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SUMMARY

This paper develops a new method for determining the buekling
stresses of cylindrical shells under rarious loading conditions.
For conrenience of exposition, it is divided into two parts.

In part I, the equaiion for the equilibrium of eylindrical
shells introduced by Donnrell in NACA Report No. 479 to find
the critical stresses of cylinders in forsion is applied to find
eritical stresses for eylinders with simply supported edges under
other loading conditions. Ii is shown that by this method solu-
tions may be oblained very easily and the results in each case may
be erpressed in terms of two nondimensional parameters, one
dependent on the critical stress and the other essentially deter-
mined by the geomeiry of the eylinder. The influence of boundary
conditions related to edge displacemenis in the shell median
surface is discussed. The accuracy of the solutions found is
established by comparing them with previous theoretical solutions
and with test results. The solutions to a number of problems
concerned with buekling of eylinders with simply supported
edges on the basis of @ unified viewpoint are presented in a
convenient form for practieal use.

In part II, a modificd form of Donnell’s equation for the
equilibrium of thin cylindrical shells is derived which is equiv-
alent to Donnell’s equation but has certain advaniages in physical
interpretation and in ease of solution, particularly in the case
of shells having clamped edges. The solution of this modified
equation by means of trigonometric series and its application o
a number of problems concerned with the shear buckling siresses
of eylindrical shells are discussed. The question of tmplicit
boundary conditions also 1s considered.

INTRODUCTION

The recent emphasis on aircraft designed for very high
speed has resulted in a trend toward thicker skin and fewer
stiffening elements. As a result of this trend, a larger fraction
of the load is being carried by the skin and thus ability to
predict accurately the behavior of the skin under load has
become more important. Accordingly, it was considered
desirable to provide the designer with more information on
the buckling of curved sheet than has been available in the
past. In carrying out a theoretical research program for this
purpose, a method of analysis was developed which is be-
lieved to be simpler to apply than those generally appearing
in the literature. The specific problems solved as a part of
this research program are treated in detail in other papers.
The purpose of this paper, which is discussed in two parts,
is to present the method of analysis that was developed to
solve these problems.
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In part I, the stability of a stressed cylindrical shell is
analyzed in terms of Donnell’s equation, a partial differential
equation for the radial displacement w, which takes into
account the effects of the axial displacement % and the cir-
cumferential displacement r. Part I shows the manner in
which this equation can be used to obtain relatively easy
solutions to a number of problems concerning the stability of
cylindrieal shells with simply supported edges. The results
of the solution of this equation are shown to take on a simple
form by the use of the parameter % (similar to the buckling-
stress coefficients for flat plates) to represent the state of
stress in the shell and the parameter Z to represent the
dimensions of the shell, where Z is defined by the following
equations: .

For a cylinder of length L
z =f—t VI—p?

and for a curved panel of width 5

2
=—-!—
Z rzf‘l ®
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where

r radius of curvature

£ thickness of shell

and

p  Poisson’s ratio for material

The accuracy of Donnell's equation is established by compari-
sons of the results found by its use with the results found by
other methods and by experiment.

In the simplest method that has been found for solving
Donnell’s equation, the radial displacement w is represented
by a triconometric series expansion. This method can be used
to great advantage for cylinders or curved panels with simply
supported edges but leads to incorrect results when applied
uncritically to eylinders or panels with clamped edges.

In part II, an equation is derived which is equivalent to
Donnell’s equation but is adapted to solution for clamped as

well as simply supported edges by means of trigonometric

series. This modified equation retains the advantages of
Donnell’s equation in ease of solution and simplicity of re-
sults. The solution of the modified equation by means of the
Galerkin method is explained, and the results obtained by
this approach in a number of problems concerned with the
shear buckling stresses of cylindrical shells are given in
graphical form and discussed briefly. Boundary conditions
implied by the method of solution of the modified equation
are also discussed.
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SYMBOLS

o length of curved panel (longer dimension)

b width of curved panel (shorter dimension)

d diameter of cylinder

;;"7 %:né} integers o o

7 lateral pressure, positive inward

7 radius of eylindrical shell

t thickness of cylindrical shell

U displacement in axial (z-) direction of point on
shell median surface

2 displacement in circumferential (y-) direction of
point on shell median surface

W displacement in radial direction of point on shell
median surface; positive outward

% axial coordinate

Y circumferential coordinate

Amny b"‘”’}numerical coefficients

Cmny dmn J
2 2

k, shear-stress coeflicient (%—iz for eylinder or Z%t% for
curved panel or infinitely long curved strip)

k. axial compressive-stress coefficient ( -for

cylinder or DbZ for curved panel or infinitely

long curved stmp)
ky circumferential compressive-stress coeflicient
tL?
Ty

2
= for eylinder or %for curved panel or in-

finitely long curved strip)

Cy hydrostatic-pressure coeflicient (‘%%f)

Wy amplitude of deflection function

D plate flexural stiffness per unit length (1—2——)>
E Young’s modulus

F Airy’s stress function for the median-surface

stresses produced by the buckle deformation

T OF
(b s stress in axial dlrectzon, 52 stress in cir-

2
cumferential direction; —%—/, ghear stress)

L length of cylinder
@, @y, @ mathematical operators
2
VA curvature parameter (% J1—=u? for cylinder or
b’)

\/1 @ for curved panel or infinitely long

curved strip)

i L/ for eylinder or &/\ for infinitely long curved
strip
A half wave length of buckles; measured circumfer-

entially in cylinders and ax1a11y in 1nﬁmte1y long
curved strips
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£ - dimensionless axial coordinate (x/6)

7 dimensionless circumferential coordinate (y/b)
“ Poisson’s ratio

T “applied shear stress

Ter critical shear stress
or —applied axial stress, positive for compression
ay apphed cucumferentml stress, positive for compres-
’ sion
R, shear-stress ratio; ratio of shear stress present to
_critical shear stress when no other stress is acting
B, axial-compressive-stress ratio; ratio of direct axial

stress present to critical compressive stress when
no other stress is acting

ot ot

o?
V4 operator ((a 2+by ax“+ a$25y2+ay

opelator <<b£‘+bn ) )
Ve operator <<ax3+ay ) )
operator <<552+a ) )

inverse operator defined by equation

VHIN=")=

\P

1. DONNELL’S EQUATION
THEORETICAL BACKGROUND

In most theoretical treatments of the buckling of cylin-
drical shells (see references 1 to 3) three simultaneous partial
differential equations have been used to express the relation-
ship between the components of shell median-surface dis-
placement u, v, and w in the axial, circumferential, and
radial directions, respectively. No general agrecement has
been reached, however, on just what these equations should
be. In 1934 Donnell (reference 4) pointed out that the
differences in the various sets of equations arose from the
inclusion or omission of a number of relatively unimportant
terms (referred to in the present paper as higher-order
terms), and proposed the use of simpler equations in which
only the most essential terms (first-order terms) were
retained. The omitted terms were shown to be small, and
thus the simplified equations to be applicable, if the cyvlinders
have thin walls and if the square of the number of circum-
ferential waves is large compared with unity. Donnell
further showed that the three simplified cquations can be
transformed into a single eighth-order partial differential
equation in w (sece appendix A of the present paper) in which
the effcets of the displacements u and » are properly taken
into account; this equation will hereinafter be referred to as
Donnell’s equation.

When higher-order terms are included in the three partial
differential equations previously mentioned, the resulting
theoretical buckling stresses are usually very complicated
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functions of the cylinder dimensions and the elastic proper-
ties of the material. A family of curves is ordinarily drawn
giving the critical stress as a function of the length-diameter
ratio for specified values of the radius-thickness ratio and
for given elastic properties (references 2, 3, and 5). When
the higher-order terms are omitted from the equations and
the requirements of an integral number of circumferential
waves is removed, new parameters can be introduced which
combine the cylinder dimensions and material properties in
such a way that the results can be given in terms of a single
curve. These parameters have been used, with slight varia-
tions in detail, by Donnell, Kromm, Leggett, and Redshaw
{references 4 and 6 to 9). The omission of the higher-order
terms also greatly simplifies the calculations, and the calcula-
tions are simplest if Donnell’s equation, rather than the set
of three simultaneous equations, is employed. Donnell’s
equation, or an equivalent equation, may therefore be
presunied to be the most promising for use in solving hitherto
unsolved problems in the stability of cylindrical shells.

In spite of the fact that it was introduced some time ago,
Donnell’s equation has not achieved the wide acceptance
for use in the stability analysis of cylindrical shells which
it appears to merit. Some investigators have continued to
use simultaneous differential equations in which higher-
order terms appear, presumably on the assumption that the
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continued to employ simultaneous equations, probably in
order to specify directly edge-restraint conditions having to
do with displacements in the axial and ecircumferential
directions, which cannot be done with Donnell’s equation.
The purposes of part I are to establish the aceuracy of the
equation by comparing the results found by the use of
Donnell’s equation with the results found by other methods
and with experimental results and to investigate the question
of boundary conditions on % and ». The additional purpose
is achieved of presenting the solutions of a number of

problems concerned with buckling of eylinders with simply

supported edges on the basis of a unified viewpoint and ina

convenient form for practical use.

BUCKLING STRESSES OF CYLINDERS WITH SIMPLY

SUPPORTED EDGES B

Lateral pressure,—The theory for the lateral pressure
{uniform external pressure applied to walls only) at which
a eylinder will buckle is given in appendix B in which it is
assumed that. the lateral pressure causes the buckling by
producing a circumferential stress ¢, and that it affects the
buckling in no other way. The results are shown in a
logarithmic plot in figure 1. The ordinate in this figure is

the stress coefficient %, which appears in the flat-plate

buckling equation (see, for example, reference 3, p. 339)

errors arising from neglect of these terms might be undesir- P =D
ablylarge. Othershave dropped second-order termsbuthave vy
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F1cURE 1.—Critical circumferentialsiress coefficients for cvlinders with simply supported edges.
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{The discussion given in the section of the present paper
entitled “Parameters Appearing in Buckling Curves’ shows
the relationship between a cylinder of length L and an
infinitely long flat plate of width 6=L1.) The abscissa

L — /YLN\'r
Z:E '\/I—M2=k?) —tf\/l—,uz

may be regarded either as a measure of the curvature, or,
for any given ratio of radius to thickness, as a measure of the
length-radius ratio of the cylinder. Figure 1 shows that
for small curvature &, approaches the value 4, which applies
in the case of simply supported long flat plates in longitudinal
compression (reference 3, p. 327). As the curvature param-
eter Z increases, the stress coefficient &, also increases.
For large values of Z, the curve approaches a straight linesof
slope 1/2. This straight line is expressed by the formula

b, =1.042'"

As the length-radius ratio increases, for a given value of
rft, the number of circumferential waves n diminishes. Al-
though n must be an integer, the curves of figure 1 were
obtained on the assumption that » is free to vary continu-
ously. Only small conservative errors are involved in this
assumption. Because n=1 _corresponds merely to a lateral
displacement of the entire circular cross section, the minimum
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value of n is 2, which corresponds to deformation of the
section Into an ellipse. This limitation on n results in
splitting the curve of figure 1 into a number of curves for
different values of r/t when Z becomes large. A cylinder

. r . . .
having a value of EZOO buckles into an ellipse when Lfr is

about 10, and the value of L/r at which such buclding oceurs
increases with increasing r/t. ] N

In figure 2 the curve of figure 1 is compared with results
based on more complicated calculations given in reference 3
and in reference 5. At [airly large values of Z the results
given in reference 3 and in reference 5 are in good agreement
with the results of the present paper. At small values of Z
the curve based on reference 3 (Timoshenko) is definitely too
low, because &, should approach the flat-plate valuc of 4 as Z
approaches zero. An interesting feature of the comparison
is that one calculation gives results below, and the other
caleulation results above, those given herein. The test data,
taken from reference 5, are in reasonable agreement with
and show more seatter than the theoretical curves.

In the case of cylinders so long that n=2, the requirement
for the wvalidity of Donnell’s equation that #Z»1 is no
longer satisfied and appreciable error is to be expeciled.
Indeed it may be shown that for very long cylinders when
n=2 Donnell’s equation gives 4D/r® as the critical value of
the applied lateral pressure, swhereas the aceepted theoretical
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F1aURE 2.—~Comparison of present solution for critical circumferential-stress coeficients for simply supporfed cylinders with other theoretical solutions and with test resulfs.
(Timoshenko’s solution is from reference 3 and Sturm’s data and solution are from reference 5.)
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result is 3D/ (by use of the formula given on p. 450 of
reference 3). The curves for n=2 will probablv not often
)>(7)
which in the case of thin eylinders correaponds to a very
large length-radius ratio, and if needed, the curves for
n=2 can be applied in conjunction with a correction factor
0.75

Axial compression.—The theory for the axial stress at
which a eylinder will buckle is given in appendix B, and the
results are shown in figure 3. The ordinate is analogous to,
and the abseissa identical with, the corresponding coordinates
used in figure 1. Figure 3 shows that for small values of
Z, k., approaches the value 1, which applies in the case of
long flat plates in transverse compression with long edges
simply supported (reference 3). For large values of Z, the
curve becomes a straight line of slope 1. This straight line
is expressed by the formula

be needed, however, since they apply only When

For any fixed value of rft some value of Z always exists
above which Lir is so large that the cylinder fails as an
Euler strut rather than by buckling of the cylinder walls.
Pin-ended Euler buckling of ¢ylinders is indicated in figure 3
by means of dashed curves.

The result just given for the critical-stress coefficient for a
eylinder in axial compression leads to the following expression
for the eritical stress
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F1crrE 3.—Critical axial-stress coefficients for cylinders with simply supported edges.
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The value given in equation (1) for the critical stress of a

Donnell’s equation is identical with the value found by a
number of Investigators using other equations as starting
points (references 1 to 3). In the case of cylinders under
axial compression the errors involved in dropping the second-
order terms are therefore concluded to be small.

The buckling stresses given by equation (1) are neverthe-
less in serious disagreement with the buckling stresses
obtained by experiment (reference 10). For a discussion of
the degree of correlation that can be found between theory
and experiment for cylinders under axial compression, see
reference 11.

Hydrostatic pressure on closed cylinders.—VWhen closed
cylinders are subjected to external pressure, both axial and
circumferential stress are present. The theory for buckling
under these combined loads is given in appendix B. The
results are shown in figure 4. The ordinate (7, used in this
figure is a nondimensional measure of the pressure p de-
fined as follows:

2

pr
G="p

The coefficient ¥, ean be directly related to the corresponding

stress coefficients &, and k,. By definition
g, tL?
k=D

and, according to the hoop-stress formula,

It follows from the three preceding equations that (, is

numerically equal to k,. Similarly C, can be shown to be
numerically equal to 2k,.

At low values of Z, C, approaches the value 2, which
implies that k,=1 and k,=2. That these values of k rep-
resent a critical combination of stresses for an infinitely
long flat plate was shown in reference 12. At large values

of Z, the curve approaches the curve given in figure 1 for

buckling under lateral pressure alone and, like that curve,
has branches representing buckling into two circumferential
waves.

In figure 5 the computed values of the pressure coefficient_

C, at which the eylinder would buckle if only the axial pres-
sure were acting and if only lateral pressure were acting are
compared with the resulis when both are acting because of
hydrostatic pressure.
tial stress at which buckling occurs under hydrostatic pres-
sure is substantially the same as it would be if no axial stress
were present, as in the case of lateral pressure. The reason
that the circumferential stress appears as the main factor in
buckling at high values of Z presumably is that at these
values of Z the axial stress required to produce buckling is
many times the ecircumferential siress required, whereas
under hydrostatic pressure the axial stress actually present is

only one-half the eircumferential stress.

At large values of Z the circumferen-

289

moderately long eylinder in axial compression by use of
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F1eurE 5.—Comparison of solution for buckling of simply supported cylinders under hydrostatic pressure with solutions for buckling under axial pressure alone and lateral
pressure alone.
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In figure 6 the curve of figure 4 is compared with curves
representing Sturm’s theoretical results (reference 5) and
with a curve based on the following formula developed at
the United States Experimental Model Basin (reference 13,

equation (9)):
f 5/2
2.42F (E?)

P= = [§—0>45 @)m]

This formula is an approximation based on theoretical results
obtained by Von Mises (reference 3, p. 479) which are iden-
tical with the results in the present paper for buckling under
hydrostatic pressure. Figure 6 shows that Sturm’s theoret-
ical results (reference 5) are in reasonable agreement with
those of the present paper and that the formula from the
United States Experimental Model Basin practically eoincides
with the present results except at very low values of Z.

Test results from references 5 and 13 are included in fig-
ureB. Thetestdataareingood agreementwith the theoretical
results except at low values of the curvature parameter Z
at which the theoretical results are appreciably above those
obtained experimentally. A possible explanation of the
discrepancey between the theoretical and experimental results
at low curvature is suggested by the relative importance of
axial and circumferential stress in causing buckling. The
axial stress becomes important only at low values of the
curvature parameter Z. It is known experimentally that
buckling under axial stresses may occur far below the theo-
retical value of the critical stress. At low values of Z
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cylinders under hydrostatic pressure may therefore be
expected to buckle well below the theoretical eritical load
just as cylinders do under axial compression.

Torsion.—The problem of the determination of the buck-
ling stresses of cylinders in torsion was solved by Donnell
(reference 4) who gave an approximate solution of the equa-
tion of equilibrium. A somewhat more accurate solution of

this equation is given in reference 14. The essential results

are shown in figure 7 taken from reference 14. At low
values of Z the buckling-stress coefficient &, approaches the
value 5.34 appropriate to infinitely long flat plates loaded in
shear (reference 15). At higher values of Z the curve
approaches a straight line given by

k,=0.857%*
At very high values of the curvature parameter the curve
splits up into a number of other curves, depending on the
value of rft. The curves for various rft values at high

values of Z represent buckling into two ecircumferential
waves. As mentioned before, Donnell’s equation is not

reliable for the case n=2 (a case which occurs for eylinders in

. AN . . .
torsion when <F) >10 %) A solution for this case given

by Schwerin and discussed in reference 4 results in critical
stresses about 20 percent below those of the present paper.
Because Schwerin’s solution does not satisfy the condition
w=0 at the end of the cylinder, however, it is probable that
the error in the present solution for n=2 is less than 20
percent.
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o Windenburg and Tritling
a Sturm

Sturm tl Vi

I

U S Experimenial Model . o ©
Basin Formula
S Q

!
- : o o
1
i
1o
. .

“Fresen? solution

R

! | N N 0 I I [ 1

| 1 17 I

-

| S VN S A ! I WV N S I [ i1

/ 10 10%

7=

i7s . /0%

2

L= Lo
=TV

F1avrE 6.—Comparison of present solution for buckling of simply supported ¢ylinders under hydrostatie pressure with other theoretical solutions and test results, (Sturm’s resnlis
are from reference 5 and Windenburg and Trilling’s results are from reference 13.)
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FIGURE 7.—Critical-shear-stress coefficients for cylinders in forsion, (Fig. 1 of reference 34.)

In experimental investigations of cylinders in torsion the
maximum rather than the eritical loads have usually been
reported. Because these maximum loads usually exceed the
critical loads by only a small margin, it is common practice to
check theoretical buckling stresses by comparison with the
average stresses at maximum load. Such a comparison is
provided in figure 8 which incorporates test data from refer-
ences 4, 10, 16, and 17 For this figure the test results
average about 15 percent below those given by theory.

DISCUSSION

Parameters appearing in buckling curves.—The fact that
the buckling of a cylinder under axial compression, lateral
pressure, hydrostatic pressure, or torsion involves sub-
stantially the same parameters is not a mere coincidence but
1s a direct consequence of the differential equation. The
differential equation implies that when the requirement of
an integral number of circumferential waves is removed the
six variables L, », t, E, p, and the load may be combined into
two nondimensional parameters, one (k. k,, k, or O,)

describing the stress condition, and the other (Z) cssentially
determined by the geometry. (See appendix C.} It is also
shown in appendix C that the buckling of a curved rec-
tangular plate of any given length-width ratio may be
represented in terms of these parameters. The eritical
stress of a cylinder or a curved plate of given length-width
ratio may therefore be given by a single curve relating the
two parameters provided that the number of circumferential
waves may be regarded as continuously variable. This
restriction becomes important at very large values of Z, for
which the curves may split into a number of curves for
cylinders of different values of »/¢ buckling into two circum-
ferential waves.

Except for hydrostatic pressure, each type of loading con:
sidered results in a single uniform stress in the c¢ylinder, and
the nondimensional parameter k describing this stress is de-
fined as follows in analogy to the parameter used in de-
scribing the buckling of a flat plate:

h— "(%Q
w2l

I
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FlatRE 8.—Comparison of theoretical solution for critical shear stress of simply supported eylinders in torsion with experimental ultimate stresses. (Lundquist’s data are from
reference 10, Donnell’s data are from reference 4, Moore and Wesecat's data are from reference 16, and Bridget, Jerome, and Vosseller's data are from reference 17.)

As the radius of the cylinder increases toward infinity (the
other dimensionsrematining constant}, the cylinder approaches
«an infinitely long flat plate of the same thickness as the
eylinder, baving a width b equal to the length L of the
cylinder. Accordingly, as the radius approaches infinity,
the ecritical-stress coefficient % for the cylinder approaches the
value of the corresponding stress coefficient for an infinitely
long fAlat plate under the appropriate loading condition.
The other nondimensional parameter Z is defined by the
equation

T2  IN'P
Z:—r?_\fl_.l_f:(?) E_\!I_‘uz

If the small correction due to Poisson’s ratio is neglected, a
direct physical significance can be assigned to Z when its
magnitude is small. The maximum distance from a slightly
curved arc of length L and radius r to its chord can be shown
to be given by the expression L?/8r,which is called the‘‘bulge”
by some writers (see references 8 and 9). Accordingly, in
the case of a curved strip of length L in the circumferential

direction, L2/8rt is the bulge divided by the thickness and is
thus a nondimensional measure of the deviation from flatness
of the strip. As applied to a short ecylinder, L*/8rt is the
deviation from flatness of a square panel of the cylinder,
each side of which is equal to the length of the eylinder. For

cylinders having a length greater than a few tenths of the

diameter, the parameter Z loses this simple physical signifi-
cance and is perhaps best regarded as a nondimensional meas-
ure of the length of the cylinder. Some indication of the
variety of cylinder shapes corresponding to a fixed value of
Z is given in figure 9. '

Boundary conditions.—When problems in the stability of
cylindrical shells are solved by the use of Donnell’s equation,
boundary conditions on % and ¢ cannot be imposed directly
because only w appears in the equation. The method of
solution, however, may in some cases imply boundary condi-
tions on % or ». In appendix D it is shown that for simply
supported cylinders the method used in the present paper (a
solution using one or more terms of a Fourier series satisfying

the boundary conditions on w term by term) implies that at
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F1cUure ¢.—Representative cylinders corresponding to the same value of Z (Z about 150).

both ends of the c¢ylinder the circumferential displacement »
is zero, but that the cylinder edges are free to warp in the
axial direction (#70). For a simply supported rectangular
curved panel, the present method implies (with regard to
displacements within the panel median surface) zero displace-
ment along the four edges of the panel and free warping nor-
mal to the edges. These edge conditions on u and » are
appropriate to cylinders or panels bounded by light bulk-
heads or deep stiffeners which are stiff in their own planes
but may be readily warped out of their planes.

Relatively few calculations. of the stability of a cylinder
take into account the boundary conditions on % and ». A
calculation for the case of torsion, however, was recently
made by Leggett (reference 18). The results of this calcu-
lation, computed for u=v=0 at the edges of the cylinder, are
given only for Z<(50. Throughout the range for which they
are given, however, they agree very closely with the results
found by the method employed in the present paper, which
implies that at the edge of the cylinder v=0 and u#0.
Restraining the ends of the cylinder from warping in the
axial direction may therefore be assumed to have a negligible
effect upon the buckling stress. This assumption receives
added support from the form of the equation of equilibrium
(appendix A) for the case of constant pressure

) o o O°F 1)_
Dviwtt{ oz gpat2r arby+ % 57 T oz

In this equation, o, oy, and 7 are the stresses present ]ust

2
before buckling and 5 xlj is the circumferential stress produced

by the buckling itself. The equation indicates that the only
difference between the buckling behavior of a eylindrical
sheet and that of a flat plate (found by omitting the last
term in the foregoing equation) is due to the effect of the
circumferential stresses caused by the buckling deformations.
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Because the restraint against warping in the axial direction
requires the application of axial rather than circumferential
stresses, this restraint might be expected to have only small
effects on buckling stresses. Circumferential stresses would
have to be applied to the straight sides of a curved strip to
prevent warping normal to these edges during buckling.
Because the circumferential stress due to buckling appears
explicitly in the equation of equilibrium, the imposition of
the restraint =0 to the straight sides of a panel should have
an appreciable effect on the buckling stress (except when the
straight sides of the panel are short compared with the curved
sides). __

Theoretical results on the buckling of curved strips
infinitely long in the axial direction are available to test the
foregoing conclusion. In figure 10 the critical axial compres-
sive stress for an mﬁmtely long curved strip with % and »
both zero along the edges (reference 8) is comparod with the
critical axial compressive stress when % is zero along the
edges, and the edges are free to warp in the circumferential
direction. (See appendix B for solution.) The critical axial
stress is appreciably increased by the constraint v=0 in a
certain range of small curvature. In figure 11 the critical
shear stresses are compared under the same sets of cdge
conditions (references 6 and 7). The critical shear stress is
conspicuously increased by the constraint »=0 excepl near
the limiting case of flat plates. ,

It appears from the foregoing discussion that the effect on
the buckling stresses of preventing free warping normal to
the curved edges of a cylinder or panel is very small but
that the effect on the buckling stresses of a similar restraint
on the straight edges of a panel may be quite important.
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Fi1GURE 10.—Comparison of the present solution for the buckling under axial compression
of & curved strip infinitively long in the axial direction, with solution found by Leggett
(reference 8).
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FisURE 11.—Comparison of Leggett's solutions with present solutions for critical-shear-stress
coefficients of a long curved sirip. (Fig. 2 of reference 20.)
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Simplicity of results.—The theoretical results based on
Donnell’s equation for the critical stresses of eylinders under
a given loading condition appear particularly simple when
presented as a logarithmic plot of buckling coefficient &
against the curvature parameter Z. As r approaches
infinity, and therefore as Z approaches zero, & approaches
the value appropriate to a flat plate. At large values of Z
the curve approached a straight line in each of the cases
investigated. These straight lines had slopes 0.5,0.75,and 1
and are given approximately by the following equations
which have already been given in the present paper and are
reassembled here and provided with upper and lower limits
for easy reference:

k,=1.04Z'7 <100<Z< 5 (%)2(1—;:?))
Fy=0.852%+ (50 <LZ<L10 (%)3(1—;;2))
k.=0.702Z (3 <Z< 6 6)2(1—-;&)) |

These equations can also be written (when y is taken to be 0.316)

0y—0.926 2 (f )lm_o 926E< )3[?<L) (100 < (L> <5 )

1/4
—0.747 Et

o= 0.608 Ej

II. MODIFIED EQUATION
THEORY

DERIVATION OF MODIFIED EQUATION

The equation of equilibrium for & flat plate may be written

w O*w
Cr S5 32 21“a ay‘{"o'y ay)'rp 0 (2)
where p is lateral pressure. (This equation is equivalent to
equation (197) of reference 3.}

For a cylindrically curved plate having a radius of curva-
ture r, the following pair of simultaneous equations of equi-
librium may be written (as a generalization of equations (11}
and {10) of reference 7):

Dyttt (o’: al__—{- a:rby+ &y o )+

Dvipt-¢

O'F
<ar2+%> 0

=0 @

where F is Atry’s stress function for the median-surface
stresses produced by the buckle deformation (reference 19).
Equation (3) differs from equation (2) only in the addition

of the term— (b Iz—i—o—y), which expresses the effect of the

r) =0miE () ()" (0 F <(F) <o)

(35 < (<o)

curvature. Equation (4) shows that, unlike flat plates,
cylindrical shells experience stretching of the median surface
when originally straight lines in the surface are bent slightly.
Elimination of F between equations (3) and (4) by suitable
differentiations and additions gives the following single
equation in w for the equilibrium of eylindrical shells:

Ei d*w Pw, , dw

Dvey +9 4.tv4 os 2'2’52 +
o%w .
Ty ——ayg —%’)—[—V*p =0 (&)

Equation (5), which was first derived by Donnell (reference 4),
was ireated in part L.

An alternative method for obtaining a single equation in w
for the equilibrium of a cylindrical shell is to solve equa-
tion () for F and substitute the result into equation (3). This
procedure can readily be carried out in the following manner.
Differentiation of equation (4) twice with respect to « gives

O'F , Ed*w
da? T T ozt =0 6

The symbolic solution of equation (8) for aa I:’IS

V4

»F  E__, dw

22 1 dz*
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Substitution of this result into equation (3) gives

Et__, o™
Dviw TV ayﬁ—H Iz b:c2+276x6y+

Gy - ay ay)’l‘ =0 (7)

Equation (7) is simply equation (5) modified by multiplica-
tion by the operator V=% In the present paper, equations (5)
and (7) are referred to as Donnell’s equation and the modified
equation, respectively.

ADVANTAGES OF MODIFIED EQUATION

One of the quickest and most convenient methods for ob-
taining solutions of flat-plate buckling problems to any
desired degree of approximation uses a Fourier series type of
expansion for the deflection surface w. Both Donnell’s
equation and the modified equation can be solved by this
method in the case of buckling problems involving curved
plates having simply supported edges.

As mentioned in the “Introduction,” however, Donnell’s
equation is not well adapted to solution by Fourier series of
problems involving the stability of shells with clamped edges.
The cause of the trouble appears to be that the calculation
of some of the high-order derivatives found in Donnell’s
equation sometimes leads to divergent trigonometric series
when the edges are clamped. The modified equation, how-
ever, is applicable to clamped-edge problems as well as to
problems involving simply supported edges because lower-
order dertvatives are involved.

Besides its advantages in the solution of problems involving
shells with clamped edges, equation (7) has the additional
advantage that each term has a definite physical significance:
The first term gives the restoring force per unit area of the
deflected surface due to bending and twisting stiffnesses;
the second term gives the restoring force per unit area due
to stretching stiffness; and the remaining terms give the
deflecting or restoring forces per unit area due to applied loads.
Because of these advantages, the modified equation was
adopted for general use in references 11, 14, and 20 to 23.”

Both Donnell’s equation and the modified equation result
in the same critical stresses for simply supported cylindrical
shells, and the two methods require essentially equivalent
mathematical processes. (See appendix E.) The charac-
teristics of solutions by means of Donnell’s equation in the
case of simply supported shells—namely, the theoretical
cylinder parameters, the simplicity of calculations and re-
sults, and the implied boundary conditions on v and s—are
characteristics, also, of solutions by means of the modified
equation. The same characteristics, except for a change in
the implied boundary conditions on u and », also apply to
solutions of clamped-edge shell problems by means of the
modified equation. This change is dlscussc*d in the section

entitled “Boundary Conditions.”

SOLUTION OF MODIFIED EQUATION BY GALERKIN METHOD

An approximate method of solving vibration and buckling
problems closely paralleling that of Ritz was introduced in
1915 by Galerkin. (See, for example, references 24 and 25.)
The main distinction between the Ritz and Galerkin methods |
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is that the Ritz method begins with an encrgy expression,
whereas the Galerkin method begins with an equation of
equilibrium. The Galerkin method is readily adaptable to
the solution of equation (7} and is now deseribed briefly.

Let the equation of equilibrium be written

Q(w)=0 (8)

where €} is some operator in # and y which for the purposes
of this paper is taken to be linear. According to the Gulerkin
method, the equation may be solved by expanding the un-
known function w. in terms of a suitable set of functions
fz(x)gj(y), each of which satisfies the boundary conditions
but not in general the equation of equilibrium:

,wzzi jZ ayuf(2)g,(y)

(9)

Substitution of this expression for w into equation (8)
gives the following equation:

Z{‘,;anUf(ﬂl)gj(y)FO (10}
Because the functions fi(z)g,(y) were chosen to satisfy
the boundary conditions rather than the equation of equi-
librium, equation (10) cannot, in general, be satisfied identi-
cally by any choice of the coefficients a,;. These cocflicients
can be chosen, however, to assure the vanishing of certain
weighted averages of the left-hand side of equation (10).
The weighting functions used in the Galerkin method are
the original expansion functions, so that the following
simultaneous equations for determining the coeflicients a,,
are obtained:

Z{;ani‘jaﬁ:() (m=1,2,3, - .; n=1,2} 9,

) (A1)

where

Bonii=S S fn(2)9.(y) QUf()g;(y)] dx dy (12)

The simultaneous set of linear algebraic cquations in the
unknown coefficients a,, (equation(11)), obtained by using
the original expansion functions as weighting functions, is
ordinarily the same set which would be found by the Ritz
method, if the same series expansion for w were used. A
solution of any desired degree of accuracy may therefore be
obtained by the Galerkin method.

In applying the Galerkin method to equation (7) by use
of Fourier series expansion for w, expressions of the type

V4 30 30 ayy sin 2 sin 7Y
T 7 a b
must be evaluated. The operator V™ the inverse of V¥,
simply introduces into the denominator of each term of the

series the expression that comes into the numerator if V* is
applied. Thus,

VS > ay sin “T* smmry - : -
i j a b

(1271 jﬂ'y

[ W) +<j )] smm,, sin 7%

2525

(13)
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This result may readily be verified by applying the operator
V* to each side of equation {(13).

In writing equation (13) the quantity
the equation

V~*, as defined by
vty

was tacitly assumed to be unique. The quantity actually
is not unique; any number of terms which vanish when
operated upon by V* could be added to the right-hand side
of equation (13). The omission of such terms makes the
present analysis parallel to the analysis using Donnell’s
equation (see part I) and implies certain boundary conditions
on u and r, which are discussed in & subsequent section
entitled “Boundary Conditions.”

DEFLECTION FUNCTIONS

Simply supported edges.—For simply supported cylindri-
cal shells, the following series expansions for w may be used
to represent the buckle deformation to any desired degree of
accuracy (in these functions, « is the ccordinate in the axial
direetion and ¥, the coordinate in the circumferential
direction):

{1} Rectangular curved plate (axial dimension ¢ and
circumferential dimension b)

= i} f‘_, O mn S MAL in MY (14)
&=

1n=1 a b

(2} Curved strip long in the axial direction (circumferen-
tial width & and axial wave length 2))
(a) Direct stresses only

p—sin LS mwy =

= N m};, sin 5 (15)

(b)Y Shear stress with or without addition of direct stress
. FL < mEY L & . mMEY

w=sin ~ 7_=‘, sin 5 Tees H%)lbm sin — (16)

{3} Complete cylinder (length L and circuroferential wave
length 2X)
fa) Direct stresses only

w=sin == 2 Gnsin T (17)

ke . MFEZT fiw? mzrx
> ayp sin T2 +co "/Zb sin 27

W=sin

(18)

w0

~|2

Clamped edges.—Probably the simplest method of ireating
evlindrieal shells with clamped edges is to employ the
expansions in equations (14) to (18) modified by substituting
functions of the type

(m-+ 1)—,1:]
—cos -
a

_.ommr . owr_ 1 (m—D=r
en(z)=sin —= sin-—=5| cos ~——
(19)

Z

. . MET .
wherever functions of the type sin——  appear, with a

similar substitution for functions of ¥ (all terms involving
summation subscripts m and n are thus changed; terms
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involving A, such as sin HT remain unchanged). The funec-

tions ¢, (z) form a complete set so that finite expansions for
w of the type suggested for shells with clamped edges as well
as those for shells with simply supported edges may be used
to represent the buckle deformation to any desired degree of
ACCUTACY.

BOUGNDARY CONDITIONS

Simply supported edges.—Appendix D shows that, if the

buckling stress of a simply supported shell is found by means
of the expansions for w given in the preceding section en- .

titled “Deflection Function,” the boundary or edge condi-
tions implied for the median-surface displacements « and »
are zero displacement along each of the edges of a cylinder
or curved panel and free displacement normal to each edge.
(Although the proof given used equation (5}, the proof
could equally well have been based on equation (7).)

The boundary conditions for simple support may thus be
written, at a curved edge (x=Constant),

_Qw_OF -
=3F oy =0 {20)
and, at a straight edge (y=Constant}, B
QPw 0*F
L‘_;:Sy—z—’u———a‘?z—o (21)

Clamped edges.—By amethodsimilarto thatin appendixD
solutions using the functions suggested in the preceding
section for the treatment of clamped edges can be shown to
correspond to the boundary conditions zero displacement
normal to an edge and free displacement along an edge.

The boundary conditions for clamped edges therefore be-

come, at a curved edge (z=Constant),
ow o?F

and, at a straight edge (y=Constant},
ow o*F
=@=v=ay2=0 (23)

Discussion.—As mentioned in part I, the boundary con-
ditions implied for u and » in the case of simply supported
edges are appropriate for eylinders or panels bounded by light
bulkheads or deep stiffeners, which are stiff in their own
planes but may be readily warped out of their planes.

The boundary conditions on u and v appropriate for a
clamped edge would seem to be zero displacement normal
to the edge and zero, rather than free, displacement along
the edge. Comparison of critical stresses for shells with
clamped edges found by the method in the present paper
with critical stresses found by the method in references 7
and 8, giving boundary conditions u=r=0, however, indi-
cates that the imposition of the added requirement of zero
displacement along the edge ordinarily has very httle eﬁect
on the critical stresses.

A less satisfactory method for solving problems concermng
shells with clamped edges involves the use of functions of the
type

msr 1 (m-+2)xx
—'m-'[—2 a

1 .
—§8in
m a
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instead of those described by equation (19). In this method,
the functions used are those for simple support taken in
such combinations that the edge slope is zero. Use of such
functions leads to the same boundary conditions on u and
v as were described for simply supported edges; at the edge
y=~Constant, for example, the boundary conditions become

ow__ bQF - 3
The use of these functions to represent shells with clamped
edges is not recommended, however, for the following reasons:
The associated boundary conditions seem to be artificial
and unlikely to be reproduced even approximately in actual
construetion; the method leads in soma cases to solutions that
differ considerably from the solution for ideal clamped-edge
conditions in which u=w»=0; and the _solutions obtained
generally converge rather poorly.

APPLICATIONS AND DISCUSSION

Among the more difficult shell-stability problems to treat
theoretically are those which involve shear stresses. In fact,
until 1934, when Donnell’s paper on eritical shear stress of
a cylinder in torsion was published (reference 4), such prob-
lems were generally regarded as impraeticable to solve. In
order to illustrate the type of solution to be found by the
method of analysis just outlined and the effect of boundary
conditions on critical stresses, the results obtained for a
number of shell-stability problems involving shear stresses
are reproduced and discussed briefly here. The problems
treated are summarized in table I.

Critical shear stress of long curved strip.—The critical
shear stress for a long plate with transverse curvature is given
by the squation B
T =k =D

er—itg th

where %, is a dimensionless coefficient, the value of which
depends upon the dimensions of the strip, Poisson’s ratio
for the material, and the type of edge support. In figure 12
(fig. 1 of reference 20) the shear-stress coefficient k; is given
for plates with simply supported edges and with clamped
edges. This solution for simply supported edges coincides
with that given by Kromm (reference 6).

As indicated in the previous section entitled “Boundary
Conditions,” the solution corresponding to the boundary
conditions of equation (24) (dashed curve of fig. 12) is poorly
convergent and deviates appreciably from the results for
completely fixed edges. Figure 12 shows this poor conver-
gence in the limiting case of a flat plate, for which the critical
stress is independent of boundary conditions on "% and v.
Even a tenth-order determinant led to a result that is
7 percent above the true solution; whereas the result using a
fourth-order determinant obtained with the deflection
functions recommended for clamped edges is only 1 percent
above.

In figure 11 (fig. 2 of reference 20) the solutions given in
figure 12 are compared with the results given by Leggett
(reference 7) for simply supported and clamped edges with

=p=0 at each edge. Throughout the range for which
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TABLE IL—INDEX OF PROBLEMS TREATED

Edge condition

Problem Figure Reference
(u=0, £740).
12 20 =0).
L =0
{ .
1pported (u=0, £p£0).
11 20 L0, =0},
(u=0, r50).
7 {SmeI} su pmted (u—b 0).
(Leggett) la.mped
- Simply supported.
8 ‘ 1 {Clamped. P
I@i 13 21 Simply supported.,
~—— -
}DI 14 21 Simply supported.
I
Nob ;
; Simply supporfed.
;E:“ shown 22 {Clam ped. PP
% 15 (a) 23 Simply supported.
‘T"/T 15 (b) 23 Clamped.

they are given, Leggett’s results for clamped edges differ
only slightly from those of the present paper. On the other
hand, the previously mentioned discrepancy between the
results for completely fixed edges (u=w=0) and those for
the boundary econditions of equation (24) (dashed curve)
may be inferred from this figure to be considerable for large
values of Z. A minimum measure of this discrepancy is the
distance between the clamped-edge curves for »=0 and for
u=0 in figure 11, since Leggett’s curve must always lic
above the curve for v=0.

The reason for the marked increase in buckling stress of
simply supported curved strips when the edges are restrained
against circumferential displacement duz ing buckling is
discussed in part I. )

Critical shear stress of eylinder in torsion.—The critical
shear stress of a eylinder subjected to torsion is given by the
equation

2
Tcr=ks WTQ‘
In figure 7 (fig. 1 of reference 14) the values of &, arc given
for cylinders with simply supported edges (boundary con-
ditions of equation (20)) and cylinders with clamped cdges
(boundary conditions of equation (22)). At high values
of Z, the values of k; for thick cylinders are given by special

. T — . .
curves for various values of 7 VI—42, as discussed in part L.

At values of Z greater than about 100 only a small
increase in buckling stress is caused by clamping the edges.
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FiGURE 12.—Critical-shear-stress coefficients for a long curved strip. (Fig. 1 of reference 20.}

The results indicated in figure 7 are in very close agreement | conditions on straight edges are considered, with figure 7, in

with Donnell’s results for the same problem, except in the
range 5 <Z< 500 where the somewhat lower curves of the
present paper represent a more accurate solution.

Part 1 shows that boundary conditions imposed upon %
and v at the curved edges of a panel or cylinder have an
almost insignificant effect on the buckling stresses, whereas
conditions imposed on v at the straight edges may be quite

important. Comparison of figure 12, in which boundary
103
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FiqurE 13.—Critical-shear-stress coefficients for simply supported curved panels having cir-
cumferential dimension greater than axial dimension. (Fig. 1 of reference 21.}

which conditions on curved edges are considered, indicates
that a similar situation exists with respect to restraint
against edge rotation.

Critical shear stress of curved panel.—The values of %,
giving the critical shear stresses of simply supported curved

rectangular panels are given in figures 13 and 14 (figs. 1 and

2, respectively, of reference 21). The corresponding bound-
ary conditions on % and » are zero displacement parallel to
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FIGTRE 14.—Critical-shear-stress coefficients of simply sapported curved panels having axial
dimensions greater than cirenmferential dimension. (Dashed curve estimated.) (Fig. 2
of reference 21.)
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the edges and free warping normal to the edges. Figure 13
indicates that, as the curvature parameter Z increases, the
critical shear stresses of panels having a ecircumferential
dimension greater than the axial dimension approach those
for & cylinder. Figure 14 indicates that, as the curvature
parameter Z increases, the critical shear stresses for panels
having an axial dimension greater than the circumferential
dimension deviate more and more from the critical shear
stress for an infinitely long curved plate. Reference 21
shows that the reason for this deviation in figure 14 is that
at high curvatures the buckling stresses of these panels, as
well as those of figure 13, approach those of the cylinder
obtained by extending the circumferential dimensions of the
panels.

The effects of boundary conditions in the limiting cases of
infinitely long curved strips (fig. 12) and of complete cylin-
ders (fig. 7) suggest that the curves of figure 13 are sub-
stantially independent of edge restraint at large values of Z
but that the curves of figure 14 would be considerably
aflected by a change in edge restraint.

Long curved strips under combined shear and direct axial
stress.—Reference 22 shows that the theoretical interaction
curve for a long curved strip under combined shear stress
and direct axial stress is approximately parabolic when the
edges are either simply supported or clamped, regardless of
the value of Z. This parabola is given by the formula

Ri+R,=1 oo

where R, and R, are the shear-stress and compressive-stress
ratios, respectively.

At high values of Z curved strips, like cylinders, buckle at
compressive stresses considerably below the theoretical crit-
ical stresses. In order to take this condition into account,
certain modifications in the theoretical results are proposed
in reference 22 for use in design.

Cylinders under combined shear and direct axial stress.—
The theoretically determined combinations of shear stress
and direct axial stress which cause a cylinder with simply
supported and clamped edges to buckle are shown in figure
15 (fig. 1 of reference 23). Considerable variation in the
shape of the interaction curves occurs for low values of Z.
For high values of Z the interaction curves for either simply
supported or clamped edges are similar to the curve for
Z=30.

Because cylinders actually buckle at a small fraction of
their theoretical critical compressive stress, the theoretical
interaction curves of figure 15 cannot be expected to be.in
satisfactory agreement with experiment when a very ap-
preciable amount of compression is present. For semi-
empirical curves and a check of available test data, see
reference 23.

CONCLUDING REMARKS

The use of Donnell’s equation to find the buckling stresses
of simply supported cylindrical shells leads to simpler results
and involves less labor than the use of equations in which
second-order terms are retained. The buckling stresses
found by use of Donnell’s equation are in reasonable agree-
ment with results based on other theoretical calculations.
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Fi1GureE 15.—Critical combinations of shear-stress and dircet-axial-stress coeflicients for
- eylinders. (Fig. 1 of reference 23.)

Except for the case of axial loading, they are also in reason-
able agreement with test results. Boundary conditions having
to do with axial and circumferential displacements eannot
be handled directly by use of Donnell’s equation. This
disadvantage is not considered serious, however, because the
boundary conditions on axial and circumferential displace-
ment, which are implied by the simple solutions given,
correspond approximately to those that are most likely to
oceur in practical construction and because in many cases
the buckling stress is not very sensitive to these boundary
conditions. The restriction to simply supported edges in
Donnell’s equation can be removed by the introduection of
a new equation which is equivalent to Donnell’s equation
but is better adapted to solution by Fourler scries. This
modified equation can be solved for the buckling stresses of
curved sheet having either simply supported or clamped
edges by established methods essentially equivalent to those
in use for flat sheet. This approach permiils a simple and
straightforward solution to be given for a number of probh-
lems previously considered rather formidable.

Laverey. MevMoRIAL AERONAUTICAL LABORATORTY,
Narrovarn Apvisory COMMITTEE FOR AERONAUTICS,
Lawcrey Fizrp, Va., Mareh 20, 1947.
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APPENDIX A

SIMPLIFIED EQUATIONS OF EQUILIBRIUM FOR CYLINDRICAL SHELLS

The principal sets of simplified equations currently in use
for the equilibrium of cylindrical shells are listed for con-
venient reference. The various sets of equations are equiva-
lent. The reference papers in which the equations are derived
are also listed. The equations given are generally not
identical with those in the reference papers but are modified
in certain respects to include all the loading conditions
studied in the present paper or to put them in the notation of
the present paper.

The three following simultaneous equations in displace-
ments %, #, and w (reference 3) are derived from the conditions
of static equilibrium:

Dy2+ 2“222 ; 1;#a§5y+% 66%5_0 (A2)
Dviw - (Et ) g;—r,ugz‘l'w +
t(gz aa;§+2,— a;g;-i—ay%?'!—’f—"r" +p=0  (A3)

Two simultaneous equations in deflection w and stress func-
tion F (reference 6) are as follows:

. E 2w ) )
vF+Z $8=0 A9
o*w w  10*F o\,
Dviwtt( oz bx°+"‘ bray_{_"—’ 0 rof r)t
p=0 (Ab)

A single equation in deflection w (Donnell’s equation, refer-
ence 4) is

Et ot -
Dvew += 2 a%f_[_tv Gz a =>+21 axay+
% '
oy 6?“6?” +Vip=0  (36)

The relationships between # and w and between » and w are
(reference 4)

Pw , Pw

rviu=— )iz ﬁ"l‘a—xa—f (AT)
& Qdw
1= —(24) 5y 58 (48)
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APPENDIX B

THEORETICAL SOLUTIONS

Donnell’s equation for the equilibrium of eylindrical shells
is used to investigate the stability of simply supported
cylinders subject to lateral pressure, axial compression, and
hydrostatic pressure, and of simply supported curved strips
long in the axial direction subject to axial compression.

CYLINDER UNDER LATERAL PRESSURE

If bending of the cylinder wall is neglected, constant
lateral pressure on a eylinder causes only circumferential

stresses. Donnell’s equation (equation (A6)) then reduces
to
Et 0w O ’
DVew+5 5+ otV 7" (B1)
where
r
o=t

and p is the pressure applied. (By virtue of the preceding

equation the terms involving p and i: appearing in equation

(A6) cancel in the present case.) Division of equation (Bl)
by D results, with proper substitutions, in the following
equation:

1222 d*w O2w

Vw7 TIF o kr/Lz V4W_O (B2)

The boundary conditions corresponding to simply supported
edges (no deflection and no moment along the edges) are

w(0,y)=w(Ly)=

%W o?
5 O =%3 Ly)=0

A solution of equation (B2) satisfying the boundary condi-

tions for simple support is

w=w, sin = sin 72T
¢ hy L

- (B3)
where X is the half wave length in the circumferential direc-
tion. Combining equation (B3) and equation (B2) yields
the following equation:

(267 BmEP=0  (BY
The solution of equation (B4) for k, is
2 2N 2 12Z2 4
<m -B{;ﬁ) i 462’('77;&2_?62)2 ’ ' (B5)
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where I
g8 =3

The critical value for £, is found by minimizing the right-
hand side of equation (B5) with respect to m and 8. If the
numerator and denominator of the last {erm in equation
(B5) are divided by m? it hecomes evident that under the
restriction of integral values of m, %k, will be a minimum
when m=1, Equation (B5) therefore becomes

_(1+52)2 1272
b T

The results found by minimizing this expression for k, with
respect to B (considered continuously variable) are shown in
figure 1 by the curve independent of rft.

At low values of Z, buckling is characterized by a large
number of circumferential waves. As Z increases, the num-
ber of circumferential waves decreases until it finally becomes

®6)

two <>\=%3)7 corresponding to buckling info an elliptical

cross section. The curves for buckling into two circumferen-

tial waves are shown in ﬁgure 1 as the curves for various
values of —\/1— The equations for these curves are

found by substituting in equation (B5) the last of the follow-
ing expressions for g:

CYLINDER IN AXJAL COMPRESSION
When only axial stress is present, equation (A6) becomes

E 2
Dvew+-y 2;’4— et V aaxu;=0

(B7)
Division by D results, with proper subst-itut-ions, in the
following equation:

1222 d*w O%w

v 2 S T S0 (BS)

Combination of the deflection equation (B3) with cquation
(B8) yields the following equation:

(m2- 5+ 12Z m

—kmi(m24-8%)2= (B9)
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The solution of equation (B9) for £, is
2 2
o )

- m?

1272°m?
ﬁ_é (Tn2 _:_ ﬁ?) 2

The critical value of £, for a given value of Z may be found
by minimizing %, with respect to the parameter

(?nZ_{_ 52) 2
m?

If no restrictions are placed on the value that this parameter
can take, the minimum value of k, is found to be
4+/3

k=22 Z=0.702Z

(B10)

which coincides with the results generally given for the
buckling of long cylinders.

For values of Z below 2.85, however, the straight-line
formula (equation (B10)) cannot be used, since it implies
either imaginary values of the circumferential wave length A
or the number of axial half waves m below unity. The
critical stress coefficient k., for Z<(2.85 is found by substitut-
ing the limiting values =0 and m=1 in equation (B9).
The results are shown in figure 3.

CYLINDER UNDER HYDROSTATIC PRESSURE

Hydrostatic pressure applied to a closed cylinder produces
the following axial and cireumferential stresses:

or

0x =5

T
o=

t

The equation of equilibrium (equation (A6)) when both
circumferential and axial stress are present is (since Vip=0)

Et d'w

Dvdw+- =57 4—1-0'.,,1,"\7"a 2—[—0'1,4‘,V4 =0

(B11)
By use of the definition

prl?

Dr?

equation (B11) can be written

C,=

1222 d*w 1 0%w , Q*w
Viw +—7- TE a4TOpLzV <2al.zt ) 0 (B12)

If the deflection equation (equation (B3)) is combined with
equation (B12), the following expression results for C:
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(8, 122°m*
2 a2
Z/i _132 74(m2+ BZ) 4 (%_{_B?.)

The critical value of (', is found by minimizing the right-

Cy= (B13)

" hand side of equation (B13) with respect to m and B, with

due regard to the values which m and f may assume. It
can be shown that the minimum value of C, is found by
taking m equal to 1, so that equation (B13) becomes

(11 62) 1272 - (B14)
2T52 = (1+89* <‘2‘+52)

Equation (B14) is equivalent to an equation derived by
Von Mises (reference 3, p. 479). The results of minimizing
(', with respect to B are shown in figure 4. (The curves

given for various values of JT—22 have the same signif-

icance as in the case of a cyhnder buekling under lateral
pressure alone.) :

LONG CURVED STRIP IN AXIAL COMPRESSION

Because it merely describes equilibrium at a point, equa-
tion (B7) applies to the buckling of a long curved strip as
well as to cylinder buckling. In modifying this equation to
obtain nondimensional coefficients as in equation (BS),
however, it is convenient to define £, and Z in terms of the
width of the strip & rather than in terms of the axial length
L, which applied in the case of the cylinder. Accordingly,
equations (B7) and (B8) for a cylinder in axial compression
may be applied also to the buckling of a curved strip, long
in the axial direction, subjected to axial compression,
provided the curved width & is everywhere substituted
for the length L. Substitution of the deflection

nry

W=y, sin = < sin =

A
into equation (B2) (modified by substitution of b for L) gives

_ (89,
.E 5_

127°8°
TR

(B15)

where,

o

ﬁ_-—:

Equation (B15) is very similar to equation (B9) and each
equation yields the same critical value for k; at large values
of Z. At small values of Z, the minimum value of k; is
found by taking n=1 in equation (B15) and minimizing
with respect to B8 the resulting expression for k,. The results

are given in figure 10 together with results found by Leggett -

(reference 8).
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APPENDIX C

PARAMETERS

It is shown that Donnell’s equation implies that under
certain limitations the buckling coefficient %, familiar from
flat-plate theory, ean be expressed in terms of the curvature
parameter Z alone in the case of a complete cylinder or a
curved rectangular panel of given length-width ratio.

Donnell’s equation (A6) is (when p is constant or zero)

Et o*w *w o%w O%w
8 4
Dviw +r 57 == +ivi{ o, el -+27 axay—{—a’,‘f 5y ) 0 (C1)
Let
=
and
a? a?
2o 9
vG a£2+a172
Then
<bx2+ay

Multiplication of equation (C1) by 5 and substitution of

the dimensionless coordinates ¢ and » gives

Bt o*w ., ow
= agé—f_tiG JxaEZ+ZTaEa —{—6‘462) 0

DVGS’M)'{'

Division by D results in

Etb* d*w b ¥
St e ag4+D Ve'{ o ag2+zfaga +"ﬂa ) 0
) B
or, smceD—m;
Vw1222 20 1 ey <A U4k, XY L Py

¢ deE T T Ve e saga ,,a

(C2)
where

2
= — 2
rt ‘/1 ¥

_ ik
Dyp?

S Dy?

ks

ayth?

Ay
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Even without solving this equation it is clear that w must
be a function of the independent variables £ and 5, and also
the parameters Z, k., k;, and k,, and the derivatives of w
will be functions of the same variables and parameters.
Thus, if only one type of loading (represented by the buekling
coefficient k) is present, equation (C2) may be written

7[1 (gﬂhzg k) + 1222.](2@:77;Z)k)—i—rzka(g:m!Z:k) =0

where fi, f;, and f; are definite, though unknown, functions.
The variables £ and 9 may now be eliminated by integration
of both sides of this equation over the entire range of ¢ and 4.
In the case of a curved panel of circumferential dimension a
and axial dimension b the resulting equation is

(C3)

1 g
[ de [ anenzir1220 20+
’ﬂ’%fa(ff;’?:z;k)]:(]
The integrals of the functions £, f;, and f; depend only

upon Z, k, and the value of the ratio a/b. Accordingly,
equation (C4) implies that a relationship of the following

type exists:
fi(h2,%)=0

Equation (C5) indicates that for any given value of the panel
aspect ratio a/b, the critical-stress coefficient & depends only
upon Z,

If a complete cylinder of length I rather than a panel of
length & is under consideration, and the deflection w is
periodic with wave length 2X\ in the circumferential coor-
dinate, the integration

‘_;.
Sy
0

appearing in equation (C4) may be replaced by

2
L
o

where £ and g are now defined as z/L and ¥/L, respectiv e]v
The result then becomes

1, <k,Z, ?l)=o

k=i (2. 2)

€y

(C5)

or

(C6)
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The actual buckling stress is found by minimizing % with
respect to 2:\/L.
Theoretically, N must satis{y the equation

TT=NA €7
where n is the number of circumferential waves and therefore
an integer. When many circumferential waves are present,
however, this restriction does not significantly affect the
buckling stress, and the minimization of £ with respect to

) ) e
2A (considered eontinuously variable) leads to the result

Hb
k=7A2) (C8)

Equation (C8) indicates that provided the number of eir-
cumferential waves is not too small the critical-stress coeffi-
cient for a cylinder depends for practical purposes only upon
the curvature parameter Z.
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When 7 is so small that its integral character must be taken

into account, it appears from equations (C6) and (C7) that
k depends upon both Z and r/L. Since, however,

&)-27

k for small values of n can alternatively be expressed in terms

VI=:2

of Z and—xl—p as in figures 1, 4, and 7.

By a similar analysis, it can be shown that when the buck-
ling of a cylinder under hydrostatic pressure is represented
by plotting the pressure coefficient C, against Z, a single
curve is obtained except where the small number of circum-
ferential waves requires splitting the curve into a series of

curves for different values of % Vi1—pl.

APPENDIX D

BOUNDARY CONDITIONS ON EDGE DISPLACEMENTS WITHIN THE MEDIAN SURFACE

The solution of Donnell’s eighth-order partial differential
equation for the stability of cylindrical shells is not unique
under the imposition of the ordinary boundary conditions
for simply supported or clamped edges. Two more bound-
ary conditions at each edge, for example, one condition for
2 and one for #, are required to define completely the phys-
ical problem and are therefore needed to make the solution
unique. Because only w appears in the equation, boundary
conditions on « and » cannot be imposed directly; they may,
however, be implied by the method of solution. The pur-
pose of this appendix is to show what boundary conditions
on u and ¢ are implied by the method of solution used in
the present paper. In order to simplify the discussion, the
analysis will first be made for the case when only axial
compression is present and will then be extended to other
cases.

When only axial stress is
{equation (A6)) becomes

present, Donnell's equation

Dv® +E;tg St oavt ar_—O

If the shell deseribed by this equation is a curved panel with
the origin of coordinates in one corner of the panel, a solu-
tion satisfyving the usual boundary conditions for simple
support s

mer, . n
= SLD.—Z— ‘sin gy

(b1)

where m and n are integers. This solution Is also the
solution to the problem of the buckling of an infinite two-

dimensional array of panels identical to the one under con--

stderation. (See fig. 16.)
displacements u, v,

Yvhen such an array buckles, the
and w as well as the stresses, described

by the stress funetion F, may be presumed to be periodic
over the interval 2g¢ in the axial direction and 2& in the
circumferential direction.

Any funetion u(x, ) that is periodic with a wave Iength'

2¢ in the a-direction and with a wave length 26 in the
y-direction may be expanded as follows (see, for example,
reference 26):

U=3" D Gp sin T2 sin 2Y 4+

m=] n=1 a b

i i b sin ™EE nxy |

m=I n=0 i b

>0 > Cma COS B in nzle

m=0 n=1 a b

© o n

mZ=0 nZJ; dpn COS —— COS gy (D2)

- -

/ - /

b
S LU
% a \
N N \

Fi1GTRE 16.—Two-dimensional array of identical carved panels.
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The rgla.tionship which must exist between % and w is 5215 0,4)=0 (D1 15
(equation (A7)) oy
o . O*w 5F

p bap e gy = —_

IVU=—k 3 Jxoy? ay2 (@,y)=0 (D12)
Substitutio%l into tlhis equation of the_expressipns for w and w __i (r,O) =0 (Dl 3)
from equations (D2) and (D1}, respectively, and use of the o
orthogonality of the functions in equatlon (D2) leads to the O¢F o
result 32 (z,0)=0 (D14)

BTGl il B

L +()] o

Accordingly, the boundary conditions on % are

u(z,0)=0 (D3)
w(z,b)y=0 (D4)
2 (0,4)=0 (D3)
% (@a)=0 (D)

Similarly by use of equation (A8) instead of equation (A7)
it can be shown that the boundary conditions on » are

0(0,4)=0 ®7)
o(a)=0 ®s)
$2 (,0)=0 (9)
bvb D

5 (&h)=0 (i)

The boundary conditions of equations (D5), (D6), (D9),
and (D10} may be combined to give four boundary condi-
tions on the stresses induced by buckling. These boundary
conditions, which are also derivable from equation (A4) by
a method analogous to that just used to derive the condltlons
relating to u, are

2 2
where gyj? and %—g are, respectively, the median-surface

axial and circumferential stresses caused by buckling. The
eight boundary conditions given by equations (D3}, (D4},
(D7), (D8), and equations (D11} to (D14), plus the cight
boundary conditions on w for simple support of the four panel
edges taken together uniquely determine the buckling stress.

Although the preceding discussion of boundary conditions
started with the assumption of axial stress only, the only use
made of this assumption was in obtaining equation (D1) as
the solution for the buckling deformation. The same defor-
mation, and hence the same arguments, apply when circum-
ferential siress is present. When shear is present, a serics of
terms of the type in equation (D1) must be used to repre-
sent the deflection surface, and hence series of ferms occur
in the expressions for u, », and F. Since the boundary condi-
tions derived in the preceding analysis apply to each of the
terms individually, by the principle of superposition they
must also apply for the sum, so that equations (D11) to
(D14) represent the boundary condition no matter what the
applied stresses are,

In summary it may be stated that the substitution of one
or more terms of a double-sine-series expansion for w into
Donnell’s equation and solution of the resulting equation for
the buckling stress gives the solution corresponding to the
following boundary conditions:

(1) Each edge of the panel (or cylinder) is simply sup-
ported; that is, the displacement normal to the surface of the
panel and the applied moments are zero at the edges.

(2) Motion parallel to each edge during buckling is
prevented entirely.

(3) Motion normal to each edge in the plane of the sheet
oceurs freely.
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APPENDIX E

COMPARISON OF RESULTS OBTAINED BY USING DONNELL'S EQUATION AND THE MODIFIED EQUATION IN THE
STABILITY ANALYSIS OF SIMPLY SUPPORTED CURVED PANELS ’

SOLUTION OF DONNELL’S EQUATION

Donnell’s equation expressing the equilibrium of a curved
panel under constant median-surface streszes can be written
in general form as

Et o*w o%w o%w o*w

-8, 1 0 LW 4 4 O
Dv u-[—rg alA—rO-th axg-rQ rivt axby—;—o‘,,i\‘ 0 0 (ED

where z is the axial coordinate and y the circumferential
coordinate. Division of equation (E1} by D and the intro-
duction of the dimensionless stress coeificients k,, k,, and

ks, and the curvature parameter Z results in the following
equation: .

sy 12270 T W g w L, O, g O
Vwt—pe s thp Vg T2k v oxdy ! Fy 5 ¥ ay'r“o
(E2)
where
bt
ke=o. 2p
bt
k=72p
b
ky=oy =D
and
Z—E _!1_ 2
t M
Equation (E2) can be represented by
@i(w)=0 (E3)
where €, is defined as the operator
1222 ¢ | o? w2, O
vt b* a*"{b 2+2[L‘62 ordy R*‘b’v G

The equation of equilibrium (equation (E3)}) is solved by
using the Galerkin method as deseribed in the section
entitled “Theory.” 1In applying this method the unknown
deflection w0 is represented in terms of a set of functions (see
equation {9)}, each of which satisfies the boundary conditions
but not in general the equation of equilibrivm. A suitable

set of functions of this type, which satisfies the boundary
conditions for simple support, is

W= i Z@ Tmp sin 25T gin 27Y E4
m=1 n=1 b
where the origin is taken at a corner of the plate. Substi-

tuting in equations (11) and (12)

f.{x)=sin Tﬁ
gu(y)=sin 77
and

Qle

and performing the integration over the whole plate (limits
r=0, a; y=0, b) gives the set of equations

1222m a~_

o [(rbo 4122
kam® (m-J—n b) —k,n? 64(711. +nl bz)]—[—

v o (Pt Dzmnpez o
B ) (e )

where m=1,2,3,. .. ,n=1,2,3,. .., and p and ¢ take
only those values for which m 4 p and n+¢ are odd numbers.

Equation (E5) represents an infinite set of homogeneous
linear equations involving the unknown deflection coeffi-
cients @y In order for the deflection coefficients to have
values other than zero, that is, in order for the panel to
buckle, the determinant of the coefficients of the unknown
deflection coefficients a;;must vanish. Thisdeterminant ean
be factored into two subdeterminants, one involving the
unknown deflection coefficients a;; for which 747 is odd
and the other involving those coefficients for which 147 is
even. Buekling occurs, therefore, when either of the two
subdeterminants vanishes. Ounly the buekling criterion in-
volving the even subdeterminant is treated here This
criterion is

307
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4581 Q3 2573 [£53] g3
2N 2
m=1,n=1 My 0 %(4+45‘£—2 0 0
2\ 2
m=1,n=3 0 My —%(4%%) 0 0
4 a™\? 4 a?\? 4 a®\’ 36 a\?
m=g,n=2 | (1+5) —s(1+9%)  Mw  —3(9+5) 2(s+9%)" - y )
4 az z )
’rﬂ:S,n:l 0 0 —5 4"5—4:'6_2 ﬂ.’[gl 0
. 36 a®\?
where ,
g b oy 2 @ L 122%m%t 2£2< 2 261_2)2_ y 2§j< 2.1, 2(1_2)2]
M’”“_32k3a3|:<m +n 62) +_W kg pElm +n 7% ko R
Division of each column of the determinant in equation (E6) by the proper
v 8T\
(7+7%)
gives the simplified equation _
a2\? a?\2 a?\2 a2\ a\2
@11(1"{'6—2) 13 <1—:‘9 Fq) Qoo <4+4 BE) Qa1 <9+‘b‘§) ag <9+9 F) . ..
: ' 4
.Z\Tu 0 § O 0
4 -
7 _zx Z
0 Nig 5 0 0
4 4 -4 36
= _z 7 =2 °0
9 5 Nz 5 25 ‘ .
={ (E7)
4
0 0 . 75 Nm 0
36 ~ .
0 0 §§ 0 JAYS
where general form is
y o g N — Bt __ dMw O%w o d%w
213 2\ 2 Dy 4 2 4 -4 Lt oy vw ) W Ty
Nmn:ggfiéa <m2+n2 %—2> p 12722mia 2>2—krm2%~2—~kyn2%; D+ —5 VSt oat 57 T2 aw;ﬁ"’vf ayg—O (E8)

bt <mi’ —i—ng%—g

The vanishing of this determinant is the criterion for the
symmetrical buckling of the shell. The same_buckling cri-
terion results from the use of the modified equation, as is
shown in the following section.

SOLUTION OF MODIFIED EQUATION

The modified equation expressing the equilibrium of a
curved panel under constant median-surface stresses_in

Division of equation (E8) by D and simplification of the
result gives the following equation:

12722 __, o' 7> QM t d'w  O%w
4 5 -4 . LA D e
Vot =gV Dx4+'l” b* Ox +2k, b oxoy Fhy g ayfo -
' (E9)
Equation (£9) can be represented by
Q(w)=0 (E10)
where @ is defined as the operator
1222 __, ot 7w Of 7 O 7 O°
-4 -9 g TO T O g T O
Vit o v oxt tke b?bxﬁ—%‘ bszéy_}-]” b oyt
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By use of the Galerkin method and by use of the expression
for w given in equation (E4), the following set of equations
analogous to equations (E5) are obtained

a™\? 127%m*a* a? at
Cmx <m2+ n?s ) 2>z —kzm,zb—z—kyn?F

+
i1 a
b (m2+ n? 7

A
T

o m m«npg _
X Eq;am (m2—p2)(n2—g2)—0 (E11)
where m=1,2,38, . ..,2=1,2,3, ..., and p and ¢ take

only those values such that m +p and n ¢ are odd numbers.
As in the case of the solution of Donnell’s equation, the
stability determinant representing equations (E11)} can be

factored Into an even and an odd subdeterminant. The
even one is
s i3 757} (1531 33 .
AT 4
m=1, n=1 Nu O 3 0 0 ...
- 4
m=1, n=3 0 Ny —3 0 0
- =0 (Ei12)
m=3, =1 0 0 _= .Z\Tgl O
36
7’.}'I4=3‘.r n=3 0 0 2_5 0 1’\733 .

The stability determinant (equation (F£12)) obtained from
the modified equation is identical with the simplified stability
determinant (equation (E7)) obtained by use of Donnell’s
equation. This identity holds for the odd as well as the even
determinants.

Although the stability determinants obtained by use of
the two equations are identical and yield identical buckling
loads, the determinant in\ fzquation (7)) consists of the

2% 2

. | o GOV . .
coefficients of a,-,-( 1'+]3~b—.2); whereas the determinant in

equation (E:12) consists of the coeflicients of a:;. Accord-
ingly, although the buckling loads found by the two methods
are the same, the buckle patterns are different. Of the two
buckle patterns the one found by the use of the modified
equation is believed to be correct. This conclusion has been
verified for the limiting case of a flat plate (Z=0).
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