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SUBSONIC FLOW OVER THIN OBLIQUE AIRFOILS AT ZERO LIFT

By RoseErT T. JoNES

SUMDMARY

A previous report gare caleulations for the pressure distri-
bution orer thin obligue airfoils at supersonic speed. The
present report extends the caleulations to subsonic speeds.

It ig found that the flows again can be obtained by the super-
position of elementary conical flow fields. In the case of the
swept-back wing the pressure distributions remain qualilatively
similar at subsonic and supersonic speeds. Thus a distribution
sitmilar to the Ackeret type of disiribution appears on the root
sections of the swept-back wing af M=0. The resuliing posi-
fire pressure drag on the roof section is balanced by negative
drags on outboard sections.

INTRODUCTION

So far as is known, attempts to extend airfoil pressure-
distribution ecsalculations to three-dimensional flow have
been confined to cases of thin lifting surfaces. It has gen-
erally been assumed that the component of the pressure
distribution arising from the thickness of the airfoil will be
but little affected by the finite span, or aspect ratio, of the
wing. This supposition is borne out by the known incom-
pressible-flow solutions for flat ellipsoids. These solutions
show that the usual variations of aspect ratio produce small
effects, o _ _

Compressible-flow theory shows, however, that the effects
of plan form become more pronounced at higher speeds:
The theory indicates a progressive reduction of the equiva-
lent aspect ratio as the Mach number approaches 1.0.
Hence at these speeds the three-dimensional character of the

fiow can no longer be neglected. Of particular interest are.

the deviations from two-dimensional flow near the root
sections of & swept-back wing, since the adverse effects of
compressibility may arise first in this region. _

In the present report three-dimensional flows are obtained
from & distribution of ““pressure sources” in the chord plane
of the airfoil. The shapes thus obtained are symmetrical
airfoils at zero lift. The calculations are simplified by
considering airfoils composed of conical or cylindrical surfaces.
In these cases the sources can be arranged into lines of uniform
strength following the generators of the surface. The relation
between the strengths of the line sources and the shape of
the airfoil is the same as in reference 1; that is, each line
source produces a deflection of the streamlines crossing over
the source. The pressure field of the line source again can be
represented by systems of straight rays of equal pressure
{isobars) radiating from the ends of the line source.

In general, the present development follows elosely that of
reference 1 and the reader should consult that report for
additional details of the method. The solutions are given
explicitly for A=0 but are extended to other Mach numbers
by the well-known Prandtl transformation.

THE OBLIQUE LINE SOURCE

It is well known that an individual velocity component of s,
potential flow will satisfy the same differential equation as the
potential. In the approximation of the thin-airfoil theory
the pressure depends only on the individual component %,
that is, '

@

while the slope of the surface depends only on the individual |
component w, that is
dz_w

=7 S )

(Sec appendix for symbols.) Hence in the thin-airfoil theory
it is often more convenient to deal directly with the velocities
u and w as solutions of Laplace’s equation than to derive
these components from & velocity potential ¢.

Since u is proportional to the pressure, & solution of
Laplace’s equation can represent directly the pressure distri-

bution, hence the term “pressure potential.” In this
terminology, the fundamental solution
— 1__. 1 . . | 3
e @

represents a point source of pressure rather than e point
source of fluid. )

To get the effect of a row of sources, or & line source, along
the z axis between the points ¢ and b, it is necessary to inte-
grate equation (3): '

_J‘b dt
T Ja@—9y4 22
z—b

. . 1, T—a
—snb™ Epa st 0 L @

The pressure field of the finite line source thus consists of the

sum of two conical pressure fields radiating from the ends of

the line source. (See fig. 1.) In the supersonic case (refer-

ence 1), the radial isobars forming the conical field were
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F1oURE 1.—Pressire field for line source.of length (b—a}.

confined to the downstream Mach cone.
the isobars extend over the whole space.’

Here, however,

If the direction of flight is along the axis of the sourcs.

(z axis), the flow will satisfy the boundary condition for a
body of revolution. However, if the line source is turned
out to a position oblique to the stream, the boundary shape
will be distorted and, if the angle of obliquity is large enough
to place the line source well outside the diameter of the
original body, the figure formed will be an oblique wedge.
The nose angle of the wedge is formed where the streamlines
of the main flow cross the line source. -

At supersonic speads the expression for the obhque lme

source was obtained by applying an equivalent of the Lorentz
transformation, for which the wave equation is invariant.
The equivalent transformsation for Laplace’s equation is a
rotation of the axes, given by

2’ =z+my
Y =y—mz
g =z/TFm?

1 The conical pressure fleld for either the subsonie or the supersonic line source may be ob-

tained directly from the generel solutions of Laplace’s equations of zero degree in z, ¥, 2 glven
by W. F. Donkin, (BSee reference 2, page 857.) The general solution s

ydz
R AT ==
The solution corresponding to the subsonic line source is
y+Hiz )
22t it
while the fleld for the supersonic source is given by
y-Hz z

e by - B

u=—RP, log _'.s]'_n__h—l

x
VA

t4=~—R P, log

where m is the slope of the new axes relative to the old.
(Nota that a change of scale is admitted for convenience.)
The geometry of the pressure field relative to the line source
is not altered in any way by this rotation and the isobars
behave as though they were rigidly attached to the ends of
the source. For a line source with one end at the origin,
we have

=(5)

u=sinh™*

o _
Y@

This field is illustrated in figure 2 for the plane z=0. As
m—>« the # and y axes interchange and there is obtained

4=sinh~!

Vot @

' for a line source along ¥.

The vertical velocity w near 2=0, which determines the
shape of the boundary, may be found by integrating u with
respect to z and then differentiating the resulting velocity
potential with respect to 2.

9

Evaluation of this integral for the overlapping fields from
two ends of a line source gives

W= 427 ______I;—m" : gt

over the area of the zy plane behind the line source.
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F1GCRE 2,—Pressure field due to one end of ublique line source.

"The figure formed by the streamlines crossing a line source
is thus a wedge-shaped body having an pblique leading edge
and extending indefinitely downstream. It is evident from
equation (4) that the infinitely wide wedgé cannot be treated
in subsonic flow, since it creates an infinite pressure disturb-
ance at all points. '

The slope of the wedge surface away from the chord plane
is given by

dz _w
st : ©
With this relation and equation (8) the pressure coefficient
near the plane 2=0 may be expressed in terms of the slope
Ap_ 1 m dz(. Le=b .. d—ad
== inh™? —sinh™! ———
¢ 7 Jitmidz\® T o T

where {y'| indicates the absolute magnitude of4’. Following
the thin-airfoil theory, the pressure over the chord plane
(2—0) is taken as the pressure over the actual airfoil surface.

AIRFOILS BOUNDED BY PLANE SURFACES

(10)

It was seen that the effect of a line source in the pressure
field is to cause a deflection of the streamlines crossing the
source. The deflection thus produced is equal and opposite
at points above and below the chord plane, so that the
source spreads the streamlines apart. If the source is
followed by a sink of equel strength, an equal opposite deflec-
tion of the streamlines will occur as they cross over the sink.
The figure formed by the streamlines near the plane z=0
will thus be a plate of uniform thickness with a beveled
leading edge? (See fig. 3.) '

2 Acoording to the thinalrfofl theory the thickness of the figure ends abraptly at the ends
of the source lines. A more exact consideration would be expected to show some rounding
at the tips of the wedge as indicated in figure 8.
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Fiavne 3,—Construction of the pressore distribution over a be;.'eled leading edge. .



198 . REPORT NO. 902—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

The pressure distribution over such a beveled edge may
be obtained very simply by superimposing the pressures laid
off on radisl isobars originating from the four corners of the
bevel. Figure 3 illustrates this process for a bevel having a
square plan form. Only isobars from one tip are shown
because of the symmetry of the figure.

In ﬂgure 3, the line source and the line sink are paralle]

to the y axis, hence

Y= smh‘ +1| —sinh™! lr-l-ll
sinh! ly+1(+ inh~ =g ;( 1)

It can be seen that if the aspect ratio of the figure is Increased
to a large value the ends of the line sources will be separated
by a great distance and the isobars in intermediate regions
will approach parallel straight lines, hence. the flow field
approaches a cylindrical or two-dimensional form. At the
same time the arguments y3-1/jz+1] in equation (11) be-
come ¥+ n/r+1 and 7 takes on very large values so that

o YEn ytq
sinh™! ]-E—I—»ilog2m

and equation (11) is found to approach ﬁhe Legendre func-

tion €, that is
=2 log ’i—;—}’= —4 @ (z) (12)

(See reference 3, p. 110.) -

This expression when combined with equation (8) agrees
with the two-dimensional potential function for the wedge,
that is,

— (u—tw) =4 Qo (z) £ 27t Py () (13)

(See fig. 4.)

The isobars at right angles to the axis of the line source are
lines of zero pressure, hence the rays originating at the tip
of a rectangular wing contribute nothing to the pressure
distribution at this tip. The whole pressure distribution
at one tip is thus obtained by considering only those isobars
radiating from the opposite tip. It is evident that in the
case of a long narrow rectangular wing the pressures at
either tip will be approximately one-half the pressures over
the middle portion of the wing.

In case the wing is oblique the tip sections will no longer
be at right angles to the axes of the source lines and the rays
originating from the adjacent ends of the source lines will
contribute to the pressure over the tip. It can be shown
that this component of the tip pressure distribution is
similar in form to the Ackeret type of distrtbution, that is,
the pressure at any point of the surface is proportional to
the slope of the surface at that point.

Consider first the sloping surface formed by a pair of
oblique source-sink lines. The tip section lies along the
lines of constant pressure of magnitude proportional to
sinh~! 1/m. Between the source and sink the p1 essures are
additive,go that . . . . . .. —.

Ap 2 m
?_- 3— sinh-! (14)

Ahead of or behind this section the pressures cancel.

In case of a curved airfoil surface the chord can be divided
into elements composed of source-sink pairs, the strengths of
which are proportional to the slope of the surface at the point
in question. Each pair then contributes a pressure propor-
tional to the local slope and contributes no pressure at other
points. Hence, equation (14) applies when dz/dz is variable
along the chord. S

—
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FIGURE 4.—Two-dlmensfonal veloclty functions for wedge and biconvex sections.

The foregoing arguments of course apply only at-the tip
section of the oblique wing. At some distance from the tip
section the overlapping isobars radiating from the tip again
produce a quasi-cylindrical pressure field as in the casc of
the rectangular wing. Thus the resultant pressure distribu-
tion at either tip of a long oblique wing consists of two ¢com-
ponents, one given by equation (14) and of the .Ackeret type
while the other component is equal to one-half the normal
two-dimensional pressure distribution associated with the
airfoil section.

Figure 5 shows the pressures over a beveled-edge profile
having 45° sweepback. The pressure distribution over the
root section is given by

Ap — \/de [Qo(x)—smh e P_(z)] (15)
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at a great distance from either root or tip by

Ap —4¢ m
T Vixmde Qo) (16)
and at the tip by
Ap —2 d - .
2= i @@t L P@ ] an
Plon
v
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FIGCRE 5.—Pressure distribation over beveled edge with 45° sweepback.
To take account of the effect of compressibility we make
use of the Prandtl transformation, increasing both the z
dimensions and thepressure coefficients by the factor 1/—1__%1?;

Replacing m by +/1—M2 cot A, where A is the angle of sweep-
back, equation (16} reduces to

Ap —4 1 dz
p2(Veos A)2 = J1— (B cos A)® d(z Cos A) Qo) |

as

Thus, at a great distance from either root or tip, the pressures
follow & variation indicated by the normal component of
velocity V cos A.

At the root section, a component representing the Ackeret

type of pressure distribution is added to equation (18). This
component is
4 1 dz
* 1— (A1 cos A)% &(z cos A)
- 1 ) P
. (Jl—M’ cob A 2 (19)

The factor sinh—! —\/_1———-_1_}’.2—0(%—\-. shows a Iogarithmic_ in~

finity at Af=1.0. Hence the pressure on the root section
increases more rapidly with Mach number than do the pres-
sures at other sections of the swept-back wing. Further—
more, the shape of the pressure distribution_over the root
section approaches the Ackeret shape more closely as the
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Mach number approaches 1.0. As shown in reference 1, the

pressure distribution on the root section is exactly this shape '

at supersonic speeds, that is,

Ap- 4 1 dz
geos? A 7 1— (A cos A)2 ¢ cos A)

cosh™ (Vﬂl’—ll cot A) Fol@)

Since sinh~!~>cosh™ for large values of the argument, the
swept-back airfoil shows no discontinuity in the type of
pressure distribution on passing through the speed of sound.
It will be evident that similar reasoning can be apphed to
the tip sections. o

AIRFOIL OF BICONVEX SECTION

The use of a finite number of squrces and sinks results in
airfoil sections composed of straight segments. Such sec-

o .

tions are undesirable, since they show infinite pressure peaks

at the bends in the surface. Surfaces having continuous
curvature require continuous distribution of sources and sinks
alined with the generators of the surface. The simplest of
these is the biconvex profile in which the upper and lower
surfaces are parabolic arcs and have ‘constant curvature.
Such a profile requires line sources of finite strength to form
the desired angles of intersection of the arcs at the leading

and trailing edges together with & uniform d1str1but1on of T

sinks along the chord plane between the two sources.
The pressure field for a uniform sheet of line sources is

obtained by integrating the field of & single line source in _' B

the z direction. This integral is

1. _V1+m 4%
oY f ﬁld:: ysmh l
Ly sinh"‘lg,-l @)

The integration for a source sheet is actually somewhat

gimpler if the interference of & bilaterally symmetrical ari
rangement of sources is considered simultaneously. The in-
fluence of the symmetrical, or conjugate, arrangement is
obtained by substltutmg —m for m in equation (21). De-
noting z—my by ¥’ and y+mz by 7 we have

5wt = [ (sinbs %ﬂinh-* o7 ) &2

——( ginh™! 7 —y’ ginh™? PT)

To obtain & complete swept-back wing it is necessa.ry'_to
add a number of component pressure fields as explained in
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reference 1.
and trailing edges at y’=-m and —m, respectively, on one
side, and at y’=+m and —m, respectively, on the other side,
there is obtained

Ap 2 1

RO g

sunh‘1

1
> jm, +2Q, y)+2Q1 —)]
vshere( ) ig the thickness-chord ratio of the biconvex
maz

sinh~! (23}

profile. The terms ¢ (g-) represent the pressure distribu-

tion on the biconvex airfoil in two-dimensional flow. The

appearance of these terms is the result of the sssumption

that the tips are removed to a great distence. A
At the root section (y=0) equation (23) reduces to .

_.__=-____..__.. 1
=7 1/1+m2( ) [4Q1(x) —4 sinh~ Pl(:c)] (24)

Figure 6 shows pressure distributions at various stations
along the span for a biconvex wing with 60° sweepback.
The curves assume the two-dimensional form at a relatively

short distance (yglc) from the root section, and similar

FlauRE 6.—Pressure distribution at varlous spanwise statfons on swept-back wing, A =60°,
AM=0,

For an infinite swepi-back wing with leading |

)+3’— (smh -
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behavior is to be expected near the tips. Hence the assump-
tion of infinite aspect ratio should apply very nearly at any
section situated more than one-half chord length from cither
root or tip.

Figure 7 shows the effect of Mach number on the pressures
over the root section and illustrates the progressive change
to the supersonic type as the Mach number approaches 1.0.
It can be seen that an increase in Mach number will not only
increase the distortion of the pressure distribution but will
increase the extent of the distortion along the span.

M=.05
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Ficure 7.—Eflect of Mach number on pressurs distribution over root ssctlon of swept-back
wing, A =60°, biconvex sactlon.

An interesting point to be noted is that not all sections of
the swept-back wing have zero pressure drag. A positive
drag appears on the root sections and a negative drag on the
tip sections. Hence the spanwise drag distribution is
qualitatively similar to that at supersonic speeds though, of
course, the net subsonic pressuro drag is zero.

AMES AERONAUTICAL LABORATORY, .
NATIONAL ApvisoRY COMMITTEE FOR AFRONAUTICS,
Morrerr FieLp, Cavtr., May 1947.



SYMBOLS

flight velocity
Mach number

coordinates

point on z axis

point on y axis
disturbance-velocity potential
disturbance-velocity components
local pressure

dynamic pressure (% pV’)
air density -
Legendre functions

differential operator (d/dz)
thickness of wing

APPENDIX

¢ chord of wing (measured along z)

m slope of line source (absolute value)

z z-+my )
¥ y—mz

z’ z—my

v y+mz

R.P. Real part
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