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THEORETICAL SYMMETRIC SPAN LOADING AT SUBSONIC SPEEDS
FOR WINGS HAVING ARBITRARY PLAN FORM

By JorN DeYouxg and CaarLes W. HarrER

SUMMARY

A method is shown by which the symmetric span loading for
@ certain class of wings can be simply found. The geomelry
of these wings is limited only to the extent that they must have
symmetry about the root chord, must hare a straight guarter-
chord line over the semispan, and must have no discontinuities
in twidt. A procedure is shown for finding the lift-curze slope,
pitehing moment, center of lift, and induced drag from the
span load distribution. A method of accounting for the effects
of Mach number and for changes in section lift-curve slope is
also given.

Charts are presented which give directly the characteristics
of many wings. Other charis are presenied which reduce the
problem of finding the symmetric loading on all wings falling
within the prescribed limits to the solution of not more than four
simultaneous equations.

The loadings and wing characteristics predicted by the
theory are compared to those given by other theories and by
erperiment. [t is concluded that the results given by the subject
theory are satigfactory.

The theory 18 applied to a number of wings to exhibit the
effects of such rvariables as sweep, aspect ratio, taper, and
twist. The results are compared and conclusions drawn as to
the relatire effects of these variables.

INTRODUCTION

Theory predicts and experiment has shown that the effects
of compressibility on wing characteristics can be delayed and
diminished through the use of wing sweep and/or reduced
aspect ratio. Experiment has also shown that if sufficient
wing sweep or reduction in aspect ratio is used to reduce
compressibility effects, then the characteristics of the wings
will be different from those of conventional wings. The
importance of being able to predict the characteristics of
these heretofore unstudied plan forms in incompressible
flow is obvious. Not only does it become possible to make
a systematic study of the effects of major plan-form changes,
but also a base is supplied from which the subcritical effects
of compressibility can be predicted.

Lifting-line theory in the past has been so modified and
extended that the characteristics of wings having no sweep,
moderate to high aspect ratio, and any taper ratio can be
determined readily with good accuracy. For studies re-
quiring & higher degree of accuracy, lifting-surface theories

have been used, but generally it has been found that the
additional complexity of these methods has not sufficiently
improved the predictions to warrant common use.

Lifting-line theory, however, proved wholly inadequate
when used to predict the characteristics of wings having
appreciable angles of sweep and/or very low aspect ratio.
Lifting-surface theories, in contrast, made satisfactory pre-
dictions of the characteristics of these wings although the
extent of the computing labor involved prevented the under-
taking of any general study.

Continuing studies of the problem resulted in the theory
first satisfactorily presented by Weissinger (reference 1} for
the case of wings having a straight quarter-chord line across
the wing semispan. It was found that this approach, which
can be considered a simplified lifting-surface theory, enables
rapid and satisfactory predictions to be made of the incom-
pressible-flow characteristics of wings having swept andfor
low-aspect-ratio plan forms as well as those of more con-
ventional plan form. Further, it was found to be admirably
suited for the problem of undertaking a systematic study of
the effects of plan form on wing characteristics. Develop-
ment of the method and procedures for its application to-
gether with the results of applying it to study the charac-
teristics of a series of wings have been presented in references
2, 3, and 4. It is the purpose of this report to combine and
extend the material contained in these three references.

NOTATION
m number of span stations at which circulation and
downwash are found
n en integer defining a spanwise station on the wing

quarter-chord line for which the value of circula-
tion is determined

v an integer defining & specific point within the wing
plan form for which the boundary condition of
no flow through the wing is applied

7 dimensionless lateral coordinate measured per-
pendicular to the plane of symmetry, fraction of
semispan

fe.p. spanwise location of center of pressure

Ne.p.q spanwise location of center of pressure due to addi-
tional lift on the wing

] trigonometric spanwise coordinate (cos-! ), radians

&n value of ¢ at station n (cos’l %ﬂ—')
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wing angle of attack measured in a plane parallel
to the plane of symmetry, degrees or radians

angle of attack at station », degrees or radians

angle of attack at station » for zero net lift on the
wing, degrees or radians

angle of attack of the wing-root section for zero net
lift on the wing, degrees or radians

angle of twist of the wing at station » measured
relative to the wing-root section (ér—a.o Qrg),
degrees or radians

dimensionless circulation (HI}), identical to the load

. L C . .
coefficient 5’5; at spanwise station n

value of @, for zero net lift on the wing

value of @, due to additional lift on the wing

coefficient dependent on wing geometry and in-
dicating the influence of arbitrary loading at span
station 7 on the downwash angle at span station »

coefficient dependent on wing geometry and in-
dicating the influence of symmetric loading at
span station » on the downwash angle at span
station »

span of the wing measured perpendicular to the
plane of symmetry, feet

local chord of the wing measured parallel to the

plane of symmetry; feet
loceal chord through point », feet

g (S)a,
,1 -1

)
-1

, Teet

. tip chord
taper ratio (roo T chor

. (B
aspect ratio (S)
wing area, square feet
geometric sweep angle of the wing quarter-chord
line, positive when quarter-chord line is swept
aft of a line normal to the plane of symmetry,
degrees

compressible sweep parameter (Aﬁ=tan‘1 tag A)

section lift coefficient (ql—c)

section lift-curve slope, per radian or per degree
section lift coefficient for zero net lift on the wing
section lift coefficient due to additional lift on the
wing

ift
wing lift coefficient 5
lift-curve slope, per radian or per degree
moment

\gSMAC.

pitching—moment. coefficient for zero net wing lift
on the wing

pxtclung-moment coefficient due to addltlonal lift
on the wing

pitching-moment coefficient

; . induced drag
induced-drag coefficient (_T_)

% induced-drag coefficient due to basic loading (zero
net lift on the wing)
induced-drag coefficient due to additional loading
(net lift on the wing)
longitudinal position of aerodynamic center, meas-
ured from the leading edge of the mean acro-
- dynamxc chopd, in peréent of the mean acro-
dynamic chord
_eirculation, square feet per second
absolute distance from a vortex to a downwash
point, measured perpendicular to the vortex, feet
density of air, slugs per cubie foot
_induced velocity, perpendicular to the mean chord
line of the wing, positive for downwash, feet per
second '
free-stream velocity, feet. per second
_dynamic pressure, pounds per square foot
compressibility parameter (/1—A7%)
Mach number
ratio of the experimental sectwn hft,-cuxve slope ey,

to the theoretical value of £, both taken at the _

g
same Mach number
value of « at-spanwise station »

Wi eometric parameter d,(i)(—é—)
£8 P wN\ap
scale factor

e

g8
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METHOD
THEORY AND LIMITATIONS

A detailed mathematical development of the method is
given in the appendix to this report. However, as a pre-
liminary to the discussion of the use of the method and the
results obtained from it, an outline of the theory and its
application is given here.

The wing is replaced by & plate of zero thickness but having
a plan form and twist identical to that of the wing. It is
assumed that the chordwise distribution of loading on the
plate can be concentrated into a lifting line lying along the
quarter-chord line of the wing. The method as developed
here requires that the lifting line and, hence, the quartor-
chord line of the wing in question, be a straight line over
each semispan. At the plane of symmetry the method
allows an angular discontinuity of the quarter-chord line to
exist which therefore enables consideration of any degree of
wing sweep.! The boundary condition which fixes the span-~
wise variation of the circulation is that the slope induced in
the flow field by the downwash normal to the plate due to
the lifting line and its trailing vortex sheet shall be equal to
the slope of the plate with respect to the free stream at
specified points (control points) within the wing boundary,
or, in effect, that no flow shall occur through the plate at
the control points. On the basis of two-dimensional theory,
the chordwise location of these control points is chosen to

! It should be noted that this specifies that the angle of aweep Is taken with respect to the
quarter-chord line. In this report it will be understood that sweep angle refers to swoep of
the quarter-chord line,
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be at the three-quarter-chord line.? As will be shown later,
this implicitly specifies that for each section the lift coefficient
increases at the theoretical two-dimensional rate of 2x per
radian change in true angle of attack of the section. The
spanwise locations of the control points are chosen for
reasons of mathematical etped1ency alone since only at
certain fractions of the w1ng semispan is it convenient to
solve the integral expressions for the total downwash.

The method treats the lifting line and its trailing vortex
sheet as being continuous. However, explicit values for the
circulation strength are found only for those spanwise points
on the quarter-chord line which correspond to the spanwise
location of the control points. The total number of control
points m can be as great as desired. Comparison of the
loadings predicted where various values of m are used shows
that little change occurs where m is made greater than seven.
Further, comparison with experimental results has shown
that as few as seven (one at midspan and six distributed
symmetrically about this point) w1ill enable good predictions
to be made of the span loading of wings without sharp dis-
continuities in span loading as woutld result from partial-
span flaps. All of the material presented in this report is
based on the seven-point solution with the exception of the
appendix which is not restricted.

Using the vortex pattern substituted for the wing and
applying the boundary condition allows & set of simultane-
ous equations to be formed, each of which involves (1) the

slope of the flow (%; )'(or angle of attack of the plate ? «,)
induced by the total downwash at each control point », (2)
the load coefficient (G =

wise point n on the quarter-chord line, and (8) influence
coefficients A,, which relate the influence of the circulation
&t any point n to the downwash at any point » and are a
function of wing geometry only. The method shows that
for an arbitrary loading the equations have the following
form:

of the lifting line at each span-

(%) —a =3 A G, v=12, . . .

A=l

m

1)

¢ It is important for the reader to realize here that & choice has been made between a number
of possible procedures. These possibilities arise from the fuct that the exact location, on a
tapered wing, of constant-percent-chord lines Gepends upon the orlentation of the reference
line slong which the chord Is measured. The orlentstion of the reference line is osually
chesen such that an airfoll section so deflned will bave aerodynamic characteristics closely
resembiing those found two-dimensionslly for the same section., This then enables an esti-
matlon of the effect of changes in section characteristics on over-all wing characteristies. For
unswept wings, there Is little reason to consider any orientation of the reference line other
than parallel to the free-streem direction. However, when a wing is swept, the question of
orientation of the reference chord cannot be so easily answered. Inmsufficlent experimental
data exists to determine the most satisfactory orientation, and strong arguments can be
presented for at least two orlentations, namely, parallel to the free atream and perpendicular
to some swept reference line. In the present onalysis the reference chord was chosen as being
parallel to the [ree stream since it greatly simplifies the mathematical procedure and since
conslderation of the dlfferences expected from use of the alternate cholee indicates they will
be small.

3 The reader should note that the boundary condlition Is given by w,= 1/, &in a», from

which (%), i1s seen equsl to sin ay. ‘The substitution of a» for 3in «, hus the effect of

increasing the value of loading on the wing abovae that necessary to satisfy the boundary
condition. However, the boundary condlilon was fixed assuming that the shed vortices
moved downstream in the extended chord plane. A more realistie picture is obtalned If the
vortices are sssumed to move downstream In a horizontel plane from the wing trafiing edge.
It can be readily seen that, if this ocours, the normal component of velocity induced by the
tralls at the three-quarter-chord Ilne is reduced and, 1f the boundary eondlition s to continue
to be satisfied, the strength of the bound vortex must increase. It follows that substitution
of ar for sin c» then has the effect of acconnting for the bend up of the trailing vortices. Itls
not known how exnct the eorrection Is, but caleulations and experimental verificatlon show it
of to be the correct order.

Each equation gives the downwash angle at the control
point », the spanwise location of which is defined by

=c
7=C08 ¢

where the downwash results from the circulation at m points
n on the wing the spanwise locations of which are defined
also by .

7=C0s g
In the case of symmettically loaded wings, each panel pro-
duces an identical equation for the corresponding semispan
point. Since only one of these identical equations is of
value, the total series reduces to the equations correspond-
ing to the wing midpoint and one panel. For the seven-
point solution, equeation (1) is therefore written

4
=2 Gy Gy, v=1,2,3,4

=]l

@

where a,, represents the influence coefficients for the sym-
metric seven-point solution. The set of four simultaneous
equations so formed can be easily solved to obtain the dis-
tribution of total load (in terms of @,) on any wing for which
the angle of attack at each spanwise station, sweep, and
chord distribution are specified. The distribution of load
is specified at only four spanwise stations, namely 7=0.924,
0.707, 0.383, and 0 (n=1, 2, 3, and 4, respectively). Values
of loading at additional spanwise stations can be found by
means of the interpolation funetion given in the appendix
(equation (A52)).

The simplicity of the procedure depends to a largeextent
on the fact that the solution can be found in terms of the
coefficients a,,. Even where these must be computed for
each wing plan form the method offers computational ad-
vantages over other equally accurate methods. However,
because these a,, coefficients are a function of geometry alone,
it is possible to relate them in a simple manner such that a
limited amount of computation will give the a,, coefficients
for all plan forms to which the method is applicable. Details
of this procedure and the results of applying it are discussed
in a later section of the report. '

The method assumes that the flow follows the wing surface
and makes some allowance for the trailing sheet aft of the
trailing edge becoming horizontal® Hence, the method
should apply to higher angles of attack with considerable
accuracy, provided the flow remains along the wing surface.
The method essumes incompressible flow but it will be shown
how the effects of compressibility can be included within the
limits of applicability of- the Prandtl-Glauert rule. The
method assumes the theoretical section lift-curve slope of
2x (or with account teken of compressibility, 2«/8) but a pro-
cedure will be shown which accounts for the variation in
section lift-curve slope from the theoretical velue.

It is clear from the foregoing outline of the theory that the
method can account for variations in those geometrical char-

% Sce footnote 5.
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acteristics of wings, namely plan form and twist, which have
the greatest influence on the spanwise distribution of lift.
With the exception of variations in ¢, the method cannot
directly account for any effects dependent upon the geometry
of the airfoil section even though these maay affect the span
loading. The substitution of uniformly cambered sections
for uncambered sections across a wing span is assumed to
change only the wing angle for zero lift and this change is
assumed equel to that shown by the section. The substi-
tution of variable camber is assumed equivalent to twisting
uncambered sections.

PROCEDURE FOR DETERMINATION OF AERODYNAMIC CHARACTERISTICS
FROM SPAN LOADING

The foregoing section has shown a method by which the
symmetric span load distribution of any wing having a
straight quarter-chord line over the semispan can be deter-
mined from & knowledge of wing geometry only. With
such loading determined it becomes possible to quickly find
other characteristics. It should be noted, however, that
these characteristics are derived directly from the wing load
distribution and that no further aerodynamic theory is in-
volved.

It-is possible to find the gross load distribution and re-
sultant characteristics directly for a wing at any angle of
attack and having any plan form and twist. Past experience,
however, has shown that gross characteristies can better be

studied if the basic and additional type loadings are handled -

separately. Since the two types of loading are additive,
this procedure is permissible.

Basic loading is that existing with zero net lift on the wing
and is, therefore, due to twist or effective twist * (e. g., span-
wise change in camber) of the wing-chord plane. The basic
loading and characteristics dependent on it are unchanged by
the addition of load due to uniform spanwise wing angle-
of-attack change and are equel at all angles of attack to that
found for zero net lift on the wing.

Additional loading is that due to equal geometric angle-of-
attack change at each section of the wing. The distribution
of additional load is a function only of wing plan form and is

thus independent of any basic load due to twist existing on |

the wing. The magnitude of the additional load is & function
only of angle of attack of the wing and thus each equal
increment of angle of attack will give the same increase and
distribution of additional! load irrespective of the gross load
on the wing. The wing characteristics due to additional
load of any given plan form are thus a function of the lift
coeflicient or angle of attack of the wing.

In the following sections the procedure for determining
basic-type span load distribution and the characteristics
associated with it (denoted by a subsecript 0) is first presented
and then the procedure for finding additional-type span load
distribution and the associated characteristics (denoted by a
subscript @). Finally, it is shown how characteristics due
to gross load distribution (denoted by absence of a subsecript)
can be found.

i Hereafter reference will be made to twist only. The reader will understand that effective
twist will be handled in en {dentical manner,
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PROCEDURE FOR DETERMINATION OF AERODYNAMIC CHARACTERISTICS
DUE TO BASIC LOADING

Span load distribution and angle of zero lift for arbitrary
twist.—It is not—possible to obtain the distribution of basic
load on a twisted wing directly from equation (2) since the
values of «, for each station are not generally known for the
condition of zero net lift and thus, as written, eight unknown
values appear. However, only one unknown has actually
been added to the four unknowns (the individual loads of
equation (2)) since, while four values of «, appear, they are
related to one another through knowlege of the twist distri-
bution. To form the fifth equation required for the solution
in addition to the four represented by equation (2), use is
made of equation (A46) of the appendix which gives the
total lift in terms of the four individual loads. Thus

- 3 -
=" (G2 23 Gusin 64) @)

Equating this to zero (basic loading) and with equation (2),
a set of five simultaneous equations is formed, the solution of
which will give the values of loading at the spanwise points
and the angle of zero lift of the reference station. Thus

3
0=G,+2 Ex G, sin ¢,
™
4 @
ev+arato=n2=1 @G, v=1,2,3, 4

Solution of the five equations will give values of the angle of
zero lift of the reference section and the four individual loads.
The angle of attack of sections other than the reference sec-
tion is determined from the twist.

Some simplification of this process can be made, however.
When equated to zero lift, equation (A46) involves only the
four individual loads, and it is therefore possible to express
one load in terms of the other three. Elimination of one
unknown in the remaining equations enables & solution to
be made for the angle of zero lift and three individual loads
from a set of four simultaneous equations. Finally, since
the individual section angles for zero lift are each expressed
as the sum of the reference angle and a twist angle (which is
zero for the reference station), one equation and one un-
known (the reference angle) can be eliminated by subtracting
one equation from the remaining three. Values can then be
found for the three loads from solution of only three simul-
teneous equations, with the angle of zero lift for the refer-
ence chord and the value of the fourth load found from the
previously eliminated equations.

The exact form of the equations depends on the section
chosen as a reference. If, as is customary, the root is taken
as a reference, then

ay=ayt+e=ante (5

‘where ¢, is the angle of twist at station » with respect to

station 4, and the set of equations required for the solution
take the following form. The three simultaneous equations
giving the three outboard loads are
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€§g= [au_aﬂ— 0.765 (au—a-“)]G]o'*‘ [Glg—au—]. 414 (au—'a-g)}azn‘l' [Gls—a'g— 1.848 (au—a-.“)]Gso

€2=[(131—a41—0.765 (ag4—a44)](?10—|- [ng—aﬂ— 1.414(@24—41“)]Ggo+[ag—a“—1.848 (am—a“)]Grso (6)

Q=[aal_au— 0.765 (au,'—'a«“)]alo-l- [asg_a.ﬂ—] 414 (as.i'—au)]azo-l' [aaa—a-g— 1.848 (au—a.u)laso

The equation giving the root load is

The equation giving the angle of the root section for zero
lift is

a’o=°‘4n= (aﬂ_0-765a44_) G]o‘l‘ (03—1.4:14&“) G’O
+ (aau— 1.848(1“) GSD (8)

The dimensionless circulstion &, can be related to other
forms of Ioading coefficients by

1 [ey c1,e
=24 ca.,),. <

Conversely, if the load at each of the four span stations is
known for the case of zero wing Lift, it becomes a simple
matter to solve equation (2) directly and determine the
required wing twist.

Induced drag.—With the values of loading found at the
four spanwise positions, the induced drag can be found from
the following equation which is derived in the appendix.
In terms of the nondimensionsl circulation @,

5 @?
Co =5 | @it Prt Pt 50— 61, (0.056 G
0.78964) — 63, (0.7336,,+0.8456, | ©)

Through use of equation (4), the induced drag can be put
in terms of only three values of @,. Thus

ODio= ﬁ'A [0.668G21°+ sto'l" 2.082 Gzao—l- (0.2 1 5@10"!—
1.44:2030) G’O—[_ I.OGIGIGG%] (ga)

Pitching moment.—It is quite evident that, as a wing is,

swept, the distribution of span load will increasingly affect
the wing pitching moment where this is measured about an
axis normal to the plane of symmetry. Correspondingly, as
the wing is swept, any changes in the chord load distribution
exert relatively less effect on wing pitching moments. Fur-
ther, since the possible distortion of a chord loading from the
conventional is not great, the span load distribution begins
to control the wing pitching moments even at small angles
of sweep. Since the subject method gives, as will be shown,
good predictions of span load distribution, then it is safe to
assume that good estimations of pitching moments should
be possible.

The moment produced by basm—type load distribution is
in the form of a pure couple since zere net load exists on the

wing. It follows immediately that the magnitude and sign.

of the moment are independent of the fore-and-aft location
of any reference axis normal to the plane of symmetry.
Using the expression for continuous loading (equation (A17)

of the appendix) and summing the moment of each wing
element about an arbitrary axis, the value of the coupledue
to the basic load distribution ean be found. About an axis
normal to the plane of symmetry and in terms of dimen-
sionless circulation this is

Ab
Coy=—57 o7 ton A (0.1386;,-0.108G,+0.135G,,+
0.0166,) (10)

If equation (4) is agein used to eliminate @y, equation (10)
becomes

Ca ten A(0.126G;,+0.175Gy+0.106G,)
(10a)

PROCEDURE FOR DETERMINATION QF AERODYNAMIC CHARACTERISTICS
DUE TO ADDITIONAL LOADING . .

_ . Ab
o T M.AC.

Span load distribution and lift-curve slope.—Since the
additional loading distribution for wings of a given plan
form is the same, regardless of twist or camber, it is necessary
to consider only the case of the flat wing. Further, since
the magnitude of the additional load varies directly with
angle of attack, it is only necessary to consider unit angle-
of-attack changes as all other loadings will be directly pro-
portional to this. Thus, to find the additional load distri-
bution, equation (2) is written in the following form

2, y=1,2,3,4 (11)

1= Eam

Rn=1

Solution of the set of four simultaneous equations gives the

G, . .
values of circulation per radian - &b the four spanwise
stations =0.924, 0.707, 0.383, and 0.

coefficient gives the wing lift coefficient for one radian

change in angle of attack, or in effect, lift-curve slope.
Thus, with equation (3)

G,

dOL OL¢=TA 3a

a
F2=Cr="0 (2+1.848 241414

26 Gld
5 —24+0.765 —*
44

(12)

G,
The dimensionless circulation per radian -, can be ex-
pressed in the more usual loading-coefficient form through
the relations
Ge, Cu, (i A
-;__ 24'1 ZLcmr n La (

Induced drag.—The induced drag due to additional load-
ing can be computed at any lift coefficient exactly as was
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the induced drag due to basic loading. Values of loading
at the four spanwise points are found for the particular
value of O and substituted in the appropriate form of equa-
tion (9). If the more usual expression for induced drag as

in the following expression which differs only algebraically
from equation (9):

i () + (2 + (&) 3 (%)
T —20;, +3
G (o 056 —* G‘“ G’“)
a
_G’s Gla Gaa
= <0.733 —£+0.845 7):] (13)

Spanwise center of pressure.—Substitution of the values
for individual loads in equation (A17) of the appendix gives
an expression for the continuous distribution of additional
load. Integration of the increments of bending moment
about an axis lying in the plane of symmetry will give total
root bending moment. Then, with knowledge of the total
load, an expression giving the spanwise location of the center
of load (on the quarter-chord line) can be found. In terms
of the values of the dimensionless circulation, this expression
is (from reference 5)

G G,
0.352 ——5+0 503 —+0 344 +0 041

L N

G'
0.383 —
a

Gs,,

+0 500 —

Either of the two loading coefficients can be used directly
q
in place of the values of —:33'-

Pitching moment.—The value of the pitching moment due
to additional-type load can be found exactly as was that due
to basic load. However, account must be taken of the fact
that the value of the moment is directly dependent on both
the position of the reference axis and the amount of addi-
tional load. This can be accomplished directly by using
the results of the previous section which gave the spanwise
position of the center of pressure. Since the center of pres-
sure is placed by the method on the wing quarter-chord line,
it is simply a matter of geometry to locate the longitudinal
position of the center of pressure with respect to any reference

C .
axis. The value of the moment-curve slope Tm‘ is then
L
simply the difference between the longitudinal position of this
reference axis and the longitudinal position of the center of
pressure expressed as e fraction of the mean aerodynamic
chord.

PROCEDURE FOR DETERMINATION OF AERODYNAMIC CHARACTERISTICS
DUE TO GROSS LOADING

Gross loading must be considered when a twisted wing is
carrying other than zero net lift. Since the load distribu-
tion is the sum of a constant and a variable, its shape varies

o, O

with lift coefficient and thus the resulting characteristics
must generally be determined at each lift coefficient. For
the most part, excepting possibly the effect on the character
of wing stall, the effects of twist on aerodynamic character-
istics are of minor importance compared to the effects of
sweep, aspect ratio, or taper ratio. However, where the
twist varies with load due to the clastic properties of the
wing, careful consideration must-be given the gross loading
if a true picture of the characteristics is to be obtained.

Span load distribution.—Since basic and additional load
are additive, the gross load distribution at a given (. is
simply the sum of the two. The magnitude of the total
load is equal to the value of the additional load. Thus, the
gross load coefficient is given by Gn=Gx +Gs,.

It is sometimes of importance to determine the twist
required in & wing to have & given gross load distribution
at a particular lift coeficient. If this distribution is chosen
and the additional load distribution for the wing correspond-
ing to the particular lift coefficient is subtracted from it,
then the necessary basic load distribution is defined. As
noted previously, the twist required is readily determined.
For wings having pronounced sweep or very low aspect
ratio, the twist required to give load distribution approaching
the desired elliptical may become great even where the
distribution is desired at a lift coefficient of only 0.2 or 0.3.

Lift-curve slope.—If the twist is constant, the lift-curve
slope for the wing is that found for the untwisted wing.
However, if the twist varies with load, then the lift coefficient
must be determined for each angle of attack in order to find
the lift-curve slope. The required values of the lift coeffi-
cient can be determined from equation (3) once tho values
of ¢, are known for each angle of attack.

Induced drag.—Total induced drag can be found by
substituting the values of total loading coefficient in equa-
tion (9). It is, of course, impossible to-make Cp, & function
of € when twist is present since Cp, is & function of load
distribution and this varies with each lift coetﬁuent (Note:
On,?éon,ﬂ'l"cnt J) o

Pitching moment.—The gross pitching moment is found by
adding diréctly the pitching moment due to basic lift to the
pitching moment due to additional lift. "This-gross char-
acteristic must be carefully examined if twist is a function of
total load or dynamic pressure. In these cases a new Lwist
and the pitching moment due to basie lift must be found for
each flight condition. It is possible the resultant changing
value of basic load moment can be of sufficient magnitude
to seriously affect the stability of an airplane.

CORRECTION FOR SECTION LIFT-CURVE SLOPE

‘The development of the basic theory involves the assump-
tion that each section on the wing maintains a lift-curve
slope of 2=. This is implicit in the choice of the three-
quarter-chord line as the location for the control points. It
may be desirable at times, however, to consider the cffcets
of deviation in lift-curve slope from the theoretical value of
2r. How this can be done by moving the control point from
the three-quarter-chord line is shown in the following
discussion, .
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The logic underlying the choice of the three-quarter-chord
line as a location for the control points can be shown as
follows. The velocity w induced at any distance % from an
infinite vortex of strength I' can be expressed as

oL
" 2xh

The circulation is in turn related to the section lift coefficient
¢; of a section through the expression

l—pI‘V—-c; oV

From these two expressions it can be found that

(7))

It can be seen that the term % indicates & change in the

direction of flow with respect to the free-strearmn direction,
which change decreases with distance from the lifting line.
If the lifting line is assumed to be replacing a plate insofar
as lift is concerned, then simplified lifting-surface theory
requires that, at some distance from the lifting line, the
direction of flow must be parallel to the plate. In effect,
then, the induced downwash angle becomes equel to the
angle of attack of the plate. It remeins {o determine how
far aft of the lifting line the downwash angle must be meas-
ured in order to properly relate the increase in circulation
to the change in angle of attack of the plate. From the
foregoing expressions and assuming smell angles, the follow-
ing relation can be written:

a=(am)=+()

Now, if a section lift-curve slope of 2« is assumed, it is
evident that (%’) must equal % or that A is equal to % ¢, thus
fixing the point where no flow occurs through the plate at
%c eft of the lifting line or on the three-quarter-chord line.

It follows directly that, if a lift-curve slope is less than
2x, then the control point should move forward of the three-
quarter-chord line, and if greater, aft. Thus, adjustment
can be made for changes in section lift-curve slope at each
of the four control stations. The procedure for doing this
will be shown in the application of the method. It is not
clear just how well this procedure will account for changes
in section lift-curve slope resulting from separation of flow.
Therefore, some caution should be used in interpreting
results obtained from this method where large changes in
lift-curve slope from the theoretical are involved.

In using this lift-curve-slope correction, it must be real-
ized that an attempt is being made to impose considerations
of section characteristics on a theory which cannot rigor-
ously allow such considerations. The question of the ap-
plicability of the correction becomes of particular import-
ance where the wing has large values of sweep of the quarter-
chord line. As the subject theory is developed, the sec-
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tions containing the control point and the point at which
load is determined lie in a line parallel to the free-stream
direction. Thus any considerations of section character-
istics can be applied only to sections lying along these lines.
However, simple sweep theory indicates that it is more
correct to make the contro]]mg airfoil section that one lying
along a line hormal to the wing quarter-chord line. These
two sections are quite different, of course, if sweep is present.
If no taper is present, their thickness distributions are the
same, but their thickness ratios vary by the cosine of the
angle of sweep. If taper is present, both thickness distribu-
tion and thickness ratio vary.

Study of the problem has so far indicated that neither the
approach of simple sweep theory nor of the subject theory
is correct insofar as choosing the controlling airfoil section,
but rather that the controlling section lies somewhere be-
tween these two limits and varies with span position. In
view of this, therefore, it should not be expected that true
account can be taken of changes in airfoil-section character-
istics. However, it is believed that use of the procedure
proposed herein will indicate the trend of the changes in
over-all wing characteristics to be expected from changes in
section characteristics. Until such time as more detailed
analytic and experimental studies of the problem are com-
pleted, it is recommended thai the results of applying this
correction be considered largely qualitative.

EFFECTS OF COMPRESSIBILITY

The Prandtl-Glauert rule, which accounts for the effects
of compress1b1ht.y, is directly applicable to the subject
gimplified lifting-surface theory. The approximations and
limitations of the Prandtl-Glauert rule are well known and,
hence, no discussion of them is given herein. However, for
convenient reference, the basis for correcting the predicted
span loadings and the theoretical relation of these correc-
tions to the simplified lifting-surface theory is presented.®

The Prandtl-Glauert rule simply states that, as the Mach
number is inecreased, the span load distribution of & wing
distorts as though the = dimensions of the wing were in-

Thus, the effects of Mach number

on a given wing can readily be considered by finding the
span loading at zero Mach number of a properly distorted
wing. It can be seen that increasing the x dimensions of the
wing results in increasing the angle of sweep and increasing
each local chord (or, in effect, a decrease in aspect ratio)
while leaving the span and taper unaffected. Thus

Ag=BA
Ag=tan™! tag A

. . 1
creasing as the ratio of s

The foregoing is applicable to any type of span-loading
theory. The distorted wing is considered for the Mach
number in question and the span load distribution found.
This load distribution is then considered as being carried
by the undistorted wing in order to find those charaetemstlcs
dependent on span loading.

§ Por the limiting case of Mach number equal te I, the reader Is referred to NACA TN 1824,

T inearized Compressible-Flow Theory for Sonic Flight Speeds,” by Max, A. Heaslet,
Harvard Lomax, and John R. Spreiter.
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In the case of thesubject span-loading theory, the compressi-
bility correction can be considered in another way. Asbefore,
the angle of sweep is effectively increased by increasing Mach
number. However, the increase in local chord in the

ratio -’1§ can be regarded as an increase in the distance between

the lifting vortex and the contro! point on the undistorted
wing. From the previous section it will be recalled this
corresponds to an increase in section lift-curve slope—in this

. . 1 . .
case exactly in the ratio of i Thus, the theoretical section

lift-curve slope, where compressible effects are included and
the control point is held at the three-quarter-chord point,

.. 2 . . .
implicity becomes ?-n'_ Any corrections for section lift-

curve-slope change thus become hased on the deviations of
the experimental section lift-curve slope at a given Mach

number from the value of %K at the same Mach number.

It can be seen that this increase in ey, is exactly equivalent
in effect to the decrease in aspect ratio. It is obvious from
this that two techniques can ba used in applying the com-
pressibility correction to the simplified lifting-surface theory.
Either the wing geometry can be appropriately altered or
the disposition of the original layout of the lifting vortex
and control points can be altered. The choice of procedure
is governed entirely by the relative simplicity in handling
the computations. As will be shown under the following
sections on the application of the method, both are used,
the choice depending on the type of loading and wing being
considered.

APPLICATION OF METHOD

LOADING CHARACTERISTICS FOR ARBITRARY WINGS

In the foregoing sections, a method for predicting the span
loading on wings has been outlined and it has been shown
how other characteristics can be found from the span loading.
Further, it has been shown how corrections can be applied
to approximately account for deviations of the section lift-
curve slopes from the theoretical value of 27 and for the effects
of compressibility.

With the information thus far given, it is possible to predict
the span loading and resulting characteristies of an arbitrary
wing from a knowledge of the wing geometry only. Appli-
cation of the procedure, however, shows that the most time-
consuming portion is that of computing the influence coeffi-
cients a,,, sixteen of which are required for the seven-point
method. Examination of the theory shows that, if the num-
ber of control stations is fixed, the influence coefficients
become a function of the wing geometry only, that is, sweep
and chord distribution. It becomes immediately apparent
that, if the number of control stations. is chosen, then the
corresponding influence coefficients can be presented in
graphical or tabular form as a function of wing geometry.
Thus, the greater part of the computing work associated
with the method can be eliminated, since the same coeffi-
cients are used to find any form of symmetric loading for a
given plan form.

Further simplifications, not so immediately evident, are
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also possible. It can be shown (see appendix) that, if the
angle of sweep is fixed, all the influence coefficients become a

. b . .
function of . alone. Thus, if a complete set of coefficients

for one taper ratio is determined throughout the aspect-ratio
range, the coefficients for all other plan forms having the
same sweep can be related to these coefficients by relating

the velues of cﬁ of the wing in question to those for which the

coefficients were determined. Further consideration shows
that the effect of section lift-curve-slope deviation from the
theoretical values can also be accounted for by a change in

the value of [l:‘ in the ratio of experimental to theoretical

section lift-curve slopes. Finally, if the compressible-sweep

- tan A) is used rather than the geo-

parameter (Ag= tan

metric sweep angle and the value of p is adjusted by the

factor B, then the effective plan-form change due to com-
pressibility is accounted for.

To simplify the use of the method, therefore, the influence
coefficients for symmetric loading a,, for the seven-point
method have been computed and are presented in table I
and figure 1 as functions of the compressible sweep parameter .
Ag and the parameter H,. For most wings the values of the
coefficient a,, can be obtained directly from figure 1. How-
ever, for certain wings of extreme plan forms the values of
H, will be such that the values of a,, will lie off the charts.
Where linear extrapolation of the curves is not acceptable,
table I provides sufficient values of a,, to enable extension
of the curves. Adequate accuracy of the final results will
be obtained if the value of a,, is read to two decimal places.

The parameter H, is defined as follows:

b
H,=d, x,c,/ﬁ

where

d, scale factor which is given on each chart
Ky 2 /B’ the ratio of the two-dimentional experimental lift-
curve slope for the airfoil section at station» Lo the theo-

retical value, both for the Mach number under con-
sideration

B V1-BM*
cg ratio of wing span to the chord of the wing at the span-

wise station corresponding to the control point »
The application of the method to the case of the arbitrary
wing plan forms can be outlined as follows:

1. Compute the value of H, at each spanmse stetion »

and the value of As, both for the Mach number in question.
(Note that the effects of section lift-curve-slope change and
of Mach number are completely accounted for within the
limits of the method by these parameters, and the predicted
results will include these effects.)

2. From figure 1 or table I and with the value of H,, find
the values of each of the 16 a,, coefficients, _

3. Insert the values of a,. in equation (6) for basic load-
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ing or equation (11) for additional loading and solve the
simultaneous equations® for the values of Gn, or ~Ta.
o

4. With the values of @y, or s, known, other wing char-
[
acteristics can be found by substituting these values in the
appropriate equation as indicated by the following table:

Basic loading Additional loading
Cp, Equation (9)_._..__ Equation (9).
CofCr? e Equation (13).
Nep. mmemmmmmmmm e Equation (14).
Cn Equation( 10) . . .

ADDITIONAL LOADING CHARACTERISTICS OF STRAIGHT-TAPERED
WINGS

The previous section has shown how to apply the method
to determine aerodynamic characteristics of an arbitrary
wing. For the more common case of straight-tapered wings,
it is possible to prepare charts giving wing aerodynamic
characteristics due to additional loading directly as & func-
tion of wing sweep, aspect ratio, and taper ratio.

The method has, therefore, been used to find the additional
span loading and some of the wing characteristics for & series
of wings of varying plan forms and having constant section
lift-curve slope across the span. Some 200 wings (the range
of plan forms, but not the total! number of wings is shown in
fig. 2) were included in the study, the results of which are
presented in figures 3 to 6. Kach of these figures is a chart
giving the variation of a particular wing characteristic with
wing sweep and aspect ratio for five values of taper ratio.
Figure 3 gives the value of the local loading coefficient at
each of the four spanwise stations. Figure 4 gives the
value of wing lift-curve slope. Figure 5 gives the spanwise
location of the center of pressure. Figure 6 gives the chord-
wise location of the center of pressure or the aerodynamic
center 7 measured from the leading edge of the mean aero-
dynamic chord.

To find the desired characteristic for a given wing, the
chart for the proper teper ratio is entered with the com-

A); and the de-

sired value read from the curve—or interpolated—for the

pressible sweep parameter (Ag=tan“1 M’;

proper value of the aspect-ratio parameter % Thus, it is

possible to find, with no computation, many of the charac-
teristics for untwisted wings. It should be remembered
that, since basic and additionel loading are considered
independent, these characteristics not only represent the
gross characteristics of untwisted wings, but also the addi-
tional loading characteristics of twisted wings. They are
thus applicable, to some extent, to all wings having siraight-
taper and constant section lift-curve slope across the span.

¢ Experience has shown that the method given In reference 6 for the solution of a set of simyl-
taneous equatfons Is most satfsfaclory.

T For the case of the straight-tapered wing, this chordwise location of the serodynarais

renter can be simply expressed [n terrus of the geometry of the wing and the spanwise location
of the center of pressure. Thus

a. e -1+ 3(1+ap
FUTITEEHRE
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DISCUSSION

COMPARISON WITH OTHER THEORY AND WITH EXPERIMENT

The extent to which the method can be evaluated varies
widely with the particular characteristic in question. In
general, the accuracy of predicting the characteristics asso-
ciated with basic loading can be evaluated in only a limited
manner, since few swept or low-aspect-ratio wings having
appreciable twist or camber have been experimentally or
theoretically studied. On the other hand, many wing plan
forms have been studied and from those results it is possible
to assess fairly well the accuracy of the method with regard
to additional loading.

Basic loading.—The prediction of the effect of twist and/or
camber on load distribution can be evaluated to a degree
by comparison with other theories. Such a comparison is
given in figure 7 wherein the predicted loading given by the
subject method is compared with those given by the method
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developed by V. M. Falkner and that of reference 7. It may
be assumed that the Falkner method is the most accurate of
the three since it approaches a true lifting-surface theory.
From the comparisons shown in figure 7, it would appear

the subject theory is nearly as good as. the more complex

theory and considerably better than the lifting-line theory

of reference 7. It must be recognized that twist introduces
large induction effects even on high-aspect-ratio wings.
Therefore, it follows that the deviations of the predictions
of the subject, theory and those of the theory of reference 7
from those of Falkner’s method are indicative of the ability
of the two methods to account for the induction effects.

A check on the ability to predict C» and ey, can be had

from comparison with the experimental results shown in
reference 7. Here a wing having 30° of sweepback was
tested without twist (wing designated 24-30-0) and with
8.5° of twist (wing designated 24-30-8.5). The force tests
show that the twist shifts the angle of zero lift 2.6° while
the present theory gives a value of 8.3°. The force tests
indicate that twist produces a value of Cn, of 0.05 which
is the same as that predicted by the theory.

A further comparison of experiment and the present
theory can be made using results of pressure-distribution
tests of a wing having 60.8° of sweepback. The geometrical
characteristics of the wing together with the experimental
results and theoretical predictions are shown in figure 8.
The comparisons are made for zero lift where only basic
loading exists. It can be seen that the agreement is good
even for this unconventional plan form.

On the basis of the foregoing comparisons, it seems justifi-
able to conclude that the subject method can adequately
predict the effects of twist and/or camber on the character-
istics of wings of arbitary plan form.

Additional loading.—Much experiments] data and several
theories are available for comparison with the subject theory
in regard to the prediction of additional-type lift. Figure
9 shows a comparison of the predicted loadings and those
obtained experimentally for six wings varying In sweep,
aspect ratio, and taper ratio. Figure 10 compares the
variation of lift-curve slope with aspect ratio as predicted
by the subject theory, by two more rigorous theories (refer-
ences 8 and 9), and by a theory directed at, the limiting case
of zero aspect ratio (reference 10). Figure 11 compares
experimental and theoretically predlcted lift-curve slopes
(assuming a section lift~curve slope of 2r per radian) for
two families of plan forms covering a wide range of aspect
ratios (references 11 and 12). The comparison between
experimental (references 12 and 13) and predicted results
for a random group of wing plan forms is shown in figure

12 for lift-curve slope and figure 13 for aerodynamic-center

location. All experimental values of (¢, and eerodynamic-
center location were measured at zero lift. It is evident

that in almost every case the method gives an excellent

prediction.

REPORT NO. 921-—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

From all of this comparative material it seems possible to
safely draw the conclusion that the subject method can
satisfactorily predict the additional-type span loading on
wings of arbitrary plan form. Further, it seems possible
that equally good predictions can be made of those charac-
teristics primarily dependent upon such span loading.

EFFECT OF PLAN-FORM VARIATION ON THE BASIC-LOADING
CHARACTERISTIC8

To study the effects of plan-form variation on the basie-
loading characteristics of linearly twisted, straight-
tapered wings, the characteristics of a representative group
of wings (see shaded wings, fig. 2) having unit washout?
have been computed and are presented in figures 14 Lo 19.
The Mach. number was taken as zero and the section lift-
curve slope as 2r. The basic—loading characteristics con-

sidered are the loading coefﬁcmnt (ﬁgs 14 to 17), the

pitching-moment coefficient due to twist —= (fig. 18), and

the angle of attack of the root section for zero_net lift 2 ? _

(fig. 19).

Magnitude and spanwise distribution of load.—Ixamina-
tion of figures 14 to 17 reveals that the aspect ratio influences
only the magnitude of the load and is in fact the predominate
influence .on the magnitude of the load. Reductions in as-
pect ratio from 6.0 to 3.5 and 1.5 result in appro'cima.tely'
35—percent and 70-percent reductions, respectively, in load
due to twist for either the unswept or 45° swept-back wings
(ig. 15). ..

Sweep, either forward or back, tends to reduce the magni-
tude of loading, although appreciable reductions are produced
only by sweep angles greater than 45° (fig. 14). Swcep also
affects the load distribution such that the load on the outer
section of the wing is shifted inboard by sweepforward and
toward the tip by sweepback; as will be secen, this is similar
to the effect of sweep on the additional-iype loading. Since
an increase in aspect ratio magnifies the loading, it also mag-
nifies the effects of sweep on the loading as is shown in
figure 14.

As shown in figures 16 and 17, veriation in taper ratio has
little effect on the magnitude of basxc loading; and variations
in taper ratio, for taper ratios larger than 0.5, have little
effect on the load distribution. However, for taper ratios
less than 0.5, the Joading on the outer section of the wing
shifts inboard. These effects of taper ratio on loading are
magnified by increases in aspect ratio.

Pitching moment.—That the pitching moment due to
twist is primarily a function of sweep and aspect ratio is
shown in figure 18. The magnitude of the pitching moment
increases as either aspect ratio or sweep is increased so that
pitching=moment coefficients as large as 0.008, for 1° of twist,

¥ In this cgSé, 1° wias chosen, &nd for any larger amount of twist the effects are proporiional.
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exist on wings having large aspect ratios and sweep angles.
The effect of taper ratio is relatively small, the greatest
being evidenced at the small values of taper ratio. For
example, reducing the taper ratio from 0.5 to 0 reduces the
pitching moment due to twist about 30 percent.

Angle -of zero lift.—Although the effects of plan form on
the angle of zero lift @, may not be very important, some of
the trends indicated in figure 19 are of interest. For the
range of plan forms represented in figure 19, the angle of
zero lift varied only about 20 percent from the mean value.
This is small compared to the effects of plan form on the
magnitude and distribution of loading and on the pitching
moment. In contrast to the small effect of taper noted
previously, taper ratio appears to be the predominant influ-
ence on oy, particularly at large aspect ratios and large
sweepback. The effect of aspect ratio and sweep are sec-
ondary but not negligible.

EFFECT OF PLAN-FORM VARIATION ON THE ADDITIONAL LOADING
CHARACTERISTICS

Span load distribution.—To show directly the effects of
wing plan form on the additional span loading, figure 20
has been prepared by cross-plotting the data of figure 8.
It shows that inereasing the angle of sweepback or the taper

¢, ¢
ratio serves to move the loading ( as defined by Z,i;——) out-
Ltas,

board.

It can be noted in figure 5 that the spanwise center of
pressure is independent of aspect ratio for certain combina-
tions of taper ratio and sweep angle. These values of taper
ratio are plotted against sweep angle in figure 21. Further,
for the wing geometry represented by the curve of figure 21,
the loading is approximately independent of aspect ratio
(fig. 3), and also is approximately elliptical. For elliptical
loading, the loading coefficient at the four spanwise stations
have the values 1.273, 1.176, 0.900, and 0.487. It can be
seen that these values compare closely with those given in
figure 3 for the plan forms specified in figure 21. The farther
the wing geometry departs from the configuration represented
by the curve in figure 21, the greater the change of loading
with aspect ratio and the rate of distortion from an elliptical
load distribution. Also, examination of figure 3 will show
that elliptical loading cannot be maintained, when a wing is
swept, by altering aspect ratio alone; however, all wings
approach an elliptical loading as aspect ratio approaches zero.

The wings specified by the curve of figure 21 have the
property that their serodynamic characteristics can be
expressed in a simple manner similar to the case of unswept
wings with elliptic plen forms. Namely, the induced drag

Co
is given approximately by ZT_’__I_’ spanmse center of

pressure by q,_,_=%_: and aerodynamic-center location with

respect to the mean aerodynamic chord by

_ 1., 0.342—0.567A—0.908)*
A ((ESERy

From figure 4, it can be shown that the wings specified by
the curve of figure 21 give the maximum lift-curve slope for
a given aspect ratio and sweep angle. For example, see
figure 22 for the case of A=3.0.

In summary, the curve of figure 21 defines wings havmg
the following approximate characteristics: span loading
distribution independent of aspect ratio, minimum induced
drag, and meximum lift-curve slope for a given sweep and
aspect ratio, a constant spanwise center of pressure, and an
aerodynamic-center location that is a simple function of
wing geometry only.

Lift-curve slope.—Examination of figure 4 reveals certain
general trends with respect to the effect of wing plan form
on wing-lift-curve slope. For wings of high aspect ratio,
the angle of sweep has a marked effect on lift-curve slope,
with the maximum effect occurring for wings of infinite
aspect ratio when the lift-curve slope is directly a funetion
of the angle of sweep. As the aspect ratio approaches very
low values, the lift-curve slope for the unswept wing is
greatly reduced and the effects of sweep become small except
for very large angles of sweep. Also, it can be seen that af
very large angles of sweep the effects of aspect-ratio varia-
tion on lift-curve slope become small.

To better illustrate the separate effects of aspect ratio
and taper ratio, the data from figure 4 have been cross--
plotted to show the variation with aspect ratio of the lift-
curve slope for various values of taper ratio and sweep angle.
These results are shown in figure 23. This figure shows
clearly how increasing the angle of sweep decreases the varia-
tion of lift-curve slope with aspect ratio. It shows further
that while taper ratio as compared to aspect ratio has only
a small effect on the lift~curve slope of an unswept wing,
taper ratio has a predominant effect on the lift-curve slopes
of highly swept wings of moderate to high aspect ratios.
For very small aspect ratios (i. e., 4<1.5), however, the lift-
curve slopes of all the wings converge and become almost a
linear function of aspect ratio, being essentially independent
of the effects of sweep and taper (reference 10).

Aerodynamic center.—Infigure 6, variations of aerodyna-
mic-center location from 15-percent mean saerodynamic
chord to 45-percent mean aerodynamic chord are indicated
for the range of plan forms studied. It will be noted that,
for taper ratio A=0, the aerodynamic center moves aft for
sweepback and forward for sweepforward. At taper ratios
of 1.0 and 1.5 the aerodynamic center moves forward for
sweepback and aft for sweepforward. For A=0 the effects
of aspect ratio are largely confined to the swept-back wings
and as taper ratio is increased the effect of aspect ratio
decreases for swept-back wings and increases for swept-

Atan A

a.c.
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forward wings. Where the effects of aspect ratio are signifi-
cant, an increase in aspect ratio generally moves the aero-
dynamic center aft.

CONCLUDING REMARKS

" The simplified lifting-surface theory presented herein
enables the rapid, accurate prediction of symmetric span
load distribution for wings which have symmetry about the
root chord and a straight quarter-chord line over the semi-
span and which can have arbitrary chord distribution,
sweep, aspect ratio, and continuous twist. Modifications
to the method are shown by means of which approximate
account can be taken of changes in section lift-curve slope
and by means of which the effects of compressibility as
predicted by the Prandtl-Glauert rule can be included.

With the charts presented in the report, the load distribu-
tion can be obtained directly for many wings and can be
obtained with slight additional computation for all wings
falling within the limitations preseribed.

From the span loadings determined by the method, it is
shown how several important wing characteristics can be
determined. Comparison with experimental results in-
dicates that the wing characteristics so obtained are reliable
for a wide range of plan forms. '

AMES AERONAUTICAL LARORATORY,
NatronaL Apvigory COMMITTEE FOR AERONAUTICS,
Morrert Freup, CaLtr., 1947-1948.



APPENDIX

The mathematical process of finding the loading distribu-
tion for wings evolves itself into two parts: first, the deter-
mination of the integral equation which relates the downwash
at a given point to the integrated effects of the bound vortex
and trailing vortex sheef; and, second, the solution of the
integral equation to determine the unknown loading distri-
bution factor.

ADDITIONAL SYMBOLS USED IN THE APPENDIX

@y Fourier coefficients of the loading distribution series

b"

byn } methematicel series coefficients

By

€nx loading interpolation factors

'Z” ! mathematical series coefficients

Sou

G

g”’ downwash influence coefficients

Gra

k value pertaining to interpolated span station

7=Ccos8 S_T

L(x, %)

Ly downwash integrand functions

L*,

M number of span stations taken to numerically
integrate the downwash integrand function

r absolute distance from the downwash point to an
elemental vortex, feet

8 distance along the load vortex, feet '

z longitudinal coordinate, positive downstream, feet

z longitudinal coordinate perta.uung to t.he load
vortex, feet

Y lateral coordinate, positive to the right, feet

7 lateral coordinate pertaining to the load vortex,
feet

oy induced angle in the wake of the wing, radians

) dimensionless lateral coordinate pertaining to the

Yy
load vortex (5/—2)

61,62 positive angles between a vortex line and the lines
joining the ends of the vortex line and & down-
wash point, radians

. . s . nr
I integer pertaining to span station u (17=cos m—l)

" integer sequence of the Fourier series for loading
distribution, also pertaining to span station g,

L
(1mcos 2

DETERMINATION OF THE DOWNWASH INTEGRAL EQUATION FOR SWEPT
WINGS

Downwash induced by the frailing vortex sheet.—

T Y
A
I o
~-Bound or
.~ load vortex
(£, )
&,
(z,y) --“Troiling
h vortex
sheet
8 ar
oy
oo
Sketch “A”

The downwash due to the trailing sheet is, for an arbitrary
elemental trailing vortex, given in several references (e. g.,
see Glauert, reference 14). The downwash at & point in the
zy plane is given by

dw,, = f_:}i {cos 6;,1cos &) (A1)
where the induced velocity is positive for downwash, 6; and
f, are the inside angles between the trailing voriex line and
the lines from the ends of the trailing vortex line to the
downwash point, A is the perpendicular distance from the
downwash point to the trailing vortex line, and dT is_the

strength at a given span station of the treiling vortex. From
the foregoing sketch it can be seen that

h=y—y
b r—2T
Ve -
cos =1 (since 6,=0 with the trailing vortex extended to
infinity)
and

Z=[y] tan A

Substitutiﬁg these values into equation (A1) and integrating
will give w,, duse to trailing sheet equal to

1 z—[yten A
4r ) py— y[ +1/($—[1!Itan1\) +@—-v* '@y

(A2)
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Downwash induced by the load vortex.—

¥ Yy
A
ds --Bound or
; load vorfex
s r r
' h
N
) L Trailing
» (zy) 4 vorte
sheet

Sketch “B”

The downwash generated by the swept load vortex is the
sum of the downwash generated from each semispan. Along
the load vortex the circulation is continuously varying. The
downwash at (2, %) due to the small element ds (see accom-
panying sketch) is given by (e. g., see. Glauert, reference 14)

Aw,y= e -—-(A3)

For a swept load vortex, for the right semispan

¥y
cos A

8=

h=2 cos A—ysin A

r=vy@—-2)*+u—p?
Z=[y| tan A

while for the left semjspan
h=2z cos Aty sin A

and s, r, and z are the same as for the right semispan.
Substituting these values into equation (A3) and integrating
~will give w,, due to load vortex equal to

1 (o (z cos A4y sin A)T(H)dy -I-
4x o cos Af(z—Iy| tan Ay - (y— —)z]s/z
1 {2 (z cos A—y sin AT F)dY

" 4z Jo cos A[@—[y] tan A (y—m)TH*

Total downwash.—The total downwash due to the trail-
ing sheet and the load vortex is equal to the sum of equa-
tions (A2) and (A4), or

~(A9)

_ 1w 1 N z—|y] tan A
w"'—4orf—w‘2 y—y 17 \/(x—lyl tan AY2-L (y— 7 r'@dyt
o @t+ytean AT@Yy |
—or [@—[y| tan A+ (y—9)T"*
1 (x—y tan AT@dy (A8)

dnJo [(x—lﬂl tan A)*+ @—)* T

The last two 1ntegrals of equation (A5) can be integrated
by parts and put in the form of the first integral. With

T (i%)é(}, equation (A5) becomes

Va= 4T{fbiz?l yl: + (x—ﬂ-f;?tllz?f—i—l&(y 7 :II"(y)dy—
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. <$2A+x tan A—y) I @)di
f—m @4y tan A)/@+7 tan AP4-(y—p)°

f,,,, (cog’ 1% tan A— y) IV () dy
0 (z—y tan A) Y@—7 tan &)+ @—p7

2 tan AP
i i ro)

(A6)

Equation (A6) can be simplified algebraically and rewritien
into the form

1 [ IV@)dy
Y=z | y—% +

1 [ Yetytan ) +G—p* .
4x J-up2 (x+y tan A) (y—y) @) dy+

1 (%2 /(x—7 tan AY*+ (y—7)* ., .,
ir (x—y tan A) (y—7) ' @dy+

2 tan A+t 1y
4x([@®—y* tan® A)

r'(0) (A7)

The three integrands of equation (A7) have an infinite
point at 7=y. The integrand in the second and third inte-
grals can be made continuous by subtracting the function
I"@

Yy—
to the first integrand. As will be scen presently, the first

integral, the integrand of which retains the infinite point, will
give a finite value after integration. Equation (A7) becomes
(adding the fourth term to the second integral)

2 (P I@, I.P [¢a+yMnmt+@—m’
Yo =Tr Joon y—7 drJ-ml @+ tan A) (g—y)

1 2 tan A2* 17 l .
‘y'—’_l_/Tl xi_yﬂ tan;I—A | T @dy-l—
1

“[J@—ymnML+@~y’
E—y tan A) (y—9)

Equation (A7) remains balanced if _2;‘--‘!% is also added

=7 T (_)dy (A8)

Equation (A8) can give the downwash at any point in the
zy plane. From the discussion of the theory in the text, the
downwash must be found along the three-quarter-chord line
of the wing. For a given span station the x coordinate of a
point on the three-quarter-chord line is given by

a:=%+-|y| tan A

The nondimensional equation for downwash angle at any
span station on the three-quarter-chord line can be obtained
by substituting this value of z into cquation (A8) and by
using the following nondimensional relations:

B

=52

)

i
b/2
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m=%—|~[q| tan A

: T
=37
for 1<0,
Lip5)= 1 (J[1+ /) (nl+n) tan AP+ (B/e)*(r—m)®_
H By —m L 1+ (b/c) (lal+n) tan A
and, for 70,
1 V{14 (0/c) ((n[—n) tan AP+ (b/e)*(p—m)*
Lo =75 <n—7{ 1+ G70) (rl—n) tam &

Equation (A10) is complete for positive and negative values
of the coordinate 4. In the case of the unswept wing where
A equals zero, equation (A10) simplifies considerably and

the function L(n,7) is given by,
for —1<3<1,

1 N2
LoD~y oy VIF O G——1 | (A1)

MATHEMATICAL SOLUTION OF EQUATION (A%)

Arbitrary load distribution.—The solution of the integral
equation (A9) to determine the unknown loading-distribu-
tion function G(%), was obtained by Weissinger (reference 1)
using & method introduced and applied by Multhopp
(reference 15) to the problem of determining downwash
at a straight bound vortex. Weissinger’s method consists
of applying the boundary conditions that the flow shall be
tangent to the plate at the three-quarter-chord line at a
number of span stations, then performing a numerical
integration of equation (A9) at each station. The result
is a set of simultaneous linear equations in which the
unknowns are the values of &(5) at the span stations
chosen. ) _

Introducing in equation (A9) the spanwise trigonometric
variables ¢, and ¢ defined by

d 7=CO0S ¢,
an

7=008 ¢
gives

(V) J; cossGr ;(é)ciz e

where bfe, is the value of b/c at span station ».
In equation (A12) let G(¢) be given by the Fourier series
28

—Le [T L@ @ds (A12)

G(¢) =§_)1 G, SN 1 (A13)
where

=2 [ " () sin meds

1 xJo

Since @G(¢) is of interest only in the interval 0 to = (—8/2<
y<b/2) then
2

apl—';:

" G(¢) sin mods (A14)

i+

-]

The resulting equationis . . .
(1_0) _1ft G"@)dﬁ b/c
Vi «

LEBALE [(Iane@ma (49
where the function L(y,3) is given by,

2 tan Ay[TF(8/0)[s] tan AP+ (Joyr
[T (/) (al—) tan AL+ (5/e) (al+n) tan A]

(A10)

Multhopp in reference 15 develops a quadrature formula
which is a simple analogy to Gauss’ (e. g., see reference 6)
mechanical quadrature. This integration formula is a good
choice for the functions represented by the series as given in
equation (A13) since it integrates exactly functions repre-
sented by the trigonometric series to the 2m' harmonic.
The quadrature formula is given by

|2 sovin=2 35 5 sin 64 (A15)

where ¢=———, and f(q,) is the value of f(q) at 9=cos ——

+1 +1
Equation (A14) can be integrated by equation (A15) togive
"1 m+1 Z G(¢n) sin mPx ) (A]-G)

Substitution of equation (A16) in (A13) gives the new form
of the loading-distribution function as

OO =gy 2 O 2 S g sin s (ALT)
where @,=G(¢y).
Then the derivative of equation (A17) is given by
d(;((:s) =@ (¢)=— +1 E Ga 21 1 SIN g COS 21
=
‘ (A18)

The first integral of equation (A12) containing the infinite
point can be integrated directly with the series given by
equation (Al18). Using the following integral derived in
reference 14

f* cos ne d __ 7 sin ndyg
o COS ¢—COS Py ¢= sin ¢
then
1 f _ G'(¢)de

C0S ¢—COS ¢,

* _cos pidds
D 36 msmpzqﬁnf _C08 piédd

s 0 COS ¢—COS ¢,

2 2 Hr sin 11145: sin sy
m-1 ,é ,,12.1 sin. ¢,

—2b,,@,— > *25,.4,

D]

(A19)
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where the prime on the summation sign indicates that the
value for n=v is not summed. Physically, equation (A19)
gives the downwash angle at an infinite distance down-
stream for any wing geometry.
equal to twice the downwash angle at the quarter-chord line
for the unswept wing.

The b,, coefficient of equation (AI19) are given by the
following equation:

For n=v

1

(m+1) sin & i 2 M1 gin? H1ds

For n#» - (A20)

J— ki) . .
b,,=m '#XE_I B 81D py g, BIN py b,

o

Equation (A20) can be simplified by making the md1cated
summations, With the relation

m ki3
HZI uy cos pr=real part of 21 ple‘“r“)
= =

14m cos (m-+1)x— (m-}1) cos mx
2(—1+} cos )

- (A21)

b/c, b/e,

L@ Wdo= 32 (—42) TG0 6106

ZG’

This downwash angle is
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then for n=»
b — m+1
»=% sin ¢, by
and for nx4» (A22)
5 gin ¢y

_ 1—(—1)*
"7 (cos ¢x—cOS ¢,)*

2(m+1)

The integration of the second integral of equation (A12) is
done by a method similar to that used for the first integral.
The integrel of the product of the L{é,,¢) function and the
terms of the trigonometric series of @ (¢) is too difficult for
direct integration but can be done with the aid of the in-
tegration formula. This integration can be made for an

arbitrary number of points A{ which can differ from m.
Using a trapezoidel integration formula for the trigono-

metric variable gives

ﬁ’)‘(¢)d¢=

:_ - [f (¢0) +£ (faryr) é f@e) | (A23)

where ¢,.=zl%- With the definition

Jal#) =,—n% HZT} #1 8I0 pis €OS p1d (A24)
equation (A18) can be written in shortened form as
@@= 6O (A25)"

Applying the integration formulas of equations (A23) and
(A25) to the second integral of equation (A12) gives

crﬂ—]

{2(M+1)

Equation (A26) can be simplified as follows: Let f..=f(¢s)

where f,(¢.) is given by equation (A24) for ¢=¢,=ﬂ%
and let Lu=L($,.$s).
Then define
_ LannO+Lv,M+1fn,M+1 M - - )
go=—5731775 ( - +25 Lufu) (A27
Then equation (A26) can be written

bfe, (= ’ _ b
~Yo 7 16,06 @de=2 32 0n6

(A28)
Equation (A12) can now be put in a form which allows
solution by simultaneous equations by substituting in it the
equalities given by equations (A19) and (A28). Making this
substitution equation (A12) becomes ) :

w ml b&
(V ’—-2b"G.—nE=1 2qun+c_.nZ_l gPﬂGﬂ

=(2bat L 0.) 63 (b= 00) s

»=1,23 ... m (A29)

where the prime on the summation sign indicates that the
value for n=y should not be summed.

[L NS, +L<¢w¢u+f>f n (¢“+"+2 L0 S («m)] }

(A26)

Summarizing the development for the computation of
spanwise loading over the whole wing span, the loading at
m span stations is found from the simultaneous solution of
m equations,

av=2 Aman
=]
y=1,2,3, ... m (A30)

where

a,=<§—§) =angle of attack at span station »
b
A,,.=2b,,+; gr for n=v

= —2b,,+£ Gve fOr Dty

b,, and b,, are from equation (A22)
=g fOI' n=yp
G» i8 from equation (A27)

b wing span
¢, chord at span station »
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L,, is obtained from equation (A10) for the swept wing, and
from equation (A11) for the unswept wing, with y=cos ﬂ—;%

and 3=cos and where f,, is from equation (A24) with

bE
M1
7% g
¢=¢n=r_i_1'
Symmetric load distribution.—The computations for the
symmetrically loaded wing can be considerably reduced by
altering the preceding equations and coefficients. For a
symmetrically loaded wing the distribution of local angle of
attack is symmetrical about the plane of symmetry, then

Oy= Cmt1—r }
Gr= Gm-{-l-—v
With symmetric logding, only the odd values of p; in equa-

tion (A13) contribute to the loading, then equation (A24)
becomes

(A31)

‘,

fﬂF=m-_‘1_ 1 =1 Z.‘l

=1,3,5...0dd

p1 S0 s COS f1¢y (A32)

Since the change of symmetric loading distribution with span
is opposite in sign from one side of the span to the other, then

Fan=Fnpt41-4 a0d fa, 1*%1=0

Furthermore, examination of equation (A32) indicates thaf:

f Bp =f mpl-np
Then for symmetric loading equation (A27) becomes

M'—
gn—z(M_l_ 1) £ E fnp(Lm Lyarg1-) (A33)
where
’
Fan=2fus for n;ém+1 :
=fpg for n=mT+1
- (A34)
=, for n= ;1_ and p=0
=f§ for n= + and g=0

Equation (A32) gives the values of fy,.
For symmetric loading, with the relations given by equa-
tion (A31), equation (A29) becomes

b

(V) (2”»+ 7 )G 2’ 2B~ Trm ) G,

y=123, . . . "—*%

905885—50-——40

(A35)
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(The prime on the summation sign indicates that the value
for n=v is not summed.}

where
Bl:=bnl+ by,m-[-l_-. for n ?‘Sm-2[- L
=bu for ﬂ.=m-2l_ I

It should be noted that the equation for L,, simplifies some-
what for the symmetrically loaded wing since, for symmetric
loading, it is necessary to consider only positive values of 7.
Further, equation (A10) can be written using only positive
values of 7 through the following relation:

L*,,=L{n5 —L,—n=Lu—L, i1

In summary, the foregoing analysis for the case of the
symmetrically loaded wing gives

mt1

%=;{:arnau
=123, -m—'2{'1 (A36)

where

a‘!n=2b"+é‘ G»n for n=v»
S (A37)
=_2-Bm+ g", fOI' nEp

=0, fOor n=7
M_

a’“ 2(11[_‘_1) Zfﬂll »n

Fox=2F . for n;ém;_ ) p5£0

=fn for n=ﬂi;3ﬂ; g0

=, for n=l +1

_Ji,g _m—l—l
=3 for n= 3

» p=0

» p=0

2 m .
f““:ﬂ—l m=1,%7 oda SID. pibn COS paa
b — m-+1
* 4sin oy -
.B,n—' brn+b, mtl—n fOI' ‘n;ém-[_l
=b,, for n—m+1
b sin ¢4 I—(—1)*
" (cos ¢p—cos ¢,)2 L 2(m+1)
L*, =7
c_'("b""ip)

Wl a-mena [+() m—r-1} -
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1
C_p (m+ I'EM)

Ve =i tana [+(0) iy

142 cé 1, tan A

2 F)
2 tan A\/<1 +c£, 7, tan A) +<§) 7,2

1—[—23—17. {an A

&= M’_{_l .

DEVELOPMENT OF THE PARAMETERS USED IN THE SIMULTANEOUS
SOLUTION FOR SYMMETRIC LOADING

The

prov1de means for the solution for symmetric loading for any
given symmetrical distribution. of e,. The coefficients

2
@,n, Which are (m,, 1) in number, are functions of the wing
geometric parameters of sweep angle A and the ratio % The

principal work in a study of spanwise loading is to compute
the a,, cocfficients. For a study of a range of plan forms,
these ., coefficients can be plotted as functions of sweep angle

hnes,r gimultaneous equations of equation (A36)

. b . .
and the ratio %; however, z will vary spanwise due to the

taper of & wing and plots of a,, as a function of -g become
unwieldy for a range of plan forms. A scale factor can be
applied to " such that the spanwise variation will be effec-
tively nullified for a range of tapered wings. _ )
For a range of aspect ratio, the values of z for the oﬁt-

board half of the wing semispan, 1>>0.5, has maximum values
for zero tapered wings (provided the plan-form edges are
not concave) and for the inboard half of the wing semispan,

1< 0.5, %has maximum values for the inverse tepered wings,

The ratio of% in the general case to these maximum vahies
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b . . . _
of z provides a geometric parameter that varies approxi-

mately as the aspect ratio.
The inverse chord distribution for straight-tapered wings
is given by

b AQ+N
¢ A— [ —W] (A38)
For x=0 -
b 1 .
4TG=2—(_|—1'— 77!) (AJQ)
For A=1.5
b 5. _
T ToRRm) (440)

The ratio of% to equations (A39) and (A40) gives, respee-
tively, the new geometric parameter as
bfe
()
Ae rao
ble 2(2+ﬂ) b f01 0$n$0 5

()
- \ele frars J

Let H be defined as 2/5 times the values of cquation (A41).
The factor 2/5 is introduced to give II the approximale
values of @,, to simplify plotting procedures. Then cqua-
tion. (A41) becomes,

—2(1—7) %for 0.5<y<1

- (AdD)

H= 4(15 m b 10.5<y<1
(A42)
4(22-;-11) 2 0<7<0.5

Introducing the effects of compressibility and scetion liff-
curve slope as discussed in the text, equation (A42) becomes
at the span station »,

H= d( )<C/ﬁ

where d, is a scale factor given by

(A43)

d,=-‘£(15_—’7') for 0.5<n,<1

4(2+n) for 0<n,<0.5

For straight:tapered wings, equation (A43) simplifies Lo

2(1—n,) (14N

m( ) 8A,0<7,<0.5

Plots of a,, against H, in the range I7,=0 to 4, will givo
@.. coefficients for wings of any chord distribution with
aspect ratios from 0 to 10 or 12.

H~ )64, 085m<1

(A44)



THEORETICAL SYMMETRIC SPAN LOADING AT SUBSONIC SPEEDS FOR WINGS HAVING ARBITRARY PLAN FORM

AERODYNAMIC CHARACTERISTICS FROM INTEGRATED SPANWISE
LOADING

Lift coeflcient,—The wing lift coefficient is given by
+1 r
Oi=4 [ 0mdi=a [ 6 sin sds

or using the quadrature formula of equation (A15),

a.= m—l—l 1.21 G, sin ¢y (A45)
For symmetric loading equation (A45) simplifies to
CL_m + { G’“+1+2 g:,‘l G sin qS,,) (Ade)

Induced drag.—The induced drag is given by
1 L .
Co=A [ 0@ a@Ei=A [ 06 ale) sin 8ds
or using the quadrature formula of equation (A15),

i@absmqb,

y=l

Cp= (A47)

m+1

For the straight wing, «; is the induced angle at the one-
quarter-chord load vortex and the local-induced-dragdistribu-
tion can be found. For the swept load vortex with the break
at midspan it is not apparent how the correct induced angle
at the load vortex can be found to determine local induced
drag; however, the total induced drag of the wing can be
found by considering the downwash in the wake of the wing.

With the use of Munk’s stagger theorem (reference 16)

2
G(¢) =mIl

(sin ¢, sin ¢+sin 2¢; sin 264 .

(sin ¢,; sin ¢-sin 2q5.,,, sin 2¢+ . .

The values within the brackets can be tabulated for a given
¢ and the loading at ¢ will be the sum of the products of the
tabulated constants and the known values of &,.

For symmetric loading where only odd values of g are
needed equation (A50) becomes with m=7

@(#) =1 (0.383 sin $+0.924 sin 3¢-1-0.924 sin 5o+
0.383 sin 76) GI—I—% (0.707 sin ¢4-0.707 sin 3¢—

0.707 sin 56—0.707 sin 7¢) G+ (0.924 sin ¢—
0.383 sin 36—0.383 sin 5¢--0.924 sin 7¢) Gy+

% (sin ¢—sin 3¢-sin 5¢—sin 7¢) G, (As1)
Letting ¢= ¢g—k—‘rf k—; g g, and 7 the factors of G, of

equation (A51) can be tabulated.

[(Sin & sin ¢+Sin.2¢lsin2¢)+ « .
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the wing induced drag is given by considering the induced
angle as one-half the value of the downwash at an infinite
distance downstream. Then a4(¢) is given by one-half the
value of equation (A19). Equation (A47) becomes
m

E G,

v=1

Op=. by~ 3 baGa)sin 6, (448)

For symmetrically loaded wings, equation (A48) reduces to

[G.,,+1 (b@ me1
2

+1

by — 2' BouG, ) sin qS,]

'm.+1

Z

fim]

mt1, G)-I-

_+
2

2 }_,—‘ G, | -(A49)

Vme]

where m-2[—1 are subsecripts, and the prime on the summation

gign indicates that the value for n=7» is not summed.
INTERPOLATION FUNCTION FOR SPANWISE LOADING

The simultaneous solutions of the linear equations given
by equation (A36) give the spanwise loading aty‘% wing
semispan stations. The spanwise loading function is given

by equation (Al17) in terms of the known loading at

points. An interpolation function can be determined to give

m--1 ..
2

values of loading between the known values and facilitate

plotting of spanwlse loadmg distribution.

The spanwise loadmg given by equation (A13) and the
a, coefficients given by equation (A16) can be arranged
into the form

+sin m¢, sin m¢) G+

. . +sin mg¢, sin m¢) G-+

. +sin Mén sin M) Gal (A50)

The interpolation factor, ey, with m=T7 for symmetric
loading is shown by the following table:

L] 0.981 0,831 0. 586 0.105
k
]
1 0.866 0.400 —0.0¢68 0.023
2 —.375 .768 513 —. 0756
3 .28 —. 352 .70l .416
4 .128 .150 -. 228 .041

For symmetric loading
4
G‘k=’§enkan (.A.52)

Any type of loading coefficient other than & can be used in

equation (A52),such as Cf ': .
Lbar
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For basic loading (C,=0), equation (A486) gives
W\ =—2(0.383 G,4+0.707 G;+40.924 Gy) (A53)

With equation (A53), @4 can be eliminated in equation (A51)
and a shortened interpolation table for basic loading obtained.

The interpolation factor, e, with m=7 for symmetric
basic loading is shown by the following table:

n 0.981 0.831 0.55¢ 0. 185
N\ . T '
\ | -3 i3 ¥
B .
1 0,083 0.375 0,078 —0.408
2 —.198 556 831 —. g81
3 518 —. 630 1.207 —. 768
For symmetric basic loading
3
Gk': Ele nk Gn (A54-)
ne=
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Note: Basic loading characteristics of shaded wings are discussed in text.
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