
Linearized theory neglects the effect on the downwash of

the friction wake and the displacement and the distortion -

of the trailing vortex sheet. An experimental program,
such as that reported in reference 10 for wings in subsonic
flight, is ultimately required to determine the necessary
modifications to linearized theory that will result in good
agreement between theory and practice.

SUMMARY OF ANALYSIS AND APPLICATIONS

The perturbation field induced by a line vortex in a super-
sonic stream and the downwash field behind a supersonic
lifting surface have been examined to establish approximate
methods for the caleulation of supersonic downwash.

An infinite line vortex of constant strength and slope,
supersonically inclined to the free stream, induces no per-
turbation field. A subsonically inclined line vortex has
properties similar to those of a vortex in an incompressible-
flow field. Bends-in a line vortex induce infinite vertical
perturbation velocities on the surface of the downstream
Mach cone from the bend (except in the z=0 plane).

The downwash field behind a supersonic lifting surface
differs from that behind a subsonic wing in several respects.
For a supersonic lifting surface, discontinuities in shed vortie-
ity occur at those points along a supersonic trailing edge
where the plan-form slope is discontinuous and the local
pressure coefficient is not zero. ‘These discontinuities lead to
singularities in the downwash field in the z=0 plane. Also,
the vertical perturbation velocities are logarithmically infi-
nite on the downstream Mach cone from a wing tip formed
by the intersection of 2 subsonic leading plan-form edge and a
supersonic trailing plan-form edge.

A bent-lifting-line method has been proposed for the solu-
tion of the downwash field behind swept wings. When ap-
plied to & triangular wing, this method gave results that were
in very good agreement with the exact linearized solution for
points near the line y=0, 2=0 except for points within %
chord of the wing trailing edge. _

An unbent lifting line (horseshoe-vortex system) has been
proposed for unswept wings. This method was applied to
determine the downwash behind rectangular wings with
aspect ratios b/e, of 2 and 4. Excellent agreement was ob-
tained for both aspect ratios by placing the lifting line at
the ¥-chord point.

Lewis FricaT Propurnsiox LABORATORY, _
NatroxaL Apvisory CouviTTEE For AERONAUTICS,
CreEveLAND, OmIo, April 29, 1948.



APPENDIX A

SYMBOLS

The following symbols are used in this report: 14 volume mtegra,uon
x, ¥4 X, = z—a
Y, Ys }Cartesian coordinate system Y, =-y—y
Z y & Z, = z—2z
v }perturbation velocities @ “angle of attack -
w B cotangent of Mach angle,v/A77—1
7 : T spanwise distribution of wing circulation
7 }umt, vectors Tn “wing circulation at midspan
k € - integration interval
f’ components of vortex vector (three-dimensional | * ) circulation '
¢ field) P free-stream density
¢ ¢ .perturbation-velocity potential
7’ }componenﬁs of vortex vector (vortex sheet) Ap = ¢r—¢p
el . G cross-sectional area of vortex tube
b wing span resultant vorticity, (#4494 _{’)“
c line integration ["" " -finite part of divergent inicgral
c, local wing pressure coefﬁcwnb é . .
C, effective chord of bent lifting line’ Ime integral along closed curve
¢ root chord of wing Subscmpt«s
E complete elliptic integral of second kind with a, b points of intersection of forward Mach cone with

— 7 line vortex, lifting line, or edge of vortex sheet
modulus \/1_<2_Cr) B ‘bottom surface of 2=0 plane
(Y, — m X)(82m: Yi— X ep section center of pressure
Gf(m)=r‘[('yi' mX )+ (1= ﬁ’m,”)Zﬁ] 1 1,2,38, ... npoints on vortex hncs
-1 XY l plan-form leading edge

@.(0) e (YEF 25 o T e ) variable of integration .
L(y)  spanwise lift distribution . .. . = _ T ~top surface of =0 plane
M free-stream Mach number t plan-form trailing edge
m slope of line vortex or lifting line Superscripts:

_ : — -value of function at point of discontinuity whe
ro= JXI—BYI—pL¢ approaching from n(I!gative y-direetion y ’
S surface integration ~ + value of function at point of discontinuily when
U free-stream velocity (taken in x—dlrecmon)
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approaching from positive y-dircetion



APPENDIX B
UPWASH INDUCED BY LINE VORTEX

The upwash induced by the line vortex segment of figure I is

w= B2K f mz(’y mx) dy0 (11)
2x |Jo [(1—B*mAys*+2m(B*my —x)y.+ m(x*— B*y*— 27
The upper limit is at the intersection of the line vortex | Where
(y., mz*) with the trace of the forward Mach cone in the J(0) 2(Yatys)
=0 plane [(z—,)*—B2(y—yo)*—B2*=0] and is therefore the Wa— Y0 VYYs
appropriate root of the expression appearing in the denomi- and
nator of the integrand. The roots are C=lim. 2-‘-‘1(%) —J(y 0)]
Yo—¥s

— m(gmy—2) £ Bmy— M EA—FmIE

Yo b= —g"m)
so that equation (11) may be rewritten
—2x(1—pmP"2 4y, (B2)
BImix(y— mz) 0 [(ya Yo Yo—yal*?
From equations (6) and (7),
[I=—J@—C. (B3)

yo)]

B4

—lim [ . 2 2Watyo—2Y0)
ren | Y=Y 3 VY—Ye WY VWY Yr— ¥
=0

Thus

2('ya+ yb)
I=
L
Substituting equation (B4} in equation (B2) and solvmg for
w yields -
_ K (Y—ma)(Bmy—z)
V= G B pe Ry — may (A e )
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APPENDIX C
LOADING IN VICINITY OF WING TIP

The nature of the loading in the vicinity of a wing tip

formed by the intersection of a subsonic leading edge with

a supersonic trailing edge (fig. 6) is to be determined. _
According to linearized theory, %z in the region of a sub-
sonic leading edge is singular of the form

1

Up=——Ff—
VT,

where z; is the equation for the leading edge as a function of
Y. 'This relation may be deduced from equation (11) of
reference 9. The corresponding wing circulation is

% dx,
£2] '\/11:9—23;

The derivative of equation (Cl).is

d(l';_xl)___
ar 2 _ _dya__ A
dya NI —Tr

P=Ag:=2 =4y —a (&9

‘()

where (z,—2;) is the wing chord as a function of y,. How-

ever, (z,—2z;) must be of the form

Ty — &= yo[f(yo)] C3)

(where Lf(y.,)],,,_o#o «) in order to satisfy the lest,rxctzons

that at the wing tip
() the chord is zero

(@:— 1), =0

(b) the slopes of the leading and trailing edges are neither

equal
d{x,—

x;)]
dya Y o=0

nor in the free-stream direction

d(xz—xz)_
dy, #o=0
650

Substituting equation (C3) into the denominator of cqua-
tion (C2) yields
d(-'l' l_xl)
dr 2 T dy. )
e ] (C4)
d '\/ya[f(yo)}

Equation (C4) indicates that dT'/dy, is singular of order ¥ at
y,=0 for the wing tip of figure 6.

REFERENCES

1. Lagerstrom, P. A., and Graham, Martha E.: Downwash and Side-
wash Induced by Three-Dimensional Lifting Wings in Supersonie
Flow. Rep. No. SM-13007, Douglas Aireraft Co., Inec., April
1947,

2. Heaslet, Max A., and Lomax, Harvard: The Caleulation of Down-
wash behind Supersonic Wings with an Application to Triangular
Plan Forms. NACA TN 1620, 1948.

3. Lomax, Harvard, and Sluder, Loma: Downwash in the Vertical
and Horizontal Planes of Symmetry behind a Triangular Wing
in Supersonic Flow. NACA TN 18083, 1940.

4. Robinson, A.: On Source and Vortex Distributions in the Lin-
earized Theory of Steady Supersonie Flow. Rep. No. 8, College
Aero. (Cranfield), Oet. 1947.

5. Robinson, A., and Hunter-Tod, J. H.: Bound and Trailing Vortices
in the Linearized Theory of Supersonic Flow and the Downwash
in fhe Wake of a Delta Wing. Rep. No. 10, College Aero.
(Cranfield), Oct. 1947.

6. Hadamard, Jacques: Lectures on Cauchy's Problem in Linear
Partial Differential Equations, Oxford Univ, Press (London),
1023, pp. 133-135.

7. Heaslet, Max. A., and Lomax, Harvard: The Use of Source-Sink and
Doublet Distributions Extended to the Solution of Boundary-
Value Problems in Supersonic Flow. NACA Rep. 900, 1948,
(Formerly NACA TN 1515.)

8. Evvaid, John C.: Distribution of Wave Drag and Lift in the
Vicinity of Wing Tips at Supersonic Spceds. NACA TN 1382,
1947.

9. Evvard, John C.: Theoreiical Distribution of Lift on Thin Wings
at Supersonic Speeds (An Extension). NACA TN 1585, 1948.

10. Silverstein, Abe, Katzoff, 8., and Bulilivant, W. Kenneth: Down-
wash and Wake behind Plain and Flapped Airfoils. NACA
Rep. 651, 1939.



