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THE APPLICATION OF GREEN’S THEOREM TO THE SOLUTION
OF BOUNDARY-VALUE PROBLEMS IN LINEARIZED
SUPERSONIC WING THEORY!

By Max. A. HeasneT and Harvarp Loumax

SUMMARY

Following the introduction of the linearized partial differen-
tial equation for mnonsteady three-dimensional compressible
Sflow, general methods of solution are giten for the two- and
three-dimensional steady-state and two-dimensional unsteady-
state equations. It is also pointed out that, in the absence of
thickness effects, linear theory yields solutions consistent with
the assumptions made when applied to lifting-surface problems
Jor swept-back plan forms at sonic speeds. The solutions of the
particular equations -are determined in all cases by means of
Green’s theorem and thus depend on the use of Green's equivalent
layer of sources, sinks, and doublets. Improper integrals in
the supersonic theory are treated by means of Hadamard's
“finite part” technigue.

Four applications of the general solutions are given: First,
the angle-of-attack load distribution for a supersonie, yawed,
triangular plate with subsonic leading edges is determined.
Second, downwash is calculated along the center line in the
plane of the unyawed triangular wing. Third, the growth of
load distribution is presented for subsonic and supersonic two-
dimensional flat plates either starting from rest at a uniform
velocity or experiencing an abrupt angle-of-attack change. The
transient effects on lift-curve slope are then calculated. Finally
the load distribution and lifi-curve slope of a specific swept-
back lifting surface are determined at a free-stream Mach number
of one.

INTRODUCTION

If the effects of viscosity are assumed small and shock-free
compressible flow is considered, the velocity field about a
two- or three-dimensional body placed in a uniform free
stream is irrotational and thus possesses a velocity potential.
In the determination of the pressures exerted on such a body
or in the calculation of the induced velocity components, the
theoretical aerodynamicist is concerned essentially with
finding the velocity potential of the flow field and, thus,
must determine the solution of a second-order nonlinear
partial differential equation subject to certazin boundary
conditions. The known mathematical difficulties that arise
in the treatment of such a problem make it expedient to
resort to simplifying assumptions. In applied aerodynamics,

t Presented by Dr. Heaslet at the VII Internetional Congress of Applied Mechanics,
September 1948, London.

however, efficiency of flight at high speeds has focused atten-
tion on bodies inducing relatively small velocities throughout
the field of flow and, as a consequence, the demands of engi-
neering furnish a guide for the mathematical simplification
of the theory. The so-called linearized theory of compressi-
ble flow was developed to solve such problems and, although
considerable work of 2 more precise nature has been presented
in two dimensions, a large amount of investigation in
unsteady flight and in three-dimensional wing theory remains
to be completed within the framework of the simplifying
conditions. :

The present paper is restricted to a discussion of wing
theory subject to the assumptions of linearized compressible
flow. It therefore employs solutions of Laplace’s equation
and the wave equation for cases where the boundary condi-
tions are specified in the plane of the wing. Attention will
be directed primarily to the analysis of steady-state condi-
tions although an equivalence will be established between the
two-dimensional differential equation containing the time
variable and the equation applying to three-dimensional
supersonic wing theory. Solutions in all cases will be
obtained through the use of Green’s theorem and the resultant
concept of Green’s equivalent layer of sources, sinks, and
doublets. The correspondence between the theoretical devel-
opment for subsonic and supersonic speeds is particularly
useful since experience related to analysis in either flight
regime is more readily transferred.

In view of the widespread use of sources, sinks, and doub-
lets in low-speed studies and the fact that the earlier applica-
tions to supersonic wing theory by Prandtl (reference 1)
and Schlichting (reference 2) corresponded to the use of
Green’s equivalent layer, it is notable that later emphasis
shifted to other methods of solution. Sources alone were
used by Puckett (reference 3) to create symmetrical non-
lifting wings and were also applied to the study of lifting
triangular wings with supersonic leading edges, but the use
of source, sink, and doublet sheets has not been as extensive
as might have been expected. This anomaly is even more
apparent in view of the vast mathematical and physical
literature centering around the use of Green’s theorem. One
possible explanation may stem from the fact that the interest
of the mathemastician and physicist in the wave equation
has arisen in connection with problems in acoustics, optics,
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and vibrating membranes. Such problems introduce bound-
ary conditions of the Cauchy type, that is, initial conditions
need to be known both for the unknown function and its
rate of change. The supporting surface for such boundary
conditions cuts the characteristic cone of an arbitrary point
in a closed curve and has been called by Hadamard (reference
4) a duly inclined surface. In aerodynamics the supporting
surface is nonduly inclined and cuts the characteristic surface
or Mach cone along the arc of a hyperbola and, as a result,
the problem is no longer of the Cauchy type and the analysis
becomes similar to that used in subsonic theory in the solu-
tion of Laplace’s equation. Prior to the interest of the theo-
retical aerodynamicist in supersonic wing theory, it appears
that little attention in application was paid to this type of
solution. '

The material presented here is divided into two main

divisions: Analysis and Applications. In the first part of
the Analysis division, the linearized differential equation for
nonsteady compressible flow is given together with the
underlying assumptions made. Specific forms of this equa-
tion for two- and three-dimensional steady states and two-

dimensional unsteady states_are then considered. It is .

pointed out in particular that for swept-back lifting surfaces
linearized theory yields consistent solutions at a free-stream
Mach number of one although the analysis of arbitrary
thickness distributions is not possible. Following the var-
ious equations, Green’s theorem is applied to find, in terms
of the known boundary conditions, the desired solution by
means of source and doublet distributions.

Applications of the general methods are confined to four
problems. As an example of the manner in which angle-of-
attack load distributions are determined for a lifting flat
plate, the case of a yawed triangular wing with subsonic
leading edges is solved. Doublet distributions are then
applied in the second problem to the calculation of down-
wash behind the same wing in an unyawed position. Third,
the growth of load distribution with time is derived for a
supersonic two-dimensional flat plate either experiencing a
sudden sinking motion or starting from rest at a uniform
velocity. Such distributions are of value in the calculation
of indical lift functions and can be_used, together with
Duhamel’s integral, in the study of certain dynamic maneu-
vers. The final application considers ot a Mach number
equal to one the case of a swept-back lifting surface with
tips normal to the free-stream direction.

LIST OF IMPORTANT SYMBOLS

@y speed of sound in free stream

A : lateral distance to inboard tip of swept wing
(See fig. 9)

AR aspect ratio

b semispan

¢ chord length (two dimersions)

root chord (three dimensions)

0,00

load distribution factor introduced in. equation
(16) T
Cy lift coefficient
Cra lift-curve slope
Crat’) indicial lift function

G,
E

E' E’,
El; E2
EE, ¥)

F(k, )
G
k,

ks
K

Kl; K2

M,

£, ¢

‘lee-\'g
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pressure coefficient (p__qﬂ)

complete elliptic integral of the second kind with
modulus k
complete elliptic integrals of the second kind
with moduli +1—G%, +/1—62?, respectively
complete elliptic integrals of the second kind .
with moduli %, ks, respectively
[ vi=Fmr e
v___dé
¢ 4/1—FE?sin® ¢
parameter defined in equation (29)
Coby
2—Co
r—¢
Coen
complete elliptic integral of the first kind with
modulus % .
complete elliptic integrals of the first kind with
moduli &, k,, respectively
tan &
free-stream Meach number
local static pressure
free-stream static pressure

- free-stream dynamic pressure (% poT-’oz)

ve—8*+ B —0)*
V@—8*+[y—n’+ (2—£)’]
V@—8*—Fy—n)+ (z—)]

distance traveled in half-chords

area of wing

time

perturbation velocity. components parallel to
z, Y, 2 axes, respectively

jump in value of , w at the 2=0 plane
velocity of free stream

Cartesian coordinates

coordinates introduced in equation (2)
angle of attack in radians

[1—My?
load coefficient (Cp,—C5,)

~ semivertex angle of yawed triangular wing

angle between lifting element and « axis

angles between leading edges of yawed triangle
and z axis

B tan &, B tan &, B tan §

sideslip angle of yawed triangle

Mach angle (arc sin ﬂlf,)

Cartesian coordinates

free-stream density

region of integration in equation (10)
perturbation velocity potential

Y
e
sign denoting ““finite part’’ of integral
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SUBSCRIPTS

u subscript denoting value of variable on upper surface of
wing
! subscript denoting value of variable on lower surface of

wing
ANALYSIS

THE PARTIAL DIFFERENTIAL EQUATIONS

Basic differential equation.—Consider an aerodynamic
body flying at an arbitrary Mach number A, in air initially
at rest. If a Cartesian coordinate system .7,z is fixed rela-
tive to the body, the body may then be assumed stationary
and situated in a free stream with the same Mach number.
If the free-stream velocity vector is parallel to and in the
direction of the positive x axis and if ¢ denotes the perturba-~
tion velocity potential for iseniropic flow, the linearized
partial differential equation for ¢ may be written in the form

=0
ao rt

s , 1
(.l[o'—]-) ¢:z—¢vy_¢zz+zl'o_z ff’u'i' (1)

where a, is the velocity of sound in the free stream and ¢
denotes time.

The assumptions underlying the derivation of equation
(1) have been stated in numerous places but are not always
obviously compatible. It is assumed here that the ratios
°©U ¥ W
T, are small compared to one, where %, », w are
induced velocity components and V; is the velocity of the
free stream; moreover,

_ o 21 2 1 2
T2 (P <<

and, finally, the velocity gradients at a given point of the
flow field are all of similar magnitude. :

Special cases.—The particular forms of equation (1) to be
considered are given in table I. In the steady-state equa-
tions the original independent variables are retained; the
two-dimensionsal unsteady-state equation has;, however, new
variables defined by the relations

' =x—a L, g =z, ¥ =ay (2)
and consequently the boundary conditions for any particular
example will be subject to the same transformation. In all
the equations the constraints imposed by the linearization
permit, for problems in wing theory, the boundary conditions
to be specified in the plane of the wing. This plane shall
arbitrarily be taken to be 2=0.

TABLE I.—LINEARIZED PARTIAL DIFFERENTIAL
EQUATIONS OF COMPRESSIBLE FLOW

Steady state
1M}t 6., =0, My<1 A
Two dimensions ( » B)eut o o )
(MP—1)$—6:=0, M>1,  (B)

(1—-"’1'02) ¢:.=+¢Jm+¢:z=0; M<I, (C)
Three dimensions 4 (MEZ—1)éz—dy,—¢,,=0, Mp>1, (D)
b T62:=0, My=1, (E)

TUnsteady state

Two dimensions ¢m-—¢,-z-—¢_z.z.=0 (F)

The Mach number range for which the equations are valid
cannot be preseribed a priori since induced velocities are
functions of wing geometry and angle of attack. We can
say, however, that for certain configurations at small angles
of attack the equations and their solutions are consistent
with the assumptions. In particular, three-dimensional
lifting surfaces with sufficient sweepback yield solutions of
this class at Afy=1. The differential equation shows that
in this case the boundary conditions need only be specified
along strips in the transverse direction. The surfaces of the
Mach cones also are normal to the free-stream direction so
that any disturbance point makes itself felt at all points not
upstream of it. Sinece for these lifting surfaces the disturb-
ances do not become excessive at A,=1, we have a specific
kind of lateral strip theory that yields formal solutions
compatible with the assumptions made.

BOUNDARY CONDITIONS

Steady state.—The boundary conditions are given in the
z=0 plane and in the case of two-dimensional theory the
wing is assumed to extend infinitely, parallel to the y axis.
As a convenience in notation, two subscripts will be intro-
duced: the first, %, denotes conditions on. the upper surface
of the wing, that is, the limit of the funection as z approaches
zero through positive values; the second, [, denotes conditions
on the lower surface of the wing, that is, the limit of the
function as z approaches zero through negative values.

Four types of boundary conditions arise in practice:

1. Symmetrical nonlifting wing (boundary-value problem
of the first kind).—The conditions #,=w,=0 hold over all
of the zy plane except for the region occupied by the wing.
On the wing, the relations 2w,=—2w,=Aw,=f(x, ¥) are
given, the function f (z, ¥) being determined by the geometry
of the configuration. Over all of the zy plane, Aug=u,—
#;=0 applies.
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2. Lifting surface with specified loading (boundary-value
problem of the first kind).—The condition Aug=u,—u;=0
holds over the zy plane except for the region occupied by the
wing. On the wing, the relations 2u,=—2u,=Au,=f (z, y)
are given, the function f (¢, ¥) being determined by the

specified loading. Over all of the zy plane, Aw,=0 applies.

3. Lifting surface with specified camber and angle of attack
(boundary-value problem of the second kind).—The condi-
tion Auy=0 holds over the zy plane except for the region
occupied by the wing. Onthe wing the relation w=f (z, ¥)
is given, the function f (z, y) being determined by the given
camber, twist, and angle of incidence. Over all of the zy
plane, Aw,=0 applies. ‘

4. Symmetrical wing with specified pressure distribution
(boundary-value problem of the second kind).—The condi-
tion Awy=0 holds over all of the 2y plane except for the region
occupied by the wing. On the wing the relation u=f (z, ¥)
is given, the function f (z, ) being determined by the specified
pressure distribution. Over all of the zy plane, Auy=0
applies. :

In all cases, induced velocity u is related to pressure
coefficient €, by the relation "

Op=—'vo

Unsteady state.—The steady-state boundary conditions
have been given in the most general terms possible. The
unsteady-state conditions will be limited to a more restricted
type of problem, namely, cases wherein the airfoil is assumed
to experience at t=0 either an abrupt change in angle of
attack without pitching or starts to travel at the instantane-
ous velocity V, and angle of attack «. In this way the
transient variation of load distribution and airfoil character-
istics can be calculated for unmit angle-of-attack change.
Similar methods can treat unit rate of pitching, or deflection
of aileron, as well as the effects produced when the airfoil
enters a gust of given structure. The use of solutions of
such problems in connection with operational methods is well

known in applied mathematics. Applications of these oper-

ational methods to aerodynamics have been given by R. T.
Jones (references 5 and 6) for incompressible fluid theory
and in reference 7 for supersonic flow. '

If the rectangular coordinate system z’, 2/, ¢ associated
with equation (2) is considered to be fixed, the airfoil moves
in the negative %’ direction and the free-stream velocity is
zero. A simple distortion of the time axis is also introduced
to simplify the differentisl equation. Figures1 (a)and 1 (b)
aid in the visualization of the problems involved. The air-
foil section is assumed to lie initially on the 2’ axis with lead-
ing edge at the origin and trailing edge at the point 2’'=c,.
As time progresses the airfoil sweeps across a portion of the
2't’ plane, the leading edge traversing the line ' =M’ while
the trace of the trailing edge is the line ’=c¢c,—My#’. The
region bounded by these lines and the line ¢'=0 is that swept
by the airfoil. The characteristic cones of the differential
equation cut the 2t’ plane along lines inclined at +45° to
either axis. If the airfoil experiences an angle-of-attack
change o without pitching, the “area” swept over by the
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FIGURE 1.—Diagram for use in determining boundary eonditions in two-dimensional
unsteady motion.

wing must yield w=—7Ve. On theotherhand, if the airfoil
enters a gust of constant vertical velocity w,, the region over
which the modification of w is effective is restricted to the
region occupied simultaneously by the airfoil and the gust.
If, for example, the edge of the gust is fixed along the # axis,
this axis will form the right-hand boundary of the region
over which the change ia houndary conditions occurs. A
statement of these boundary conditions may be put in the
following form: '

1. Lifting surface undergoing abrupt change or starting
from rest with given velocity.—The condition Au,=0 holds
over all of the #’#’ plane except for the region swept across
by the airfoil. In this latter region, the relation w=7(",t)
is given, the function f(2’,#’) being determined by the modi-
fication in airfoil angle of attack, pitching velocity, aileron
deflection, or by the gust structure. Over all of the »'#
plane, Aw,=0 applies.

The expression for pressure coefficient is

_—2/%¢ 0¢
G =173 <bt Vo bx)

_.—2 2
_VoMo ot/

SOLUTION OF BOUNDARY-VALUE PROBLEMS

General treatment.—The use of Green’s theorem in the
solution of second-order partial differential equations leads
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one to the consideration of certain particular solutions of the
given equations. Because of the physical importance as
well as the mathematical applicability, attention has been
centered on the use of a so-called fundamental solution or
source potential. Thus, in the subsonic case, the potential
at the point x,z of a unit source located at the point £,¢ and
applicable to equation (A), table I, is the logarithmic function

o(z, 4)—0—3 anA_3—ﬁ In+/(@—8*+p(z—¢)* 3)
while for equation (C) the potential at z,7,z of the unit
source at &7,{ is

-1 —1
e (e ok

cp(:r,y,z)

Here and elsewhere we have p2=[1—2f? where the bars
indicate that absolute values are to be taken.

The application of these potential functions to the solu-
tiop of boundary-value problems in subsonie linearized flow
is well known. Supersonic theory, however, introduces
added complications when the fundamental solutions are
considered and, although methods have been established,
the mathematical techniques are of comparatively recent
origin. The principal difficulty lies in the integration of
higher-ordered singularities that appear in the three-dimen-
sional analysis. Hadamard (reference 4) resolved these
difficulties and thus avoided the more specialized approach
of Volterra (reference 8). It would appear, however, that

& more direct method of derivation stems from Mlarcel |

Riesz’s use of fractional integrations. (See, in this con-
nection, references 9 and 10.) The oddness or evenness of
the number of dimensions still involves considerable differ-
ences but the final solutions are easily applied.

In two-dimensional supersonic flow, the potential at the
point, 7,z of a unit source located at the point £,¢ is defined
as follows:

Equation (D), 3, >1

¢(x,2)=0 for (z—§)*<p*(z—¢)*

(5)
¢(¢,2)=— 28 for z—8*=p*(z—9)*
In three dimensions, the source potential is
. — : —1 .
95(-3;?7'; Z)=E=2T’\"(T_E)2_ (6}

Flg—n'+ -0

at all points for which the radical is real and is zero elsewhere.

These functions are directly applicable to equations (B)
and (D) of table I. Equations (E) and (F) are, of course,
special mathematical cases of equations (A) and (D) for
which M, is 0 and +/2, respectively.

By means of the various source potentials, it is now possible
to present solutions of the differential equations in terms of
the prescribed boundary conditions. These conditions are
assumed to be given in the z=0 plane and subscripts « and
shall again denote conditions at z=0+4 and z=0—, respec-
tively. The general solutions appear as follows:

Equation (A), A,<1,

6(r,2)=5 3 5f [Zn(r_,.);_o bqﬁu_% -

e (gpinrs) |t ™
Equation (B), 3, >1

é(z, 2) = _% f_;” aa—‘i;‘ dt for 2>0
= -I-%f_z:ﬁz % d& for 2<0 (8)
Equation (O)., M1
(0,1, =.‘—1f5 @)L -2)-
—6) ()., | dedn ©

q'>($, Y, z) =

In the last equation, the range of integration is confined to
that portion of the z=0 plane that lies within the Mach
forecone of the point z, ¥, 2, that is, within the half-portion
of the right circular cone

E—o*—Flly—n)*+ (—=0

Lying upstream of the point z, ¥, z. The semivertex angle
of this cone is the Mach angle and is given by the relation

=are sin i—s.rc cot 8
k= M, '

The symbol [ was introduced by Hadamard and denotes
the “finite part’”’ of the integral. As in the case of Cauchy’s
principal vealue, an improper integral is reduced by a pre-
seribed technique to & finite and unique value. By definition
(see also reference 11), : :

1\ (0¢s
rp/r=0\ 0z

~9)— u—90 (3 ), | 28 (10)
e A)dzr _ (% Alg) —A(x) 2.4 (o)
. (xo—:e)w—ﬁ @ =g 1D

In the two-dimensional supersonic case, the solution for

~ the velocity potential is expressed as the integral of a dis-

tribution of source potentials. In sll other cases, both the
source potential and its derivative appear in the integrand,
this latter expression being identified with the doublet
potential.

Nonlifting case (symmetrical wing, boundary-value prob-
lem of the first kind).—Equations (7), (8), (9), and (10" are
applicable directly to the calculation of the potential fune-
tion corresponding to a symmetrical wing. The relation

é.=¢; follows from the condition u,=u;. Moreover, if %

denotes the local slope of the upper surface of the wing,
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1 O¢u__
Vo bz

- 1 bdn dZ )
" Veoz
and the solutions of the various equations are expressed in
terms of source distributions alone.
For example, equation (10) becomes

Vo (deu_ dédy .
arfr & e —Pla—nites 2

where the finite part sign is dropped since the integral is
proper. This equation was given by Puckett in reference 3.
The pressure coefficient on. the surface of the wing is

o=—7(5)..

Lifting case (boundary-va.lue problem of the first kind).—
From the condition w,=—w; we have Aw,=0 and the inte-
grands in equations (7), (9), and (10) are expressed solely in
terms of doublet distributions, while equation (8) yields the
result that conditions on either side of the wing have no
effect on the other side.

Taking equation (10) as an cxample the ‘solution under
the prescribed conditions is

f(¢u qbl){(x 5)2

o(2,y,2)=

BadEdn
Bly—n+27}1"
(13)

(27, Y, 2) =9

where

—¢r= f_: Aug(§, m)dE

A more direct evaluation of perturbation velocity « can be
obtained from the alternate expression

Auy (€, 1) ) B2edédy
f J [e——ply—n'+ar 9

Similar expressions exist for equations (7) and (9).

Lifting case (boundary-velue .problem of the second

kind).—This type of boundary condition cannot be solved
directly by means of the formulas which have been presented
but resolves always into the required solution of an integral
equation. In three-dimensional subsonic wing theory, the
method of solution depends usually on some modification of
Prandtl’s lifting-line theory although, more recently, lifting-

surface theories by Falkner (reference 12) and Cohen (refer- -

ence 13) have been applied successfully.
In the case of three-dimensional supersonic—wing theory,

sources, sinks, and doublets have been utilized in two ways

in the solutlon of lifting-surface problems. The first of these
methods was given by Evvard (references 14 and 15) and is
particularly powerful when one of the leading edges of the
wing is of the supersonic type, that is, when the velocity
component of the free stream normal to the edge is greater
than the speed of sound. A second method of solution was

presented in reference 16 for the important case of wings
with subsonic leading -edges, provided the flow field about

the wing is of the conical type infroduced by Busemann
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(reference 17). The essential feature of this method is the
use of differential lifting elements carrying a constant load
and designed for use in conical flow fields. The solution
consists of determining the distribution of loading over these
elements so that the resultant induced vertical velocity at
any point on the lifting surface satisfies the local boundary
condition. When approached from this standpoint, the
problem again requires the solution of an integral equation
but the equation is of the form

_ ["f@)dn

w(x)= =z - (15)
and is thus well known from low-speed airfoil-section theory.
Inversions of this equation have been provided by Allen
(reference 18) and von Mises and Friedrichs (reference 19).

FIGURE 2.—Lifting-surface element carrying constant load.

Figure 2 shows the elemental lifting surface to be used.
The sides of the element extend back from the tip of the
Mach cone, making angles § and §+ A8 with the positive x
axis or free-stream direction. The vertical velocity induced
at the point %, ¥, 0 by the element will be a function of 3,

Ag, and% or, changing the notation, ¢, Ag, and » where
f=p8 tan &
6-+Af0=p tan (6-+A8)
=g ¥
w=p p
Denoting the gradient of this vertical velocity with respect

to 8 by a’"“: it follows that

3?0;—0

—lm w(0+A8,w) —w(0,w)
A6—10 Al

where w(0,es) and w(0+Ab,0) are the velocitics induced by
right-triangular lifting surfaces with constant loading and
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with vertex angles equal to 5 and -}-A8 respectively. The
velocities induced by the constantly loaded surface are
determined directly from equation (13). The results of
these calculations yield the following expressions:

For w<g
awz=o__ 0)3 @ “1—'(.);_
8 2xVoJ-1o(e—8)° duy (162)
and for w>4
a'wz=0 C’ﬁ @y 1_01
TR v R e e (16D)
where
-_:'[702 _A__p_
(8 3 g

The term —qu is the load coefficient and is equel to the differ-

ence between pressure coefficients on the lower and upper
surface of the wing,

Ap_Pr—Ps_

q g OO

Nonlifting czse (boundary-value problem of the second
kind).—In the previously discussed lifting case, the induced
vertical-velocity field of a constantly loaded element was
calculated. An anslogous type of element can also be
developed for use in the determination of nonlifting wings
with prescribed pressure distributions. It is apparent that
differential expressions similar to equations (i6a) and (16b)
must be derived which establish the induced field of the z
component of perturbation veloeity for a conical-flow ele-
ment with constant vertical velocity. From equation (12),
the following expressions result:

For <8
bC’,_a G![d@;_ -
ﬁ__ﬁ‘ﬁ‘ -1 (cull—9)2-\,-";].—03'12 (17)
and for o >4
BC’ 2R culdcol -
26 pr (c-al—e)%fl—mf (17b)

where pressure coefficient (', and surface slope X are
_ 2u _ Uy
Cr= Vo A= Vo

The application of equations (17a) and (17b) to the
determination of a thickness distribution supporting a given
pressure distribution consists of determining X as a function
of 8 such that the desired pressure results. The essential
simplification of the method is brought about by the use of
elements that lead to single integral equations of standard
form.

APPLICATIONS -

YAWED TRIANGULAR LIFTING SURFACE

Consider a yawed, triangular flat plate with subsonic
leading edges such as is indicated in figure 3. Relative to

the z axis or free-stream direction, the sides of the triangle
make the angles §, and §, so that the total vertex angle is

+8=2A. The quantities 6, 6;, and « are also introduced
where

8,=p tan &
6,=8 tan &,
¥
w=p%<
B &
Mo
’
y v
// \\
Ve N
V4 ~
~ M ~,
Vs ~
e ~.
7 ~N
// \\
// g, & \\
// 1 \\
~
/// A a sy
- Ve ~\, \\
rd e SO
~,
7 < /// \\
e ~ Ve ~
// \\
v ~ r H
g \
-~
&

~
FIGURE 3 —Yawed triangular flai-plate lifting surface with subsonie Ieading edges.

The vertical induced velocity at any point on the wing
can be found from equations (16a) and (16b), provided the
distribution of the loading factor (' is known. Setting
C=((6), the downwash is given by the expression:

w,=o————|:f_30(9)df Vel e durt
f C(ode f zﬂd“"] (18)

Since the lifting surface is flat, the function C(8) must be
found such that w.., is independent of w for —8;<<aw<l6,..
The integral equation can be greatly simplified by inte-

| grating the «, variation by parts and then taking the partial

derivative of both sides of the equation with respect to w.
In this manner, equation (18) reduces to

__a_ \fl—w b O(B)JG 1 % C(8)de
O—bcu 2] f—elw g7 o J1—e?J-0 w—0 (19

which becomes
% C(6)d8

bm -0, w—@ (20
The solution of equation (20) can be written
A+ 2
1 i=1 (3'5'7\1)
Z 0(0) =—————5 -
N e ST LS 1)
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and, if the integrated loading of the wing is finite,

Ap+B
VE+6,) (6—6)

Substitution of equation (22) into equation (18) yields the
two relations

@)= (22

w,=‘,==% LAH, (6, 6:) +BH; (6, 6,)] (28)
1]
and
w:=0=2_ﬁ{7— [_AHI (611 60) +BH2 (61’ 60)] <24:)
[1]
where
dw; ;- ;

Hy (6, 60)= 1 wn/(l —w®) (wr—6y) (en+ 90) @)

and

Clwl
w? V(1 —e?) (0 —8) (et 90)

Equations (25) and (26) may be integrated by the standard
methods for elliptic integrals and, after substituting into
equations (23) and (24) and solving for A and B, one gets

Hz(ex, b)) = f - (26)

A=— E‘ILED,Z,_O (6o—61) ’Ja Fa ‘ @,
and —_—
. Vowz=0_ _Z_G‘._. o -
B___ _ﬂ__E,T— 2’6091 ‘JBD_I_ 91 - (28)
where
o ltao—VI—ep =68 (29)

fo-+ 6

and E’ is the complete elliptic integral of the second kind with
modulus /1— G2

The load distribution over the wing can now be calculated
from equations (22}, (27), and (28). It follows that

Ap 20(6) J (Bo—61) 6+ 26,6:
Vo BE"™\ 5,16, | V&6 (6o—0)

Typical load d1str1butions over a yawed wing are shown in
figure 4 for § tan 8,=0.6 and for 8 tan & equal to 0, 0.3, 0.6,
and 0.9. )

Integration of equation (30) over the surface of the
triangular wing determines for lift coefficient the expression

(30)

GtanA

GL— | (31)

where A is sideslip angle and 2A is the a.ngle between the
leading edges. Equation (31) was derived for wings with
subsonic leading edges and supersonic trailing edge and
consequently is valid only for cases for which

p+A < 90°

A+AL p
A—A>S0 | (32)
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FrGURE 4.—Angle-of-attack load distribution over yawed trianguler plan form, 8 tan §;m0.0,

DOWN.WASH BEHIND TRIANGULAR WING IN SUPERSONIC FLOW

The second application will show how doublet distributions
may be employed in the calculation of downwash in the wake
of an unyawed triangular wing with subsonic leading edges.
The expression for the velocity potential will be given in
general form, but in order to avoid detailed analysis the value
of downwash is determined only along the center line in the

plane of the wing.

My
AN y
7/ N,
// \\
// AN
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// % \\
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/
Ve \\\
\.
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7 N // \\
V4 N\ / N\
/ N\ / N\ .
/ N / \ Region
s/ N / \
/ N / N A
/ N\, / \
/ \\ // \
N |/
s~
N
N 1
x Region
B

F1eURE 5.—Trisngular wing and wake together with reglons used in calenlating downwash,

A plan view of the wing and wake is shown in figure 5.
The load. distribution over the wing is found from equation
(30), after setting 6,=6,, to be
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A__‘p 4302(¥E
q "08~' 0’22 — %y
where E’; has the modulus +/1—82 Moreover,

¢=fj v dr

so that the jump in potential ¢,—

(33)

¢: on the surface of the

wihg is

bu— ¢z~—Eﬁtﬁ + 6o*xr —By? (34)
and for points in the wake is

du— ¢z—~E‘rxfpﬁ Ve —B%* (35)

where ¢, is the root chord of the wing. Since the wing and
its wake form 2 discontinuity surface for the perturbation
velocity potential and since for all points on this surface

Ody_ 0¢;
z 0z

it follows from equation (10) that the velocity potential at an
arbitrary point %,y,z is given by the relation

ste,v, =g |[ [@0u—0d (Z12), dedn @9

where 7 is that portion of the wing and wake forward of the
Mach forecone from. the point z, ¥, z and ¢,—¢; isgiven by
equations (34) and (35).

The value of the downwash aft of the wing and along the
z axis will be calculated from equation (36), thus

0
u’:[& qb(m: Y, z)]z=0

=0

is to be determined. In carrying out these calculations, it is
necessary to consider two segments of the # axis behind the
wing:

Region A extends from the trailing edge to the point where
the trailing Mach cones from the tips of the wing interseet
the z axis and thus includes values of z satisfying the in-
equality

g=zr= Co(l-l—eo)
Region B includes values of z for which
co(1+6) =z

The final expressions for downwash in the two regions are
found, after some manipulation, to be

Region A: w_ Ea—(1—EHK, |, E'y—6

w2 =Ed T E,
2 (b K—E _
" =E7, |y Baram (37)

Region B: w_ 2K, , f’ﬁ K—FE 28
Wy 7 E o 7 E k4 -T- 60 ( )
where
Wy induced vertical velocity on the wing

K complete elliptic integral of the first kind

. complete elliptic integral of the first kind with
moduli %y, %,, respectively.

E complete elliptic integral of the second kind

complete elliptic integral of the second kind with
moduli %y, ks, respectively

€0
kl ova
T—0Cy
x—C
ks, ?
€obly

Figure 6 shows the variation of wﬂo along the z axis for var-

ious values of the parameter ;=0 tan §. The asymptotic
values at = « are also indicated and can be shown to agree
with the values of downwash at infinity for & wing with the
same span load distribution in incompressible fiow. The
discontinuity in downwash at the trailing edge is a character-
istic property of supersonic-type trailing edges.

For w;'ng swe:of 45°
& B M
2 .2 Loz
4 £ LO8
.8 .6 I.I6
.8 .8 /28
----Asymptofic values
L0 G -
L1 - ) .
4
8 = = b
w — |
_— 4 =
wy __// . / |
.G
L]
L 8 /
/
4
L Le 4 L6 L8 20 2z 24

x . .
) distance in chords

FiaURE 6.—Variation of downwash on r axis behind a trisngular wing plotted as a funetion
of distance in chord lengths.

Denoting downwash at this point by w, Lagersirom and
Graham (reference 20} have shown that

w,_ E'y—b

T - @9)

A more detailed development of the results shown in figure
6 has been given in reference 21.

TWO-DIMENSIONAL UNSTEADY LIFT PROBLEMS

It has already been pointed out that, in the case of unsteady
motion in a two-dimensional compressible-flow field, the
linearized partial-differential equation for the perturbation
velocity potential can be transformed into the same form
that has been considered in solving steady-state problems
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in supersonic wing theory. This immediately indicates the
possibility that for certain types of boundary-value problems
in the unsteady case an analogy can be established with three-
dimensional lifting-surface problems.

As an example, consider an airfoil that has been flying
at supersonic speed and then experiences at t'=0 an abrupt
angle-of-attack change without pitching. Sinece the angle-
of-attack change is assumed to take place at £ =0, it can be

assumed that previous to this time the induced velocities of .

the wing are zero and only subsequent perturbations are
to be calculated. Throughout the swept area in the 2'¢’ plane
(fig. 1) the vertical induced velocity w.is constant and equal
to —Vya. Elsewhere in the 2’=0 plane there is no dis-

continuity in the value of pressure, that is, g—:,’ is continuous

at 2’'=0. .

Suppose now that the area is a wing plan form and that
the free stream is directed along the ¢’ axis. The character-
istic cones of the unsteady problem become the Mach cones
of the steady-state problem, and the Mach number of the
free stream is /2 since the characteristic lines in the figure
are inclined 45° to the axes. Moreover, the induced ver-

tical velocity is g—:; and the perturbation velocity in, the free-

o¢

stream direction is T A correspondence can thus be estab-

lished between the unsteady problem and a three-dimensional
lifting-surface problem. _

As outlined, the boundary-value problem is one of the
second . kind, that is, w is specified on the wing and
Au=Aw=0 off the wing. In this particular example, how-
ever, the edges of the wing are of the supersonic type and
no interaction exists between.the two surfaces of the lifting
plate so that pressures on either side.can be calculated by
the methods used for symmetrical nonlifting wings. Thus,

from equation (12), for 2/>0. .

o, =Y | dt'y ds'y
‘P(t 2 ¥, 8 ) T Jr _‘/(t/__trl)z__ (xr_xrl)z_zfi (4'0)

and for all 2/

‘P(t,’ 11)’, zl)=_¢(t,; 2},,—'2,)

The expressions for the indicial load coefficient ééﬂ are 'as’
follows:
Region A (between lines ' =t/, ’=0, and &' =¢,— M)
A_p=égt_ e (41a)
q 0
Region B (between lines 2’ =—t, 2’ =¥, and &’ =cq— Mt’)
Ap_ _4e M My'+¢ | VM1
¢ VME1 s Sty T i,
T .z
<§+ arc sin t_'):l (41Db)
Region C (between lines 2’ = —Mt' and ' =—t'
Ap 4o
L= = (41¢)

g JMyg—1

The growth of AEP with time, as obtained from equations

(41a), (41b), and (41c}, is shown in the portion of figure 7
designated “supersonic”. At ¢ =0 the loading jumps to the

value ﬂi"% and is constant along the entive chord. This value

persists throughout the previously denoted Region A and
thus, with advancing time, moves rearward along the chord,

P ol Y Cq , - .
leaving the trailing edge at ¢ iy Qvel the forward

portion. of the chord the familiar Ackeret type of steady-
state loading becomes effective, spreading back from the
leading edge and occupying the entive chord length after
penf

M,—1
tween the two types of constant loading exists, and subse-
quent to this time this transition region moves aft and

Previous to # =ﬂ;—°_|_1 a transition region be-
a

leaves the trailing edge at ¢/= Mc° T
. [V

For purposes of comparison, the growth with time of the
angle-of-attack indicial load coefficient for subsonic flight is
also shown in the part of figure 7 entitled “subsonic.” Since
in this case the lifting-surface analogue involves subsonic
leading and trailing edges, the analysis requires the solution
of a boundary-value problem of the second kind. The
method of Evvard (reference 15) was used to obtain the
results shown. It is to be noted that the expression

Ap_ 4o
g My

holds at #=0 for all values of Mach number.
Figure 8 shows the variation of the indicial lift function
O, (¢") defined by the relation

*

G )= |° éql'i de (42)

Cox Jo

as a functic;n of Mach number and half-chords s (=2_—-—th°t’)
0
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Mt
Cg

Mg

FIGGRE §.—Indicial lift-curve slope for Mach numbers between 0 and 1.4shown to time
required to travel 12 hali-chord Iengths.

traveled. The curve at My=0 was first studied by
Wagner (reference 22) and R. T. Jones (reference 6). Since

the starting value is ﬂ%x C., (t') must initially be infinite.

Immediately afterward, however, it assumes the value = and
then vises to the asymptotic value of 2=. At a Mach number
of 0.4 the starting value of C;, (') is 10 followed by a de-
decrease for the time required to travel approximately one-
half chord length and finally a steady rise takes place to the

2] .
asymptotic value -1/1;—11‘/—1—2 At M;=08 the behavior is
. - Q

similar. The dashed portions of the curves were determined
from. the known variations of the functions end were not
calculated explicitly. The asymptotic values of C;  con-
sistent with the Prandtl-Glauert correction become so high,
howerver, with increasing Mach number that the assumptions
of small perturbation theory are undoubtedly invelidated
near A,=1 for sufficiently large values of s. The initial
portions of the subsonic curves shown in the figure are,
however, valid results of the theory. The nature of the
indicial lift function is somewhat different at supersonic
Mach numbers in that the beginning portions of the curves
are flat. The curves rise afterwards, however, in a finite
time to their steady-state value. From equations (4lsa),
(41b), and (41c) the expressions for C;  (f') are easily cal-
culated for M,=1 and are as follows:

First time interval 0<¢#'<< 1—_1_6"7
¢

Cu ) =1—% (432)

Second time interval 1—_&7LTO<t,<ﬂI:0— 1

€. ) =2 [ﬁ) (%—I—arc sin ﬂ"—?’f"—t)q-

1 - t,Jl_ﬂ:I;]Cu_trﬂfoz_L
——"—‘"ﬂy 71 arc cos e 1
l e
i WGP | (43b)
Third time interval Mf—"_l <t
Co ()=~ (430)
fa JAME—1

Some of the above results, along with further developments
involving the entrance at supersonic speed of an unrestrained
airfoil into a gust, have been given in reference 7.

SWEPT-BACE WENGS AT Mp=1

Consider now the special form of the basic differential
equation for the case My=1. As given in table I, equation
(E), the velocity potential satisfies Laplace's equation

¢W+ ¢zz=0

in two dimensions. The boundary conditions need, there-
fore, to be given along strips normal to the free-stream direc-
tion. Equation (7) expresses the solution of the equation in
terms of two-dimensional sources, sinks, and doublets where,
in these variables,

In ra=lny—pit(&—0)*

The proposed problem is the determination of the angle-
of-attack load distribution over a swept-back lifting plate,
the leading edges will be assumed straight lines while the
trailing edge will, for the time being, be left arbitrary. The
nature of the wing is thus indicated somewhat arbitrarily in
figure 9 (a).

Denoting the semivertex angle by & so that the equa-
tions of the leading edges are

Y=z tan =Lmz (CTY)
it follows from equation (7) that since

Odu_0¢:
0z Oz

the velocity potential is given by the relation

mz A ,
s, = [ D 45)
where
Adu(e0)= [ Am(am,00dn

It is then possible, after integrating equation (45) by parts
and imposing the condition that Ade(z,y)=0 at n=+tma, to
caleulate the derivative of ¢ with respect to z and thus obtain
for w,, induced vertical velocity on the wing, the expression
—1 (me A'L’u(ﬂ), 71) dn (46)

’w0=§"’_— -mz Y—7
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(a) Plan form with arbitrery trailing edge.
(b) Plan form satisfying Kutta condition,
FIGURE 9.—Swept-back wings for analysis at Mdg=1.

This integral equation is to be solved for Aw, the velocity
wy being assumed constant on the wing and equal to —Vya
where o is angle of attack. The load distribution can then
be calculated from this solution by means of the relation

Ap_ 2 , Oy _
q V(,A 2z V, axf Avo(z, n)dn 47

The remainder of the analysis can best be divided into two
parts: The first case treating values of z between 0 and ¢,
the second dealing with the remaining values of  on the
wing.

Case I: 0Sz=<e,.—Since the leading edges of the wing
are of subsonic type, singularities in pressure occur at these
edges so that the required solution of equation (46) is of the
form

Ai)o (37, y) 1/m2$2 y

Substitution into equation (46} and use of the fact that
Adolz, ¥) is an even function of y leads to the result A 0,
B= — 2w,. Hence :

Ao, ) =—2wymF—y¢ T (49)

AYBy gy
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and
Ap _ —4dwems _ 4amix (50)
¢ VeymBi—p Jm—yt

Case II: cy=z.—Let the equation of the trailing edge be
y=a(z) or z=a*() (51)
Using in equation (46) the fact that
Avg(z,y) =—An (z,—Y)
the expression for w, becomes

—1 facr) Znhvdn_ 1

W= s mx 217A‘Uo(lﬂ
" 2r v—y? 27

‘)
G

If, on the surface of the wing, Ady(z,7) is known, then, in
the wake, the discontinuity in the velocity potential ie
Adola*(n),n] since no contribution to the jump in potential is
made past the trailing edge. It follows that if on the wing

Ao (@, m) =F (z,7°) (53)
then, in the wake
Avo(z, ) = b¢oa(:, 7) O0g* _[_ A a¢o§;’, ) _ (53)

_VoaApla oa*
| N
Substituting equations (53) and (54) into equation (52) and
introducing the Kutta condition that loading at the trailing
edge is zero, one gets the modified integral equation

“*f[a*(\f'?r_x) 7 4
21r c—a a1 21r

[ g,

g— 0y

Wy=——5_
(55)

where the variables o, o1 now replace 32, #%, respectively.
The function
a—a(x)

f@,0) =2wo\/ (am—_ (56)

satisfies- equation (55) and it remains to determine a(x) so
that pressure is zero at the trailing edge. But from equation

(63)
2 __n2
A¢($:y)=2woﬁ:r %;—_zmz—f_%
and thus
A 2?2 2
8ED g0 b 52 P+ mB ) +L L |

| (57)
where k’=i- and E,¢), F(k,¢) are incomplete elliptic

mtegrals Wlth ith modulus k= +1—k" and argument Y=arc
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At the trailing edge y=a(z) and
Ap_ ., da
P ta (—L o K+mE)

where the elliptic integrals are now complete. If load co-
efficient is set equal to zero, the differential equation

d 2 B
& a B (38)

F]
where k =-\/ 1 _ma_zx“” follows.

The integration of equation (58) leads to the shape of the
trailing edge for which the Kutta condition is satisfied.
Figure 9 (b) shows the plan form of the wing. It can be
shown that the slope of the extended trailing edge approaches
the slope of the leading edge.

_é_g 5§\

N I

FicUrE 10.—Load distribution over swept-back plan form at Mo=1.

In figure 10 the load distribution is shown at three span-
wise stations for the case when the wing is cut off along a
line normal to the free-stream direction. Over the center
section of the wing the Ackeret type of distribution exists.
The remaining sections have discontinuities in slope of the
loading at the point where the chord line is cut by the Mach
cone arising at the trailing edge of the root chord. This
behavior of the loading has been nofed elsewhere for swept-
back wings at higher Mach numbers. (See, e. g., reference
23.)

Lift coefficient (%, of the wing is given by the expression

1 (® T.E. A
CL=§f_bdyL.E' ?p dx

where S and b are, respectively, area and semispan of the
wing and the first integral extends from the leading edge to
the trailing edge. This equation may be rewritten as

2 ]
C=gy |, AB(T-E.9)dy (59)

where A¢ (7. E., y) is the jump In potential at the trailing
edge and thus equal to the circulation function I (y). The
following results are obtained:

P(y) =2'mVuCoa: 0 §y=.<-A
T'(@y) =2Voeb [E(k,¥) —(1—E) Fk,¥)], ASy<b (60)

—
where k=\/ 1 ——% and A is the lateral distance to the in-
board tip of the wing. (See fig. ¢ (b).) In figure 11 the value

‘of
2
il
N 3 /
1]
o
~]
o
o .2 4 6 8 10 L2 14

é(/ Co fal’; 60

FIGURE 11.—Spanwise distribution of circulation for swept-back wing at My=1, 5=1.325 ¢o
tan 5g and AR=4.57 tan &.

r Y
Voo tan & € tan &
semispan b=1.325 ¢, tan § and aspect ratio AR=4.57 tan
8. Results of the integration of equation (59) are shown in

is plotted as a function of for a wing with

C
n Za_ ig plotted as a function of AR
an 50

figure 12 where tans,

4.0 4.4 4.8 52 56 6.0 8.4 6.8
AR/fon 6e

FIGURE 12.—Lift-curve slope as & function of aspect ratio for swept-back wing at My=1.

The methods presented here can be applied to the case of
the swept-back wing with tips cut off parallel to the free
stream. In this case a Mach cone originates not only at
the trailing edge of the root chord but also at the intersection
of the leading and the lateral edges. On the portion of the
wing downstream of this Mach cone, the load distribution is
modified so that an abrupt discontinuity exists at the Mach
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cone and zero loading is effective over this part of the wing.
A similar effect on this type of swept-back wing has also
been noted at higher Mach numbers in reference 23.

AuESs ABRONAUTICAL LABORATORY,
Narional Apvisory COMMITTEE FOR AERONAUTICS,
MorrrrT Fiewp, Cavir., Dec. 22, 1948.
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